1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Extent allocs and frees
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
40 #include "blockcheck.h"
42 #include "extent_map.h"
45 #include "localalloc.h"
52 #include "refcounttree.h"
54 #include "buffer_head_io.h"
56 enum ocfs2_contig_type {
63 static enum ocfs2_contig_type
64 ocfs2_extent_rec_contig(struct super_block *sb,
65 struct ocfs2_extent_rec *ext,
66 struct ocfs2_extent_rec *insert_rec);
68 * Operations for a specific extent tree type.
70 * To implement an on-disk btree (extent tree) type in ocfs2, add
71 * an ocfs2_extent_tree_operations structure and the matching
72 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
73 * for the allocation portion of the extent tree.
75 struct ocfs2_extent_tree_operations {
77 * last_eb_blk is the block number of the right most leaf extent
78 * block. Most on-disk structures containing an extent tree store
79 * this value for fast access. The ->eo_set_last_eb_blk() and
80 * ->eo_get_last_eb_blk() operations access this value. They are
83 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
85 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
88 * The on-disk structure usually keeps track of how many total
89 * clusters are stored in this extent tree. This function updates
90 * that value. new_clusters is the delta, and must be
91 * added to the total. Required.
93 void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
97 * If this extent tree is supported by an extent map, insert
98 * a record into the map.
100 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
101 struct ocfs2_extent_rec *rec);
104 * If this extent tree is supported by an extent map, truncate the
107 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
111 * If ->eo_insert_check() exists, it is called before rec is
112 * inserted into the extent tree. It is optional.
114 int (*eo_insert_check)(struct ocfs2_extent_tree *et,
115 struct ocfs2_extent_rec *rec);
116 int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
119 * --------------------------------------------------------------
120 * The remaining are internal to ocfs2_extent_tree and don't have
125 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
128 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
131 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
132 * it exists. If it does not, et->et_max_leaf_clusters is set
133 * to 0 (unlimited). Optional.
135 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
138 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
139 * are contiguous or not. Optional. Don't need to set it if use
140 * ocfs2_extent_rec as the tree leaf.
142 enum ocfs2_contig_type
143 (*eo_extent_contig)(struct ocfs2_extent_tree *et,
144 struct ocfs2_extent_rec *ext,
145 struct ocfs2_extent_rec *insert_rec);
150 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
153 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
154 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
156 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
158 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
159 struct ocfs2_extent_rec *rec);
160 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
162 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
163 struct ocfs2_extent_rec *rec);
164 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
165 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
166 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
167 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk,
168 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk,
169 .eo_update_clusters = ocfs2_dinode_update_clusters,
170 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert,
171 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate,
172 .eo_insert_check = ocfs2_dinode_insert_check,
173 .eo_sanity_check = ocfs2_dinode_sanity_check,
174 .eo_fill_root_el = ocfs2_dinode_fill_root_el,
177 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
180 struct ocfs2_dinode *di = et->et_object;
182 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
183 di->i_last_eb_blk = cpu_to_le64(blkno);
186 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
188 struct ocfs2_dinode *di = et->et_object;
190 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
191 return le64_to_cpu(di->i_last_eb_blk);
194 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
197 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
198 struct ocfs2_dinode *di = et->et_object;
200 le32_add_cpu(&di->i_clusters, clusters);
201 spin_lock(&oi->ip_lock);
202 oi->ip_clusters = le32_to_cpu(di->i_clusters);
203 spin_unlock(&oi->ip_lock);
206 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
207 struct ocfs2_extent_rec *rec)
209 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
211 ocfs2_extent_map_insert_rec(inode, rec);
214 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
217 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
219 ocfs2_extent_map_trunc(inode, clusters);
222 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
223 struct ocfs2_extent_rec *rec)
225 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
226 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
228 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
229 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
230 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
231 "Device %s, asking for sparse allocation: inode %llu, "
232 "cpos %u, clusters %u\n",
234 (unsigned long long)oi->ip_blkno,
235 rec->e_cpos, oi->ip_clusters);
240 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
242 struct ocfs2_dinode *di = et->et_object;
244 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
245 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
250 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
252 struct ocfs2_dinode *di = et->et_object;
254 et->et_root_el = &di->id2.i_list;
258 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
260 struct ocfs2_xattr_value_buf *vb = et->et_object;
262 et->et_root_el = &vb->vb_xv->xr_list;
265 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
268 struct ocfs2_xattr_value_buf *vb = et->et_object;
270 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
273 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
275 struct ocfs2_xattr_value_buf *vb = et->et_object;
277 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
280 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
283 struct ocfs2_xattr_value_buf *vb = et->et_object;
285 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
288 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
289 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk,
290 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk,
291 .eo_update_clusters = ocfs2_xattr_value_update_clusters,
292 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el,
295 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
297 struct ocfs2_xattr_block *xb = et->et_object;
299 et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
302 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
304 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
305 et->et_max_leaf_clusters =
306 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
309 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
312 struct ocfs2_xattr_block *xb = et->et_object;
313 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
315 xt->xt_last_eb_blk = cpu_to_le64(blkno);
318 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
320 struct ocfs2_xattr_block *xb = et->et_object;
321 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
323 return le64_to_cpu(xt->xt_last_eb_blk);
326 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
329 struct ocfs2_xattr_block *xb = et->et_object;
331 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
334 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
335 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk,
336 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk,
337 .eo_update_clusters = ocfs2_xattr_tree_update_clusters,
338 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el,
339 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
342 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
345 struct ocfs2_dx_root_block *dx_root = et->et_object;
347 dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
350 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
352 struct ocfs2_dx_root_block *dx_root = et->et_object;
354 return le64_to_cpu(dx_root->dr_last_eb_blk);
357 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
360 struct ocfs2_dx_root_block *dx_root = et->et_object;
362 le32_add_cpu(&dx_root->dr_clusters, clusters);
365 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
367 struct ocfs2_dx_root_block *dx_root = et->et_object;
369 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
374 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
376 struct ocfs2_dx_root_block *dx_root = et->et_object;
378 et->et_root_el = &dx_root->dr_list;
381 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
382 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk,
383 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk,
384 .eo_update_clusters = ocfs2_dx_root_update_clusters,
385 .eo_sanity_check = ocfs2_dx_root_sanity_check,
386 .eo_fill_root_el = ocfs2_dx_root_fill_root_el,
389 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
391 struct ocfs2_refcount_block *rb = et->et_object;
393 et->et_root_el = &rb->rf_list;
396 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
399 struct ocfs2_refcount_block *rb = et->et_object;
401 rb->rf_last_eb_blk = cpu_to_le64(blkno);
404 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
406 struct ocfs2_refcount_block *rb = et->et_object;
408 return le64_to_cpu(rb->rf_last_eb_blk);
411 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
414 struct ocfs2_refcount_block *rb = et->et_object;
416 le32_add_cpu(&rb->rf_clusters, clusters);
419 static enum ocfs2_contig_type
420 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
421 struct ocfs2_extent_rec *ext,
422 struct ocfs2_extent_rec *insert_rec)
427 static struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
428 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk,
429 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk,
430 .eo_update_clusters = ocfs2_refcount_tree_update_clusters,
431 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el,
432 .eo_extent_contig = ocfs2_refcount_tree_extent_contig,
435 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
436 struct ocfs2_caching_info *ci,
437 struct buffer_head *bh,
438 ocfs2_journal_access_func access,
440 struct ocfs2_extent_tree_operations *ops)
445 et->et_root_journal_access = access;
447 obj = (void *)bh->b_data;
450 et->et_ops->eo_fill_root_el(et);
451 if (!et->et_ops->eo_fill_max_leaf_clusters)
452 et->et_max_leaf_clusters = 0;
454 et->et_ops->eo_fill_max_leaf_clusters(et);
457 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
458 struct ocfs2_caching_info *ci,
459 struct buffer_head *bh)
461 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
462 NULL, &ocfs2_dinode_et_ops);
465 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
466 struct ocfs2_caching_info *ci,
467 struct buffer_head *bh)
469 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
470 NULL, &ocfs2_xattr_tree_et_ops);
473 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
474 struct ocfs2_caching_info *ci,
475 struct ocfs2_xattr_value_buf *vb)
477 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
478 &ocfs2_xattr_value_et_ops);
481 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
482 struct ocfs2_caching_info *ci,
483 struct buffer_head *bh)
485 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
486 NULL, &ocfs2_dx_root_et_ops);
489 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
490 struct ocfs2_caching_info *ci,
491 struct buffer_head *bh)
493 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
494 NULL, &ocfs2_refcount_tree_et_ops);
497 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
500 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
503 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
505 return et->et_ops->eo_get_last_eb_blk(et);
508 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
511 et->et_ops->eo_update_clusters(et, clusters);
514 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
515 struct ocfs2_extent_rec *rec)
517 if (et->et_ops->eo_extent_map_insert)
518 et->et_ops->eo_extent_map_insert(et, rec);
521 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
524 if (et->et_ops->eo_extent_map_truncate)
525 et->et_ops->eo_extent_map_truncate(et, clusters);
528 static inline int ocfs2_et_root_journal_access(handle_t *handle,
529 struct ocfs2_extent_tree *et,
532 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
536 static inline enum ocfs2_contig_type
537 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
538 struct ocfs2_extent_rec *rec,
539 struct ocfs2_extent_rec *insert_rec)
541 if (et->et_ops->eo_extent_contig)
542 return et->et_ops->eo_extent_contig(et, rec, insert_rec);
544 return ocfs2_extent_rec_contig(
545 ocfs2_metadata_cache_get_super(et->et_ci),
549 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
550 struct ocfs2_extent_rec *rec)
554 if (et->et_ops->eo_insert_check)
555 ret = et->et_ops->eo_insert_check(et, rec);
559 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
563 if (et->et_ops->eo_sanity_check)
564 ret = et->et_ops->eo_sanity_check(et);
568 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
569 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
570 struct ocfs2_extent_block *eb);
571 static void ocfs2_adjust_rightmost_records(handle_t *handle,
572 struct ocfs2_extent_tree *et,
573 struct ocfs2_path *path,
574 struct ocfs2_extent_rec *insert_rec);
576 * Reset the actual path elements so that we can re-use the structure
577 * to build another path. Generally, this involves freeing the buffer
580 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
582 int i, start = 0, depth = 0;
583 struct ocfs2_path_item *node;
588 for(i = start; i < path_num_items(path); i++) {
589 node = &path->p_node[i];
597 * Tree depth may change during truncate, or insert. If we're
598 * keeping the root extent list, then make sure that our path
599 * structure reflects the proper depth.
602 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
604 path_root_access(path) = NULL;
606 path->p_tree_depth = depth;
609 void ocfs2_free_path(struct ocfs2_path *path)
612 ocfs2_reinit_path(path, 0);
618 * All the elements of src into dest. After this call, src could be freed
619 * without affecting dest.
621 * Both paths should have the same root. Any non-root elements of dest
624 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
628 BUG_ON(path_root_bh(dest) != path_root_bh(src));
629 BUG_ON(path_root_el(dest) != path_root_el(src));
630 BUG_ON(path_root_access(dest) != path_root_access(src));
632 ocfs2_reinit_path(dest, 1);
634 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
635 dest->p_node[i].bh = src->p_node[i].bh;
636 dest->p_node[i].el = src->p_node[i].el;
638 if (dest->p_node[i].bh)
639 get_bh(dest->p_node[i].bh);
644 * Make the *dest path the same as src and re-initialize src path to
647 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
651 BUG_ON(path_root_bh(dest) != path_root_bh(src));
652 BUG_ON(path_root_access(dest) != path_root_access(src));
654 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
655 brelse(dest->p_node[i].bh);
657 dest->p_node[i].bh = src->p_node[i].bh;
658 dest->p_node[i].el = src->p_node[i].el;
660 src->p_node[i].bh = NULL;
661 src->p_node[i].el = NULL;
666 * Insert an extent block at given index.
668 * This will not take an additional reference on eb_bh.
670 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
671 struct buffer_head *eb_bh)
673 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
676 * Right now, no root bh is an extent block, so this helps
677 * catch code errors with dinode trees. The assertion can be
678 * safely removed if we ever need to insert extent block
679 * structures at the root.
683 path->p_node[index].bh = eb_bh;
684 path->p_node[index].el = &eb->h_list;
687 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
688 struct ocfs2_extent_list *root_el,
689 ocfs2_journal_access_func access)
691 struct ocfs2_path *path;
693 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
695 path = kzalloc(sizeof(*path), GFP_NOFS);
697 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
699 path_root_bh(path) = root_bh;
700 path_root_el(path) = root_el;
701 path_root_access(path) = access;
707 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
709 return ocfs2_new_path(path_root_bh(path), path_root_el(path),
710 path_root_access(path));
713 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
715 return ocfs2_new_path(et->et_root_bh, et->et_root_el,
716 et->et_root_journal_access);
720 * Journal the buffer at depth idx. All idx>0 are extent_blocks,
721 * otherwise it's the root_access function.
723 * I don't like the way this function's name looks next to
724 * ocfs2_journal_access_path(), but I don't have a better one.
726 int ocfs2_path_bh_journal_access(handle_t *handle,
727 struct ocfs2_caching_info *ci,
728 struct ocfs2_path *path,
731 ocfs2_journal_access_func access = path_root_access(path);
734 access = ocfs2_journal_access;
737 access = ocfs2_journal_access_eb;
739 return access(handle, ci, path->p_node[idx].bh,
740 OCFS2_JOURNAL_ACCESS_WRITE);
744 * Convenience function to journal all components in a path.
746 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
748 struct ocfs2_path *path)
755 for(i = 0; i < path_num_items(path); i++) {
756 ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
768 * Return the index of the extent record which contains cluster #v_cluster.
769 * -1 is returned if it was not found.
771 * Should work fine on interior and exterior nodes.
773 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
777 struct ocfs2_extent_rec *rec;
778 u32 rec_end, rec_start, clusters;
780 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
781 rec = &el->l_recs[i];
783 rec_start = le32_to_cpu(rec->e_cpos);
784 clusters = ocfs2_rec_clusters(el, rec);
786 rec_end = rec_start + clusters;
788 if (v_cluster >= rec_start && v_cluster < rec_end) {
798 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
799 * ocfs2_extent_rec_contig only work properly against leaf nodes!
801 static int ocfs2_block_extent_contig(struct super_block *sb,
802 struct ocfs2_extent_rec *ext,
805 u64 blk_end = le64_to_cpu(ext->e_blkno);
807 blk_end += ocfs2_clusters_to_blocks(sb,
808 le16_to_cpu(ext->e_leaf_clusters));
810 return blkno == blk_end;
813 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
814 struct ocfs2_extent_rec *right)
818 left_range = le32_to_cpu(left->e_cpos) +
819 le16_to_cpu(left->e_leaf_clusters);
821 return (left_range == le32_to_cpu(right->e_cpos));
824 static enum ocfs2_contig_type
825 ocfs2_extent_rec_contig(struct super_block *sb,
826 struct ocfs2_extent_rec *ext,
827 struct ocfs2_extent_rec *insert_rec)
829 u64 blkno = le64_to_cpu(insert_rec->e_blkno);
832 * Refuse to coalesce extent records with different flag
833 * fields - we don't want to mix unwritten extents with user
836 if (ext->e_flags != insert_rec->e_flags)
839 if (ocfs2_extents_adjacent(ext, insert_rec) &&
840 ocfs2_block_extent_contig(sb, ext, blkno))
843 blkno = le64_to_cpu(ext->e_blkno);
844 if (ocfs2_extents_adjacent(insert_rec, ext) &&
845 ocfs2_block_extent_contig(sb, insert_rec, blkno))
852 * NOTE: We can have pretty much any combination of contiguousness and
855 * The usefulness of APPEND_TAIL is more in that it lets us know that
856 * we'll have to update the path to that leaf.
858 enum ocfs2_append_type {
863 enum ocfs2_split_type {
869 struct ocfs2_insert_type {
870 enum ocfs2_split_type ins_split;
871 enum ocfs2_append_type ins_appending;
872 enum ocfs2_contig_type ins_contig;
873 int ins_contig_index;
877 struct ocfs2_merge_ctxt {
878 enum ocfs2_contig_type c_contig_type;
879 int c_has_empty_extent;
880 int c_split_covers_rec;
883 static int ocfs2_validate_extent_block(struct super_block *sb,
884 struct buffer_head *bh)
887 struct ocfs2_extent_block *eb =
888 (struct ocfs2_extent_block *)bh->b_data;
890 mlog(0, "Validating extent block %llu\n",
891 (unsigned long long)bh->b_blocknr);
893 BUG_ON(!buffer_uptodate(bh));
896 * If the ecc fails, we return the error but otherwise
897 * leave the filesystem running. We know any error is
898 * local to this block.
900 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
902 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
903 (unsigned long long)bh->b_blocknr);
908 * Errors after here are fatal.
911 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
913 "Extent block #%llu has bad signature %.*s",
914 (unsigned long long)bh->b_blocknr, 7,
919 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
921 "Extent block #%llu has an invalid h_blkno "
923 (unsigned long long)bh->b_blocknr,
924 (unsigned long long)le64_to_cpu(eb->h_blkno));
928 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
930 "Extent block #%llu has an invalid "
931 "h_fs_generation of #%u",
932 (unsigned long long)bh->b_blocknr,
933 le32_to_cpu(eb->h_fs_generation));
940 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
941 struct buffer_head **bh)
944 struct buffer_head *tmp = *bh;
946 rc = ocfs2_read_block(ci, eb_blkno, &tmp,
947 ocfs2_validate_extent_block);
949 /* If ocfs2_read_block() got us a new bh, pass it up. */
958 * How many free extents have we got before we need more meta data?
960 int ocfs2_num_free_extents(struct ocfs2_super *osb,
961 struct ocfs2_extent_tree *et)
964 struct ocfs2_extent_list *el = NULL;
965 struct ocfs2_extent_block *eb;
966 struct buffer_head *eb_bh = NULL;
972 last_eb_blk = ocfs2_et_get_last_eb_blk(et);
975 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
981 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
985 BUG_ON(el->l_tree_depth != 0);
987 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
995 /* expects array to already be allocated
997 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
1000 static int ocfs2_create_new_meta_bhs(handle_t *handle,
1001 struct ocfs2_extent_tree *et,
1003 struct ocfs2_alloc_context *meta_ac,
1004 struct buffer_head *bhs[])
1006 int count, status, i;
1007 u16 suballoc_bit_start;
1010 struct ocfs2_super *osb =
1011 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
1012 struct ocfs2_extent_block *eb;
1017 while (count < wanted) {
1018 status = ocfs2_claim_metadata(osb,
1022 &suballoc_bit_start,
1030 for(i = count; i < (num_got + count); i++) {
1031 bhs[i] = sb_getblk(osb->sb, first_blkno);
1032 if (bhs[i] == NULL) {
1037 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1039 status = ocfs2_journal_access_eb(handle, et->et_ci,
1041 OCFS2_JOURNAL_ACCESS_CREATE);
1047 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1048 eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1049 /* Ok, setup the minimal stuff here. */
1050 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1051 eb->h_blkno = cpu_to_le64(first_blkno);
1052 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1053 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
1054 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1055 eb->h_list.l_count =
1056 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1058 suballoc_bit_start++;
1061 /* We'll also be dirtied by the caller, so
1062 * this isn't absolutely necessary. */
1063 status = ocfs2_journal_dirty(handle, bhs[i]);
1076 for(i = 0; i < wanted; i++) {
1086 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1088 * Returns the sum of the rightmost extent rec logical offset and
1091 * ocfs2_add_branch() uses this to determine what logical cluster
1092 * value should be populated into the leftmost new branch records.
