4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * proc base directory handling functions
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
50 #include <asm/uaccess.h>
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
66 #include <linux/rcupdate.h>
67 #include <linux/kallsyms.h>
68 #include <linux/stacktrace.h>
69 #include <linux/resource.h>
70 #include <linux/module.h>
71 #include <linux/mount.h>
72 #include <linux/security.h>
73 #include <linux/ptrace.h>
74 #include <linux/tracehook.h>
75 #include <linux/cgroup.h>
76 #include <linux/cpuset.h>
77 #include <linux/audit.h>
78 #include <linux/poll.h>
79 #include <linux/nsproxy.h>
80 #include <linux/oom.h>
81 #include <linux/elf.h>
82 #include <linux/pid_namespace.h>
83 #include <linux/fs_struct.h>
84 #include <linux/slab.h>
88 * Implementing inode permission operations in /proc is almost
89 * certainly an error. Permission checks need to happen during
90 * each system call not at open time. The reason is that most of
91 * what we wish to check for permissions in /proc varies at runtime.
93 * The classic example of a problem is opening file descriptors
94 * in /proc for a task before it execs a suid executable.
101 const struct inode_operations *iop;
102 const struct file_operations *fop;
106 #define NOD(NAME, MODE, IOP, FOP, OP) { \
108 .len = sizeof(NAME) - 1, \
115 #define DIR(NAME, MODE, iops, fops) \
116 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
117 #define LNK(NAME, get_link) \
118 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
119 &proc_pid_link_inode_operations, NULL, \
120 { .proc_get_link = get_link } )
121 #define REG(NAME, MODE, fops) \
122 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
123 #define INF(NAME, MODE, read) \
124 NOD(NAME, (S_IFREG|(MODE)), \
125 NULL, &proc_info_file_operations, \
126 { .proc_read = read } )
127 #define ONE(NAME, MODE, show) \
128 NOD(NAME, (S_IFREG|(MODE)), \
129 NULL, &proc_single_file_operations, \
130 { .proc_show = show } )
133 * Count the number of hardlinks for the pid_entry table, excluding the .
136 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
143 for (i = 0; i < n; ++i) {
144 if (S_ISDIR(entries[i].mode))
151 static int get_fs_path(struct task_struct *task, struct path *path, bool root)
153 struct fs_struct *fs;
154 int result = -ENOENT;
159 read_lock(&fs->lock);
160 *path = root ? fs->root : fs->pwd;
162 read_unlock(&fs->lock);
169 static int get_nr_threads(struct task_struct *tsk)
174 if (lock_task_sighand(tsk, &flags)) {
175 count = atomic_read(&tsk->signal->count);
176 unlock_task_sighand(tsk, &flags);
181 static int proc_cwd_link(struct inode *inode, struct path *path)
183 struct task_struct *task = get_proc_task(inode);
184 int result = -ENOENT;
187 result = get_fs_path(task, path, 0);
188 put_task_struct(task);
193 static int proc_root_link(struct inode *inode, struct path *path)
195 struct task_struct *task = get_proc_task(inode);
196 int result = -ENOENT;
199 result = get_fs_path(task, path, 1);
200 put_task_struct(task);
206 * Return zero if current may access user memory in @task, -error if not.
208 static int check_mem_permission(struct task_struct *task)
211 * A task can always look at itself, in case it chooses
212 * to use system calls instead of load instructions.
218 * If current is actively ptrace'ing, and would also be
219 * permitted to freshly attach with ptrace now, permit it.
221 if (task_is_stopped_or_traced(task)) {
224 match = (tracehook_tracer_task(task) == current);
226 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
231 * Noone else is allowed.
236 struct mm_struct *mm_for_maps(struct task_struct *task)
238 struct mm_struct *mm;
240 if (mutex_lock_killable(&task->cred_guard_mutex))
243 mm = get_task_mm(task);
244 if (mm && mm != current->mm &&
245 !ptrace_may_access(task, PTRACE_MODE_READ)) {
249 mutex_unlock(&task->cred_guard_mutex);
254 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
258 struct mm_struct *mm = get_task_mm(task);
262 goto out_mm; /* Shh! No looking before we're done */
264 len = mm->arg_end - mm->arg_start;
269 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
271 // If the nul at the end of args has been overwritten, then
272 // assume application is using setproctitle(3).
273 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
274 len = strnlen(buffer, res);
278 len = mm->env_end - mm->env_start;
279 if (len > PAGE_SIZE - res)
280 len = PAGE_SIZE - res;
281 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
282 res = strnlen(buffer, res);
291 static int proc_pid_auxv(struct task_struct *task, char *buffer)
294 struct mm_struct *mm = get_task_mm(task);
296 unsigned int nwords = 0;
299 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
300 res = nwords * sizeof(mm->saved_auxv[0]);
303 memcpy(buffer, mm->saved_auxv, res);
310 #ifdef CONFIG_KALLSYMS
312 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
313 * Returns the resolved symbol. If that fails, simply return the address.
