]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/ocfs2/aops.c
40396374741b4130f340a0164127f0fb04fc2d94
[karo-tx-linux.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30
31 #define MLOG_MASK_PREFIX ML_FILE_IO
32 #include <cluster/masklog.h>
33
34 #include "ocfs2.h"
35
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46
47 #include "buffer_head_io.h"
48
49 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
50                                    struct buffer_head *bh_result, int create)
51 {
52         int err = -EIO;
53         int status;
54         struct ocfs2_dinode *fe = NULL;
55         struct buffer_head *bh = NULL;
56         struct buffer_head *buffer_cache_bh = NULL;
57         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58         void *kaddr;
59
60         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
61                    (unsigned long long)iblock, bh_result, create);
62
63         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
64
65         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
66                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
67                      (unsigned long long)iblock);
68                 goto bail;
69         }
70
71         status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
72                                   OCFS2_I(inode)->ip_blkno,
73                                   &bh, OCFS2_BH_CACHED, inode);
74         if (status < 0) {
75                 mlog_errno(status);
76                 goto bail;
77         }
78         fe = (struct ocfs2_dinode *) bh->b_data;
79
80         if (!OCFS2_IS_VALID_DINODE(fe)) {
81                 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
82                      (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
83                      fe->i_signature);
84                 goto bail;
85         }
86
87         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
88                                                     le32_to_cpu(fe->i_clusters))) {
89                 mlog(ML_ERROR, "block offset is outside the allocated size: "
90                      "%llu\n", (unsigned long long)iblock);
91                 goto bail;
92         }
93
94         /* We don't use the page cache to create symlink data, so if
95          * need be, copy it over from the buffer cache. */
96         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98                             iblock;
99                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100                 if (!buffer_cache_bh) {
101                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
102                         goto bail;
103                 }
104
105                 /* we haven't locked out transactions, so a commit
106                  * could've happened. Since we've got a reference on
107                  * the bh, even if it commits while we're doing the
108                  * copy, the data is still good. */
109                 if (buffer_jbd(buffer_cache_bh)
110                     && ocfs2_inode_is_new(inode)) {
111                         kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
112                         if (!kaddr) {
113                                 mlog(ML_ERROR, "couldn't kmap!\n");
114                                 goto bail;
115                         }
116                         memcpy(kaddr + (bh_result->b_size * iblock),
117                                buffer_cache_bh->b_data,
118                                bh_result->b_size);
119                         kunmap_atomic(kaddr, KM_USER0);
120                         set_buffer_uptodate(bh_result);
121                 }
122                 brelse(buffer_cache_bh);
123         }
124
125         map_bh(bh_result, inode->i_sb,
126                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
127
128         err = 0;
129
130 bail:
131         if (bh)
132                 brelse(bh);
133
134         mlog_exit(err);
135         return err;
136 }
137
138 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
139                            struct buffer_head *bh_result, int create)
140 {
141         int err = 0;
142         unsigned int ext_flags;
143         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
144         u64 p_blkno, count, past_eof;
145         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
146
147         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
148                    (unsigned long long)iblock, bh_result, create);
149
150         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
151                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
152                      inode, inode->i_ino);
153
154         if (S_ISLNK(inode->i_mode)) {
155                 /* this always does I/O for some reason. */
156                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
157                 goto bail;
158         }
159
160         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
161                                           &ext_flags);
162         if (err) {
163                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
164                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
165                      (unsigned long long)p_blkno);
166                 goto bail;
167         }
168
169         if (max_blocks < count)
170                 count = max_blocks;
171
172         /*
173          * ocfs2 never allocates in this function - the only time we
174          * need to use BH_New is when we're extending i_size on a file
175          * system which doesn't support holes, in which case BH_New
176          * allows block_prepare_write() to zero.
177          *
178          * If we see this on a sparse file system, then a truncate has
179          * raced us and removed the cluster. In this case, we clear
180          * the buffers dirty and uptodate bits and let the buffer code
181          * ignore it as a hole.
182          */
183         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
184                 clear_buffer_dirty(bh_result);
185                 clear_buffer_uptodate(bh_result);
186                 goto bail;
187         }
188
189         /* Treat the unwritten extent as a hole for zeroing purposes. */
190         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
191                 map_bh(bh_result, inode->i_sb, p_blkno);
192
193         bh_result->b_size = count << inode->i_blkbits;
194
195         if (!ocfs2_sparse_alloc(osb)) {
196                 if (p_blkno == 0) {
197                         err = -EIO;
198                         mlog(ML_ERROR,
199                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
200                              (unsigned long long)iblock,
201                              (unsigned long long)p_blkno,
202                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
203                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
204                         dump_stack();
205                 }
206
207                 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
208                 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
209                      (unsigned long long)past_eof);
210
211                 if (create && (iblock >= past_eof))
212                         set_buffer_new(bh_result);
213         }
214
215 bail:
216         if (err < 0)
217                 err = -EIO;
218
219         mlog_exit(err);
220         return err;
221 }
222
223 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
224                            struct buffer_head *di_bh)
225 {
226         void *kaddr;
227         loff_t size;
228         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
229
230         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
231                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
232                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
233                 return -EROFS;
234         }
235
236         size = i_size_read(inode);
237
238         if (size > PAGE_CACHE_SIZE ||
239             size > ocfs2_max_inline_data(inode->i_sb)) {
240                 ocfs2_error(inode->i_sb,
241                             "Inode %llu has with inline data has bad size: %Lu",
242                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
243                             (unsigned long long)size);
244                 return -EROFS;
245         }
246
247         kaddr = kmap_atomic(page, KM_USER0);
248         if (size)
249                 memcpy(kaddr, di->id2.i_data.id_data, size);
250         /* Clear the remaining part of the page */
251         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
252         flush_dcache_page(page);
253         kunmap_atomic(kaddr, KM_USER0);
254
255         SetPageUptodate(page);
256
257         return 0;
258 }
259
260 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
261 {
262         int ret;
263         struct buffer_head *di_bh = NULL;
264         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
265
266         BUG_ON(!PageLocked(page));
267         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
268
269         ret = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &di_bh,
270                                OCFS2_BH_CACHED, inode);
271         if (ret) {
272                 mlog_errno(ret);
273                 goto out;
274         }
275
276         ret = ocfs2_read_inline_data(inode, page, di_bh);
277 out:
278         unlock_page(page);
279
280         brelse(di_bh);
281         return ret;
282 }
283
284 static int ocfs2_readpage(struct file *file, struct page *page)
285 {
286         struct inode *inode = page->mapping->host;
287         struct ocfs2_inode_info *oi = OCFS2_I(inode);
288         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
289         int ret, unlock = 1;
290
291         mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
292
293         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
294         if (ret != 0) {
295                 if (ret == AOP_TRUNCATED_PAGE)
296                         unlock = 0;
297                 mlog_errno(ret);
298                 goto out;
299         }
300
301         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
302                 ret = AOP_TRUNCATED_PAGE;
303                 goto out_inode_unlock;
304         }
305
306         /*
307          * i_size might have just been updated as we grabed the meta lock.  We
308          * might now be discovering a truncate that hit on another node.
