]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/ocfs2/aops.c
ocfs2: remove OCFS2_IOCB_SEM lock type in direct io
[karo-tx-linux.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57                                    struct buffer_head *bh_result, int create)
58 {
59         int err = -EIO;
60         int status;
61         struct ocfs2_dinode *fe = NULL;
62         struct buffer_head *bh = NULL;
63         struct buffer_head *buffer_cache_bh = NULL;
64         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65         void *kaddr;
66
67         trace_ocfs2_symlink_get_block(
68                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
69                         (unsigned long long)iblock, bh_result, create);
70
71         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75                      (unsigned long long)iblock);
76                 goto bail;
77         }
78
79         status = ocfs2_read_inode_block(inode, &bh);
80         if (status < 0) {
81                 mlog_errno(status);
82                 goto bail;
83         }
84         fe = (struct ocfs2_dinode *) bh->b_data;
85
86         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87                                                     le32_to_cpu(fe->i_clusters))) {
88                 err = -ENOMEM;
89                 mlog(ML_ERROR, "block offset is outside the allocated size: "
90                      "%llu\n", (unsigned long long)iblock);
91                 goto bail;
92         }
93
94         /* We don't use the page cache to create symlink data, so if
95          * need be, copy it over from the buffer cache. */
96         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98                             iblock;
99                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100                 if (!buffer_cache_bh) {
101                         err = -ENOMEM;
102                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103                         goto bail;
104                 }
105
106                 /* we haven't locked out transactions, so a commit
107                  * could've happened. Since we've got a reference on
108                  * the bh, even if it commits while we're doing the
109                  * copy, the data is still good. */
110                 if (buffer_jbd(buffer_cache_bh)
111                     && ocfs2_inode_is_new(inode)) {
112                         kaddr = kmap_atomic(bh_result->b_page);
113                         if (!kaddr) {
114                                 mlog(ML_ERROR, "couldn't kmap!\n");
115                                 goto bail;
116                         }
117                         memcpy(kaddr + (bh_result->b_size * iblock),
118                                buffer_cache_bh->b_data,
119                                bh_result->b_size);
120                         kunmap_atomic(kaddr);
121                         set_buffer_uptodate(bh_result);
122                 }
123                 brelse(buffer_cache_bh);
124         }
125
126         map_bh(bh_result, inode->i_sb,
127                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129         err = 0;
130
131 bail:
132         brelse(bh);
133
134         return err;
135 }
136
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138                     struct buffer_head *bh_result, int create)
139 {
140         int err = 0;
141         unsigned int ext_flags;
142         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143         u64 p_blkno, count, past_eof;
144         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145
146         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147                               (unsigned long long)iblock, bh_result, create);
148
149         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151                      inode, inode->i_ino);
152
153         if (S_ISLNK(inode->i_mode)) {
154                 /* this always does I/O for some reason. */
155                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156                 goto bail;
157         }
158
159         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160                                           &ext_flags);
161         if (err) {
162                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164                      (unsigned long long)p_blkno);
165                 goto bail;
166         }
167
168         if (max_blocks < count)
169                 count = max_blocks;
170
171         /*
172          * ocfs2 never allocates in this function - the only time we
173          * need to use BH_New is when we're extending i_size on a file
174          * system which doesn't support holes, in which case BH_New
175          * allows __block_write_begin() to zero.
176          *
177          * If we see this on a sparse file system, then a truncate has
178          * raced us and removed the cluster. In this case, we clear
179          * the buffers dirty and uptodate bits and let the buffer code
180          * ignore it as a hole.
181          */
182         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183                 clear_buffer_dirty(bh_result);
184                 clear_buffer_uptodate(bh_result);
185                 goto bail;
186         }
187
188         /* Treat the unwritten extent as a hole for zeroing purposes. */
189         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190                 map_bh(bh_result, inode->i_sb, p_blkno);
191
192         bh_result->b_size = count << inode->i_blkbits;
193
194         if (!ocfs2_sparse_alloc(osb)) {
195                 if (p_blkno == 0) {
196                         err = -EIO;
197                         mlog(ML_ERROR,
198                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199                              (unsigned long long)iblock,
200                              (unsigned long long)p_blkno,
201                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
202                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203                         dump_stack();
204                         goto bail;
205                 }
206         }
207
208         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209
210         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211                                   (unsigned long long)past_eof);
212         if (create && (iblock >= past_eof))
213                 set_buffer_new(bh_result);
214
215 bail:
216         if (err < 0)
217                 err = -EIO;
218
219         return err;
220 }
221
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223                            struct buffer_head *di_bh)
224 {
225         void *kaddr;
226         loff_t size;
227         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
231                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
232                 return -EROFS;
233         }
234
235         size = i_size_read(inode);
236
237         if (size > PAGE_CACHE_SIZE ||
238             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239                 ocfs2_error(inode->i_sb,
240                             "Inode %llu has with inline data has bad size: %Lu",
241                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
242                             (unsigned long long)size);
243                 return -EROFS;
244         }
245
246         kaddr = kmap_atomic(page);
247         if (size)
248                 memcpy(kaddr, di->id2.i_data.id_data, size);
249         /* Clear the remaining part of the page */
250         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251         flush_dcache_page(page);
252         kunmap_atomic(kaddr);
253
254         SetPageUptodate(page);
255
256         return 0;
257 }
258
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261         int ret;
262         struct buffer_head *di_bh = NULL;
263
264         BUG_ON(!PageLocked(page));
265         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266
267         ret = ocfs2_read_inode_block(inode, &di_bh);
268         if (ret) {
269                 mlog_errno(ret);
270                 goto out;
271         }
272
273         ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275         unlock_page(page);
276
277         brelse(di_bh);
278         return ret;
279 }
280
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283         struct inode *inode = page->mapping->host;
284         struct ocfs2_inode_info *oi = OCFS2_I(inode);
285         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286         int ret, unlock = 1;
287
288         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289                              (page ? page->index : 0));
290
291         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292         if (ret != 0) {
293                 if (ret == AOP_TRUNCATED_PAGE)
294                         unlock = 0;
295                 mlog_errno(ret);
296                 goto out;
297         }
298
299         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300                 /*
301                  * Unlock the page and cycle ip_alloc_sem so that we don't
302                  * busyloop waiting for ip_alloc_sem to unlock
303                  */
304                 ret = AOP_TRUNCATED_PAGE;
305                 unlock_page(page);
306                 unlock = 0;
307                 down_read(&oi->ip_alloc_sem);
308                 up_read(&oi->ip_alloc_sem);
309                 goto out_inode_unlock;
310         }
311
312         /*
313          * i_size might have just been updated as we grabed the meta lock.  We
314          * might now be discovering a truncate that hit on another node.
315          * block_read_full_page->get_block freaks out if it is asked to read
316          * beyond the end of a file, so we check here.  Callers
317          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318          * and notice that the page they just read isn't needed.
319          *
320          * XXX sys_readahead() seems to get that wrong?
321          */
322         if (start >= i_size_read(inode)) {
323                 zero_user(page, 0, PAGE_SIZE);
324                 SetPageUptodate(page);
325                 ret = 0;
326                 goto out_alloc;
327         }
328
329         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330                 ret = ocfs2_readpage_inline(inode, page);
331         else
332                 ret = block_read_full_page(page, ocfs2_get_block);
333         unlock = 0;
334
335 out_alloc:
336         up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338         ocfs2_inode_unlock(inode, 0);
339 out:
340         if (unlock)
341                 unlock_page(page);
342         return ret;
343 }
344
345 /*
346  * This is used only for read-ahead. Failures or difficult to handle
347  * situations are safe to ignore.
348  *
349  * Right now, we don't bother with BH_Boundary - in-inode extent lists
350  * are quite large (243 extents on 4k blocks), so most inodes don't
351  * grow out to a tree. If need be, detecting boundary extents could
352  * trivially be added in a future version of ocfs2_get_block().
353  */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355                            struct list_head *pages, unsigned nr_pages)
356 {
357         int ret, err = -EIO;
358         struct inode *inode = mapping->host;
359         struct ocfs2_inode_info *oi = OCFS2_I(inode);
360         loff_t start;
361         struct page *last;
362
363         /*
364          * Use the nonblocking flag for the dlm code to avoid page
365          * lock inversion, but don't bother with retrying.
366          */
367         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368         if (ret)
369                 return err;
370
371         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372                 ocfs2_inode_unlock(inode, 0);
373                 return err;
374         }
375
376         /*
377          * Don't bother with inline-data. There isn't anything
378          * to read-ahead in that case anyway...
379          */
380         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381                 goto out_unlock;
382
383         /*
384          * Check whether a remote node truncated this file - we just
385          * drop out in that case as it's not worth handling here.