315 static int proc_pid_wchan(struct task_struct *task, char *buffer)
318 char symname[KSYM_NAME_LEN];
320 wchan = get_wchan(task);
322 if (lookup_symbol_name(wchan, symname) < 0)
323 if (!ptrace_may_access(task, PTRACE_MODE_READ))
326 return sprintf(buffer, "%lu", wchan);
328 return sprintf(buffer, "%s", symname);
330 #endif /* CONFIG_KALLSYMS */
332 #ifdef CONFIG_STACKTRACE
334 #define MAX_STACK_TRACE_DEPTH 64
336 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
337 struct pid *pid, struct task_struct *task)
339 struct stack_trace trace;
340 unsigned long *entries;
343 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
347 trace.nr_entries = 0;
348 trace.max_entries = MAX_STACK_TRACE_DEPTH;
349 trace.entries = entries;
351 save_stack_trace_tsk(task, &trace);
353 for (i = 0; i < trace.nr_entries; i++) {
354 seq_printf(m, "[<%p>] %pS\n",
355 (void *)entries[i], (void *)entries[i]);
363 #ifdef CONFIG_SCHEDSTATS
365 * Provides /proc/PID/schedstat
367 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
369 return sprintf(buffer, "%llu %llu %lu\n",
370 (unsigned long long)task->se.sum_exec_runtime,
371 (unsigned long long)task->sched_info.run_delay,
372 task->sched_info.pcount);
376 #ifdef CONFIG_LATENCYTOP
377 static int lstats_show_proc(struct seq_file *m, void *v)
380 struct inode *inode = m->private;
381 struct task_struct *task = get_proc_task(inode);
385 seq_puts(m, "Latency Top version : v0.1\n");
386 for (i = 0; i < 32; i++) {
387 if (task->latency_record[i].backtrace[0]) {
389 seq_printf(m, "%i %li %li ",
390 task->latency_record[i].count,
391 task->latency_record[i].time,
392 task->latency_record[i].max);
393 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
394 char sym[KSYM_SYMBOL_LEN];
396 if (!task->latency_record[i].backtrace[q])
398 if (task->latency_record[i].backtrace[q] == ULONG_MAX)
400 sprint_symbol(sym, task->latency_record[i].backtrace[q]);
401 c = strchr(sym, '+');
404 seq_printf(m, "%s ", sym);
410 put_task_struct(task);
414 static int lstats_open(struct inode *inode, struct file *file)
416 return single_open(file, lstats_show_proc, inode);
419 static ssize_t lstats_write(struct file *file, const char __user *buf,
420 size_t count, loff_t *offs)
422 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
426 clear_all_latency_tracing(task);
427 put_task_struct(task);
432 static const struct file_operations proc_lstats_operations = {
435 .write = lstats_write,
437 .release = single_release,
442 /* The badness from the OOM killer */
443 unsigned long badness(struct task_struct *p, unsigned long uptime);
444 static int proc_oom_score(struct task_struct *task, char *buffer)
446 unsigned long points = 0;
447 struct timespec uptime;
449 do_posix_clock_monotonic_gettime(&uptime);
450 read_lock(&tasklist_lock);
452 points = badness(task, uptime.tv_sec);
453 read_unlock(&tasklist_lock);
454 return sprintf(buffer, "%lu\n", points);
462 static const struct limit_names lnames[RLIM_NLIMITS] = {
463 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
464 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
465 [RLIMIT_DATA] = {"Max data size", "bytes"},
466 [RLIMIT_STACK] = {"Max stack size", "bytes"},
467 [RLIMIT_CORE] = {"Max core file size", "bytes"},
468 [RLIMIT_RSS] = {"Max resident set", "bytes"},
469 [RLIMIT_NPROC] = {"Max processes", "processes"},
470 [RLIMIT_NOFILE] = {"Max open files", "files"},
471 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
472 [RLIMIT_AS] = {"Max address space", "bytes"},
473 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
474 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
475 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
476 [RLIMIT_NICE] = {"Max nice priority", NULL},
477 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
478 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
481 /* Display limits for a process */
482 static int proc_pid_limits(struct task_struct *task, char *buffer)
487 char *bufptr = buffer;
489 struct rlimit rlim[RLIM_NLIMITS];
491 if (!lock_task_sighand(task, &flags))
493 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
494 unlock_task_sighand(task, &flags);
497 * print the file header
499 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
500 "Limit", "Soft Limit", "Hard Limit", "Units");
502 for (i = 0; i < RLIM_NLIMITS; i++) {
503 if (rlim[i].rlim_cur == RLIM_INFINITY)
504 count += sprintf(&bufptr[count], "%-25s %-20s ",
505 lnames[i].name, "unlimited");
507 count += sprintf(&bufptr[count], "%-25s %-20lu ",
508 lnames[i].name, rlim[i].rlim_cur);
510 if (rlim[i].rlim_max == RLIM_INFINITY)
511 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
513 count += sprintf(&bufptr[count], "%-20lu ",
517 count += sprintf(&bufptr[count], "%-10s\n",
520 count += sprintf(&bufptr[count], "\n");
526 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
527 static int proc_pid_syscall(struct task_struct *task, char *buffer)
530 unsigned long args[6], sp, pc;
532 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
533 return sprintf(buffer, "running\n");
536 return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
538 return sprintf(buffer,
539 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
541 args[0], args[1], args[2], args[3], args[4], args[5],