309          * block_read_full_page->get_block freaks out if it is asked to read
310          * beyond the end of a file, so we check here.  Callers
311          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
312          * and notice that the page they just read isn't needed.
313          *
314          * XXX sys_readahead() seems to get that wrong?
315          */
316         if (start >= i_size_read(inode)) {
317                 zero_user(page, 0, PAGE_SIZE);
318                 SetPageUptodate(page);
319                 ret = 0;
320                 goto out_alloc;
321         }
322
323         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
324                 ret = ocfs2_readpage_inline(inode, page);
325         else
326                 ret = block_read_full_page(page, ocfs2_get_block);
327         unlock = 0;
328
329 out_alloc:
330         up_read(&OCFS2_I(inode)->ip_alloc_sem);
331 out_inode_unlock:
332         ocfs2_inode_unlock(inode, 0);
333 out:
334         if (unlock)
335                 unlock_page(page);
336         mlog_exit(ret);
337         return ret;
338 }
339
340 /*
341  * This is used only for read-ahead. Failures or difficult to handle
342  * situations are safe to ignore.
343  *
344  * Right now, we don't bother with BH_Boundary - in-inode extent lists
345  * are quite large (243 extents on 4k blocks), so most inodes don't
346  * grow out to a tree. If need be, detecting boundary extents could
347  * trivially be added in a future version of ocfs2_get_block().
348  */
349 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
350                            struct list_head *pages, unsigned nr_pages)
351 {
352         int ret, err = -EIO;
353         struct inode *inode = mapping->host;
354         struct ocfs2_inode_info *oi = OCFS2_I(inode);
355         loff_t start;
356         struct page *last;
357
358         /*
359          * Use the nonblocking flag for the dlm code to avoid page
360          * lock inversion, but don't bother with retrying.
361          */
362         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
363         if (ret)
364                 return err;
365
366         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
367                 ocfs2_inode_unlock(inode, 0);
368                 return err;
369         }
370
371         /*
372          * Don't bother with inline-data. There isn't anything
373          * to read-ahead in that case anyway...
374          */
375         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
376                 goto out_unlock;
377
378         /*
379          * Check whether a remote node truncated this file - we just
380          * drop out in that case as it's not worth handling here.
381          */
382         last = list_entry(pages->prev, struct page, lru);
383         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
384         if (start >= i_size_read(inode))
385                 goto out_unlock;
386
387         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
388
389 out_unlock:
390         up_read(&oi->ip_alloc_sem);
391         ocfs2_inode_unlock(inode, 0);
392
393         return err;
394 }
395
396 /* Note: Because we don't support holes, our allocation has
397  * already happened (allocation writes zeros to the file data)
398  * so we don't have to worry about ordered writes in
399  * ocfs2_writepage.
400  *
401  * ->writepage is called during the process of invalidating the page cache
402  * during blocked lock processing.  It can't block on any cluster locks
403  * to during block mapping.  It's relying on the fact that the block
404  * mapping can't have disappeared under the dirty pages that it is
405  * being asked to write back.
406  */
407 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
408 {
409         int ret;
410
411         mlog_entry("(0x%p)\n", page);
412
413         ret = block_write_full_page(page, ocfs2_get_block, wbc);
414
415         mlog_exit(ret);
416
417         return ret;
418 }
419
420 /*
421  * This is called from ocfs2_write_zero_page() which has handled it's
422  * own cluster locking and has ensured allocation exists for those
423  * blocks to be written.
424  */
425 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
426                                unsigned from, unsigned to)
427 {
428         int ret;
429
430         ret = block_prepare_write(page, from, to, ocfs2_get_block);
431
432         return ret;
433 }
434
435 /* Taken from ext3. We don't necessarily need the full blown
436  * functionality yet, but IMHO it's better to cut and paste the whole
437  * thing so we can avoid introducing our own bugs (and easily pick up
438  * their fixes when they happen) --Mark */
439 int walk_page_buffers(  handle_t *handle,
440                         struct buffer_head *head,
441                         unsigned from,
442                         unsigned to,
443                         int *partial,
444                         int (*fn)(      handle_t *handle,
445                                         struct buffer_head *bh))
446 {
447         struct buffer_head *bh;
448         unsigned block_start, block_end;
449         unsigned blocksize = head->b_size;
450         int err, ret = 0;
451         struct buffer_head *next;
452
453         for (   bh = head, block_start = 0;
454                 ret == 0 && (bh != head || !block_start);
455                 block_start = block_end, bh = next)
456         {
457                 next = bh->b_this_page;
458                 block_end = block_start + blocksize;
459                 if (block_end <= from || block_start >= to) {
460                         if (partial && !buffer_uptodate(bh))
461                                 *partial = 1;
462                         continue;
463                 }
464                 err = (*fn)(handle, bh);
465                 if (!ret)
466                         ret = err;
467         }
468         return ret;
469 }
470
471 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
472                                                          struct page *page,
473                                                          unsigned from,
474                                                          unsigned to)
475 {
476         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
477         handle_t *handle;
478         int ret = 0;
479
480         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
481         if (IS_ERR(handle)) {
482                 ret = -ENOMEM;
483                 mlog_errno(ret);
484                 goto out;
485         }
486
487         if (ocfs2_should_order_data(inode)) {
488                 ret = walk_page_buffers(handle,
489                                         page_buffers(page),
490                                         from, to, NULL,
491                                         ocfs2_journal_dirty_data);
492                 if (ret < 0) 
493                         mlog_errno(ret);
494         }
495 out:
496         if (ret) {
497                 if (!IS_ERR(handle))
498                         ocfs2_commit_trans(osb, handle);
499                 handle = ERR_PTR(ret);
500         }
501         return handle;
502 }
503
504 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
505 {
506         sector_t status;
507         u64 p_blkno = 0;
508         int err = 0;
509         struct inode *inode = mapping->host;
510
511         mlog_entry("(block = %llu)\n", (unsigned long long)block);
512
513         /* We don't need to lock journal system files, since they aren't
514          * accessed concurrently from multiple nodes.
515          */
516         if (!INODE_JOURNAL(inode)) {
517                 err = ocfs2_inode_lock(inode, NULL, 0);
518                 if (err) {
519                         if (err != -ENOENT)
520                                 mlog_errno(err);
521                         goto bail;
522                 }
523                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
524         }
525
526         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
527                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
528                                                   NULL);
529
530         if (!INODE_JOURNAL(inode)) {
531                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
532                 ocfs2_inode_unlock(inode, 0);
533         }
534
535         if (err) {
536                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
537                      (unsigned long long)block);
538                 mlog_errno(err);
539                 goto bail;
540         }
541
542 bail:
543         status = err ? 0 : p_blkno;
544
545         mlog_exit((int)status);
546
547         return status;
548 }
549
550 /*
551  * TODO: Make this into a generic get_blocks function.
