1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Extent allocs and frees
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 #include <linux/blkdev.h>
34 #include <cluster/masklog.h>
40 #include "blockcheck.h"
42 #include "extent_map.h"
45 #include "localalloc.h"
52 #include "refcounttree.h"
53 #include "ocfs2_trace.h"
55 #include "buffer_head_io.h"
57 enum ocfs2_contig_type {
64 static enum ocfs2_contig_type
65 ocfs2_extent_rec_contig(struct super_block *sb,
66 struct ocfs2_extent_rec *ext,
67 struct ocfs2_extent_rec *insert_rec);
69 * Operations for a specific extent tree type.
71 * To implement an on-disk btree (extent tree) type in ocfs2, add
72 * an ocfs2_extent_tree_operations structure and the matching
73 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
74 * for the allocation portion of the extent tree.
76 struct ocfs2_extent_tree_operations {
78 * last_eb_blk is the block number of the right most leaf extent
79 * block. Most on-disk structures containing an extent tree store
80 * this value for fast access. The ->eo_set_last_eb_blk() and
81 * ->eo_get_last_eb_blk() operations access this value. They are
84 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
86 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
89 * The on-disk structure usually keeps track of how many total
90 * clusters are stored in this extent tree. This function updates
91 * that value. new_clusters is the delta, and must be
92 * added to the total. Required.
94 void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
98 * If this extent tree is supported by an extent map, insert
99 * a record into the map.
101 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
102 struct ocfs2_extent_rec *rec);
105 * If this extent tree is supported by an extent map, truncate the
108 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
112 * If ->eo_insert_check() exists, it is called before rec is
113 * inserted into the extent tree. It is optional.
115 int (*eo_insert_check)(struct ocfs2_extent_tree *et,
116 struct ocfs2_extent_rec *rec);
117 int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
120 * --------------------------------------------------------------
121 * The remaining are internal to ocfs2_extent_tree and don't have
126 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
129 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
132 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
133 * it exists. If it does not, et->et_max_leaf_clusters is set
134 * to 0 (unlimited). Optional.
136 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
139 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
140 * are contiguous or not. Optional. Don't need to set it if use
141 * ocfs2_extent_rec as the tree leaf.
143 enum ocfs2_contig_type
144 (*eo_extent_contig)(struct ocfs2_extent_tree *et,
145 struct ocfs2_extent_rec *ext,
146 struct ocfs2_extent_rec *insert_rec);
151 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
154 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
155 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
157 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
159 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
160 struct ocfs2_extent_rec *rec);
161 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
163 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
164 struct ocfs2_extent_rec *rec);
165 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
166 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
167 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
168 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk,
169 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk,
170 .eo_update_clusters = ocfs2_dinode_update_clusters,
171 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert,
172 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate,
173 .eo_insert_check = ocfs2_dinode_insert_check,
174 .eo_sanity_check = ocfs2_dinode_sanity_check,
175 .eo_fill_root_el = ocfs2_dinode_fill_root_el,
178 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
181 struct ocfs2_dinode *di = et->et_object;
183 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
184 di->i_last_eb_blk = cpu_to_le64(blkno);
187 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
189 struct ocfs2_dinode *di = et->et_object;
191 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
192 return le64_to_cpu(di->i_last_eb_blk);
195 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
198 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
199 struct ocfs2_dinode *di = et->et_object;
201 le32_add_cpu(&di->i_clusters, clusters);
202 spin_lock(&oi->ip_lock);
203 oi->ip_clusters = le32_to_cpu(di->i_clusters);
204 spin_unlock(&oi->ip_lock);
207 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
208 struct ocfs2_extent_rec *rec)
210 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
212 ocfs2_extent_map_insert_rec(inode, rec);
215 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
218 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
220 ocfs2_extent_map_trunc(inode, clusters);
223 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
224 struct ocfs2_extent_rec *rec)
226 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
227 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
229 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
230 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
231 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
232 "Device %s, asking for sparse allocation: inode %llu, "
233 "cpos %u, clusters %u\n",
235 (unsigned long long)oi->ip_blkno,
236 rec->e_cpos, oi->ip_clusters);
241 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
243 struct ocfs2_dinode *di = et->et_object;
245 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
246 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
251 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
253 struct ocfs2_dinode *di = et->et_object;
255 et->et_root_el = &di->id2.i_list;
259 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
261 struct ocfs2_xattr_value_buf *vb = et->et_object;
263 et->et_root_el = &vb->vb_xv->xr_list;
266 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
269 struct ocfs2_xattr_value_buf *vb = et->et_object;
271 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
274 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
276 struct ocfs2_xattr_value_buf *vb = et->et_object;
278 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
281 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
284 struct ocfs2_xattr_value_buf *vb = et->et_object;
286 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
289 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
290 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk,
291 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk,
292 .eo_update_clusters = ocfs2_xattr_value_update_clusters,
293 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el,
296 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
298 struct ocfs2_xattr_block *xb = et->et_object;
300 et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
303 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
305 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
306 et->et_max_leaf_clusters =
307 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
310 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
313 struct ocfs2_xattr_block *xb = et->et_object;
314 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
316 xt->xt_last_eb_blk = cpu_to_le64(blkno);
319 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
321 struct ocfs2_xattr_block *xb = et->et_object;
322 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
324 return le64_to_cpu(xt->xt_last_eb_blk);
327 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
330 struct ocfs2_xattr_block *xb = et->et_object;
332 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
335 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
336 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk,
337 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk,
338 .eo_update_clusters = ocfs2_xattr_tree_update_clusters,
339 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el,
340 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
343 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
346 struct ocfs2_dx_root_block *dx_root = et->et_object;
348 dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
351 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
353 struct ocfs2_dx_root_block *dx_root = et->et_object;
355 return le64_to_cpu(dx_root->dr_last_eb_blk);
358 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
361 struct ocfs2_dx_root_block *dx_root = et->et_object;
363 le32_add_cpu(&dx_root->dr_clusters, clusters);
366 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
368 struct ocfs2_dx_root_block *dx_root = et->et_object;
370 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
375 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
377 struct ocfs2_dx_root_block *dx_root = et->et_object;
379 et->et_root_el = &dx_root->dr_list;
382 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
383 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk,
384 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk,
385 .eo_update_clusters = ocfs2_dx_root_update_clusters,
386 .eo_sanity_check = ocfs2_dx_root_sanity_check,
387 .eo_fill_root_el = ocfs2_dx_root_fill_root_el,
390 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
392 struct ocfs2_refcount_block *rb = et->et_object;
394 et->et_root_el = &rb->rf_list;
397 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
400 struct ocfs2_refcount_block *rb = et->et_object;
402 rb->rf_last_eb_blk = cpu_to_le64(blkno);
405 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
407 struct ocfs2_refcount_block *rb = et->et_object;
409 return le64_to_cpu(rb->rf_last_eb_blk);
412 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
415 struct ocfs2_refcount_block *rb = et->et_object;
417 le32_add_cpu(&rb->rf_clusters, clusters);
420 static enum ocfs2_contig_type
421 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
422 struct ocfs2_extent_rec *ext,
423 struct ocfs2_extent_rec *insert_rec)
428 static struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
429 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk,
430 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk,
431 .eo_update_clusters = ocfs2_refcount_tree_update_clusters,
432 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el,
433 .eo_extent_contig = ocfs2_refcount_tree_extent_contig,
436 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
437 struct ocfs2_caching_info *ci,
438 struct buffer_head *bh,
439 ocfs2_journal_access_func access,
441 struct ocfs2_extent_tree_operations *ops)
446 et->et_root_journal_access = access;
448 obj = (void *)bh->b_data;
451 et->et_ops->eo_fill_root_el(et);
452 if (!et->et_ops->eo_fill_max_leaf_clusters)
453 et->et_max_leaf_clusters = 0;
455 et->et_ops->eo_fill_max_leaf_clusters(et);
458 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
459 struct ocfs2_caching_info *ci,
460 struct buffer_head *bh)
462 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
463 NULL, &ocfs2_dinode_et_ops);
466 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
467 struct ocfs2_caching_info *ci,
468 struct buffer_head *bh)
470 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
471 NULL, &ocfs2_xattr_tree_et_ops);
474 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
475 struct ocfs2_caching_info *ci,
476 struct ocfs2_xattr_value_buf *vb)
478 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
479 &ocfs2_xattr_value_et_ops);
482 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
483 struct ocfs2_caching_info *ci,
484 struct buffer_head *bh)
486 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
487 NULL, &ocfs2_dx_root_et_ops);
490 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
491 struct ocfs2_caching_info *ci,
492 struct buffer_head *bh)
494 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
495 NULL, &ocfs2_refcount_tree_et_ops);
498 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
501 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
504 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
506 return et->et_ops->eo_get_last_eb_blk(et);
509 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
512 et->et_ops->eo_update_clusters(et, clusters);
515 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
516 struct ocfs2_extent_rec *rec)
518 if (et->et_ops->eo_extent_map_insert)
519 et->et_ops->eo_extent_map_insert(et, rec);
522 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
525 if (et->et_ops->eo_extent_map_truncate)
526 et->et_ops->eo_extent_map_truncate(et, clusters);
529 static inline int ocfs2_et_root_journal_access(handle_t *handle,
530 struct ocfs2_extent_tree *et,
533 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
537 static inline enum ocfs2_contig_type
538 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
539 struct ocfs2_extent_rec *rec,
540 struct ocfs2_extent_rec *insert_rec)
542 if (et->et_ops->eo_extent_contig)
543 return et->et_ops->eo_extent_contig(et, rec, insert_rec);
545 return ocfs2_extent_rec_contig(
546 ocfs2_metadata_cache_get_super(et->et_ci),
550 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
551 struct ocfs2_extent_rec *rec)
555 if (et->et_ops->eo_insert_check)
556 ret = et->et_ops->eo_insert_check(et, rec);
560 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
564 if (et->et_ops->eo_sanity_check)
565 ret = et->et_ops->eo_sanity_check(et);
569 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
570 struct ocfs2_extent_block *eb);
571 static void ocfs2_adjust_rightmost_records(handle_t *handle,
572 struct ocfs2_extent_tree *et,
573 struct ocfs2_path *path,
574 struct ocfs2_extent_rec *insert_rec);
576 * Reset the actual path elements so that we can re-use the structure
577 * to build another path. Generally, this involves freeing the buffer
580 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
582 int i, start = 0, depth = 0;
583 struct ocfs2_path_item *node;
588 for(i = start; i < path_num_items(path); i++) {
589 node = &path->p_node[i];
597 * Tree depth may change during truncate, or insert. If we're
598 * keeping the root extent list, then make sure that our path
599 * structure reflects the proper depth.
602 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
604 path_root_access(path) = NULL;
606 path->p_tree_depth = depth;
609 void ocfs2_free_path(struct ocfs2_path *path)
612 ocfs2_reinit_path(path, 0);
618 * All the elements of src into dest. After this call, src could be freed
619 * without affecting dest.
621 * Both paths should have the same root. Any non-root elements of dest
624 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
628 BUG_ON(path_root_bh(dest) != path_root_bh(src));
629 BUG_ON(path_root_el(dest) != path_root_el(src));
630 BUG_ON(path_root_access(dest) != path_root_access(src));
632 ocfs2_reinit_path(dest, 1);
634 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
635 dest->p_node[i].bh = src->p_node[i].bh;
636 dest->p_node[i].el = src->p_node[i].el;
638 if (dest->p_node[i].bh)
639 get_bh(dest->p_node[i].bh);
644 * Make the *dest path the same as src and re-initialize src path to
647 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
651 BUG_ON(path_root_bh(dest) != path_root_bh(src));
652 BUG_ON(path_root_access(dest) != path_root_access(src));
654 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
655 brelse(dest->p_node[i].bh);
657 dest->p_node[i].bh = src->p_node[i].bh;
658 dest->p_node[i].el = src->p_node[i].el;
660 src->p_node[i].bh = NULL;
661 src->p_node[i].el = NULL;
666 * Insert an extent block at given index.
668 * This will not take an additional reference on eb_bh.
670 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
671 struct buffer_head *eb_bh)
673 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
676 * Right now, no root bh is an extent block, so this helps
677 * catch code errors with dinode trees. The assertion can be
678 * safely removed if we ever need to insert extent block
679 * structures at the root.
683 path->p_node[index].bh = eb_bh;
684 path->p_node[index].el = &eb->h_list;
687 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
688 struct ocfs2_extent_list *root_el,
689 ocfs2_journal_access_func access)
691 struct ocfs2_path *path;
693 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
695 path = kzalloc(sizeof(*path), GFP_NOFS);
697 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
699 path_root_bh(path) = root_bh;
700 path_root_el(path) = root_el;
701 path_root_access(path) = access;
707 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
709 return ocfs2_new_path(path_root_bh(path), path_root_el(path),
710 path_root_access(path));
713 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
715 return ocfs2_new_path(et->et_root_bh, et->et_root_el,
716 et->et_root_journal_access);
720 * Journal the buffer at depth idx. All idx>0 are extent_blocks,
721 * otherwise it's the root_access function.
723 * I don't like the way this function's name looks next to
724 * ocfs2_journal_access_path(), but I don't have a better one.
726 int ocfs2_path_bh_journal_access(handle_t *handle,
727 struct ocfs2_caching_info *ci,
728 struct ocfs2_path *path,
731 ocfs2_journal_access_func access = path_root_access(path);
734 access = ocfs2_journal_access;
737 access = ocfs2_journal_access_eb;
739 return access(handle, ci, path->p_node[idx].bh,
740 OCFS2_JOURNAL_ACCESS_WRITE);
744 * Convenience function to journal all components in a path.
746 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
748 struct ocfs2_path *path)
755 for(i = 0; i < path_num_items(path); i++) {
756 ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
768 * Return the index of the extent record which contains cluster #v_cluster.
769 * -1 is returned if it was not found.
771 * Should work fine on interior and exterior nodes.
773 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
777 struct ocfs2_extent_rec *rec;
778 u32 rec_end, rec_start, clusters;
780 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
781 rec = &el->l_recs[i];
783 rec_start = le32_to_cpu(rec->e_cpos);
784 clusters = ocfs2_rec_clusters(el, rec);
786 rec_end = rec_start + clusters;
788 if (v_cluster >= rec_start && v_cluster < rec_end) {
798 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
799 * ocfs2_extent_rec_contig only work properly against leaf nodes!
801 static int ocfs2_block_extent_contig(struct super_block *sb,
802 struct ocfs2_extent_rec *ext,
805 u64 blk_end = le64_to_cpu(ext->e_blkno);
807 blk_end += ocfs2_clusters_to_blocks(sb,
808 le16_to_cpu(ext->e_leaf_clusters));
810 return blkno == blk_end;
813 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
814 struct ocfs2_extent_rec *right)
818 left_range = le32_to_cpu(left->e_cpos) +
819 le16_to_cpu(left->e_leaf_clusters);
821 return (left_range == le32_to_cpu(right->e_cpos));
824 static enum ocfs2_contig_type
825 ocfs2_extent_rec_contig(struct super_block *sb,
826 struct ocfs2_extent_rec *ext,
827 struct ocfs2_extent_rec *insert_rec)
829 u64 blkno = le64_to_cpu(insert_rec->e_blkno);
832 * Refuse to coalesce extent records with different flag
833 * fields - we don't want to mix unwritten extents with user
836 if (ext->e_flags != insert_rec->e_flags)
839 if (ocfs2_extents_adjacent(ext, insert_rec) &&
840 ocfs2_block_extent_contig(sb, ext, blkno))
843 blkno = le64_to_cpu(ext->e_blkno);
844 if (ocfs2_extents_adjacent(insert_rec, ext) &&
845 ocfs2_block_extent_contig(sb, insert_rec, blkno))
852 * NOTE: We can have pretty much any combination of contiguousness and
855 * The usefulness of APPEND_TAIL is more in that it lets us know that
856 * we'll have to update the path to that leaf.
858 enum ocfs2_append_type {
863 enum ocfs2_split_type {
869 struct ocfs2_insert_type {
870 enum ocfs2_split_type ins_split;
871 enum ocfs2_append_type ins_appending;
872 enum ocfs2_contig_type ins_contig;
873 int ins_contig_index;
877 struct ocfs2_merge_ctxt {
878 enum ocfs2_contig_type c_contig_type;
879 int c_has_empty_extent;
880 int c_split_covers_rec;
883 static int ocfs2_validate_extent_block(struct super_block *sb,
884 struct buffer_head *bh)
887 struct ocfs2_extent_block *eb =
888 (struct ocfs2_extent_block *)bh->b_data;
890 trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr);
892 BUG_ON(!buffer_uptodate(bh));
895 * If the ecc fails, we return the error but otherwise
896 * leave the filesystem running. We know any error is
897 * local to this block.
899 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
901 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
902 (unsigned long long)bh->b_blocknr);
907 * Errors after here are fatal.
910 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
912 "Extent block #%llu has bad signature %.*s",
913 (unsigned long long)bh->b_blocknr, 7,
918 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
920 "Extent block #%llu has an invalid h_blkno "
922 (unsigned long long)bh->b_blocknr,
923 (unsigned long long)le64_to_cpu(eb->h_blkno));
927 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
929 "Extent block #%llu has an invalid "
930 "h_fs_generation of #%u",
931 (unsigned long long)bh->b_blocknr,
932 le32_to_cpu(eb->h_fs_generation));
939 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
940 struct buffer_head **bh)
943 struct buffer_head *tmp = *bh;
945 rc = ocfs2_read_block(ci, eb_blkno, &tmp,
946 ocfs2_validate_extent_block);
948 /* If ocfs2_read_block() got us a new bh, pass it up. */
957 * How many free extents have we got before we need more meta data?
959 int ocfs2_num_free_extents(struct ocfs2_super *osb,
960 struct ocfs2_extent_tree *et)
963 struct ocfs2_extent_list *el = NULL;
964 struct ocfs2_extent_block *eb;
965 struct buffer_head *eb_bh = NULL;
969 last_eb_blk = ocfs2_et_get_last_eb_blk(et);
972 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
978 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
982 BUG_ON(el->l_tree_depth != 0);
984 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
988 trace_ocfs2_num_free_extents(retval);
992 /* expects array to already be allocated
994 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
997 static int ocfs2_create_new_meta_bhs(handle_t *handle,
998 struct ocfs2_extent_tree *et,
1000 struct ocfs2_alloc_context *meta_ac,
1001 struct buffer_head *bhs[])
1003 int count, status, i;
1004 u16 suballoc_bit_start;
1006 u64 suballoc_loc, first_blkno;
1007 struct ocfs2_super *osb =
1008 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
1009 struct ocfs2_extent_block *eb;
1012 while (count < wanted) {
1013 status = ocfs2_claim_metadata(handle,
1017 &suballoc_bit_start,
1025 for(i = count; i < (num_got + count); i++) {
1026 bhs[i] = sb_getblk(osb->sb, first_blkno);
1027 if (bhs[i] == NULL) {
1032 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1034 status = ocfs2_journal_access_eb(handle, et->et_ci,
1036 OCFS2_JOURNAL_ACCESS_CREATE);
1042 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1043 eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1044 /* Ok, setup the minimal stuff here. */
1045 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1046 eb->h_blkno = cpu_to_le64(first_blkno);
1047 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1048 eb->h_suballoc_slot =
1049 cpu_to_le16(meta_ac->ac_alloc_slot);
1050 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc);
1051 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1052 eb->h_list.l_count =
1053 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1055 suballoc_bit_start++;
1058 /* We'll also be dirtied by the caller, so
1059 * this isn't absolutely necessary. */
1060 ocfs2_journal_dirty(handle, bhs[i]);
1069 for(i = 0; i < wanted; i++) {
1079 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1081 * Returns the sum of the rightmost extent rec logical offset and
1084 * ocfs2_add_branch() uses this to determine what logical cluster
1085 * value should be populated into the leftmost new branch records.
