1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
32 #define MLOG_MASK_PREFIX ML_FILE_IO
33 #include <cluster/masklog.h>
40 #include "extent_map.h"
47 #include "refcounttree.h"
49 #include "buffer_head_io.h"
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
62 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
63 (unsigned long long)iblock, bh_result, create);
65 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69 (unsigned long long)iblock);
73 status = ocfs2_read_inode_block(inode, &bh);
78 fe = (struct ocfs2_dinode *) bh->b_data;
80 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81 le32_to_cpu(fe->i_clusters))) {
82 mlog(ML_ERROR, "block offset is outside the allocated size: "
83 "%llu\n", (unsigned long long)iblock);
87 /* We don't use the page cache to create symlink data, so if
88 * need be, copy it over from the buffer cache. */
89 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 buffer_cache_bh = sb_getblk(osb->sb, blkno);
93 if (!buffer_cache_bh) {
94 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
98 /* we haven't locked out transactions, so a commit
99 * could've happened. Since we've got a reference on
100 * the bh, even if it commits while we're doing the
101 * copy, the data is still good. */
102 if (buffer_jbd(buffer_cache_bh)
103 && ocfs2_inode_is_new(inode)) {
104 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
106 mlog(ML_ERROR, "couldn't kmap!\n");
109 memcpy(kaddr + (bh_result->b_size * iblock),
110 buffer_cache_bh->b_data,
112 kunmap_atomic(kaddr, KM_USER0);
113 set_buffer_uptodate(bh_result);
115 brelse(buffer_cache_bh);
118 map_bh(bh_result, inode->i_sb,
119 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
134 unsigned int ext_flags;
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
139 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
140 (unsigned long long)iblock, bh_result, create);
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
161 if (max_blocks < count)
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows __block_write_begin() to zero.
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 map_bh(bh_result, inode->i_sb, p_blkno);
185 bh_result->b_size = count << inode->i_blkbits;
187 if (!ocfs2_sparse_alloc(osb)) {
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
203 (unsigned long long)past_eof);
204 if (create && (iblock >= past_eof))
205 set_buffer_new(bh_result);
215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
228 size = i_size_read(inode);
230 if (size > PAGE_CACHE_SIZE ||
231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 ocfs2_error(inode->i_sb,
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
239 kaddr = kmap_atomic(page, KM_USER0);
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr, KM_USER0);
247 SetPageUptodate(page);
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
255 struct buffer_head *di_bh = NULL;
257 BUG_ON(!PageLocked(page));
258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
260 ret = ocfs2_read_inode_block(inode, &di_bh);
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
274 static int ocfs2_readpage(struct file *file, struct page *page)
276 struct inode *inode = page->mapping->host;
277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
281 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
283 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285 if (ret == AOP_TRUNCATED_PAGE)
291 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
292 ret = AOP_TRUNCATED_PAGE;
293 goto out_inode_unlock;
297 * i_size might have just been updated as we grabed the meta lock. We
298 * might now be discovering a truncate that hit on another node.
299 * block_read_full_page->get_block freaks out if it is asked to read
300 * beyond the end of a file, so we check here. Callers
301 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
302 * and notice that the page they just read isn't needed.
304 * XXX sys_readahead() seems to get that wrong?
306 if (start >= i_size_read(inode)) {
307 zero_user(page, 0, PAGE_SIZE);
308 SetPageUptodate(page);
313 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
314 ret = ocfs2_readpage_inline(inode, page);
316 ret = block_read_full_page(page, ocfs2_get_block);
320 up_read(&OCFS2_I(inode)->ip_alloc_sem);
322 ocfs2_inode_unlock(inode, 0);
331 * This is used only for read-ahead. Failures or difficult to handle
332 * situations are safe to ignore.
334 * Right now, we don't bother with BH_Boundary - in-inode extent lists
335 * are quite large (243 extents on 4k blocks), so most inodes don't
336 * grow out to a tree. If need be, detecting boundary extents could
337 * trivially be added in a future version of ocfs2_get_block().
339 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340 struct list_head *pages, unsigned nr_pages)
343 struct inode *inode = mapping->host;
344 struct ocfs2_inode_info *oi = OCFS2_I(inode);
349 * Use the nonblocking flag for the dlm code to avoid page
350 * lock inversion, but don't bother with retrying.
352 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
356 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357 ocfs2_inode_unlock(inode, 0);
362 * Don't bother with inline-data. There isn't anything
363 * to read-ahead in that case anyway...
365 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
369 * Check whether a remote node truncated this file - we just
370 * drop out in that case as it's not worth handling here.