552  *
553  * From do_direct_io in direct-io.c:
554  *  "So what we do is to permit the ->get_blocks function to populate
555  *   bh.b_size with the size of IO which is permitted at this offset and
556  *   this i_blkbits."
557  *
558  * This function is called directly from get_more_blocks in direct-io.c.
559  *
560  * called like this: dio->get_blocks(dio->inode, fs_startblk,
561  *                                      fs_count, map_bh, dio->rw == WRITE);
562  */
563 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
564                                      struct buffer_head *bh_result, int create)
565 {
566         int ret;
567         u64 p_blkno, inode_blocks, contig_blocks;
568         unsigned int ext_flags;
569         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
570         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
571
572         /* This function won't even be called if the request isn't all
573          * nicely aligned and of the right size, so there's no need
574          * for us to check any of that. */
575
576         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
577
578         /*
579          * Any write past EOF is not allowed because we'd be extending.
580          */
581         if (create && (iblock + max_blocks) > inode_blocks) {
582                 ret = -EIO;
583                 goto bail;
584         }
585
586         /* This figures out the size of the next contiguous block, and
587          * our logical offset */
588         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
589                                           &contig_blocks, &ext_flags);
590         if (ret) {
591                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
592                      (unsigned long long)iblock);
593                 ret = -EIO;
594                 goto bail;
595         }
596
597         if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
598                 ocfs2_error(inode->i_sb,
599                             "Inode %llu has a hole at block %llu\n",
600                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
601                             (unsigned long long)iblock);
602                 ret = -EROFS;
603                 goto bail;
604         }
605
606         /*
607          * get_more_blocks() expects us to describe a hole by clearing
608          * the mapped bit on bh_result().
609          *
610          * Consider an unwritten extent as a hole.
611          */
612         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
613                 map_bh(bh_result, inode->i_sb, p_blkno);
614         else {
615                 /*
616                  * ocfs2_prepare_inode_for_write() should have caught
617                  * the case where we'd be filling a hole and triggered
618                  * a buffered write instead.
619                  */
620                 if (create) {
621                         ret = -EIO;
622                         mlog_errno(ret);
623                         goto bail;
624                 }
625
626                 clear_buffer_mapped(bh_result);
627         }
628
629         /* make sure we don't map more than max_blocks blocks here as
630            that's all the kernel will handle at this point. */
631         if (max_blocks < contig_blocks)
632                 contig_blocks = max_blocks;
633         bh_result->b_size = contig_blocks << blocksize_bits;
634 bail:
635         return ret;
636 }
637
638 /* 
639  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
640  * particularly interested in the aio/dio case.  Like the core uses
641  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
642  * truncation on another.
643  */
644 static void ocfs2_dio_end_io(struct kiocb *iocb,
645                              loff_t offset,
646                              ssize_t bytes,
647                              void *private)
648 {
649         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
650         int level;
651
652         /* this io's submitter should not have unlocked this before we could */
653         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
654
655         ocfs2_iocb_clear_rw_locked(iocb);
656
657         level = ocfs2_iocb_rw_locked_level(iocb);
658         if (!level)
659                 up_read(&inode->i_alloc_sem);
660         ocfs2_rw_unlock(inode, level);
661 }
662
663 /*
664  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
665  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
666  * do journalled data.
667  */
668 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
669 {
670         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
671
672         journal_invalidatepage(journal, page, offset);
673 }
674
675 static int ocfs2_releasepage(struct page *page, gfp_t wait)
676 {
677         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
678
679         if (!page_has_buffers(page))
680                 return 0;
681         return journal_try_to_free_buffers(journal, page, wait);
682 }
683
684 static ssize_t ocfs2_direct_IO(int rw,
685                                struct kiocb *iocb,
686                                const struct iovec *iov,
687                                loff_t offset,
688                                unsigned long nr_segs)
689 {
690         struct file *file = iocb->ki_filp;
691         struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
692         int ret;
693
694         mlog_entry_void();
695
696         /*
697          * Fallback to buffered I/O if we see an inode without
698          * extents.
699          */
700         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
701                 return 0;
702
703         ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
704                                             inode->i_sb->s_bdev, iov, offset,
705                                             nr_segs, 
706                                             ocfs2_direct_IO_get_blocks,
707                                             ocfs2_dio_end_io);
708
709         mlog_exit(ret);
710         return ret;
711 }
712
713 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
714                                             u32 cpos,
715                                             unsigned int *start,
716                                             unsigned int *end)
717 {
718         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
719
720         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
721                 unsigned int cpp;
722
723                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
724
725                 cluster_start = cpos % cpp;
726                 cluster_start = cluster_start << osb->s_clustersize_bits;
727
728                 cluster_end = cluster_start + osb->s_clustersize;
729         }
730
731         BUG_ON(cluster_start > PAGE_SIZE);
732         BUG_ON(cluster_end > PAGE_SIZE);
733
734         if (start)
735                 *start = cluster_start;
736         if (end)
737                 *end = cluster_end;
738 }
739
740 /*
741  * 'from' and 'to' are the region in the page to avoid zeroing.
742  *
743  * If pagesize > clustersize, this function will avoid zeroing outside
744  * of the cluster boundary.
745  *
746  * from == to == 0 is code for "zero the entire cluster region"
747  */
748 static void ocfs2_clear_page_regions(struct page *page,
749                                      struct ocfs2_super *osb, u32 cpos,
750                                      unsigned from, unsigned to)
751 {
752         void *kaddr;
753         unsigned int cluster_start, cluster_end;
754
755         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
756
757         kaddr = kmap_atomic(page, KM_USER0);
758
759         if (from || to) {
760                 if (from > cluster_start)
761                         memset(kaddr + cluster_start, 0, from - cluster_start);
762                 if (to < cluster_end)
763                         memset(kaddr + to, 0, cluster_end - to);
764         } else {
765                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
766         }
767
768         kunmap_atomic(kaddr, KM_USER0);
769 }
770
771 /*
772  * Nonsparse file systems fully allocate before we get to the write
773  * code. This prevents ocfs2_write() from tagging the write as an
774  * allocating one, which means ocfs2_map_page_blocks() might try to
775  * read-in the blocks at the tail of our file. Avoid reading them by
776  * testing i_size against each block offset.
777  */
778 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
779                                  unsigned int block_start)
780 {
781         u64 offset = page_offset(page) + block_start;
782
783         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
784                 return 1;
785
786         if (i_size_read(inode) > offset)
787                 return 1;
788
789         return 0;
790 }
791
792 /*
793  * Some of this taken from block_prepare_write(). We already have our
794  * mapping by now though, and the entire write will be allocating or
795  * it won't, so not much need to use BH_New.
796  *
797  * This will also skip zeroing, which is handled externally.