386          */
387         last = list_entry(pages->prev, struct page, lru);
388         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389         if (start >= i_size_read(inode))
390                 goto out_unlock;
391
392         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394 out_unlock:
395         up_read(&oi->ip_alloc_sem);
396         ocfs2_inode_unlock(inode, 0);
397
398         return err;
399 }
400
401 /* Note: Because we don't support holes, our allocation has
402  * already happened (allocation writes zeros to the file data)
403  * so we don't have to worry about ordered writes in
404  * ocfs2_writepage.
405  *
406  * ->writepage is called during the process of invalidating the page cache
407  * during blocked lock processing.  It can't block on any cluster locks
408  * to during block mapping.  It's relying on the fact that the block
409  * mapping can't have disappeared under the dirty pages that it is
410  * being asked to write back.
411  */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414         trace_ocfs2_writepage(
415                 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416                 page->index);
417
418         return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420
421 /* Taken from ext3. We don't necessarily need the full blown
422  * functionality yet, but IMHO it's better to cut and paste the whole
423  * thing so we can avoid introducing our own bugs (and easily pick up
424  * their fixes when they happen) --Mark */
425 int walk_page_buffers(  handle_t *handle,
426                         struct buffer_head *head,
427                         unsigned from,
428                         unsigned to,
429                         int *partial,
430                         int (*fn)(      handle_t *handle,
431                                         struct buffer_head *bh))
432 {
433         struct buffer_head *bh;
434         unsigned block_start, block_end;
435         unsigned blocksize = head->b_size;
436         int err, ret = 0;
437         struct buffer_head *next;
438
439         for (   bh = head, block_start = 0;
440                 ret == 0 && (bh != head || !block_start);
441                 block_start = block_end, bh = next)
442         {
443                 next = bh->b_this_page;
444                 block_end = block_start + blocksize;
445                 if (block_end <= from || block_start >= to) {
446                         if (partial && !buffer_uptodate(bh))
447                                 *partial = 1;
448                         continue;
449                 }
450                 err = (*fn)(handle, bh);
451                 if (!ret)
452                         ret = err;
453         }
454         return ret;
455 }
456
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459         sector_t status;
460         u64 p_blkno = 0;
461         int err = 0;
462         struct inode *inode = mapping->host;
463
464         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465                          (unsigned long long)block);
466
467         /* We don't need to lock journal system files, since they aren't
468          * accessed concurrently from multiple nodes.
469          */
470         if (!INODE_JOURNAL(inode)) {
471                 err = ocfs2_inode_lock(inode, NULL, 0);
472                 if (err) {
473                         if (err != -ENOENT)
474                                 mlog_errno(err);
475                         goto bail;
476                 }
477                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478         }
479
480         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482                                                   NULL);
483
484         if (!INODE_JOURNAL(inode)) {
485                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
486                 ocfs2_inode_unlock(inode, 0);
487         }
488
489         if (err) {
490                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491                      (unsigned long long)block);
492                 mlog_errno(err);
493                 goto bail;
494         }
495
496 bail:
497         status = err ? 0 : p_blkno;
498
499         return status;
500 }
501
502 /*
503  * TODO: Make this into a generic get_blocks function.
504  *
505  * From do_direct_io in direct-io.c:
506  *  "So what we do is to permit the ->get_blocks function to populate
507  *   bh.b_size with the size of IO which is permitted at this offset and
508  *   this i_blkbits."
509  *
510  * This function is called directly from get_more_blocks in direct-io.c.
511  *
512  * called like this: dio->get_blocks(dio->inode, fs_startblk,
513  *                                      fs_count, map_bh, dio->rw == WRITE);
514  */
515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516                                      struct buffer_head *bh_result, int create)
517 {
518         int ret;
519         u32 cpos = 0;
520         int alloc_locked = 0;
521         u64 p_blkno, inode_blocks, contig_blocks;
522         unsigned int ext_flags;
523         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525         unsigned long len = bh_result->b_size;
526         unsigned int clusters_to_alloc = 0;
527
528         cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
529
530         /* This function won't even be called if the request isn't all
531          * nicely aligned and of the right size, so there's no need
532          * for us to check any of that. */
533
534         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
535
536         /* This figures out the size of the next contiguous block, and
537          * our logical offset */
538         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
539                                           &contig_blocks, &ext_flags);
540         if (ret) {
541                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
542                      (unsigned long long)iblock);
543                 ret = -EIO;
544                 goto bail;
545         }
546
547         /* We should already CoW the refcounted extent in case of create. */
548         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
549
550         /* allocate blocks if no p_blkno is found, and create == 1 */
551         if (!p_blkno && create) {
552                 ret = ocfs2_inode_lock(inode, NULL, 1);
553                 if (ret < 0) {
554                         mlog_errno(ret);
555                         goto bail;
556                 }
557
558                 alloc_locked = 1;
559
560                 /* fill hole, allocate blocks can't be larger than the size
561                  * of the hole */
562                 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
563                 if (clusters_to_alloc > contig_blocks)
564                         clusters_to_alloc = contig_blocks;
565
566                 /* allocate extent and insert them into the extent tree */
567                 ret = ocfs2_extend_allocation(inode, cpos,
568                                 clusters_to_alloc, 0);
569                 if (ret < 0) {
570                         mlog_errno(ret);
571                         goto bail;
572                 }
573
574                 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
575                                 &contig_blocks, &ext_flags);
576                 if (ret < 0) {
577                         mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
578                                         (unsigned long long)iblock);
579                         ret = -EIO;
580                         goto bail;
581                 }
582         }
583
584         /*
585          * get_more_blocks() expects us to describe a hole by clearing
586          * the mapped bit on bh_result().
587          *
588          * Consider an unwritten extent as a hole.
589          */
590         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
591                 map_bh(bh_result, inode->i_sb, p_blkno);
592         else
593                 clear_buffer_mapped(bh_result);
594
595         /* make sure we don't map more than max_blocks blocks here as
596            that's all the kernel will handle at this point. */
597         if (max_blocks < contig_blocks)
598                 contig_blocks = max_blocks;
599         bh_result->b_size = contig_blocks << blocksize_bits;
600 bail:
601         if (alloc_locked)
602                 ocfs2_inode_unlock(inode, 1);
603         return ret;
604 }
605
606 /*
607  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
608  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
609  * to protect io on one node from truncation on another.
610  */
611 static void ocfs2_dio_end_io(struct kiocb *iocb,
612                              loff_t offset,
613                              ssize_t bytes,
614                              void *private)
615 {
616         struct inode *inode = file_inode(iocb->ki_filp);
617         int level;
618
619         /* this io's submitter should not have unlocked this before we could */
620         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
621
622         if (ocfs2_iocb_is_unaligned_aio(iocb)) {
623                 ocfs2_iocb_clear_unaligned_aio(iocb);
624
625                 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
626         }
627
628         ocfs2_iocb_clear_rw_locked(iocb);
629
630         level = ocfs2_iocb_rw_locked_level(iocb);
631         ocfs2_rw_unlock(inode, level);
632 }
633
634 static int ocfs2_releasepage(struct page *page, gfp_t wait)
635 {
636         if (!page_has_buffers(page))
637                 return 0;
638         return try_to_free_buffers(page);
639 }
640
641 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
642                 struct inode *inode, loff_t offset)
643 {
644         int ret = 0;
645         u32 v_cpos = 0;
646         u32 p_cpos = 0;
647         unsigned int num_clusters = 0;
648         unsigned int ext_flags = 0;
649
650         v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
651         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
652                         &num_clusters, &ext_flags);
653         if (ret < 0) {
654                 mlog_errno(ret);
655                 return ret;
656         }
657
658         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
659                 return 1;
660
661         return 0;
662 }
663
664 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
665                 struct inode *inode, loff_t offset,
666                 u64 zero_len, int cluster_align)
667 {
668         u32 p_cpos = 0;
669         u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
670         unsigned int num_clusters = 0;
671         unsigned int ext_flags = 0;
672         int ret = 0;
673
674         if (offset <= i_size_read(inode) || cluster_align)
675                 return 0;
676
677         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
678                         &ext_flags);
679         if (ret < 0) {
680                 mlog_errno(ret);
681                 return ret;
682         }
683
684         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
685                 u64 s = i_size_read(inode);
686                 sector_t sector = (p_cpos << (osb->s_clustersize_bits - 9)) +
687                         (do_div(s, osb->s_clustersize) >> 9);
688
689                 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
690                                 zero_len >> 9, GFP_NOFS, false);
691                 if (ret < 0)
692                         mlog_errno(ret);
693         }
694
695         return ret;
696 }
697
698 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
699                 struct inode *inode, loff_t offset)
700 {
701         u64 zero_start, zero_len, total_zero_len;
702         u32 p_cpos = 0, clusters_to_add;
703         u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
704         unsigned int num_clusters = 0;
705         unsigned int ext_flags = 0;
706         u32 size_div, offset_div;
707         int ret = 0;
708
709         {
710                 u64 o = offset;
711                 u64 s = i_size_read(inode);
712
713                 offset_div = do_div(o, osb->s_clustersize);
714                 size_div = do_div(s, osb->s_clustersize);
715         }
716
717         if (offset <= i_size_read(inode))
718                 return 0;
719
720         clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
721                 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
722         total_zero_len = offset - i_size_read(inode);
723         if (clusters_to_add)
724                 total_zero_len -= offset_div;
725
726         /* Allocate clusters to fill out holes, and this is only needed
727          * when we add more than one clusters. Otherwise the cluster will
728          * be allocated during direct IO */
729         if (clusters_to_add > 1) {
730                 ret = ocfs2_extend_allocation(inode,
731                                 OCFS2_I(inode)->ip_clusters,
732                                 clusters_to_add - 1, 0);
733                 if (ret) {
734                         mlog_errno(ret);
735                         goto out;
736                 }
737         }
738
739         while (total_zero_len) {
740                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
741                                 &ext_flags);
742                 if (ret < 0) {
743                         mlog_errno(ret);
744                         goto out;
745                 }
746
747                 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
748                         size_div;
749                 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
750                         size_div;
751                 zero_len = min(total_zero_len, zero_len);
752
753                 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
754                         ret = blkdev_issue_zeroout(osb->sb->s_bdev,
755                                         zero_start >> 9, zero_len >> 9,
756                                         GFP_NOFS, false);
757                         if (ret < 0) {
758                                 mlog_errno(ret);
759                                 goto out;
760                         }
761                 }
762
763                 total_zero_len -= zero_len;
764                 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
765
766                 /* Only at first iteration can be cluster not aligned.
