]> git.karo-electronics.de Git - linux-beck.git/blob - fs/ocfs2/aops.c
ocfs2: Require an inode for ocfs2_read_block(s)().
[linux-beck.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30
31 #define MLOG_MASK_PREFIX ML_FILE_IO
32 #include <cluster/masklog.h>
33
34 #include "ocfs2.h"
35
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46
47 #include "buffer_head_io.h"
48
49 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
50                                    struct buffer_head *bh_result, int create)
51 {
52         int err = -EIO;
53         int status;
54         struct ocfs2_dinode *fe = NULL;
55         struct buffer_head *bh = NULL;
56         struct buffer_head *buffer_cache_bh = NULL;
57         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58         void *kaddr;
59
60         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
61                    (unsigned long long)iblock, bh_result, create);
62
63         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
64
65         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
66                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
67                      (unsigned long long)iblock);
68                 goto bail;
69         }
70
71         status = ocfs2_read_block(inode, OCFS2_I(inode)->ip_blkno,
72                                   &bh, OCFS2_BH_CACHED);
73         if (status < 0) {
74                 mlog_errno(status);
75                 goto bail;
76         }
77         fe = (struct ocfs2_dinode *) bh->b_data;
78
79         if (!OCFS2_IS_VALID_DINODE(fe)) {
80                 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
81                      (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
82                      fe->i_signature);
83                 goto bail;
84         }
85
86         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87                                                     le32_to_cpu(fe->i_clusters))) {
88                 mlog(ML_ERROR, "block offset is outside the allocated size: "
89                      "%llu\n", (unsigned long long)iblock);
90                 goto bail;
91         }
92
93         /* We don't use the page cache to create symlink data, so if
94          * need be, copy it over from the buffer cache. */
95         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
97                             iblock;
98                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
99                 if (!buffer_cache_bh) {
100                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
101                         goto bail;
102                 }
103
104                 /* we haven't locked out transactions, so a commit
105                  * could've happened. Since we've got a reference on
106                  * the bh, even if it commits while we're doing the
107                  * copy, the data is still good. */
108                 if (buffer_jbd(buffer_cache_bh)
109                     && ocfs2_inode_is_new(inode)) {
110                         kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
111                         if (!kaddr) {
112                                 mlog(ML_ERROR, "couldn't kmap!\n");
113                                 goto bail;
114                         }
115                         memcpy(kaddr + (bh_result->b_size * iblock),
116                                buffer_cache_bh->b_data,
117                                bh_result->b_size);
118                         kunmap_atomic(kaddr, KM_USER0);
119                         set_buffer_uptodate(bh_result);
120                 }
121                 brelse(buffer_cache_bh);
122         }
123
124         map_bh(bh_result, inode->i_sb,
125                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
126
127         err = 0;
128
129 bail:
130         brelse(bh);
131
132         mlog_exit(err);
133         return err;
134 }
135
136 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
137                            struct buffer_head *bh_result, int create)
138 {
139         int err = 0;
140         unsigned int ext_flags;
141         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
142         u64 p_blkno, count, past_eof;
143         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
144
145         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
146                    (unsigned long long)iblock, bh_result, create);
147
148         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150                      inode, inode->i_ino);
151
152         if (S_ISLNK(inode->i_mode)) {
153                 /* this always does I/O for some reason. */
154                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155                 goto bail;
156         }
157
158         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
159                                           &ext_flags);
160         if (err) {
161                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163                      (unsigned long long)p_blkno);
164                 goto bail;
165         }
166
167         if (max_blocks < count)
168                 count = max_blocks;
169
170         /*
171          * ocfs2 never allocates in this function - the only time we
172          * need to use BH_New is when we're extending i_size on a file
173          * system which doesn't support holes, in which case BH_New
174          * allows block_prepare_write() to zero.
175          *
176          * If we see this on a sparse file system, then a truncate has
177          * raced us and removed the cluster. In this case, we clear
178          * the buffers dirty and uptodate bits and let the buffer code
179          * ignore it as a hole.
180          */
181         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
182                 clear_buffer_dirty(bh_result);
183                 clear_buffer_uptodate(bh_result);
184                 goto bail;
185         }
186
187         /* Treat the unwritten extent as a hole for zeroing purposes. */
188         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
189                 map_bh(bh_result, inode->i_sb, p_blkno);
190
191         bh_result->b_size = count << inode->i_blkbits;
192
193         if (!ocfs2_sparse_alloc(osb)) {
194                 if (p_blkno == 0) {
195                         err = -EIO;
196                         mlog(ML_ERROR,
197                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
198                              (unsigned long long)iblock,
199                              (unsigned long long)p_blkno,
200                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
201                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
202                         dump_stack();
203                 }
204
205                 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
206                 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
207                      (unsigned long long)past_eof);
208
209                 if (create && (iblock >= past_eof))
210                         set_buffer_new(bh_result);
211         }
212
213 bail:
214         if (err < 0)
215                 err = -EIO;
216
217         mlog_exit(err);
218         return err;
219 }
220
221 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
222                            struct buffer_head *di_bh)
223 {
224         void *kaddr;
225         loff_t size;
226         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
227
228         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
229                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
230                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
231                 return -EROFS;
232         }
233
234         size = i_size_read(inode);
235
236         if (size > PAGE_CACHE_SIZE ||
237             size > ocfs2_max_inline_data(inode->i_sb)) {
238                 ocfs2_error(inode->i_sb,
239                             "Inode %llu has with inline data has bad size: %Lu",
240                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
241                             (unsigned long long)size);
242                 return -EROFS;
243         }
244
245         kaddr = kmap_atomic(page, KM_USER0);
246         if (size)
247                 memcpy(kaddr, di->id2.i_data.id_data, size);
248         /* Clear the remaining part of the page */
249         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
250         flush_dcache_page(page);
251         kunmap_atomic(kaddr, KM_USER0);
252
253         SetPageUptodate(page);
254
255         return 0;
256 }
257
258 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
259 {
260         int ret;
261         struct buffer_head *di_bh = NULL;
262
263         BUG_ON(!PageLocked(page));
264         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
265
266         ret = ocfs2_read_block(inode, OCFS2_I(inode)->ip_blkno, &di_bh,
267                                OCFS2_BH_CACHED);
268         if (ret) {
269                 mlog_errno(ret);
270                 goto out;
271         }
272
273         ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275         unlock_page(page);
276
277         brelse(di_bh);
278         return ret;
279 }
280
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283         struct inode *inode = page->mapping->host;
284         struct ocfs2_inode_info *oi = OCFS2_I(inode);
285         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286         int ret, unlock = 1;
287
288         mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
289
290         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
291         if (ret != 0) {
292                 if (ret == AOP_TRUNCATED_PAGE)
293                         unlock = 0;
294                 mlog_errno(ret);
295                 goto out;
296         }
297
298         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
299                 ret = AOP_TRUNCATED_PAGE;
300                 goto out_inode_unlock;
301         }
302
303         /*
304          * i_size might have just been updated as we grabed the meta lock.  We
305          * might now be discovering a truncate that hit on another node.