372 last = list_entry(pages->prev, struct page, lru);
373 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374 if (start >= i_size_read(inode))
377 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
380 up_read(&oi->ip_alloc_sem);
381 ocfs2_inode_unlock(inode, 0);
386 /* Note: Because we don't support holes, our allocation has
387 * already happened (allocation writes zeros to the file data)
388 * so we don't have to worry about ordered writes in
391 * ->writepage is called during the process of invalidating the page cache
392 * during blocked lock processing. It can't block on any cluster locks
393 * to during block mapping. It's relying on the fact that the block
394 * mapping can't have disappeared under the dirty pages that it is
395 * being asked to write back.
397 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
401 mlog_entry("(0x%p)\n", page);
403 ret = block_write_full_page(page, ocfs2_get_block, wbc);
410 /* Taken from ext3. We don't necessarily need the full blown
411 * functionality yet, but IMHO it's better to cut and paste the whole
412 * thing so we can avoid introducing our own bugs (and easily pick up
413 * their fixes when they happen) --Mark */
414 int walk_page_buffers( handle_t *handle,
415 struct buffer_head *head,
419 int (*fn)( handle_t *handle,
420 struct buffer_head *bh))
422 struct buffer_head *bh;
423 unsigned block_start, block_end;
424 unsigned blocksize = head->b_size;
426 struct buffer_head *next;
428 for ( bh = head, block_start = 0;
429 ret == 0 && (bh != head || !block_start);
430 block_start = block_end, bh = next)
432 next = bh->b_this_page;
433 block_end = block_start + blocksize;
434 if (block_end <= from || block_start >= to) {
435 if (partial && !buffer_uptodate(bh))
439 err = (*fn)(handle, bh);
446 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
451 struct inode *inode = mapping->host;
453 mlog_entry("(block = %llu)\n", (unsigned long long)block);
455 /* We don't need to lock journal system files, since they aren't
456 * accessed concurrently from multiple nodes.
458 if (!INODE_JOURNAL(inode)) {
459 err = ocfs2_inode_lock(inode, NULL, 0);
465 down_read(&OCFS2_I(inode)->ip_alloc_sem);
468 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
469 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
472 if (!INODE_JOURNAL(inode)) {
473 up_read(&OCFS2_I(inode)->ip_alloc_sem);
474 ocfs2_inode_unlock(inode, 0);
478 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
479 (unsigned long long)block);
485 status = err ? 0 : p_blkno;
487 mlog_exit((int)status);
493 * TODO: Make this into a generic get_blocks function.
495 * From do_direct_io in direct-io.c:
496 * "So what we do is to permit the ->get_blocks function to populate
497 * bh.b_size with the size of IO which is permitted at this offset and
500 * This function is called directly from get_more_blocks in direct-io.c.
502 * called like this: dio->get_blocks(dio->inode, fs_startblk,
503 * fs_count, map_bh, dio->rw == WRITE);
505 * Note that we never bother to allocate blocks here, and thus ignore the
508 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
509 struct buffer_head *bh_result, int create)
512 u64 p_blkno, inode_blocks, contig_blocks;
513 unsigned int ext_flags;
514 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
515 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
517 /* This function won't even be called if the request isn't all
518 * nicely aligned and of the right size, so there's no need
519 * for us to check any of that. */
521 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
523 /* This figures out the size of the next contiguous block, and
524 * our logical offset */
525 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
526 &contig_blocks, &ext_flags);
528 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
529 (unsigned long long)iblock);
534 /* We should already CoW the refcounted extent in case of create. */
535 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
538 * get_more_blocks() expects us to describe a hole by clearing
539 * the mapped bit on bh_result().
541 * Consider an unwritten extent as a hole.
543 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
544 map_bh(bh_result, inode->i_sb, p_blkno);
546 clear_buffer_mapped(bh_result);
548 /* make sure we don't map more than max_blocks blocks here as
549 that's all the kernel will handle at this point. */
550 if (max_blocks < contig_blocks)
551 contig_blocks = max_blocks;
552 bh_result->b_size = contig_blocks << blocksize_bits;
558 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
559 * particularly interested in the aio/dio case. Like the core uses
560 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
561 * truncation on another.
563 static void ocfs2_dio_end_io(struct kiocb *iocb,
570 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
573 /* this io's submitter should not have unlocked this before we could */
574 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
576 if (ocfs2_iocb_is_sem_locked(iocb)) {
577 up_read(&inode->i_alloc_sem);
578 ocfs2_iocb_clear_sem_locked(iocb);
581 ocfs2_iocb_clear_rw_locked(iocb);
583 level = ocfs2_iocb_rw_locked_level(iocb);
584 ocfs2_rw_unlock(inode, level);
587 aio_complete(iocb, ret, 0);
591 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
592 * from ext3. PageChecked() bits have been removed as OCFS2 does not
593 * do journalled data.