1087 * ocfs2_shift_tree_depth() uses this to determine the # clusters
1088 * value for the new topmost tree record.
1090 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
1094 i = le16_to_cpu(el->l_next_free_rec) - 1;
1096 return le32_to_cpu(el->l_recs[i].e_cpos) +
1097 ocfs2_rec_clusters(el, &el->l_recs[i]);
1101 * Change range of the branches in the right most path according to the leaf
1102 * extent block's rightmost record.
1104 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1105 struct ocfs2_extent_tree *et)
1108 struct ocfs2_path *path = NULL;
1109 struct ocfs2_extent_list *el;
1110 struct ocfs2_extent_rec *rec;
1112 path = ocfs2_new_path_from_et(et);
1118 status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1124 status = ocfs2_extend_trans(handle, path_num_items(path));
1130 status = ocfs2_journal_access_path(et->et_ci, handle, path);
1136 el = path_leaf_el(path);
1137 rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1];
1139 ocfs2_adjust_rightmost_records(handle, et, path, rec);
1142 ocfs2_free_path(path);
1147 * Add an entire tree branch to our inode. eb_bh is the extent block
1148 * to start at, if we don't want to start the branch at the root
1151 * last_eb_bh is required as we have to update it's next_leaf pointer
1152 * for the new last extent block.
1154 * the new branch will be 'empty' in the sense that every block will
1155 * contain a single record with cluster count == 0.
1157 static int ocfs2_add_branch(handle_t *handle,
1158 struct ocfs2_extent_tree *et,
1159 struct buffer_head *eb_bh,
1160 struct buffer_head **last_eb_bh,
1161 struct ocfs2_alloc_context *meta_ac)
1163 int status, new_blocks, i;
1164 u64 next_blkno, new_last_eb_blk;
1165 struct buffer_head *bh;
1166 struct buffer_head **new_eb_bhs = NULL;
1167 struct ocfs2_extent_block *eb;
1168 struct ocfs2_extent_list *eb_el;
1169 struct ocfs2_extent_list *el;
1170 u32 new_cpos, root_end;
1172 BUG_ON(!last_eb_bh || !*last_eb_bh);
1175 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1178 el = et->et_root_el;
1180 /* we never add a branch to a leaf. */
1181 BUG_ON(!el->l_tree_depth);
1183 new_blocks = le16_to_cpu(el->l_tree_depth);
1185 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1186 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1187 root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1190 * If there is a gap before the root end and the real end
1191 * of the righmost leaf block, we need to remove the gap
1192 * between new_cpos and root_end first so that the tree
1193 * is consistent after we add a new branch(it will start
1196 if (root_end > new_cpos) {
1197 trace_ocfs2_adjust_rightmost_branch(
1198 (unsigned long long)
1199 ocfs2_metadata_cache_owner(et->et_ci),
1200 root_end, new_cpos);
1202 status = ocfs2_adjust_rightmost_branch(handle, et);
1209 /* allocate the number of new eb blocks we need */
1210 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1218 status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1219 meta_ac, new_eb_bhs);
1225 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1226 * linked with the rest of the tree.
1227 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1229 * when we leave the loop, new_last_eb_blk will point to the
1230 * newest leaf, and next_blkno will point to the topmost extent
1232 next_blkno = new_last_eb_blk = 0;
1233 for(i = 0; i < new_blocks; i++) {
1235 eb = (struct ocfs2_extent_block *) bh->b_data;
1236 /* ocfs2_create_new_meta_bhs() should create it right! */
1237 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1238 eb_el = &eb->h_list;
1240 status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1241 OCFS2_JOURNAL_ACCESS_CREATE);
1247 eb->h_next_leaf_blk = 0;
1248 eb_el->l_tree_depth = cpu_to_le16(i);
1249 eb_el->l_next_free_rec = cpu_to_le16(1);
1251 * This actually counts as an empty extent as
1254 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1255 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1257 * eb_el isn't always an interior node, but even leaf
1258 * nodes want a zero'd flags and reserved field so
1259 * this gets the whole 32 bits regardless of use.
1261 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1262 if (!eb_el->l_tree_depth)
1263 new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1265 ocfs2_journal_dirty(handle, bh);
1266 next_blkno = le64_to_cpu(eb->h_blkno);
1269 /* This is a bit hairy. We want to update up to three blocks
1270 * here without leaving any of them in an inconsistent state
1271 * in case of error. We don't have to worry about
1272 * journal_dirty erroring as it won't unless we've aborted the
1273 * handle (in which case we would never be here) so reserving
1274 * the write with journal_access is all we need to do. */
1275 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1276 OCFS2_JOURNAL_ACCESS_WRITE);
1281 status = ocfs2_et_root_journal_access(handle, et,
1282 OCFS2_JOURNAL_ACCESS_WRITE);
1288 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1289 OCFS2_JOURNAL_ACCESS_WRITE);
1296 /* Link the new branch into the rest of the tree (el will
1297 * either be on the root_bh, or the extent block passed in. */
1298 i = le16_to_cpu(el->l_next_free_rec);
1299 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1300 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1301 el->l_recs[i].e_int_clusters = 0;
1302 le16_add_cpu(&el->l_next_free_rec, 1);
1304 /* fe needs a new last extent block pointer, as does the
1305 * next_leaf on the previously last-extent-block. */
1306 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1308 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1309 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1311 ocfs2_journal_dirty(handle, *last_eb_bh);
1312 ocfs2_journal_dirty(handle, et->et_root_bh);
1314 ocfs2_journal_dirty(handle, eb_bh);
1317 * Some callers want to track the rightmost leaf so pass it
1320 brelse(*last_eb_bh);
1321 get_bh(new_eb_bhs[0]);
1322 *last_eb_bh = new_eb_bhs[0];
1327 for (i = 0; i < new_blocks; i++)
1328 brelse(new_eb_bhs[i]);
1336 * adds another level to the allocation tree.
1337 * returns back the new extent block so you can add a branch to it
1340 static int ocfs2_shift_tree_depth(handle_t *handle,
1341 struct ocfs2_extent_tree *et,
1342 struct ocfs2_alloc_context *meta_ac,
1343 struct buffer_head **ret_new_eb_bh)
1347 struct buffer_head *new_eb_bh = NULL;
1348 struct ocfs2_extent_block *eb;
1349 struct ocfs2_extent_list *root_el;
1350 struct ocfs2_extent_list *eb_el;
1352 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1359 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1360 /* ocfs2_create_new_meta_bhs() should create it right! */
1361 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1363 eb_el = &eb->h_list;
1364 root_el = et->et_root_el;
1366 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1367 OCFS2_JOURNAL_ACCESS_CREATE);
1373 /* copy the root extent list data into the new extent block */
1374 eb_el->l_tree_depth = root_el->l_tree_depth;
1375 eb_el->l_next_free_rec = root_el->l_next_free_rec;
1376 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1377 eb_el->l_recs[i] = root_el->l_recs[i];
1379 ocfs2_journal_dirty(handle, new_eb_bh);
1381 status = ocfs2_et_root_journal_access(handle, et,
1382 OCFS2_JOURNAL_ACCESS_WRITE);
1388 new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1390 /* update root_bh now */
1391 le16_add_cpu(&root_el->l_tree_depth, 1);
1392 root_el->l_recs[0].e_cpos = 0;
1393 root_el->l_recs[0].e_blkno = eb->h_blkno;
1394 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1395 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1396 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1397 root_el->l_next_free_rec = cpu_to_le16(1);
1399 /* If this is our 1st tree depth shift, then last_eb_blk
1400 * becomes the allocated extent block */
1401 if (root_el->l_tree_depth == cpu_to_le16(1))
1402 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1404 ocfs2_journal_dirty(handle, et->et_root_bh);
1406 *ret_new_eb_bh = new_eb_bh;
1416 * Should only be called when there is no space left in any of the
1417 * leaf nodes. What we want to do is find the lowest tree depth
1418 * non-leaf extent block with room for new records. There are three
1419 * valid results of this search:
1421 * 1) a lowest extent block is found, then we pass it back in
1422 * *lowest_eb_bh and return '0'
1424 * 2) the search fails to find anything, but the root_el has room. We
1425 * pass NULL back in *lowest_eb_bh, but still return '0'
1427 * 3) the search fails to find anything AND the root_el is full, in
1428 * which case we return > 0
1430 * return status < 0 indicates an error.
1432 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1433 struct buffer_head **target_bh)
1437 struct ocfs2_extent_block *eb;
1438 struct ocfs2_extent_list *el;
1439 struct buffer_head *bh = NULL;
1440 struct buffer_head *lowest_bh = NULL;
1444 el = et->et_root_el;
1446 while(le16_to_cpu(el->l_tree_depth) > 1) {
1447 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1448 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1449 "Owner %llu has empty "
1450 "extent list (next_free_rec == 0)",
1451 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1455 i = le16_to_cpu(el->l_next_free_rec) - 1;
1456 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1458 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1459 "Owner %llu has extent "
1460 "list where extent # %d has no physical "
1462 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1470 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1476 eb = (struct ocfs2_extent_block *) bh->b_data;
1479 if (le16_to_cpu(el->l_next_free_rec) <
1480 le16_to_cpu(el->l_count)) {
1487 /* If we didn't find one and the fe doesn't have any room,
1488 * then return '1' */
1489 el = et->et_root_el;
1490 if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1493 *target_bh = lowest_bh;
1501 * Grow a b-tree so that it has more records.
1503 * We might shift the tree depth in which case existing paths should
1504 * be considered invalid.
1506 * Tree depth after the grow is returned via *final_depth.
1508 * *last_eb_bh will be updated by ocfs2_add_branch().
1510 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1511 int *final_depth, struct buffer_head **last_eb_bh,
1512 struct ocfs2_alloc_context *meta_ac)
1515 struct ocfs2_extent_list *el = et->et_root_el;
1516 int depth = le16_to_cpu(el->l_tree_depth);
1517 struct buffer_head *bh = NULL;
1519 BUG_ON(meta_ac == NULL);
1521 shift = ocfs2_find_branch_target(et, &bh);
1528 /* We traveled all the way to the bottom of the allocation tree
1529 * and didn't find room for any more extents - we need to add
1530 * another tree level */
1533 trace_ocfs2_grow_tree(
1534 (unsigned long long)
1535 ocfs2_metadata_cache_owner(et->et_ci),
1538 /* ocfs2_shift_tree_depth will return us a buffer with
1539 * the new extent block (so we can pass that to
1540 * ocfs2_add_branch). */
1541 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1549 * Special case: we have room now if we shifted from
1550 * tree_depth 0, so no more work needs to be done.
1552 * We won't be calling add_branch, so pass
1553 * back *last_eb_bh as the new leaf. At depth
1554 * zero, it should always be null so there's
1555 * no reason to brelse.
1557 BUG_ON(*last_eb_bh);
1564 /* call ocfs2_add_branch to add the final part of the tree with
1566 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1575 *final_depth = depth;
1581 * This function will discard the rightmost extent record.
1583 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1585 int next_free = le16_to_cpu(el->l_next_free_rec);
1586 int count = le16_to_cpu(el->l_count);
1587 unsigned int num_bytes;
1590 /* This will cause us to go off the end of our extent list. */
1591 BUG_ON(next_free >= count);
1593 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1595 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1598 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1599 struct ocfs2_extent_rec *insert_rec)
1601 int i, insert_index, next_free, has_empty, num_bytes;
1602 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1603 struct ocfs2_extent_rec *rec;
1605 next_free = le16_to_cpu(el->l_next_free_rec);
1606 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1610 /* The tree code before us didn't allow enough room in the leaf. */
1611 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1614 * The easiest way to approach this is to just remove the
1615 * empty extent and temporarily decrement next_free.
1619 * If next_free was 1 (only an empty extent), this
1620 * loop won't execute, which is fine. We still want
1621 * the decrement above to happen.
1623 for(i = 0; i < (next_free - 1); i++)
1624 el->l_recs[i] = el->l_recs[i+1];
1630 * Figure out what the new record index should be.
1632 for(i = 0; i < next_free; i++) {
1633 rec = &el->l_recs[i];
1635 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1640 trace_ocfs2_rotate_leaf(insert_cpos, insert_index,
1641 has_empty, next_free,
1642 le16_to_cpu(el->l_count));
1644 BUG_ON(insert_index < 0);
1645 BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1646 BUG_ON(insert_index > next_free);
1649 * No need to memmove if we're just adding to the tail.
1651 if (insert_index != next_free) {
1652 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1654 num_bytes = next_free - insert_index;
1655 num_bytes *= sizeof(struct ocfs2_extent_rec);
1656 memmove(&el->l_recs[insert_index + 1],
1657 &el->l_recs[insert_index],
1662 * Either we had an empty extent, and need to re-increment or
1663 * there was no empty extent on a non full rightmost leaf node,
1664 * in which case we still need to increment.
1667 el->l_next_free_rec = cpu_to_le16(next_free);
1669 * Make sure none of the math above just messed up our tree.
1671 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1673 el->l_recs[insert_index] = *insert_rec;
1677 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1679 int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1681 BUG_ON(num_recs == 0);
1683 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1685 size = num_recs * sizeof(struct ocfs2_extent_rec);
1686 memmove(&el->l_recs[0], &el->l_recs[1], size);
1687 memset(&el->l_recs[num_recs], 0,
1688 sizeof(struct ocfs2_extent_rec));
1689 el->l_next_free_rec = cpu_to_le16(num_recs);
1694 * Create an empty extent record .
1696 * l_next_free_rec may be updated.
1698 * If an empty extent already exists do nothing.
1700 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1702 int next_free = le16_to_cpu(el->l_next_free_rec);
1704 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1709 if (ocfs2_is_empty_extent(&el->l_recs[0]))
1712 mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1713 "Asked to create an empty extent in a full list:\n"
1714 "count = %u, tree depth = %u",
1715 le16_to_cpu(el->l_count),
1716 le16_to_cpu(el->l_tree_depth));
1718 ocfs2_shift_records_right(el);
1721 le16_add_cpu(&el->l_next_free_rec, 1);
1722 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1726 * For a rotation which involves two leaf nodes, the "root node" is
1727 * the lowest level tree node which contains a path to both leafs. This
1728 * resulting set of information can be used to form a complete "subtree"
1730 * This function is passed two full paths from the dinode down to a
1731 * pair of adjacent leaves. It's task is to figure out which path
1732 * index contains the subtree root - this can be the root index itself
1733 * in a worst-case rotation.
1735 * The array index of the subtree root is passed back.
1737 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1738 struct ocfs2_path *left,
1739 struct ocfs2_path *right)
1744 * Check that the caller passed in two paths from the same tree.
1746 BUG_ON(path_root_bh(left) != path_root_bh(right));
1752 * The caller didn't pass two adjacent paths.
1754 mlog_bug_on_msg(i > left->p_tree_depth,
1755 "Owner %llu, left depth %u, right depth %u\n"
1756 "left leaf blk %llu, right leaf blk %llu\n",
1757 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1758 left->p_tree_depth, right->p_tree_depth,
1759 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1760 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1761 } while (left->p_node[i].bh->b_blocknr ==
1762 right->p_node[i].bh->b_blocknr);
1767 typedef void (path_insert_t)(void *, struct buffer_head *);
1770 * Traverse a btree path in search of cpos, starting at root_el.
1772 * This code can be called with a cpos larger than the tree, in which
1773 * case it will return the rightmost path.
1775 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1776 struct ocfs2_extent_list *root_el, u32 cpos,
1777 path_insert_t *func, void *data)
1782 struct buffer_head *bh = NULL;
1783 struct ocfs2_extent_block *eb;
1784 struct ocfs2_extent_list *el;
1785 struct ocfs2_extent_rec *rec;
1788 while (el->l_tree_depth) {
1789 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1790 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1791 "Owner %llu has empty extent list at "
1793 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1794 le16_to_cpu(el->l_tree_depth));
1800 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1801 rec = &el->l_recs[i];
1804 * In the case that cpos is off the allocation
1805 * tree, this should just wind up returning the
1808 range = le32_to_cpu(rec->e_cpos) +
1809 ocfs2_rec_clusters(el, rec);
1810 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1814 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1816 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1817 "Owner %llu has bad blkno in extent list "
1818 "at depth %u (index %d)\n",
1819 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1820 le16_to_cpu(el->l_tree_depth), i);
1827 ret = ocfs2_read_extent_block(ci, blkno, &bh);
1833 eb = (struct ocfs2_extent_block *) bh->b_data;
1836 if (le16_to_cpu(el->l_next_free_rec) >
1837 le16_to_cpu(el->l_count)) {
1838 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1839 "Owner %llu has bad count in extent list "
1840 "at block %llu (next free=%u, count=%u)\n",
1841 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1842 (unsigned long long)bh->b_blocknr,
1843 le16_to_cpu(el->l_next_free_rec),
1844 le16_to_cpu(el->l_count));
1855 * Catch any trailing bh that the loop didn't handle.
1863 * Given an initialized path (that is, it has a valid root extent
1864 * list), this function will traverse the btree in search of the path
1865 * which would contain cpos.
1867 * The path traveled is recorded in the path structure.
1869 * Note that this will not do any comparisons on leaf node extent
1870 * records, so it will work fine in the case that we just added a tree
1873 struct find_path_data {
1875 struct ocfs2_path *path;
1877 static void find_path_ins(void *data, struct buffer_head *bh)
1879 struct find_path_data *fp = data;
1882 ocfs2_path_insert_eb(fp->path, fp->index, bh);
1885 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1886 struct ocfs2_path *path, u32 cpos)
1888 struct find_path_data data;
1892 return __ocfs2_find_path(ci, path_root_el(path), cpos,
1893 find_path_ins, &data);
1896 static void find_leaf_ins(void *data, struct buffer_head *bh)
1898 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1899 struct ocfs2_extent_list *el = &eb->h_list;
1900 struct buffer_head **ret = data;
1902 /* We want to retain only the leaf block. */
1903 if (le16_to_cpu(el->l_tree_depth) == 0) {
1909 * Find the leaf block in the tree which would contain cpos. No
1910 * checking of the actual leaf is done.
1912 * Some paths want to call this instead of allocating a path structure
1913 * and calling ocfs2_find_path().
1915 * This function doesn't handle non btree extent lists.