306          * block_read_full_page->get_block freaks out if it is asked to read
307          * beyond the end of a file, so we check here.  Callers
308          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
309          * and notice that the page they just read isn't needed.
310          *
311          * XXX sys_readahead() seems to get that wrong?
312          */
313         if (start >= i_size_read(inode)) {
314                 zero_user(page, 0, PAGE_SIZE);
315                 SetPageUptodate(page);
316                 ret = 0;
317                 goto out_alloc;
318         }
319
320         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
321                 ret = ocfs2_readpage_inline(inode, page);
322         else
323                 ret = block_read_full_page(page, ocfs2_get_block);
324         unlock = 0;
325
326 out_alloc:
327         up_read(&OCFS2_I(inode)->ip_alloc_sem);
328 out_inode_unlock:
329         ocfs2_inode_unlock(inode, 0);
330 out:
331         if (unlock)
332                 unlock_page(page);
333         mlog_exit(ret);
334         return ret;
335 }
336
337 /*
338  * This is used only for read-ahead. Failures or difficult to handle
339  * situations are safe to ignore.
340  *
341  * Right now, we don't bother with BH_Boundary - in-inode extent lists
342  * are quite large (243 extents on 4k blocks), so most inodes don't
343  * grow out to a tree. If need be, detecting boundary extents could
344  * trivially be added in a future version of ocfs2_get_block().
345  */
346 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
347                            struct list_head *pages, unsigned nr_pages)
348 {
349         int ret, err = -EIO;
350         struct inode *inode = mapping->host;
351         struct ocfs2_inode_info *oi = OCFS2_I(inode);
352         loff_t start;
353         struct page *last;
354
355         /*
356          * Use the nonblocking flag for the dlm code to avoid page
357          * lock inversion, but don't bother with retrying.
358          */
359         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
360         if (ret)
361                 return err;
362
363         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
364                 ocfs2_inode_unlock(inode, 0);
365                 return err;
366         }
367
368         /*
369          * Don't bother with inline-data. There isn't anything
370          * to read-ahead in that case anyway...
371          */
372         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
373                 goto out_unlock;
374
375         /*
376          * Check whether a remote node truncated this file - we just
377          * drop out in that case as it's not worth handling here.
378          */
379         last = list_entry(pages->prev, struct page, lru);
380         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
381         if (start >= i_size_read(inode))
382                 goto out_unlock;
383
384         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
385
386 out_unlock:
387         up_read(&oi->ip_alloc_sem);
388         ocfs2_inode_unlock(inode, 0);
389
390         return err;
391 }
392
393 /* Note: Because we don't support holes, our allocation has
394  * already happened (allocation writes zeros to the file data)
395  * so we don't have to worry about ordered writes in
396  * ocfs2_writepage.
397  *
398  * ->writepage is called during the process of invalidating the page cache
399  * during blocked lock processing.  It can't block on any cluster locks
400  * to during block mapping.  It's relying on the fact that the block
401  * mapping can't have disappeared under the dirty pages that it is
402  * being asked to write back.
403  */
404 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
405 {
406         int ret;
407
408         mlog_entry("(0x%p)\n", page);
409
410         ret = block_write_full_page(page, ocfs2_get_block, wbc);
411
412         mlog_exit(ret);
413
414         return ret;
415 }
416
417 /*
418  * This is called from ocfs2_write_zero_page() which has handled it's
419  * own cluster locking and has ensured allocation exists for those
420  * blocks to be written.
421  */
422 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
423                                unsigned from, unsigned to)
424 {
425         int ret;
426
427         ret = block_prepare_write(page, from, to, ocfs2_get_block);
428
429         return ret;
430 }
431
432 /* Taken from ext3. We don't necessarily need the full blown
433  * functionality yet, but IMHO it's better to cut and paste the whole
434  * thing so we can avoid introducing our own bugs (and easily pick up
435  * their fixes when they happen) --Mark */
436 int walk_page_buffers(  handle_t *handle,
437                         struct buffer_head *head,
438                         unsigned from,
439                         unsigned to,
440                         int *partial,
441                         int (*fn)(      handle_t *handle,
442                                         struct buffer_head *bh))
443 {
444         struct buffer_head *bh;
445         unsigned block_start, block_end;
446         unsigned blocksize = head->b_size;
447         int err, ret = 0;
448         struct buffer_head *next;
449
450         for (   bh = head, block_start = 0;
451                 ret == 0 && (bh != head || !block_start);
452                 block_start = block_end, bh = next)
453         {
454                 next = bh->b_this_page;
455                 block_end = block_start + blocksize;
456                 if (block_end <= from || block_start >= to) {
457                         if (partial && !buffer_uptodate(bh))
458                                 *partial = 1;
459                         continue;
460                 }
461                 err = (*fn)(handle, bh);
462                 if (!ret)
463                         ret = err;
464         }
465         return ret;
466 }
467
468 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
469                                                          struct page *page,
470                                                          unsigned from,
471                                                          unsigned to)
472 {
473         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
474         handle_t *handle;
475         int ret = 0;
476
477         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
478         if (IS_ERR(handle)) {
479                 ret = -ENOMEM;
480                 mlog_errno(ret);
481                 goto out;
482         }
483
484         if (ocfs2_should_order_data(inode)) {
485                 ret = ocfs2_jbd2_file_inode(handle, inode);
486 #ifdef CONFIG_OCFS2_COMPAT_JBD
487                 ret = walk_page_buffers(handle,
488                                         page_buffers(page),
489                                         from, to, NULL,
490                                         ocfs2_journal_dirty_data);
491 #endif
492                 if (ret < 0)
493                         mlog_errno(ret);
494         }
495 out:
496         if (ret) {
497                 if (!IS_ERR(handle))
498                         ocfs2_commit_trans(osb, handle);
499                 handle = ERR_PTR(ret);
500         }
501         return handle;
502 }
503
504 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
505 {
506         sector_t status;
507         u64 p_blkno = 0;
508         int err = 0;
509         struct inode *inode = mapping->host;
510
511         mlog_entry("(block = %llu)\n", (unsigned long long)block);
512
513         /* We don't need to lock journal system files, since they aren't
514          * accessed concurrently from multiple nodes.
515          */
516         if (!INODE_JOURNAL(inode)) {
517                 err = ocfs2_inode_lock(inode, NULL, 0);
518                 if (err) {
519                         if (err != -ENOENT)
520                                 mlog_errno(err);
521                         goto bail;
522                 }
523                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
524         }
525
526         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
527                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
528                                                   NULL);
529
530         if (!INODE_JOURNAL(inode)) {
531                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
532                 ocfs2_inode_unlock(inode, 0);
533         }
534
535         if (err) {
536                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
537                      (unsigned long long)block);
538                 mlog_errno(err);
539                 goto bail;
540         }
541
542 bail:
543         status = err ? 0 : p_blkno;
544
545         mlog_exit((int)status);
546
547         return status;
548 }
549
550 /*
551  * TODO: Make this into a generic get_blocks function.