767                  * So set size_div to 0 for the rest */
768                 size_div = 0;
769         }
770
771 out:
772         return ret;
773 }
774
775 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
776                 struct iov_iter *iter,
777                 loff_t offset)
778 {
779         ssize_t ret = 0;
780         ssize_t written = 0;
781         bool orphaned = false;
782         int is_overwrite = 0;
783         struct file *file = iocb->ki_filp;
784         struct inode *inode = file_inode(file)->i_mapping->host;
785         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
786         struct buffer_head *di_bh = NULL;
787         size_t count = iter->count;
788         journal_t *journal = osb->journal->j_journal;
789         u64 zero_len_head, zero_len_tail;
790         int cluster_align_head, cluster_align_tail;
791         loff_t final_size = offset + count;
792         int append_write = offset >= i_size_read(inode) ? 1 : 0;
793         unsigned int num_clusters = 0;
794         unsigned int ext_flags = 0;
795
796         {
797                 u64 o = offset;
798                 u64 s = i_size_read(inode);
799
800                 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
801                 cluster_align_head = !zero_len_head;
802
803                 zero_len_tail = osb->s_clustersize -
804                         do_div(s, osb->s_clustersize);
805                 if ((offset - i_size_read(inode)) < zero_len_tail)
806                         zero_len_tail = offset - i_size_read(inode);
807                 cluster_align_tail = !zero_len_tail;
808         }
809
810         /*
811          * when final_size > inode->i_size, inode->i_size will be
812          * updated after direct write, so add the inode to orphan
813          * dir first.
814          */
815         if (final_size > i_size_read(inode)) {
816                 ret = ocfs2_add_inode_to_orphan(osb, inode);
817                 if (ret < 0) {
818                         mlog_errno(ret);
819                         goto out;
820                 }
821                 orphaned = true;
822         }
823
824         if (append_write) {
825                 ret = ocfs2_inode_lock(inode, NULL, 1);
826                 if (ret < 0) {
827                         mlog_errno(ret);
828                         goto clean_orphan;
829                 }
830
831                 /* zeroing out the previously allocated cluster tail
832                  * that but not zeroed */
833                 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
834                         ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
835                                         zero_len_tail, cluster_align_tail);
836                 else
837                         ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
838                                         offset);
839                 if (ret < 0) {
840                         mlog_errno(ret);
841                         ocfs2_inode_unlock(inode, 1);
842                         goto clean_orphan;
843                 }
844
845                 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
846                 if (is_overwrite < 0) {
847                         mlog_errno(is_overwrite);
848                         ocfs2_inode_unlock(inode, 1);
849                         goto clean_orphan;
850                 }
851
852                 ocfs2_inode_unlock(inode, 1);
853         }
854
855         written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
856                                        offset, ocfs2_direct_IO_get_blocks,
857                                        ocfs2_dio_end_io, NULL, 0);
858         if (unlikely(written < 0)) {
859                 loff_t i_size = i_size_read(inode);
860
861                 if (offset + count > i_size) {
862                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
863                         if (ret < 0) {
864                                 mlog_errno(ret);
865                                 goto clean_orphan;
866                         }
867
868                         if (i_size == i_size_read(inode)) {
869                                 ret = ocfs2_truncate_file(inode, di_bh,
870                                                 i_size);
871                                 if (ret < 0) {
872                                         if (ret != -ENOSPC)
873                                                 mlog_errno(ret);
874
875                                         ocfs2_inode_unlock(inode, 1);
876                                         brelse(di_bh);
877                                         goto clean_orphan;
878                                 }
879                         }
880
881                         ocfs2_inode_unlock(inode, 1);
882                         brelse(di_bh);
883
884                         ret = jbd2_journal_force_commit(journal);
885                         if (ret < 0)
886                                 mlog_errno(ret);
887                 }
888         } else if (written > 0 && append_write && !is_overwrite &&
889                         !cluster_align_head) {
890                 /* zeroing out the allocated cluster head */
891                 u32 p_cpos = 0;
892                 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
893
894                 ret = ocfs2_inode_lock(inode, NULL, 0);
895                 if (ret < 0) {
896                         mlog_errno(ret);
897                         goto clean_orphan;
898                 }
899
900                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
901                                 &num_clusters, &ext_flags);
902                 if (ret < 0) {
903                         mlog_errno(ret);
904                         ocfs2_inode_unlock(inode, 0);
905                         goto clean_orphan;
906                 }
907
908                 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
909
910                 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
911                                 p_cpos << (osb->s_clustersize_bits - 9),
912                                 zero_len_head >> 9, GFP_NOFS, false);
913                 if (ret < 0)
914                         mlog_errno(ret);
915
916                 ocfs2_inode_unlock(inode, 0);
917         }
918
919 clean_orphan:
920         if (orphaned) {
921                 int tmp_ret;
922                 int update_isize = written > 0 ? 1 : 0;
923                 loff_t end = update_isize ? offset + written : 0;
924
925                 tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1);
926                 if (tmp_ret < 0) {
927                         ret = tmp_ret;
928                         mlog_errno(ret);
929                         goto out;
930                 }
931
932                 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
933                                 update_isize, end);
934                 if (tmp_ret < 0) {
935                         ret = tmp_ret;
936                         mlog_errno(ret);
937                         goto out;
938                 }
939
940                 ocfs2_inode_unlock(inode, 1);
941
942                 tmp_ret = jbd2_journal_force_commit(journal);
943                 if (tmp_ret < 0) {
944                         ret = tmp_ret;
945                         mlog_errno(tmp_ret);
946                 }
947         }
948
949 out:
950         if (ret >= 0)
951                 ret = written;
952         return ret;
953 }
954
955 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
956                                loff_t offset)
957 {
958         struct file *file = iocb->ki_filp;
959         struct inode *inode = file_inode(file)->i_mapping->host;
960         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
961         int full_coherency = !(osb->s_mount_opt &
962                         OCFS2_MOUNT_COHERENCY_BUFFERED);
963
964         /*
965          * Fallback to buffered I/O if we see an inode without
966          * extents.
967          */
968         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
969                 return 0;
970
971         /* Fallback to buffered I/O if we are appending and
972          * concurrent O_DIRECT writes are allowed.
973          */
974         if (i_size_read(inode) <= offset && !full_coherency)
975                 return 0;
976
977         if (iov_iter_rw(iter) == READ)
978                 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
979                                             iter, offset,
980                                             ocfs2_direct_IO_get_blocks,
981                                             ocfs2_dio_end_io, NULL, 0);
982         else
983                 return ocfs2_direct_IO_write(iocb, iter, offset);
984 }
985
986 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
987                                             u32 cpos,
988                                             unsigned int *start,
989                                             unsigned int *end)
990 {
991         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
992
993         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
994                 unsigned int cpp;
995
996                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
997
998                 cluster_start = cpos % cpp;
999                 cluster_start = cluster_start << osb->s_clustersize_bits;
1000
1001                 cluster_end = cluster_start + osb->s_clustersize;
1002         }
1003
1004         BUG_ON(cluster_start > PAGE_SIZE);
1005         BUG_ON(cluster_end > PAGE_SIZE);
1006
1007         if (start)
1008                 *start = cluster_start;
1009         if (end)
1010                 *end = cluster_end;
1011 }
1012
1013 /*
1014  * 'from' and 'to' are the region in the page to avoid zeroing.