1917 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1918 struct ocfs2_extent_list *root_el, u32 cpos,
1919 struct buffer_head **leaf_bh)
1922 struct buffer_head *bh = NULL;
1924 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1936 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1938 * Basically, we've moved stuff around at the bottom of the tree and
1939 * we need to fix up the extent records above the changes to reflect
1942 * left_rec: the record on the left.
1943 * left_child_el: is the child list pointed to by left_rec
1944 * right_rec: the record to the right of left_rec
1945 * right_child_el: is the child list pointed to by right_rec
1947 * By definition, this only works on interior nodes.
1949 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1950 struct ocfs2_extent_list *left_child_el,
1951 struct ocfs2_extent_rec *right_rec,
1952 struct ocfs2_extent_list *right_child_el)
1954 u32 left_clusters, right_end;
1957 * Interior nodes never have holes. Their cpos is the cpos of
1958 * the leftmost record in their child list. Their cluster
1959 * count covers the full theoretical range of their child list
1960 * - the range between their cpos and the cpos of the record
1961 * immediately to their right.
1963 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1964 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1965 BUG_ON(right_child_el->l_tree_depth);
1966 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1967 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1969 left_clusters -= le32_to_cpu(left_rec->e_cpos);
1970 left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1973 * Calculate the rightmost cluster count boundary before
1974 * moving cpos - we will need to adjust clusters after
1975 * updating e_cpos to keep the same highest cluster count.
1977 right_end = le32_to_cpu(right_rec->e_cpos);
1978 right_end += le32_to_cpu(right_rec->e_int_clusters);
1980 right_rec->e_cpos = left_rec->e_cpos;
1981 le32_add_cpu(&right_rec->e_cpos, left_clusters);
1983 right_end -= le32_to_cpu(right_rec->e_cpos);
1984 right_rec->e_int_clusters = cpu_to_le32(right_end);
1988 * Adjust the adjacent root node records involved in a
1989 * rotation. left_el_blkno is passed in as a key so that we can easily
1990 * find it's index in the root list.
1992 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1993 struct ocfs2_extent_list *left_el,
1994 struct ocfs2_extent_list *right_el,
1999 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
2000 le16_to_cpu(left_el->l_tree_depth));
2002 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
2003 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
2008 * The path walking code should have never returned a root and
2009 * two paths which are not adjacent.
2011 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2013 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
2014 &root_el->l_recs[i + 1], right_el);
2018 * We've changed a leaf block (in right_path) and need to reflect that
2019 * change back up the subtree.
2021 * This happens in multiple places:
2022 * - When we've moved an extent record from the left path leaf to the right
2023 * path leaf to make room for an empty extent in the left path leaf.
2024 * - When our insert into the right path leaf is at the leftmost edge
2025 * and requires an update of the path immediately to it's left. This
2026 * can occur at the end of some types of rotation and appending inserts.
2027 * - When we've adjusted the last extent record in the left path leaf and the
2028 * 1st extent record in the right path leaf during cross extent block merge.
2030 static void ocfs2_complete_edge_insert(handle_t *handle,
2031 struct ocfs2_path *left_path,
2032 struct ocfs2_path *right_path,
2036 struct ocfs2_extent_list *el, *left_el, *right_el;
2037 struct ocfs2_extent_rec *left_rec, *right_rec;
2038 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2041 * Update the counts and position values within all the
2042 * interior nodes to reflect the leaf rotation we just did.
2044 * The root node is handled below the loop.
2046 * We begin the loop with right_el and left_el pointing to the
2047 * leaf lists and work our way up.
2049 * NOTE: within this loop, left_el and right_el always refer
2050 * to the *child* lists.
2052 left_el = path_leaf_el(left_path);
2053 right_el = path_leaf_el(right_path);
2054 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2055 trace_ocfs2_complete_edge_insert(i);
2058 * One nice property of knowing that all of these
2059 * nodes are below the root is that we only deal with
2060 * the leftmost right node record and the rightmost
2063 el = left_path->p_node[i].el;
2064 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2065 left_rec = &el->l_recs[idx];
2067 el = right_path->p_node[i].el;
2068 right_rec = &el->l_recs[0];
2070 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2073 ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2074 ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2077 * Setup our list pointers now so that the current
2078 * parents become children in the next iteration.
2080 left_el = left_path->p_node[i].el;
2081 right_el = right_path->p_node[i].el;
2085 * At the root node, adjust the two adjacent records which
2086 * begin our path to the leaves.
2089 el = left_path->p_node[subtree_index].el;
2090 left_el = left_path->p_node[subtree_index + 1].el;
2091 right_el = right_path->p_node[subtree_index + 1].el;
2093 ocfs2_adjust_root_records(el, left_el, right_el,
2094 left_path->p_node[subtree_index + 1].bh->b_blocknr);
2096 root_bh = left_path->p_node[subtree_index].bh;
2098 ocfs2_journal_dirty(handle, root_bh);
2101 static int ocfs2_rotate_subtree_right(handle_t *handle,
2102 struct ocfs2_extent_tree *et,
2103 struct ocfs2_path *left_path,
2104 struct ocfs2_path *right_path,
2108 struct buffer_head *right_leaf_bh;
2109 struct buffer_head *left_leaf_bh = NULL;
2110 struct buffer_head *root_bh;
2111 struct ocfs2_extent_list *right_el, *left_el;
2112 struct ocfs2_extent_rec move_rec;
2114 left_leaf_bh = path_leaf_bh(left_path);
2115 left_el = path_leaf_el(left_path);
2117 if (left_el->l_next_free_rec != left_el->l_count) {
2118 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2119 "Inode %llu has non-full interior leaf node %llu"
2121 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2122 (unsigned long long)left_leaf_bh->b_blocknr,
2123 le16_to_cpu(left_el->l_next_free_rec));
2128 * This extent block may already have an empty record, so we
2129 * return early if so.
2131 if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2134 root_bh = left_path->p_node[subtree_index].bh;
2135 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2137 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2144 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2145 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2152 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2160 right_leaf_bh = path_leaf_bh(right_path);
2161 right_el = path_leaf_el(right_path);
2163 /* This is a code error, not a disk corruption. */
2164 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2165 "because rightmost leaf block %llu is empty\n",
2166 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2167 (unsigned long long)right_leaf_bh->b_blocknr);
2169 ocfs2_create_empty_extent(right_el);
2171 ocfs2_journal_dirty(handle, right_leaf_bh);
2173 /* Do the copy now. */
2174 i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2175 move_rec = left_el->l_recs[i];
2176 right_el->l_recs[0] = move_rec;
2179 * Clear out the record we just copied and shift everything
2180 * over, leaving an empty extent in the left leaf.
2182 * We temporarily subtract from next_free_rec so that the
2183 * shift will lose the tail record (which is now defunct).
2185 le16_add_cpu(&left_el->l_next_free_rec, -1);
2186 ocfs2_shift_records_right(left_el);
2187 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2188 le16_add_cpu(&left_el->l_next_free_rec, 1);
2190 ocfs2_journal_dirty(handle, left_leaf_bh);
2192 ocfs2_complete_edge_insert(handle, left_path, right_path,
2200 * Given a full path, determine what cpos value would return us a path
2201 * containing the leaf immediately to the left of the current one.
2203 * Will return zero if the path passed in is already the leftmost path.
2205 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2206 struct ocfs2_path *path, u32 *cpos)
2210 struct ocfs2_extent_list *el;
2212 BUG_ON(path->p_tree_depth == 0);
2216 blkno = path_leaf_bh(path)->b_blocknr;
2218 /* Start at the tree node just above the leaf and work our way up. */
2219 i = path->p_tree_depth - 1;
2221 el = path->p_node[i].el;
2224 * Find the extent record just before the one in our
2227 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2228 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2232 * We've determined that the
2233 * path specified is already
2234 * the leftmost one - return a
2240 * The leftmost record points to our
2241 * leaf - we need to travel up the
2247 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2248 *cpos = *cpos + ocfs2_rec_clusters(el,
2249 &el->l_recs[j - 1]);
2256 * If we got here, we never found a valid node where
2257 * the tree indicated one should be.
2260 "Invalid extent tree at extent block %llu\n",
2261 (unsigned long long)blkno);
2266 blkno = path->p_node[i].bh->b_blocknr;
2275 * Extend the transaction by enough credits to complete the rotation,
2276 * and still leave at least the original number of credits allocated
2277 * to this transaction.
2279 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2281 struct ocfs2_path *path)
2284 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2286 if (handle->h_buffer_credits < credits)
2287 ret = ocfs2_extend_trans(handle,
2288 credits - handle->h_buffer_credits);
2294 * Trap the case where we're inserting into the theoretical range past
2295 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2296 * whose cpos is less than ours into the right leaf.
2298 * It's only necessary to look at the rightmost record of the left
2299 * leaf because the logic that calls us should ensure that the
2300 * theoretical ranges in the path components above the leaves are
2303 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2306 struct ocfs2_extent_list *left_el;
2307 struct ocfs2_extent_rec *rec;
2310 left_el = path_leaf_el(left_path);
2311 next_free = le16_to_cpu(left_el->l_next_free_rec);
2312 rec = &left_el->l_recs[next_free - 1];
2314 if (insert_cpos > le32_to_cpu(rec->e_cpos))
2319 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2321 int next_free = le16_to_cpu(el->l_next_free_rec);
2323 struct ocfs2_extent_rec *rec;
2328 rec = &el->l_recs[0];
2329 if (ocfs2_is_empty_extent(rec)) {
2333 rec = &el->l_recs[1];
2336 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2337 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2343 * Rotate all the records in a btree right one record, starting at insert_cpos.
2345 * The path to the rightmost leaf should be passed in.
2347 * The array is assumed to be large enough to hold an entire path (tree depth).
2349 * Upon successful return from this function:
2351 * - The 'right_path' array will contain a path to the leaf block
2352 * whose range contains e_cpos.
2353 * - That leaf block will have a single empty extent in list index 0.
2354 * - In the case that the rotation requires a post-insert update,
2355 * *ret_left_path will contain a valid path which can be passed to
2356 * ocfs2_insert_path().
2358 static int ocfs2_rotate_tree_right(handle_t *handle,
2359 struct ocfs2_extent_tree *et,
2360 enum ocfs2_split_type split,
2362 struct ocfs2_path *right_path,
2363 struct ocfs2_path **ret_left_path)
2365 int ret, start, orig_credits = handle->h_buffer_credits;
2367 struct ocfs2_path *left_path = NULL;
2368 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2370 *ret_left_path = NULL;
2372 left_path = ocfs2_new_path_from_path(right_path);
2379 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2385 trace_ocfs2_rotate_tree_right(
2386 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2390 * What we want to do here is:
2392 * 1) Start with the rightmost path.
2394 * 2) Determine a path to the leaf block directly to the left
2397 * 3) Determine the 'subtree root' - the lowest level tree node
2398 * which contains a path to both leaves.
2400 * 4) Rotate the subtree.
2402 * 5) Find the next subtree by considering the left path to be
2403 * the new right path.
2405 * The check at the top of this while loop also accepts
2406 * insert_cpos == cpos because cpos is only a _theoretical_
2407 * value to get us the left path - insert_cpos might very well
2408 * be filling that hole.
2410 * Stop at a cpos of '0' because we either started at the
2411 * leftmost branch (i.e., a tree with one branch and a
2412 * rotation inside of it), or we've gone as far as we can in
2413 * rotating subtrees.
2415 while (cpos && insert_cpos <= cpos) {
2416 trace_ocfs2_rotate_tree_right(
2417 (unsigned long long)
2418 ocfs2_metadata_cache_owner(et->et_ci),
2421 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2427 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2428 path_leaf_bh(right_path),
2429 "Owner %llu: error during insert of %u "
2430 "(left path cpos %u) results in two identical "
2431 "paths ending at %llu\n",
2432 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2434 (unsigned long long)
2435 path_leaf_bh(left_path)->b_blocknr);
2437 if (split == SPLIT_NONE &&
2438 ocfs2_rotate_requires_path_adjustment(left_path,
2442 * We've rotated the tree as much as we
2443 * should. The rest is up to
2444 * ocfs2_insert_path() to complete, after the
2445 * record insertion. We indicate this
2446 * situation by returning the left path.
2448 * The reason we don't adjust the records here
2449 * before the record insert is that an error
2450 * later might break the rule where a parent
2451 * record e_cpos will reflect the actual
2452 * e_cpos of the 1st nonempty record of the
2455 *ret_left_path = left_path;
2459 start = ocfs2_find_subtree_root(et, left_path, right_path);
2461 trace_ocfs2_rotate_subtree(start,
2462 (unsigned long long)
2463 right_path->p_node[start].bh->b_blocknr,
2464 right_path->p_tree_depth);
2466 ret = ocfs2_extend_rotate_transaction(handle, start,
2467 orig_credits, right_path);
2473 ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2480 if (split != SPLIT_NONE &&
2481 ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2484 * A rotate moves the rightmost left leaf
2485 * record over to the leftmost right leaf
2486 * slot. If we're doing an extent split
2487 * instead of a real insert, then we have to
2488 * check that the extent to be split wasn't
2489 * just moved over. If it was, then we can
2490 * exit here, passing left_path back -
2491 * ocfs2_split_extent() is smart enough to
2492 * search both leaves.
2494 *ret_left_path = left_path;
2499 * There is no need to re-read the next right path
2500 * as we know that it'll be our current left
2501 * path. Optimize by copying values instead.
2503 ocfs2_mv_path(right_path, left_path);
2505 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2513 ocfs2_free_path(left_path);
2519 static int ocfs2_update_edge_lengths(handle_t *handle,
2520 struct ocfs2_extent_tree *et,
2521 int subtree_index, struct ocfs2_path *path)
2524 struct ocfs2_extent_rec *rec;
2525 struct ocfs2_extent_list *el;
2526 struct ocfs2_extent_block *eb;
2530 * In normal tree rotation process, we will never touch the
2531 * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2532 * doesn't reserve the credits for them either.
2534 * But we do have a special case here which will update the rightmost
2535 * records for all the bh in the path.
2536 * So we have to allocate extra credits and access them.
2538 ret = ocfs2_extend_trans(handle, subtree_index);
2544 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2550 /* Path should always be rightmost. */
2551 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2552 BUG_ON(eb->h_next_leaf_blk != 0ULL);
2555 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2556 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2557 rec = &el->l_recs[idx];
2558 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2560 for (i = 0; i < path->p_tree_depth; i++) {
2561 el = path->p_node[i].el;
2562 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2563 rec = &el->l_recs[idx];
2565 rec->e_int_clusters = cpu_to_le32(range);
2566 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2568 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2574 static void ocfs2_unlink_path(handle_t *handle,
2575 struct ocfs2_extent_tree *et,
2576 struct ocfs2_cached_dealloc_ctxt *dealloc,
2577 struct ocfs2_path *path, int unlink_start)
2580 struct ocfs2_extent_block *eb;
2581 struct ocfs2_extent_list *el;
2582 struct buffer_head *bh;
2584 for(i = unlink_start; i < path_num_items(path); i++) {
2585 bh = path->p_node[i].bh;
2587 eb = (struct ocfs2_extent_block *)bh->b_data;
2589 * Not all nodes might have had their final count
2590 * decremented by the caller - handle this here.
2593 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2595 "Inode %llu, attempted to remove extent block "
2596 "%llu with %u records\n",
2597 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2598 (unsigned long long)le64_to_cpu(eb->h_blkno),
2599 le16_to_cpu(el->l_next_free_rec));
2601 ocfs2_journal_dirty(handle, bh);
2602 ocfs2_remove_from_cache(et->et_ci, bh);
2606 el->l_next_free_rec = 0;
2607 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2609 ocfs2_journal_dirty(handle, bh);
2611 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2615 ocfs2_remove_from_cache(et->et_ci, bh);
2619 static void ocfs2_unlink_subtree(handle_t *handle,
2620 struct ocfs2_extent_tree *et,
2621 struct ocfs2_path *left_path,
2622 struct ocfs2_path *right_path,
2624 struct ocfs2_cached_dealloc_ctxt *dealloc)
2627 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2628 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2629 struct ocfs2_extent_list *el;
2630 struct ocfs2_extent_block *eb;
2632 el = path_leaf_el(left_path);
2634 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2636 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2637 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2640 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2642 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2643 le16_add_cpu(&root_el->l_next_free_rec, -1);
2645 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2646 eb->h_next_leaf_blk = 0;
2648 ocfs2_journal_dirty(handle, root_bh);
2649 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2651 ocfs2_unlink_path(handle, et, dealloc, right_path,
2655 static int ocfs2_rotate_subtree_left(handle_t *handle,
2656 struct ocfs2_extent_tree *et,
2657 struct ocfs2_path *left_path,
2658 struct ocfs2_path *right_path,
2660 struct ocfs2_cached_dealloc_ctxt *dealloc,
2663 int ret, i, del_right_subtree = 0, right_has_empty = 0;
2664 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2665 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2666 struct ocfs2_extent_block *eb;
2670 right_leaf_el = path_leaf_el(right_path);
2671 left_leaf_el = path_leaf_el(left_path);
2672 root_bh = left_path->p_node[subtree_index].bh;
2673 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2675 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2678 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2679 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2681 * It's legal for us to proceed if the right leaf is
2682 * the rightmost one and it has an empty extent. There
2683 * are two cases to handle - whether the leaf will be
2684 * empty after removal or not. If the leaf isn't empty
2685 * then just remove the empty extent up front. The
2686 * next block will handle empty leaves by flagging
2689 * Non rightmost leaves will throw -EAGAIN and the
2690 * caller can manually move the subtree and retry.
2693 if (eb->h_next_leaf_blk != 0ULL)
2696 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2697 ret = ocfs2_journal_access_eb(handle, et->et_ci,
2698 path_leaf_bh(right_path),
2699 OCFS2_JOURNAL_ACCESS_WRITE);
2705 ocfs2_remove_empty_extent(right_leaf_el);
2707 right_has_empty = 1;
2710 if (eb->h_next_leaf_blk == 0ULL &&
2711 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2713 * We have to update i_last_eb_blk during the meta
2716 ret = ocfs2_et_root_journal_access(handle, et,
2717 OCFS2_JOURNAL_ACCESS_WRITE);
2723 del_right_subtree = 1;
2727 * Getting here with an empty extent in the right path implies
2728 * that it's the rightmost path and will be deleted.
2730 BUG_ON(right_has_empty && !del_right_subtree);
2732 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2739 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2740 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2747 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2755 if (!right_has_empty) {
2757 * Only do this if we're moving a real
2758 * record. Otherwise, the action is delayed until
2759 * after removal of the right path in which case we
2760 * can do a simple shift to remove the empty extent.
2762 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2763 memset(&right_leaf_el->l_recs[0], 0,
2764 sizeof(struct ocfs2_extent_rec));
2766 if (eb->h_next_leaf_blk == 0ULL) {
2768 * Move recs over to get rid of empty extent, decrease
2769 * next_free. This is allowed to remove the last
2770 * extent in our leaf (setting l_next_free_rec to
2771 * zero) - the delete code below won't care.