552  *
553  * From do_direct_io in direct-io.c:
554  *  "So what we do is to permit the ->get_blocks function to populate
555  *   bh.b_size with the size of IO which is permitted at this offset and
556  *   this i_blkbits."
557  *
558  * This function is called directly from get_more_blocks in direct-io.c.
559  *
560  * called like this: dio->get_blocks(dio->inode, fs_startblk,
561  *                                      fs_count, map_bh, dio->rw == WRITE);
562  */
563 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
564                                      struct buffer_head *bh_result, int create)
565 {
566         int ret;
567         u64 p_blkno, inode_blocks, contig_blocks;
568         unsigned int ext_flags;
569         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
570         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
571
572         /* This function won't even be called if the request isn't all
573          * nicely aligned and of the right size, so there's no need
574          * for us to check any of that. */
575
576         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
577
578         /*
579          * Any write past EOF is not allowed because we'd be extending.
580          */
581         if (create && (iblock + max_blocks) > inode_blocks) {
582                 ret = -EIO;
583                 goto bail;
584         }
585
586         /* This figures out the size of the next contiguous block, and
587          * our logical offset */
588         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
589                                           &contig_blocks, &ext_flags);
590         if (ret) {
591                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
592                      (unsigned long long)iblock);
593                 ret = -EIO;
594                 goto bail;
595         }
596
597         if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
598                 ocfs2_error(inode->i_sb,
599                             "Inode %llu has a hole at block %llu\n",
600                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
601                             (unsigned long long)iblock);
602                 ret = -EROFS;
603                 goto bail;
604         }
605
606         /*
607          * get_more_blocks() expects us to describe a hole by clearing
608          * the mapped bit on bh_result().
609          *
610          * Consider an unwritten extent as a hole.
611          */
612         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
613                 map_bh(bh_result, inode->i_sb, p_blkno);
614         else {
615                 /*
616                  * ocfs2_prepare_inode_for_write() should have caught
617                  * the case where we'd be filling a hole and triggered
618                  * a buffered write instead.
619                  */
620                 if (create) {
621                         ret = -EIO;
622                         mlog_errno(ret);
623                         goto bail;
624                 }
625
626                 clear_buffer_mapped(bh_result);
627         }
628
629         /* make sure we don't map more than max_blocks blocks here as
630            that's all the kernel will handle at this point. */
631         if (max_blocks < contig_blocks)
632                 contig_blocks = max_blocks;
633         bh_result->b_size = contig_blocks << blocksize_bits;
634 bail:
635         return ret;
636 }
637
638 /* 
639  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
640  * particularly interested in the aio/dio case.  Like the core uses
641  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
642  * truncation on another.
643  */
644 static void ocfs2_dio_end_io(struct kiocb *iocb,
645                              loff_t offset,
646                              ssize_t bytes,
647                              void *private)
648 {
649         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
650         int level;
651
652         /* this io's submitter should not have unlocked this before we could */
653         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
654
655         ocfs2_iocb_clear_rw_locked(iocb);
656
657         level = ocfs2_iocb_rw_locked_level(iocb);
658         if (!level)
659                 up_read(&inode->i_alloc_sem);
660         ocfs2_rw_unlock(inode, level);
661 }
662
663 /*
664  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
665  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
666  * do journalled data.
667  */
668 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
669 {
670         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
671
672         jbd2_journal_invalidatepage(journal, page, offset);
673 }
674
675 static int ocfs2_releasepage(struct page *page, gfp_t wait)
676 {
677         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
678
679         if (!page_has_buffers(page))
680                 return 0;
681         return jbd2_journal_try_to_free_buffers(journal, page, wait);
682 }
683
684 static ssize_t ocfs2_direct_IO(int rw,
685                                struct kiocb *iocb,
686                                const struct iovec *iov,
687                                loff_t offset,
688                                unsigned long nr_segs)
689 {
690         struct file *file = iocb->ki_filp;
691         struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
692         int ret;
693
694         mlog_entry_void();
695
696         /*
697          * Fallback to buffered I/O if we see an inode without
698          * extents.
699          */
700         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
701                 return 0;
702
703         ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
704                                             inode->i_sb->s_bdev, iov, offset,
705                                             nr_segs, 
706                                             ocfs2_direct_IO_get_blocks,
707                                             ocfs2_dio_end_io);
708
709         mlog_exit(ret);
710         return ret;
711 }
712
713 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
714                                             u32 cpos,
715                                             unsigned int *start,
716                                             unsigned int *end)
717 {
718         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
719
720         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
721                 unsigned int cpp;
722
723                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
724
725                 cluster_start = cpos % cpp;
726                 cluster_start = cluster_start << osb->s_clustersize_bits;
727
728                 cluster_end = cluster_start + osb->s_clustersize;
729         }
730
731         BUG_ON(cluster_start > PAGE_SIZE);
732         BUG_ON(cluster_end > PAGE_SIZE);
733
734         if (start)
735                 *start = cluster_start;
736         if (end)
737                 *end = cluster_end;
738 }
739
740 /*
741  * 'from' and 'to' are the region in the page to avoid zeroing.
742  *
743  * If pagesize > clustersize, this function will avoid zeroing outside
744  * of the cluster boundary.
745  *
746  * from == to == 0 is code for "zero the entire cluster region"
747  */
748 static void ocfs2_clear_page_regions(struct page *page,
749                                      struct ocfs2_super *osb, u32 cpos,
750                                      unsigned from, unsigned to)
751 {
752         void *kaddr;
753         unsigned int cluster_start, cluster_end;
754
755         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
756
757         kaddr = kmap_atomic(page, KM_USER0);
758
759         if (from || to) {
760                 if (from > cluster_start)
761                         memset(kaddr + cluster_start, 0, from - cluster_start);
762                 if (to < cluster_end)
763                         memset(kaddr + to, 0, cluster_end - to);
764         } else {
765                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
766         }
767
768         kunmap_atomic(kaddr, KM_USER0);
769 }
770
771 /*
772  * Nonsparse file systems fully allocate before we get to the write
773  * code. This prevents ocfs2_write() from tagging the write as an
774  * allocating one, which means ocfs2_map_page_blocks() might try to
775  * read-in the blocks at the tail of our file. Avoid reading them by
776  * testing i_size against each block offset.
777  */
778 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
779                                  unsigned int block_start)
780 {
781         u64 offset = page_offset(page) + block_start;
782
783         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
784                 return 1;
785
786         if (i_size_read(inode) > offset)
787                 return 1;
788
789         return 0;
790 }
791
792 /*
793  * Some of this taken from block_prepare_write(). We already have our
794  * mapping by now though, and the entire write will be allocating or
795  * it won't, so not much need to use BH_New.
796  *
797  * This will also skip zeroing, which is handled externally.