544 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
546 /************************************************************************/
547 /* Here the fs part begins */
548 /************************************************************************/
550 /* permission checks */
551 static int proc_fd_access_allowed(struct inode *inode)
553 struct task_struct *task;
555 /* Allow access to a task's file descriptors if it is us or we
556 * may use ptrace attach to the process and find out that
559 task = get_proc_task(inode);
561 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
562 put_task_struct(task);
567 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
570 struct inode *inode = dentry->d_inode;
572 if (attr->ia_valid & ATTR_MODE)
575 error = inode_change_ok(inode, attr);
577 error = inode_setattr(inode, attr);
581 static const struct inode_operations proc_def_inode_operations = {
582 .setattr = proc_setattr,
585 static int mounts_open_common(struct inode *inode, struct file *file,
586 const struct seq_operations *op)
588 struct task_struct *task = get_proc_task(inode);
590 struct mnt_namespace *ns = NULL;
592 struct proc_mounts *p;
597 nsp = task_nsproxy(task);
604 if (ns && get_fs_path(task, &root, 1) == 0)
606 put_task_struct(task);
615 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
619 file->private_data = &p->m;
620 ret = seq_open(file, op);
627 p->event = ns->event;
641 static int mounts_release(struct inode *inode, struct file *file)
643 struct proc_mounts *p = file->private_data;
646 return seq_release(inode, file);
649 static unsigned mounts_poll(struct file *file, poll_table *wait)
651 struct proc_mounts *p = file->private_data;
652 unsigned res = POLLIN | POLLRDNORM;
654 poll_wait(file, &p->ns->poll, wait);
655 if (mnt_had_events(p))
656 res |= POLLERR | POLLPRI;
661 static int mounts_open(struct inode *inode, struct file *file)
663 return mounts_open_common(inode, file, &mounts_op);
666 static const struct file_operations proc_mounts_operations = {
670 .release = mounts_release,
674 static int mountinfo_open(struct inode *inode, struct file *file)
676 return mounts_open_common(inode, file, &mountinfo_op);
679 static const struct file_operations proc_mountinfo_operations = {
680 .open = mountinfo_open,
683 .release = mounts_release,
687 static int mountstats_open(struct inode *inode, struct file *file)
689 return mounts_open_common(inode, file, &mountstats_op);
692 static const struct file_operations proc_mountstats_operations = {
693 .open = mountstats_open,
696 .release = mounts_release,
699 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
701 static ssize_t proc_info_read(struct file * file, char __user * buf,
702 size_t count, loff_t *ppos)
704 struct inode * inode = file->f_path.dentry->d_inode;
707 struct task_struct *task = get_proc_task(inode);
713 if (count > PROC_BLOCK_SIZE)
714 count = PROC_BLOCK_SIZE;
717 if (!(page = __get_free_page(GFP_TEMPORARY)))
720 length = PROC_I(inode)->op.proc_read(task, (char*)page);
723 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
726 put_task_struct(task);
731 static const struct file_operations proc_info_file_operations = {
732 .read = proc_info_read,
733 .llseek = generic_file_llseek,
736 static int proc_single_show(struct seq_file *m, void *v)
738 struct inode *inode = m->private;
739 struct pid_namespace *ns;
741 struct task_struct *task;
744 ns = inode->i_sb->s_fs_info;
745 pid = proc_pid(inode);
746 task = get_pid_task(pid, PIDTYPE_PID);
750 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
752 put_task_struct(task);
756 static int proc_single_open(struct inode *inode, struct file *filp)
759 ret = single_open(filp, proc_single_show, NULL);
761 struct seq_file *m = filp->private_data;
768 static const struct file_operations proc_single_file_operations = {
769 .open = proc_single_open,
772 .release = single_release,
775 static int mem_open(struct inode* inode, struct file* file)
777 file->private_data = (void*)((long)current->self_exec_id);
781 static ssize_t mem_read(struct file * file, char __user * buf,
782 size_t count, loff_t *ppos)
784 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
786 unsigned long src = *ppos;
788 struct mm_struct *mm;
793 if (check_mem_permission(task))
797 page = (char *)__get_free_page(GFP_TEMPORARY);
803 mm = get_task_mm(task);
809 if (file->private_data != (void*)((long)current->self_exec_id))
815 int this_len, retval;
817 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
818 retval = access_process_vm(task, src, page, this_len, 0);
819 if (!retval || check_mem_permission(task)) {
825 if (copy_to_user(buf, page, retval)) {
840 free_page((unsigned long) page);
842 put_task_struct(task);
847 #define mem_write NULL
850 /* This is a security hazard */
851 static ssize_t mem_write(struct file * file, const char __user *buf,
852 size_t count, loff_t *ppos)
856 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
857 unsigned long dst = *ppos;
863 if (check_mem_permission(task))
867 page = (char *)__get_free_page(GFP_TEMPORARY);
873 int this_len, retval;
875 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
876 if (copy_from_user(page, buf, this_len)) {
880 retval = access_process_vm(task, dst, page, this_len, 1);
892 free_page((unsigned long) page);
894 put_task_struct(task);