798  */
799 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
800                           struct inode *inode, unsigned int from,
801                           unsigned int to, int new)
802 {
803         int ret = 0;
804         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
805         unsigned int block_end, block_start;
806         unsigned int bsize = 1 << inode->i_blkbits;
807
808         if (!page_has_buffers(page))
809                 create_empty_buffers(page, bsize, 0);
810
811         head = page_buffers(page);
812         for (bh = head, block_start = 0; bh != head || !block_start;
813              bh = bh->b_this_page, block_start += bsize) {
814                 block_end = block_start + bsize;
815
816                 clear_buffer_new(bh);
817
818                 /*
819                  * Ignore blocks outside of our i/o range -
820                  * they may belong to unallocated clusters.
821                  */
822                 if (block_start >= to || block_end <= from) {
823                         if (PageUptodate(page))
824                                 set_buffer_uptodate(bh);
825                         continue;
826                 }
827
828                 /*
829                  * For an allocating write with cluster size >= page
830                  * size, we always write the entire page.
831                  */
832                 if (new)
833                         set_buffer_new(bh);
834
835                 if (!buffer_mapped(bh)) {
836                         map_bh(bh, inode->i_sb, *p_blkno);
837                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
838                 }
839
840                 if (PageUptodate(page)) {
841                         if (!buffer_uptodate(bh))
842                                 set_buffer_uptodate(bh);
843                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
844                            !buffer_new(bh) &&
845                            ocfs2_should_read_blk(inode, page, block_start) &&
846                            (block_start < from || block_end > to)) {
847                         ll_rw_block(READ, 1, &bh);
848                         *wait_bh++=bh;
849                 }
850
851                 *p_blkno = *p_blkno + 1;
852         }
853
854         /*
855          * If we issued read requests - let them complete.
856          */
857         while(wait_bh > wait) {
858                 wait_on_buffer(*--wait_bh);
859                 if (!buffer_uptodate(*wait_bh))
860                         ret = -EIO;
861         }
862
863         if (ret == 0 || !new)
864                 return ret;
865
866         /*
867          * If we get -EIO above, zero out any newly allocated blocks
868          * to avoid exposing stale data.
869          */
870         bh = head;
871         block_start = 0;
872         do {
873                 block_end = block_start + bsize;
874                 if (block_end <= from)
875                         goto next_bh;
876                 if (block_start >= to)
877                         break;
878
879                 zero_user(page, block_start, bh->b_size);
880                 set_buffer_uptodate(bh);
881                 mark_buffer_dirty(bh);
882
883 next_bh:
884                 block_start = block_end;
885                 bh = bh->b_this_page;
886         } while (bh != head);
887
888         return ret;
889 }
890
891 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
892 #define OCFS2_MAX_CTXT_PAGES    1
893 #else
894 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
895 #endif
896
897 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
898
899 /*
900  * Describe the state of a single cluster to be written to.
901  */
902 struct ocfs2_write_cluster_desc {
903         u32             c_cpos;
904         u32             c_phys;
905         /*
906          * Give this a unique field because c_phys eventually gets
907          * filled.
908          */
909         unsigned        c_new;
910         unsigned        c_unwritten;
911         unsigned        c_needs_zero;
912 };
913
914 struct ocfs2_write_ctxt {
915         /* Logical cluster position / len of write */
916         u32                             w_cpos;
917         u32                             w_clen;
918
919         /* First cluster allocated in a nonsparse extend */
920         u32                             w_first_new_cpos;
921
922         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
923
924         /*
925          * This is true if page_size > cluster_size.
926          *
927          * It triggers a set of special cases during write which might
928          * have to deal with allocating writes to partial pages.
929          */
930         unsigned int                    w_large_pages;
931
932         /*
933          * Pages involved in this write.
934          *
935          * w_target_page is the page being written to by the user.
936          *
937          * w_pages is an array of pages which always contains
938          * w_target_page, and in the case of an allocating write with
939          * page_size < cluster size, it will contain zero'd and mapped
940          * pages adjacent to w_target_page which need to be written
941          * out in so that future reads from that region will get
942          * zero's.
943          */
944         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
945         unsigned int                    w_num_pages;
946         struct page                     *w_target_page;
947
948         /*
949          * ocfs2_write_end() uses this to know what the real range to
950          * write in the target should be.
951          */
952         unsigned int                    w_target_from;
953         unsigned int                    w_target_to;
954
955         /*
956          * We could use journal_current_handle() but this is cleaner,
957          * IMHO -Mark
958          */
959         handle_t                        *w_handle;
960
961         struct buffer_head              *w_di_bh;
962
963         struct ocfs2_cached_dealloc_ctxt w_dealloc;
964 };
965
966 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
967 {
968         int i;
969
970         for(i = 0; i < num_pages; i++) {
971                 if (pages[i]) {
972                         unlock_page(pages[i]);
973                         mark_page_accessed(pages[i]);
974                         page_cache_release(pages[i]);
975                 }
976         }
977 }
978
979 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
980 {
981         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
982
983         brelse(wc->w_di_bh);
984         kfree(wc);
985 }
986
987 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
988                                   struct ocfs2_super *osb, loff_t pos,
989                                   unsigned len, struct buffer_head *di_bh)
990 {
991         u32 cend;
992         struct ocfs2_write_ctxt *wc;
993
994         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
995         if (!wc)
996                 return -ENOMEM;
997
998         wc->w_cpos = pos >> osb->s_clustersize_bits;
999         wc->w_first_new_cpos = UINT_MAX;
1000         cend = (pos + len - 1) >> osb->s_clustersize_bits;
1001         wc->w_clen = cend - wc->w_cpos + 1;
1002         get_bh(di_bh);
1003         wc->w_di_bh = di_bh;
1004
1005         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1006                 wc->w_large_pages = 1;
1007         else
1008                 wc->w_large_pages = 0;
1009
1010         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1011
1012         *wcp = wc;
1013
1014         return 0;
1015 }
1016
1017 /*
1018  * If a page has any new buffers, zero them out here, and mark them uptodate
1019  * and dirty so they'll be written out (in order to prevent uninitialised
1020  * block data from leaking). And clear the new bit.
1021  */
1022 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1023 {
1024         unsigned int block_start, block_end;
1025         struct buffer_head *head, *bh;
1026
1027         BUG_ON(!PageLocked(page));
1028         if (!page_has_buffers(page))
1029                 return;
1030
1031         bh = head = page_buffers(page);
1032         block_start = 0;
1033         do {
1034                 block_end = block_start + bh->b_size;
1035
1036                 if (buffer_new(bh)) {
1037                         if (block_end > from && block_start < to) {
1038                                 if (!PageUptodate(page)) {
1039                                         unsigned start, end;
1040
1041                                         start = max(from, block_start);
1042                                         end = min(to, block_end);
1043
1044                                         zero_user_segment(page, start, end);
1045                                         set_buffer_uptodate(bh);
1046                                 }
1047
1048                                 clear_buffer_new(bh);
1049                                 mark_buffer_dirty(bh);
1050                         }
1051                 }
1052
1053                 block_start = block_end;
1054                 bh = bh->b_this_page;
1055         } while (bh != head);
1056 }
1057
1058 /*
1059  * Only called when we have a failure during allocating write to write
1060  * zero's to the newly allocated region.