798  */
799 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
800                           struct inode *inode, unsigned int from,
801                           unsigned int to, int new)
802 {
803         int ret = 0;
804         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
805         unsigned int block_end, block_start;
806         unsigned int bsize = 1 << inode->i_blkbits;
807
808         if (!page_has_buffers(page))
809                 create_empty_buffers(page, bsize, 0);
810
811         head = page_buffers(page);
812         for (bh = head, block_start = 0; bh != head || !block_start;
813              bh = bh->b_this_page, block_start += bsize) {
814                 block_end = block_start + bsize;
815
816                 clear_buffer_new(bh);
817
818                 /*
819                  * Ignore blocks outside of our i/o range -
820                  * they may belong to unallocated clusters.
821                  */
822                 if (block_start >= to || block_end <= from) {
823                         if (PageUptodate(page))
824                                 set_buffer_uptodate(bh);
825                         continue;
826                 }
827
828                 /*
829                  * For an allocating write with cluster size >= page
830                  * size, we always write the entire page.
831                  */
832                 if (new)
833                         set_buffer_new(bh);
834
835                 if (!buffer_mapped(bh)) {
836                         map_bh(bh, inode->i_sb, *p_blkno);
837                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
838                 }
839
840                 if (PageUptodate(page)) {
841                         if (!buffer_uptodate(bh))
842                                 set_buffer_uptodate(bh);
843                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
844                            !buffer_new(bh) &&
845                            ocfs2_should_read_blk(inode, page, block_start) &&
846                            (block_start < from || block_end > to)) {
847                         ll_rw_block(READ, 1, &bh);
848                         *wait_bh++=bh;
849                 }
850
851                 *p_blkno = *p_blkno + 1;
852         }
853
854         /*
855          * If we issued read requests - let them complete.
856          */
857         while(wait_bh > wait) {
858                 wait_on_buffer(*--wait_bh);
859                 if (!buffer_uptodate(*wait_bh))
860                         ret = -EIO;
861         }
862
863         if (ret == 0 || !new)
864                 return ret;
865
866         /*
867          * If we get -EIO above, zero out any newly allocated blocks
868          * to avoid exposing stale data.
869          */
870         bh = head;
871         block_start = 0;
872         do {
873                 block_end = block_start + bsize;
874                 if (block_end <= from)
875                         goto next_bh;
876                 if (block_start >= to)
877                         break;
878
879                 zero_user(page, block_start, bh->b_size);
880                 set_buffer_uptodate(bh);
881                 mark_buffer_dirty(bh);
882
883 next_bh:
884                 block_start = block_end;
885                 bh = bh->b_this_page;
886         } while (bh != head);
887
888         return ret;
889 }
890
891 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
892 #define OCFS2_MAX_CTXT_PAGES    1
893 #else
894 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
895 #endif
896
897 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
898
899 /*
900  * Describe the state of a single cluster to be written to.
901  */
902 struct ocfs2_write_cluster_desc {
903         u32             c_cpos;
904         u32             c_phys;
905         /*
906          * Give this a unique field because c_phys eventually gets
907          * filled.
908          */
909         unsigned        c_new;
910         unsigned        c_unwritten;
911 };
912
913 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
914 {
915         return d->c_new || d->c_unwritten;
916 }
917
918 struct ocfs2_write_ctxt {
919         /* Logical cluster position / len of write */
920         u32                             w_cpos;
921         u32                             w_clen;
922
923         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
924
925         /*
926          * This is true if page_size > cluster_size.
927          *
928          * It triggers a set of special cases during write which might
929          * have to deal with allocating writes to partial pages.
930          */
931         unsigned int                    w_large_pages;
932
933         /*
934          * Pages involved in this write.
935          *
936          * w_target_page is the page being written to by the user.
937          *
938          * w_pages is an array of pages which always contains
939          * w_target_page, and in the case of an allocating write with
940          * page_size < cluster size, it will contain zero'd and mapped
941          * pages adjacent to w_target_page which need to be written
942          * out in so that future reads from that region will get
943          * zero's.
944          */
945         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
946         unsigned int                    w_num_pages;
947         struct page                     *w_target_page;
948
949         /*
950          * ocfs2_write_end() uses this to know what the real range to
951          * write in the target should be.
952          */
953         unsigned int                    w_target_from;
954         unsigned int                    w_target_to;
955
956         /*
957          * We could use journal_current_handle() but this is cleaner,
958          * IMHO -Mark
959          */
960         handle_t                        *w_handle;
961
962         struct buffer_head              *w_di_bh;
963
964         struct ocfs2_cached_dealloc_ctxt w_dealloc;
965 };
966
967 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
968 {
969         int i;
970
971         for(i = 0; i < num_pages; i++) {
972                 if (pages[i]) {
973                         unlock_page(pages[i]);
974                         mark_page_accessed(pages[i]);
975                         page_cache_release(pages[i]);
976                 }
977         }
978 }
979
980 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
981 {
982         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
983
984         brelse(wc->w_di_bh);
985         kfree(wc);
986 }
987
988 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
989                                   struct ocfs2_super *osb, loff_t pos,
990                                   unsigned len, struct buffer_head *di_bh)
991 {
992         u32 cend;
993         struct ocfs2_write_ctxt *wc;
994
995         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
996         if (!wc)
997                 return -ENOMEM;
998
999         wc->w_cpos = pos >> osb->s_clustersize_bits;
1000         cend = (pos + len - 1) >> osb->s_clustersize_bits;
1001         wc->w_clen = cend - wc->w_cpos + 1;
1002         get_bh(di_bh);
1003         wc->w_di_bh = di_bh;
1004
1005         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1006                 wc->w_large_pages = 1;
1007         else
1008                 wc->w_large_pages = 0;
1009
1010         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1011
1012         *wcp = wc;
1013
1014         return 0;
1015 }
1016
1017 /*
1018  * If a page has any new buffers, zero them out here, and mark them uptodate
1019  * and dirty so they'll be written out (in order to prevent uninitialised
1020  * block data from leaking). And clear the new bit.
1021  */
1022 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1023 {
1024         unsigned int block_start, block_end;
1025         struct buffer_head *head, *bh;
1026
1027         BUG_ON(!PageLocked(page));
1028         if (!page_has_buffers(page))
1029                 return;
1030
1031         bh = head = page_buffers(page);
1032         block_start = 0;
1033         do {
1034                 block_end = block_start + bh->b_size;
1035
1036                 if (buffer_new(bh)) {
1037                         if (block_end > from && block_start < to) {
1038                                 if (!PageUptodate(page)) {
1039                                         unsigned start, end;
1040
1041                                         start = max(from, block_start);
1042                                         end = min(to, block_end);
1043
1044                                         zero_user_segment(page, start, end);
1045                                         set_buffer_uptodate(bh);
1046                                 }
1047
1048                                 clear_buffer_new(bh);
1049                                 mark_buffer_dirty(bh);
1050                         }
1051                 }
1052
1053                 block_start = block_end;
1054                 bh = bh->b_this_page;
1055         } while (bh != head);
1056 }
1057
1058 /*
1059  * Only called when we have a failure during allocating write to write
1060  * zero's to the newly allocated region.