1015  *
1016  * If pagesize > clustersize, this function will avoid zeroing outside
1017  * of the cluster boundary.
1018  *
1019  * from == to == 0 is code for "zero the entire cluster region"
1020  */
1021 static void ocfs2_clear_page_regions(struct page *page,
1022                                      struct ocfs2_super *osb, u32 cpos,
1023                                      unsigned from, unsigned to)
1024 {
1025         void *kaddr;
1026         unsigned int cluster_start, cluster_end;
1027
1028         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1029
1030         kaddr = kmap_atomic(page);
1031
1032         if (from || to) {
1033                 if (from > cluster_start)
1034                         memset(kaddr + cluster_start, 0, from - cluster_start);
1035                 if (to < cluster_end)
1036                         memset(kaddr + to, 0, cluster_end - to);
1037         } else {
1038                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1039         }
1040
1041         kunmap_atomic(kaddr);
1042 }
1043
1044 /*
1045  * Nonsparse file systems fully allocate before we get to the write
1046  * code. This prevents ocfs2_write() from tagging the write as an
1047  * allocating one, which means ocfs2_map_page_blocks() might try to
1048  * read-in the blocks at the tail of our file. Avoid reading them by
1049  * testing i_size against each block offset.
1050  */
1051 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1052                                  unsigned int block_start)
1053 {
1054         u64 offset = page_offset(page) + block_start;
1055
1056         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1057                 return 1;
1058
1059         if (i_size_read(inode) > offset)
1060                 return 1;
1061
1062         return 0;
1063 }
1064
1065 /*
1066  * Some of this taken from __block_write_begin(). We already have our
1067  * mapping by now though, and the entire write will be allocating or
1068  * it won't, so not much need to use BH_New.
1069  *
1070  * This will also skip zeroing, which is handled externally.
1071  */
1072 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1073                           struct inode *inode, unsigned int from,
1074                           unsigned int to, int new)
1075 {
1076         int ret = 0;
1077         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1078         unsigned int block_end, block_start;
1079         unsigned int bsize = 1 << inode->i_blkbits;
1080
1081         if (!page_has_buffers(page))
1082                 create_empty_buffers(page, bsize, 0);
1083
1084         head = page_buffers(page);
1085         for (bh = head, block_start = 0; bh != head || !block_start;
1086              bh = bh->b_this_page, block_start += bsize) {
1087                 block_end = block_start + bsize;
1088
1089                 clear_buffer_new(bh);
1090
1091                 /*
1092                  * Ignore blocks outside of our i/o range -
1093                  * they may belong to unallocated clusters.
1094                  */
1095                 if (block_start >= to || block_end <= from) {
1096                         if (PageUptodate(page))
1097                                 set_buffer_uptodate(bh);
1098                         continue;
1099                 }
1100
1101                 /*
1102                  * For an allocating write with cluster size >= page
1103                  * size, we always write the entire page.
1104                  */
1105                 if (new)
1106                         set_buffer_new(bh);
1107
1108                 if (!buffer_mapped(bh)) {
1109                         map_bh(bh, inode->i_sb, *p_blkno);
1110                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1111                 }
1112
1113                 if (PageUptodate(page)) {
1114                         if (!buffer_uptodate(bh))
1115                                 set_buffer_uptodate(bh);
1116                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1117                            !buffer_new(bh) &&
1118                            ocfs2_should_read_blk(inode, page, block_start) &&
1119                            (block_start < from || block_end > to)) {
1120                         ll_rw_block(READ, 1, &bh);
1121                         *wait_bh++=bh;
1122                 }
1123
1124                 *p_blkno = *p_blkno + 1;
1125         }
1126
1127         /*
1128          * If we issued read requests - let them complete.
1129          */
1130         while(wait_bh > wait) {
1131                 wait_on_buffer(*--wait_bh);
1132                 if (!buffer_uptodate(*wait_bh))
1133                         ret = -EIO;
1134         }
1135
1136         if (ret == 0 || !new)
1137                 return ret;
1138
1139         /*
1140          * If we get -EIO above, zero out any newly allocated blocks
1141          * to avoid exposing stale data.
1142          */
1143         bh = head;
1144         block_start = 0;
1145         do {
1146                 block_end = block_start + bsize;
1147                 if (block_end <= from)
1148                         goto next_bh;
1149                 if (block_start >= to)
1150                         break;
1151
1152                 zero_user(page, block_start, bh->b_size);
1153                 set_buffer_uptodate(bh);
1154                 mark_buffer_dirty(bh);
1155
1156 next_bh:
1157                 block_start = block_end;
1158                 bh = bh->b_this_page;
1159         } while (bh != head);
1160
1161         return ret;
1162 }
1163
1164 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1165 #define OCFS2_MAX_CTXT_PAGES    1
1166 #else
1167 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1168 #endif
1169
1170 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1171
1172 /*
1173  * Describe the state of a single cluster to be written to.
1174  */
1175 struct ocfs2_write_cluster_desc {
1176         u32             c_cpos;
1177         u32             c_phys;
1178         /*
1179          * Give this a unique field because c_phys eventually gets
1180          * filled.
1181          */
1182         unsigned        c_new;
1183         unsigned        c_unwritten;
1184         unsigned        c_needs_zero;
1185 };
1186
1187 struct ocfs2_write_ctxt {
1188         /* Logical cluster position / len of write */
1189         u32                             w_cpos;
1190         u32                             w_clen;
1191
1192         /* First cluster allocated in a nonsparse extend */
1193         u32                             w_first_new_cpos;
1194
1195         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1196
1197         /*
1198          * This is true if page_size > cluster_size.
1199          *
1200          * It triggers a set of special cases during write which might
1201          * have to deal with allocating writes to partial pages.
1202          */
1203         unsigned int                    w_large_pages;
1204
1205         /*
1206          * Pages involved in this write.
1207          *
1208          * w_target_page is the page being written to by the user.
1209          *
1210          * w_pages is an array of pages which always contains
1211          * w_target_page, and in the case of an allocating write with
1212          * page_size < cluster size, it will contain zero'd and mapped
1213          * pages adjacent to w_target_page which need to be written
1214          * out in so that future reads from that region will get
1215          * zero's.
1216          */
1217         unsigned int                    w_num_pages;
1218         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
1219         struct page                     *w_target_page;
1220
1221         /*
1222          * w_target_locked is used for page_mkwrite path indicating no unlocking
1223          * against w_target_page in ocfs2_write_end_nolock.
1224          */
1225         unsigned int                    w_target_locked:1;
1226
1227         /*
1228          * ocfs2_write_end() uses this to know what the real range to
1229          * write in the target should be.
1230          */
1231         unsigned int                    w_target_from;
1232         unsigned int                    w_target_to;
1233
1234         /*
1235          * We could use journal_current_handle() but this is cleaner,
1236          * IMHO -Mark
1237          */
1238         handle_t                        *w_handle;
1239
1240         struct buffer_head              *w_di_bh;
1241
1242         struct ocfs2_cached_dealloc_ctxt w_dealloc;
1243 };
1244
1245 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1246 {
1247         int i;
1248
1249         for(i = 0; i < num_pages; i++) {
1250                 if (pages[i]) {
1251                         unlock_page(pages[i]);
1252                         mark_page_accessed(pages[i]);
1253                         page_cache_release(pages[i]);
1254                 }
1255         }
1256 }
1257
1258 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1259 {
1260         int i;
1261
1262         /*
1263          * w_target_locked is only set to true in the page_mkwrite() case.
1264          * The intent is to allow us to lock the target page from write_begin()
1265          * to write_end(). The caller must hold a ref on w_target_page.