900 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
904 file->f_pos = offset;
907 file->f_pos += offset;
912 force_successful_syscall_return();
916 static const struct file_operations proc_mem_operations = {
923 static ssize_t environ_read(struct file *file, char __user *buf,
924 size_t count, loff_t *ppos)
926 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
928 unsigned long src = *ppos;
930 struct mm_struct *mm;
935 if (!ptrace_may_access(task, PTRACE_MODE_READ))
939 page = (char *)__get_free_page(GFP_TEMPORARY);
945 mm = get_task_mm(task);
950 int this_len, retval, max_len;
952 this_len = mm->env_end - (mm->env_start + src);
957 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
958 this_len = (this_len > max_len) ? max_len : this_len;
960 retval = access_process_vm(task, (mm->env_start + src),
968 if (copy_to_user(buf, page, retval)) {
982 free_page((unsigned long) page);
984 put_task_struct(task);
989 static const struct file_operations proc_environ_operations = {
990 .read = environ_read,
991 .llseek = generic_file_llseek,
994 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
995 size_t count, loff_t *ppos)
997 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
998 char buffer[PROC_NUMBUF];
1000 int oom_adjust = OOM_DISABLE;
1001 unsigned long flags;
1006 if (lock_task_sighand(task, &flags)) {
1007 oom_adjust = task->signal->oom_adj;
1008 unlock_task_sighand(task, &flags);
1011 put_task_struct(task);
1013 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1015 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1018 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1019 size_t count, loff_t *ppos)
1021 struct task_struct *task;
1022 char buffer[PROC_NUMBUF];
1024 unsigned long flags;
1027 memset(buffer, 0, sizeof(buffer));
1028 if (count > sizeof(buffer) - 1)
1029 count = sizeof(buffer) - 1;
1030 if (copy_from_user(buffer, buf, count))
1033 err = strict_strtol(strstrip(buffer), 0, &oom_adjust);
1036 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1037 oom_adjust != OOM_DISABLE)
1040 task = get_proc_task(file->f_path.dentry->d_inode);
1043 if (!lock_task_sighand(task, &flags)) {
1044 put_task_struct(task);
1048 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1049 unlock_task_sighand(task, &flags);
1050 put_task_struct(task);
1054 task->signal->oom_adj = oom_adjust;
1056 unlock_task_sighand(task, &flags);
1057 put_task_struct(task);
1062 static const struct file_operations proc_oom_adjust_operations = {
1063 .read = oom_adjust_read,
1064 .write = oom_adjust_write,
1065 .llseek = generic_file_llseek,
1068 #ifdef CONFIG_AUDITSYSCALL
1069 #define TMPBUFLEN 21
1070 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1071 size_t count, loff_t *ppos)
1073 struct inode * inode = file->f_path.dentry->d_inode;
1074 struct task_struct *task = get_proc_task(inode);
1076 char tmpbuf[TMPBUFLEN];
1080 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1081 audit_get_loginuid(task));
1082 put_task_struct(task);
1083 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1086 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1087 size_t count, loff_t *ppos)
1089 struct inode * inode = file->f_path.dentry->d_inode;
1094 if (!capable(CAP_AUDIT_CONTROL))
1098 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1104 if (count >= PAGE_SIZE)
1105 count = PAGE_SIZE - 1;
1108 /* No partial writes. */
1111 page = (char*)__get_free_page(GFP_TEMPORARY);
1115 if (copy_from_user(page, buf, count))
1119 loginuid = simple_strtoul(page, &tmp, 10);
1125 length = audit_set_loginuid(current, loginuid);
1126 if (likely(length == 0))
1130 free_page((unsigned long) page);
1134 static const struct file_operations proc_loginuid_operations = {
1135 .read = proc_loginuid_read,
1136 .write = proc_loginuid_write,
1137 .llseek = generic_file_llseek,
1140 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1141 size_t count, loff_t *ppos)
1143 struct inode * inode = file->f_path.dentry->d_inode;
1144 struct task_struct *task = get_proc_task(inode);
1146 char tmpbuf[TMPBUFLEN];
1150 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1151 audit_get_sessionid(task));
1152 put_task_struct(task);
1153 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1156 static const struct file_operations proc_sessionid_operations = {
1157 .read = proc_sessionid_read,
1158 .llseek = generic_file_llseek,
1162 #ifdef CONFIG_FAULT_INJECTION
1163 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1164 size_t count, loff_t *ppos)
1166 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1167 char buffer[PROC_NUMBUF];
1173 make_it_fail = task->make_it_fail;
1174 put_task_struct(task);
1176 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1178 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1181 static ssize_t proc_fault_inject_write(struct file * file,
1182 const char __user * buf, size_t count, loff_t *ppos)
1184 struct task_struct *task;
1185 char buffer[PROC_NUMBUF], *end;
1188 if (!capable(CAP_SYS_RESOURCE))
1190 memset(buffer, 0, sizeof(buffer));
1191 if (count > sizeof(buffer) - 1)
1192 count = sizeof(buffer) - 1;
1193 if (copy_from_user(buffer, buf, count))
1195 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1198 task = get_proc_task(file->f_dentry->d_inode);
1201 task->make_it_fail = make_it_fail;