1061  */
1062 static void ocfs2_write_failure(struct inode *inode,
1063                                 struct ocfs2_write_ctxt *wc,
1064                                 loff_t user_pos, unsigned user_len)
1065 {
1066         int i;
1067         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1068                 to = user_pos + user_len;
1069         struct page *tmppage;
1070
1071         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1072
1073         for(i = 0; i < wc->w_num_pages; i++) {
1074                 tmppage = wc->w_pages[i];
1075
1076                 if (page_has_buffers(tmppage)) {
1077                         if (ocfs2_should_order_data(inode)) {
1078                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1079 #ifdef CONFIG_OCFS2_COMPAT_JBD
1080                                 walk_page_buffers(wc->w_handle,
1081                                                   page_buffers(tmppage),
1082                                                   from, to, NULL,
1083                                                   ocfs2_journal_dirty_data);
1084 #endif
1085                         }
1086
1087                         block_commit_write(tmppage, from, to);
1088                 }
1089         }
1090 }
1091
1092 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1093                                         struct ocfs2_write_ctxt *wc,
1094                                         struct page *page, u32 cpos,
1095                                         loff_t user_pos, unsigned user_len,
1096                                         int new)
1097 {
1098         int ret;
1099         unsigned int map_from = 0, map_to = 0;
1100         unsigned int cluster_start, cluster_end;
1101         unsigned int user_data_from = 0, user_data_to = 0;
1102
1103         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1104                                         &cluster_start, &cluster_end);
1105
1106         if (page == wc->w_target_page) {
1107                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1108                 map_to = map_from + user_len;
1109
1110                 if (new)
1111                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1112                                                     cluster_start, cluster_end,
1113                                                     new);
1114                 else
1115                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1116                                                     map_from, map_to, new);
1117                 if (ret) {
1118                         mlog_errno(ret);
1119                         goto out;
1120                 }
1121
1122                 user_data_from = map_from;
1123                 user_data_to = map_to;
1124                 if (new) {
1125                         map_from = cluster_start;
1126                         map_to = cluster_end;
1127                 }
1128         } else {
1129                 /*
1130                  * If we haven't allocated the new page yet, we
1131                  * shouldn't be writing it out without copying user
1132                  * data. This is likely a math error from the caller.
1133                  */
1134                 BUG_ON(!new);
1135
1136                 map_from = cluster_start;
1137                 map_to = cluster_end;
1138
1139                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1140                                             cluster_start, cluster_end, new);
1141                 if (ret) {
1142                         mlog_errno(ret);
1143                         goto out;
1144                 }
1145         }
1146
1147         /*
1148          * Parts of newly allocated pages need to be zero'd.
1149          *
1150          * Above, we have also rewritten 'to' and 'from' - as far as
1151          * the rest of the function is concerned, the entire cluster
1152          * range inside of a page needs to be written.
1153          *
1154          * We can skip this if the page is up to date - it's already
1155          * been zero'd from being read in as a hole.
1156          */
1157         if (new && !PageUptodate(page))
1158                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1159                                          cpos, user_data_from, user_data_to);
1160
1161         flush_dcache_page(page);
1162
1163 out:
1164         return ret;
1165 }
1166
1167 /*
1168  * This function will only grab one clusters worth of pages.
1169  */
1170 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1171                                       struct ocfs2_write_ctxt *wc,
1172                                       u32 cpos, loff_t user_pos, int new,
1173                                       struct page *mmap_page)
1174 {
1175         int ret = 0, i;
1176         unsigned long start, target_index, index;
1177         struct inode *inode = mapping->host;
1178
1179         target_index = user_pos >> PAGE_CACHE_SHIFT;
1180
1181         /*
1182          * Figure out how many pages we'll be manipulating here. For
1183          * non allocating write, we just change the one
1184          * page. Otherwise, we'll need a whole clusters worth.
1185          */
1186         if (new) {
1187                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1188                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1189         } else {
1190                 wc->w_num_pages = 1;
1191                 start = target_index;
1192         }
1193
1194         for(i = 0; i < wc->w_num_pages; i++) {
1195                 index = start + i;
1196
1197                 if (index == target_index && mmap_page) {
1198                         /*
1199                          * ocfs2_pagemkwrite() is a little different
1200                          * and wants us to directly use the page
1201                          * passed in.
1202                          */
1203                         lock_page(mmap_page);
1204
1205                         if (mmap_page->mapping != mapping) {
1206                                 unlock_page(mmap_page);
1207                                 /*
1208                                  * Sanity check - the locking in
1209                                  * ocfs2_pagemkwrite() should ensure
1210                                  * that this code doesn't trigger.
1211                                  */
1212                                 ret = -EINVAL;
1213                                 mlog_errno(ret);
1214                                 goto out;
1215                         }
1216
1217                         page_cache_get(mmap_page);
1218                         wc->w_pages[i] = mmap_page;
1219                 } else {
1220                         wc->w_pages[i] = find_or_create_page(mapping, index,
1221                                                              GFP_NOFS);
1222                         if (!wc->w_pages[i]) {
1223                                 ret = -ENOMEM;
1224                                 mlog_errno(ret);
1225                                 goto out;
1226                         }
1227                 }
1228
1229                 if (index == target_index)
1230                         wc->w_target_page = wc->w_pages[i];
1231         }
1232 out:
1233         return ret;
1234 }
1235
1236 /*
1237  * Prepare a single cluster for write one cluster into the file.
1238  */
1239 static int ocfs2_write_cluster(struct address_space *mapping,
1240                                u32 phys, unsigned int unwritten,
1241                                struct ocfs2_alloc_context *data_ac,
1242                                struct ocfs2_alloc_context *meta_ac,
1243                                struct ocfs2_write_ctxt *wc, u32 cpos,
1244                                loff_t user_pos, unsigned user_len)
1245 {
1246         int ret, i, new, should_zero = 0;
1247         u64 v_blkno, p_blkno;
1248         struct inode *inode = mapping->host;
1249         struct ocfs2_extent_tree et;
1250
1251         new = phys == 0 ? 1 : 0;
1252         if (new || unwritten)
1253                 should_zero = 1;
1254
1255         if (new) {
1256                 u32 tmp_pos;
1257
1258                 /*
1259                  * This is safe to call with the page locks - it won't take
1260                  * any additional semaphores or cluster locks.
1261                  */
1262                 tmp_pos = cpos;
1263                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1264                                            &tmp_pos, 1, 0, wc->w_di_bh,
1265                                            wc->w_handle, data_ac,
1266                                            meta_ac, NULL);
1267                 /*
1268                  * This shouldn't happen because we must have already
1269                  * calculated the correct meta data allocation required. The
1270                  * internal tree allocation code should know how to increase
1271                  * transaction credits itself.
1272                  *
1273                  * If need be, we could handle -EAGAIN for a
1274                  * RESTART_TRANS here.