595 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
597 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
599 jbd2_journal_invalidatepage(journal, page, offset);
602 static int ocfs2_releasepage(struct page *page, gfp_t wait)
604 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
606 if (!page_has_buffers(page))
608 return jbd2_journal_try_to_free_buffers(journal, page, wait);
611 static ssize_t ocfs2_direct_IO(int rw,
613 const struct iovec *iov,
615 unsigned long nr_segs)
617 struct file *file = iocb->ki_filp;
618 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
624 * Fallback to buffered I/O if we see an inode without
627 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
630 /* Fallback to buffered I/O if we are appending. */
631 if (i_size_read(inode) <= offset)
634 ret = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
635 iov, offset, nr_segs,
636 ocfs2_direct_IO_get_blocks,
637 ocfs2_dio_end_io, NULL, 0);
643 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
648 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
650 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
653 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
655 cluster_start = cpos % cpp;
656 cluster_start = cluster_start << osb->s_clustersize_bits;
658 cluster_end = cluster_start + osb->s_clustersize;
661 BUG_ON(cluster_start > PAGE_SIZE);
662 BUG_ON(cluster_end > PAGE_SIZE);
665 *start = cluster_start;
671 * 'from' and 'to' are the region in the page to avoid zeroing.
673 * If pagesize > clustersize, this function will avoid zeroing outside
674 * of the cluster boundary.
676 * from == to == 0 is code for "zero the entire cluster region"
678 static void ocfs2_clear_page_regions(struct page *page,
679 struct ocfs2_super *osb, u32 cpos,
680 unsigned from, unsigned to)
683 unsigned int cluster_start, cluster_end;
685 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
687 kaddr = kmap_atomic(page, KM_USER0);
690 if (from > cluster_start)
691 memset(kaddr + cluster_start, 0, from - cluster_start);
692 if (to < cluster_end)
693 memset(kaddr + to, 0, cluster_end - to);
695 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
698 kunmap_atomic(kaddr, KM_USER0);
702 * Nonsparse file systems fully allocate before we get to the write
703 * code. This prevents ocfs2_write() from tagging the write as an
704 * allocating one, which means ocfs2_map_page_blocks() might try to
705 * read-in the blocks at the tail of our file. Avoid reading them by
706 * testing i_size against each block offset.
708 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
709 unsigned int block_start)
711 u64 offset = page_offset(page) + block_start;
713 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
716 if (i_size_read(inode) > offset)
723 * Some of this taken from __block_write_begin(). We already have our
724 * mapping by now though, and the entire write will be allocating or
725 * it won't, so not much need to use BH_New.
727 * This will also skip zeroing, which is handled externally.
729 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
730 struct inode *inode, unsigned int from,
731 unsigned int to, int new)
734 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
735 unsigned int block_end, block_start;
736 unsigned int bsize = 1 << inode->i_blkbits;
738 if (!page_has_buffers(page))
739 create_empty_buffers(page, bsize, 0);
741 head = page_buffers(page);
742 for (bh = head, block_start = 0; bh != head || !block_start;
743 bh = bh->b_this_page, block_start += bsize) {
744 block_end = block_start + bsize;
746 clear_buffer_new(bh);
749 * Ignore blocks outside of our i/o range -
750 * they may belong to unallocated clusters.
752 if (block_start >= to || block_end <= from) {
753 if (PageUptodate(page))
754 set_buffer_uptodate(bh);
759 * For an allocating write with cluster size >= page
760 * size, we always write the entire page.
765 if (!buffer_mapped(bh)) {
766 map_bh(bh, inode->i_sb, *p_blkno);
767 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
770 if (PageUptodate(page)) {
771 if (!buffer_uptodate(bh))
772 set_buffer_uptodate(bh);
773 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
775 ocfs2_should_read_blk(inode, page, block_start) &&
776 (block_start < from || block_end > to)) {
777 ll_rw_block(READ, 1, &bh);
781 *p_blkno = *p_blkno + 1;
785 * If we issued read requests - let them complete.
787 while(wait_bh > wait) {
788 wait_on_buffer(*--wait_bh);
789 if (!buffer_uptodate(*wait_bh))
793 if (ret == 0 || !new)
797 * If we get -EIO above, zero out any newly allocated blocks
798 * to avoid exposing stale data.