1094 * ocfs2_shift_tree_depth() uses this to determine the # clusters
1095 * value for the new topmost tree record.
1097 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
1101 i = le16_to_cpu(el->l_next_free_rec) - 1;
1103 return le32_to_cpu(el->l_recs[i].e_cpos) +
1104 ocfs2_rec_clusters(el, &el->l_recs[i]);
1108 * Change range of the branches in the right most path according to the leaf
1109 * extent block's rightmost record.
1111 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1112 struct ocfs2_extent_tree *et)
1115 struct ocfs2_path *path = NULL;
1116 struct ocfs2_extent_list *el;
1117 struct ocfs2_extent_rec *rec;
1119 path = ocfs2_new_path_from_et(et);
1125 status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1131 status = ocfs2_extend_trans(handle, path_num_items(path) +
1132 handle->h_buffer_credits);
1138 status = ocfs2_journal_access_path(et->et_ci, handle, path);
1144 el = path_leaf_el(path);
1145 rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1147 ocfs2_adjust_rightmost_records(handle, et, path, rec);
1150 ocfs2_free_path(path);
1155 * Add an entire tree branch to our inode. eb_bh is the extent block
1156 * to start at, if we don't want to start the branch at the root
1159 * last_eb_bh is required as we have to update it's next_leaf pointer
1160 * for the new last extent block.
1162 * the new branch will be 'empty' in the sense that every block will
1163 * contain a single record with cluster count == 0.
1165 static int ocfs2_add_branch(handle_t *handle,
1166 struct ocfs2_extent_tree *et,
1167 struct buffer_head *eb_bh,
1168 struct buffer_head **last_eb_bh,
1169 struct ocfs2_alloc_context *meta_ac)
1171 int status, new_blocks, i;
1172 u64 next_blkno, new_last_eb_blk;
1173 struct buffer_head *bh;
1174 struct buffer_head **new_eb_bhs = NULL;
1175 struct ocfs2_extent_block *eb;
1176 struct ocfs2_extent_list *eb_el;
1177 struct ocfs2_extent_list *el;
1178 u32 new_cpos, root_end;
1182 BUG_ON(!last_eb_bh || !*last_eb_bh);
1185 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1188 el = et->et_root_el;
1190 /* we never add a branch to a leaf. */
1191 BUG_ON(!el->l_tree_depth);
1193 new_blocks = le16_to_cpu(el->l_tree_depth);
1195 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1196 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1197 root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1200 * If there is a gap before the root end and the real end
1201 * of the righmost leaf block, we need to remove the gap
1202 * between new_cpos and root_end first so that the tree
1203 * is consistent after we add a new branch(it will start
1206 if (root_end > new_cpos) {
1207 mlog(0, "adjust the cluster end from %u to %u\n",
1208 root_end, new_cpos);
1209 status = ocfs2_adjust_rightmost_branch(handle, et);
1216 /* allocate the number of new eb blocks we need */
1217 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1225 status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1226 meta_ac, new_eb_bhs);
1232 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1233 * linked with the rest of the tree.
1234 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1236 * when we leave the loop, new_last_eb_blk will point to the
1237 * newest leaf, and next_blkno will point to the topmost extent
1239 next_blkno = new_last_eb_blk = 0;
1240 for(i = 0; i < new_blocks; i++) {
1242 eb = (struct ocfs2_extent_block *) bh->b_data;
1243 /* ocfs2_create_new_meta_bhs() should create it right! */
1244 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1245 eb_el = &eb->h_list;
1247 status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1248 OCFS2_JOURNAL_ACCESS_CREATE);
1254 eb->h_next_leaf_blk = 0;
1255 eb_el->l_tree_depth = cpu_to_le16(i);
1256 eb_el->l_next_free_rec = cpu_to_le16(1);
1258 * This actually counts as an empty extent as
1261 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1262 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1264 * eb_el isn't always an interior node, but even leaf
1265 * nodes want a zero'd flags and reserved field so
1266 * this gets the whole 32 bits regardless of use.
1268 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1269 if (!eb_el->l_tree_depth)
1270 new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1272 status = ocfs2_journal_dirty(handle, bh);
1278 next_blkno = le64_to_cpu(eb->h_blkno);
1281 /* This is a bit hairy. We want to update up to three blocks
1282 * here without leaving any of them in an inconsistent state
1283 * in case of error. We don't have to worry about
1284 * journal_dirty erroring as it won't unless we've aborted the
1285 * handle (in which case we would never be here) so reserving
1286 * the write with journal_access is all we need to do. */
1287 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1288 OCFS2_JOURNAL_ACCESS_WRITE);
1293 status = ocfs2_et_root_journal_access(handle, et,
1294 OCFS2_JOURNAL_ACCESS_WRITE);
1300 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1301 OCFS2_JOURNAL_ACCESS_WRITE);
1308 /* Link the new branch into the rest of the tree (el will
1309 * either be on the root_bh, or the extent block passed in. */
1310 i = le16_to_cpu(el->l_next_free_rec);
1311 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1312 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1313 el->l_recs[i].e_int_clusters = 0;
1314 le16_add_cpu(&el->l_next_free_rec, 1);
1316 /* fe needs a new last extent block pointer, as does the
1317 * next_leaf on the previously last-extent-block. */
1318 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1320 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1321 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1323 status = ocfs2_journal_dirty(handle, *last_eb_bh);
1326 status = ocfs2_journal_dirty(handle, et->et_root_bh);
1330 status = ocfs2_journal_dirty(handle, eb_bh);
1336 * Some callers want to track the rightmost leaf so pass it
1339 brelse(*last_eb_bh);
1340 get_bh(new_eb_bhs[0]);
1341 *last_eb_bh = new_eb_bhs[0];
1346 for (i = 0; i < new_blocks; i++)
1347 brelse(new_eb_bhs[i]);
1356 * adds another level to the allocation tree.
1357 * returns back the new extent block so you can add a branch to it
1360 static int ocfs2_shift_tree_depth(handle_t *handle,
1361 struct ocfs2_extent_tree *et,
1362 struct ocfs2_alloc_context *meta_ac,
1363 struct buffer_head **ret_new_eb_bh)
1367 struct buffer_head *new_eb_bh = NULL;
1368 struct ocfs2_extent_block *eb;
1369 struct ocfs2_extent_list *root_el;
1370 struct ocfs2_extent_list *eb_el;
1374 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1381 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1382 /* ocfs2_create_new_meta_bhs() should create it right! */
1383 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1385 eb_el = &eb->h_list;
1386 root_el = et->et_root_el;
1388 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1389 OCFS2_JOURNAL_ACCESS_CREATE);
1395 /* copy the root extent list data into the new extent block */
1396 eb_el->l_tree_depth = root_el->l_tree_depth;
1397 eb_el->l_next_free_rec = root_el->l_next_free_rec;
1398 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1399 eb_el->l_recs[i] = root_el->l_recs[i];
1401 status = ocfs2_journal_dirty(handle, new_eb_bh);
1407 status = ocfs2_et_root_journal_access(handle, et,
1408 OCFS2_JOURNAL_ACCESS_WRITE);
1414 new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1416 /* update root_bh now */
1417 le16_add_cpu(&root_el->l_tree_depth, 1);
1418 root_el->l_recs[0].e_cpos = 0;
1419 root_el->l_recs[0].e_blkno = eb->h_blkno;
1420 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1421 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1422 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1423 root_el->l_next_free_rec = cpu_to_le16(1);
1425 /* If this is our 1st tree depth shift, then last_eb_blk
1426 * becomes the allocated extent block */
1427 if (root_el->l_tree_depth == cpu_to_le16(1))
1428 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1430 status = ocfs2_journal_dirty(handle, et->et_root_bh);
1436 *ret_new_eb_bh = new_eb_bh;
1447 * Should only be called when there is no space left in any of the
1448 * leaf nodes. What we want to do is find the lowest tree depth
1449 * non-leaf extent block with room for new records. There are three
1450 * valid results of this search:
1452 * 1) a lowest extent block is found, then we pass it back in
1453 * *lowest_eb_bh and return '0'
1455 * 2) the search fails to find anything, but the root_el has room. We
1456 * pass NULL back in *lowest_eb_bh, but still return '0'
1458 * 3) the search fails to find anything AND the root_el is full, in
1459 * which case we return > 0
1461 * return status < 0 indicates an error.
1463 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1464 struct buffer_head **target_bh)
1468 struct ocfs2_extent_block *eb;
1469 struct ocfs2_extent_list *el;
1470 struct buffer_head *bh = NULL;
1471 struct buffer_head *lowest_bh = NULL;
1477 el = et->et_root_el;
1479 while(le16_to_cpu(el->l_tree_depth) > 1) {
1480 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1481 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1482 "Owner %llu has empty "
1483 "extent list (next_free_rec == 0)",
1484 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1488 i = le16_to_cpu(el->l_next_free_rec) - 1;
1489 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1491 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1492 "Owner %llu has extent "
1493 "list where extent # %d has no physical "
1495 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1503 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1509 eb = (struct ocfs2_extent_block *) bh->b_data;
1512 if (le16_to_cpu(el->l_next_free_rec) <
1513 le16_to_cpu(el->l_count)) {
1520 /* If we didn't find one and the fe doesn't have any room,
1521 * then return '1' */
1522 el = et->et_root_el;
1523 if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1526 *target_bh = lowest_bh;
1535 * Grow a b-tree so that it has more records.
1537 * We might shift the tree depth in which case existing paths should
1538 * be considered invalid.
1540 * Tree depth after the grow is returned via *final_depth.
1542 * *last_eb_bh will be updated by ocfs2_add_branch().
1544 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1545 int *final_depth, struct buffer_head **last_eb_bh,
1546 struct ocfs2_alloc_context *meta_ac)
1549 struct ocfs2_extent_list *el = et->et_root_el;
1550 int depth = le16_to_cpu(el->l_tree_depth);
1551 struct buffer_head *bh = NULL;
1553 BUG_ON(meta_ac == NULL);
1555 shift = ocfs2_find_branch_target(et, &bh);
1562 /* We traveled all the way to the bottom of the allocation tree
1563 * and didn't find room for any more extents - we need to add
1564 * another tree level */
1567 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1569 /* ocfs2_shift_tree_depth will return us a buffer with
1570 * the new extent block (so we can pass that to
1571 * ocfs2_add_branch). */
1572 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1580 * Special case: we have room now if we shifted from
1581 * tree_depth 0, so no more work needs to be done.
1583 * We won't be calling add_branch, so pass
1584 * back *last_eb_bh as the new leaf. At depth
1585 * zero, it should always be null so there's
1586 * no reason to brelse.
1588 BUG_ON(*last_eb_bh);
1595 /* call ocfs2_add_branch to add the final part of the tree with
1597 mlog(0, "add branch. bh = %p\n", bh);
1598 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1607 *final_depth = depth;
1613 * This function will discard the rightmost extent record.
1615 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1617 int next_free = le16_to_cpu(el->l_next_free_rec);
1618 int count = le16_to_cpu(el->l_count);
1619 unsigned int num_bytes;
1622 /* This will cause us to go off the end of our extent list. */
1623 BUG_ON(next_free >= count);
1625 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1627 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1630 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1631 struct ocfs2_extent_rec *insert_rec)
1633 int i, insert_index, next_free, has_empty, num_bytes;
1634 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1635 struct ocfs2_extent_rec *rec;
1637 next_free = le16_to_cpu(el->l_next_free_rec);
1638 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1642 /* The tree code before us didn't allow enough room in the leaf. */
1643 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1646 * The easiest way to approach this is to just remove the
1647 * empty extent and temporarily decrement next_free.
1651 * If next_free was 1 (only an empty extent), this
1652 * loop won't execute, which is fine. We still want
1653 * the decrement above to happen.
1655 for(i = 0; i < (next_free - 1); i++)
1656 el->l_recs[i] = el->l_recs[i+1];
1662 * Figure out what the new record index should be.
1664 for(i = 0; i < next_free; i++) {
1665 rec = &el->l_recs[i];
1667 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1672 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1673 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1675 BUG_ON(insert_index < 0);
1676 BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1677 BUG_ON(insert_index > next_free);
1680 * No need to memmove if we're just adding to the tail.
1682 if (insert_index != next_free) {
1683 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1685 num_bytes = next_free - insert_index;
1686 num_bytes *= sizeof(struct ocfs2_extent_rec);
1687 memmove(&el->l_recs[insert_index + 1],
1688 &el->l_recs[insert_index],
1693 * Either we had an empty extent, and need to re-increment or
1694 * there was no empty extent on a non full rightmost leaf node,
1695 * in which case we still need to increment.
1698 el->l_next_free_rec = cpu_to_le16(next_free);
1700 * Make sure none of the math above just messed up our tree.
1702 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1704 el->l_recs[insert_index] = *insert_rec;
1708 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1710 int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1712 BUG_ON(num_recs == 0);
1714 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1716 size = num_recs * sizeof(struct ocfs2_extent_rec);
1717 memmove(&el->l_recs[0], &el->l_recs[1], size);
1718 memset(&el->l_recs[num_recs], 0,
1719 sizeof(struct ocfs2_extent_rec));
1720 el->l_next_free_rec = cpu_to_le16(num_recs);
1725 * Create an empty extent record .
1727 * l_next_free_rec may be updated.
1729 * If an empty extent already exists do nothing.
1731 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1733 int next_free = le16_to_cpu(el->l_next_free_rec);
1735 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1740 if (ocfs2_is_empty_extent(&el->l_recs[0]))
1743 mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1744 "Asked to create an empty extent in a full list:\n"
1745 "count = %u, tree depth = %u",
1746 le16_to_cpu(el->l_count),
1747 le16_to_cpu(el->l_tree_depth));
1749 ocfs2_shift_records_right(el);
1752 le16_add_cpu(&el->l_next_free_rec, 1);
1753 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1757 * For a rotation which involves two leaf nodes, the "root node" is
1758 * the lowest level tree node which contains a path to both leafs. This
1759 * resulting set of information can be used to form a complete "subtree"
1761 * This function is passed two full paths from the dinode down to a
1762 * pair of adjacent leaves. It's task is to figure out which path
1763 * index contains the subtree root - this can be the root index itself
1764 * in a worst-case rotation.
1766 * The array index of the subtree root is passed back.
1768 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1769 struct ocfs2_path *left,
1770 struct ocfs2_path *right)
1775 * Check that the caller passed in two paths from the same tree.
1777 BUG_ON(path_root_bh(left) != path_root_bh(right));
1783 * The caller didn't pass two adjacent paths.
1785 mlog_bug_on_msg(i > left->p_tree_depth,
1786 "Owner %llu, left depth %u, right depth %u\n"
1787 "left leaf blk %llu, right leaf blk %llu\n",
1788 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1789 left->p_tree_depth, right->p_tree_depth,
1790 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1791 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1792 } while (left->p_node[i].bh->b_blocknr ==
1793 right->p_node[i].bh->b_blocknr);
1798 typedef void (path_insert_t)(void *, struct buffer_head *);
1801 * Traverse a btree path in search of cpos, starting at root_el.
1803 * This code can be called with a cpos larger than the tree, in which
1804 * case it will return the rightmost path.
1806 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1807 struct ocfs2_extent_list *root_el, u32 cpos,
1808 path_insert_t *func, void *data)
1813 struct buffer_head *bh = NULL;
1814 struct ocfs2_extent_block *eb;
1815 struct ocfs2_extent_list *el;
1816 struct ocfs2_extent_rec *rec;
1819 while (el->l_tree_depth) {
1820 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1821 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1822 "Owner %llu has empty extent list at "
1824 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1825 le16_to_cpu(el->l_tree_depth));
1831 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1832 rec = &el->l_recs[i];
1835 * In the case that cpos is off the allocation
1836 * tree, this should just wind up returning the
1839 range = le32_to_cpu(rec->e_cpos) +
1840 ocfs2_rec_clusters(el, rec);
1841 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1845 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1847 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1848 "Owner %llu has bad blkno in extent list "
1849 "at depth %u (index %d)\n",
1850 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1851 le16_to_cpu(el->l_tree_depth), i);
1858 ret = ocfs2_read_extent_block(ci, blkno, &bh);
1864 eb = (struct ocfs2_extent_block *) bh->b_data;
1867 if (le16_to_cpu(el->l_next_free_rec) >
1868 le16_to_cpu(el->l_count)) {
1869 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1870 "Owner %llu has bad count in extent list "
1871 "at block %llu (next free=%u, count=%u)\n",
1872 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1873 (unsigned long long)bh->b_blocknr,
1874 le16_to_cpu(el->l_next_free_rec),
1875 le16_to_cpu(el->l_count));
1886 * Catch any trailing bh that the loop didn't handle.
1894 * Given an initialized path (that is, it has a valid root extent
1895 * list), this function will traverse the btree in search of the path
1896 * which would contain cpos.
1898 * The path traveled is recorded in the path structure.
1900 * Note that this will not do any comparisons on leaf node extent
1901 * records, so it will work fine in the case that we just added a tree
1904 struct find_path_data {
1906 struct ocfs2_path *path;
1908 static void find_path_ins(void *data, struct buffer_head *bh)
1910 struct find_path_data *fp = data;
1913 ocfs2_path_insert_eb(fp->path, fp->index, bh);
1916 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1917 struct ocfs2_path *path, u32 cpos)
1919 struct find_path_data data;
1923 return __ocfs2_find_path(ci, path_root_el(path), cpos,
1924 find_path_ins, &data);
1927 static void find_leaf_ins(void *data, struct buffer_head *bh)
1929 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1930 struct ocfs2_extent_list *el = &eb->h_list;
1931 struct buffer_head **ret = data;
1933 /* We want to retain only the leaf block. */
1934 if (le16_to_cpu(el->l_tree_depth) == 0) {
1940 * Find the leaf block in the tree which would contain cpos. No
1941 * checking of the actual leaf is done.
1943 * Some paths want to call this instead of allocating a path structure
1944 * and calling ocfs2_find_path().
1946 * This function doesn't handle non btree extent lists.
1948 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1949 struct ocfs2_extent_list *root_el, u32 cpos,
1950 struct buffer_head **leaf_bh)
1953 struct buffer_head *bh = NULL;
1955 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1967 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1969 * Basically, we've moved stuff around at the bottom of the tree and
1970 * we need to fix up the extent records above the changes to reflect
1973 * left_rec: the record on the left.
1974 * left_child_el: is the child list pointed to by left_rec
1975 * right_rec: the record to the right of left_rec
1976 * right_child_el: is the child list pointed to by right_rec
1978 * By definition, this only works on interior nodes.
1980 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1981 struct ocfs2_extent_list *left_child_el,
1982 struct ocfs2_extent_rec *right_rec,
1983 struct ocfs2_extent_list *right_child_el)
1985 u32 left_clusters, right_end;
1988 * Interior nodes never have holes. Their cpos is the cpos of
1989 * the leftmost record in their child list. Their cluster
1990 * count covers the full theoretical range of their child list
1991 * - the range between their cpos and the cpos of the record
1992 * immediately to their right.