1061  */
1062 static void ocfs2_write_failure(struct inode *inode,
1063                                 struct ocfs2_write_ctxt *wc,
1064                                 loff_t user_pos, unsigned user_len)
1065 {
1066         int i;
1067         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1068                 to = user_pos + user_len;
1069         struct page *tmppage;
1070
1071         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1072
1073         for(i = 0; i < wc->w_num_pages; i++) {
1074                 tmppage = wc->w_pages[i];
1075
1076                 if (page_has_buffers(tmppage)) {
1077                         if (ocfs2_should_order_data(inode))
1078                                 walk_page_buffers(wc->w_handle,
1079                                                   page_buffers(tmppage),
1080                                                   from, to, NULL,
1081                                                   ocfs2_journal_dirty_data);
1082
1083                         block_commit_write(tmppage, from, to);
1084                 }
1085         }
1086 }
1087
1088 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1089                                         struct ocfs2_write_ctxt *wc,
1090                                         struct page *page, u32 cpos,
1091                                         loff_t user_pos, unsigned user_len,
1092                                         int new)
1093 {
1094         int ret;
1095         unsigned int map_from = 0, map_to = 0;
1096         unsigned int cluster_start, cluster_end;
1097         unsigned int user_data_from = 0, user_data_to = 0;
1098
1099         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1100                                         &cluster_start, &cluster_end);
1101
1102         if (page == wc->w_target_page) {
1103                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1104                 map_to = map_from + user_len;
1105
1106                 if (new)
1107                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1108                                                     cluster_start, cluster_end,
1109                                                     new);
1110                 else
1111                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1112                                                     map_from, map_to, new);
1113                 if (ret) {
1114                         mlog_errno(ret);
1115                         goto out;
1116                 }
1117
1118                 user_data_from = map_from;
1119                 user_data_to = map_to;
1120                 if (new) {
1121                         map_from = cluster_start;
1122                         map_to = cluster_end;
1123                 }
1124         } else {
1125                 /*
1126                  * If we haven't allocated the new page yet, we
1127                  * shouldn't be writing it out without copying user
1128                  * data. This is likely a math error from the caller.
1129                  */
1130                 BUG_ON(!new);
1131
1132                 map_from = cluster_start;
1133                 map_to = cluster_end;
1134
1135                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1136                                             cluster_start, cluster_end, new);
1137                 if (ret) {
1138                         mlog_errno(ret);
1139                         goto out;
1140                 }
1141         }
1142
1143         /*
1144          * Parts of newly allocated pages need to be zero'd.
1145          *
1146          * Above, we have also rewritten 'to' and 'from' - as far as
1147          * the rest of the function is concerned, the entire cluster
1148          * range inside of a page needs to be written.
1149          *
1150          * We can skip this if the page is up to date - it's already
1151          * been zero'd from being read in as a hole.
1152          */
1153         if (new && !PageUptodate(page))
1154                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1155                                          cpos, user_data_from, user_data_to);
1156
1157         flush_dcache_page(page);
1158
1159 out:
1160         return ret;
1161 }
1162
1163 /*
1164  * This function will only grab one clusters worth of pages.
1165  */
1166 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1167                                       struct ocfs2_write_ctxt *wc,
1168                                       u32 cpos, loff_t user_pos, int new,
1169                                       struct page *mmap_page)
1170 {
1171         int ret = 0, i;
1172         unsigned long start, target_index, index;
1173         struct inode *inode = mapping->host;
1174
1175         target_index = user_pos >> PAGE_CACHE_SHIFT;
1176
1177         /*
1178          * Figure out how many pages we'll be manipulating here. For
1179          * non allocating write, we just change the one
1180          * page. Otherwise, we'll need a whole clusters worth.
1181          */
1182         if (new) {
1183                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1184                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1185         } else {
1186                 wc->w_num_pages = 1;
1187                 start = target_index;
1188         }
1189
1190         for(i = 0; i < wc->w_num_pages; i++) {
1191                 index = start + i;
1192
1193                 if (index == target_index && mmap_page) {
1194                         /*
1195                          * ocfs2_pagemkwrite() is a little different
1196                          * and wants us to directly use the page
1197                          * passed in.
1198                          */
1199                         lock_page(mmap_page);
1200
1201                         if (mmap_page->mapping != mapping) {
1202                                 unlock_page(mmap_page);
1203                                 /*
1204                                  * Sanity check - the locking in
1205                                  * ocfs2_pagemkwrite() should ensure
1206                                  * that this code doesn't trigger.
1207                                  */
1208                                 ret = -EINVAL;
1209                                 mlog_errno(ret);
1210                                 goto out;
1211                         }
1212
1213                         page_cache_get(mmap_page);
1214                         wc->w_pages[i] = mmap_page;
1215                 } else {
1216                         wc->w_pages[i] = find_or_create_page(mapping, index,
1217                                                              GFP_NOFS);
1218                         if (!wc->w_pages[i]) {
1219                                 ret = -ENOMEM;
1220                                 mlog_errno(ret);
1221                                 goto out;
1222                         }
1223                 }
1224
1225                 if (index == target_index)
1226                         wc->w_target_page = wc->w_pages[i];
1227         }
1228 out:
1229         return ret;
1230 }
1231
1232 /*
1233  * Prepare a single cluster for write one cluster into the file.
1234  */
1235 static int ocfs2_write_cluster(struct address_space *mapping,
1236                                u32 phys, unsigned int unwritten,
1237                                unsigned int should_zero,
1238                                struct ocfs2_alloc_context *data_ac,
1239                                struct ocfs2_alloc_context *meta_ac,
1240                                struct ocfs2_write_ctxt *wc, u32 cpos,
1241                                loff_t user_pos, unsigned user_len)
1242 {
1243         int ret, i, new;
1244         u64 v_blkno, p_blkno;
1245         struct inode *inode = mapping->host;
1246
1247         new = phys == 0 ? 1 : 0;
1248
1249         if (new) {
1250                 u32 tmp_pos;
1251
1252                 /*
1253                  * This is safe to call with the page locks - it won't take
1254                  * any additional semaphores or cluster locks.
1255                  */
1256                 tmp_pos = cpos;
1257                 ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1258                                                  &tmp_pos, 1, 0, wc->w_di_bh,
1259                                                  wc->w_handle, data_ac,
1260                                                  meta_ac, NULL);
1261                 /*
1262                  * This shouldn't happen because we must have already
1263                  * calculated the correct meta data allocation required. The
1264                  * internal tree allocation code should know how to increase
1265                  * transaction credits itself.
1266                  *
1267                  * If need be, we could handle -EAGAIN for a
1268                  * RESTART_TRANS here.