2773 ocfs2_remove_empty_extent(right_leaf_el);
2776 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2777 ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2779 if (del_right_subtree) {
2780 ocfs2_unlink_subtree(handle, et, left_path, right_path,
2781 subtree_index, dealloc);
2782 ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
2789 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2790 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2793 * Removal of the extent in the left leaf was skipped
2794 * above so we could delete the right path
2797 if (right_has_empty)
2798 ocfs2_remove_empty_extent(left_leaf_el);
2800 ocfs2_journal_dirty(handle, et_root_bh);
2804 ocfs2_complete_edge_insert(handle, left_path, right_path,
2812 * Given a full path, determine what cpos value would return us a path
2813 * containing the leaf immediately to the right of the current one.
2815 * Will return zero if the path passed in is already the rightmost path.
2817 * This looks similar, but is subtly different to
2818 * ocfs2_find_cpos_for_left_leaf().
2820 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2821 struct ocfs2_path *path, u32 *cpos)
2825 struct ocfs2_extent_list *el;
2829 if (path->p_tree_depth == 0)
2832 blkno = path_leaf_bh(path)->b_blocknr;
2834 /* Start at the tree node just above the leaf and work our way up. */
2835 i = path->p_tree_depth - 1;
2839 el = path->p_node[i].el;
2842 * Find the extent record just after the one in our
2845 next_free = le16_to_cpu(el->l_next_free_rec);
2846 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2847 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2848 if (j == (next_free - 1)) {
2851 * We've determined that the
2852 * path specified is already
2853 * the rightmost one - return a
2859 * The rightmost record points to our
2860 * leaf - we need to travel up the
2866 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2872 * If we got here, we never found a valid node where
2873 * the tree indicated one should be.
2876 "Invalid extent tree at extent block %llu\n",
2877 (unsigned long long)blkno);
2882 blkno = path->p_node[i].bh->b_blocknr;
2890 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2891 struct ocfs2_extent_tree *et,
2892 struct ocfs2_path *path)
2895 struct buffer_head *bh = path_leaf_bh(path);
2896 struct ocfs2_extent_list *el = path_leaf_el(path);
2898 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2901 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2902 path_num_items(path) - 1);
2908 ocfs2_remove_empty_extent(el);
2909 ocfs2_journal_dirty(handle, bh);
2915 static int __ocfs2_rotate_tree_left(handle_t *handle,
2916 struct ocfs2_extent_tree *et,
2918 struct ocfs2_path *path,
2919 struct ocfs2_cached_dealloc_ctxt *dealloc,
2920 struct ocfs2_path **empty_extent_path)
2922 int ret, subtree_root, deleted;
2924 struct ocfs2_path *left_path = NULL;
2925 struct ocfs2_path *right_path = NULL;
2926 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2928 if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])))
2931 *empty_extent_path = NULL;
2933 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2939 left_path = ocfs2_new_path_from_path(path);
2946 ocfs2_cp_path(left_path, path);
2948 right_path = ocfs2_new_path_from_path(path);
2955 while (right_cpos) {
2956 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2962 subtree_root = ocfs2_find_subtree_root(et, left_path,
2965 trace_ocfs2_rotate_subtree(subtree_root,
2966 (unsigned long long)
2967 right_path->p_node[subtree_root].bh->b_blocknr,
2968 right_path->p_tree_depth);
2970 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2971 orig_credits, left_path);
2978 * Caller might still want to make changes to the
2979 * tree root, so re-add it to the journal here.
2981 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2988 ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2989 right_path, subtree_root,
2991 if (ret == -EAGAIN) {
2993 * The rotation has to temporarily stop due to
2994 * the right subtree having an empty
2995 * extent. Pass it back to the caller for a
2998 *empty_extent_path = right_path;
3008 * The subtree rotate might have removed records on
3009 * the rightmost edge. If so, then rotation is
3015 ocfs2_mv_path(left_path, right_path);
3017 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
3026 ocfs2_free_path(right_path);
3027 ocfs2_free_path(left_path);
3032 static int ocfs2_remove_rightmost_path(handle_t *handle,
3033 struct ocfs2_extent_tree *et,
3034 struct ocfs2_path *path,
3035 struct ocfs2_cached_dealloc_ctxt *dealloc)
3037 int ret, subtree_index;
3039 struct ocfs2_path *left_path = NULL;
3040 struct ocfs2_extent_block *eb;
3041 struct ocfs2_extent_list *el;
3044 ret = ocfs2_et_sanity_check(et);
3048 * There's two ways we handle this depending on
3049 * whether path is the only existing one.
3051 ret = ocfs2_extend_rotate_transaction(handle, 0,
3052 handle->h_buffer_credits,
3059 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3065 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3074 * We have a path to the left of this one - it needs
3077 left_path = ocfs2_new_path_from_path(path);
3084 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3090 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3096 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3098 ocfs2_unlink_subtree(handle, et, left_path, path,
3099 subtree_index, dealloc);
3100 ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
3107 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3108 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3111 * 'path' is also the leftmost path which
3112 * means it must be the only one. This gets
3113 * handled differently because we want to
3114 * revert the root back to having extents
3117 ocfs2_unlink_path(handle, et, dealloc, path, 1);
3119 el = et->et_root_el;
3120 el->l_tree_depth = 0;
3121 el->l_next_free_rec = 0;
3122 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3124 ocfs2_et_set_last_eb_blk(et, 0);
3127 ocfs2_journal_dirty(handle, path_root_bh(path));
3130 ocfs2_free_path(left_path);
3135 * Left rotation of btree records.
3137 * In many ways, this is (unsurprisingly) the opposite of right
3138 * rotation. We start at some non-rightmost path containing an empty
3139 * extent in the leaf block. The code works its way to the rightmost
3140 * path by rotating records to the left in every subtree.
3142 * This is used by any code which reduces the number of extent records
3143 * in a leaf. After removal, an empty record should be placed in the
3144 * leftmost list position.
3146 * This won't handle a length update of the rightmost path records if
3147 * the rightmost tree leaf record is removed so the caller is
3148 * responsible for detecting and correcting that.
3150 static int ocfs2_rotate_tree_left(handle_t *handle,
3151 struct ocfs2_extent_tree *et,
3152 struct ocfs2_path *path,
3153 struct ocfs2_cached_dealloc_ctxt *dealloc)
3155 int ret, orig_credits = handle->h_buffer_credits;
3156 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3157 struct ocfs2_extent_block *eb;
3158 struct ocfs2_extent_list *el;
3160 el = path_leaf_el(path);
3161 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3164 if (path->p_tree_depth == 0) {
3165 rightmost_no_delete:
3167 * Inline extents. This is trivially handled, so do
3170 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3177 * Handle rightmost branch now. There's several cases:
3178 * 1) simple rotation leaving records in there. That's trivial.
3179 * 2) rotation requiring a branch delete - there's no more
3180 * records left. Two cases of this:
3181 * a) There are branches to the left.
3182 * b) This is also the leftmost (the only) branch.
3184 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
3185 * 2a) we need the left branch so that we can update it with the unlink
3186 * 2b) we need to bring the root back to inline extents.
3189 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3191 if (eb->h_next_leaf_blk == 0) {
3193 * This gets a bit tricky if we're going to delete the
3194 * rightmost path. Get the other cases out of the way
3197 if (le16_to_cpu(el->l_next_free_rec) > 1)
3198 goto rightmost_no_delete;
3200 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3202 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3203 "Owner %llu has empty extent block at %llu",
3204 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3205 (unsigned long long)le64_to_cpu(eb->h_blkno));
3210 * XXX: The caller can not trust "path" any more after
3211 * this as it will have been deleted. What do we do?
3213 * In theory the rotate-for-merge code will never get
3214 * here because it'll always ask for a rotate in a
3218 ret = ocfs2_remove_rightmost_path(handle, et, path,
3226 * Now we can loop, remembering the path we get from -EAGAIN
3227 * and restarting from there.
3230 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3231 dealloc, &restart_path);
3232 if (ret && ret != -EAGAIN) {
3237 while (ret == -EAGAIN) {
3238 tmp_path = restart_path;
3239 restart_path = NULL;
3241 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3244 if (ret && ret != -EAGAIN) {
3249 ocfs2_free_path(tmp_path);
3257 ocfs2_free_path(tmp_path);
3258 ocfs2_free_path(restart_path);
3262 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3265 struct ocfs2_extent_rec *rec = &el->l_recs[index];
3268 if (rec->e_leaf_clusters == 0) {
3270 * We consumed all of the merged-from record. An empty
3271 * extent cannot exist anywhere but the 1st array
3272 * position, so move things over if the merged-from
3273 * record doesn't occupy that position.
3275 * This creates a new empty extent so the caller
3276 * should be smart enough to have removed any existing
3280 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3281 size = index * sizeof(struct ocfs2_extent_rec);
3282 memmove(&el->l_recs[1], &el->l_recs[0], size);
3286 * Always memset - the caller doesn't check whether it
3287 * created an empty extent, so there could be junk in
3290 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3294 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3295 struct ocfs2_path *left_path,
3296 struct ocfs2_path **ret_right_path)
3300 struct ocfs2_path *right_path = NULL;
3301 struct ocfs2_extent_list *left_el;
3303 *ret_right_path = NULL;
3305 /* This function shouldn't be called for non-trees. */
3306 BUG_ON(left_path->p_tree_depth == 0);
3308 left_el = path_leaf_el(left_path);
3309 BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3311 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3312 left_path, &right_cpos);
3318 /* This function shouldn't be called for the rightmost leaf. */
3319 BUG_ON(right_cpos == 0);
3321 right_path = ocfs2_new_path_from_path(left_path);
3328 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3334 *ret_right_path = right_path;
3337 ocfs2_free_path(right_path);
3342 * Remove split_rec clusters from the record at index and merge them
3343 * onto the beginning of the record "next" to it.
3344 * For index < l_count - 1, the next means the extent rec at index + 1.
3345 * For index == l_count - 1, the "next" means the 1st extent rec of the
3346 * next extent block.
3348 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3350 struct ocfs2_extent_tree *et,
3351 struct ocfs2_extent_rec *split_rec,
3354 int ret, next_free, i;
3355 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3356 struct ocfs2_extent_rec *left_rec;
3357 struct ocfs2_extent_rec *right_rec;
3358 struct ocfs2_extent_list *right_el;
3359 struct ocfs2_path *right_path = NULL;
3360 int subtree_index = 0;
3361 struct ocfs2_extent_list *el = path_leaf_el(left_path);
3362 struct buffer_head *bh = path_leaf_bh(left_path);
3363 struct buffer_head *root_bh = NULL;
3365 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3366 left_rec = &el->l_recs[index];
3368 if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3369 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3370 /* we meet with a cross extent block merge. */
3371 ret = ocfs2_get_right_path(et, left_path, &right_path);
3377 right_el = path_leaf_el(right_path);
3378 next_free = le16_to_cpu(right_el->l_next_free_rec);
3379 BUG_ON(next_free <= 0);
3380 right_rec = &right_el->l_recs[0];
3381 if (ocfs2_is_empty_extent(right_rec)) {
3382 BUG_ON(next_free <= 1);
3383 right_rec = &right_el->l_recs[1];
3386 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3387 le16_to_cpu(left_rec->e_leaf_clusters) !=
3388 le32_to_cpu(right_rec->e_cpos));
3390 subtree_index = ocfs2_find_subtree_root(et, left_path,
3393 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3394 handle->h_buffer_credits,
3401 root_bh = left_path->p_node[subtree_index].bh;
3402 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3404 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3411 for (i = subtree_index + 1;
3412 i < path_num_items(right_path); i++) {
3413 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3420 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3429 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3430 right_rec = &el->l_recs[index + 1];
3433 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3434 path_num_items(left_path) - 1);
3440 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3442 le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3443 le64_add_cpu(&right_rec->e_blkno,
3444 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3446 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3448 ocfs2_cleanup_merge(el, index);
3450 ocfs2_journal_dirty(handle, bh);
3452 ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3453 ocfs2_complete_edge_insert(handle, left_path, right_path,
3457 ocfs2_free_path(right_path);
3461 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3462 struct ocfs2_path *right_path,
3463 struct ocfs2_path **ret_left_path)
3467 struct ocfs2_path *left_path = NULL;
3469 *ret_left_path = NULL;
3471 /* This function shouldn't be called for non-trees. */
3472 BUG_ON(right_path->p_tree_depth == 0);
3474 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3475 right_path, &left_cpos);
3481 /* This function shouldn't be called for the leftmost leaf. */
3482 BUG_ON(left_cpos == 0);
3484 left_path = ocfs2_new_path_from_path(right_path);
3491 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3497 *ret_left_path = left_path;
3500 ocfs2_free_path(left_path);
3505 * Remove split_rec clusters from the record at index and merge them
3506 * onto the tail of the record "before" it.
3507 * For index > 0, the "before" means the extent rec at index - 1.
3509 * For index == 0, the "before" means the last record of the previous
3510 * extent block. And there is also a situation that we may need to
3511 * remove the rightmost leaf extent block in the right_path and change
3512 * the right path to indicate the new rightmost path.
3514 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3516 struct ocfs2_extent_tree *et,
3517 struct ocfs2_extent_rec *split_rec,
3518 struct ocfs2_cached_dealloc_ctxt *dealloc,
3521 int ret, i, subtree_index = 0, has_empty_extent = 0;
3522 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3523 struct ocfs2_extent_rec *left_rec;
3524 struct ocfs2_extent_rec *right_rec;
3525 struct ocfs2_extent_list *el = path_leaf_el(right_path);
3526 struct buffer_head *bh = path_leaf_bh(right_path);
3527 struct buffer_head *root_bh = NULL;
3528 struct ocfs2_path *left_path = NULL;
3529 struct ocfs2_extent_list *left_el;
3533 right_rec = &el->l_recs[index];
3535 /* we meet with a cross extent block merge. */
3536 ret = ocfs2_get_left_path(et, right_path, &left_path);
3542 left_el = path_leaf_el(left_path);
3543 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3544 le16_to_cpu(left_el->l_count));
3546 left_rec = &left_el->l_recs[
3547 le16_to_cpu(left_el->l_next_free_rec) - 1];
3548 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3549 le16_to_cpu(left_rec->e_leaf_clusters) !=
3550 le32_to_cpu(split_rec->e_cpos));
3552 subtree_index = ocfs2_find_subtree_root(et, left_path,
3555 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3556 handle->h_buffer_credits,
3563 root_bh = left_path->p_node[subtree_index].bh;
3564 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3566 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3573 for (i = subtree_index + 1;
3574 i < path_num_items(right_path); i++) {
3575 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3582 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3590 left_rec = &el->l_recs[index - 1];
3591 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3592 has_empty_extent = 1;
3595 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3596 path_num_items(right_path) - 1);
3602 if (has_empty_extent && index == 1) {
3604 * The easy case - we can just plop the record right in.
3606 *left_rec = *split_rec;
3608 has_empty_extent = 0;
3610 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3612 le32_add_cpu(&right_rec->e_cpos, split_clusters);
3613 le64_add_cpu(&right_rec->e_blkno,
3614 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3616 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3618 ocfs2_cleanup_merge(el, index);
3620 ocfs2_journal_dirty(handle, bh);
3622 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3625 * In the situation that the right_rec is empty and the extent
3626 * block is empty also, ocfs2_complete_edge_insert can't handle
3627 * it and we need to delete the right extent block.
3629 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3630 le16_to_cpu(el->l_next_free_rec) == 1) {
3632 ret = ocfs2_remove_rightmost_path(handle, et,
3640 /* Now the rightmost extent block has been deleted.
3641 * So we use the new rightmost path.
3643 ocfs2_mv_path(right_path, left_path);
3646 ocfs2_complete_edge_insert(handle, left_path,
3647 right_path, subtree_index);
3650 ocfs2_free_path(left_path);
3654 static int ocfs2_try_to_merge_extent(handle_t *handle,
3655 struct ocfs2_extent_tree *et,
3656 struct ocfs2_path *path,
3658 struct ocfs2_extent_rec *split_rec,
3659 struct ocfs2_cached_dealloc_ctxt *dealloc,
3660 struct ocfs2_merge_ctxt *ctxt)
3663 struct ocfs2_extent_list *el = path_leaf_el(path);
3664 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3666 BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3668 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3670 * The merge code will need to create an empty
3671 * extent to take the place of the newly
3672 * emptied slot. Remove any pre-existing empty
3673 * extents - having more than one in a leaf is
3676 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3682 rec = &el->l_recs[split_index];
3685 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3687 * Left-right contig implies this.
3689 BUG_ON(!ctxt->c_split_covers_rec);
3692 * Since the leftright insert always covers the entire
3693 * extent, this call will delete the insert record
3694 * entirely, resulting in an empty extent record added to
3697 * Since the adding of an empty extent shifts
3698 * everything back to the right, there's no need to
3699 * update split_index here.
3701 * When the split_index is zero, we need to merge it to the
3702 * prevoius extent block. It is more efficient and easier
3703 * if we do merge_right first and merge_left later.
3705 ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3713 * We can only get this from logic error above.
3715 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3717 /* The merge left us with an empty extent, remove it. */
3718 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3724 rec = &el->l_recs[split_index];
3727 * Note that we don't pass split_rec here on purpose -
3728 * we've merged it into the rec already.
3730 ret = ocfs2_merge_rec_left(path, handle, et, rec,
3731 dealloc, split_index);
3738 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3740 * Error from this last rotate is not critical, so
3741 * print but don't bubble it up.
3748 * Merge a record to the left or right.
3750 * 'contig_type' is relative to the existing record,
3751 * so for example, if we're "right contig", it's to
3752 * the record on the left (hence the left merge).
3754 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3755 ret = ocfs2_merge_rec_left(path, handle, et,
3763 ret = ocfs2_merge_rec_right(path, handle,
3772 if (ctxt->c_split_covers_rec) {
3774 * The merge may have left an empty extent in
3775 * our leaf. Try to rotate it away.
3777 ret = ocfs2_rotate_tree_left(handle, et, path,
3789 static void ocfs2_subtract_from_rec(struct super_block *sb,
3790 enum ocfs2_split_type split,
3791 struct ocfs2_extent_rec *rec,
3792 struct ocfs2_extent_rec *split_rec)
3796 len_blocks = ocfs2_clusters_to_blocks(sb,
3797 le16_to_cpu(split_rec->e_leaf_clusters));
3799 if (split == SPLIT_LEFT) {
3801 * Region is on the left edge of the existing
3804 le32_add_cpu(&rec->e_cpos,
3805 le16_to_cpu(split_rec->e_leaf_clusters));
3806 le64_add_cpu(&rec->e_blkno, len_blocks);
3807 le16_add_cpu(&rec->e_leaf_clusters,
3808 -le16_to_cpu(split_rec->e_leaf_clusters));
3811 * Region is on the right edge of the existing
3814 le16_add_cpu(&rec->e_leaf_clusters,
3815 -le16_to_cpu(split_rec->e_leaf_clusters));
3820 * Do the final bits of extent record insertion at the target leaf
3821 * list. If this leaf is part of an allocation tree, it is assumed
3822 * that the tree above has been prepared.