1994 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1995 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1996 BUG_ON(right_child_el->l_tree_depth);
1997 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1998 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
2000 left_clusters -= le32_to_cpu(left_rec->e_cpos);
2001 left_rec->e_int_clusters = cpu_to_le32(left_clusters);
2004 * Calculate the rightmost cluster count boundary before
2005 * moving cpos - we will need to adjust clusters after
2006 * updating e_cpos to keep the same highest cluster count.
2008 right_end = le32_to_cpu(right_rec->e_cpos);
2009 right_end += le32_to_cpu(right_rec->e_int_clusters);
2011 right_rec->e_cpos = left_rec->e_cpos;
2012 le32_add_cpu(&right_rec->e_cpos, left_clusters);
2014 right_end -= le32_to_cpu(right_rec->e_cpos);
2015 right_rec->e_int_clusters = cpu_to_le32(right_end);
2019 * Adjust the adjacent root node records involved in a
2020 * rotation. left_el_blkno is passed in as a key so that we can easily
2021 * find it's index in the root list.
2023 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
2024 struct ocfs2_extent_list *left_el,
2025 struct ocfs2_extent_list *right_el,
2030 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
2031 le16_to_cpu(left_el->l_tree_depth));
2033 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
2034 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
2039 * The path walking code should have never returned a root and
2040 * two paths which are not adjacent.
2042 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2044 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
2045 &root_el->l_recs[i + 1], right_el);
2049 * We've changed a leaf block (in right_path) and need to reflect that
2050 * change back up the subtree.
2052 * This happens in multiple places:
2053 * - When we've moved an extent record from the left path leaf to the right
2054 * path leaf to make room for an empty extent in the left path leaf.
2055 * - When our insert into the right path leaf is at the leftmost edge
2056 * and requires an update of the path immediately to it's left. This
2057 * can occur at the end of some types of rotation and appending inserts.
2058 * - When we've adjusted the last extent record in the left path leaf and the
2059 * 1st extent record in the right path leaf during cross extent block merge.
2061 static void ocfs2_complete_edge_insert(handle_t *handle,
2062 struct ocfs2_path *left_path,
2063 struct ocfs2_path *right_path,
2067 struct ocfs2_extent_list *el, *left_el, *right_el;
2068 struct ocfs2_extent_rec *left_rec, *right_rec;
2069 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2072 * Update the counts and position values within all the
2073 * interior nodes to reflect the leaf rotation we just did.
2075 * The root node is handled below the loop.
2077 * We begin the loop with right_el and left_el pointing to the
2078 * leaf lists and work our way up.
2080 * NOTE: within this loop, left_el and right_el always refer
2081 * to the *child* lists.
2083 left_el = path_leaf_el(left_path);
2084 right_el = path_leaf_el(right_path);
2085 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2086 mlog(0, "Adjust records at index %u\n", i);
2089 * One nice property of knowing that all of these
2090 * nodes are below the root is that we only deal with
2091 * the leftmost right node record and the rightmost
2094 el = left_path->p_node[i].el;
2095 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2096 left_rec = &el->l_recs[idx];
2098 el = right_path->p_node[i].el;
2099 right_rec = &el->l_recs[0];
2101 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2104 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2108 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2113 * Setup our list pointers now so that the current
2114 * parents become children in the next iteration.
2116 left_el = left_path->p_node[i].el;
2117 right_el = right_path->p_node[i].el;
2121 * At the root node, adjust the two adjacent records which
2122 * begin our path to the leaves.
2125 el = left_path->p_node[subtree_index].el;
2126 left_el = left_path->p_node[subtree_index + 1].el;
2127 right_el = right_path->p_node[subtree_index + 1].el;
2129 ocfs2_adjust_root_records(el, left_el, right_el,
2130 left_path->p_node[subtree_index + 1].bh->b_blocknr);
2132 root_bh = left_path->p_node[subtree_index].bh;
2134 ret = ocfs2_journal_dirty(handle, root_bh);
2139 static int ocfs2_rotate_subtree_right(handle_t *handle,
2140 struct ocfs2_extent_tree *et,
2141 struct ocfs2_path *left_path,
2142 struct ocfs2_path *right_path,
2146 struct buffer_head *right_leaf_bh;
2147 struct buffer_head *left_leaf_bh = NULL;
2148 struct buffer_head *root_bh;
2149 struct ocfs2_extent_list *right_el, *left_el;
2150 struct ocfs2_extent_rec move_rec;
2152 left_leaf_bh = path_leaf_bh(left_path);
2153 left_el = path_leaf_el(left_path);
2155 if (left_el->l_next_free_rec != left_el->l_count) {
2156 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2157 "Inode %llu has non-full interior leaf node %llu"
2159 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2160 (unsigned long long)left_leaf_bh->b_blocknr,
2161 le16_to_cpu(left_el->l_next_free_rec));
2166 * This extent block may already have an empty record, so we
2167 * return early if so.
2169 if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2172 root_bh = left_path->p_node[subtree_index].bh;
2173 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2175 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2182 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2183 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2190 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2198 right_leaf_bh = path_leaf_bh(right_path);
2199 right_el = path_leaf_el(right_path);
2201 /* This is a code error, not a disk corruption. */
2202 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2203 "because rightmost leaf block %llu is empty\n",
2204 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2205 (unsigned long long)right_leaf_bh->b_blocknr);
2207 ocfs2_create_empty_extent(right_el);
2209 ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2215 /* Do the copy now. */
2216 i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2217 move_rec = left_el->l_recs[i];
2218 right_el->l_recs[0] = move_rec;
2221 * Clear out the record we just copied and shift everything
2222 * over, leaving an empty extent in the left leaf.
2224 * We temporarily subtract from next_free_rec so that the
2225 * shift will lose the tail record (which is now defunct).
2227 le16_add_cpu(&left_el->l_next_free_rec, -1);
2228 ocfs2_shift_records_right(left_el);
2229 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2230 le16_add_cpu(&left_el->l_next_free_rec, 1);
2232 ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2238 ocfs2_complete_edge_insert(handle, left_path, right_path,
2246 * Given a full path, determine what cpos value would return us a path
2247 * containing the leaf immediately to the left of the current one.
2249 * Will return zero if the path passed in is already the leftmost path.
2251 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2252 struct ocfs2_path *path, u32 *cpos)
2256 struct ocfs2_extent_list *el;
2258 BUG_ON(path->p_tree_depth == 0);
2262 blkno = path_leaf_bh(path)->b_blocknr;
2264 /* Start at the tree node just above the leaf and work our way up. */
2265 i = path->p_tree_depth - 1;
2267 el = path->p_node[i].el;
2270 * Find the extent record just before the one in our
2273 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2274 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2278 * We've determined that the
2279 * path specified is already
2280 * the leftmost one - return a
2286 * The leftmost record points to our
2287 * leaf - we need to travel up the
2293 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2294 *cpos = *cpos + ocfs2_rec_clusters(el,
2295 &el->l_recs[j - 1]);
2302 * If we got here, we never found a valid node where
2303 * the tree indicated one should be.
2306 "Invalid extent tree at extent block %llu\n",
2307 (unsigned long long)blkno);
2312 blkno = path->p_node[i].bh->b_blocknr;
2321 * Extend the transaction by enough credits to complete the rotation,
2322 * and still leave at least the original number of credits allocated
2323 * to this transaction.
2325 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2327 struct ocfs2_path *path)
2330 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2332 if (handle->h_buffer_credits < credits) {
2333 ret = ocfs2_extend_trans(handle,
2334 credits - handle->h_buffer_credits);
2338 if (unlikely(handle->h_buffer_credits < credits))
2339 return ocfs2_extend_trans(handle, credits);
2346 * Trap the case where we're inserting into the theoretical range past
2347 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2348 * whose cpos is less than ours into the right leaf.
2350 * It's only necessary to look at the rightmost record of the left
2351 * leaf because the logic that calls us should ensure that the
2352 * theoretical ranges in the path components above the leaves are
2355 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2358 struct ocfs2_extent_list *left_el;
2359 struct ocfs2_extent_rec *rec;
2362 left_el = path_leaf_el(left_path);
2363 next_free = le16_to_cpu(left_el->l_next_free_rec);
2364 rec = &left_el->l_recs[next_free - 1];
2366 if (insert_cpos > le32_to_cpu(rec->e_cpos))
2371 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2373 int next_free = le16_to_cpu(el->l_next_free_rec);
2375 struct ocfs2_extent_rec *rec;
2380 rec = &el->l_recs[0];
2381 if (ocfs2_is_empty_extent(rec)) {
2385 rec = &el->l_recs[1];
2388 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2389 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2395 * Rotate all the records in a btree right one record, starting at insert_cpos.
2397 * The path to the rightmost leaf should be passed in.
2399 * The array is assumed to be large enough to hold an entire path (tree depth).
2401 * Upon succesful return from this function:
2403 * - The 'right_path' array will contain a path to the leaf block
2404 * whose range contains e_cpos.
2405 * - That leaf block will have a single empty extent in list index 0.
2406 * - In the case that the rotation requires a post-insert update,
2407 * *ret_left_path will contain a valid path which can be passed to
2408 * ocfs2_insert_path().
2410 static int ocfs2_rotate_tree_right(handle_t *handle,
2411 struct ocfs2_extent_tree *et,
2412 enum ocfs2_split_type split,
2414 struct ocfs2_path *right_path,
2415 struct ocfs2_path **ret_left_path)
2417 int ret, start, orig_credits = handle->h_buffer_credits;
2419 struct ocfs2_path *left_path = NULL;
2420 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2422 *ret_left_path = NULL;
2424 left_path = ocfs2_new_path_from_path(right_path);
2431 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2437 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2440 * What we want to do here is:
2442 * 1) Start with the rightmost path.
2444 * 2) Determine a path to the leaf block directly to the left
2447 * 3) Determine the 'subtree root' - the lowest level tree node
2448 * which contains a path to both leaves.
2450 * 4) Rotate the subtree.
2452 * 5) Find the next subtree by considering the left path to be
2453 * the new right path.
2455 * The check at the top of this while loop also accepts
2456 * insert_cpos == cpos because cpos is only a _theoretical_
2457 * value to get us the left path - insert_cpos might very well
2458 * be filling that hole.
2460 * Stop at a cpos of '0' because we either started at the
2461 * leftmost branch (i.e., a tree with one branch and a
2462 * rotation inside of it), or we've gone as far as we can in
2463 * rotating subtrees.
2465 while (cpos && insert_cpos <= cpos) {
2466 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2469 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2475 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2476 path_leaf_bh(right_path),
2477 "Owner %llu: error during insert of %u "
2478 "(left path cpos %u) results in two identical "
2479 "paths ending at %llu\n",
2480 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2482 (unsigned long long)
2483 path_leaf_bh(left_path)->b_blocknr);
2485 if (split == SPLIT_NONE &&
2486 ocfs2_rotate_requires_path_adjustment(left_path,
2490 * We've rotated the tree as much as we
2491 * should. The rest is up to
2492 * ocfs2_insert_path() to complete, after the
2493 * record insertion. We indicate this
2494 * situation by returning the left path.
2496 * The reason we don't adjust the records here
2497 * before the record insert is that an error
2498 * later might break the rule where a parent
2499 * record e_cpos will reflect the actual
2500 * e_cpos of the 1st nonempty record of the
2503 *ret_left_path = left_path;
2507 start = ocfs2_find_subtree_root(et, left_path, right_path);
2509 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2511 (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2512 right_path->p_tree_depth);
2514 ret = ocfs2_extend_rotate_transaction(handle, start,
2515 orig_credits, right_path);
2521 ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2528 if (split != SPLIT_NONE &&
2529 ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2532 * A rotate moves the rightmost left leaf
2533 * record over to the leftmost right leaf
2534 * slot. If we're doing an extent split
2535 * instead of a real insert, then we have to
2536 * check that the extent to be split wasn't
2537 * just moved over. If it was, then we can
2538 * exit here, passing left_path back -
2539 * ocfs2_split_extent() is smart enough to
2540 * search both leaves.
2542 *ret_left_path = left_path;
2547 * There is no need to re-read the next right path
2548 * as we know that it'll be our current left
2549 * path. Optimize by copying values instead.
2551 ocfs2_mv_path(right_path, left_path);
2553 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2561 ocfs2_free_path(left_path);
2567 static int ocfs2_update_edge_lengths(handle_t *handle,
2568 struct ocfs2_extent_tree *et,
2569 int subtree_index, struct ocfs2_path *path)
2572 struct ocfs2_extent_rec *rec;
2573 struct ocfs2_extent_list *el;
2574 struct ocfs2_extent_block *eb;
2578 * In normal tree rotation process, we will never touch the
2579 * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2580 * doesn't reserve the credits for them either.
2582 * But we do have a special case here which will update the rightmost
2583 * records for all the bh in the path.
2584 * So we have to allocate extra credits and access them.
2586 ret = ocfs2_extend_trans(handle,
2587 handle->h_buffer_credits + subtree_index);
2593 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2599 /* Path should always be rightmost. */
2600 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2601 BUG_ON(eb->h_next_leaf_blk != 0ULL);
2604 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2605 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2606 rec = &el->l_recs[idx];
2607 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2609 for (i = 0; i < path->p_tree_depth; i++) {
2610 el = path->p_node[i].el;
2611 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2612 rec = &el->l_recs[idx];
2614 rec->e_int_clusters = cpu_to_le32(range);
2615 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2617 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2623 static void ocfs2_unlink_path(handle_t *handle,
2624 struct ocfs2_extent_tree *et,
2625 struct ocfs2_cached_dealloc_ctxt *dealloc,
2626 struct ocfs2_path *path, int unlink_start)
2629 struct ocfs2_extent_block *eb;
2630 struct ocfs2_extent_list *el;
2631 struct buffer_head *bh;
2633 for(i = unlink_start; i < path_num_items(path); i++) {
2634 bh = path->p_node[i].bh;
2636 eb = (struct ocfs2_extent_block *)bh->b_data;
2638 * Not all nodes might have had their final count
2639 * decremented by the caller - handle this here.
2642 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2644 "Inode %llu, attempted to remove extent block "
2645 "%llu with %u records\n",
2646 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2647 (unsigned long long)le64_to_cpu(eb->h_blkno),
2648 le16_to_cpu(el->l_next_free_rec));
2650 ocfs2_journal_dirty(handle, bh);
2651 ocfs2_remove_from_cache(et->et_ci, bh);
2655 el->l_next_free_rec = 0;
2656 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2658 ocfs2_journal_dirty(handle, bh);
2660 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2664 ocfs2_remove_from_cache(et->et_ci, bh);
2668 static void ocfs2_unlink_subtree(handle_t *handle,
2669 struct ocfs2_extent_tree *et,
2670 struct ocfs2_path *left_path,
2671 struct ocfs2_path *right_path,
2673 struct ocfs2_cached_dealloc_ctxt *dealloc)
2676 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2677 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2678 struct ocfs2_extent_list *el;
2679 struct ocfs2_extent_block *eb;
2681 el = path_leaf_el(left_path);
2683 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2685 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2686 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2689 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2691 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2692 le16_add_cpu(&root_el->l_next_free_rec, -1);
2694 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2695 eb->h_next_leaf_blk = 0;
2697 ocfs2_journal_dirty(handle, root_bh);
2698 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2700 ocfs2_unlink_path(handle, et, dealloc, right_path,
2704 static int ocfs2_rotate_subtree_left(handle_t *handle,
2705 struct ocfs2_extent_tree *et,
2706 struct ocfs2_path *left_path,
2707 struct ocfs2_path *right_path,
2709 struct ocfs2_cached_dealloc_ctxt *dealloc,
2712 int ret, i, del_right_subtree = 0, right_has_empty = 0;
2713 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2714 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2715 struct ocfs2_extent_block *eb;
2719 right_leaf_el = path_leaf_el(right_path);
2720 left_leaf_el = path_leaf_el(left_path);
2721 root_bh = left_path->p_node[subtree_index].bh;
2722 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2724 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2727 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2728 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2730 * It's legal for us to proceed if the right leaf is
2731 * the rightmost one and it has an empty extent. There
2732 * are two cases to handle - whether the leaf will be
2733 * empty after removal or not. If the leaf isn't empty
2734 * then just remove the empty extent up front. The
2735 * next block will handle empty leaves by flagging
2738 * Non rightmost leaves will throw -EAGAIN and the
2739 * caller can manually move the subtree and retry.
2742 if (eb->h_next_leaf_blk != 0ULL)
2745 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2746 ret = ocfs2_journal_access_eb(handle, et->et_ci,
2747 path_leaf_bh(right_path),
2748 OCFS2_JOURNAL_ACCESS_WRITE);
2754 ocfs2_remove_empty_extent(right_leaf_el);
2756 right_has_empty = 1;
2759 if (eb->h_next_leaf_blk == 0ULL &&
2760 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2762 * We have to update i_last_eb_blk during the meta
2765 ret = ocfs2_et_root_journal_access(handle, et,
2766 OCFS2_JOURNAL_ACCESS_WRITE);
2772 del_right_subtree = 1;
2776 * Getting here with an empty extent in the right path implies
2777 * that it's the rightmost path and will be deleted.
2779 BUG_ON(right_has_empty && !del_right_subtree);
2781 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2788 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2789 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2796 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2804 if (!right_has_empty) {
2806 * Only do this if we're moving a real
2807 * record. Otherwise, the action is delayed until
2808 * after removal of the right path in which case we
2809 * can do a simple shift to remove the empty extent.
2811 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2812 memset(&right_leaf_el->l_recs[0], 0,
2813 sizeof(struct ocfs2_extent_rec));
2815 if (eb->h_next_leaf_blk == 0ULL) {
2817 * Move recs over to get rid of empty extent, decrease
2818 * next_free. This is allowed to remove the last
2819 * extent in our leaf (setting l_next_free_rec to
2820 * zero) - the delete code below won't care.
2822 ocfs2_remove_empty_extent(right_leaf_el);
2825 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2828 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2832 if (del_right_subtree) {
2833 ocfs2_unlink_subtree(handle, et, left_path, right_path,
2834 subtree_index, dealloc);
2835 ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
2842 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2843 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2846 * Removal of the extent in the left leaf was skipped
2847 * above so we could delete the right path
2850 if (right_has_empty)
2851 ocfs2_remove_empty_extent(left_leaf_el);
2853 ret = ocfs2_journal_dirty(handle, et_root_bh);
2859 ocfs2_complete_edge_insert(handle, left_path, right_path,
2867 * Given a full path, determine what cpos value would return us a path
2868 * containing the leaf immediately to the right of the current one.
2870 * Will return zero if the path passed in is already the rightmost path.
2872 * This looks similar, but is subtly different to
2873 * ocfs2_find_cpos_for_left_leaf().
2875 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2876 struct ocfs2_path *path, u32 *cpos)
2880 struct ocfs2_extent_list *el;
2884 if (path->p_tree_depth == 0)
2887 blkno = path_leaf_bh(path)->b_blocknr;
2889 /* Start at the tree node just above the leaf and work our way up. */
2890 i = path->p_tree_depth - 1;
2894 el = path->p_node[i].el;
2897 * Find the extent record just after the one in our
2900 next_free = le16_to_cpu(el->l_next_free_rec);
2901 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2902 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2903 if (j == (next_free - 1)) {
2906 * We've determined that the
2907 * path specified is already
2908 * the rightmost one - return a
2914 * The rightmost record points to our
2915 * leaf - we need to travel up the
2921 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2927 * If we got here, we never found a valid node where
2928 * the tree indicated one should be.