1266          */
1267         if (wc->w_target_locked) {
1268                 BUG_ON(!wc->w_target_page);
1269                 for (i = 0; i < wc->w_num_pages; i++) {
1270                         if (wc->w_target_page == wc->w_pages[i]) {
1271                                 wc->w_pages[i] = NULL;
1272                                 break;
1273                         }
1274                 }
1275                 mark_page_accessed(wc->w_target_page);
1276                 page_cache_release(wc->w_target_page);
1277         }
1278         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1279 }
1280
1281 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1282 {
1283         ocfs2_unlock_pages(wc);
1284         brelse(wc->w_di_bh);
1285         kfree(wc);
1286 }
1287
1288 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1289                                   struct ocfs2_super *osb, loff_t pos,
1290                                   unsigned len, struct buffer_head *di_bh)
1291 {
1292         u32 cend;
1293         struct ocfs2_write_ctxt *wc;
1294
1295         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1296         if (!wc)
1297                 return -ENOMEM;
1298
1299         wc->w_cpos = pos >> osb->s_clustersize_bits;
1300         wc->w_first_new_cpos = UINT_MAX;
1301         cend = (pos + len - 1) >> osb->s_clustersize_bits;
1302         wc->w_clen = cend - wc->w_cpos + 1;
1303         get_bh(di_bh);
1304         wc->w_di_bh = di_bh;
1305
1306         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1307                 wc->w_large_pages = 1;
1308         else
1309                 wc->w_large_pages = 0;
1310
1311         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1312
1313         *wcp = wc;
1314
1315         return 0;
1316 }
1317
1318 /*
1319  * If a page has any new buffers, zero them out here, and mark them uptodate
1320  * and dirty so they'll be written out (in order to prevent uninitialised
1321  * block data from leaking). And clear the new bit.
1322  */
1323 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1324 {
1325         unsigned int block_start, block_end;
1326         struct buffer_head *head, *bh;
1327
1328         BUG_ON(!PageLocked(page));
1329         if (!page_has_buffers(page))
1330                 return;
1331
1332         bh = head = page_buffers(page);
1333         block_start = 0;
1334         do {
1335                 block_end = block_start + bh->b_size;
1336
1337                 if (buffer_new(bh)) {
1338                         if (block_end > from && block_start < to) {
1339                                 if (!PageUptodate(page)) {
1340                                         unsigned start, end;
1341
1342                                         start = max(from, block_start);
1343                                         end = min(to, block_end);
1344
1345                                         zero_user_segment(page, start, end);
1346                                         set_buffer_uptodate(bh);
1347                                 }
1348
1349                                 clear_buffer_new(bh);
1350                                 mark_buffer_dirty(bh);
1351                         }
1352                 }
1353
1354                 block_start = block_end;
1355                 bh = bh->b_this_page;
1356         } while (bh != head);
1357 }
1358
1359 /*
1360  * Only called when we have a failure during allocating write to write
1361  * zero's to the newly allocated region.
1362  */
1363 static void ocfs2_write_failure(struct inode *inode,
1364                                 struct ocfs2_write_ctxt *wc,
1365                                 loff_t user_pos, unsigned user_len)
1366 {
1367         int i;
1368         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1369                 to = user_pos + user_len;
1370         struct page *tmppage;
1371
1372         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1373
1374         for(i = 0; i < wc->w_num_pages; i++) {
1375                 tmppage = wc->w_pages[i];
1376
1377                 if (page_has_buffers(tmppage)) {
1378                         if (ocfs2_should_order_data(inode))
1379                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1380
1381                         block_commit_write(tmppage, from, to);
1382                 }
1383         }
1384 }
1385
1386 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1387                                         struct ocfs2_write_ctxt *wc,
1388                                         struct page *page, u32 cpos,
1389                                         loff_t user_pos, unsigned user_len,
1390                                         int new)
1391 {
1392         int ret;
1393         unsigned int map_from = 0, map_to = 0;
1394         unsigned int cluster_start, cluster_end;
1395         unsigned int user_data_from = 0, user_data_to = 0;
1396
1397         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1398                                         &cluster_start, &cluster_end);
1399
1400         /* treat the write as new if the a hole/lseek spanned across
1401          * the page boundary.
1402          */
1403         new = new | ((i_size_read(inode) <= page_offset(page)) &&
1404                         (page_offset(page) <= user_pos));
1405
1406         if (page == wc->w_target_page) {
1407                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1408                 map_to = map_from + user_len;
1409
1410                 if (new)
1411                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1412                                                     cluster_start, cluster_end,
1413                                                     new);
1414                 else
1415                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1416                                                     map_from, map_to, new);
1417                 if (ret) {
1418                         mlog_errno(ret);
1419                         goto out;
1420                 }
1421
1422                 user_data_from = map_from;
1423                 user_data_to = map_to;
1424                 if (new) {
1425                         map_from = cluster_start;
1426                         map_to = cluster_end;
1427                 }
1428         } else {
1429                 /*
1430                  * If we haven't allocated the new page yet, we
1431                  * shouldn't be writing it out without copying user
1432                  * data. This is likely a math error from the caller.
1433                  */
1434                 BUG_ON(!new);
1435
1436                 map_from = cluster_start;
1437                 map_to = cluster_end;
1438
1439                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1440                                             cluster_start, cluster_end, new);
1441                 if (ret) {
1442                         mlog_errno(ret);
1443                         goto out;
1444                 }
1445         }
1446
1447         /*
1448          * Parts of newly allocated pages need to be zero'd.
1449          *
1450          * Above, we have also rewritten 'to' and 'from' - as far as
1451          * the rest of the function is concerned, the entire cluster
1452          * range inside of a page needs to be written.
1453          *
1454          * We can skip this if the page is up to date - it's already
1455          * been zero'd from being read in as a hole.
1456          */
1457         if (new && !PageUptodate(page))
1458                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1459                                          cpos, user_data_from, user_data_to);
1460
1461         flush_dcache_page(page);
1462
1463 out:
1464         return ret;
1465 }
1466
1467 /*
1468  * This function will only grab one clusters worth of pages.
1469  */
1470 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1471                                       struct ocfs2_write_ctxt *wc,
1472                                       u32 cpos, loff_t user_pos,
1473                                       unsigned user_len, int new,
1474                                       struct page *mmap_page)
1475 {
1476         int ret = 0, i;
1477         unsigned long start, target_index, end_index, index;
1478         struct inode *inode = mapping->host;
1479         loff_t last_byte;
1480
1481         target_index = user_pos >> PAGE_CACHE_SHIFT;
1482
1483         /*
1484          * Figure out how many pages we'll be manipulating here. For
1485          * non allocating write, we just change the one
1486          * page. Otherwise, we'll need a whole clusters worth.  If we're
1487          * writing past i_size, we only need enough pages to cover the
1488          * last page of the write.
1489          */
1490         if (new) {
1491                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1492                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1493                 /*
1494                  * We need the index *past* the last page we could possibly
1495                  * touch.  This is the page past the end of the write or
1496                  * i_size, whichever is greater.
1497                  */
1498                 last_byte = max(user_pos + user_len, i_size_read(inode));
1499                 BUG_ON(last_byte < 1);
1500                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1501                 if ((start + wc->w_num_pages) > end_index)
1502                         wc->w_num_pages = end_index - start;
1503         } else {
1504                 wc->w_num_pages = 1;
1505                 start = target_index;
1506         }
1507
1508         for(i = 0; i < wc->w_num_pages; i++) {
1509                 index = start + i;
1510
1511                 if (index == target_index && mmap_page) {
1512                         /*
1513                          * ocfs2_pagemkwrite() is a little different
1514                          * and wants us to directly use the page
1515                          * passed in.
1516                          */
1517                         lock_page(mmap_page);
1518
1519                         /* Exit and let the caller retry */
1520                         if (mmap_page->mapping != mapping) {
1521                                 WARN_ON(mmap_page->mapping);
1522                                 unlock_page(mmap_page);
1523                                 ret = -EAGAIN;
1524                                 goto out;
1525                         }
1526
1527                         page_cache_get(mmap_page);
1528                         wc->w_pages[i] = mmap_page;
1529                         wc->w_target_locked = true;
1530                 } else {
1531                         wc->w_pages[i] = find_or_create_page(mapping, index,
1532                                                              GFP_NOFS);
1533                         if (!wc->w_pages[i]) {
1534                                 ret = -ENOMEM;
1535                                 mlog_errno(ret);
1536                                 goto out;
1537                         }
1538                 }
1539                 wait_for_stable_page(wc->w_pages[i]);
1540
1541                 if (index == target_index)
1542                         wc->w_target_page = wc->w_pages[i];
1543         }
1544 out:
1545         if (ret)
1546                 wc->w_target_locked = false;
1547         return ret;
1548 }
1549
1550 /*
1551  * Prepare a single cluster for write one cluster into the file.
1552  */
1553 static int ocfs2_write_cluster(struct address_space *mapping,
1554                                u32 phys, unsigned int unwritten,
1555                                unsigned int should_zero,
1556                                struct ocfs2_alloc_context *data_ac,
1557                                struct ocfs2_alloc_context *meta_ac,
1558                                struct ocfs2_write_ctxt *wc, u32 cpos,
1559                                loff_t user_pos, unsigned user_len)
1560 {
1561         int ret, i, new;
1562         u64 v_blkno, p_blkno;
1563         struct inode *inode = mapping->host;
1564         struct ocfs2_extent_tree et;
1565
1566         new = phys == 0 ? 1 : 0;
1567         if (new) {
1568                 u32 tmp_pos;
1569
1570                 /*
1571                  * This is safe to call with the page locks - it won't take
1572                  * any additional semaphores or cluster locks.