1202 put_task_struct(task);
1207 static const struct file_operations proc_fault_inject_operations = {
1208 .read = proc_fault_inject_read,
1209 .write = proc_fault_inject_write,
1210 .llseek = generic_file_llseek,
1215 #ifdef CONFIG_SCHED_DEBUG
1217 * Print out various scheduling related per-task fields:
1219 static int sched_show(struct seq_file *m, void *v)
1221 struct inode *inode = m->private;
1222 struct task_struct *p;
1224 p = get_proc_task(inode);
1227 proc_sched_show_task(p, m);
1235 sched_write(struct file *file, const char __user *buf,
1236 size_t count, loff_t *offset)
1238 struct inode *inode = file->f_path.dentry->d_inode;
1239 struct task_struct *p;
1241 p = get_proc_task(inode);
1244 proc_sched_set_task(p);
1251 static int sched_open(struct inode *inode, struct file *filp)
1255 ret = single_open(filp, sched_show, NULL);
1257 struct seq_file *m = filp->private_data;
1264 static const struct file_operations proc_pid_sched_operations = {
1267 .write = sched_write,
1268 .llseek = seq_lseek,
1269 .release = single_release,
1274 static ssize_t comm_write(struct file *file, const char __user *buf,
1275 size_t count, loff_t *offset)
1277 struct inode *inode = file->f_path.dentry->d_inode;
1278 struct task_struct *p;
1279 char buffer[TASK_COMM_LEN];
1281 memset(buffer, 0, sizeof(buffer));
1282 if (count > sizeof(buffer) - 1)
1283 count = sizeof(buffer) - 1;
1284 if (copy_from_user(buffer, buf, count))
1287 p = get_proc_task(inode);
1291 if (same_thread_group(current, p))
1292 set_task_comm(p, buffer);
1301 static int comm_show(struct seq_file *m, void *v)
1303 struct inode *inode = m->private;
1304 struct task_struct *p;
1306 p = get_proc_task(inode);
1311 seq_printf(m, "%s\n", p->comm);
1319 static int comm_open(struct inode *inode, struct file *filp)
1323 ret = single_open(filp, comm_show, NULL);
1325 struct seq_file *m = filp->private_data;
1332 static const struct file_operations proc_pid_set_comm_operations = {
1335 .write = comm_write,
1336 .llseek = seq_lseek,
1337 .release = single_release,
1341 * We added or removed a vma mapping the executable. The vmas are only mapped
1342 * during exec and are not mapped with the mmap system call.
1343 * Callers must hold down_write() on the mm's mmap_sem for these
1345 void added_exe_file_vma(struct mm_struct *mm)
1347 mm->num_exe_file_vmas++;
1350 void removed_exe_file_vma(struct mm_struct *mm)
1352 mm->num_exe_file_vmas--;
1353 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1355 mm->exe_file = NULL;
1360 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1363 get_file(new_exe_file);
1366 mm->exe_file = new_exe_file;
1367 mm->num_exe_file_vmas = 0;
1370 struct file *get_mm_exe_file(struct mm_struct *mm)
1372 struct file *exe_file;
1374 /* We need mmap_sem to protect against races with removal of
1375 * VM_EXECUTABLE vmas */
1376 down_read(&mm->mmap_sem);
1377 exe_file = mm->exe_file;
1380 up_read(&mm->mmap_sem);
1384 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1386 /* It's safe to write the exe_file pointer without exe_file_lock because
1387 * this is called during fork when the task is not yet in /proc */
1388 newmm->exe_file = get_mm_exe_file(oldmm);
1391 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1393 struct task_struct *task;
1394 struct mm_struct *mm;
1395 struct file *exe_file;
1397 task = get_proc_task(inode);
1400 mm = get_task_mm(task);
1401 put_task_struct(task);
1404 exe_file = get_mm_exe_file(mm);
1407 *exe_path = exe_file->f_path;
1408 path_get(&exe_file->f_path);
1415 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1417 struct inode *inode = dentry->d_inode;
1418 int error = -EACCES;
1420 /* We don't need a base pointer in the /proc filesystem */
1421 path_put(&nd->path);
1423 /* Are we allowed to snoop on the tasks file descriptors? */
1424 if (!proc_fd_access_allowed(inode))
1427 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1429 return ERR_PTR(error);
1432 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1434 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1441 pathname = d_path(path, tmp, PAGE_SIZE);
1442 len = PTR_ERR(pathname);
1443 if (IS_ERR(pathname))
1445 len = tmp + PAGE_SIZE - 1 - pathname;
1449 if (copy_to_user(buffer, pathname, len))
1452 free_page((unsigned long)tmp);
1456 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1458 int error = -EACCES;
1459 struct inode *inode = dentry->d_inode;
1462 /* Are we allowed to snoop on the tasks file descriptors? */
1463 if (!proc_fd_access_allowed(inode))
1466 error = PROC_I(inode)->op.proc_get_link(inode, &path);
1470 error = do_proc_readlink(&path, buffer, buflen);
1476 static const struct inode_operations proc_pid_link_inode_operations = {
1477 .readlink = proc_pid_readlink,
1478 .follow_link = proc_pid_follow_link,
1479 .setattr = proc_setattr,
1483 /* building an inode */
1485 static int task_dumpable(struct task_struct *task)
1488 struct mm_struct *mm;
1493 dumpable = get_dumpable(mm);
1501 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1503 struct inode * inode;
1504 struct proc_inode *ei;
1505 const struct cred *cred;
1507 /* We need a new inode */
1509 inode = new_inode(sb);
1515 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1516 inode->i_op = &proc_def_inode_operations;
1519 * grab the reference to task.