3824 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3825 struct ocfs2_extent_rec *insert_rec,
3826 struct ocfs2_extent_list *el,
3827 struct ocfs2_insert_type *insert)
3829 int i = insert->ins_contig_index;
3831 struct ocfs2_extent_rec *rec;
3833 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3835 if (insert->ins_split != SPLIT_NONE) {
3836 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3838 rec = &el->l_recs[i];
3839 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3840 insert->ins_split, rec,
3846 * Contiguous insert - either left or right.
3848 if (insert->ins_contig != CONTIG_NONE) {
3849 rec = &el->l_recs[i];
3850 if (insert->ins_contig == CONTIG_LEFT) {
3851 rec->e_blkno = insert_rec->e_blkno;
3852 rec->e_cpos = insert_rec->e_cpos;
3854 le16_add_cpu(&rec->e_leaf_clusters,
3855 le16_to_cpu(insert_rec->e_leaf_clusters));
3860 * Handle insert into an empty leaf.
3862 if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3863 ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3864 ocfs2_is_empty_extent(&el->l_recs[0]))) {
3865 el->l_recs[0] = *insert_rec;
3866 el->l_next_free_rec = cpu_to_le16(1);
3873 if (insert->ins_appending == APPEND_TAIL) {
3874 i = le16_to_cpu(el->l_next_free_rec) - 1;
3875 rec = &el->l_recs[i];
3876 range = le32_to_cpu(rec->e_cpos)
3877 + le16_to_cpu(rec->e_leaf_clusters);
3878 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3880 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3881 le16_to_cpu(el->l_count),
3882 "owner %llu, depth %u, count %u, next free %u, "
3883 "rec.cpos %u, rec.clusters %u, "
3884 "insert.cpos %u, insert.clusters %u\n",
3885 ocfs2_metadata_cache_owner(et->et_ci),
3886 le16_to_cpu(el->l_tree_depth),
3887 le16_to_cpu(el->l_count),
3888 le16_to_cpu(el->l_next_free_rec),
3889 le32_to_cpu(el->l_recs[i].e_cpos),
3890 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3891 le32_to_cpu(insert_rec->e_cpos),
3892 le16_to_cpu(insert_rec->e_leaf_clusters));
3894 el->l_recs[i] = *insert_rec;
3895 le16_add_cpu(&el->l_next_free_rec, 1);
3901 * Ok, we have to rotate.
3903 * At this point, it is safe to assume that inserting into an
3904 * empty leaf and appending to a leaf have both been handled
3907 * This leaf needs to have space, either by the empty 1st
3908 * extent record, or by virtue of an l_next_rec < l_count.
3910 ocfs2_rotate_leaf(el, insert_rec);
3913 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3914 struct ocfs2_extent_tree *et,
3915 struct ocfs2_path *path,
3916 struct ocfs2_extent_rec *insert_rec)
3918 int ret, i, next_free;
3919 struct buffer_head *bh;
3920 struct ocfs2_extent_list *el;
3921 struct ocfs2_extent_rec *rec;
3924 * Update everything except the leaf block.
3926 for (i = 0; i < path->p_tree_depth; i++) {
3927 bh = path->p_node[i].bh;
3928 el = path->p_node[i].el;
3930 next_free = le16_to_cpu(el->l_next_free_rec);
3931 if (next_free == 0) {
3932 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3933 "Owner %llu has a bad extent list",
3934 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3939 rec = &el->l_recs[next_free - 1];
3941 rec->e_int_clusters = insert_rec->e_cpos;
3942 le32_add_cpu(&rec->e_int_clusters,
3943 le16_to_cpu(insert_rec->e_leaf_clusters));
3944 le32_add_cpu(&rec->e_int_clusters,
3945 -le32_to_cpu(rec->e_cpos));
3947 ocfs2_journal_dirty(handle, bh);
3951 static int ocfs2_append_rec_to_path(handle_t *handle,
3952 struct ocfs2_extent_tree *et,
3953 struct ocfs2_extent_rec *insert_rec,
3954 struct ocfs2_path *right_path,
3955 struct ocfs2_path **ret_left_path)
3958 struct ocfs2_extent_list *el;
3959 struct ocfs2_path *left_path = NULL;
3961 *ret_left_path = NULL;
3964 * This shouldn't happen for non-trees. The extent rec cluster
3965 * count manipulation below only works for interior nodes.
3967 BUG_ON(right_path->p_tree_depth == 0);
3970 * If our appending insert is at the leftmost edge of a leaf,
3971 * then we might need to update the rightmost records of the
3974 el = path_leaf_el(right_path);
3975 next_free = le16_to_cpu(el->l_next_free_rec);
3976 if (next_free == 0 ||
3977 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3980 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3981 right_path, &left_cpos);
3987 trace_ocfs2_append_rec_to_path(
3988 (unsigned long long)
3989 ocfs2_metadata_cache_owner(et->et_ci),
3990 le32_to_cpu(insert_rec->e_cpos),
3994 * No need to worry if the append is already in the
3998 left_path = ocfs2_new_path_from_path(right_path);
4005 ret = ocfs2_find_path(et->et_ci, left_path,
4013 * ocfs2_insert_path() will pass the left_path to the
4019 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4025 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4027 *ret_left_path = left_path;
4031 ocfs2_free_path(left_path);
4036 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4037 struct ocfs2_path *left_path,
4038 struct ocfs2_path *right_path,
4039 struct ocfs2_extent_rec *split_rec,
4040 enum ocfs2_split_type split)
4043 u32 cpos = le32_to_cpu(split_rec->e_cpos);
4044 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4045 struct ocfs2_extent_rec *rec, *tmprec;
4047 right_el = path_leaf_el(right_path);
4049 left_el = path_leaf_el(left_path);
4052 insert_el = right_el;
4053 index = ocfs2_search_extent_list(el, cpos);
4055 if (index == 0 && left_path) {
4056 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4059 * This typically means that the record
4060 * started in the left path but moved to the
4061 * right as a result of rotation. We either
4062 * move the existing record to the left, or we
4063 * do the later insert there.
4065 * In this case, the left path should always
4066 * exist as the rotate code will have passed
4067 * it back for a post-insert update.
4070 if (split == SPLIT_LEFT) {
4072 * It's a left split. Since we know
4073 * that the rotate code gave us an
4074 * empty extent in the left path, we
4075 * can just do the insert there.
4077 insert_el = left_el;
4080 * Right split - we have to move the
4081 * existing record over to the left
4082 * leaf. The insert will be into the
4083 * newly created empty extent in the
4086 tmprec = &right_el->l_recs[index];
4087 ocfs2_rotate_leaf(left_el, tmprec);
4090 memset(tmprec, 0, sizeof(*tmprec));
4091 index = ocfs2_search_extent_list(left_el, cpos);
4092 BUG_ON(index == -1);
4097 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4099 * Left path is easy - we can just allow the insert to
4103 insert_el = left_el;
4104 index = ocfs2_search_extent_list(el, cpos);
4105 BUG_ON(index == -1);
4108 rec = &el->l_recs[index];
4109 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4110 split, rec, split_rec);
4111 ocfs2_rotate_leaf(insert_el, split_rec);
4115 * This function only does inserts on an allocation b-tree. For tree
4116 * depth = 0, ocfs2_insert_at_leaf() is called directly.
4118 * right_path is the path we want to do the actual insert
4119 * in. left_path should only be passed in if we need to update that
4120 * portion of the tree after an edge insert.
4122 static int ocfs2_insert_path(handle_t *handle,
4123 struct ocfs2_extent_tree *et,
4124 struct ocfs2_path *left_path,
4125 struct ocfs2_path *right_path,
4126 struct ocfs2_extent_rec *insert_rec,
4127 struct ocfs2_insert_type *insert)
4129 int ret, subtree_index;
4130 struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4134 * There's a chance that left_path got passed back to
4135 * us without being accounted for in the
4136 * journal. Extend our transaction here to be sure we
4137 * can change those blocks.
4139 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth);
4145 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4153 * Pass both paths to the journal. The majority of inserts
4154 * will be touching all components anyway.
4156 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4162 if (insert->ins_split != SPLIT_NONE) {
4164 * We could call ocfs2_insert_at_leaf() for some types
4165 * of splits, but it's easier to just let one separate
4166 * function sort it all out.
4168 ocfs2_split_record(et, left_path, right_path,
4169 insert_rec, insert->ins_split);
4172 * Split might have modified either leaf and we don't
4173 * have a guarantee that the later edge insert will
4174 * dirty this for us.
4177 ocfs2_journal_dirty(handle,
4178 path_leaf_bh(left_path));
4180 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4183 ocfs2_journal_dirty(handle, leaf_bh);
4187 * The rotate code has indicated that we need to fix
4188 * up portions of the tree after the insert.
4190 * XXX: Should we extend the transaction here?
4192 subtree_index = ocfs2_find_subtree_root(et, left_path,
4194 ocfs2_complete_edge_insert(handle, left_path, right_path,
4203 static int ocfs2_do_insert_extent(handle_t *handle,
4204 struct ocfs2_extent_tree *et,
4205 struct ocfs2_extent_rec *insert_rec,
4206 struct ocfs2_insert_type *type)
4208 int ret, rotate = 0;
4210 struct ocfs2_path *right_path = NULL;
4211 struct ocfs2_path *left_path = NULL;
4212 struct ocfs2_extent_list *el;
4214 el = et->et_root_el;
4216 ret = ocfs2_et_root_journal_access(handle, et,
4217 OCFS2_JOURNAL_ACCESS_WRITE);
4223 if (le16_to_cpu(el->l_tree_depth) == 0) {
4224 ocfs2_insert_at_leaf(et, insert_rec, el, type);
4225 goto out_update_clusters;
4228 right_path = ocfs2_new_path_from_et(et);
4236 * Determine the path to start with. Rotations need the
4237 * rightmost path, everything else can go directly to the
4240 cpos = le32_to_cpu(insert_rec->e_cpos);
4241 if (type->ins_appending == APPEND_NONE &&
4242 type->ins_contig == CONTIG_NONE) {
4247 ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4254 * Rotations and appends need special treatment - they modify
4255 * parts of the tree's above them.
4257 * Both might pass back a path immediate to the left of the
4258 * one being inserted to. This will be cause
4259 * ocfs2_insert_path() to modify the rightmost records of
4260 * left_path to account for an edge insert.
4262 * XXX: When modifying this code, keep in mind that an insert
4263 * can wind up skipping both of these two special cases...
4266 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4267 le32_to_cpu(insert_rec->e_cpos),
4268 right_path, &left_path);
4275 * ocfs2_rotate_tree_right() might have extended the
4276 * transaction without re-journaling our tree root.
4278 ret = ocfs2_et_root_journal_access(handle, et,
4279 OCFS2_JOURNAL_ACCESS_WRITE);
4284 } else if (type->ins_appending == APPEND_TAIL
4285 && type->ins_contig != CONTIG_LEFT) {
4286 ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4287 right_path, &left_path);
4294 ret = ocfs2_insert_path(handle, et, left_path, right_path,
4301 out_update_clusters:
4302 if (type->ins_split == SPLIT_NONE)
4303 ocfs2_et_update_clusters(et,
4304 le16_to_cpu(insert_rec->e_leaf_clusters));
4306 ocfs2_journal_dirty(handle, et->et_root_bh);
4309 ocfs2_free_path(left_path);
4310 ocfs2_free_path(right_path);
4315 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4316 struct ocfs2_path *path,
4317 struct ocfs2_extent_list *el, int index,
4318 struct ocfs2_extent_rec *split_rec,
4319 struct ocfs2_merge_ctxt *ctxt)
4322 enum ocfs2_contig_type ret = CONTIG_NONE;
4323 u32 left_cpos, right_cpos;
4324 struct ocfs2_extent_rec *rec = NULL;
4325 struct ocfs2_extent_list *new_el;
4326 struct ocfs2_path *left_path = NULL, *right_path = NULL;
4327 struct buffer_head *bh;
4328 struct ocfs2_extent_block *eb;
4329 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4332 rec = &el->l_recs[index - 1];
4333 } else if (path->p_tree_depth > 0) {
4334 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4338 if (left_cpos != 0) {
4339 left_path = ocfs2_new_path_from_path(path);
4346 status = ocfs2_find_path(et->et_ci, left_path,
4349 goto free_left_path;
4351 new_el = path_leaf_el(left_path);
4353 if (le16_to_cpu(new_el->l_next_free_rec) !=
4354 le16_to_cpu(new_el->l_count)) {
4355 bh = path_leaf_bh(left_path);
4356 eb = (struct ocfs2_extent_block *)bh->b_data;
4358 "Extent block #%llu has an "
4359 "invalid l_next_free_rec of "
4360 "%d. It should have "
4361 "matched the l_count of %d",
4362 (unsigned long long)le64_to_cpu(eb->h_blkno),
4363 le16_to_cpu(new_el->l_next_free_rec),
4364 le16_to_cpu(new_el->l_count));
4366 goto free_left_path;
4368 rec = &new_el->l_recs[
4369 le16_to_cpu(new_el->l_next_free_rec) - 1];
4374 * We're careful to check for an empty extent record here -
4375 * the merge code will know what to do if it sees one.
4378 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4379 if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4382 ret = ocfs2_et_extent_contig(et, rec, split_rec);
4387 if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4388 rec = &el->l_recs[index + 1];
4389 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4390 path->p_tree_depth > 0) {
4391 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4393 goto free_left_path;
4395 if (right_cpos == 0)
4396 goto free_left_path;
4398 right_path = ocfs2_new_path_from_path(path);
4402 goto free_left_path;
4405 status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4407 goto free_right_path;
4409 new_el = path_leaf_el(right_path);
4410 rec = &new_el->l_recs[0];
4411 if (ocfs2_is_empty_extent(rec)) {
4412 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4413 bh = path_leaf_bh(right_path);
4414 eb = (struct ocfs2_extent_block *)bh->b_data;
4416 "Extent block #%llu has an "
4417 "invalid l_next_free_rec of %d",
4418 (unsigned long long)le64_to_cpu(eb->h_blkno),
4419 le16_to_cpu(new_el->l_next_free_rec));
4421 goto free_right_path;
4423 rec = &new_el->l_recs[1];
4428 enum ocfs2_contig_type contig_type;
4430 contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4432 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4433 ret = CONTIG_LEFTRIGHT;
4434 else if (ret == CONTIG_NONE)
4439 ocfs2_free_path(right_path);
4441 ocfs2_free_path(left_path);
4444 ctxt->c_contig_type = ret;
4449 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4450 struct ocfs2_insert_type *insert,
4451 struct ocfs2_extent_list *el,
4452 struct ocfs2_extent_rec *insert_rec)
4455 enum ocfs2_contig_type contig_type = CONTIG_NONE;
4457 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4459 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4460 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4462 if (contig_type != CONTIG_NONE) {
4463 insert->ins_contig_index = i;
4467 insert->ins_contig = contig_type;
4469 if (insert->ins_contig != CONTIG_NONE) {
4470 struct ocfs2_extent_rec *rec =
4471 &el->l_recs[insert->ins_contig_index];
4472 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4473 le16_to_cpu(insert_rec->e_leaf_clusters);
4476 * Caller might want us to limit the size of extents, don't
4477 * calculate contiguousness if we might exceed that limit.
4479 if (et->et_max_leaf_clusters &&
4480 (len > et->et_max_leaf_clusters))
4481 insert->ins_contig = CONTIG_NONE;
4486 * This should only be called against the righmost leaf extent list.
4488 * ocfs2_figure_appending_type() will figure out whether we'll have to
4489 * insert at the tail of the rightmost leaf.
4491 * This should also work against the root extent list for tree's with 0
4492 * depth. If we consider the root extent list to be the rightmost leaf node
4493 * then the logic here makes sense.
4495 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4496 struct ocfs2_extent_list *el,
4497 struct ocfs2_extent_rec *insert_rec)
4500 u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4501 struct ocfs2_extent_rec *rec;
4503 insert->ins_appending = APPEND_NONE;
4505 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4507 if (!el->l_next_free_rec)
4508 goto set_tail_append;
4510 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4511 /* Were all records empty? */
4512 if (le16_to_cpu(el->l_next_free_rec) == 1)
4513 goto set_tail_append;
4516 i = le16_to_cpu(el->l_next_free_rec) - 1;
4517 rec = &el->l_recs[i];
4520 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4521 goto set_tail_append;
4526 insert->ins_appending = APPEND_TAIL;
4530 * Helper function called at the beginning of an insert.
4532 * This computes a few things that are commonly used in the process of
4533 * inserting into the btree:
4534 * - Whether the new extent is contiguous with an existing one.
4535 * - The current tree depth.
4536 * - Whether the insert is an appending one.
4537 * - The total # of free records in the tree.
4539 * All of the information is stored on the ocfs2_insert_type
4542 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4543 struct buffer_head **last_eb_bh,
4544 struct ocfs2_extent_rec *insert_rec,
4546 struct ocfs2_insert_type *insert)
4549 struct ocfs2_extent_block *eb;
4550 struct ocfs2_extent_list *el;
4551 struct ocfs2_path *path = NULL;
4552 struct buffer_head *bh = NULL;
4554 insert->ins_split = SPLIT_NONE;
4556 el = et->et_root_el;
4557 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4559 if (el->l_tree_depth) {
4561 * If we have tree depth, we read in the
4562 * rightmost extent block ahead of time as
4563 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4564 * may want it later.
4566 ret = ocfs2_read_extent_block(et->et_ci,
4567 ocfs2_et_get_last_eb_blk(et),
4573 eb = (struct ocfs2_extent_block *) bh->b_data;
4578 * Unless we have a contiguous insert, we'll need to know if
4579 * there is room left in our allocation tree for another
4582 * XXX: This test is simplistic, we can search for empty
4583 * extent records too.
4585 *free_records = le16_to_cpu(el->l_count) -
4586 le16_to_cpu(el->l_next_free_rec);
4588 if (!insert->ins_tree_depth) {
4589 ocfs2_figure_contig_type(et, insert, el, insert_rec);
4590 ocfs2_figure_appending_type(insert, el, insert_rec);
4594 path = ocfs2_new_path_from_et(et);
4602 * In the case that we're inserting past what the tree
4603 * currently accounts for, ocfs2_find_path() will return for
4604 * us the rightmost tree path. This is accounted for below in
4605 * the appending code.
4607 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4613 el = path_leaf_el(path);
4616 * Now that we have the path, there's two things we want to determine:
4617 * 1) Contiguousness (also set contig_index if this is so)
4619 * 2) Are we doing an append? We can trivially break this up
4620 * into two types of appends: simple record append, or a
4621 * rotate inside the tail leaf.
4623 ocfs2_figure_contig_type(et, insert, el, insert_rec);
4626 * The insert code isn't quite ready to deal with all cases of
4627 * left contiguousness. Specifically, if it's an insert into
4628 * the 1st record in a leaf, it will require the adjustment of
4629 * cluster count on the last record of the path directly to it's
4630 * left. For now, just catch that case and fool the layers
4631 * above us. This works just fine for tree_depth == 0, which
4632 * is why we allow that above.