2931 "Invalid extent tree at extent block %llu\n",
2932 (unsigned long long)blkno);
2937 blkno = path->p_node[i].bh->b_blocknr;
2945 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2946 struct ocfs2_extent_tree *et,
2947 struct ocfs2_path *path)
2950 struct buffer_head *bh = path_leaf_bh(path);
2951 struct ocfs2_extent_list *el = path_leaf_el(path);
2953 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2956 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2957 path_num_items(path) - 1);
2963 ocfs2_remove_empty_extent(el);
2965 ret = ocfs2_journal_dirty(handle, bh);
2973 static int __ocfs2_rotate_tree_left(handle_t *handle,
2974 struct ocfs2_extent_tree *et,
2976 struct ocfs2_path *path,
2977 struct ocfs2_cached_dealloc_ctxt *dealloc,
2978 struct ocfs2_path **empty_extent_path)
2980 int ret, subtree_root, deleted;
2982 struct ocfs2_path *left_path = NULL;
2983 struct ocfs2_path *right_path = NULL;
2984 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2986 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2988 *empty_extent_path = NULL;
2990 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2996 left_path = ocfs2_new_path_from_path(path);
3003 ocfs2_cp_path(left_path, path);
3005 right_path = ocfs2_new_path_from_path(path);
3012 while (right_cpos) {
3013 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3019 subtree_root = ocfs2_find_subtree_root(et, left_path,
3022 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
3024 (unsigned long long)
3025 right_path->p_node[subtree_root].bh->b_blocknr,
3026 right_path->p_tree_depth);
3028 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
3029 orig_credits, left_path);
3036 * Caller might still want to make changes to the
3037 * tree root, so re-add it to the journal here.
3039 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3046 ret = ocfs2_rotate_subtree_left(handle, et, left_path,
3047 right_path, subtree_root,
3049 if (ret == -EAGAIN) {
3051 * The rotation has to temporarily stop due to
3052 * the right subtree having an empty
3053 * extent. Pass it back to the caller for a
3056 *empty_extent_path = right_path;
3066 * The subtree rotate might have removed records on
3067 * the rightmost edge. If so, then rotation is
3073 ocfs2_mv_path(left_path, right_path);
3075 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
3084 ocfs2_free_path(right_path);
3085 ocfs2_free_path(left_path);
3090 static int ocfs2_remove_rightmost_path(handle_t *handle,
3091 struct ocfs2_extent_tree *et,
3092 struct ocfs2_path *path,
3093 struct ocfs2_cached_dealloc_ctxt *dealloc)
3095 int ret, subtree_index;
3097 struct ocfs2_path *left_path = NULL;
3098 struct ocfs2_extent_block *eb;
3099 struct ocfs2_extent_list *el;
3102 ret = ocfs2_et_sanity_check(et);
3106 * There's two ways we handle this depending on
3107 * whether path is the only existing one.
3109 ret = ocfs2_extend_rotate_transaction(handle, 0,
3110 handle->h_buffer_credits,
3117 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3123 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3132 * We have a path to the left of this one - it needs
3135 left_path = ocfs2_new_path_from_path(path);
3142 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3148 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3154 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3156 ocfs2_unlink_subtree(handle, et, left_path, path,
3157 subtree_index, dealloc);
3158 ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
3165 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3166 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3169 * 'path' is also the leftmost path which
3170 * means it must be the only one. This gets
3171 * handled differently because we want to
3172 * revert the root back to having extents
3175 ocfs2_unlink_path(handle, et, dealloc, path, 1);
3177 el = et->et_root_el;
3178 el->l_tree_depth = 0;
3179 el->l_next_free_rec = 0;
3180 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3182 ocfs2_et_set_last_eb_blk(et, 0);
3185 ocfs2_journal_dirty(handle, path_root_bh(path));
3188 ocfs2_free_path(left_path);
3193 * Left rotation of btree records.
3195 * In many ways, this is (unsurprisingly) the opposite of right
3196 * rotation. We start at some non-rightmost path containing an empty
3197 * extent in the leaf block. The code works its way to the rightmost
3198 * path by rotating records to the left in every subtree.
3200 * This is used by any code which reduces the number of extent records
3201 * in a leaf. After removal, an empty record should be placed in the
3202 * leftmost list position.
3204 * This won't handle a length update of the rightmost path records if
3205 * the rightmost tree leaf record is removed so the caller is
3206 * responsible for detecting and correcting that.
3208 static int ocfs2_rotate_tree_left(handle_t *handle,
3209 struct ocfs2_extent_tree *et,
3210 struct ocfs2_path *path,
3211 struct ocfs2_cached_dealloc_ctxt *dealloc)
3213 int ret, orig_credits = handle->h_buffer_credits;
3214 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3215 struct ocfs2_extent_block *eb;
3216 struct ocfs2_extent_list *el;
3218 el = path_leaf_el(path);
3219 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3222 if (path->p_tree_depth == 0) {
3223 rightmost_no_delete:
3225 * Inline extents. This is trivially handled, so do
3228 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3235 * Handle rightmost branch now. There's several cases:
3236 * 1) simple rotation leaving records in there. That's trivial.
3237 * 2) rotation requiring a branch delete - there's no more
3238 * records left. Two cases of this:
3239 * a) There are branches to the left.
3240 * b) This is also the leftmost (the only) branch.
3242 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
3243 * 2a) we need the left branch so that we can update it with the unlink
3244 * 2b) we need to bring the root back to inline extents.
3247 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3249 if (eb->h_next_leaf_blk == 0) {
3251 * This gets a bit tricky if we're going to delete the
3252 * rightmost path. Get the other cases out of the way
3255 if (le16_to_cpu(el->l_next_free_rec) > 1)
3256 goto rightmost_no_delete;
3258 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3260 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3261 "Owner %llu has empty extent block at %llu",
3262 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3263 (unsigned long long)le64_to_cpu(eb->h_blkno));
3268 * XXX: The caller can not trust "path" any more after
3269 * this as it will have been deleted. What do we do?
3271 * In theory the rotate-for-merge code will never get
3272 * here because it'll always ask for a rotate in a
3276 ret = ocfs2_remove_rightmost_path(handle, et, path,
3284 * Now we can loop, remembering the path we get from -EAGAIN
3285 * and restarting from there.
3288 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3289 dealloc, &restart_path);
3290 if (ret && ret != -EAGAIN) {
3295 while (ret == -EAGAIN) {
3296 tmp_path = restart_path;
3297 restart_path = NULL;
3299 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3302 if (ret && ret != -EAGAIN) {
3307 ocfs2_free_path(tmp_path);
3315 ocfs2_free_path(tmp_path);
3316 ocfs2_free_path(restart_path);
3320 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3323 struct ocfs2_extent_rec *rec = &el->l_recs[index];
3326 if (rec->e_leaf_clusters == 0) {
3328 * We consumed all of the merged-from record. An empty
3329 * extent cannot exist anywhere but the 1st array
3330 * position, so move things over if the merged-from
3331 * record doesn't occupy that position.
3333 * This creates a new empty extent so the caller
3334 * should be smart enough to have removed any existing
3338 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3339 size = index * sizeof(struct ocfs2_extent_rec);
3340 memmove(&el->l_recs[1], &el->l_recs[0], size);
3344 * Always memset - the caller doesn't check whether it
3345 * created an empty extent, so there could be junk in
3348 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3352 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3353 struct ocfs2_path *left_path,
3354 struct ocfs2_path **ret_right_path)
3358 struct ocfs2_path *right_path = NULL;
3359 struct ocfs2_extent_list *left_el;
3361 *ret_right_path = NULL;
3363 /* This function shouldn't be called for non-trees. */
3364 BUG_ON(left_path->p_tree_depth == 0);
3366 left_el = path_leaf_el(left_path);
3367 BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3369 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3370 left_path, &right_cpos);
3376 /* This function shouldn't be called for the rightmost leaf. */
3377 BUG_ON(right_cpos == 0);
3379 right_path = ocfs2_new_path_from_path(left_path);
3386 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3392 *ret_right_path = right_path;
3395 ocfs2_free_path(right_path);
3400 * Remove split_rec clusters from the record at index and merge them
3401 * onto the beginning of the record "next" to it.
3402 * For index < l_count - 1, the next means the extent rec at index + 1.
3403 * For index == l_count - 1, the "next" means the 1st extent rec of the
3404 * next extent block.
3406 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3408 struct ocfs2_extent_tree *et,
3409 struct ocfs2_extent_rec *split_rec,
3412 int ret, next_free, i;
3413 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3414 struct ocfs2_extent_rec *left_rec;
3415 struct ocfs2_extent_rec *right_rec;
3416 struct ocfs2_extent_list *right_el;
3417 struct ocfs2_path *right_path = NULL;
3418 int subtree_index = 0;
3419 struct ocfs2_extent_list *el = path_leaf_el(left_path);
3420 struct buffer_head *bh = path_leaf_bh(left_path);
3421 struct buffer_head *root_bh = NULL;
3423 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3424 left_rec = &el->l_recs[index];
3426 if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3427 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3428 /* we meet with a cross extent block merge. */
3429 ret = ocfs2_get_right_path(et, left_path, &right_path);
3435 right_el = path_leaf_el(right_path);
3436 next_free = le16_to_cpu(right_el->l_next_free_rec);
3437 BUG_ON(next_free <= 0);
3438 right_rec = &right_el->l_recs[0];
3439 if (ocfs2_is_empty_extent(right_rec)) {
3440 BUG_ON(next_free <= 1);
3441 right_rec = &right_el->l_recs[1];
3444 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3445 le16_to_cpu(left_rec->e_leaf_clusters) !=
3446 le32_to_cpu(right_rec->e_cpos));
3448 subtree_index = ocfs2_find_subtree_root(et, left_path,
3451 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3452 handle->h_buffer_credits,
3459 root_bh = left_path->p_node[subtree_index].bh;
3460 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3462 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3469 for (i = subtree_index + 1;
3470 i < path_num_items(right_path); i++) {
3471 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3478 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3487 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3488 right_rec = &el->l_recs[index + 1];
3491 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3492 path_num_items(left_path) - 1);
3498 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3500 le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3501 le64_add_cpu(&right_rec->e_blkno,
3502 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3504 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3506 ocfs2_cleanup_merge(el, index);
3508 ret = ocfs2_journal_dirty(handle, bh);
3513 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3517 ocfs2_complete_edge_insert(handle, left_path, right_path,
3522 ocfs2_free_path(right_path);
3526 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3527 struct ocfs2_path *right_path,
3528 struct ocfs2_path **ret_left_path)
3532 struct ocfs2_path *left_path = NULL;
3534 *ret_left_path = NULL;
3536 /* This function shouldn't be called for non-trees. */
3537 BUG_ON(right_path->p_tree_depth == 0);
3539 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3540 right_path, &left_cpos);
3546 /* This function shouldn't be called for the leftmost leaf. */
3547 BUG_ON(left_cpos == 0);
3549 left_path = ocfs2_new_path_from_path(right_path);
3556 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3562 *ret_left_path = left_path;
3565 ocfs2_free_path(left_path);
3570 * Remove split_rec clusters from the record at index and merge them
3571 * onto the tail of the record "before" it.
3572 * For index > 0, the "before" means the extent rec at index - 1.
3574 * For index == 0, the "before" means the last record of the previous
3575 * extent block. And there is also a situation that we may need to
3576 * remove the rightmost leaf extent block in the right_path and change
3577 * the right path to indicate the new rightmost path.
3579 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3581 struct ocfs2_extent_tree *et,
3582 struct ocfs2_extent_rec *split_rec,
3583 struct ocfs2_cached_dealloc_ctxt *dealloc,
3586 int ret, i, subtree_index = 0, has_empty_extent = 0;
3587 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3588 struct ocfs2_extent_rec *left_rec;
3589 struct ocfs2_extent_rec *right_rec;
3590 struct ocfs2_extent_list *el = path_leaf_el(right_path);
3591 struct buffer_head *bh = path_leaf_bh(right_path);
3592 struct buffer_head *root_bh = NULL;
3593 struct ocfs2_path *left_path = NULL;
3594 struct ocfs2_extent_list *left_el;
3598 right_rec = &el->l_recs[index];
3600 /* we meet with a cross extent block merge. */
3601 ret = ocfs2_get_left_path(et, right_path, &left_path);
3607 left_el = path_leaf_el(left_path);
3608 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3609 le16_to_cpu(left_el->l_count));
3611 left_rec = &left_el->l_recs[
3612 le16_to_cpu(left_el->l_next_free_rec) - 1];
3613 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3614 le16_to_cpu(left_rec->e_leaf_clusters) !=
3615 le32_to_cpu(split_rec->e_cpos));
3617 subtree_index = ocfs2_find_subtree_root(et, left_path,
3620 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3621 handle->h_buffer_credits,
3628 root_bh = left_path->p_node[subtree_index].bh;
3629 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3631 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3638 for (i = subtree_index + 1;
3639 i < path_num_items(right_path); i++) {
3640 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3647 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3655 left_rec = &el->l_recs[index - 1];
3656 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3657 has_empty_extent = 1;
3660 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3661 path_num_items(right_path) - 1);
3667 if (has_empty_extent && index == 1) {
3669 * The easy case - we can just plop the record right in.
3671 *left_rec = *split_rec;
3673 has_empty_extent = 0;
3675 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3677 le32_add_cpu(&right_rec->e_cpos, split_clusters);
3678 le64_add_cpu(&right_rec->e_blkno,
3679 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3681 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3683 ocfs2_cleanup_merge(el, index);
3685 ret = ocfs2_journal_dirty(handle, bh);
3690 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3695 * In the situation that the right_rec is empty and the extent
3696 * block is empty also, ocfs2_complete_edge_insert can't handle
3697 * it and we need to delete the right extent block.
3699 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3700 le16_to_cpu(el->l_next_free_rec) == 1) {
3702 ret = ocfs2_remove_rightmost_path(handle, et,
3710 /* Now the rightmost extent block has been deleted.
3711 * So we use the new rightmost path.
3713 ocfs2_mv_path(right_path, left_path);
3716 ocfs2_complete_edge_insert(handle, left_path,
3717 right_path, subtree_index);
3721 ocfs2_free_path(left_path);
3725 static int ocfs2_try_to_merge_extent(handle_t *handle,
3726 struct ocfs2_extent_tree *et,
3727 struct ocfs2_path *path,
3729 struct ocfs2_extent_rec *split_rec,
3730 struct ocfs2_cached_dealloc_ctxt *dealloc,
3731 struct ocfs2_merge_ctxt *ctxt)
3734 struct ocfs2_extent_list *el = path_leaf_el(path);
3735 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3737 BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3739 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3741 * The merge code will need to create an empty
3742 * extent to take the place of the newly
3743 * emptied slot. Remove any pre-existing empty
3744 * extents - having more than one in a leaf is
3747 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3753 rec = &el->l_recs[split_index];
3756 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3758 * Left-right contig implies this.
3760 BUG_ON(!ctxt->c_split_covers_rec);
3763 * Since the leftright insert always covers the entire
3764 * extent, this call will delete the insert record
3765 * entirely, resulting in an empty extent record added to
3768 * Since the adding of an empty extent shifts
3769 * everything back to the right, there's no need to
3770 * update split_index here.
3772 * When the split_index is zero, we need to merge it to the
3773 * prevoius extent block. It is more efficient and easier
3774 * if we do merge_right first and merge_left later.
3776 ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3784 * We can only get this from logic error above.
3786 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3788 /* The merge left us with an empty extent, remove it. */
3789 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3795 rec = &el->l_recs[split_index];
3798 * Note that we don't pass split_rec here on purpose -
3799 * we've merged it into the rec already.
3801 ret = ocfs2_merge_rec_left(path, handle, et, rec,
3802 dealloc, split_index);
3809 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3811 * Error from this last rotate is not critical, so
3812 * print but don't bubble it up.
3819 * Merge a record to the left or right.
3821 * 'contig_type' is relative to the existing record,
3822 * so for example, if we're "right contig", it's to
3823 * the record on the left (hence the left merge).
3825 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3826 ret = ocfs2_merge_rec_left(path, handle, et,
3834 ret = ocfs2_merge_rec_right(path, handle,
3843 if (ctxt->c_split_covers_rec) {
3845 * The merge may have left an empty extent in
3846 * our leaf. Try to rotate it away.
3848 ret = ocfs2_rotate_tree_left(handle, et, path,
3860 static void ocfs2_subtract_from_rec(struct super_block *sb,
3861 enum ocfs2_split_type split,
3862 struct ocfs2_extent_rec *rec,
3863 struct ocfs2_extent_rec *split_rec)
3867 len_blocks = ocfs2_clusters_to_blocks(sb,
3868 le16_to_cpu(split_rec->e_leaf_clusters));
3870 if (split == SPLIT_LEFT) {
3872 * Region is on the left edge of the existing
3875 le32_add_cpu(&rec->e_cpos,
3876 le16_to_cpu(split_rec->e_leaf_clusters));
3877 le64_add_cpu(&rec->e_blkno, len_blocks);
3878 le16_add_cpu(&rec->e_leaf_clusters,
3879 -le16_to_cpu(split_rec->e_leaf_clusters));
3882 * Region is on the right edge of the existing
3885 le16_add_cpu(&rec->e_leaf_clusters,
3886 -le16_to_cpu(split_rec->e_leaf_clusters));
3891 * Do the final bits of extent record insertion at the target leaf
3892 * list. If this leaf is part of an allocation tree, it is assumed
3893 * that the tree above has been prepared.
3895 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3896 struct ocfs2_extent_rec *insert_rec,
3897 struct ocfs2_extent_list *el,
3898 struct ocfs2_insert_type *insert)
3900 int i = insert->ins_contig_index;
3902 struct ocfs2_extent_rec *rec;
3904 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3906 if (insert->ins_split != SPLIT_NONE) {
3907 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3909 rec = &el->l_recs[i];
3910 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3911 insert->ins_split, rec,
3917 * Contiguous insert - either left or right.
3919 if (insert->ins_contig != CONTIG_NONE) {
3920 rec = &el->l_recs[i];
3921 if (insert->ins_contig == CONTIG_LEFT) {
3922 rec->e_blkno = insert_rec->e_blkno;
3923 rec->e_cpos = insert_rec->e_cpos;
3925 le16_add_cpu(&rec->e_leaf_clusters,
3926 le16_to_cpu(insert_rec->e_leaf_clusters));
3931 * Handle insert into an empty leaf.
3933 if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3934 ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3935 ocfs2_is_empty_extent(&el->l_recs[0]))) {
3936 el->l_recs[0] = *insert_rec;
3937 el->l_next_free_rec = cpu_to_le16(1);
3944 if (insert->ins_appending == APPEND_TAIL) {
3945 i = le16_to_cpu(el->l_next_free_rec) - 1;
3946 rec = &el->l_recs[i];
3947 range = le32_to_cpu(rec->e_cpos)
3948 + le16_to_cpu(rec->e_leaf_clusters);
3949 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3951 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3952 le16_to_cpu(el->l_count),
3953 "owner %llu, depth %u, count %u, next free %u, "
3954 "rec.cpos %u, rec.clusters %u, "
3955 "insert.cpos %u, insert.clusters %u\n",
3956 ocfs2_metadata_cache_owner(et->et_ci),
3957 le16_to_cpu(el->l_tree_depth),
3958 le16_to_cpu(el->l_count),
3959 le16_to_cpu(el->l_next_free_rec),
3960 le32_to_cpu(el->l_recs[i].e_cpos),
3961 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3962 le32_to_cpu(insert_rec->e_cpos),
3963 le16_to_cpu(insert_rec->e_leaf_clusters));
3965 el->l_recs[i] = *insert_rec;
3966 le16_add_cpu(&el->l_next_free_rec, 1);
3972 * Ok, we have to rotate.