1521 ei->pid = get_task_pid(task, PIDTYPE_PID);
1525 if (task_dumpable(task)) {
1527 cred = __task_cred(task);
1528 inode->i_uid = cred->euid;
1529 inode->i_gid = cred->egid;
1532 security_task_to_inode(task, inode);
1542 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1544 struct inode *inode = dentry->d_inode;
1545 struct task_struct *task;
1546 const struct cred *cred;
1548 generic_fillattr(inode, stat);
1553 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1555 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1556 task_dumpable(task)) {
1557 cred = __task_cred(task);
1558 stat->uid = cred->euid;
1559 stat->gid = cred->egid;
1569 * Exceptional case: normally we are not allowed to unhash a busy
1570 * directory. In this case, however, we can do it - no aliasing problems
1571 * due to the way we treat inodes.
1573 * Rewrite the inode's ownerships here because the owning task may have
1574 * performed a setuid(), etc.
1576 * Before the /proc/pid/status file was created the only way to read
1577 * the effective uid of a /process was to stat /proc/pid. Reading
1578 * /proc/pid/status is slow enough that procps and other packages
1579 * kept stating /proc/pid. To keep the rules in /proc simple I have
1580 * made this apply to all per process world readable and executable
1583 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1585 struct inode *inode = dentry->d_inode;
1586 struct task_struct *task = get_proc_task(inode);
1587 const struct cred *cred;
1590 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1591 task_dumpable(task)) {
1593 cred = __task_cred(task);
1594 inode->i_uid = cred->euid;
1595 inode->i_gid = cred->egid;
1601 inode->i_mode &= ~(S_ISUID | S_ISGID);
1602 security_task_to_inode(task, inode);
1603 put_task_struct(task);
1610 static int pid_delete_dentry(struct dentry * dentry)
1612 /* Is the task we represent dead?
1613 * If so, then don't put the dentry on the lru list,
1614 * kill it immediately.
1616 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1619 static const struct dentry_operations pid_dentry_operations =
1621 .d_revalidate = pid_revalidate,
1622 .d_delete = pid_delete_dentry,
1627 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1628 struct task_struct *, const void *);
1631 * Fill a directory entry.
1633 * If possible create the dcache entry and derive our inode number and
1634 * file type from dcache entry.
1636 * Since all of the proc inode numbers are dynamically generated, the inode
1637 * numbers do not exist until the inode is cache. This means creating the
1638 * the dcache entry in readdir is necessary to keep the inode numbers
1639 * reported by readdir in sync with the inode numbers reported
1642 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1643 char *name, int len,
1644 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1646 struct dentry *child, *dir = filp->f_path.dentry;
1647 struct inode *inode;
1650 unsigned type = DT_UNKNOWN;
1654 qname.hash = full_name_hash(name, len);
1656 child = d_lookup(dir, &qname);
1659 new = d_alloc(dir, &qname);
1661 child = instantiate(dir->d_inode, new, task, ptr);
1668 if (!child || IS_ERR(child) || !child->d_inode)
1669 goto end_instantiate;
1670 inode = child->d_inode;
1673 type = inode->i_mode >> 12;
1678 ino = find_inode_number(dir, &qname);
1681 return filldir(dirent, name, len, filp->f_pos, ino, type);
1684 static unsigned name_to_int(struct dentry *dentry)
1686 const char *name = dentry->d_name.name;
1687 int len = dentry->d_name.len;
1690 if (len > 1 && *name == '0')
1693 unsigned c = *name++ - '0';
1696 if (n >= (~0U-9)/10)
1706 #define PROC_FDINFO_MAX 64
1708 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1710 struct task_struct *task = get_proc_task(inode);
1711 struct files_struct *files = NULL;
1713 int fd = proc_fd(inode);
1716 files = get_files_struct(task);
1717 put_task_struct(task);
1721 * We are not taking a ref to the file structure, so we must
1724 spin_lock(&files->file_lock);
1725 file = fcheck_files(files, fd);
1728 *path = file->f_path;
1729 path_get(&file->f_path);
1732 snprintf(info, PROC_FDINFO_MAX,
1735 (long long) file->f_pos,
1737 spin_unlock(&files->file_lock);
1738 put_files_struct(files);
1741 spin_unlock(&files->file_lock);
1742 put_files_struct(files);
1747 static int proc_fd_link(struct inode *inode, struct path *path)
1749 return proc_fd_info(inode, path, NULL);
1752 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1754 struct inode *inode = dentry->d_inode;
1755 struct task_struct *task = get_proc_task(inode);
1756 int fd = proc_fd(inode);
1757 struct files_struct *files;
1758 const struct cred *cred;
1761 files = get_files_struct(task);
1764 if (fcheck_files(files, fd)) {
1766 put_files_struct(files);
1767 if (task_dumpable(task)) {
1769 cred = __task_cred(task);
1770 inode->i_uid = cred->euid;
1771 inode->i_gid = cred->egid;
1777 inode->i_mode &= ~(S_ISUID | S_ISGID);
1778 security_task_to_inode(task, inode);