1275                  */
1276                 mlog_bug_on_msg(ret == -EAGAIN,
1277                                 "Inode %llu: EAGAIN return during allocation.\n",
1278                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1279                 if (ret < 0) {
1280                         mlog_errno(ret);
1281                         goto out;
1282                 }
1283         } else if (unwritten) {
1284                 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1285                 ret = ocfs2_mark_extent_written(inode, &et,
1286                                                 wc->w_handle, cpos, 1, phys,
1287                                                 meta_ac, &wc->w_dealloc);
1288                 if (ret < 0) {
1289                         mlog_errno(ret);
1290                         goto out;
1291                 }
1292         }
1293
1294         if (should_zero)
1295                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1296         else
1297                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1298
1299         /*
1300          * The only reason this should fail is due to an inability to
1301          * find the extent added.
1302          */
1303         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1304                                           NULL);
1305         if (ret < 0) {
1306                 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1307                             "at logical block %llu",
1308                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1309                             (unsigned long long)v_blkno);
1310                 goto out;
1311         }
1312
1313         BUG_ON(p_blkno == 0);
1314
1315         for(i = 0; i < wc->w_num_pages; i++) {
1316                 int tmpret;
1317
1318                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1319                                                       wc->w_pages[i], cpos,
1320                                                       user_pos, user_len,
1321                                                       should_zero);
1322                 if (tmpret) {
1323                         mlog_errno(tmpret);
1324                         if (ret == 0)
1325                                 tmpret = ret;
1326                 }
1327         }
1328
1329         /*
1330          * We only have cleanup to do in case of allocating write.
1331          */
1332         if (ret && new)
1333                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1334
1335 out:
1336
1337         return ret;
1338 }
1339
1340 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1341                                        struct ocfs2_alloc_context *data_ac,
1342                                        struct ocfs2_alloc_context *meta_ac,
1343                                        struct ocfs2_write_ctxt *wc,
1344                                        loff_t pos, unsigned len)
1345 {
1346         int ret, i;
1347         loff_t cluster_off;
1348         unsigned int local_len = len;
1349         struct ocfs2_write_cluster_desc *desc;
1350         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1351
1352         for (i = 0; i < wc->w_clen; i++) {
1353                 desc = &wc->w_desc[i];
1354
1355                 /*
1356                  * We have to make sure that the total write passed in
1357                  * doesn't extend past a single cluster.
1358                  */
1359                 local_len = len;
1360                 cluster_off = pos & (osb->s_clustersize - 1);
1361                 if ((cluster_off + local_len) > osb->s_clustersize)
1362                         local_len = osb->s_clustersize - cluster_off;
1363
1364                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1365                                           desc->c_unwritten, data_ac, meta_ac,
1366                                           wc, desc->c_cpos, pos, local_len);
1367                 if (ret) {
1368                         mlog_errno(ret);
1369                         goto out;
1370                 }
1371
1372                 len -= local_len;
1373                 pos += local_len;
1374         }
1375
1376         ret = 0;
1377 out:
1378         return ret;
1379 }
1380
1381 /*
1382  * ocfs2_write_end() wants to know which parts of the target page it
1383  * should complete the write on. It's easiest to compute them ahead of
1384  * time when a more complete view of the write is available.
1385  */
1386 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1387                                         struct ocfs2_write_ctxt *wc,
1388                                         loff_t pos, unsigned len, int alloc)
1389 {
1390         struct ocfs2_write_cluster_desc *desc;
1391
1392         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1393         wc->w_target_to = wc->w_target_from + len;
1394
1395         if (alloc == 0)
1396                 return;
1397
1398         /*
1399          * Allocating write - we may have different boundaries based
1400          * on page size and cluster size.
1401          *
1402          * NOTE: We can no longer compute one value from the other as
1403          * the actual write length and user provided length may be
1404          * different.
1405          */
1406
1407         if (wc->w_large_pages) {
1408                 /*
1409                  * We only care about the 1st and last cluster within
1410                  * our range and whether they should be zero'd or not. Either
1411                  * value may be extended out to the start/end of a
1412                  * newly allocated cluster.
1413                  */
1414                 desc = &wc->w_desc[0];
1415                 if (ocfs2_should_zero_cluster(desc))
1416                         ocfs2_figure_cluster_boundaries(osb,
1417                                                         desc->c_cpos,
1418                                                         &wc->w_target_from,
1419                                                         NULL);
1420
1421                 desc = &wc->w_desc[wc->w_clen - 1];
1422                 if (ocfs2_should_zero_cluster(desc))
1423                         ocfs2_figure_cluster_boundaries(osb,
1424                                                         desc->c_cpos,
1425                                                         NULL,
1426                                                         &wc->w_target_to);
1427         } else {
1428                 wc->w_target_from = 0;
1429                 wc->w_target_to = PAGE_CACHE_SIZE;
1430         }
1431 }
1432
1433 /*
1434  * Populate each single-cluster write descriptor in the write context
1435  * with information about the i/o to be done.
1436  *
1437  * Returns the number of clusters that will have to be allocated, as
1438  * well as a worst case estimate of the number of extent records that
1439  * would have to be created during a write to an unwritten region.
1440  */
1441 static int ocfs2_populate_write_desc(struct inode *inode,
1442                                      struct ocfs2_write_ctxt *wc,
1443                                      unsigned int *clusters_to_alloc,
1444                                      unsigned int *extents_to_split)
1445 {
1446         int ret;
1447         struct ocfs2_write_cluster_desc *desc;
1448         unsigned int num_clusters = 0;
1449         unsigned int ext_flags = 0;
1450         u32 phys = 0;
1451         int i;
1452
1453         *clusters_to_alloc = 0;
1454         *extents_to_split = 0;
1455
1456         for (i = 0; i < wc->w_clen; i++) {
1457                 desc = &wc->w_desc[i];
1458                 desc->c_cpos = wc->w_cpos + i;
1459
1460                 if (num_clusters == 0) {
1461                         /*
1462                          * Need to look up the next extent record.
1463                          */
1464                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1465                                                  &num_clusters, &ext_flags);
1466                         if (ret) {
1467                                 mlog_errno(ret);
1468                                 goto out;
1469                         }
1470
1471                         /*
1472                          * Assume worst case - that we're writing in
1473                          * the middle of the extent.
1474                          *
1475                          * We can assume that the write proceeds from
1476                          * left to right, in which case the extent
1477                          * insert code is smart enough to coalesce the
1478                          * next splits into the previous records created.
1479                          */
1480                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1481                                 *extents_to_split = *extents_to_split + 2;
1482                 } else if (phys) {
1483                         /*
1484                          * Only increment phys if it doesn't describe
1485                          * a hole.