3974 * At this point, it is safe to assume that inserting into an
3975 * empty leaf and appending to a leaf have both been handled
3978 * This leaf needs to have space, either by the empty 1st
3979 * extent record, or by virtue of an l_next_rec < l_count.
3981 ocfs2_rotate_leaf(el, insert_rec);
3984 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3985 struct ocfs2_extent_tree *et,
3986 struct ocfs2_path *path,
3987 struct ocfs2_extent_rec *insert_rec)
3989 int ret, i, next_free;
3990 struct buffer_head *bh;
3991 struct ocfs2_extent_list *el;
3992 struct ocfs2_extent_rec *rec;
3995 * Update everything except the leaf block.
3997 for (i = 0; i < path->p_tree_depth; i++) {
3998 bh = path->p_node[i].bh;
3999 el = path->p_node[i].el;
4001 next_free = le16_to_cpu(el->l_next_free_rec);
4002 if (next_free == 0) {
4003 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
4004 "Owner %llu has a bad extent list",
4005 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
4010 rec = &el->l_recs[next_free - 1];
4012 rec->e_int_clusters = insert_rec->e_cpos;
4013 le32_add_cpu(&rec->e_int_clusters,
4014 le16_to_cpu(insert_rec->e_leaf_clusters));
4015 le32_add_cpu(&rec->e_int_clusters,
4016 -le32_to_cpu(rec->e_cpos));
4018 ret = ocfs2_journal_dirty(handle, bh);
4025 static int ocfs2_append_rec_to_path(handle_t *handle,
4026 struct ocfs2_extent_tree *et,
4027 struct ocfs2_extent_rec *insert_rec,
4028 struct ocfs2_path *right_path,
4029 struct ocfs2_path **ret_left_path)
4032 struct ocfs2_extent_list *el;
4033 struct ocfs2_path *left_path = NULL;
4035 *ret_left_path = NULL;
4038 * This shouldn't happen for non-trees. The extent rec cluster
4039 * count manipulation below only works for interior nodes.
4041 BUG_ON(right_path->p_tree_depth == 0);
4044 * If our appending insert is at the leftmost edge of a leaf,
4045 * then we might need to update the rightmost records of the
4048 el = path_leaf_el(right_path);
4049 next_free = le16_to_cpu(el->l_next_free_rec);
4050 if (next_free == 0 ||
4051 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
4054 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
4055 right_path, &left_cpos);
4061 mlog(0, "Append may need a left path update. cpos: %u, "
4062 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
4066 * No need to worry if the append is already in the
4070 left_path = ocfs2_new_path_from_path(right_path);
4077 ret = ocfs2_find_path(et->et_ci, left_path,
4085 * ocfs2_insert_path() will pass the left_path to the
4091 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4097 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4099 *ret_left_path = left_path;
4103 ocfs2_free_path(left_path);
4108 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4109 struct ocfs2_path *left_path,
4110 struct ocfs2_path *right_path,
4111 struct ocfs2_extent_rec *split_rec,
4112 enum ocfs2_split_type split)
4115 u32 cpos = le32_to_cpu(split_rec->e_cpos);
4116 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4117 struct ocfs2_extent_rec *rec, *tmprec;
4119 right_el = path_leaf_el(right_path);
4121 left_el = path_leaf_el(left_path);
4124 insert_el = right_el;
4125 index = ocfs2_search_extent_list(el, cpos);
4127 if (index == 0 && left_path) {
4128 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4131 * This typically means that the record
4132 * started in the left path but moved to the
4133 * right as a result of rotation. We either
4134 * move the existing record to the left, or we
4135 * do the later insert there.
4137 * In this case, the left path should always
4138 * exist as the rotate code will have passed
4139 * it back for a post-insert update.
4142 if (split == SPLIT_LEFT) {
4144 * It's a left split. Since we know
4145 * that the rotate code gave us an
4146 * empty extent in the left path, we
4147 * can just do the insert there.
4149 insert_el = left_el;
4152 * Right split - we have to move the
4153 * existing record over to the left
4154 * leaf. The insert will be into the
4155 * newly created empty extent in the
4158 tmprec = &right_el->l_recs[index];
4159 ocfs2_rotate_leaf(left_el, tmprec);
4162 memset(tmprec, 0, sizeof(*tmprec));
4163 index = ocfs2_search_extent_list(left_el, cpos);
4164 BUG_ON(index == -1);
4169 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4171 * Left path is easy - we can just allow the insert to
4175 insert_el = left_el;
4176 index = ocfs2_search_extent_list(el, cpos);
4177 BUG_ON(index == -1);
4180 rec = &el->l_recs[index];
4181 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4182 split, rec, split_rec);
4183 ocfs2_rotate_leaf(insert_el, split_rec);
4187 * This function only does inserts on an allocation b-tree. For tree
4188 * depth = 0, ocfs2_insert_at_leaf() is called directly.
4190 * right_path is the path we want to do the actual insert
4191 * in. left_path should only be passed in if we need to update that
4192 * portion of the tree after an edge insert.
4194 static int ocfs2_insert_path(handle_t *handle,
4195 struct ocfs2_extent_tree *et,
4196 struct ocfs2_path *left_path,
4197 struct ocfs2_path *right_path,
4198 struct ocfs2_extent_rec *insert_rec,
4199 struct ocfs2_insert_type *insert)
4201 int ret, subtree_index;
4202 struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4205 int credits = handle->h_buffer_credits;
4208 * There's a chance that left_path got passed back to
4209 * us without being accounted for in the
4210 * journal. Extend our transaction here to be sure we
4211 * can change those blocks.
4213 credits += left_path->p_tree_depth;
4215 ret = ocfs2_extend_trans(handle, credits);
4221 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4229 * Pass both paths to the journal. The majority of inserts
4230 * will be touching all components anyway.
4232 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4238 if (insert->ins_split != SPLIT_NONE) {
4240 * We could call ocfs2_insert_at_leaf() for some types
4241 * of splits, but it's easier to just let one separate
4242 * function sort it all out.
4244 ocfs2_split_record(et, left_path, right_path,
4245 insert_rec, insert->ins_split);
4248 * Split might have modified either leaf and we don't
4249 * have a guarantee that the later edge insert will
4250 * dirty this for us.
4253 ret = ocfs2_journal_dirty(handle,
4254 path_leaf_bh(left_path));
4258 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4261 ret = ocfs2_journal_dirty(handle, leaf_bh);
4267 * The rotate code has indicated that we need to fix
4268 * up portions of the tree after the insert.
4270 * XXX: Should we extend the transaction here?
4272 subtree_index = ocfs2_find_subtree_root(et, left_path,
4274 ocfs2_complete_edge_insert(handle, left_path, right_path,
4283 static int ocfs2_do_insert_extent(handle_t *handle,
4284 struct ocfs2_extent_tree *et,
4285 struct ocfs2_extent_rec *insert_rec,
4286 struct ocfs2_insert_type *type)
4288 int ret, rotate = 0;
4290 struct ocfs2_path *right_path = NULL;
4291 struct ocfs2_path *left_path = NULL;
4292 struct ocfs2_extent_list *el;
4294 el = et->et_root_el;
4296 ret = ocfs2_et_root_journal_access(handle, et,
4297 OCFS2_JOURNAL_ACCESS_WRITE);
4303 if (le16_to_cpu(el->l_tree_depth) == 0) {
4304 ocfs2_insert_at_leaf(et, insert_rec, el, type);
4305 goto out_update_clusters;
4308 right_path = ocfs2_new_path_from_et(et);
4316 * Determine the path to start with. Rotations need the
4317 * rightmost path, everything else can go directly to the
4320 cpos = le32_to_cpu(insert_rec->e_cpos);
4321 if (type->ins_appending == APPEND_NONE &&
4322 type->ins_contig == CONTIG_NONE) {
4327 ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4334 * Rotations and appends need special treatment - they modify
4335 * parts of the tree's above them.
4337 * Both might pass back a path immediate to the left of the
4338 * one being inserted to. This will be cause
4339 * ocfs2_insert_path() to modify the rightmost records of
4340 * left_path to account for an edge insert.
4342 * XXX: When modifying this code, keep in mind that an insert
4343 * can wind up skipping both of these two special cases...
4346 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4347 le32_to_cpu(insert_rec->e_cpos),
4348 right_path, &left_path);
4355 * ocfs2_rotate_tree_right() might have extended the
4356 * transaction without re-journaling our tree root.
4358 ret = ocfs2_et_root_journal_access(handle, et,
4359 OCFS2_JOURNAL_ACCESS_WRITE);
4364 } else if (type->ins_appending == APPEND_TAIL
4365 && type->ins_contig != CONTIG_LEFT) {
4366 ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4367 right_path, &left_path);
4374 ret = ocfs2_insert_path(handle, et, left_path, right_path,
4381 out_update_clusters:
4382 if (type->ins_split == SPLIT_NONE)
4383 ocfs2_et_update_clusters(et,
4384 le16_to_cpu(insert_rec->e_leaf_clusters));
4386 ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4391 ocfs2_free_path(left_path);
4392 ocfs2_free_path(right_path);
4397 static enum ocfs2_contig_type
4398 ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4399 struct ocfs2_path *path,
4400 struct ocfs2_extent_list *el, int index,
4401 struct ocfs2_extent_rec *split_rec)
4404 enum ocfs2_contig_type ret = CONTIG_NONE;
4405 u32 left_cpos, right_cpos;
4406 struct ocfs2_extent_rec *rec = NULL;
4407 struct ocfs2_extent_list *new_el;
4408 struct ocfs2_path *left_path = NULL, *right_path = NULL;
4409 struct buffer_head *bh;
4410 struct ocfs2_extent_block *eb;
4411 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4414 rec = &el->l_recs[index - 1];
4415 } else if (path->p_tree_depth > 0) {
4416 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4420 if (left_cpos != 0) {
4421 left_path = ocfs2_new_path_from_path(path);
4425 status = ocfs2_find_path(et->et_ci, left_path,
4430 new_el = path_leaf_el(left_path);
4432 if (le16_to_cpu(new_el->l_next_free_rec) !=
4433 le16_to_cpu(new_el->l_count)) {
4434 bh = path_leaf_bh(left_path);
4435 eb = (struct ocfs2_extent_block *)bh->b_data;
4437 "Extent block #%llu has an "
4438 "invalid l_next_free_rec of "
4439 "%d. It should have "
4440 "matched the l_count of %d",
4441 (unsigned long long)le64_to_cpu(eb->h_blkno),
4442 le16_to_cpu(new_el->l_next_free_rec),
4443 le16_to_cpu(new_el->l_count));
4447 rec = &new_el->l_recs[
4448 le16_to_cpu(new_el->l_next_free_rec) - 1];
4453 * We're careful to check for an empty extent record here -
4454 * the merge code will know what to do if it sees one.
4457 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4458 if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4461 ret = ocfs2_et_extent_contig(et, rec, split_rec);
4466 if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4467 rec = &el->l_recs[index + 1];
4468 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4469 path->p_tree_depth > 0) {
4470 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4474 if (right_cpos == 0)
4477 right_path = ocfs2_new_path_from_path(path);
4481 status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4485 new_el = path_leaf_el(right_path);
4486 rec = &new_el->l_recs[0];
4487 if (ocfs2_is_empty_extent(rec)) {
4488 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4489 bh = path_leaf_bh(right_path);
4490 eb = (struct ocfs2_extent_block *)bh->b_data;
4492 "Extent block #%llu has an "
4493 "invalid l_next_free_rec of %d",
4494 (unsigned long long)le64_to_cpu(eb->h_blkno),
4495 le16_to_cpu(new_el->l_next_free_rec));
4499 rec = &new_el->l_recs[1];
4504 enum ocfs2_contig_type contig_type;
4506 contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4508 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4509 ret = CONTIG_LEFTRIGHT;
4510 else if (ret == CONTIG_NONE)
4516 ocfs2_free_path(left_path);
4518 ocfs2_free_path(right_path);
4523 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4524 struct ocfs2_insert_type *insert,
4525 struct ocfs2_extent_list *el,
4526 struct ocfs2_extent_rec *insert_rec)
4529 enum ocfs2_contig_type contig_type = CONTIG_NONE;
4531 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4533 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4534 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4536 if (contig_type != CONTIG_NONE) {
4537 insert->ins_contig_index = i;
4541 insert->ins_contig = contig_type;
4543 if (insert->ins_contig != CONTIG_NONE) {
4544 struct ocfs2_extent_rec *rec =
4545 &el->l_recs[insert->ins_contig_index];
4546 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4547 le16_to_cpu(insert_rec->e_leaf_clusters);
4550 * Caller might want us to limit the size of extents, don't
4551 * calculate contiguousness if we might exceed that limit.
4553 if (et->et_max_leaf_clusters &&
4554 (len > et->et_max_leaf_clusters))
4555 insert->ins_contig = CONTIG_NONE;
4560 * This should only be called against the righmost leaf extent list.
4562 * ocfs2_figure_appending_type() will figure out whether we'll have to
4563 * insert at the tail of the rightmost leaf.
4565 * This should also work against the root extent list for tree's with 0
4566 * depth. If we consider the root extent list to be the rightmost leaf node
4567 * then the logic here makes sense.
4569 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4570 struct ocfs2_extent_list *el,
4571 struct ocfs2_extent_rec *insert_rec)
4574 u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4575 struct ocfs2_extent_rec *rec;
4577 insert->ins_appending = APPEND_NONE;
4579 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4581 if (!el->l_next_free_rec)
4582 goto set_tail_append;
4584 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4585 /* Were all records empty? */
4586 if (le16_to_cpu(el->l_next_free_rec) == 1)
4587 goto set_tail_append;
4590 i = le16_to_cpu(el->l_next_free_rec) - 1;
4591 rec = &el->l_recs[i];
4594 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4595 goto set_tail_append;
4600 insert->ins_appending = APPEND_TAIL;
4604 * Helper function called at the begining of an insert.
4606 * This computes a few things that are commonly used in the process of
4607 * inserting into the btree:
4608 * - Whether the new extent is contiguous with an existing one.
4609 * - The current tree depth.
4610 * - Whether the insert is an appending one.
4611 * - The total # of free records in the tree.
4613 * All of the information is stored on the ocfs2_insert_type
4616 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4617 struct buffer_head **last_eb_bh,
4618 struct ocfs2_extent_rec *insert_rec,
4620 struct ocfs2_insert_type *insert)
4623 struct ocfs2_extent_block *eb;
4624 struct ocfs2_extent_list *el;
4625 struct ocfs2_path *path = NULL;
4626 struct buffer_head *bh = NULL;
4628 insert->ins_split = SPLIT_NONE;
4630 el = et->et_root_el;
4631 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4633 if (el->l_tree_depth) {
4635 * If we have tree depth, we read in the
4636 * rightmost extent block ahead of time as
4637 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4638 * may want it later.
4640 ret = ocfs2_read_extent_block(et->et_ci,
4641 ocfs2_et_get_last_eb_blk(et),
4647 eb = (struct ocfs2_extent_block *) bh->b_data;
4652 * Unless we have a contiguous insert, we'll need to know if
4653 * there is room left in our allocation tree for another
4656 * XXX: This test is simplistic, we can search for empty
4657 * extent records too.
4659 *free_records = le16_to_cpu(el->l_count) -
4660 le16_to_cpu(el->l_next_free_rec);
4662 if (!insert->ins_tree_depth) {
4663 ocfs2_figure_contig_type(et, insert, el, insert_rec);
4664 ocfs2_figure_appending_type(insert, el, insert_rec);
4668 path = ocfs2_new_path_from_et(et);
4676 * In the case that we're inserting past what the tree
4677 * currently accounts for, ocfs2_find_path() will return for
4678 * us the rightmost tree path. This is accounted for below in
4679 * the appending code.
4681 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4687 el = path_leaf_el(path);
4690 * Now that we have the path, there's two things we want to determine:
4691 * 1) Contiguousness (also set contig_index if this is so)
4693 * 2) Are we doing an append? We can trivially break this up
4694 * into two types of appends: simple record append, or a
4695 * rotate inside the tail leaf.
4697 ocfs2_figure_contig_type(et, insert, el, insert_rec);
4700 * The insert code isn't quite ready to deal with all cases of
4701 * left contiguousness. Specifically, if it's an insert into
4702 * the 1st record in a leaf, it will require the adjustment of
4703 * cluster count on the last record of the path directly to it's
4704 * left. For now, just catch that case and fool the layers
4705 * above us. This works just fine for tree_depth == 0, which
4706 * is why we allow that above.
4708 if (insert->ins_contig == CONTIG_LEFT &&
4709 insert->ins_contig_index == 0)
4710 insert->ins_contig = CONTIG_NONE;
4713 * Ok, so we can simply compare against last_eb to figure out
4714 * whether the path doesn't exist. This will only happen in
4715 * the case that we're doing a tail append, so maybe we can
4716 * take advantage of that information somehow.
4718 if (ocfs2_et_get_last_eb_blk(et) ==
4719 path_leaf_bh(path)->b_blocknr) {
4721 * Ok, ocfs2_find_path() returned us the rightmost
4722 * tree path. This might be an appending insert. There are
4724 * 1) We're doing a true append at the tail:
4725 * -This might even be off the end of the leaf
4726 * 2) We're "appending" by rotating in the tail
4728 ocfs2_figure_appending_type(insert, el, insert_rec);
4732 ocfs2_free_path(path);
4742 * Insert an extent into a btree.
4744 * The caller needs to update the owning btree's cluster count.
4746 int ocfs2_insert_extent(handle_t *handle,
4747 struct ocfs2_extent_tree *et,
4752 struct ocfs2_alloc_context *meta_ac)
4755 int uninitialized_var(free_records);
4756 struct buffer_head *last_eb_bh = NULL;
4757 struct ocfs2_insert_type insert = {0, };
4758 struct ocfs2_extent_rec rec;
4760 mlog(0, "add %u clusters at position %u to owner %llu\n",
4762 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
4764 memset(&rec, 0, sizeof(rec));
4765 rec.e_cpos = cpu_to_le32(cpos);
4766 rec.e_blkno = cpu_to_le64(start_blk);
4767 rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4768 rec.e_flags = flags;
4769 status = ocfs2_et_insert_check(et, &rec);
4775 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4776 &free_records, &insert);
4782 mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4783 "Insert.contig_index: %d, Insert.free_records: %d, "
4784 "Insert.tree_depth: %d\n",
4785 insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4786 free_records, insert.ins_tree_depth);
4788 if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4789 status = ocfs2_grow_tree(handle, et,
4790 &insert.ins_tree_depth, &last_eb_bh,
4798 /* Finally, we can add clusters. This might rotate the tree for us. */
4799 status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4803 ocfs2_et_extent_map_insert(et, &rec);
4813 * Allcate and add clusters into the extent b-tree.
4814 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4815 * The extent b-tree's root is specified by et, and
4816 * it is not limited to the file storage. Any extent tree can use this
4817 * function if it implements the proper ocfs2_extent_tree.