803 block_end = block_start + bsize;
804 if (block_end <= from)
806 if (block_start >= to)
809 zero_user(page, block_start, bh->b_size);
810 set_buffer_uptodate(bh);
811 mark_buffer_dirty(bh);
814 block_start = block_end;
815 bh = bh->b_this_page;
816 } while (bh != head);
821 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
822 #define OCFS2_MAX_CTXT_PAGES 1
824 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
827 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
830 * Describe the state of a single cluster to be written to.
832 struct ocfs2_write_cluster_desc {
836 * Give this a unique field because c_phys eventually gets
840 unsigned c_unwritten;
841 unsigned c_needs_zero;
844 struct ocfs2_write_ctxt {
845 /* Logical cluster position / len of write */
849 /* First cluster allocated in a nonsparse extend */
850 u32 w_first_new_cpos;
852 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
855 * This is true if page_size > cluster_size.
857 * It triggers a set of special cases during write which might
858 * have to deal with allocating writes to partial pages.
860 unsigned int w_large_pages;
863 * Pages involved in this write.
865 * w_target_page is the page being written to by the user.
867 * w_pages is an array of pages which always contains
868 * w_target_page, and in the case of an allocating write with
869 * page_size < cluster size, it will contain zero'd and mapped
870 * pages adjacent to w_target_page which need to be written
871 * out in so that future reads from that region will get
874 unsigned int w_num_pages;
875 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
876 struct page *w_target_page;
879 * ocfs2_write_end() uses this to know what the real range to
880 * write in the target should be.
882 unsigned int w_target_from;
883 unsigned int w_target_to;
886 * We could use journal_current_handle() but this is cleaner,
891 struct buffer_head *w_di_bh;
893 struct ocfs2_cached_dealloc_ctxt w_dealloc;
896 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
900 for(i = 0; i < num_pages; i++) {
902 unlock_page(pages[i]);
903 mark_page_accessed(pages[i]);
904 page_cache_release(pages[i]);
909 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
911 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
917 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
918 struct ocfs2_super *osb, loff_t pos,
919 unsigned len, struct buffer_head *di_bh)
922 struct ocfs2_write_ctxt *wc;
924 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
928 wc->w_cpos = pos >> osb->s_clustersize_bits;
929 wc->w_first_new_cpos = UINT_MAX;
930 cend = (pos + len - 1) >> osb->s_clustersize_bits;
931 wc->w_clen = cend - wc->w_cpos + 1;
935 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
936 wc->w_large_pages = 1;
938 wc->w_large_pages = 0;
940 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
948 * If a page has any new buffers, zero them out here, and mark them uptodate
949 * and dirty so they'll be written out (in order to prevent uninitialised
950 * block data from leaking). And clear the new bit.
952 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
954 unsigned int block_start, block_end;
955 struct buffer_head *head, *bh;
957 BUG_ON(!PageLocked(page));
958 if (!page_has_buffers(page))
961 bh = head = page_buffers(page);
964 block_end = block_start + bh->b_size;
966 if (buffer_new(bh)) {
967 if (block_end > from && block_start < to) {
968 if (!PageUptodate(page)) {
971 start = max(from, block_start);
972 end = min(to, block_end);
974 zero_user_segment(page, start, end);
975 set_buffer_uptodate(bh);
978 clear_buffer_new(bh);
979 mark_buffer_dirty(bh);
983 block_start = block_end;
984 bh = bh->b_this_page;
985 } while (bh != head);
989 * Only called when we have a failure during allocating write to write
990 * zero's to the newly allocated region.
992 static void ocfs2_write_failure(struct inode *inode,
993 struct ocfs2_write_ctxt *wc,
994 loff_t user_pos, unsigned user_len)
997 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
998 to = user_pos + user_len;
999 struct page *tmppage;
1001 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1003 for(i = 0; i < wc->w_num_pages; i++) {
1004 tmppage = wc->w_pages[i];
1006 if (page_has_buffers(tmppage)) {
1007 if (ocfs2_should_order_data(inode))
1008 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1010 block_commit_write(tmppage, from, to);
1015 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1016 struct ocfs2_write_ctxt *wc,
1017 struct page *page, u32 cpos,
1018 loff_t user_pos, unsigned user_len,
1022 unsigned int map_from = 0, map_to = 0;
1023 unsigned int cluster_start, cluster_end;
1024 unsigned int user_data_from = 0, user_data_to = 0;
1026 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1027 &cluster_start, &cluster_end);
1029 if (page == wc->w_target_page) {
1030 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1031 map_to = map_from + user_len;
1034 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1035 cluster_start, cluster_end,
1038 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1039 map_from, map_to, new);
1045 user_data_from = map_from;
1046 user_data_to = map_to;
1048 map_from = cluster_start;
1049 map_to = cluster_end;
1053 * If we haven't allocated the new page yet, we
1054 * shouldn't be writing it out without copying user
1055 * data. This is likely a math error from the caller.