1486                          */
1487                         phys++;
1488                 }
1489
1490                 desc->c_phys = phys;
1491                 if (phys == 0) {
1492                         desc->c_new = 1;
1493                         *clusters_to_alloc = *clusters_to_alloc + 1;
1494                 }
1495                 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1496                         desc->c_unwritten = 1;
1497
1498                 num_clusters--;
1499         }
1500
1501         ret = 0;
1502 out:
1503         return ret;
1504 }
1505
1506 static int ocfs2_write_begin_inline(struct address_space *mapping,
1507                                     struct inode *inode,
1508                                     struct ocfs2_write_ctxt *wc)
1509 {
1510         int ret;
1511         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1512         struct page *page;
1513         handle_t *handle;
1514         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1515
1516         page = find_or_create_page(mapping, 0, GFP_NOFS);
1517         if (!page) {
1518                 ret = -ENOMEM;
1519                 mlog_errno(ret);
1520                 goto out;
1521         }
1522         /*
1523          * If we don't set w_num_pages then this page won't get unlocked
1524          * and freed on cleanup of the write context.
1525          */
1526         wc->w_pages[0] = wc->w_target_page = page;
1527         wc->w_num_pages = 1;
1528
1529         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1530         if (IS_ERR(handle)) {
1531                 ret = PTR_ERR(handle);
1532                 mlog_errno(ret);
1533                 goto out;
1534         }
1535
1536         ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1537                                    OCFS2_JOURNAL_ACCESS_WRITE);
1538         if (ret) {
1539                 ocfs2_commit_trans(osb, handle);
1540
1541                 mlog_errno(ret);
1542                 goto out;
1543         }
1544
1545         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1546                 ocfs2_set_inode_data_inline(inode, di);
1547
1548         if (!PageUptodate(page)) {
1549                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1550                 if (ret) {
1551                         ocfs2_commit_trans(osb, handle);
1552
1553                         goto out;
1554                 }
1555         }
1556
1557         wc->w_handle = handle;
1558 out:
1559         return ret;
1560 }
1561
1562 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1563 {
1564         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1565
1566         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1567                 return 1;
1568         return 0;
1569 }
1570
1571 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1572                                           struct inode *inode, loff_t pos,
1573                                           unsigned len, struct page *mmap_page,
1574                                           struct ocfs2_write_ctxt *wc)
1575 {
1576         int ret, written = 0;
1577         loff_t end = pos + len;
1578         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1579
1580         mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1581              (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1582              oi->ip_dyn_features);
1583
1584         /*
1585          * Handle inodes which already have inline data 1st.
1586          */
1587         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1588                 if (mmap_page == NULL &&
1589                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1590                         goto do_inline_write;
1591
1592                 /*
1593                  * The write won't fit - we have to give this inode an
1594                  * inline extent list now.
1595                  */
1596                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1597                 if (ret)
1598                         mlog_errno(ret);
1599                 goto out;
1600         }
1601
1602         /*
1603          * Check whether the inode can accept inline data.
1604          */
1605         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1606                 return 0;
1607
1608         /*
1609          * Check whether the write can fit.
1610          */
1611         if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1612                 return 0;
1613
1614 do_inline_write:
1615         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1616         if (ret) {
1617                 mlog_errno(ret);
1618                 goto out;
1619         }
1620
1621         /*
1622          * This signals to the caller that the data can be written
1623          * inline.
1624          */
1625         written = 1;
1626 out:
1627         return written ? written : ret;
1628 }
1629
1630 /*
1631  * This function only does anything for file systems which can't
1632  * handle sparse files.
1633  *
1634  * What we want to do here is fill in any hole between the current end
1635  * of allocation and the end of our write. That way the rest of the
1636  * write path can treat it as an non-allocating write, which has no
1637  * special case code for sparse/nonsparse files.
1638  */
1639 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1640                                         unsigned len,
1641                                         struct ocfs2_write_ctxt *wc)
1642 {
1643         int ret;
1644         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1645         loff_t newsize = pos + len;
1646
1647         if (ocfs2_sparse_alloc(osb))
1648                 return 0;
1649
1650         if (newsize <= i_size_read(inode))
1651                 return 0;
1652
1653         ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1654         if (ret)
1655                 mlog_errno(ret);
1656
1657         return ret;
1658 }
1659
1660 int ocfs2_write_begin_nolock(struct address_space *mapping,
1661                              loff_t pos, unsigned len, unsigned flags,
1662                              struct page **pagep, void **fsdata,
1663                              struct buffer_head *di_bh, struct page *mmap_page)
1664 {
1665         int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1666         unsigned int clusters_to_alloc, extents_to_split;
1667         struct ocfs2_write_ctxt *wc;
1668         struct inode *inode = mapping->host;
1669         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1670         struct ocfs2_dinode *di;
1671         struct ocfs2_alloc_context *data_ac = NULL;
1672         struct ocfs2_alloc_context *meta_ac = NULL;
1673         handle_t *handle;
1674         struct ocfs2_extent_tree et;
1675
1676         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1677         if (ret) {
1678                 mlog_errno(ret);
1679                 return ret;
1680         }
1681
1682         if (ocfs2_supports_inline_data(osb)) {
1683                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1684                                                      mmap_page, wc);
1685                 if (ret == 1) {
1686                         ret = 0;
1687                         goto success;
1688                 }
1689                 if (ret < 0) {
1690                         mlog_errno(ret);
1691                         goto out;
1692                 }
1693         }
1694
1695         ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1696         if (ret) {
1697                 mlog_errno(ret);
1698                 goto out;
1699         }
1700
1701         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1702                                         &extents_to_split);
1703         if (ret) {
1704                 mlog_errno(ret);
1705                 goto out;
1706         }
1707
1708         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1709
1710         /*
1711          * We set w_target_from, w_target_to here so that
1712          * ocfs2_write_end() knows which range in the target page to
1713          * write out. An allocation requires that we write the entire
1714          * cluster range.
1715          */
1716         if (clusters_to_alloc || extents_to_split) {
1717                 /*
1718                  * XXX: We are stretching the limits of
1719                  * ocfs2_lock_allocators(). It greatly over-estimates
1720                  * the work to be done.
1721                  */
1722                 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1723                      " clusters_to_add = %u, extents_to_split = %u\n",
1724                      (unsigned long long)OCFS2_I(inode)->ip_blkno,
1725                      (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1726                      clusters_to_alloc, extents_to_split);
1727
1728                 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1729                 ret = ocfs2_lock_allocators(inode, &et,
1730                                             clusters_to_alloc, extents_to_split,
1731                                             &data_ac, &meta_ac);
1732                 if (ret) {
1733                         mlog_errno(ret);
1734                         goto out;
1735                 }
1736
1737                 credits = ocfs2_calc_extend_credits(inode->i_sb,
1738                                                     &di->id2.i_list,
1739                                                     clusters_to_alloc);
1740
1741         }
1742
1743         ocfs2_set_target_boundaries(osb, wc, pos, len,
1744                                     clusters_to_alloc + extents_to_split);
1745
1746         handle = ocfs2_start_trans(osb, credits);
1747         if (IS_ERR(handle)) {
1748                 ret = PTR_ERR(handle);
1749                 mlog_errno(ret);
1750                 goto out;
1751         }
1752
1753         wc->w_handle = handle;
1754
1755         /*
1756          * We don't want this to fail in ocfs2_write_end(), so do it
1757          * here.