4819 int ocfs2_add_clusters_in_btree(handle_t *handle,
4820 struct ocfs2_extent_tree *et,
4821 u32 *logical_offset,
4822 u32 clusters_to_add,
4824 struct ocfs2_alloc_context *data_ac,
4825 struct ocfs2_alloc_context *meta_ac,
4826 enum ocfs2_alloc_restarted *reason_ret)
4830 enum ocfs2_alloc_restarted reason = RESTART_NONE;
4831 u32 bit_off, num_bits;
4834 struct ocfs2_super *osb =
4835 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4837 BUG_ON(!clusters_to_add);
4840 flags = OCFS2_EXT_UNWRITTEN;
4842 free_extents = ocfs2_num_free_extents(osb, et);
4843 if (free_extents < 0) {
4844 status = free_extents;
4849 /* there are two cases which could cause us to EAGAIN in the
4850 * we-need-more-metadata case:
4851 * 1) we haven't reserved *any*
4852 * 2) we are so fragmented, we've needed to add metadata too
4854 if (!free_extents && !meta_ac) {
4855 mlog(0, "we haven't reserved any metadata!\n");
4857 reason = RESTART_META;
4859 } else if ((!free_extents)
4860 && (ocfs2_alloc_context_bits_left(meta_ac)
4861 < ocfs2_extend_meta_needed(et->et_root_el))) {
4862 mlog(0, "filesystem is really fragmented...\n");
4864 reason = RESTART_META;
4868 status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4869 clusters_to_add, &bit_off, &num_bits);
4871 if (status != -ENOSPC)
4876 BUG_ON(num_bits > clusters_to_add);
4878 /* reserve our write early -- insert_extent may update the tree root */
4879 status = ocfs2_et_root_journal_access(handle, et,
4880 OCFS2_JOURNAL_ACCESS_WRITE);
4886 block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4887 mlog(0, "Allocating %u clusters at block %u for owner %llu\n",
4889 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
4890 status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4891 num_bits, flags, meta_ac);
4897 status = ocfs2_journal_dirty(handle, et->et_root_bh);
4903 clusters_to_add -= num_bits;
4904 *logical_offset += num_bits;
4906 if (clusters_to_add) {
4907 mlog(0, "need to alloc once more, wanted = %u\n",
4910 reason = RESTART_TRANS;
4916 *reason_ret = reason;
4920 static void ocfs2_make_right_split_rec(struct super_block *sb,
4921 struct ocfs2_extent_rec *split_rec,
4923 struct ocfs2_extent_rec *rec)
4925 u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4926 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4928 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4930 split_rec->e_cpos = cpu_to_le32(cpos);
4931 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4933 split_rec->e_blkno = rec->e_blkno;
4934 le64_add_cpu(&split_rec->e_blkno,
4935 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4937 split_rec->e_flags = rec->e_flags;
4940 static int ocfs2_split_and_insert(handle_t *handle,
4941 struct ocfs2_extent_tree *et,
4942 struct ocfs2_path *path,
4943 struct buffer_head **last_eb_bh,
4945 struct ocfs2_extent_rec *orig_split_rec,
4946 struct ocfs2_alloc_context *meta_ac)
4949 unsigned int insert_range, rec_range, do_leftright = 0;
4950 struct ocfs2_extent_rec tmprec;
4951 struct ocfs2_extent_list *rightmost_el;
4952 struct ocfs2_extent_rec rec;
4953 struct ocfs2_extent_rec split_rec = *orig_split_rec;
4954 struct ocfs2_insert_type insert;
4955 struct ocfs2_extent_block *eb;
4959 * Store a copy of the record on the stack - it might move
4960 * around as the tree is manipulated below.
4962 rec = path_leaf_el(path)->l_recs[split_index];
4964 rightmost_el = et->et_root_el;
4966 depth = le16_to_cpu(rightmost_el->l_tree_depth);
4968 BUG_ON(!(*last_eb_bh));
4969 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4970 rightmost_el = &eb->h_list;
4973 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4974 le16_to_cpu(rightmost_el->l_count)) {
4975 ret = ocfs2_grow_tree(handle, et,
4976 &depth, last_eb_bh, meta_ac);
4983 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4984 insert.ins_appending = APPEND_NONE;
4985 insert.ins_contig = CONTIG_NONE;
4986 insert.ins_tree_depth = depth;
4988 insert_range = le32_to_cpu(split_rec.e_cpos) +
4989 le16_to_cpu(split_rec.e_leaf_clusters);
4990 rec_range = le32_to_cpu(rec.e_cpos) +
4991 le16_to_cpu(rec.e_leaf_clusters);
4993 if (split_rec.e_cpos == rec.e_cpos) {
4994 insert.ins_split = SPLIT_LEFT;
4995 } else if (insert_range == rec_range) {
4996 insert.ins_split = SPLIT_RIGHT;
4999 * Left/right split. We fake this as a right split
5000 * first and then make a second pass as a left split.
5002 insert.ins_split = SPLIT_RIGHT;
5004 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5005 &tmprec, insert_range, &rec);
5009 BUG_ON(do_leftright);
5013 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5019 if (do_leftright == 1) {
5021 struct ocfs2_extent_list *el;
5024 split_rec = *orig_split_rec;
5026 ocfs2_reinit_path(path, 1);
5028 cpos = le32_to_cpu(split_rec.e_cpos);
5029 ret = ocfs2_find_path(et->et_ci, path, cpos);
5035 el = path_leaf_el(path);
5036 split_index = ocfs2_search_extent_list(el, cpos);
5044 static int ocfs2_replace_extent_rec(handle_t *handle,
5045 struct ocfs2_extent_tree *et,
5046 struct ocfs2_path *path,
5047 struct ocfs2_extent_list *el,
5049 struct ocfs2_extent_rec *split_rec)
5053 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
5054 path_num_items(path) - 1);
5060 el->l_recs[split_index] = *split_rec;
5062 ocfs2_journal_dirty(handle, path_leaf_bh(path));
5068 * Split part or all of the extent record at split_index in the leaf
5069 * pointed to by path. Merge with the contiguous extent record if needed.
5071 * Care is taken to handle contiguousness so as to not grow the tree.
5073 * meta_ac is not strictly necessary - we only truly need it if growth
5074 * of the tree is required. All other cases will degrade into a less
5075 * optimal tree layout.
5077 * last_eb_bh should be the rightmost leaf block for any extent
5078 * btree. Since a split may grow the tree or a merge might shrink it,
5079 * the caller cannot trust the contents of that buffer after this call.
5081 * This code is optimized for readability - several passes might be
5082 * made over certain portions of the tree. All of those blocks will
5083 * have been brought into cache (and pinned via the journal), so the
5084 * extra overhead is not expressed in terms of disk reads.
5086 int ocfs2_split_extent(handle_t *handle,
5087 struct ocfs2_extent_tree *et,
5088 struct ocfs2_path *path,
5090 struct ocfs2_extent_rec *split_rec,
5091 struct ocfs2_alloc_context *meta_ac,
5092 struct ocfs2_cached_dealloc_ctxt *dealloc)
5095 struct ocfs2_extent_list *el = path_leaf_el(path);
5096 struct buffer_head *last_eb_bh = NULL;
5097 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5098 struct ocfs2_merge_ctxt ctxt;
5099 struct ocfs2_extent_list *rightmost_el;
5101 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5102 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5103 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5109 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(et, path, el,
5114 * The core merge / split code wants to know how much room is
5115 * left in this allocation tree, so we pass the
5116 * rightmost extent list.
5118 if (path->p_tree_depth) {
5119 struct ocfs2_extent_block *eb;
5121 ret = ocfs2_read_extent_block(et->et_ci,
5122 ocfs2_et_get_last_eb_blk(et),
5129 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5130 rightmost_el = &eb->h_list;
5132 rightmost_el = path_root_el(path);
5134 if (rec->e_cpos == split_rec->e_cpos &&
5135 rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5136 ctxt.c_split_covers_rec = 1;
5138 ctxt.c_split_covers_rec = 0;
5140 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5142 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5143 split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5144 ctxt.c_split_covers_rec);
5146 if (ctxt.c_contig_type == CONTIG_NONE) {
5147 if (ctxt.c_split_covers_rec)
5148 ret = ocfs2_replace_extent_rec(handle, et, path, el,
5149 split_index, split_rec);
5151 ret = ocfs2_split_and_insert(handle, et, path,
5152 &last_eb_bh, split_index,
5153 split_rec, meta_ac);
5157 ret = ocfs2_try_to_merge_extent(handle, et, path,
5158 split_index, split_rec,
5170 * Change the flags of the already-existing extent at cpos for len clusters.
5172 * new_flags: the flags we want to set.
5173 * clear_flags: the flags we want to clear.
5174 * phys: the new physical offset we want this new extent starts from.
5176 * If the existing extent is larger than the request, initiate a
5177 * split. An attempt will be made at merging with adjacent extents.
5179 * The caller is responsible for passing down meta_ac if we'll need it.
5181 int ocfs2_change_extent_flag(handle_t *handle,
5182 struct ocfs2_extent_tree *et,
5183 u32 cpos, u32 len, u32 phys,
5184 struct ocfs2_alloc_context *meta_ac,
5185 struct ocfs2_cached_dealloc_ctxt *dealloc,
5186 int new_flags, int clear_flags)
5189 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5190 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5191 struct ocfs2_extent_rec split_rec;
5192 struct ocfs2_path *left_path = NULL;
5193 struct ocfs2_extent_list *el;
5194 struct ocfs2_extent_rec *rec;
5196 left_path = ocfs2_new_path_from_et(et);
5203 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5208 el = path_leaf_el(left_path);
5210 index = ocfs2_search_extent_list(el, cpos);
5211 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5213 "Owner %llu has an extent at cpos %u which can no "
5214 "longer be found.\n",
5215 (unsigned long long)
5216 ocfs2_metadata_cache_owner(et->et_ci), cpos);
5222 rec = &el->l_recs[index];
5223 if (new_flags && (rec->e_flags & new_flags)) {
5224 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5225 "extent that already had them",
5226 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5231 if (clear_flags && !(rec->e_flags & clear_flags)) {
5232 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5233 "extent that didn't have them",
5234 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5239 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5240 split_rec.e_cpos = cpu_to_le32(cpos);
5241 split_rec.e_leaf_clusters = cpu_to_le16(len);
5242 split_rec.e_blkno = cpu_to_le64(start_blkno);
5243 split_rec.e_flags = rec->e_flags;
5245 split_rec.e_flags |= new_flags;
5247 split_rec.e_flags &= ~clear_flags;
5249 ret = ocfs2_split_extent(handle, et, left_path,
5250 index, &split_rec, meta_ac,
5256 ocfs2_free_path(left_path);
5262 * Mark the already-existing extent at cpos as written for len clusters.
5263 * This removes the unwritten extent flag.
5265 * If the existing extent is larger than the request, initiate a
5266 * split. An attempt will be made at merging with adjacent extents.
5268 * The caller is responsible for passing down meta_ac if we'll need it.
5270 int ocfs2_mark_extent_written(struct inode *inode,
5271 struct ocfs2_extent_tree *et,
5272 handle_t *handle, u32 cpos, u32 len, u32 phys,
5273 struct ocfs2_alloc_context *meta_ac,
5274 struct ocfs2_cached_dealloc_ctxt *dealloc)
5278 mlog(0, "Inode %lu cpos %u, len %u, phys clusters %u\n",
5279 inode->i_ino, cpos, len, phys);
5281 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5282 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5283 "that are being written to, but the feature bit "
5284 "is not set in the super block.",
5285 (unsigned long long)OCFS2_I(inode)->ip_blkno);
5291 * XXX: This should be fixed up so that we just re-insert the
5292 * next extent records.
5294 ocfs2_et_extent_map_truncate(et, 0);
5296 ret = ocfs2_change_extent_flag(handle, et, cpos,
5297 len, phys, meta_ac, dealloc,
5298 0, OCFS2_EXT_UNWRITTEN);
5306 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5307 struct ocfs2_path *path,
5308 int index, u32 new_range,
5309 struct ocfs2_alloc_context *meta_ac)
5311 int ret, depth, credits = handle->h_buffer_credits;
5312 struct buffer_head *last_eb_bh = NULL;
5313 struct ocfs2_extent_block *eb;
5314 struct ocfs2_extent_list *rightmost_el, *el;
5315 struct ocfs2_extent_rec split_rec;
5316 struct ocfs2_extent_rec *rec;
5317 struct ocfs2_insert_type insert;
5320 * Setup the record to split before we grow the tree.
5322 el = path_leaf_el(path);
5323 rec = &el->l_recs[index];
5324 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5325 &split_rec, new_range, rec);
5327 depth = path->p_tree_depth;
5329 ret = ocfs2_read_extent_block(et->et_ci,
5330 ocfs2_et_get_last_eb_blk(et),
5337 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5338 rightmost_el = &eb->h_list;
5340 rightmost_el = path_leaf_el(path);
5342 credits += path->p_tree_depth +
5343 ocfs2_extend_meta_needed(et->et_root_el);
5344 ret = ocfs2_extend_trans(handle, credits);
5350 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5351 le16_to_cpu(rightmost_el->l_count)) {
5352 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5360 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5361 insert.ins_appending = APPEND_NONE;
5362 insert.ins_contig = CONTIG_NONE;
5363 insert.ins_split = SPLIT_RIGHT;
5364 insert.ins_tree_depth = depth;
5366 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5375 static int ocfs2_truncate_rec(handle_t *handle,
5376 struct ocfs2_extent_tree *et,
5377 struct ocfs2_path *path, int index,
5378 struct ocfs2_cached_dealloc_ctxt *dealloc,
5382 u32 left_cpos, rec_range, trunc_range;
5383 int wants_rotate = 0, is_rightmost_tree_rec = 0;
5384 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5385 struct ocfs2_path *left_path = NULL;
5386 struct ocfs2_extent_list *el = path_leaf_el(path);
5387 struct ocfs2_extent_rec *rec;
5388 struct ocfs2_extent_block *eb;
5390 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5391 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5400 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5401 path->p_tree_depth) {
5403 * Check whether this is the rightmost tree record. If
5404 * we remove all of this record or part of its right
5405 * edge then an update of the record lengths above it
5408 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5409 if (eb->h_next_leaf_blk == 0)
5410 is_rightmost_tree_rec = 1;
5413 rec = &el->l_recs[index];
5414 if (index == 0 && path->p_tree_depth &&
5415 le32_to_cpu(rec->e_cpos) == cpos) {
5417 * Changing the leftmost offset (via partial or whole
5418 * record truncate) of an interior (or rightmost) path
5419 * means we have to update the subtree that is formed
5420 * by this leaf and the one to it's left.
5422 * There are two cases we can skip:
5423 * 1) Path is the leftmost one in our btree.
5424 * 2) The leaf is rightmost and will be empty after
5425 * we remove the extent record - the rotate code
5426 * knows how to update the newly formed edge.
5429 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5435 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5436 left_path = ocfs2_new_path_from_path(path);
5443 ret = ocfs2_find_path(et->et_ci, left_path,
5452 ret = ocfs2_extend_rotate_transaction(handle, 0,
5453 handle->h_buffer_credits,
5460 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5466 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5472 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5473 trunc_range = cpos + len;
5475 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5478 memset(rec, 0, sizeof(*rec));
5479 ocfs2_cleanup_merge(el, index);
5482 next_free = le16_to_cpu(el->l_next_free_rec);
5483 if (is_rightmost_tree_rec && next_free > 1) {
5485 * We skip the edge update if this path will
5486 * be deleted by the rotate code.
5488 rec = &el->l_recs[next_free - 1];
5489 ocfs2_adjust_rightmost_records(handle, et, path,
5492 } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5493 /* Remove leftmost portion of the record. */
5494 le32_add_cpu(&rec->e_cpos, len);
5495 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5496 le16_add_cpu(&rec->e_leaf_clusters, -len);
5497 } else if (rec_range == trunc_range) {
5498 /* Remove rightmost portion of the record */
5499 le16_add_cpu(&rec->e_leaf_clusters, -len);
5500 if (is_rightmost_tree_rec)
5501 ocfs2_adjust_rightmost_records(handle, et, path, rec);
5503 /* Caller should have trapped this. */
5504 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5506 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5507 le32_to_cpu(rec->e_cpos),
5508 le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5515 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5516 ocfs2_complete_edge_insert(handle, left_path, path,
5520 ocfs2_journal_dirty(handle, path_leaf_bh(path));
5522 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5529 ocfs2_free_path(left_path);
5533 int ocfs2_remove_extent(handle_t *handle,
5534 struct ocfs2_extent_tree *et,
5536 struct ocfs2_alloc_context *meta_ac,
5537 struct ocfs2_cached_dealloc_ctxt *dealloc)
5540 u32 rec_range, trunc_range;
5541 struct ocfs2_extent_rec *rec;
5542 struct ocfs2_extent_list *el;
5543 struct ocfs2_path *path = NULL;
5546 * XXX: Why are we truncating to 0 instead of wherever this
5549 ocfs2_et_extent_map_truncate(et, 0);
5551 path = ocfs2_new_path_from_et(et);
5558 ret = ocfs2_find_path(et->et_ci, path, cpos);
5564 el = path_leaf_el(path);
5565 index = ocfs2_search_extent_list(el, cpos);
5566 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5567 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5568 "Owner %llu has an extent at cpos %u which can no "
5569 "longer be found.\n",
5570 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5577 * We have 3 cases of extent removal:
5578 * 1) Range covers the entire extent rec
5579 * 2) Range begins or ends on one edge of the extent rec
5580 * 3) Range is in the middle of the extent rec (no shared edges)
5582 * For case 1 we remove the extent rec and left rotate to
5585 * For case 2 we just shrink the existing extent rec, with a
5586 * tree update if the shrinking edge is also the edge of an
5589 * For case 3 we do a right split to turn the extent rec into
5590 * something case 2 can handle.
5592 rec = &el->l_recs[index];
5593 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5594 trunc_range = cpos + len;
5596 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5598 mlog(0, "Owner %llu, remove (cpos %u, len %u). Existing index %d "
5599 "(cpos %u, len %u)\n",
5600 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5602 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5604 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5605 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5612 ret = ocfs2_split_tree(handle, et, path, index,
5613 trunc_range, meta_ac);
5620 * The split could have manipulated the tree enough to
5621 * move the record location, so we have to look for it again.
5623 ocfs2_reinit_path(path, 1);
5625 ret = ocfs2_find_path(et->et_ci, path, cpos);
5631 el = path_leaf_el(path);
5632 index = ocfs2_search_extent_list(el, cpos);
5633 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5634 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5635 "Owner %llu: split at cpos %u lost record.",
5636 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5643 * Double check our values here. If anything is fishy,
5644 * it's easier to catch it at the top level.