1573                  */
1574                 tmp_pos = cpos;
1575                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1576                                            &tmp_pos, 1, 0, wc->w_di_bh,
1577                                            wc->w_handle, data_ac,
1578                                            meta_ac, NULL);
1579                 /*
1580                  * This shouldn't happen because we must have already
1581                  * calculated the correct meta data allocation required. The
1582                  * internal tree allocation code should know how to increase
1583                  * transaction credits itself.
1584                  *
1585                  * If need be, we could handle -EAGAIN for a
1586                  * RESTART_TRANS here.
1587                  */
1588                 mlog_bug_on_msg(ret == -EAGAIN,
1589                                 "Inode %llu: EAGAIN return during allocation.\n",
1590                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1591                 if (ret < 0) {
1592                         mlog_errno(ret);
1593                         goto out;
1594                 }
1595         } else if (unwritten) {
1596                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1597                                               wc->w_di_bh);
1598                 ret = ocfs2_mark_extent_written(inode, &et,
1599                                                 wc->w_handle, cpos, 1, phys,
1600                                                 meta_ac, &wc->w_dealloc);
1601                 if (ret < 0) {
1602                         mlog_errno(ret);
1603                         goto out;
1604                 }
1605         }
1606
1607         if (should_zero)
1608                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1609         else
1610                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1611
1612         /*
1613          * The only reason this should fail is due to an inability to
1614          * find the extent added.
1615          */
1616         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1617                                           NULL);
1618         if (ret < 0) {
1619                 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1620                             "at logical block %llu",
1621                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1622                             (unsigned long long)v_blkno);
1623                 goto out;
1624         }
1625
1626         BUG_ON(p_blkno == 0);
1627
1628         for(i = 0; i < wc->w_num_pages; i++) {
1629                 int tmpret;
1630
1631                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1632                                                       wc->w_pages[i], cpos,
1633                                                       user_pos, user_len,
1634                                                       should_zero);
1635                 if (tmpret) {
1636                         mlog_errno(tmpret);
1637                         if (ret == 0)
1638                                 ret = tmpret;
1639                 }
1640         }
1641
1642         /*
1643          * We only have cleanup to do in case of allocating write.
1644          */
1645         if (ret && new)
1646                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1647
1648 out:
1649
1650         return ret;
1651 }
1652
1653 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1654                                        struct ocfs2_alloc_context *data_ac,
1655                                        struct ocfs2_alloc_context *meta_ac,
1656                                        struct ocfs2_write_ctxt *wc,
1657                                        loff_t pos, unsigned len)
1658 {
1659         int ret, i;
1660         loff_t cluster_off;
1661         unsigned int local_len = len;
1662         struct ocfs2_write_cluster_desc *desc;
1663         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1664
1665         for (i = 0; i < wc->w_clen; i++) {
1666                 desc = &wc->w_desc[i];
1667
1668                 /*
1669                  * We have to make sure that the total write passed in
1670                  * doesn't extend past a single cluster.
1671                  */
1672                 local_len = len;
1673                 cluster_off = pos & (osb->s_clustersize - 1);
1674                 if ((cluster_off + local_len) > osb->s_clustersize)
1675                         local_len = osb->s_clustersize - cluster_off;
1676
1677                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1678                                           desc->c_unwritten,
1679                                           desc->c_needs_zero,
1680                                           data_ac, meta_ac,
1681                                           wc, desc->c_cpos, pos, local_len);
1682                 if (ret) {
1683                         mlog_errno(ret);
1684                         goto out;
1685                 }
1686
1687                 len -= local_len;
1688                 pos += local_len;
1689         }
1690
1691         ret = 0;
1692 out:
1693         return ret;
1694 }
1695
1696 /*
1697  * ocfs2_write_end() wants to know which parts of the target page it
1698  * should complete the write on. It's easiest to compute them ahead of
1699  * time when a more complete view of the write is available.
1700  */
1701 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1702                                         struct ocfs2_write_ctxt *wc,
1703                                         loff_t pos, unsigned len, int alloc)
1704 {
1705         struct ocfs2_write_cluster_desc *desc;
1706
1707         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1708         wc->w_target_to = wc->w_target_from + len;
1709
1710         if (alloc == 0)
1711                 return;
1712
1713         /*
1714          * Allocating write - we may have different boundaries based
1715          * on page size and cluster size.
1716          *
1717          * NOTE: We can no longer compute one value from the other as
1718          * the actual write length and user provided length may be
1719          * different.
1720          */
1721
1722         if (wc->w_large_pages) {
1723                 /*
1724                  * We only care about the 1st and last cluster within
1725                  * our range and whether they should be zero'd or not. Either
1726                  * value may be extended out to the start/end of a
1727                  * newly allocated cluster.
1728                  */
1729                 desc = &wc->w_desc[0];
1730                 if (desc->c_needs_zero)
1731                         ocfs2_figure_cluster_boundaries(osb,
1732                                                         desc->c_cpos,
1733                                                         &wc->w_target_from,
1734                                                         NULL);
1735
1736                 desc = &wc->w_desc[wc->w_clen - 1];
1737                 if (desc->c_needs_zero)
1738                         ocfs2_figure_cluster_boundaries(osb,
1739                                                         desc->c_cpos,
1740                                                         NULL,
1741                                                         &wc->w_target_to);
1742         } else {
1743                 wc->w_target_from = 0;
1744                 wc->w_target_to = PAGE_CACHE_SIZE;
1745         }
1746 }
1747
1748 /*
1749  * Populate each single-cluster write descriptor in the write context
1750  * with information about the i/o to be done.
1751  *
1752  * Returns the number of clusters that will have to be allocated, as
1753  * well as a worst case estimate of the number of extent records that
1754  * would have to be created during a write to an unwritten region.
1755  */
1756 static int ocfs2_populate_write_desc(struct inode *inode,
1757                                      struct ocfs2_write_ctxt *wc,
1758                                      unsigned int *clusters_to_alloc,
1759                                      unsigned int *extents_to_split)
1760 {
1761         int ret;
1762         struct ocfs2_write_cluster_desc *desc;
1763         unsigned int num_clusters = 0;
1764         unsigned int ext_flags = 0;
1765         u32 phys = 0;
1766         int i;
1767
1768         *clusters_to_alloc = 0;
1769         *extents_to_split = 0;
1770
1771         for (i = 0; i < wc->w_clen; i++) {
1772                 desc = &wc->w_desc[i];
1773                 desc->c_cpos = wc->w_cpos + i;
1774
1775                 if (num_clusters == 0) {
1776                         /*
1777                          * Need to look up the next extent record.
1778                          */
1779                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1780                                                  &num_clusters, &ext_flags);
1781                         if (ret) {
1782                                 mlog_errno(ret);
1783                                 goto out;
1784                         }
1785
1786                         /* We should already CoW the refcountd extent. */
1787                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1788
1789                         /*
1790                          * Assume worst case - that we're writing in
1791                          * the middle of the extent.
1792                          *
1793                          * We can assume that the write proceeds from
1794                          * left to right, in which case the extent
1795                          * insert code is smart enough to coalesce the
1796                          * next splits into the previous records created.
1797                          */
1798                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1799                                 *extents_to_split = *extents_to_split + 2;
1800                 } else if (phys) {
1801                         /*
1802                          * Only increment phys if it doesn't describe
1803                          * a hole.
1804                          */
1805                         phys++;
1806                 }
1807
1808                 /*
1809                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1810                  * file that got extended.  w_first_new_cpos tells us
1811                  * where the newly allocated clusters are so we can
1812                  * zero them.
1813                  */
1814                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1815                         BUG_ON(phys == 0);
1816                         desc->c_needs_zero = 1;
1817                 }
1818
1819                 desc->c_phys = phys;
1820                 if (phys == 0) {
1821                         desc->c_new = 1;
1822                         desc->c_needs_zero = 1;
1823                         *clusters_to_alloc = *clusters_to_alloc + 1;
1824                 }
1825
1826                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1827                         desc->c_unwritten = 1;
1828                         desc->c_needs_zero = 1;
1829                 }
1830
1831                 num_clusters--;
1832         }
1833
1834         ret = 0;
1835 out:
1836         return ret;
1837 }
1838
1839 static int ocfs2_write_begin_inline(struct address_space *mapping,
1840                                     struct inode *inode,
1841                                     struct ocfs2_write_ctxt *wc)
1842 {
1843         int ret;
1844         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1845         struct page *page;
1846         handle_t *handle;
1847         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1848
1849         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1850         if (IS_ERR(handle)) {
1851                 ret = PTR_ERR(handle);
1852                 mlog_errno(ret);
1853                 goto out;
1854         }
1855
1856         page = find_or_create_page(mapping, 0, GFP_NOFS);
1857         if (!page) {
1858                 ocfs2_commit_trans(osb, handle);
1859                 ret = -ENOMEM;
1860                 mlog_errno(ret);
1861                 goto out;
1862         }
1863         /*
1864          * If we don't set w_num_pages then this page won't get unlocked
1865          * and freed on cleanup of the write context.