1059 map_from = cluster_start;
1060 map_to = cluster_end;
1062 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1063 cluster_start, cluster_end, new);
1071 * Parts of newly allocated pages need to be zero'd.
1073 * Above, we have also rewritten 'to' and 'from' - as far as
1074 * the rest of the function is concerned, the entire cluster
1075 * range inside of a page needs to be written.
1077 * We can skip this if the page is up to date - it's already
1078 * been zero'd from being read in as a hole.
1080 if (new && !PageUptodate(page))
1081 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1082 cpos, user_data_from, user_data_to);
1084 flush_dcache_page(page);
1091 * This function will only grab one clusters worth of pages.
1093 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1094 struct ocfs2_write_ctxt *wc,
1095 u32 cpos, loff_t user_pos,
1096 unsigned user_len, int new,
1097 struct page *mmap_page)
1100 unsigned long start, target_index, end_index, index;
1101 struct inode *inode = mapping->host;
1104 target_index = user_pos >> PAGE_CACHE_SHIFT;
1107 * Figure out how many pages we'll be manipulating here. For
1108 * non allocating write, we just change the one
1109 * page. Otherwise, we'll need a whole clusters worth. If we're
1110 * writing past i_size, we only need enough pages to cover the
1111 * last page of the write.
1114 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1115 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1117 * We need the index *past* the last page we could possibly
1118 * touch. This is the page past the end of the write or
1119 * i_size, whichever is greater.
1121 last_byte = max(user_pos + user_len, i_size_read(inode));
1122 BUG_ON(last_byte < 1);
1123 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1124 if ((start + wc->w_num_pages) > end_index)
1125 wc->w_num_pages = end_index - start;
1127 wc->w_num_pages = 1;
1128 start = target_index;
1131 for(i = 0; i < wc->w_num_pages; i++) {
1134 if (index == target_index && mmap_page) {
1136 * ocfs2_pagemkwrite() is a little different
1137 * and wants us to directly use the page
1140 lock_page(mmap_page);
1142 if (mmap_page->mapping != mapping) {
1143 unlock_page(mmap_page);
1145 * Sanity check - the locking in
1146 * ocfs2_pagemkwrite() should ensure
1147 * that this code doesn't trigger.
1154 page_cache_get(mmap_page);
1155 wc->w_pages[i] = mmap_page;
1157 wc->w_pages[i] = find_or_create_page(mapping, index,
1159 if (!wc->w_pages[i]) {
1166 if (index == target_index)
1167 wc->w_target_page = wc->w_pages[i];
1174 * Prepare a single cluster for write one cluster into the file.
1176 static int ocfs2_write_cluster(struct address_space *mapping,
1177 u32 phys, unsigned int unwritten,
1178 unsigned int should_zero,
1179 struct ocfs2_alloc_context *data_ac,
1180 struct ocfs2_alloc_context *meta_ac,
1181 struct ocfs2_write_ctxt *wc, u32 cpos,
1182 loff_t user_pos, unsigned user_len)
1185 u64 v_blkno, p_blkno;
1186 struct inode *inode = mapping->host;
1187 struct ocfs2_extent_tree et;
1189 new = phys == 0 ? 1 : 0;
1194 * This is safe to call with the page locks - it won't take
1195 * any additional semaphores or cluster locks.
1198 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1199 &tmp_pos, 1, 0, wc->w_di_bh,
1200 wc->w_handle, data_ac,
1203 * This shouldn't happen because we must have already
1204 * calculated the correct meta data allocation required. The
1205 * internal tree allocation code should know how to increase
1206 * transaction credits itself.
1208 * If need be, we could handle -EAGAIN for a
1209 * RESTART_TRANS here.
1211 mlog_bug_on_msg(ret == -EAGAIN,
1212 "Inode %llu: EAGAIN return during allocation.\n",
1213 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1218 } else if (unwritten) {
1219 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1221 ret = ocfs2_mark_extent_written(inode, &et,
1222 wc->w_handle, cpos, 1, phys,
1223 meta_ac, &wc->w_dealloc);
1231 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1233 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1236 * The only reason this should fail is due to an inability to
1237 * find the extent added.
1239 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1242 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1243 "at logical block %llu",
1244 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1245 (unsigned long long)v_blkno);
1249 BUG_ON(p_blkno == 0);
1251 for(i = 0; i < wc->w_num_pages; i++) {
1254 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1255 wc->w_pages[i], cpos,
1266 * We only have cleanup to do in case of allocating write.