4634 if (insert->ins_contig == CONTIG_LEFT &&
4635 insert->ins_contig_index == 0)
4636 insert->ins_contig = CONTIG_NONE;
4639 * Ok, so we can simply compare against last_eb to figure out
4640 * whether the path doesn't exist. This will only happen in
4641 * the case that we're doing a tail append, so maybe we can
4642 * take advantage of that information somehow.
4644 if (ocfs2_et_get_last_eb_blk(et) ==
4645 path_leaf_bh(path)->b_blocknr) {
4647 * Ok, ocfs2_find_path() returned us the rightmost
4648 * tree path. This might be an appending insert. There are
4650 * 1) We're doing a true append at the tail:
4651 * -This might even be off the end of the leaf
4652 * 2) We're "appending" by rotating in the tail
4654 ocfs2_figure_appending_type(insert, el, insert_rec);
4658 ocfs2_free_path(path);
4668 * Insert an extent into a btree.
4670 * The caller needs to update the owning btree's cluster count.
4672 int ocfs2_insert_extent(handle_t *handle,
4673 struct ocfs2_extent_tree *et,
4678 struct ocfs2_alloc_context *meta_ac)
4681 int uninitialized_var(free_records);
4682 struct buffer_head *last_eb_bh = NULL;
4683 struct ocfs2_insert_type insert = {0, };
4684 struct ocfs2_extent_rec rec;
4686 trace_ocfs2_insert_extent_start(
4687 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4688 cpos, new_clusters);
4690 memset(&rec, 0, sizeof(rec));
4691 rec.e_cpos = cpu_to_le32(cpos);
4692 rec.e_blkno = cpu_to_le64(start_blk);
4693 rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4694 rec.e_flags = flags;
4695 status = ocfs2_et_insert_check(et, &rec);
4701 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4702 &free_records, &insert);
4708 trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig,
4709 insert.ins_contig_index, free_records,
4710 insert.ins_tree_depth);
4712 if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4713 status = ocfs2_grow_tree(handle, et,
4714 &insert.ins_tree_depth, &last_eb_bh,
4722 /* Finally, we can add clusters. This might rotate the tree for us. */
4723 status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4727 ocfs2_et_extent_map_insert(et, &rec);
4736 * Allcate and add clusters into the extent b-tree.
4737 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4738 * The extent b-tree's root is specified by et, and
4739 * it is not limited to the file storage. Any extent tree can use this
4740 * function if it implements the proper ocfs2_extent_tree.
4742 int ocfs2_add_clusters_in_btree(handle_t *handle,
4743 struct ocfs2_extent_tree *et,
4744 u32 *logical_offset,
4745 u32 clusters_to_add,
4747 struct ocfs2_alloc_context *data_ac,
4748 struct ocfs2_alloc_context *meta_ac,
4749 enum ocfs2_alloc_restarted *reason_ret)
4751 int status = 0, err = 0;
4754 enum ocfs2_alloc_restarted reason = RESTART_NONE;
4755 u32 bit_off, num_bits;
4758 struct ocfs2_super *osb =
4759 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4761 BUG_ON(!clusters_to_add);
4764 flags = OCFS2_EXT_UNWRITTEN;
4766 free_extents = ocfs2_num_free_extents(osb, et);
4767 if (free_extents < 0) {
4768 status = free_extents;
4773 /* there are two cases which could cause us to EAGAIN in the
4774 * we-need-more-metadata case:
4775 * 1) we haven't reserved *any*
4776 * 2) we are so fragmented, we've needed to add metadata too
4778 if (!free_extents && !meta_ac) {
4781 reason = RESTART_META;
4783 } else if ((!free_extents)
4784 && (ocfs2_alloc_context_bits_left(meta_ac)
4785 < ocfs2_extend_meta_needed(et->et_root_el))) {
4788 reason = RESTART_META;
4792 status = __ocfs2_claim_clusters(handle, data_ac, 1,
4793 clusters_to_add, &bit_off, &num_bits);
4795 if (status != -ENOSPC)
4800 BUG_ON(num_bits > clusters_to_add);
4802 /* reserve our write early -- insert_extent may update the tree root */
4803 status = ocfs2_et_root_journal_access(handle, et,
4804 OCFS2_JOURNAL_ACCESS_WRITE);
4811 block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4812 trace_ocfs2_add_clusters_in_btree(
4813 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4815 status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4816 num_bits, flags, meta_ac);
4823 ocfs2_journal_dirty(handle, et->et_root_bh);
4825 clusters_to_add -= num_bits;
4826 *logical_offset += num_bits;
4828 if (clusters_to_add) {
4829 err = clusters_to_add;
4831 reason = RESTART_TRANS;
4836 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
4837 ocfs2_free_local_alloc_bits(osb, handle, data_ac,
4840 ocfs2_free_clusters(handle,
4843 ocfs2_clusters_to_blocks(osb->sb, bit_off),
4849 *reason_ret = reason;
4850 trace_ocfs2_add_clusters_in_btree_ret(status, reason, err);
4854 static void ocfs2_make_right_split_rec(struct super_block *sb,
4855 struct ocfs2_extent_rec *split_rec,
4857 struct ocfs2_extent_rec *rec)
4859 u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4860 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4862 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4864 split_rec->e_cpos = cpu_to_le32(cpos);
4865 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4867 split_rec->e_blkno = rec->e_blkno;
4868 le64_add_cpu(&split_rec->e_blkno,
4869 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4871 split_rec->e_flags = rec->e_flags;
4874 static int ocfs2_split_and_insert(handle_t *handle,
4875 struct ocfs2_extent_tree *et,
4876 struct ocfs2_path *path,
4877 struct buffer_head **last_eb_bh,
4879 struct ocfs2_extent_rec *orig_split_rec,
4880 struct ocfs2_alloc_context *meta_ac)
4883 unsigned int insert_range, rec_range, do_leftright = 0;
4884 struct ocfs2_extent_rec tmprec;
4885 struct ocfs2_extent_list *rightmost_el;
4886 struct ocfs2_extent_rec rec;
4887 struct ocfs2_extent_rec split_rec = *orig_split_rec;
4888 struct ocfs2_insert_type insert;
4889 struct ocfs2_extent_block *eb;
4893 * Store a copy of the record on the stack - it might move
4894 * around as the tree is manipulated below.
4896 rec = path_leaf_el(path)->l_recs[split_index];
4898 rightmost_el = et->et_root_el;
4900 depth = le16_to_cpu(rightmost_el->l_tree_depth);
4902 BUG_ON(!(*last_eb_bh));
4903 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4904 rightmost_el = &eb->h_list;
4907 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4908 le16_to_cpu(rightmost_el->l_count)) {
4909 ret = ocfs2_grow_tree(handle, et,
4910 &depth, last_eb_bh, meta_ac);
4917 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4918 insert.ins_appending = APPEND_NONE;
4919 insert.ins_contig = CONTIG_NONE;
4920 insert.ins_tree_depth = depth;
4922 insert_range = le32_to_cpu(split_rec.e_cpos) +
4923 le16_to_cpu(split_rec.e_leaf_clusters);
4924 rec_range = le32_to_cpu(rec.e_cpos) +
4925 le16_to_cpu(rec.e_leaf_clusters);
4927 if (split_rec.e_cpos == rec.e_cpos) {
4928 insert.ins_split = SPLIT_LEFT;
4929 } else if (insert_range == rec_range) {
4930 insert.ins_split = SPLIT_RIGHT;
4933 * Left/right split. We fake this as a right split
4934 * first and then make a second pass as a left split.
4936 insert.ins_split = SPLIT_RIGHT;
4938 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4939 &tmprec, insert_range, &rec);
4943 BUG_ON(do_leftright);
4947 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
4953 if (do_leftright == 1) {
4955 struct ocfs2_extent_list *el;
4958 split_rec = *orig_split_rec;
4960 ocfs2_reinit_path(path, 1);
4962 cpos = le32_to_cpu(split_rec.e_cpos);
4963 ret = ocfs2_find_path(et->et_ci, path, cpos);
4969 el = path_leaf_el(path);
4970 split_index = ocfs2_search_extent_list(el, cpos);
4971 if (split_index == -1) {
4972 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
4973 "Owner %llu has an extent at cpos %u "
4974 "which can no longer be found.\n",
4975 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4987 static int ocfs2_replace_extent_rec(handle_t *handle,
4988 struct ocfs2_extent_tree *et,
4989 struct ocfs2_path *path,
4990 struct ocfs2_extent_list *el,
4992 struct ocfs2_extent_rec *split_rec)
4996 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
4997 path_num_items(path) - 1);
5003 el->l_recs[split_index] = *split_rec;
5005 ocfs2_journal_dirty(handle, path_leaf_bh(path));
5011 * Split part or all of the extent record at split_index in the leaf
5012 * pointed to by path. Merge with the contiguous extent record if needed.
5014 * Care is taken to handle contiguousness so as to not grow the tree.
5016 * meta_ac is not strictly necessary - we only truly need it if growth
5017 * of the tree is required. All other cases will degrade into a less
5018 * optimal tree layout.
5020 * last_eb_bh should be the rightmost leaf block for any extent
5021 * btree. Since a split may grow the tree or a merge might shrink it,
5022 * the caller cannot trust the contents of that buffer after this call.
5024 * This code is optimized for readability - several passes might be
5025 * made over certain portions of the tree. All of those blocks will
5026 * have been brought into cache (and pinned via the journal), so the
5027 * extra overhead is not expressed in terms of disk reads.
5029 int ocfs2_split_extent(handle_t *handle,
5030 struct ocfs2_extent_tree *et,
5031 struct ocfs2_path *path,
5033 struct ocfs2_extent_rec *split_rec,
5034 struct ocfs2_alloc_context *meta_ac,
5035 struct ocfs2_cached_dealloc_ctxt *dealloc)
5038 struct ocfs2_extent_list *el = path_leaf_el(path);
5039 struct buffer_head *last_eb_bh = NULL;
5040 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5041 struct ocfs2_merge_ctxt ctxt;
5042 struct ocfs2_extent_list *rightmost_el;
5044 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5045 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5046 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5052 ret = ocfs2_figure_merge_contig_type(et, path, el,
5062 * The core merge / split code wants to know how much room is
5063 * left in this allocation tree, so we pass the
5064 * rightmost extent list.
5066 if (path->p_tree_depth) {
5067 struct ocfs2_extent_block *eb;
5069 ret = ocfs2_read_extent_block(et->et_ci,
5070 ocfs2_et_get_last_eb_blk(et),
5077 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5078 rightmost_el = &eb->h_list;
5080 rightmost_el = path_root_el(path);
5082 if (rec->e_cpos == split_rec->e_cpos &&
5083 rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5084 ctxt.c_split_covers_rec = 1;
5086 ctxt.c_split_covers_rec = 0;
5088 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5090 trace_ocfs2_split_extent(split_index, ctxt.c_contig_type,
5091 ctxt.c_has_empty_extent,
5092 ctxt.c_split_covers_rec);
5094 if (ctxt.c_contig_type == CONTIG_NONE) {
5095 if (ctxt.c_split_covers_rec)
5096 ret = ocfs2_replace_extent_rec(handle, et, path, el,
5097 split_index, split_rec);
5099 ret = ocfs2_split_and_insert(handle, et, path,
5100 &last_eb_bh, split_index,
5101 split_rec, meta_ac);
5105 ret = ocfs2_try_to_merge_extent(handle, et, path,
5106 split_index, split_rec,
5118 * Change the flags of the already-existing extent at cpos for len clusters.
5120 * new_flags: the flags we want to set.
5121 * clear_flags: the flags we want to clear.
5122 * phys: the new physical offset we want this new extent starts from.
5124 * If the existing extent is larger than the request, initiate a
5125 * split. An attempt will be made at merging with adjacent extents.
5127 * The caller is responsible for passing down meta_ac if we'll need it.
5129 int ocfs2_change_extent_flag(handle_t *handle,
5130 struct ocfs2_extent_tree *et,
5131 u32 cpos, u32 len, u32 phys,
5132 struct ocfs2_alloc_context *meta_ac,
5133 struct ocfs2_cached_dealloc_ctxt *dealloc,
5134 int new_flags, int clear_flags)
5137 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5138 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5139 struct ocfs2_extent_rec split_rec;
5140 struct ocfs2_path *left_path = NULL;
5141 struct ocfs2_extent_list *el;
5142 struct ocfs2_extent_rec *rec;
5144 left_path = ocfs2_new_path_from_et(et);
5151 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5156 el = path_leaf_el(left_path);
5158 index = ocfs2_search_extent_list(el, cpos);
5161 "Owner %llu has an extent at cpos %u which can no "
5162 "longer be found.\n",
5163 (unsigned long long)
5164 ocfs2_metadata_cache_owner(et->et_ci), cpos);
5170 rec = &el->l_recs[index];
5171 if (new_flags && (rec->e_flags & new_flags)) {
5172 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5173 "extent that already had them",
5174 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5179 if (clear_flags && !(rec->e_flags & clear_flags)) {
5180 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5181 "extent that didn't have them",
5182 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5187 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5188 split_rec.e_cpos = cpu_to_le32(cpos);
5189 split_rec.e_leaf_clusters = cpu_to_le16(len);
5190 split_rec.e_blkno = cpu_to_le64(start_blkno);
5191 split_rec.e_flags = rec->e_flags;
5193 split_rec.e_flags |= new_flags;
5195 split_rec.e_flags &= ~clear_flags;
5197 ret = ocfs2_split_extent(handle, et, left_path,
5198 index, &split_rec, meta_ac,
5204 ocfs2_free_path(left_path);
5210 * Mark the already-existing extent at cpos as written for len clusters.
5211 * This removes the unwritten extent flag.
5213 * If the existing extent is larger than the request, initiate a
5214 * split. An attempt will be made at merging with adjacent extents.
5216 * The caller is responsible for passing down meta_ac if we'll need it.
5218 int ocfs2_mark_extent_written(struct inode *inode,
5219 struct ocfs2_extent_tree *et,
5220 handle_t *handle, u32 cpos, u32 len, u32 phys,
5221 struct ocfs2_alloc_context *meta_ac,
5222 struct ocfs2_cached_dealloc_ctxt *dealloc)
5226 trace_ocfs2_mark_extent_written(
5227 (unsigned long long)OCFS2_I(inode)->ip_blkno,
5230 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5231 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5232 "that are being written to, but the feature bit "
5233 "is not set in the super block.",
5234 (unsigned long long)OCFS2_I(inode)->ip_blkno);
5240 * XXX: This should be fixed up so that we just re-insert the
5241 * next extent records.
5243 ocfs2_et_extent_map_truncate(et, 0);
5245 ret = ocfs2_change_extent_flag(handle, et, cpos,
5246 len, phys, meta_ac, dealloc,
5247 0, OCFS2_EXT_UNWRITTEN);
5255 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5256 struct ocfs2_path *path,
5257 int index, u32 new_range,
5258 struct ocfs2_alloc_context *meta_ac)
5260 int ret, depth, credits;
5261 struct buffer_head *last_eb_bh = NULL;
5262 struct ocfs2_extent_block *eb;
5263 struct ocfs2_extent_list *rightmost_el, *el;
5264 struct ocfs2_extent_rec split_rec;
5265 struct ocfs2_extent_rec *rec;
5266 struct ocfs2_insert_type insert;
5269 * Setup the record to split before we grow the tree.
5271 el = path_leaf_el(path);
5272 rec = &el->l_recs[index];
5273 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5274 &split_rec, new_range, rec);
5276 depth = path->p_tree_depth;
5278 ret = ocfs2_read_extent_block(et->et_ci,
5279 ocfs2_et_get_last_eb_blk(et),
5286 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5287 rightmost_el = &eb->h_list;
5289 rightmost_el = path_leaf_el(path);
5291 credits = path->p_tree_depth +
5292 ocfs2_extend_meta_needed(et->et_root_el);
5293 ret = ocfs2_extend_trans(handle, credits);
5299 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5300 le16_to_cpu(rightmost_el->l_count)) {
5301 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5309 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5310 insert.ins_appending = APPEND_NONE;
5311 insert.ins_contig = CONTIG_NONE;
5312 insert.ins_split = SPLIT_RIGHT;
5313 insert.ins_tree_depth = depth;
5315 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5324 static int ocfs2_truncate_rec(handle_t *handle,
5325 struct ocfs2_extent_tree *et,
5326 struct ocfs2_path *path, int index,
5327 struct ocfs2_cached_dealloc_ctxt *dealloc,
5331 u32 left_cpos, rec_range, trunc_range;
5332 int wants_rotate = 0, is_rightmost_tree_rec = 0;
5333 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5334 struct ocfs2_path *left_path = NULL;
5335 struct ocfs2_extent_list *el = path_leaf_el(path);
5336 struct ocfs2_extent_rec *rec;
5337 struct ocfs2_extent_block *eb;
5339 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5340 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5349 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5350 path->p_tree_depth) {
5352 * Check whether this is the rightmost tree record. If
5353 * we remove all of this record or part of its right
5354 * edge then an update of the record lengths above it
5357 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5358 if (eb->h_next_leaf_blk == 0)
5359 is_rightmost_tree_rec = 1;
5362 rec = &el->l_recs[index];
5363 if (index == 0 && path->p_tree_depth &&
5364 le32_to_cpu(rec->e_cpos) == cpos) {
5366 * Changing the leftmost offset (via partial or whole
5367 * record truncate) of an interior (or rightmost) path
5368 * means we have to update the subtree that is formed
5369 * by this leaf and the one to it's left.
5371 * There are two cases we can skip:
5372 * 1) Path is the leftmost one in our btree.
5373 * 2) The leaf is rightmost and will be empty after
5374 * we remove the extent record - the rotate code
5375 * knows how to update the newly formed edge.
5378 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5384 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5385 left_path = ocfs2_new_path_from_path(path);
5392 ret = ocfs2_find_path(et->et_ci, left_path,
5401 ret = ocfs2_extend_rotate_transaction(handle, 0,
5402 handle->h_buffer_credits,
5409 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5415 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5421 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5422 trunc_range = cpos + len;
5424 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5427 memset(rec, 0, sizeof(*rec));
5428 ocfs2_cleanup_merge(el, index);
5431 next_free = le16_to_cpu(el->l_next_free_rec);
5432 if (is_rightmost_tree_rec && next_free > 1) {
5434 * We skip the edge update if this path will
5435 * be deleted by the rotate code.