1269                  */
1270                 mlog_bug_on_msg(ret == -EAGAIN,
1271                                 "Inode %llu: EAGAIN return during allocation.\n",
1272                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1273                 if (ret < 0) {
1274                         mlog_errno(ret);
1275                         goto out;
1276                 }
1277         } else if (unwritten) {
1278                 ret = ocfs2_mark_extent_written(inode, wc->w_di_bh,
1279                                                 wc->w_handle, cpos, 1, phys,
1280                                                 meta_ac, &wc->w_dealloc);
1281                 if (ret < 0) {
1282                         mlog_errno(ret);
1283                         goto out;
1284                 }
1285         }
1286
1287         if (should_zero)
1288                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1289         else
1290                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1291
1292         /*
1293          * The only reason this should fail is due to an inability to
1294          * find the extent added.
1295          */
1296         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1297                                           NULL);
1298         if (ret < 0) {
1299                 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1300                             "at logical block %llu",
1301                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1302                             (unsigned long long)v_blkno);
1303                 goto out;
1304         }
1305
1306         BUG_ON(p_blkno == 0);
1307
1308         for(i = 0; i < wc->w_num_pages; i++) {
1309                 int tmpret;
1310
1311                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1312                                                       wc->w_pages[i], cpos,
1313                                                       user_pos, user_len,
1314                                                       should_zero);
1315                 if (tmpret) {
1316                         mlog_errno(tmpret);
1317                         if (ret == 0)
1318                                 tmpret = ret;
1319                 }
1320         }
1321
1322         /*
1323          * We only have cleanup to do in case of allocating write.
1324          */
1325         if (ret && new)
1326                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1327
1328 out:
1329
1330         return ret;
1331 }
1332
1333 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1334                                        struct ocfs2_alloc_context *data_ac,
1335                                        struct ocfs2_alloc_context *meta_ac,
1336                                        struct ocfs2_write_ctxt *wc,
1337                                        loff_t pos, unsigned len)
1338 {
1339         int ret, i;
1340         loff_t cluster_off;
1341         unsigned int local_len = len;
1342         struct ocfs2_write_cluster_desc *desc;
1343         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1344
1345         for (i = 0; i < wc->w_clen; i++) {
1346                 desc = &wc->w_desc[i];
1347
1348                 /*
1349                  * We have to make sure that the total write passed in
1350                  * doesn't extend past a single cluster.
1351                  */
1352                 local_len = len;
1353                 cluster_off = pos & (osb->s_clustersize - 1);
1354                 if ((cluster_off + local_len) > osb->s_clustersize)
1355                         local_len = osb->s_clustersize - cluster_off;
1356
1357                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1358                                           desc->c_unwritten,
1359                                           desc->c_needs_zero,
1360                                           data_ac, meta_ac,
1361                                           wc, desc->c_cpos, pos, local_len);
1362                 if (ret) {
1363                         mlog_errno(ret);
1364                         goto out;
1365                 }
1366
1367                 len -= local_len;
1368                 pos += local_len;
1369         }
1370
1371         ret = 0;
1372 out:
1373         return ret;
1374 }
1375
1376 /*
1377  * ocfs2_write_end() wants to know which parts of the target page it
1378  * should complete the write on. It's easiest to compute them ahead of
1379  * time when a more complete view of the write is available.
1380  */
1381 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1382                                         struct ocfs2_write_ctxt *wc,
1383                                         loff_t pos, unsigned len, int alloc)
1384 {
1385         struct ocfs2_write_cluster_desc *desc;
1386
1387         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1388         wc->w_target_to = wc->w_target_from + len;
1389
1390         if (alloc == 0)
1391                 return;
1392
1393         /*
1394          * Allocating write - we may have different boundaries based
1395          * on page size and cluster size.
1396          *
1397          * NOTE: We can no longer compute one value from the other as
1398          * the actual write length and user provided length may be
1399          * different.
1400          */
1401
1402         if (wc->w_large_pages) {
1403                 /*
1404                  * We only care about the 1st and last cluster within
1405                  * our range and whether they should be zero'd or not. Either
1406                  * value may be extended out to the start/end of a
1407                  * newly allocated cluster.
1408                  */
1409                 desc = &wc->w_desc[0];
1410                 if (desc->c_needs_zero)
1411                         ocfs2_figure_cluster_boundaries(osb,
1412                                                         desc->c_cpos,
1413                                                         &wc->w_target_from,
1414                                                         NULL);
1415
1416                 desc = &wc->w_desc[wc->w_clen - 1];
1417                 if (desc->c_needs_zero)
1418                         ocfs2_figure_cluster_boundaries(osb,
1419                                                         desc->c_cpos,
1420                                                         NULL,
1421                                                         &wc->w_target_to);
1422         } else {
1423                 wc->w_target_from = 0;
1424                 wc->w_target_to = PAGE_CACHE_SIZE;
1425         }
1426 }
1427
1428 /*
1429  * Populate each single-cluster write descriptor in the write context
1430  * with information about the i/o to be done.
1431  *
1432  * Returns the number of clusters that will have to be allocated, as
1433  * well as a worst case estimate of the number of extent records that
1434  * would have to be created during a write to an unwritten region.
1435  */
1436 static int ocfs2_populate_write_desc(struct inode *inode,
1437                                      struct ocfs2_write_ctxt *wc,
1438                                      unsigned int *clusters_to_alloc,
1439                                      unsigned int *extents_to_split)
1440 {
1441         int ret;
1442         struct ocfs2_write_cluster_desc *desc;
1443         unsigned int num_clusters = 0;
1444         unsigned int ext_flags = 0;
1445         u32 phys = 0;
1446         int i;
1447
1448         *clusters_to_alloc = 0;
1449         *extents_to_split = 0;
1450
1451         for (i = 0; i < wc->w_clen; i++) {
1452                 desc = &wc->w_desc[i];
1453                 desc->c_cpos = wc->w_cpos + i;
1454
1455                 if (num_clusters == 0) {
1456                         /*
1457                          * Need to look up the next extent record.
1458                          */
1459                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1460                                                  &num_clusters, &ext_flags);
1461                         if (ret) {
1462                                 mlog_errno(ret);
1463                                 goto out;
1464                         }
1465
1466                         /*
1467                          * Assume worst case - that we're writing in
1468                          * the middle of the extent.
1469                          *
1470                          * We can assume that the write proceeds from
1471                          * left to right, in which case the extent
1472                          * insert code is smart enough to coalesce the
1473                          * next splits into the previous records created.
1474                          */
1475                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1476                                 *extents_to_split = *extents_to_split + 2;
1477                 } else if (phys) {
1478                         /*
1479                          * Only increment phys if it doesn't describe
1480                          * a hole.
1481                          */
1482                         phys++;
1483                 }
1484
1485                 /*
1486                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1487                  * file that got extended.  w_first_new_cpos tells us
1488                  * where the newly allocated clusters are so we can
1489                  * zero them.