1779 put_task_struct(task);
1783 put_files_struct(files);
1785 put_task_struct(task);
1791 static const struct dentry_operations tid_fd_dentry_operations =
1793 .d_revalidate = tid_fd_revalidate,
1794 .d_delete = pid_delete_dentry,
1797 static struct dentry *proc_fd_instantiate(struct inode *dir,
1798 struct dentry *dentry, struct task_struct *task, const void *ptr)
1800 unsigned fd = *(const unsigned *)ptr;
1802 struct files_struct *files;
1803 struct inode *inode;
1804 struct proc_inode *ei;
1805 struct dentry *error = ERR_PTR(-ENOENT);
1807 inode = proc_pid_make_inode(dir->i_sb, task);
1812 files = get_files_struct(task);
1815 inode->i_mode = S_IFLNK;
1818 * We are not taking a ref to the file structure, so we must
1821 spin_lock(&files->file_lock);
1822 file = fcheck_files(files, fd);
1825 if (file->f_mode & FMODE_READ)
1826 inode->i_mode |= S_IRUSR | S_IXUSR;
1827 if (file->f_mode & FMODE_WRITE)
1828 inode->i_mode |= S_IWUSR | S_IXUSR;
1829 spin_unlock(&files->file_lock);
1830 put_files_struct(files);
1832 inode->i_op = &proc_pid_link_inode_operations;
1834 ei->op.proc_get_link = proc_fd_link;
1835 dentry->d_op = &tid_fd_dentry_operations;
1836 d_add(dentry, inode);
1837 /* Close the race of the process dying before we return the dentry */
1838 if (tid_fd_revalidate(dentry, NULL))
1844 spin_unlock(&files->file_lock);
1845 put_files_struct(files);
1851 static struct dentry *proc_lookupfd_common(struct inode *dir,
1852 struct dentry *dentry,
1853 instantiate_t instantiate)
1855 struct task_struct *task = get_proc_task(dir);
1856 unsigned fd = name_to_int(dentry);
1857 struct dentry *result = ERR_PTR(-ENOENT);
1864 result = instantiate(dir, dentry, task, &fd);
1866 put_task_struct(task);
1871 static int proc_readfd_common(struct file * filp, void * dirent,
1872 filldir_t filldir, instantiate_t instantiate)
1874 struct dentry *dentry = filp->f_path.dentry;
1875 struct inode *inode = dentry->d_inode;
1876 struct task_struct *p = get_proc_task(inode);
1877 unsigned int fd, ino;
1879 struct files_struct * files;
1889 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1893 ino = parent_ino(dentry);
1894 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1898 files = get_files_struct(p);
1902 for (fd = filp->f_pos-2;
1903 fd < files_fdtable(files)->max_fds;
1904 fd++, filp->f_pos++) {
1905 char name[PROC_NUMBUF];
1908 if (!fcheck_files(files, fd))
1912 len = snprintf(name, sizeof(name), "%d", fd);
1913 if (proc_fill_cache(filp, dirent, filldir,
1914 name, len, instantiate,
1922 put_files_struct(files);
1930 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1931 struct nameidata *nd)
1933 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1936 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1938 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1941 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1942 size_t len, loff_t *ppos)
1944 char tmp[PROC_FDINFO_MAX];
1945 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1947 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1951 static const struct file_operations proc_fdinfo_file_operations = {
1952 .open = nonseekable_open,
1953 .read = proc_fdinfo_read,
1956 static const struct file_operations proc_fd_operations = {
1957 .read = generic_read_dir,
1958 .readdir = proc_readfd,
1962 * /proc/pid/fd needs a special permission handler so that a process can still
1963 * access /proc/self/fd after it has executed a setuid().
1965 static int proc_fd_permission(struct inode *inode, int mask)
1969 rv = generic_permission(inode, mask, NULL);
1972 if (task_pid(current) == proc_pid(inode))
1978 * proc directories can do almost nothing..
1980 static const struct inode_operations proc_fd_inode_operations = {
1981 .lookup = proc_lookupfd,
1982 .permission = proc_fd_permission,
1983 .setattr = proc_setattr,
1986 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1987 struct dentry *dentry, struct task_struct *task, const void *ptr)
1989 unsigned fd = *(unsigned *)ptr;
1990 struct inode *inode;
1991 struct proc_inode *ei;
1992 struct dentry *error = ERR_PTR(-ENOENT);
1994 inode = proc_pid_make_inode(dir->i_sb, task);
1999 inode->i_mode = S_IFREG | S_IRUSR;
2000 inode->i_fop = &proc_fdinfo_file_operations;
2001 dentry->d_op = &tid_fd_dentry_operations;
2002 d_add(dentry, inode);
2003 /* Close the race of the process dying before we return the dentry */
2004 if (tid_fd_revalidate(dentry, NULL))
2011 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2012 struct dentry *dentry,
2013 struct nameidata *nd)
2015 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2018 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2020 return proc_readfd_common(filp, dirent, filldir,
2021 proc_fdinfo_instantiate);
2024 static const struct file_operations proc_fdinfo_operations = {
2025 .read = generic_read_dir,
2026 .readdir = proc_readfdinfo,
2030 * proc directories can do almost nothing..