1269 ocfs2_write_failure(inode, wc, user_pos, user_len);
1276 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1277 struct ocfs2_alloc_context *data_ac,
1278 struct ocfs2_alloc_context *meta_ac,
1279 struct ocfs2_write_ctxt *wc,
1280 loff_t pos, unsigned len)
1284 unsigned int local_len = len;
1285 struct ocfs2_write_cluster_desc *desc;
1286 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1288 for (i = 0; i < wc->w_clen; i++) {
1289 desc = &wc->w_desc[i];
1292 * We have to make sure that the total write passed in
1293 * doesn't extend past a single cluster.
1296 cluster_off = pos & (osb->s_clustersize - 1);
1297 if ((cluster_off + local_len) > osb->s_clustersize)
1298 local_len = osb->s_clustersize - cluster_off;
1300 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1304 wc, desc->c_cpos, pos, local_len);
1320 * ocfs2_write_end() wants to know which parts of the target page it
1321 * should complete the write on. It's easiest to compute them ahead of
1322 * time when a more complete view of the write is available.
1324 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1325 struct ocfs2_write_ctxt *wc,
1326 loff_t pos, unsigned len, int alloc)
1328 struct ocfs2_write_cluster_desc *desc;
1330 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1331 wc->w_target_to = wc->w_target_from + len;
1337 * Allocating write - we may have different boundaries based
1338 * on page size and cluster size.
1340 * NOTE: We can no longer compute one value from the other as
1341 * the actual write length and user provided length may be
1345 if (wc->w_large_pages) {
1347 * We only care about the 1st and last cluster within
1348 * our range and whether they should be zero'd or not. Either
1349 * value may be extended out to the start/end of a
1350 * newly allocated cluster.
1352 desc = &wc->w_desc[0];
1353 if (desc->c_needs_zero)
1354 ocfs2_figure_cluster_boundaries(osb,
1359 desc = &wc->w_desc[wc->w_clen - 1];
1360 if (desc->c_needs_zero)
1361 ocfs2_figure_cluster_boundaries(osb,
1366 wc->w_target_from = 0;
1367 wc->w_target_to = PAGE_CACHE_SIZE;
1372 * Populate each single-cluster write descriptor in the write context
1373 * with information about the i/o to be done.
1375 * Returns the number of clusters that will have to be allocated, as
1376 * well as a worst case estimate of the number of extent records that
1377 * would have to be created during a write to an unwritten region.
1379 static int ocfs2_populate_write_desc(struct inode *inode,
1380 struct ocfs2_write_ctxt *wc,
1381 unsigned int *clusters_to_alloc,
1382 unsigned int *extents_to_split)
1385 struct ocfs2_write_cluster_desc *desc;
1386 unsigned int num_clusters = 0;
1387 unsigned int ext_flags = 0;
1391 *clusters_to_alloc = 0;
1392 *extents_to_split = 0;
1394 for (i = 0; i < wc->w_clen; i++) {
1395 desc = &wc->w_desc[i];
1396 desc->c_cpos = wc->w_cpos + i;
1398 if (num_clusters == 0) {
1400 * Need to look up the next extent record.
1402 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1403 &num_clusters, &ext_flags);
1409 /* We should already CoW the refcountd extent. */
1410 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1413 * Assume worst case - that we're writing in
1414 * the middle of the extent.
1416 * We can assume that the write proceeds from
1417 * left to right, in which case the extent
1418 * insert code is smart enough to coalesce the
1419 * next splits into the previous records created.
1421 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1422 *extents_to_split = *extents_to_split + 2;
1425 * Only increment phys if it doesn't describe
1432 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1433 * file that got extended. w_first_new_cpos tells us
1434 * where the newly allocated clusters are so we can
1437 if (desc->c_cpos >= wc->w_first_new_cpos) {
1439 desc->c_needs_zero = 1;
1442 desc->c_phys = phys;
1445 desc->c_needs_zero = 1;
1446 *clusters_to_alloc = *clusters_to_alloc + 1;
1449 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1450 desc->c_unwritten = 1;
1451 desc->c_needs_zero = 1;
1462 static int ocfs2_write_begin_inline(struct address_space *mapping,
1463 struct inode *inode,
1464 struct ocfs2_write_ctxt *wc)
1467 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1470 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1472 page = find_or_create_page(mapping, 0, GFP_NOFS);
1479 * If we don't set w_num_pages then this page won't get unlocked
1480 * and freed on cleanup of the write context.