1490                  */
1491                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1492                         BUG_ON(phys == 0);
1493                         desc->c_needs_zero = 1;
1494                 }
1495
1496                 desc->c_phys = phys;
1497                 if (phys == 0) {
1498                         desc->c_new = 1;
1499                         desc->c_needs_zero = 1;
1500                         *clusters_to_alloc = *clusters_to_alloc + 1;
1501                 }
1502
1503                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1504                         desc->c_unwritten = 1;
1505                         desc->c_needs_zero = 1;
1506                 }
1507
1508                 num_clusters--;
1509         }
1510
1511         ret = 0;
1512 out:
1513         return ret;
1514 }
1515
1516 static int ocfs2_write_begin_inline(struct address_space *mapping,
1517                                     struct inode *inode,
1518                                     struct ocfs2_write_ctxt *wc)
1519 {
1520         int ret;
1521         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1522         struct page *page;
1523         handle_t *handle;
1524         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1525
1526         page = find_or_create_page(mapping, 0, GFP_NOFS);
1527         if (!page) {
1528                 ret = -ENOMEM;
1529                 mlog_errno(ret);
1530                 goto out;
1531         }
1532         /*
1533          * If we don't set w_num_pages then this page won't get unlocked
1534          * and freed on cleanup of the write context.
1535          */
1536         wc->w_pages[0] = wc->w_target_page = page;
1537         wc->w_num_pages = 1;
1538
1539         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1540         if (IS_ERR(handle)) {
1541                 ret = PTR_ERR(handle);
1542                 mlog_errno(ret);
1543                 goto out;
1544         }
1545
1546         ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1547                                    OCFS2_JOURNAL_ACCESS_WRITE);
1548         if (ret) {
1549                 ocfs2_commit_trans(osb, handle);
1550
1551                 mlog_errno(ret);
1552                 goto out;
1553         }
1554
1555         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1556                 ocfs2_set_inode_data_inline(inode, di);
1557
1558         if (!PageUptodate(page)) {
1559                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1560                 if (ret) {
1561                         ocfs2_commit_trans(osb, handle);
1562
1563                         goto out;
1564                 }
1565         }
1566
1567         wc->w_handle = handle;
1568 out:
1569         return ret;
1570 }
1571
1572 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1573 {
1574         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1575
1576         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1577                 return 1;
1578         return 0;
1579 }
1580
1581 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1582                                           struct inode *inode, loff_t pos,
1583                                           unsigned len, struct page *mmap_page,
1584                                           struct ocfs2_write_ctxt *wc)
1585 {
1586         int ret, written = 0;
1587         loff_t end = pos + len;
1588         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1589
1590         mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1591              (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1592              oi->ip_dyn_features);
1593
1594         /*
1595          * Handle inodes which already have inline data 1st.
1596          */
1597         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1598                 if (mmap_page == NULL &&
1599                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1600                         goto do_inline_write;
1601
1602                 /*
1603                  * The write won't fit - we have to give this inode an
1604                  * inline extent list now.
1605                  */
1606                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1607                 if (ret)
1608                         mlog_errno(ret);
1609                 goto out;
1610         }
1611
1612         /*
1613          * Check whether the inode can accept inline data.
1614          */
1615         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1616                 return 0;
1617
1618         /*
1619          * Check whether the write can fit.
1620          */
1621         if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1622                 return 0;
1623
1624 do_inline_write:
1625         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1626         if (ret) {
1627                 mlog_errno(ret);
1628                 goto out;
1629         }
1630
1631         /*
1632          * This signals to the caller that the data can be written
1633          * inline.
1634          */
1635         written = 1;
1636 out:
1637         return written ? written : ret;
1638 }
1639
1640 /*
1641  * This function only does anything for file systems which can't
1642  * handle sparse files.
1643  *
1644  * What we want to do here is fill in any hole between the current end
1645  * of allocation and the end of our write. That way the rest of the
1646  * write path can treat it as an non-allocating write, which has no
1647  * special case code for sparse/nonsparse files.
1648  */
1649 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1650                                         unsigned len,
1651                                         struct ocfs2_write_ctxt *wc)
1652 {
1653         int ret;
1654         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1655         loff_t newsize = pos + len;
1656
1657         if (ocfs2_sparse_alloc(osb))
1658                 return 0;
1659
1660         if (newsize <= i_size_read(inode))
1661                 return 0;
1662
1663         ret = ocfs2_extend_no_holes(inode, newsize, pos);
1664         if (ret)
1665                 mlog_errno(ret);
1666
1667         wc->w_first_new_cpos =
1668                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1669
1670         return ret;
1671 }
1672
1673 int ocfs2_write_begin_nolock(struct address_space *mapping,
1674                              loff_t pos, unsigned len, unsigned flags,
1675                              struct page **pagep, void **fsdata,
1676                              struct buffer_head *di_bh, struct page *mmap_page)
1677 {
1678         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1679         unsigned int clusters_to_alloc, extents_to_split;
1680         struct ocfs2_write_ctxt *wc;
1681         struct inode *inode = mapping->host;
1682         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1683         struct ocfs2_dinode *di;
1684         struct ocfs2_alloc_context *data_ac = NULL;
1685         struct ocfs2_alloc_context *meta_ac = NULL;
1686         handle_t *handle;
1687
1688         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1689         if (ret) {
1690                 mlog_errno(ret);
1691                 return ret;
1692         }
1693
1694         if (ocfs2_supports_inline_data(osb)) {
1695                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1696                                                      mmap_page, wc);
1697                 if (ret == 1) {
1698                         ret = 0;
1699                         goto success;
1700                 }
1701                 if (ret < 0) {
1702                         mlog_errno(ret);
1703                         goto out;
1704                 }
1705         }
1706
1707         ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1708         if (ret) {
1709                 mlog_errno(ret);
1710                 goto out;
1711         }
1712
1713         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1714                                         &extents_to_split);
1715         if (ret) {
1716                 mlog_errno(ret);
1717                 goto out;
1718         }
1719
1720         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1721
1722         /*
1723          * We set w_target_from, w_target_to here so that
1724          * ocfs2_write_end() knows which range in the target page to
1725          * write out. An allocation requires that we write the entire
1726          * cluster range.
1727          */
1728         if (clusters_to_alloc || extents_to_split) {
1729                 /*
1730                  * XXX: We are stretching the limits of
1731                  * ocfs2_lock_allocators(). It greatly over-estimates
1732                  * the work to be done.
1733                  */
1734                 ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc,
1735                                             extents_to_split, &data_ac, &meta_ac);
1736                 if (ret) {
1737                         mlog_errno(ret);
1738                         goto out;
1739                 }
1740
1741                 credits = ocfs2_calc_extend_credits(inode->i_sb, di,
1742                                                     clusters_to_alloc);
1743
1744         }
1745
1746         /*
1747          * We have to zero sparse allocated clusters, unwritten extent clusters,
1748          * and non-sparse clusters we just extended.  For non-sparse writes,
1749          * we know zeros will only be needed in the first and/or last cluster.
1750          */
1751         if (clusters_to_alloc || extents_to_split ||
1752             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1753                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1754                 cluster_of_pages = 1;
1755         else
1756                 cluster_of_pages = 0;
1757
1758         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1759
1760         handle = ocfs2_start_trans(osb, credits);
1761         if (IS_ERR(handle)) {
1762                 ret = PTR_ERR(handle);
1763                 mlog_errno(ret);
1764                 goto out;
1765         }
1766
1767         wc->w_handle = handle;
1768
1769         /*
1770          * We don't want this to fail in ocfs2_write_end(), so do it
1771          * here.