1866          */
1867         wc->w_pages[0] = wc->w_target_page = page;
1868         wc->w_num_pages = 1;
1869
1870         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1871                                       OCFS2_JOURNAL_ACCESS_WRITE);
1872         if (ret) {
1873                 ocfs2_commit_trans(osb, handle);
1874
1875                 mlog_errno(ret);
1876                 goto out;
1877         }
1878
1879         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1880                 ocfs2_set_inode_data_inline(inode, di);
1881
1882         if (!PageUptodate(page)) {
1883                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1884                 if (ret) {
1885                         ocfs2_commit_trans(osb, handle);
1886
1887                         goto out;
1888                 }
1889         }
1890
1891         wc->w_handle = handle;
1892 out:
1893         return ret;
1894 }
1895
1896 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1897 {
1898         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1899
1900         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1901                 return 1;
1902         return 0;
1903 }
1904
1905 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1906                                           struct inode *inode, loff_t pos,
1907                                           unsigned len, struct page *mmap_page,
1908                                           struct ocfs2_write_ctxt *wc)
1909 {
1910         int ret, written = 0;
1911         loff_t end = pos + len;
1912         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1913         struct ocfs2_dinode *di = NULL;
1914
1915         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1916                                              len, (unsigned long long)pos,
1917                                              oi->ip_dyn_features);
1918
1919         /*
1920          * Handle inodes which already have inline data 1st.
1921          */
1922         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1923                 if (mmap_page == NULL &&
1924                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1925                         goto do_inline_write;
1926
1927                 /*
1928                  * The write won't fit - we have to give this inode an
1929                  * inline extent list now.
1930                  */
1931                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1932                 if (ret)
1933                         mlog_errno(ret);
1934                 goto out;
1935         }
1936
1937         /*
1938          * Check whether the inode can accept inline data.
1939          */
1940         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1941                 return 0;
1942
1943         /*
1944          * Check whether the write can fit.
1945          */
1946         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1947         if (mmap_page ||
1948             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1949                 return 0;
1950
1951 do_inline_write:
1952         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1953         if (ret) {
1954                 mlog_errno(ret);
1955                 goto out;
1956         }
1957
1958         /*
1959          * This signals to the caller that the data can be written
1960          * inline.
1961          */
1962         written = 1;
1963 out:
1964         return written ? written : ret;
1965 }
1966
1967 /*
1968  * This function only does anything for file systems which can't
1969  * handle sparse files.
1970  *
1971  * What we want to do here is fill in any hole between the current end
1972  * of allocation and the end of our write. That way the rest of the
1973  * write path can treat it as an non-allocating write, which has no
1974  * special case code for sparse/nonsparse files.
1975  */
1976 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1977                                         struct buffer_head *di_bh,
1978                                         loff_t pos, unsigned len,
1979                                         struct ocfs2_write_ctxt *wc)
1980 {
1981         int ret;
1982         loff_t newsize = pos + len;
1983
1984         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1985
1986         if (newsize <= i_size_read(inode))
1987                 return 0;
1988
1989         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1990         if (ret)
1991                 mlog_errno(ret);
1992
1993         wc->w_first_new_cpos =
1994                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1995
1996         return ret;
1997 }
1998
1999 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
2000                            loff_t pos)
2001 {
2002         int ret = 0;
2003
2004         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2005         if (pos > i_size_read(inode))
2006                 ret = ocfs2_zero_extend(inode, di_bh, pos);
2007
2008         return ret;
2009 }
2010
2011 /*
2012  * Try to flush truncate logs if we can free enough clusters from it.
2013  * As for return value, "< 0" means error, "0" no space and "1" means
2014  * we have freed enough spaces and let the caller try to allocate again.
2015  */
2016 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2017                                           unsigned int needed)
2018 {
2019         tid_t target;
2020         int ret = 0;
2021         unsigned int truncated_clusters;
2022
2023         mutex_lock(&osb->osb_tl_inode->i_mutex);
2024         truncated_clusters = osb->truncated_clusters;
2025         mutex_unlock(&osb->osb_tl_inode->i_mutex);
2026
2027         /*
2028          * Check whether we can succeed in allocating if we free
2029          * the truncate log.
2030          */
2031         if (truncated_clusters < needed)
2032                 goto out;
2033
2034         ret = ocfs2_flush_truncate_log(osb);
2035         if (ret) {
2036                 mlog_errno(ret);
2037                 goto out;
2038         }
2039
2040         if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2041                 jbd2_log_wait_commit(osb->journal->j_journal, target);
2042                 ret = 1;
2043         }
2044 out:
2045         return ret;
2046 }
2047
2048 int ocfs2_write_begin_nolock(struct file *filp,
2049                              struct address_space *mapping,
2050                              loff_t pos, unsigned len, unsigned flags,
2051                              struct page **pagep, void **fsdata,
2052                              struct buffer_head *di_bh, struct page *mmap_page)
2053 {
2054         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2055         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2056         struct ocfs2_write_ctxt *wc;
2057         struct inode *inode = mapping->host;
2058         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2059         struct ocfs2_dinode *di;
2060         struct ocfs2_alloc_context *data_ac = NULL;
2061         struct ocfs2_alloc_context *meta_ac = NULL;
2062         handle_t *handle;
2063         struct ocfs2_extent_tree et;
2064         int try_free = 1, ret1;
2065
2066 try_again:
2067         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2068         if (ret) {
2069                 mlog_errno(ret);
2070                 return ret;
2071         }
2072
2073         if (ocfs2_supports_inline_data(osb)) {
2074                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2075                                                      mmap_page, wc);
2076                 if (ret == 1) {
2077                         ret = 0;
2078                         goto success;
2079                 }
2080                 if (ret < 0) {
2081                         mlog_errno(ret);
2082                         goto out;
2083                 }
2084         }
2085
2086         if (ocfs2_sparse_alloc(osb))
2087                 ret = ocfs2_zero_tail(inode, di_bh, pos);
2088         else
2089                 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2090                                                    wc);
2091         if (ret) {
2092                 mlog_errno(ret);
2093                 goto out;
2094         }
2095
2096         ret = ocfs2_check_range_for_refcount(inode, pos, len);
2097         if (ret < 0) {
2098                 mlog_errno(ret);
2099                 goto out;
2100         } else if (ret == 1) {
2101                 clusters_need = wc->w_clen;
2102                 ret = ocfs2_refcount_cow(inode, di_bh,
2103                                          wc->w_cpos, wc->w_clen, UINT_MAX);
2104                 if (ret) {
2105                         mlog_errno(ret);
2106                         goto out;
2107                 }
2108         }
2109
2110         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2111                                         &extents_to_split);
2112         if (ret) {
2113                 mlog_errno(ret);
2114                 goto out;
2115         }
2116         clusters_need += clusters_to_alloc;
2117
2118         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2119
2120         trace_ocfs2_write_begin_nolock(
2121                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2122                         (long long)i_size_read(inode),
2123                         le32_to_cpu(di->i_clusters),
2124                         pos, len, flags, mmap_page,
2125                         clusters_to_alloc, extents_to_split);
2126
2127         /*
2128          * We set w_target_from, w_target_to here so that
2129          * ocfs2_write_end() knows which range in the target page to
2130          * write out. An allocation requires that we write the entire
2131          * cluster range.
2132          */
2133         if (clusters_to_alloc || extents_to_split) {
2134                 /*
2135                  * XXX: We are stretching the limits of
2136                  * ocfs2_lock_allocators(). It greatly over-estimates
2137                  * the work to be done.
2138                  */
2139                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2140                                               wc->w_di_bh);
2141                 ret = ocfs2_lock_allocators(inode, &et,
2142                                             clusters_to_alloc, extents_to_split,
2143                                             &data_ac, &meta_ac);
2144                 if (ret) {
2145                         mlog_errno(ret);
2146                         goto out;
2147                 }
2148
2149                 if (data_ac)
2150                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2151
2152                 credits = ocfs2_calc_extend_credits(inode->i_sb,
2153                                                     &di->id2.i_list);
2154
2155         }
2156
2157         /*
2158          * We have to zero sparse allocated clusters, unwritten extent clusters,
2159          * and non-sparse clusters we just extended.  For non-sparse writes,
2160          * we know zeros will only be needed in the first and/or last cluster.