5437 rec = &el->l_recs[next_free - 1];
5438 ocfs2_adjust_rightmost_records(handle, et, path,
5441 } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5442 /* Remove leftmost portion of the record. */
5443 le32_add_cpu(&rec->e_cpos, len);
5444 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5445 le16_add_cpu(&rec->e_leaf_clusters, -len);
5446 } else if (rec_range == trunc_range) {
5447 /* Remove rightmost portion of the record */
5448 le16_add_cpu(&rec->e_leaf_clusters, -len);
5449 if (is_rightmost_tree_rec)
5450 ocfs2_adjust_rightmost_records(handle, et, path, rec);
5452 /* Caller should have trapped this. */
5453 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5455 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5456 le32_to_cpu(rec->e_cpos),
5457 le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5464 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5465 ocfs2_complete_edge_insert(handle, left_path, path,
5469 ocfs2_journal_dirty(handle, path_leaf_bh(path));
5471 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5478 ocfs2_free_path(left_path);
5482 int ocfs2_remove_extent(handle_t *handle,
5483 struct ocfs2_extent_tree *et,
5485 struct ocfs2_alloc_context *meta_ac,
5486 struct ocfs2_cached_dealloc_ctxt *dealloc)
5489 u32 rec_range, trunc_range;
5490 struct ocfs2_extent_rec *rec;
5491 struct ocfs2_extent_list *el;
5492 struct ocfs2_path *path = NULL;
5495 * XXX: Why are we truncating to 0 instead of wherever this
5498 ocfs2_et_extent_map_truncate(et, 0);
5500 path = ocfs2_new_path_from_et(et);
5507 ret = ocfs2_find_path(et->et_ci, path, cpos);
5513 el = path_leaf_el(path);
5514 index = ocfs2_search_extent_list(el, cpos);
5516 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5517 "Owner %llu has an extent at cpos %u which can no "
5518 "longer be found.\n",
5519 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5526 * We have 3 cases of extent removal:
5527 * 1) Range covers the entire extent rec
5528 * 2) Range begins or ends on one edge of the extent rec
5529 * 3) Range is in the middle of the extent rec (no shared edges)
5531 * For case 1 we remove the extent rec and left rotate to
5534 * For case 2 we just shrink the existing extent rec, with a
5535 * tree update if the shrinking edge is also the edge of an
5538 * For case 3 we do a right split to turn the extent rec into
5539 * something case 2 can handle.
5541 rec = &el->l_recs[index];
5542 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5543 trunc_range = cpos + len;
5545 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5547 trace_ocfs2_remove_extent(
5548 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5549 cpos, len, index, le32_to_cpu(rec->e_cpos),
5550 ocfs2_rec_clusters(el, rec));
5552 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5553 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5560 ret = ocfs2_split_tree(handle, et, path, index,
5561 trunc_range, meta_ac);
5568 * The split could have manipulated the tree enough to
5569 * move the record location, so we have to look for it again.
5571 ocfs2_reinit_path(path, 1);
5573 ret = ocfs2_find_path(et->et_ci, path, cpos);
5579 el = path_leaf_el(path);
5580 index = ocfs2_search_extent_list(el, cpos);
5582 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5583 "Owner %llu: split at cpos %u lost record.",
5584 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5591 * Double check our values here. If anything is fishy,
5592 * it's easier to catch it at the top level.
5594 rec = &el->l_recs[index];
5595 rec_range = le32_to_cpu(rec->e_cpos) +
5596 ocfs2_rec_clusters(el, rec);
5597 if (rec_range != trunc_range) {
5598 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5599 "Owner %llu: error after split at cpos %u"
5600 "trunc len %u, existing record is (%u,%u)",
5601 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5602 cpos, len, le32_to_cpu(rec->e_cpos),
5603 ocfs2_rec_clusters(el, rec));
5608 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5617 ocfs2_free_path(path);
5622 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5623 * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5624 * number to reserve some extra blocks, and it only handles meta
5627 * Currently, only ocfs2_remove_btree_range() uses it for truncating
5628 * and punching holes.
5630 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode,
5631 struct ocfs2_extent_tree *et,
5632 u32 extents_to_split,
5633 struct ocfs2_alloc_context **ac,
5636 int ret = 0, num_free_extents;
5637 unsigned int max_recs_needed = 2 * extents_to_split;
5638 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5642 num_free_extents = ocfs2_num_free_extents(osb, et);
5643 if (num_free_extents < 0) {
5644 ret = num_free_extents;
5649 if (!num_free_extents ||
5650 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed))
5651 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el);
5654 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac);
5665 ocfs2_free_alloc_context(*ac);
5673 int ocfs2_remove_btree_range(struct inode *inode,
5674 struct ocfs2_extent_tree *et,
5675 u32 cpos, u32 phys_cpos, u32 len, int flags,
5676 struct ocfs2_cached_dealloc_ctxt *dealloc,
5677 u64 refcount_loc, bool refcount_tree_locked)
5679 int ret, credits = 0, extra_blocks = 0;
5680 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5681 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5682 struct inode *tl_inode = osb->osb_tl_inode;
5684 struct ocfs2_alloc_context *meta_ac = NULL;
5685 struct ocfs2_refcount_tree *ref_tree = NULL;
5687 if ((flags & OCFS2_EXT_REFCOUNTED) && len) {
5688 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features &
5689 OCFS2_HAS_REFCOUNT_FL));
5691 if (!refcount_tree_locked) {
5692 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
5700 ret = ocfs2_prepare_refcount_change_for_del(inode,
5712 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac,
5719 mutex_lock(&tl_inode->i_mutex);
5721 if (ocfs2_truncate_log_needs_flush(osb)) {
5722 ret = __ocfs2_flush_truncate_log(osb);
5729 handle = ocfs2_start_trans(osb,
5730 ocfs2_remove_extent_credits(osb->sb) + credits);
5731 if (IS_ERR(handle)) {
5732 ret = PTR_ERR(handle);
5737 ret = ocfs2_et_root_journal_access(handle, et,
5738 OCFS2_JOURNAL_ACCESS_WRITE);
5744 dquot_free_space_nodirty(inode,
5745 ocfs2_clusters_to_bytes(inode->i_sb, len));
5747 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5753 ocfs2_et_update_clusters(et, -len);
5754 ocfs2_update_inode_fsync_trans(handle, inode, 1);
5756 ocfs2_journal_dirty(handle, et->et_root_bh);
5759 if (flags & OCFS2_EXT_REFCOUNTED)
5760 ret = ocfs2_decrease_refcount(inode, handle,
5761 ocfs2_blocks_to_clusters(osb->sb,
5766 ret = ocfs2_truncate_log_append(osb, handle,
5774 ocfs2_commit_trans(osb, handle);
5776 mutex_unlock(&tl_inode->i_mutex);
5779 ocfs2_free_alloc_context(meta_ac);
5782 ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
5787 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5789 struct buffer_head *tl_bh = osb->osb_tl_bh;
5790 struct ocfs2_dinode *di;
5791 struct ocfs2_truncate_log *tl;
5793 di = (struct ocfs2_dinode *) tl_bh->b_data;
5794 tl = &di->id2.i_dealloc;
5796 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5797 "slot %d, invalid truncate log parameters: used = "
5798 "%u, count = %u\n", osb->slot_num,
5799 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5800 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5803 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5804 unsigned int new_start)
5806 unsigned int tail_index;
5807 unsigned int current_tail;
5809 /* No records, nothing to coalesce */
5810 if (!le16_to_cpu(tl->tl_used))
5813 tail_index = le16_to_cpu(tl->tl_used) - 1;
5814 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5815 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5817 return current_tail == new_start;
5820 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5823 unsigned int num_clusters)
5826 unsigned int start_cluster, tl_count;
5827 struct inode *tl_inode = osb->osb_tl_inode;
5828 struct buffer_head *tl_bh = osb->osb_tl_bh;
5829 struct ocfs2_dinode *di;
5830 struct ocfs2_truncate_log *tl;
5832 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5834 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5836 di = (struct ocfs2_dinode *) tl_bh->b_data;
5838 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5839 * by the underlying call to ocfs2_read_inode_block(), so any
5840 * corruption is a code bug */
5841 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5843 tl = &di->id2.i_dealloc;
5844 tl_count = le16_to_cpu(tl->tl_count);
5845 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5847 "Truncate record count on #%llu invalid "
5848 "wanted %u, actual %u\n",
5849 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5850 ocfs2_truncate_recs_per_inode(osb->sb),
5851 le16_to_cpu(tl->tl_count));
5853 /* Caller should have known to flush before calling us. */
5854 index = le16_to_cpu(tl->tl_used);
5855 if (index >= tl_count) {
5861 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5862 OCFS2_JOURNAL_ACCESS_WRITE);
5868 trace_ocfs2_truncate_log_append(
5869 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index,
5870 start_cluster, num_clusters);
5871 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5873 * Move index back to the record we are coalescing with.
5874 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5878 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5879 trace_ocfs2_truncate_log_append(
5880 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5881 index, le32_to_cpu(tl->tl_recs[index].t_start),
5884 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5885 tl->tl_used = cpu_to_le16(index + 1);
5887 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5889 ocfs2_journal_dirty(handle, tl_bh);
5891 osb->truncated_clusters += num_clusters;
5896 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5898 struct inode *data_alloc_inode,
5899 struct buffer_head *data_alloc_bh)
5903 unsigned int num_clusters;
5905 struct ocfs2_truncate_rec rec;
5906 struct ocfs2_dinode *di;
5907 struct ocfs2_truncate_log *tl;
5908 struct inode *tl_inode = osb->osb_tl_inode;
5909 struct buffer_head *tl_bh = osb->osb_tl_bh;
5911 di = (struct ocfs2_dinode *) tl_bh->b_data;
5912 tl = &di->id2.i_dealloc;
5913 i = le16_to_cpu(tl->tl_used) - 1;
5915 /* Caller has given us at least enough credits to
5916 * update the truncate log dinode */
5917 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5918 OCFS2_JOURNAL_ACCESS_WRITE);
5924 tl->tl_used = cpu_to_le16(i);
5926 ocfs2_journal_dirty(handle, tl_bh);
5928 /* TODO: Perhaps we can calculate the bulk of the
5929 * credits up front rather than extending like
5931 status = ocfs2_extend_trans(handle,
5932 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5938 rec = tl->tl_recs[i];
5939 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5940 le32_to_cpu(rec.t_start));
5941 num_clusters = le32_to_cpu(rec.t_clusters);
5943 /* if start_blk is not set, we ignore the record as
5946 trace_ocfs2_replay_truncate_records(
5947 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5948 i, le32_to_cpu(rec.t_start), num_clusters);
5950 status = ocfs2_free_clusters(handle, data_alloc_inode,
5951 data_alloc_bh, start_blk,
5961 osb->truncated_clusters = 0;
5967 /* Expects you to already be holding tl_inode->i_mutex */
5968 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5971 unsigned int num_to_flush;
5973 struct inode *tl_inode = osb->osb_tl_inode;
5974 struct inode *data_alloc_inode = NULL;
5975 struct buffer_head *tl_bh = osb->osb_tl_bh;
5976 struct buffer_head *data_alloc_bh = NULL;
5977 struct ocfs2_dinode *di;
5978 struct ocfs2_truncate_log *tl;
5980 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5982 di = (struct ocfs2_dinode *) tl_bh->b_data;
5984 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5985 * by the underlying call to ocfs2_read_inode_block(), so any
5986 * corruption is a code bug */
5987 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5989 tl = &di->id2.i_dealloc;
5990 num_to_flush = le16_to_cpu(tl->tl_used);
5991 trace_ocfs2_flush_truncate_log(
5992 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5994 if (!num_to_flush) {
5999 data_alloc_inode = ocfs2_get_system_file_inode(osb,
6000 GLOBAL_BITMAP_SYSTEM_INODE,
6001 OCFS2_INVALID_SLOT);
6002 if (!data_alloc_inode) {
6004 mlog(ML_ERROR, "Could not get bitmap inode!\n");
6008 mutex_lock(&data_alloc_inode->i_mutex);
6010 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
6016 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6017 if (IS_ERR(handle)) {
6018 status = PTR_ERR(handle);
6023 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
6028 ocfs2_commit_trans(osb, handle);
6031 brelse(data_alloc_bh);
6032 ocfs2_inode_unlock(data_alloc_inode, 1);
6035 mutex_unlock(&data_alloc_inode->i_mutex);
6036 iput(data_alloc_inode);
6042 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6045 struct inode *tl_inode = osb->osb_tl_inode;
6047 mutex_lock(&tl_inode->i_mutex);
6048 status = __ocfs2_flush_truncate_log(osb);
6049 mutex_unlock(&tl_inode->i_mutex);
6054 static void ocfs2_truncate_log_worker(struct work_struct *work)
6057 struct ocfs2_super *osb =
6058 container_of(work, struct ocfs2_super,
6059 osb_truncate_log_wq.work);
6061 status = ocfs2_flush_truncate_log(osb);
6065 ocfs2_init_steal_slots(osb);
6068 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6069 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6072 if (osb->osb_tl_inode &&
6073 atomic_read(&osb->osb_tl_disable) == 0) {
6074 /* We want to push off log flushes while truncates are
6077 cancel_delayed_work(&osb->osb_truncate_log_wq);
6079 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
6080 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6084 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6086 struct inode **tl_inode,
6087 struct buffer_head **tl_bh)
6090 struct inode *inode = NULL;
6091 struct buffer_head *bh = NULL;
6093 inode = ocfs2_get_system_file_inode(osb,
6094 TRUNCATE_LOG_SYSTEM_INODE,
6098 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6102 status = ocfs2_read_inode_block(inode, &bh);
6115 /* called during the 1st stage of node recovery. we stamp a clean
6116 * truncate log and pass back a copy for processing later. if the
6117 * truncate log does not require processing, a *tl_copy is set to
6119 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6121 struct ocfs2_dinode **tl_copy)
6124 struct inode *tl_inode = NULL;
6125 struct buffer_head *tl_bh = NULL;
6126 struct ocfs2_dinode *di;
6127 struct ocfs2_truncate_log *tl;
6131 trace_ocfs2_begin_truncate_log_recovery(slot_num);
6133 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6139 di = (struct ocfs2_dinode *) tl_bh->b_data;
6141 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
6142 * validated by the underlying call to ocfs2_read_inode_block(),
6143 * so any corruption is a code bug */
6144 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6146 tl = &di->id2.i_dealloc;
6147 if (le16_to_cpu(tl->tl_used)) {
6148 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used));
6150 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6157 /* Assuming the write-out below goes well, this copy
6158 * will be passed back to recovery for processing. */
6159 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6161 /* All we need to do to clear the truncate log is set
6165 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6166 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6178 if (status < 0 && (*tl_copy)) {
6187 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6188 struct ocfs2_dinode *tl_copy)
6192 unsigned int clusters, num_recs, start_cluster;
6195 struct inode *tl_inode = osb->osb_tl_inode;
6196 struct ocfs2_truncate_log *tl;
6198 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6199 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6203 tl = &tl_copy->id2.i_dealloc;
6204 num_recs = le16_to_cpu(tl->tl_used);
6205 trace_ocfs2_complete_truncate_log_recovery(
6206 (unsigned long long)le64_to_cpu(tl_copy->i_blkno),
6209 mutex_lock(&tl_inode->i_mutex);
6210 for(i = 0; i < num_recs; i++) {
6211 if (ocfs2_truncate_log_needs_flush(osb)) {
6212 status = __ocfs2_flush_truncate_log(osb);
6219 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6220 if (IS_ERR(handle)) {
6221 status = PTR_ERR(handle);
6226 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6227 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6228 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6230 status = ocfs2_truncate_log_append(osb, handle,
6231 start_blk, clusters);
6232 ocfs2_commit_trans(osb, handle);
6240 mutex_unlock(&tl_inode->i_mutex);
6245 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6248 struct inode *tl_inode = osb->osb_tl_inode;
6250 atomic_set(&osb->osb_tl_disable, 1);
6253 cancel_delayed_work(&osb->osb_truncate_log_wq);
6254 flush_workqueue(ocfs2_wq);
6256 status = ocfs2_flush_truncate_log(osb);
6260 brelse(osb->osb_tl_bh);
6261 iput(osb->osb_tl_inode);
6265 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6268 struct inode *tl_inode = NULL;
6269 struct buffer_head *tl_bh = NULL;
6271 status = ocfs2_get_truncate_log_info(osb,
6278 /* ocfs2_truncate_log_shutdown keys on the existence of
6279 * osb->osb_tl_inode so we don't set any of the osb variables
6280 * until we're sure all is well. */
6281 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6282 ocfs2_truncate_log_worker);
6283 atomic_set(&osb->osb_tl_disable, 0);
6284 osb->osb_tl_bh = tl_bh;
6285 osb->osb_tl_inode = tl_inode;
6291 * Delayed de-allocation of suballocator blocks.
6293 * Some sets of block de-allocations might involve multiple suballocator inodes.
6295 * The locking for this can get extremely complicated, especially when
6296 * the suballocator inodes to delete from aren't known until deep
6297 * within an unrelated codepath.
6299 * ocfs2_extent_block structures are a good example of this - an inode
6300 * btree could have been grown by any number of nodes each allocating
6301 * out of their own suballoc inode.