1482 wc->w_pages[0] = wc->w_target_page = page;
1483 wc->w_num_pages = 1;
1485 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1486 if (IS_ERR(handle)) {
1487 ret = PTR_ERR(handle);
1492 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1493 OCFS2_JOURNAL_ACCESS_WRITE);
1495 ocfs2_commit_trans(osb, handle);
1501 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1502 ocfs2_set_inode_data_inline(inode, di);
1504 if (!PageUptodate(page)) {
1505 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1507 ocfs2_commit_trans(osb, handle);
1513 wc->w_handle = handle;
1518 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1520 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1522 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1527 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1528 struct inode *inode, loff_t pos,
1529 unsigned len, struct page *mmap_page,
1530 struct ocfs2_write_ctxt *wc)
1532 int ret, written = 0;
1533 loff_t end = pos + len;
1534 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1535 struct ocfs2_dinode *di = NULL;
1537 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1538 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1539 oi->ip_dyn_features);
1542 * Handle inodes which already have inline data 1st.
1544 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1545 if (mmap_page == NULL &&
1546 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1547 goto do_inline_write;
1550 * The write won't fit - we have to give this inode an
1551 * inline extent list now.
1553 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1560 * Check whether the inode can accept inline data.
1562 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1566 * Check whether the write can fit.
1568 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1570 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1574 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1581 * This signals to the caller that the data can be written
1586 return written ? written : ret;
1590 * This function only does anything for file systems which can't
1591 * handle sparse files.
1593 * What we want to do here is fill in any hole between the current end
1594 * of allocation and the end of our write. That way the rest of the
1595 * write path can treat it as an non-allocating write, which has no
1596 * special case code for sparse/nonsparse files.
1598 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1599 struct buffer_head *di_bh,
1600 loff_t pos, unsigned len,
1601 struct ocfs2_write_ctxt *wc)
1604 loff_t newsize = pos + len;
1606 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1608 if (newsize <= i_size_read(inode))
1611 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1615 wc->w_first_new_cpos =
1616 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1621 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1626 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1627 if (pos > i_size_read(inode))
1628 ret = ocfs2_zero_extend(inode, di_bh, pos);
1633 int ocfs2_write_begin_nolock(struct file *filp,
1634 struct address_space *mapping,
1635 loff_t pos, unsigned len, unsigned flags,
1636 struct page **pagep, void **fsdata,
1637 struct buffer_head *di_bh, struct page *mmap_page)
1639 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1640 unsigned int clusters_to_alloc, extents_to_split;
1641 struct ocfs2_write_ctxt *wc;
1642 struct inode *inode = mapping->host;
1643 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1644 struct ocfs2_dinode *di;
1645 struct ocfs2_alloc_context *data_ac = NULL;
1646 struct ocfs2_alloc_context *meta_ac = NULL;
1648 struct ocfs2_extent_tree et;
1650 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1656 if (ocfs2_supports_inline_data(osb)) {
1657 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1669 if (ocfs2_sparse_alloc(osb))
1670 ret = ocfs2_zero_tail(inode, di_bh, pos);
1672 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1679 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1683 } else if (ret == 1) {
1684 ret = ocfs2_refcount_cow(inode, filp, di_bh,
1685 wc->w_cpos, wc->w_clen, UINT_MAX);
1692 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1699 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1702 * We set w_target_from, w_target_to here so that
1703 * ocfs2_write_end() knows which range in the target page to
1704 * write out. An allocation requires that we write the entire
1707 if (clusters_to_alloc || extents_to_split) {
1709 * XXX: We are stretching the limits of
1710 * ocfs2_lock_allocators(). It greatly over-estimates
1711 * the work to be done.
1713 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1714 " clusters_to_add = %u, extents_to_split = %u\n",
1715 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1716 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1717 clusters_to_alloc, extents_to_split);
1719 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1721 ret = ocfs2_lock_allocators(inode, &et,
1722 clusters_to_alloc, extents_to_split,
1723 &data_ac, &meta_ac);
1730 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1732 credits = ocfs2_calc_extend_credits(inode->i_sb,
1739 * We have to zero sparse allocated clusters, unwritten extent clusters,
1740 * and non-sparse clusters we just extended. For non-sparse writes,
1741 * we know zeros will only be needed in the first and/or last cluster.