2161          */
2162         if (clusters_to_alloc || extents_to_split ||
2163             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2164                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2165                 cluster_of_pages = 1;
2166         else
2167                 cluster_of_pages = 0;
2168
2169         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2170
2171         handle = ocfs2_start_trans(osb, credits);
2172         if (IS_ERR(handle)) {
2173                 ret = PTR_ERR(handle);
2174                 mlog_errno(ret);
2175                 goto out;
2176         }
2177
2178         wc->w_handle = handle;
2179
2180         if (clusters_to_alloc) {
2181                 ret = dquot_alloc_space_nodirty(inode,
2182                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2183                 if (ret)
2184                         goto out_commit;
2185         }
2186         /*
2187          * We don't want this to fail in ocfs2_write_end(), so do it
2188          * here.
2189          */
2190         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2191                                       OCFS2_JOURNAL_ACCESS_WRITE);
2192         if (ret) {
2193                 mlog_errno(ret);
2194                 goto out_quota;
2195         }
2196
2197         /*
2198          * Fill our page array first. That way we've grabbed enough so
2199          * that we can zero and flush if we error after adding the
2200          * extent.
2201          */
2202         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2203                                          cluster_of_pages, mmap_page);
2204         if (ret && ret != -EAGAIN) {
2205                 mlog_errno(ret);
2206                 goto out_quota;
2207         }
2208
2209         /*
2210          * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2211          * the target page. In this case, we exit with no error and no target
2212          * page. This will trigger the caller, page_mkwrite(), to re-try
2213          * the operation.
2214          */
2215         if (ret == -EAGAIN) {
2216                 BUG_ON(wc->w_target_page);
2217                 ret = 0;
2218                 goto out_quota;
2219         }
2220
2221         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2222                                           len);
2223         if (ret) {
2224                 mlog_errno(ret);
2225                 goto out_quota;
2226         }
2227
2228         if (data_ac)
2229                 ocfs2_free_alloc_context(data_ac);
2230         if (meta_ac)
2231                 ocfs2_free_alloc_context(meta_ac);
2232
2233 success:
2234         *pagep = wc->w_target_page;
2235         *fsdata = wc;
2236         return 0;
2237 out_quota:
2238         if (clusters_to_alloc)
2239                 dquot_free_space(inode,
2240                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2241 out_commit:
2242         ocfs2_commit_trans(osb, handle);
2243
2244 out:
2245         ocfs2_free_write_ctxt(wc);
2246
2247         if (data_ac) {
2248                 ocfs2_free_alloc_context(data_ac);
2249                 data_ac = NULL;
2250         }
2251         if (meta_ac) {
2252                 ocfs2_free_alloc_context(meta_ac);
2253                 meta_ac = NULL;
2254         }
2255
2256         if (ret == -ENOSPC && try_free) {
2257                 /*
2258                  * Try to free some truncate log so that we can have enough
2259                  * clusters to allocate.
2260                  */
2261                 try_free = 0;
2262
2263                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2264                 if (ret1 == 1)
2265                         goto try_again;
2266
2267                 if (ret1 < 0)
2268                         mlog_errno(ret1);
2269         }
2270
2271         return ret;
2272 }
2273
2274 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2275                              loff_t pos, unsigned len, unsigned flags,
2276                              struct page **pagep, void **fsdata)
2277 {
2278         int ret;
2279         struct buffer_head *di_bh = NULL;
2280         struct inode *inode = mapping->host;
2281
2282         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2283         if (ret) {
2284                 mlog_errno(ret);
2285                 return ret;
2286         }
2287
2288         /*
2289          * Take alloc sem here to prevent concurrent lookups. That way
2290          * the mapping, zeroing and tree manipulation within
2291          * ocfs2_write() will be safe against ->readpage(). This
2292          * should also serve to lock out allocation from a shared
2293          * writeable region.
2294          */
2295         down_write(&OCFS2_I(inode)->ip_alloc_sem);
2296
2297         ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2298                                        fsdata, di_bh, NULL);
2299         if (ret) {
2300                 mlog_errno(ret);
2301                 goto out_fail;
2302         }
2303
2304         brelse(di_bh);
2305
2306         return 0;
2307
2308 out_fail:
2309         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2310
2311         brelse(di_bh);
2312         ocfs2_inode_unlock(inode, 1);
2313
2314         return ret;
2315 }
2316
2317 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2318                                    unsigned len, unsigned *copied,
2319                                    struct ocfs2_dinode *di,
2320                                    struct ocfs2_write_ctxt *wc)
2321 {
2322         void *kaddr;
2323
2324         if (unlikely(*copied < len)) {
2325                 if (!PageUptodate(wc->w_target_page)) {
2326                         *copied = 0;
2327                         return;
2328                 }
2329         }
2330
2331         kaddr = kmap_atomic(wc->w_target_page);
2332         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2333         kunmap_atomic(kaddr);
2334
2335         trace_ocfs2_write_end_inline(
2336              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2337              (unsigned long long)pos, *copied,
2338              le16_to_cpu(di->id2.i_data.id_count),
2339              le16_to_cpu(di->i_dyn_features));
2340 }
2341
2342 int ocfs2_write_end_nolock(struct address_space *mapping,
2343                            loff_t pos, unsigned len, unsigned copied,
2344                            struct page *page, void *fsdata)
2345 {
2346         int i;
2347         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2348         struct inode *inode = mapping->host;
2349         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2350         struct ocfs2_write_ctxt *wc = fsdata;
2351         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2352         handle_t *handle = wc->w_handle;
2353         struct page *tmppage;
2354
2355         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2356                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2357                 goto out_write_size;
2358         }
2359
2360         if (unlikely(copied < len)) {
2361                 if (!PageUptodate(wc->w_target_page))
2362                         copied = 0;
2363
2364                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2365                                        start+len);
2366         }
2367         flush_dcache_page(wc->w_target_page);
2368
2369         for(i = 0; i < wc->w_num_pages; i++) {
2370                 tmppage = wc->w_pages[i];
2371
2372                 if (tmppage == wc->w_target_page) {
2373                         from = wc->w_target_from;
2374                         to = wc->w_target_to;
2375
2376                         BUG_ON(from > PAGE_CACHE_SIZE ||
2377                                to > PAGE_CACHE_SIZE ||
2378                                to < from);
2379                 } else {
2380                         /*
2381                          * Pages adjacent to the target (if any) imply
2382                          * a hole-filling write in which case we want
2383                          * to flush their entire range.
2384                          */
2385                         from = 0;
2386                         to = PAGE_CACHE_SIZE;
2387                 }
2388
2389                 if (page_has_buffers(tmppage)) {
2390                         if (ocfs2_should_order_data(inode))
2391                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2392                         block_commit_write(tmppage, from, to);
2393                 }
2394         }
2395
2396 out_write_size:
2397         pos += copied;
2398         if (pos > i_size_read(inode)) {
2399                 i_size_write(inode, pos);
2400                 mark_inode_dirty(inode);
2401         }
2402         inode->i_blocks = ocfs2_inode_sector_count(inode);
2403         di->i_size = cpu_to_le64((u64)i_size_read(inode));
2404         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2405         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2406         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2407         ocfs2_update_inode_fsync_trans(handle, inode, 1);
2408         ocfs2_journal_dirty(handle, wc->w_di_bh);
2409
2410         /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2411          * lock, or it will cause a deadlock since journal commit threads holds
2412          * this lock and will ask for the page lock when flushing the data.
2413          * put it here to preserve the unlock order.
2414          */
2415         ocfs2_unlock_pages(wc);
2416
2417         ocfs2_commit_trans(osb, handle);
2418
2419         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2420
2421         brelse(wc->w_di_bh);
2422         kfree(wc);
2423
2424         return copied;
2425 }
2426
2427 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2428                            loff_t pos, unsigned len, unsigned copied,
2429                            struct page *page, void *fsdata)
2430 {
2431         int ret;
2432         struct inode *inode = mapping->host;
2433
2434         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2435
2436         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2437         ocfs2_inode_unlock(inode, 1);
2438
2439         return ret;
2440 }
2441
2442 const struct address_space_operations ocfs2_aops = {
2443         .readpage               = ocfs2_readpage,
2444         .readpages              = ocfs2_readpages,
2445         .writepage              = ocfs2_writepage,
2446         .write_begin            = ocfs2_write_begin,
2447         .write_end              = ocfs2_write_end,
2448         .bmap                   = ocfs2_bmap,
2449         .direct_IO              = ocfs2_direct_IO,
2450         .invalidatepage         = block_invalidatepage,
2451         .releasepage            = ocfs2_releasepage,
2452         .migratepage            = buffer_migrate_page,
2453         .is_partially_uptodate  = block_is_partially_uptodate,
2454         .error_remove_page      = generic_error_remove_page,
2455 };