6303 * These structures allow the delay of block de-allocation until a
6304 * later time, when locking of multiple cluster inodes won't cause
6309 * Describe a single bit freed from a suballocator. For the block
6310 * suballocators, it represents one block. For the global cluster
6311 * allocator, it represents some clusters and free_bit indicates
6314 struct ocfs2_cached_block_free {
6315 struct ocfs2_cached_block_free *free_next;
6318 unsigned int free_bit;
6321 struct ocfs2_per_slot_free_list {
6322 struct ocfs2_per_slot_free_list *f_next_suballocator;
6325 struct ocfs2_cached_block_free *f_first;
6328 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6331 struct ocfs2_cached_block_free *head)
6336 struct inode *inode;
6337 struct buffer_head *di_bh = NULL;
6338 struct ocfs2_cached_block_free *tmp;
6340 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6347 mutex_lock(&inode->i_mutex);
6349 ret = ocfs2_inode_lock(inode, &di_bh, 1);
6355 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6356 if (IS_ERR(handle)) {
6357 ret = PTR_ERR(handle);
6364 bg_blkno = head->free_bg;
6366 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6368 trace_ocfs2_free_cached_blocks(
6369 (unsigned long long)head->free_blk, head->free_bit);
6371 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6372 head->free_bit, bg_blkno, 1);
6378 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6385 head = head->free_next;
6390 ocfs2_commit_trans(osb, handle);
6393 ocfs2_inode_unlock(inode, 1);
6396 mutex_unlock(&inode->i_mutex);
6400 /* Premature exit may have left some dangling items. */
6402 head = head->free_next;
6409 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6410 u64 blkno, unsigned int bit)
6413 struct ocfs2_cached_block_free *item;
6415 item = kzalloc(sizeof(*item), GFP_NOFS);
6422 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit);
6424 item->free_blk = blkno;
6425 item->free_bit = bit;
6426 item->free_next = ctxt->c_global_allocator;
6428 ctxt->c_global_allocator = item;
6432 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6433 struct ocfs2_cached_block_free *head)
6435 struct ocfs2_cached_block_free *tmp;
6436 struct inode *tl_inode = osb->osb_tl_inode;
6440 mutex_lock(&tl_inode->i_mutex);
6443 if (ocfs2_truncate_log_needs_flush(osb)) {
6444 ret = __ocfs2_flush_truncate_log(osb);
6451 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6452 if (IS_ERR(handle)) {
6453 ret = PTR_ERR(handle);
6458 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6461 ocfs2_commit_trans(osb, handle);
6463 head = head->free_next;
6472 mutex_unlock(&tl_inode->i_mutex);
6475 /* Premature exit may have left some dangling items. */
6477 head = head->free_next;
6484 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6485 struct ocfs2_cached_dealloc_ctxt *ctxt)
6488 struct ocfs2_per_slot_free_list *fl;
6493 while (ctxt->c_first_suballocator) {
6494 fl = ctxt->c_first_suballocator;
6497 trace_ocfs2_run_deallocs(fl->f_inode_type,
6499 ret2 = ocfs2_free_cached_blocks(osb,
6509 ctxt->c_first_suballocator = fl->f_next_suballocator;
6513 if (ctxt->c_global_allocator) {
6514 ret2 = ocfs2_free_cached_clusters(osb,
6515 ctxt->c_global_allocator);
6521 ctxt->c_global_allocator = NULL;
6527 static struct ocfs2_per_slot_free_list *
6528 ocfs2_find_per_slot_free_list(int type,
6530 struct ocfs2_cached_dealloc_ctxt *ctxt)
6532 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6535 if (fl->f_inode_type == type && fl->f_slot == slot)
6538 fl = fl->f_next_suballocator;
6541 fl = kmalloc(sizeof(*fl), GFP_NOFS);
6543 fl->f_inode_type = type;
6546 fl->f_next_suballocator = ctxt->c_first_suballocator;
6548 ctxt->c_first_suballocator = fl;
6553 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6554 int type, int slot, u64 suballoc,
6555 u64 blkno, unsigned int bit)
6558 struct ocfs2_per_slot_free_list *fl;
6559 struct ocfs2_cached_block_free *item;
6561 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6568 item = kzalloc(sizeof(*item), GFP_NOFS);
6575 trace_ocfs2_cache_block_dealloc(type, slot,
6576 (unsigned long long)suballoc,
6577 (unsigned long long)blkno, bit);
6579 item->free_bg = suballoc;
6580 item->free_blk = blkno;
6581 item->free_bit = bit;
6582 item->free_next = fl->f_first;
6591 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6592 struct ocfs2_extent_block *eb)
6594 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6595 le16_to_cpu(eb->h_suballoc_slot),
6596 le64_to_cpu(eb->h_suballoc_loc),
6597 le64_to_cpu(eb->h_blkno),
6598 le16_to_cpu(eb->h_suballoc_bit));
6601 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6603 set_buffer_uptodate(bh);
6604 mark_buffer_dirty(bh);
6608 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6609 unsigned int from, unsigned int to,
6610 struct page *page, int zero, u64 *phys)
6612 int ret, partial = 0;
6614 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6619 zero_user_segment(page, from, to);
6622 * Need to set the buffers we zero'd into uptodate
6623 * here if they aren't - ocfs2_map_page_blocks()
6624 * might've skipped some
6626 ret = walk_page_buffers(handle, page_buffers(page),
6631 else if (ocfs2_should_order_data(inode)) {
6632 ret = ocfs2_jbd2_file_inode(handle, inode);
6638 SetPageUptodate(page);
6640 flush_dcache_page(page);
6643 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6644 loff_t end, struct page **pages,
6645 int numpages, u64 phys, handle_t *handle)
6649 unsigned int from, to = PAGE_CACHE_SIZE;
6650 struct super_block *sb = inode->i_sb;
6652 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6657 to = PAGE_CACHE_SIZE;
6658 for(i = 0; i < numpages; i++) {
6661 from = start & (PAGE_CACHE_SIZE - 1);
6662 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6663 to = end & (PAGE_CACHE_SIZE - 1);
6665 BUG_ON(from > PAGE_CACHE_SIZE);
6666 BUG_ON(to > PAGE_CACHE_SIZE);
6668 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6671 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6675 ocfs2_unlock_and_free_pages(pages, numpages);
6678 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
6679 struct page **pages, int *num)
6681 int numpages, ret = 0;
6682 struct address_space *mapping = inode->i_mapping;
6683 unsigned long index;
6684 loff_t last_page_bytes;
6686 BUG_ON(start > end);
6689 last_page_bytes = PAGE_ALIGN(end);
6690 index = start >> PAGE_CACHE_SHIFT;
6692 pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS);
6693 if (!pages[numpages]) {
6701 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6706 ocfs2_unlock_and_free_pages(pages, numpages);
6715 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6716 struct page **pages, int *num)
6718 struct super_block *sb = inode->i_sb;
6720 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6721 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6723 return ocfs2_grab_pages(inode, start, end, pages, num);
6727 * Zero the area past i_size but still within an allocated
6728 * cluster. This avoids exposing nonzero data on subsequent file
6731 * We need to call this before i_size is updated on the inode because
6732 * otherwise block_write_full_page() will skip writeout of pages past
6733 * i_size. The new_i_size parameter is passed for this reason.
6735 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6736 u64 range_start, u64 range_end)
6738 int ret = 0, numpages;
6739 struct page **pages = NULL;
6741 unsigned int ext_flags;
6742 struct super_block *sb = inode->i_sb;
6745 * File systems which don't support sparse files zero on every
6748 if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6751 pages = kcalloc(ocfs2_pages_per_cluster(sb),
6752 sizeof(struct page *), GFP_NOFS);
6753 if (pages == NULL) {
6759 if (range_start == range_end)
6762 ret = ocfs2_extent_map_get_blocks(inode,
6763 range_start >> sb->s_blocksize_bits,
6764 &phys, NULL, &ext_flags);
6771 * Tail is a hole, or is marked unwritten. In either case, we
6772 * can count on read and write to return/push zero's.
6774 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6777 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6784 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6785 numpages, phys, handle);
6788 * Initiate writeout of the pages we zero'd here. We don't
6789 * wait on them - the truncate_inode_pages() call later will
6792 ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
6803 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6804 struct ocfs2_dinode *di)
6806 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6807 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6809 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6810 memset(&di->id2, 0, blocksize -
6811 offsetof(struct ocfs2_dinode, id2) -
6814 memset(&di->id2, 0, blocksize -
6815 offsetof(struct ocfs2_dinode, id2));
6818 void ocfs2_dinode_new_extent_list(struct inode *inode,
6819 struct ocfs2_dinode *di)
6821 ocfs2_zero_dinode_id2_with_xattr(inode, di);
6822 di->id2.i_list.l_tree_depth = 0;
6823 di->id2.i_list.l_next_free_rec = 0;
6824 di->id2.i_list.l_count = cpu_to_le16(
6825 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6828 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6830 struct ocfs2_inode_info *oi = OCFS2_I(inode);
6831 struct ocfs2_inline_data *idata = &di->id2.i_data;
6833 spin_lock(&oi->ip_lock);
6834 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6835 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6836 spin_unlock(&oi->ip_lock);
6839 * We clear the entire i_data structure here so that all
6840 * fields can be properly initialized.
6842 ocfs2_zero_dinode_id2_with_xattr(inode, di);
6844 idata->id_count = cpu_to_le16(
6845 ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6848 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6849 struct buffer_head *di_bh)
6851 int ret, i, has_data, num_pages = 0;
6855 u64 uninitialized_var(block);
6856 struct ocfs2_inode_info *oi = OCFS2_I(inode);
6857 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6858 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6859 struct ocfs2_alloc_context *data_ac = NULL;
6860 struct page **pages = NULL;
6861 loff_t end = osb->s_clustersize;
6862 struct ocfs2_extent_tree et;
6865 has_data = i_size_read(inode) ? 1 : 0;
6868 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6869 sizeof(struct page *), GFP_NOFS);
6870 if (pages == NULL) {
6876 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6883 handle = ocfs2_start_trans(osb,
6884 ocfs2_inline_to_extents_credits(osb->sb));
6885 if (IS_ERR(handle)) {
6886 ret = PTR_ERR(handle);
6891 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
6892 OCFS2_JOURNAL_ACCESS_WRITE);
6899 unsigned int page_end;
6902 ret = dquot_alloc_space_nodirty(inode,
6903 ocfs2_clusters_to_bytes(osb->sb, 1));
6908 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
6910 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off,
6918 * Save two copies, one for insert, and one that can
6919 * be changed by ocfs2_map_and_dirty_page() below.
6921 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6924 * Non sparse file systems zero on extend, so no need
6927 if (!ocfs2_sparse_alloc(osb) &&
6928 PAGE_CACHE_SIZE < osb->s_clustersize)
6929 end = PAGE_CACHE_SIZE;
6931 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6939 * This should populate the 1st page for us and mark
6942 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6949 page_end = PAGE_CACHE_SIZE;
6950 if (PAGE_CACHE_SIZE > osb->s_clustersize)
6951 page_end = osb->s_clustersize;
6953 for (i = 0; i < num_pages; i++)
6954 ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6955 pages[i], i > 0, &phys);
6958 spin_lock(&oi->ip_lock);
6959 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6960 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6961 spin_unlock(&oi->ip_lock);
6963 ocfs2_update_inode_fsync_trans(handle, inode, 1);
6964 ocfs2_dinode_new_extent_list(inode, di);
6966 ocfs2_journal_dirty(handle, di_bh);
6970 * An error at this point should be extremely rare. If
6971 * this proves to be false, we could always re-build
6972 * the in-inode data from our pages.
6974 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
6975 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
6982 inode->i_blocks = ocfs2_inode_sector_count(inode);
6987 ocfs2_unlock_and_free_pages(pages, num_pages);
6990 if (ret < 0 && did_quota)
6991 dquot_free_space_nodirty(inode,
6992 ocfs2_clusters_to_bytes(osb->sb, 1));
6995 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
6996 ocfs2_free_local_alloc_bits(osb, handle, data_ac,
6999 ocfs2_free_clusters(handle,
7002 ocfs2_clusters_to_blocks(osb->sb, bit_off),
7006 ocfs2_commit_trans(osb, handle);
7010 ocfs2_free_alloc_context(data_ac);
7017 * It is expected, that by the time you call this function,
7018 * inode->i_size and fe->i_size have been adjusted.
7020 * WARNING: This will kfree the truncate context
7022 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7023 struct inode *inode,
7024 struct buffer_head *di_bh)
7026 int status = 0, i, flags = 0;
7027 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff;
7029 struct ocfs2_extent_list *el;
7030 struct ocfs2_extent_rec *rec;
7031 struct ocfs2_path *path = NULL;
7032 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7033 struct ocfs2_extent_list *root_el = &(di->id2.i_list);
7034 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc);
7035 struct ocfs2_extent_tree et;
7036 struct ocfs2_cached_dealloc_ctxt dealloc;
7037 struct ocfs2_refcount_tree *ref_tree = NULL;
7039 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7040 ocfs2_init_dealloc_ctxt(&dealloc);
7042 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7043 i_size_read(inode));
7045 path = ocfs2_new_path(di_bh, &di->id2.i_list,
7046 ocfs2_journal_access_di);
7053 ocfs2_extent_map_trunc(inode, new_highest_cpos);
7057 * Check that we still have allocation to delete.
7059 if (OCFS2_I(inode)->ip_clusters == 0) {
7065 * Truncate always works against the rightmost tree branch.
7067 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7073 trace_ocfs2_commit_truncate(
7074 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7076 OCFS2_I(inode)->ip_clusters,
7077 path->p_tree_depth);
7080 * By now, el will point to the extent list on the bottom most
7081 * portion of this tree. Only the tail record is considered in
7084 * We handle the following cases, in order:
7085 * - empty extent: delete the remaining branch
7086 * - remove the entire record
7087 * - remove a partial record
7088 * - no record needs to be removed (truncate has completed)
7090 el = path_leaf_el(path);
7091 if (le16_to_cpu(el->l_next_free_rec) == 0) {
7092 ocfs2_error(inode->i_sb,
7093 "Inode %llu has empty extent block at %llu\n",
7094 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7095 (unsigned long long)path_leaf_bh(path)->b_blocknr);
7100 i = le16_to_cpu(el->l_next_free_rec) - 1;
7101 rec = &el->l_recs[i];
7102 flags = rec->e_flags;
7103 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
7105 if (i == 0 && ocfs2_is_empty_extent(rec)) {
7107 * Lower levels depend on this never happening, but it's best
7108 * to check it up here before changing the tree.
7110 if (root_el->l_tree_depth && rec->e_int_clusters == 0) {
7111 ocfs2_error(inode->i_sb, "Inode %lu has an empty "
7112 "extent record, depth %u\n", inode->i_ino,
7113 le16_to_cpu(root_el->l_tree_depth));
7117 trunc_cpos = le32_to_cpu(rec->e_cpos);
7120 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) {
7122 * Truncate entire record.
7124 trunc_cpos = le32_to_cpu(rec->e_cpos);
7125 trunc_len = ocfs2_rec_clusters(el, rec);
7126 blkno = le64_to_cpu(rec->e_blkno);
7127 } else if (range > new_highest_cpos) {
7129 * Partial truncate. it also should be
7130 * the last truncate we're doing.
7132 trunc_cpos = new_highest_cpos;
7133 trunc_len = range - new_highest_cpos;
7134 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos);
7135 blkno = le64_to_cpu(rec->e_blkno) +
7136 ocfs2_clusters_to_blocks(inode->i_sb, coff);
7139 * Truncate completed, leave happily.
7145 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
7147 if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) {
7148 status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
7156 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
7157 phys_cpos, trunc_len, flags, &dealloc,
7158 refcount_loc, true);
7164 ocfs2_reinit_path(path, 1);
7167 * The check above will catch the case where we've truncated
7168 * away all allocation.
7174 ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7176 ocfs2_schedule_truncate_log_flush(osb, 1);
7178 ocfs2_run_deallocs(osb, &dealloc);
7180 ocfs2_free_path(path);
7186 * 'start' is inclusive, 'end' is not.
7188 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7189 unsigned int start, unsigned int end, int trunc)
7192 unsigned int numbytes;
7194 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7195 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7196 struct ocfs2_inline_data *idata = &di->id2.i_data;
7198 if (end > i_size_read(inode))
7199 end = i_size_read(inode);
7201 BUG_ON(start > end);
7203 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7204 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7205 !ocfs2_supports_inline_data(osb)) {
7206 ocfs2_error(inode->i_sb,
7207 "Inline data flags for inode %llu don't agree! "
7208 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7209 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7210 le16_to_cpu(di->i_dyn_features),
7211 OCFS2_I(inode)->ip_dyn_features,
7212 osb->s_feature_incompat);
7217 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7218 if (IS_ERR(handle)) {
7219 ret = PTR_ERR(handle);
7224 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7225 OCFS2_JOURNAL_ACCESS_WRITE);
7231 numbytes = end - start;
7232 memset(idata->id_data + start, 0, numbytes);
7235 * No need to worry about the data page here - it's been
7236 * truncated already and inline data doesn't need it for
7237 * pushing zero's to disk, so we'll let readpage pick it up
7241 i_size_write(inode, start);
7242 di->i_size = cpu_to_le64(start);
7245 inode->i_blocks = ocfs2_inode_sector_count(inode);
7246 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7248 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7249 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7251 ocfs2_update_inode_fsync_trans(handle, inode, 1);
7252 ocfs2_journal_dirty(handle, di_bh);
7255 ocfs2_commit_trans(osb, handle);
7261 static int ocfs2_trim_extent(struct super_block *sb,
7262 struct ocfs2_group_desc *gd,
7263 u32 start, u32 count)
7265 u64 discard, bcount;
7267 bcount = ocfs2_clusters_to_blocks(sb, count);
7268 discard = le64_to_cpu(gd->bg_blkno) +
7269 ocfs2_clusters_to_blocks(sb, start);
7271 trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount);
7273 return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0);
7276 static int ocfs2_trim_group(struct super_block *sb,
7277 struct ocfs2_group_desc *gd,
7278 u32 start, u32 max, u32 minbits)
7280 int ret = 0, count = 0, next;
7281 void *bitmap = gd->bg_bitmap;
7283 if (le16_to_cpu(gd->bg_free_bits_count) < minbits)
7286 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno),
7287 start, max, minbits);
7289 while (start < max) {
7290 start = ocfs2_find_next_zero_bit(bitmap, max, start);
7293 next = ocfs2_find_next_bit(bitmap, max, start);
7295 if ((next - start) >= minbits) {
7296 ret = ocfs2_trim_extent(sb, gd,
7297 start, next - start);
7302 count += next - start;
7306 if (fatal_signal_pending(current)) {
7307 count = -ERESTARTSYS;
7311 if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits)
7321 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range)
7323 struct ocfs2_super *osb = OCFS2_SB(sb);
7324 u64 start, len, trimmed, first_group, last_group, group;
7326 u32 first_bit, last_bit, minlen;
7327 struct buffer_head *main_bm_bh = NULL;
7328 struct inode *main_bm_inode = NULL;
7329 struct buffer_head *gd_bh = NULL;
7330 struct ocfs2_dinode *main_bm;
7331 struct ocfs2_group_desc *gd = NULL;
7333 start = range->start >> osb->s_clustersize_bits;
7334 len = range->len >> osb->s_clustersize_bits;
7335 minlen = range->minlen >> osb->s_clustersize_bits;
7337 if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize)
7340 main_bm_inode = ocfs2_get_system_file_inode(osb,
7341 GLOBAL_BITMAP_SYSTEM_INODE,
7342 OCFS2_INVALID_SLOT);
7343 if (!main_bm_inode) {
7349 mutex_lock(&main_bm_inode->i_mutex);
7351 ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0);
7356 main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data;
7358 if (start >= le32_to_cpu(main_bm->i_clusters)) {
7363 len = range->len >> osb->s_clustersize_bits;
7364 if (start + len > le32_to_cpu(main_bm->i_clusters))
7365 len = le32_to_cpu(main_bm->i_clusters) - start;
7367 trace_ocfs2_trim_fs(start, len, minlen);
7369 /* Determine first and last group to examine based on start and len */
7370 first_group = ocfs2_which_cluster_group(main_bm_inode, start);
7371 if (first_group == osb->first_cluster_group_blkno)
7374 first_bit = start - ocfs2_blocks_to_clusters(sb, first_group);
7375 last_group = ocfs2_which_cluster_group(main_bm_inode, start + len - 1);
7376 last_bit = osb->bitmap_cpg;
7379 for (group = first_group; group <= last_group;) {
7380 if (first_bit + len >= osb->bitmap_cpg)
7381 last_bit = osb->bitmap_cpg;
7383 last_bit = first_bit + len;
7385 ret = ocfs2_read_group_descriptor(main_bm_inode,
7393 gd = (struct ocfs2_group_desc *)gd_bh->b_data;
7394 cnt = ocfs2_trim_group(sb, gd, first_bit, last_bit, minlen);
7404 len -= osb->bitmap_cpg - first_bit;
7406 if (group == osb->first_cluster_group_blkno)
7407 group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7409 group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7411 range->len = trimmed * sb->s_blocksize;
7413 ocfs2_inode_unlock(main_bm_inode, 0);
7416 mutex_unlock(&main_bm_inode->i_mutex);
7417 iput(main_bm_inode);