1772          */
1773         ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1774                                    OCFS2_JOURNAL_ACCESS_WRITE);
1775         if (ret) {
1776                 mlog_errno(ret);
1777                 goto out_commit;
1778         }
1779
1780         /*
1781          * Fill our page array first. That way we've grabbed enough so
1782          * that we can zero and flush if we error after adding the
1783          * extent.
1784          */
1785         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1786                                          cluster_of_pages, mmap_page);
1787         if (ret) {
1788                 mlog_errno(ret);
1789                 goto out_commit;
1790         }
1791
1792         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1793                                           len);
1794         if (ret) {
1795                 mlog_errno(ret);
1796                 goto out_commit;
1797         }
1798
1799         if (data_ac)
1800                 ocfs2_free_alloc_context(data_ac);
1801         if (meta_ac)
1802                 ocfs2_free_alloc_context(meta_ac);
1803
1804 success:
1805         *pagep = wc->w_target_page;
1806         *fsdata = wc;
1807         return 0;
1808 out_commit:
1809         ocfs2_commit_trans(osb, handle);
1810
1811 out:
1812         ocfs2_free_write_ctxt(wc);
1813
1814         if (data_ac)
1815                 ocfs2_free_alloc_context(data_ac);
1816         if (meta_ac)
1817                 ocfs2_free_alloc_context(meta_ac);
1818         return ret;
1819 }
1820
1821 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1822                              loff_t pos, unsigned len, unsigned flags,
1823                              struct page **pagep, void **fsdata)
1824 {
1825         int ret;
1826         struct buffer_head *di_bh = NULL;
1827         struct inode *inode = mapping->host;
1828
1829         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1830         if (ret) {
1831                 mlog_errno(ret);
1832                 return ret;
1833         }
1834
1835         /*
1836          * Take alloc sem here to prevent concurrent lookups. That way
1837          * the mapping, zeroing and tree manipulation within
1838          * ocfs2_write() will be safe against ->readpage(). This
1839          * should also serve to lock out allocation from a shared
1840          * writeable region.
1841          */
1842         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1843
1844         ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1845                                        fsdata, di_bh, NULL);
1846         if (ret) {
1847                 mlog_errno(ret);
1848                 goto out_fail;
1849         }
1850
1851         brelse(di_bh);
1852
1853         return 0;
1854
1855 out_fail:
1856         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1857
1858         brelse(di_bh);
1859         ocfs2_inode_unlock(inode, 1);
1860
1861         return ret;
1862 }
1863
1864 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1865                                    unsigned len, unsigned *copied,
1866                                    struct ocfs2_dinode *di,
1867                                    struct ocfs2_write_ctxt *wc)
1868 {
1869         void *kaddr;
1870
1871         if (unlikely(*copied < len)) {
1872                 if (!PageUptodate(wc->w_target_page)) {
1873                         *copied = 0;
1874                         return;
1875                 }
1876         }
1877
1878         kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1879         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1880         kunmap_atomic(kaddr, KM_USER0);
1881
1882         mlog(0, "Data written to inode at offset %llu. "
1883              "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1884              (unsigned long long)pos, *copied,
1885              le16_to_cpu(di->id2.i_data.id_count),
1886              le16_to_cpu(di->i_dyn_features));
1887 }
1888
1889 int ocfs2_write_end_nolock(struct address_space *mapping,
1890                            loff_t pos, unsigned len, unsigned copied,
1891                            struct page *page, void *fsdata)
1892 {
1893         int i;
1894         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1895         struct inode *inode = mapping->host;
1896         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1897         struct ocfs2_write_ctxt *wc = fsdata;
1898         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1899         handle_t *handle = wc->w_handle;
1900         struct page *tmppage;
1901
1902         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1903                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1904                 goto out_write_size;
1905         }
1906
1907         if (unlikely(copied < len)) {
1908                 if (!PageUptodate(wc->w_target_page))
1909                         copied = 0;
1910
1911                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1912                                        start+len);
1913         }
1914         flush_dcache_page(wc->w_target_page);
1915
1916         for(i = 0; i < wc->w_num_pages; i++) {
1917                 tmppage = wc->w_pages[i];
1918
1919                 if (tmppage == wc->w_target_page) {
1920                         from = wc->w_target_from;
1921                         to = wc->w_target_to;
1922
1923                         BUG_ON(from > PAGE_CACHE_SIZE ||
1924                                to > PAGE_CACHE_SIZE ||
1925                                to < from);
1926                 } else {
1927                         /*
1928                          * Pages adjacent to the target (if any) imply
1929                          * a hole-filling write in which case we want
1930                          * to flush their entire range.
1931                          */
1932                         from = 0;
1933                         to = PAGE_CACHE_SIZE;
1934                 }
1935
1936                 if (page_has_buffers(tmppage)) {
1937                         if (ocfs2_should_order_data(inode))
1938                                 walk_page_buffers(wc->w_handle,
1939                                                   page_buffers(tmppage),
1940                                                   from, to, NULL,
1941                                                   ocfs2_journal_dirty_data);
1942                         block_commit_write(tmppage, from, to);
1943                 }
1944         }
1945
1946 out_write_size:
1947         pos += copied;
1948         if (pos > inode->i_size) {
1949                 i_size_write(inode, pos);
1950                 mark_inode_dirty(inode);
1951         }
1952         inode->i_blocks = ocfs2_inode_sector_count(inode);
1953         di->i_size = cpu_to_le64((u64)i_size_read(inode));
1954         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1955         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1956         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1957         ocfs2_journal_dirty(handle, wc->w_di_bh);
1958
1959         ocfs2_commit_trans(osb, handle);
1960
1961         ocfs2_run_deallocs(osb, &wc->w_dealloc);
1962
1963         ocfs2_free_write_ctxt(wc);
1964
1965         return copied;
1966 }
1967
1968 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1969                            loff_t pos, unsigned len, unsigned copied,
1970                            struct page *page, void *fsdata)
1971 {
1972         int ret;
1973         struct inode *inode = mapping->host;
1974
1975         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1976
1977         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1978         ocfs2_inode_unlock(inode, 1);
1979
1980         return ret;
1981 }
1982
1983 const struct address_space_operations ocfs2_aops = {
1984         .readpage       = ocfs2_readpage,
1985         .readpages      = ocfs2_readpages,
1986         .writepage      = ocfs2_writepage,
1987         .write_begin    = ocfs2_write_begin,
1988         .write_end      = ocfs2_write_end,
1989         .bmap           = ocfs2_bmap,
1990         .sync_page      = block_sync_page,
1991         .direct_IO      = ocfs2_direct_IO,
1992         .invalidatepage = ocfs2_invalidatepage,
1993         .releasepage    = ocfs2_releasepage,
1994         .migratepage    = buffer_migrate_page,
1995 };