1758          */
1759         ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1760                                    OCFS2_JOURNAL_ACCESS_WRITE);
1761         if (ret) {
1762                 mlog_errno(ret);
1763                 goto out_commit;
1764         }
1765
1766         /*
1767          * Fill our page array first. That way we've grabbed enough so
1768          * that we can zero and flush if we error after adding the
1769          * extent.
1770          */
1771         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1772                                          clusters_to_alloc + extents_to_split,
1773                                          mmap_page);
1774         if (ret) {
1775                 mlog_errno(ret);
1776                 goto out_commit;
1777         }
1778
1779         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1780                                           len);
1781         if (ret) {
1782                 mlog_errno(ret);
1783                 goto out_commit;
1784         }
1785
1786         if (data_ac)
1787                 ocfs2_free_alloc_context(data_ac);
1788         if (meta_ac)
1789                 ocfs2_free_alloc_context(meta_ac);
1790
1791 success:
1792         *pagep = wc->w_target_page;
1793         *fsdata = wc;
1794         return 0;
1795 out_commit:
1796         ocfs2_commit_trans(osb, handle);
1797
1798 out:
1799         ocfs2_free_write_ctxt(wc);
1800
1801         if (data_ac)
1802                 ocfs2_free_alloc_context(data_ac);
1803         if (meta_ac)
1804                 ocfs2_free_alloc_context(meta_ac);
1805         return ret;
1806 }
1807
1808 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1809                              loff_t pos, unsigned len, unsigned flags,
1810                              struct page **pagep, void **fsdata)
1811 {
1812         int ret;
1813         struct buffer_head *di_bh = NULL;
1814         struct inode *inode = mapping->host;
1815
1816         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1817         if (ret) {
1818                 mlog_errno(ret);
1819                 return ret;
1820         }
1821
1822         /*
1823          * Take alloc sem here to prevent concurrent lookups. That way
1824          * the mapping, zeroing and tree manipulation within
1825          * ocfs2_write() will be safe against ->readpage(). This
1826          * should also serve to lock out allocation from a shared
1827          * writeable region.
1828          */
1829         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1830
1831         ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1832                                        fsdata, di_bh, NULL);
1833         if (ret) {
1834                 mlog_errno(ret);
1835                 goto out_fail;
1836         }
1837
1838         brelse(di_bh);
1839
1840         return 0;
1841
1842 out_fail:
1843         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1844
1845         brelse(di_bh);
1846         ocfs2_inode_unlock(inode, 1);
1847
1848         return ret;
1849 }
1850
1851 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1852                                    unsigned len, unsigned *copied,
1853                                    struct ocfs2_dinode *di,
1854                                    struct ocfs2_write_ctxt *wc)
1855 {
1856         void *kaddr;
1857
1858         if (unlikely(*copied < len)) {
1859                 if (!PageUptodate(wc->w_target_page)) {
1860                         *copied = 0;
1861                         return;
1862                 }
1863         }
1864
1865         kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1866         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1867         kunmap_atomic(kaddr, KM_USER0);
1868
1869         mlog(0, "Data written to inode at offset %llu. "
1870              "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1871              (unsigned long long)pos, *copied,
1872              le16_to_cpu(di->id2.i_data.id_count),
1873              le16_to_cpu(di->i_dyn_features));
1874 }
1875
1876 int ocfs2_write_end_nolock(struct address_space *mapping,
1877                            loff_t pos, unsigned len, unsigned copied,
1878                            struct page *page, void *fsdata)
1879 {
1880         int i;
1881         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1882         struct inode *inode = mapping->host;
1883         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1884         struct ocfs2_write_ctxt *wc = fsdata;
1885         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1886         handle_t *handle = wc->w_handle;
1887         struct page *tmppage;
1888
1889         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1890                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1891                 goto out_write_size;
1892         }
1893
1894         if (unlikely(copied < len)) {
1895                 if (!PageUptodate(wc->w_target_page))
1896                         copied = 0;
1897
1898                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1899                                        start+len);
1900         }
1901         flush_dcache_page(wc->w_target_page);
1902
1903         for(i = 0; i < wc->w_num_pages; i++) {
1904                 tmppage = wc->w_pages[i];
1905
1906                 if (tmppage == wc->w_target_page) {
1907                         from = wc->w_target_from;
1908                         to = wc->w_target_to;
1909
1910                         BUG_ON(from > PAGE_CACHE_SIZE ||
1911                                to > PAGE_CACHE_SIZE ||
1912                                to < from);
1913                 } else {
1914                         /*
1915                          * Pages adjacent to the target (if any) imply
1916                          * a hole-filling write in which case we want
1917                          * to flush their entire range.
1918                          */
1919                         from = 0;
1920                         to = PAGE_CACHE_SIZE;
1921                 }
1922
1923                 if (page_has_buffers(tmppage)) {
1924                         if (ocfs2_should_order_data(inode)) {
1925                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1926 #ifdef CONFIG_OCFS2_COMPAT_JBD
1927                                 walk_page_buffers(wc->w_handle,
1928                                                   page_buffers(tmppage),
1929                                                   from, to, NULL,
1930                                                   ocfs2_journal_dirty_data);
1931 #endif
1932                         }
1933                         block_commit_write(tmppage, from, to);
1934                 }
1935         }
1936
1937 out_write_size:
1938         pos += copied;
1939         if (pos > inode->i_size) {
1940                 i_size_write(inode, pos);
1941                 mark_inode_dirty(inode);
1942         }
1943         inode->i_blocks = ocfs2_inode_sector_count(inode);
1944         di->i_size = cpu_to_le64((u64)i_size_read(inode));
1945         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1946         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1947         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1948         ocfs2_journal_dirty(handle, wc->w_di_bh);
1949
1950         ocfs2_commit_trans(osb, handle);
1951
1952         ocfs2_run_deallocs(osb, &wc->w_dealloc);
1953
1954         ocfs2_free_write_ctxt(wc);
1955
1956         return copied;
1957 }
1958
1959 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1960                            loff_t pos, unsigned len, unsigned copied,
1961                            struct page *page, void *fsdata)
1962 {
1963         int ret;
1964         struct inode *inode = mapping->host;
1965
1966         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1967
1968         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1969         ocfs2_inode_unlock(inode, 1);
1970
1971         return ret;
1972 }
1973
1974 const struct address_space_operations ocfs2_aops = {
1975         .readpage       = ocfs2_readpage,
1976         .readpages      = ocfs2_readpages,
1977         .writepage      = ocfs2_writepage,
1978         .write_begin    = ocfs2_write_begin,
1979         .write_end      = ocfs2_write_end,
1980         .bmap           = ocfs2_bmap,
1981         .sync_page      = block_sync_page,
1982         .direct_IO      = ocfs2_direct_IO,
1983         .invalidatepage = ocfs2_invalidatepage,
1984         .releasepage    = ocfs2_releasepage,
1985         .migratepage    = buffer_migrate_page,
1986 };