5646 rec = &el->l_recs[index];
5647 rec_range = le32_to_cpu(rec->e_cpos) +
5648 ocfs2_rec_clusters(el, rec);
5649 if (rec_range != trunc_range) {
5650 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5651 "Owner %llu: error after split at cpos %u"
5652 "trunc len %u, existing record is (%u,%u)",
5653 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5654 cpos, len, le32_to_cpu(rec->e_cpos),
5655 ocfs2_rec_clusters(el, rec));
5660 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5669 ocfs2_free_path(path);
5673 int ocfs2_remove_btree_range(struct inode *inode,
5674 struct ocfs2_extent_tree *et,
5675 u32 cpos, u32 phys_cpos, u32 len,
5676 struct ocfs2_cached_dealloc_ctxt *dealloc)
5679 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5680 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5681 struct inode *tl_inode = osb->osb_tl_inode;
5683 struct ocfs2_alloc_context *meta_ac = NULL;
5685 ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5691 mutex_lock(&tl_inode->i_mutex);
5693 if (ocfs2_truncate_log_needs_flush(osb)) {
5694 ret = __ocfs2_flush_truncate_log(osb);
5701 handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5702 if (IS_ERR(handle)) {
5703 ret = PTR_ERR(handle);
5708 ret = ocfs2_et_root_journal_access(handle, et,
5709 OCFS2_JOURNAL_ACCESS_WRITE);
5715 vfs_dq_free_space_nodirty(inode,
5716 ocfs2_clusters_to_bytes(inode->i_sb, len));
5718 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5724 ocfs2_et_update_clusters(et, -len);
5726 ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5732 ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5737 ocfs2_commit_trans(osb, handle);
5739 mutex_unlock(&tl_inode->i_mutex);
5742 ocfs2_free_alloc_context(meta_ac);
5747 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5749 struct buffer_head *tl_bh = osb->osb_tl_bh;
5750 struct ocfs2_dinode *di;
5751 struct ocfs2_truncate_log *tl;
5753 di = (struct ocfs2_dinode *) tl_bh->b_data;
5754 tl = &di->id2.i_dealloc;
5756 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5757 "slot %d, invalid truncate log parameters: used = "
5758 "%u, count = %u\n", osb->slot_num,
5759 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5760 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5763 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5764 unsigned int new_start)
5766 unsigned int tail_index;
5767 unsigned int current_tail;
5769 /* No records, nothing to coalesce */
5770 if (!le16_to_cpu(tl->tl_used))
5773 tail_index = le16_to_cpu(tl->tl_used) - 1;
5774 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5775 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5777 return current_tail == new_start;
5780 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5783 unsigned int num_clusters)
5786 unsigned int start_cluster, tl_count;
5787 struct inode *tl_inode = osb->osb_tl_inode;
5788 struct buffer_head *tl_bh = osb->osb_tl_bh;
5789 struct ocfs2_dinode *di;
5790 struct ocfs2_truncate_log *tl;
5792 mlog_entry("start_blk = %llu, num_clusters = %u\n",
5793 (unsigned long long)start_blk, num_clusters);
5795 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5797 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5799 di = (struct ocfs2_dinode *) tl_bh->b_data;
5801 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5802 * by the underlying call to ocfs2_read_inode_block(), so any
5803 * corruption is a code bug */
5804 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5806 tl = &di->id2.i_dealloc;
5807 tl_count = le16_to_cpu(tl->tl_count);
5808 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5810 "Truncate record count on #%llu invalid "
5811 "wanted %u, actual %u\n",
5812 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5813 ocfs2_truncate_recs_per_inode(osb->sb),
5814 le16_to_cpu(tl->tl_count));
5816 /* Caller should have known to flush before calling us. */
5817 index = le16_to_cpu(tl->tl_used);
5818 if (index >= tl_count) {
5824 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5825 OCFS2_JOURNAL_ACCESS_WRITE);
5831 mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5832 "%llu (index = %d)\n", num_clusters, start_cluster,
5833 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5835 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5837 * Move index back to the record we are coalescing with.
5838 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5842 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5843 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5844 index, le32_to_cpu(tl->tl_recs[index].t_start),
5847 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5848 tl->tl_used = cpu_to_le16(index + 1);
5850 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5852 status = ocfs2_journal_dirty(handle, tl_bh);
5863 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5865 struct inode *data_alloc_inode,
5866 struct buffer_head *data_alloc_bh)
5870 unsigned int num_clusters;
5872 struct ocfs2_truncate_rec rec;
5873 struct ocfs2_dinode *di;
5874 struct ocfs2_truncate_log *tl;
5875 struct inode *tl_inode = osb->osb_tl_inode;
5876 struct buffer_head *tl_bh = osb->osb_tl_bh;
5880 di = (struct ocfs2_dinode *) tl_bh->b_data;
5881 tl = &di->id2.i_dealloc;
5882 i = le16_to_cpu(tl->tl_used) - 1;
5884 /* Caller has given us at least enough credits to
5885 * update the truncate log dinode */
5886 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5887 OCFS2_JOURNAL_ACCESS_WRITE);
5893 tl->tl_used = cpu_to_le16(i);
5895 status = ocfs2_journal_dirty(handle, tl_bh);
5901 /* TODO: Perhaps we can calculate the bulk of the
5902 * credits up front rather than extending like
5904 status = ocfs2_extend_trans(handle,
5905 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5911 rec = tl->tl_recs[i];
5912 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5913 le32_to_cpu(rec.t_start));
5914 num_clusters = le32_to_cpu(rec.t_clusters);
5916 /* if start_blk is not set, we ignore the record as
5919 mlog(0, "free record %d, start = %u, clusters = %u\n",
5920 i, le32_to_cpu(rec.t_start), num_clusters);
5922 status = ocfs2_free_clusters(handle, data_alloc_inode,
5923 data_alloc_bh, start_blk,
5938 /* Expects you to already be holding tl_inode->i_mutex */
5939 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5942 unsigned int num_to_flush;
5944 struct inode *tl_inode = osb->osb_tl_inode;
5945 struct inode *data_alloc_inode = NULL;
5946 struct buffer_head *tl_bh = osb->osb_tl_bh;
5947 struct buffer_head *data_alloc_bh = NULL;
5948 struct ocfs2_dinode *di;
5949 struct ocfs2_truncate_log *tl;
5953 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5955 di = (struct ocfs2_dinode *) tl_bh->b_data;
5957 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5958 * by the underlying call to ocfs2_read_inode_block(), so any
5959 * corruption is a code bug */
5960 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5962 tl = &di->id2.i_dealloc;
5963 num_to_flush = le16_to_cpu(tl->tl_used);
5964 mlog(0, "Flush %u records from truncate log #%llu\n",
5965 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5966 if (!num_to_flush) {
5971 data_alloc_inode = ocfs2_get_system_file_inode(osb,
5972 GLOBAL_BITMAP_SYSTEM_INODE,
5973 OCFS2_INVALID_SLOT);
5974 if (!data_alloc_inode) {
5976 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5980 mutex_lock(&data_alloc_inode->i_mutex);
5982 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5988 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5989 if (IS_ERR(handle)) {
5990 status = PTR_ERR(handle);
5995 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
6000 ocfs2_commit_trans(osb, handle);
6003 brelse(data_alloc_bh);
6004 ocfs2_inode_unlock(data_alloc_inode, 1);
6007 mutex_unlock(&data_alloc_inode->i_mutex);
6008 iput(data_alloc_inode);
6015 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6018 struct inode *tl_inode = osb->osb_tl_inode;
6020 mutex_lock(&tl_inode->i_mutex);
6021 status = __ocfs2_flush_truncate_log(osb);
6022 mutex_unlock(&tl_inode->i_mutex);
6027 static void ocfs2_truncate_log_worker(struct work_struct *work)
6030 struct ocfs2_super *osb =
6031 container_of(work, struct ocfs2_super,
6032 osb_truncate_log_wq.work);
6036 status = ocfs2_flush_truncate_log(osb);
6040 ocfs2_init_inode_steal_slot(osb);
6045 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6046 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6049 if (osb->osb_tl_inode) {
6050 /* We want to push off log flushes while truncates are
6053 cancel_delayed_work(&osb->osb_truncate_log_wq);
6055 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
6056 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6060 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6062 struct inode **tl_inode,
6063 struct buffer_head **tl_bh)
6066 struct inode *inode = NULL;
6067 struct buffer_head *bh = NULL;
6069 inode = ocfs2_get_system_file_inode(osb,
6070 TRUNCATE_LOG_SYSTEM_INODE,
6074 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6078 status = ocfs2_read_inode_block(inode, &bh);
6092 /* called during the 1st stage of node recovery. we stamp a clean
6093 * truncate log and pass back a copy for processing later. if the
6094 * truncate log does not require processing, a *tl_copy is set to
6096 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6098 struct ocfs2_dinode **tl_copy)
6101 struct inode *tl_inode = NULL;
6102 struct buffer_head *tl_bh = NULL;
6103 struct ocfs2_dinode *di;
6104 struct ocfs2_truncate_log *tl;
6108 mlog(0, "recover truncate log from slot %d\n", slot_num);
6110 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6116 di = (struct ocfs2_dinode *) tl_bh->b_data;
6118 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
6119 * validated by the underlying call to ocfs2_read_inode_block(),
6120 * so any corruption is a code bug */
6121 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6123 tl = &di->id2.i_dealloc;
6124 if (le16_to_cpu(tl->tl_used)) {
6125 mlog(0, "We'll have %u logs to recover\n",
6126 le16_to_cpu(tl->tl_used));
6128 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6135 /* Assuming the write-out below goes well, this copy
6136 * will be passed back to recovery for processing. */
6137 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6139 /* All we need to do to clear the truncate log is set
6143 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6144 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6156 if (status < 0 && (*tl_copy)) {
6165 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6166 struct ocfs2_dinode *tl_copy)
6170 unsigned int clusters, num_recs, start_cluster;
6173 struct inode *tl_inode = osb->osb_tl_inode;
6174 struct ocfs2_truncate_log *tl;
6178 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6179 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6183 tl = &tl_copy->id2.i_dealloc;
6184 num_recs = le16_to_cpu(tl->tl_used);
6185 mlog(0, "cleanup %u records from %llu\n", num_recs,
6186 (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6188 mutex_lock(&tl_inode->i_mutex);
6189 for(i = 0; i < num_recs; i++) {
6190 if (ocfs2_truncate_log_needs_flush(osb)) {
6191 status = __ocfs2_flush_truncate_log(osb);
6198 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6199 if (IS_ERR(handle)) {
6200 status = PTR_ERR(handle);
6205 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6206 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6207 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6209 status = ocfs2_truncate_log_append(osb, handle,
6210 start_blk, clusters);
6211 ocfs2_commit_trans(osb, handle);
6219 mutex_unlock(&tl_inode->i_mutex);
6225 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6228 struct inode *tl_inode = osb->osb_tl_inode;
6233 cancel_delayed_work(&osb->osb_truncate_log_wq);
6234 flush_workqueue(ocfs2_wq);
6236 status = ocfs2_flush_truncate_log(osb);
6240 brelse(osb->osb_tl_bh);
6241 iput(osb->osb_tl_inode);
6247 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6250 struct inode *tl_inode = NULL;
6251 struct buffer_head *tl_bh = NULL;
6255 status = ocfs2_get_truncate_log_info(osb,
6262 /* ocfs2_truncate_log_shutdown keys on the existence of
6263 * osb->osb_tl_inode so we don't set any of the osb variables
6264 * until we're sure all is well. */
6265 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6266 ocfs2_truncate_log_worker);
6267 osb->osb_tl_bh = tl_bh;
6268 osb->osb_tl_inode = tl_inode;
6275 * Delayed de-allocation of suballocator blocks.
6277 * Some sets of block de-allocations might involve multiple suballocator inodes.
6279 * The locking for this can get extremely complicated, especially when
6280 * the suballocator inodes to delete from aren't known until deep
6281 * within an unrelated codepath.
6283 * ocfs2_extent_block structures are a good example of this - an inode
6284 * btree could have been grown by any number of nodes each allocating
6285 * out of their own suballoc inode.
6287 * These structures allow the delay of block de-allocation until a
6288 * later time, when locking of multiple cluster inodes won't cause
6293 * Describe a single bit freed from a suballocator. For the block
6294 * suballocators, it represents one block. For the global cluster
6295 * allocator, it represents some clusters and free_bit indicates
6298 struct ocfs2_cached_block_free {
6299 struct ocfs2_cached_block_free *free_next;
6301 unsigned int free_bit;
6304 struct ocfs2_per_slot_free_list {
6305 struct ocfs2_per_slot_free_list *f_next_suballocator;
6308 struct ocfs2_cached_block_free *f_first;
6311 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6314 struct ocfs2_cached_block_free *head)
6319 struct inode *inode;
6320 struct buffer_head *di_bh = NULL;
6321 struct ocfs2_cached_block_free *tmp;
6323 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6330 mutex_lock(&inode->i_mutex);
6332 ret = ocfs2_inode_lock(inode, &di_bh, 1);
6338 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6339 if (IS_ERR(handle)) {
6340 ret = PTR_ERR(handle);
6346 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6348 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6349 head->free_bit, (unsigned long long)head->free_blk);
6351 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6352 head->free_bit, bg_blkno, 1);
6358 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6365 head = head->free_next;
6370 ocfs2_commit_trans(osb, handle);
6373 ocfs2_inode_unlock(inode, 1);
6376 mutex_unlock(&inode->i_mutex);
6380 /* Premature exit may have left some dangling items. */
6382 head = head->free_next;
6389 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6390 u64 blkno, unsigned int bit)
6393 struct ocfs2_cached_block_free *item;
6395 item = kmalloc(sizeof(*item), GFP_NOFS);
6402 mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6403 bit, (unsigned long long)blkno);
6405 item->free_blk = blkno;
6406 item->free_bit = bit;
6407 item->free_next = ctxt->c_global_allocator;
6409 ctxt->c_global_allocator = item;
6413 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6414 struct ocfs2_cached_block_free *head)
6416 struct ocfs2_cached_block_free *tmp;
6417 struct inode *tl_inode = osb->osb_tl_inode;
6421 mutex_lock(&tl_inode->i_mutex);
6424 if (ocfs2_truncate_log_needs_flush(osb)) {
6425 ret = __ocfs2_flush_truncate_log(osb);
6432 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6433 if (IS_ERR(handle)) {
6434 ret = PTR_ERR(handle);
6439 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6442 ocfs2_commit_trans(osb, handle);
6444 head = head->free_next;
6453 mutex_unlock(&tl_inode->i_mutex);
6456 /* Premature exit may have left some dangling items. */
6458 head = head->free_next;
6465 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6466 struct ocfs2_cached_dealloc_ctxt *ctxt)
6469 struct ocfs2_per_slot_free_list *fl;
6474 while (ctxt->c_first_suballocator) {
6475 fl = ctxt->c_first_suballocator;
6478 mlog(0, "Free items: (type %u, slot %d)\n",
6479 fl->f_inode_type, fl->f_slot);
6480 ret2 = ocfs2_free_cached_blocks(osb,
6490 ctxt->c_first_suballocator = fl->f_next_suballocator;
6494 if (ctxt->c_global_allocator) {
6495 ret2 = ocfs2_free_cached_clusters(osb,
6496 ctxt->c_global_allocator);
6502 ctxt->c_global_allocator = NULL;
6508 static struct ocfs2_per_slot_free_list *
6509 ocfs2_find_per_slot_free_list(int type,
6511 struct ocfs2_cached_dealloc_ctxt *ctxt)
6513 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6516 if (fl->f_inode_type == type && fl->f_slot == slot)
6519 fl = fl->f_next_suballocator;
6522 fl = kmalloc(sizeof(*fl), GFP_NOFS);
6524 fl->f_inode_type = type;
6527 fl->f_next_suballocator = ctxt->c_first_suballocator;
6529 ctxt->c_first_suballocator = fl;
6534 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6535 int type, int slot, u64 blkno,
6539 struct ocfs2_per_slot_free_list *fl;
6540 struct ocfs2_cached_block_free *item;
6542 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6549 item = kmalloc(sizeof(*item), GFP_NOFS);
6556 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6557 type, slot, bit, (unsigned long long)blkno);
6559 item->free_blk = blkno;
6560 item->free_bit = bit;
6561 item->free_next = fl->f_first;
6570 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6571 struct ocfs2_extent_block *eb)
6573 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6574 le16_to_cpu(eb->h_suballoc_slot),
6575 le64_to_cpu(eb->h_blkno),
6576 le16_to_cpu(eb->h_suballoc_bit));
6579 /* This function will figure out whether the currently last extent
6580 * block will be deleted, and if it will, what the new last extent
6581 * block will be so we can update his h_next_leaf_blk field, as well
6582 * as the dinodes i_last_eb_blk */
6583 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6584 unsigned int clusters_to_del,
6585 struct ocfs2_path *path,
6586 struct buffer_head **new_last_eb)
6588 int next_free, ret = 0;
6590 struct ocfs2_extent_rec *rec;
6591 struct ocfs2_extent_block *eb;
6592 struct ocfs2_extent_list *el;
6593 struct buffer_head *bh = NULL;
6595 *new_last_eb = NULL;
6597 /* we have no tree, so of course, no last_eb. */
6598 if (!path->p_tree_depth)
6601 /* trunc to zero special case - this makes tree_depth = 0
6602 * regardless of what it is. */
6603 if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6606 el = path_leaf_el(path);
6607 BUG_ON(!el->l_next_free_rec);
6610 * Make sure that this extent list will actually be empty
6611 * after we clear away the data. We can shortcut out if
6612 * there's more than one non-empty extent in the
6613 * list. Otherwise, a check of the remaining extent is
6616 next_free = le16_to_cpu(el->l_next_free_rec);
6618 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6622 /* We may have a valid extent in index 1, check it. */
6624 rec = &el->l_recs[1];
6627 * Fall through - no more nonempty extents, so we want
6628 * to delete this leaf.
6634 rec = &el->l_recs[0];
6639 * Check it we'll only be trimming off the end of this
6642 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6646 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6652 ret = ocfs2_find_leaf(INODE_CACHE(inode), path_root_el(path), cpos, &bh);
6658 eb = (struct ocfs2_extent_block *) bh->b_data;
6661 /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6662 * Any corruption is a code bug. */
6663 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6666 get_bh(*new_last_eb);
6667 mlog(0, "returning block %llu, (cpos: %u)\n",
6668 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6676 * Trim some clusters off the rightmost edge of a tree. Only called
6679 * The caller needs to:
6680 * - start journaling of each path component.
6681 * - compute and fully set up any new last ext block
6683 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6684 handle_t *handle, struct ocfs2_truncate_context *tc,
6685 u32 clusters_to_del, u64 *delete_start, u8 *flags)
6687 int ret, i, index = path->p_tree_depth;
6690 struct buffer_head *bh;
6691 struct ocfs2_extent_list *el;
6692 struct ocfs2_extent_rec *rec;
6697 while (index >= 0) {
6698 bh = path->p_node[index].bh;
6699 el = path->p_node[index].el;
6701 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6702 index, (unsigned long long)bh->b_blocknr);
6704 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6707 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6708 ocfs2_error(inode->i_sb,
6709 "Inode %lu has invalid ext. block %llu",
6711 (unsigned long long)bh->b_blocknr);
6717 i = le16_to_cpu(el->l_next_free_rec) - 1;
6718 rec = &el->l_recs[i];
6720 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6721 "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6722 ocfs2_rec_clusters(el, rec),
6723 (unsigned long long)le64_to_cpu(rec->e_blkno),
6724 le16_to_cpu(el->l_next_free_rec));
6726 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6728 if (le16_to_cpu(el->l_tree_depth) == 0) {
6730 * If the leaf block contains a single empty
6731 * extent and no records, we can just remove
6734 if (i == 0 && ocfs2_is_empty_extent(rec)) {
6736 sizeof(struct ocfs2_extent_rec));
6737 el->l_next_free_rec = cpu_to_le16(0);
6743 * Remove any empty extents by shifting things
6744 * left. That should make life much easier on
6745 * the code below. This condition is rare
6746 * enough that we shouldn't see a performance
6749 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6750 le16_add_cpu(&el->l_next_free_rec, -1);
6753 i < le16_to_cpu(el->l_next_free_rec); i++)
6754 el->l_recs[i] = el->l_recs[i + 1];
6756 memset(&el->l_recs[i], 0,
6757 sizeof(struct ocfs2_extent_rec));
6760 * We've modified our extent list. The
6761 * simplest way to handle this change
6762 * is to being the search from the
6765 goto find_tail_record;
6768 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6771 * We'll use "new_edge" on our way back up the
6772 * tree to know what our rightmost cpos is.