1743 if (clusters_to_alloc || extents_to_split ||
1744 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1745 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1746 cluster_of_pages = 1;
1748 cluster_of_pages = 0;
1750 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1752 handle = ocfs2_start_trans(osb, credits);
1753 if (IS_ERR(handle)) {
1754 ret = PTR_ERR(handle);
1759 wc->w_handle = handle;
1761 if (clusters_to_alloc) {
1762 ret = dquot_alloc_space_nodirty(inode,
1763 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1768 * We don't want this to fail in ocfs2_write_end(), so do it
1771 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1772 OCFS2_JOURNAL_ACCESS_WRITE);
1779 * Fill our page array first. That way we've grabbed enough so
1780 * that we can zero and flush if we error after adding the
1783 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1784 cluster_of_pages, mmap_page);
1790 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1798 ocfs2_free_alloc_context(data_ac);
1800 ocfs2_free_alloc_context(meta_ac);
1803 *pagep = wc->w_target_page;
1807 if (clusters_to_alloc)
1808 dquot_free_space(inode,
1809 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1811 ocfs2_commit_trans(osb, handle);
1814 ocfs2_free_write_ctxt(wc);
1817 ocfs2_free_alloc_context(data_ac);
1819 ocfs2_free_alloc_context(meta_ac);
1823 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1824 loff_t pos, unsigned len, unsigned flags,
1825 struct page **pagep, void **fsdata)
1828 struct buffer_head *di_bh = NULL;
1829 struct inode *inode = mapping->host;
1831 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1838 * Take alloc sem here to prevent concurrent lookups. That way
1839 * the mapping, zeroing and tree manipulation within
1840 * ocfs2_write() will be safe against ->readpage(). This
1841 * should also serve to lock out allocation from a shared
1844 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1846 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1847 fsdata, di_bh, NULL);
1858 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1861 ocfs2_inode_unlock(inode, 1);
1866 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1867 unsigned len, unsigned *copied,
1868 struct ocfs2_dinode *di,
1869 struct ocfs2_write_ctxt *wc)
1873 if (unlikely(*copied < len)) {
1874 if (!PageUptodate(wc->w_target_page)) {
1880 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1881 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1882 kunmap_atomic(kaddr, KM_USER0);
1884 mlog(0, "Data written to inode at offset %llu. "
1885 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1886 (unsigned long long)pos, *copied,
1887 le16_to_cpu(di->id2.i_data.id_count),
1888 le16_to_cpu(di->i_dyn_features));
1891 int ocfs2_write_end_nolock(struct address_space *mapping,
1892 loff_t pos, unsigned len, unsigned copied,
1893 struct page *page, void *fsdata)
1896 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1897 struct inode *inode = mapping->host;
1898 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1899 struct ocfs2_write_ctxt *wc = fsdata;
1900 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1901 handle_t *handle = wc->w_handle;
1902 struct page *tmppage;
1904 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1905 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1906 goto out_write_size;
1909 if (unlikely(copied < len)) {
1910 if (!PageUptodate(wc->w_target_page))
1913 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1916 flush_dcache_page(wc->w_target_page);
1918 for(i = 0; i < wc->w_num_pages; i++) {
1919 tmppage = wc->w_pages[i];
1921 if (tmppage == wc->w_target_page) {
1922 from = wc->w_target_from;
1923 to = wc->w_target_to;
1925 BUG_ON(from > PAGE_CACHE_SIZE ||
1926 to > PAGE_CACHE_SIZE ||
1930 * Pages adjacent to the target (if any) imply
1931 * a hole-filling write in which case we want
1932 * to flush their entire range.
1935 to = PAGE_CACHE_SIZE;
1938 if (page_has_buffers(tmppage)) {
1939 if (ocfs2_should_order_data(inode))
1940 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1941 block_commit_write(tmppage, from, to);
1947 if (pos > inode->i_size) {
1948 i_size_write(inode, pos);
1949 mark_inode_dirty(inode);
1951 inode->i_blocks = ocfs2_inode_sector_count(inode);
1952 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1953 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1954 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1955 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1956 ocfs2_journal_dirty(handle, wc->w_di_bh);
1958 ocfs2_commit_trans(osb, handle);
1960 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1962 ocfs2_free_write_ctxt(wc);
1967 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1968 loff_t pos, unsigned len, unsigned copied,
1969 struct page *page, void *fsdata)
1972 struct inode *inode = mapping->host;
1974 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1976 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1977 ocfs2_inode_unlock(inode, 1);
1982 const struct address_space_operations ocfs2_aops = {
1983 .readpage = ocfs2_readpage,
1984 .readpages = ocfs2_readpages,
1985 .writepage = ocfs2_writepage,
1986 .write_begin = ocfs2_write_begin,
1987 .write_end = ocfs2_write_end,
1989 .sync_page = block_sync_page,
1990 .direct_IO = ocfs2_direct_IO,
1991 .invalidatepage = ocfs2_invalidatepage,
1992 .releasepage = ocfs2_releasepage,
1993 .migratepage = buffer_migrate_page,
1994 .is_partially_uptodate = block_is_partially_uptodate,
1995 .error_remove_page = generic_error_remove_page,