6774 new_edge = le16_to_cpu(rec->e_leaf_clusters);
6775 new_edge += le32_to_cpu(rec->e_cpos);
6778 * The caller will use this to delete data blocks.
6780 *delete_start = le64_to_cpu(rec->e_blkno)
6781 + ocfs2_clusters_to_blocks(inode->i_sb,
6782 le16_to_cpu(rec->e_leaf_clusters));
6783 *flags = rec->e_flags;
6786 * If it's now empty, remove this record.
6788 if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6790 sizeof(struct ocfs2_extent_rec));
6791 le16_add_cpu(&el->l_next_free_rec, -1);
6794 if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6796 sizeof(struct ocfs2_extent_rec));
6797 le16_add_cpu(&el->l_next_free_rec, -1);
6802 /* Can this actually happen? */
6803 if (le16_to_cpu(el->l_next_free_rec) == 0)
6807 * We never actually deleted any clusters
6808 * because our leaf was empty. There's no
6809 * reason to adjust the rightmost edge then.
6814 rec->e_int_clusters = cpu_to_le32(new_edge);
6815 le32_add_cpu(&rec->e_int_clusters,
6816 -le32_to_cpu(rec->e_cpos));
6819 * A deleted child record should have been
6822 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6826 ret = ocfs2_journal_dirty(handle, bh);
6832 mlog(0, "extent list container %llu, after: record %d: "
6833 "(%u, %u, %llu), next = %u.\n",
6834 (unsigned long long)bh->b_blocknr, i,
6835 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6836 (unsigned long long)le64_to_cpu(rec->e_blkno),
6837 le16_to_cpu(el->l_next_free_rec));
6840 * We must be careful to only attempt delete of an
6841 * extent block (and not the root inode block).
6843 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6844 struct ocfs2_extent_block *eb =
6845 (struct ocfs2_extent_block *)bh->b_data;
6848 * Save this for use when processing the
6851 deleted_eb = le64_to_cpu(eb->h_blkno);
6853 mlog(0, "deleting this extent block.\n");
6855 ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
6857 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6858 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6859 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6861 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6862 /* An error here is not fatal. */
6877 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6878 unsigned int clusters_to_del,
6879 struct inode *inode,
6880 struct buffer_head *fe_bh,
6882 struct ocfs2_truncate_context *tc,
6883 struct ocfs2_path *path,
6884 struct ocfs2_alloc_context *meta_ac)
6887 struct ocfs2_dinode *fe;
6888 struct ocfs2_extent_block *last_eb = NULL;
6889 struct ocfs2_extent_list *el;
6890 struct buffer_head *last_eb_bh = NULL;
6894 fe = (struct ocfs2_dinode *) fe_bh->b_data;
6896 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6904 * Each component will be touched, so we might as well journal
6905 * here to avoid having to handle errors later.
6907 status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
6914 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), last_eb_bh,
6915 OCFS2_JOURNAL_ACCESS_WRITE);
6921 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6924 el = &(fe->id2.i_list);
6927 * Lower levels depend on this never happening, but it's best
6928 * to check it up here before changing the tree.
6930 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6931 ocfs2_error(inode->i_sb,
6932 "Inode %lu has an empty extent record, depth %u\n",
6933 inode->i_ino, le16_to_cpu(el->l_tree_depth));
6938 vfs_dq_free_space_nodirty(inode,
6939 ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6940 spin_lock(&OCFS2_I(inode)->ip_lock);
6941 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6943 spin_unlock(&OCFS2_I(inode)->ip_lock);
6944 le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6945 inode->i_blocks = ocfs2_inode_sector_count(inode);
6947 status = ocfs2_trim_tree(inode, path, handle, tc,
6948 clusters_to_del, &delete_blk, &rec_flags);
6954 if (le32_to_cpu(fe->i_clusters) == 0) {
6955 /* trunc to zero is a special case. */
6956 el->l_tree_depth = 0;
6957 fe->i_last_eb_blk = 0;
6959 fe->i_last_eb_blk = last_eb->h_blkno;
6961 status = ocfs2_journal_dirty(handle, fe_bh);
6968 /* If there will be a new last extent block, then by
6969 * definition, there cannot be any leaves to the right of
6971 last_eb->h_next_leaf_blk = 0;
6972 status = ocfs2_journal_dirty(handle, last_eb_bh);
6980 if (rec_flags & OCFS2_EXT_REFCOUNTED)
6981 status = ocfs2_decrease_refcount(inode, handle,
6982 ocfs2_blocks_to_clusters(osb->sb,
6984 clusters_to_del, meta_ac,
6985 &tc->tc_dealloc, 1);
6987 status = ocfs2_truncate_log_append(osb, handle,
7002 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
7004 set_buffer_uptodate(bh);
7005 mark_buffer_dirty(bh);
7009 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
7010 unsigned int from, unsigned int to,
7011 struct page *page, int zero, u64 *phys)
7013 int ret, partial = 0;
7015 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
7020 zero_user_segment(page, from, to);
7023 * Need to set the buffers we zero'd into uptodate
7024 * here if they aren't - ocfs2_map_page_blocks()
7025 * might've skipped some
7027 ret = walk_page_buffers(handle, page_buffers(page),
7032 else if (ocfs2_should_order_data(inode)) {
7033 ret = ocfs2_jbd2_file_inode(handle, inode);
7039 SetPageUptodate(page);
7041 flush_dcache_page(page);
7044 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
7045 loff_t end, struct page **pages,
7046 int numpages, u64 phys, handle_t *handle)
7050 unsigned int from, to = PAGE_CACHE_SIZE;
7051 struct super_block *sb = inode->i_sb;
7053 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
7058 to = PAGE_CACHE_SIZE;
7059 for(i = 0; i < numpages; i++) {
7062 from = start & (PAGE_CACHE_SIZE - 1);
7063 if ((end >> PAGE_CACHE_SHIFT) == page->index)
7064 to = end & (PAGE_CACHE_SIZE - 1);
7066 BUG_ON(from > PAGE_CACHE_SIZE);
7067 BUG_ON(to > PAGE_CACHE_SIZE);
7069 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
7072 start = (page->index + 1) << PAGE_CACHE_SHIFT;
7076 ocfs2_unlock_and_free_pages(pages, numpages);
7079 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
7080 struct page **pages, int *num)
7082 int numpages, ret = 0;
7083 struct address_space *mapping = inode->i_mapping;
7084 unsigned long index;
7085 loff_t last_page_bytes;
7087 BUG_ON(start > end);
7090 last_page_bytes = PAGE_ALIGN(end);
7091 index = start >> PAGE_CACHE_SHIFT;
7093 pages[numpages] = grab_cache_page(mapping, index);
7094 if (!pages[numpages]) {
7102 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
7107 ocfs2_unlock_and_free_pages(pages, numpages);
7116 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
7117 struct page **pages, int *num)
7119 struct super_block *sb = inode->i_sb;
7121 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
7122 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
7124 return ocfs2_grab_pages(inode, start, end, pages, num);
7128 * Zero the area past i_size but still within an allocated
7129 * cluster. This avoids exposing nonzero data on subsequent file
7132 * We need to call this before i_size is updated on the inode because
7133 * otherwise block_write_full_page() will skip writeout of pages past
7134 * i_size. The new_i_size parameter is passed for this reason.
7136 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
7137 u64 range_start, u64 range_end)
7139 int ret = 0, numpages;
7140 struct page **pages = NULL;
7142 unsigned int ext_flags;
7143 struct super_block *sb = inode->i_sb;
7146 * File systems which don't support sparse files zero on every
7149 if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
7152 pages = kcalloc(ocfs2_pages_per_cluster(sb),
7153 sizeof(struct page *), GFP_NOFS);
7154 if (pages == NULL) {
7160 if (range_start == range_end)
7163 ret = ocfs2_extent_map_get_blocks(inode,
7164 range_start >> sb->s_blocksize_bits,
7165 &phys, NULL, &ext_flags);
7172 * Tail is a hole, or is marked unwritten. In either case, we
7173 * can count on read and write to return/push zero's.
7175 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
7178 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
7185 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
7186 numpages, phys, handle);
7189 * Initiate writeout of the pages we zero'd here. We don't
7190 * wait on them - the truncate_inode_pages() call later will
7193 ret = do_sync_mapping_range(inode->i_mapping, range_start,
7194 range_end - 1, SYNC_FILE_RANGE_WRITE);
7205 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7206 struct ocfs2_dinode *di)
7208 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7209 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7211 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7212 memset(&di->id2, 0, blocksize -
7213 offsetof(struct ocfs2_dinode, id2) -
7216 memset(&di->id2, 0, blocksize -
7217 offsetof(struct ocfs2_dinode, id2));
7220 void ocfs2_dinode_new_extent_list(struct inode *inode,
7221 struct ocfs2_dinode *di)
7223 ocfs2_zero_dinode_id2_with_xattr(inode, di);
7224 di->id2.i_list.l_tree_depth = 0;
7225 di->id2.i_list.l_next_free_rec = 0;
7226 di->id2.i_list.l_count = cpu_to_le16(
7227 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7230 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7232 struct ocfs2_inode_info *oi = OCFS2_I(inode);
7233 struct ocfs2_inline_data *idata = &di->id2.i_data;
7235 spin_lock(&oi->ip_lock);
7236 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7237 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7238 spin_unlock(&oi->ip_lock);
7241 * We clear the entire i_data structure here so that all
7242 * fields can be properly initialized.
7244 ocfs2_zero_dinode_id2_with_xattr(inode, di);
7246 idata->id_count = cpu_to_le16(
7247 ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7250 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7251 struct buffer_head *di_bh)
7253 int ret, i, has_data, num_pages = 0;
7255 u64 uninitialized_var(block);
7256 struct ocfs2_inode_info *oi = OCFS2_I(inode);
7257 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7258 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7259 struct ocfs2_alloc_context *data_ac = NULL;
7260 struct page **pages = NULL;
7261 loff_t end = osb->s_clustersize;
7262 struct ocfs2_extent_tree et;
7265 has_data = i_size_read(inode) ? 1 : 0;
7268 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7269 sizeof(struct page *), GFP_NOFS);
7270 if (pages == NULL) {
7276 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7283 handle = ocfs2_start_trans(osb,
7284 ocfs2_inline_to_extents_credits(osb->sb));
7285 if (IS_ERR(handle)) {
7286 ret = PTR_ERR(handle);
7291 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7292 OCFS2_JOURNAL_ACCESS_WRITE);
7300 unsigned int page_end;
7303 if (vfs_dq_alloc_space_nodirty(inode,
7304 ocfs2_clusters_to_bytes(osb->sb, 1))) {
7310 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
7318 * Save two copies, one for insert, and one that can
7319 * be changed by ocfs2_map_and_dirty_page() below.
7321 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7324 * Non sparse file systems zero on extend, so no need
7327 if (!ocfs2_sparse_alloc(osb) &&
7328 PAGE_CACHE_SIZE < osb->s_clustersize)
7329 end = PAGE_CACHE_SIZE;
7331 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7338 * This should populate the 1st page for us and mark
7341 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7347 page_end = PAGE_CACHE_SIZE;
7348 if (PAGE_CACHE_SIZE > osb->s_clustersize)
7349 page_end = osb->s_clustersize;
7351 for (i = 0; i < num_pages; i++)
7352 ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7353 pages[i], i > 0, &phys);
7356 spin_lock(&oi->ip_lock);
7357 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7358 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7359 spin_unlock(&oi->ip_lock);
7361 ocfs2_dinode_new_extent_list(inode, di);
7363 ocfs2_journal_dirty(handle, di_bh);
7367 * An error at this point should be extremely rare. If
7368 * this proves to be false, we could always re-build
7369 * the in-inode data from our pages.
7371 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7372 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
7378 inode->i_blocks = ocfs2_inode_sector_count(inode);
7382 if (ret < 0 && did_quota)
7383 vfs_dq_free_space_nodirty(inode,
7384 ocfs2_clusters_to_bytes(osb->sb, 1));
7386 ocfs2_commit_trans(osb, handle);
7390 ocfs2_free_alloc_context(data_ac);
7394 ocfs2_unlock_and_free_pages(pages, num_pages);
7402 * It is expected, that by the time you call this function,
7403 * inode->i_size and fe->i_size have been adjusted.
7405 * WARNING: This will kfree the truncate context
7407 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7408 struct inode *inode,
7409 struct buffer_head *fe_bh,
7410 struct ocfs2_truncate_context *tc)
7412 int status, i, credits, tl_sem = 0;
7413 u32 clusters_to_del, new_highest_cpos, range;
7415 struct ocfs2_extent_list *el;
7416 handle_t *handle = NULL;
7417 struct inode *tl_inode = osb->osb_tl_inode;
7418 struct ocfs2_path *path = NULL;
7419 struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7420 struct ocfs2_alloc_context *meta_ac = NULL;
7421 struct ocfs2_refcount_tree *ref_tree = NULL;
7425 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7426 i_size_read(inode));
7428 path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7429 ocfs2_journal_access_di);
7436 ocfs2_extent_map_trunc(inode, new_highest_cpos);
7440 * Check that we still have allocation to delete.
7442 if (OCFS2_I(inode)->ip_clusters == 0) {
7450 * Truncate always works against the rightmost tree branch.
7452 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7458 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7459 OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7462 * By now, el will point to the extent list on the bottom most
7463 * portion of this tree. Only the tail record is considered in
7466 * We handle the following cases, in order:
7467 * - empty extent: delete the remaining branch
7468 * - remove the entire record
7469 * - remove a partial record
7470 * - no record needs to be removed (truncate has completed)
7472 el = path_leaf_el(path);
7473 if (le16_to_cpu(el->l_next_free_rec) == 0) {
7474 ocfs2_error(inode->i_sb,
7475 "Inode %llu has empty extent block at %llu\n",
7476 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7477 (unsigned long long)path_leaf_bh(path)->b_blocknr);
7482 i = le16_to_cpu(el->l_next_free_rec) - 1;
7483 range = le32_to_cpu(el->l_recs[i].e_cpos) +
7484 ocfs2_rec_clusters(el, &el->l_recs[i]);
7485 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7486 clusters_to_del = 0;
7487 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7488 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7489 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
7490 } else if (range > new_highest_cpos) {
7491 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7492 le32_to_cpu(el->l_recs[i].e_cpos)) -
7494 blkno = le64_to_cpu(el->l_recs[i].e_blkno) +
7495 ocfs2_clusters_to_blocks(inode->i_sb,
7496 ocfs2_rec_clusters(el, &el->l_recs[i]) -
7503 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7504 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7506 if (el->l_recs[i].e_flags & OCFS2_EXT_REFCOUNTED && clusters_to_del) {
7507 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features &
7508 OCFS2_HAS_REFCOUNT_FL));
7510 status = ocfs2_lock_refcount_tree(osb,
7511 le64_to_cpu(di->i_refcount_loc),
7512 1, &ref_tree, NULL);
7518 status = ocfs2_prepare_refcount_change_for_del(inode, fe_bh,
7529 mutex_lock(&tl_inode->i_mutex);
7531 /* ocfs2_truncate_log_needs_flush guarantees us at least one
7532 * record is free for use. If there isn't any, we flush to get
7533 * an empty truncate log. */
7534 if (ocfs2_truncate_log_needs_flush(osb)) {
7535 status = __ocfs2_flush_truncate_log(osb);
7542 credits += ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7543 (struct ocfs2_dinode *)fe_bh->b_data,
7545 handle = ocfs2_start_trans(osb, credits);
7546 if (IS_ERR(handle)) {
7547 status = PTR_ERR(handle);
7553 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7560 mutex_unlock(&tl_inode->i_mutex);
7563 ocfs2_commit_trans(osb, handle);
7566 ocfs2_reinit_path(path, 1);
7569 ocfs2_free_alloc_context(meta_ac);
7574 ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7579 * The check above will catch the case where we've truncated
7580 * away all allocation.
7586 ocfs2_schedule_truncate_log_flush(osb, 1);
7589 mutex_unlock(&tl_inode->i_mutex);
7592 ocfs2_commit_trans(osb, handle);
7595 ocfs2_free_alloc_context(meta_ac);
7598 ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7600 ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7602 ocfs2_free_path(path);
7604 /* This will drop the ext_alloc cluster lock for us */
7605 ocfs2_free_truncate_context(tc);
7612 * Expects the inode to already be locked.
7614 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7615 struct inode *inode,
7616 struct buffer_head *fe_bh,
7617 struct ocfs2_truncate_context **tc)
7620 unsigned int new_i_clusters;
7621 struct ocfs2_dinode *fe;
7622 struct ocfs2_extent_block *eb;
7623 struct buffer_head *last_eb_bh = NULL;
7629 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7630 i_size_read(inode));
7631 fe = (struct ocfs2_dinode *) fe_bh->b_data;
7633 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7634 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7635 (unsigned long long)le64_to_cpu(fe->i_size));
7637 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7643 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7645 if (fe->id2.i_list.l_tree_depth) {
7646 status = ocfs2_read_extent_block(INODE_CACHE(inode),
7647 le64_to_cpu(fe->i_last_eb_blk),
7653 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7656 (*tc)->tc_last_eb_bh = last_eb_bh;
7662 ocfs2_free_truncate_context(*tc);
7670 * 'start' is inclusive, 'end' is not.
7672 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7673 unsigned int start, unsigned int end, int trunc)
7676 unsigned int numbytes;
7678 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7679 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7680 struct ocfs2_inline_data *idata = &di->id2.i_data;
7682 if (end > i_size_read(inode))
7683 end = i_size_read(inode);
7685 BUG_ON(start >= end);
7687 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7688 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7689 !ocfs2_supports_inline_data(osb)) {
7690 ocfs2_error(inode->i_sb,
7691 "Inline data flags for inode %llu don't agree! "
7692 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7693 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7694 le16_to_cpu(di->i_dyn_features),
7695 OCFS2_I(inode)->ip_dyn_features,
7696 osb->s_feature_incompat);
7701 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7702 if (IS_ERR(handle)) {
7703 ret = PTR_ERR(handle);
7708 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7709 OCFS2_JOURNAL_ACCESS_WRITE);
7715 numbytes = end - start;
7716 memset(idata->id_data + start, 0, numbytes);
7719 * No need to worry about the data page here - it's been
7720 * truncated already and inline data doesn't need it for
7721 * pushing zero's to disk, so we'll let readpage pick it up
7725 i_size_write(inode, start);
7726 di->i_size = cpu_to_le64(start);
7729 inode->i_blocks = ocfs2_inode_sector_count(inode);
7730 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7732 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7733 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7735 ocfs2_journal_dirty(handle, di_bh);
7738 ocfs2_commit_trans(osb, handle);
7744 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7747 * The caller is responsible for completing deallocation
7748 * before freeing the context.
7750 if (tc->tc_dealloc.c_first_suballocator != NULL)
7752 "Truncate completion has non-empty dealloc context\n");
7754 brelse(tc->tc_last_eb_bh);