2032 static const struct inode_operations proc_fdinfo_inode_operations = {
2033 .lookup = proc_lookupfdinfo,
2034 .setattr = proc_setattr,
2038 static struct dentry *proc_pident_instantiate(struct inode *dir,
2039 struct dentry *dentry, struct task_struct *task, const void *ptr)
2041 const struct pid_entry *p = ptr;
2042 struct inode *inode;
2043 struct proc_inode *ei;
2044 struct dentry *error = ERR_PTR(-ENOENT);
2046 inode = proc_pid_make_inode(dir->i_sb, task);
2051 inode->i_mode = p->mode;
2052 if (S_ISDIR(inode->i_mode))
2053 inode->i_nlink = 2; /* Use getattr to fix if necessary */
2055 inode->i_op = p->iop;
2057 inode->i_fop = p->fop;
2059 dentry->d_op = &pid_dentry_operations;
2060 d_add(dentry, inode);
2061 /* Close the race of the process dying before we return the dentry */
2062 if (pid_revalidate(dentry, NULL))
2068 static struct dentry *proc_pident_lookup(struct inode *dir,
2069 struct dentry *dentry,
2070 const struct pid_entry *ents,
2073 struct dentry *error;
2074 struct task_struct *task = get_proc_task(dir);
2075 const struct pid_entry *p, *last;
2077 error = ERR_PTR(-ENOENT);
2083 * Yes, it does not scale. And it should not. Don't add
2084 * new entries into /proc/<tgid>/ without very good reasons.
2086 last = &ents[nents - 1];
2087 for (p = ents; p <= last; p++) {
2088 if (p->len != dentry->d_name.len)
2090 if (!memcmp(dentry->d_name.name, p->name, p->len))
2096 error = proc_pident_instantiate(dir, dentry, task, p);
2098 put_task_struct(task);
2103 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2104 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2106 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2107 proc_pident_instantiate, task, p);
2110 static int proc_pident_readdir(struct file *filp,
2111 void *dirent, filldir_t filldir,
2112 const struct pid_entry *ents, unsigned int nents)
2115 struct dentry *dentry = filp->f_path.dentry;
2116 struct inode *inode = dentry->d_inode;
2117 struct task_struct *task = get_proc_task(inode);
2118 const struct pid_entry *p, *last;
2131 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2137 ino = parent_ino(dentry);
2138 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2150 last = &ents[nents - 1];
2152 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2161 put_task_struct(task);
2166 #ifdef CONFIG_SECURITY
2167 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2168 size_t count, loff_t *ppos)
2170 struct inode * inode = file->f_path.dentry->d_inode;
2173 struct task_struct *task = get_proc_task(inode);
2178 length = security_getprocattr(task,
2179 (char*)file->f_path.dentry->d_name.name,
2181 put_task_struct(task);
2183 length = simple_read_from_buffer(buf, count, ppos, p, length);
2188 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2189 size_t count, loff_t *ppos)
2191 struct inode * inode = file->f_path.dentry->d_inode;
2194 struct task_struct *task = get_proc_task(inode);
2199 if (count > PAGE_SIZE)
2202 /* No partial writes. */
2208 page = (char*)__get_free_page(GFP_TEMPORARY);
2213 if (copy_from_user(page, buf, count))
2216 /* Guard against adverse ptrace interaction */
2217 length = mutex_lock_interruptible(&task->cred_guard_mutex);
2221 length = security_setprocattr(task,
2222 (char*)file->f_path.dentry->d_name.name,
2223 (void*)page, count);
2224 mutex_unlock(&task->cred_guard_mutex);
2226 free_page((unsigned long) page);
2228 put_task_struct(task);
2233 static const struct file_operations proc_pid_attr_operations = {
2234 .read = proc_pid_attr_read,
2235 .write = proc_pid_attr_write,
2236 .llseek = generic_file_llseek,
2239 static const struct pid_entry attr_dir_stuff[] = {
2240 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2241 REG("prev", S_IRUGO, proc_pid_attr_operations),
2242 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2243 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2244 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2245 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2248 static int proc_attr_dir_readdir(struct file * filp,
2249 void * dirent, filldir_t filldir)
2251 return proc_pident_readdir(filp,dirent,filldir,
2252 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2255 static const struct file_operations proc_attr_dir_operations = {
2256 .read = generic_read_dir,
2257 .readdir = proc_attr_dir_readdir,
2260 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2261 struct dentry *dentry, struct nameidata *nd)
2263 return proc_pident_lookup(dir, dentry,
2264 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2267 static const struct inode_operations proc_attr_dir_inode_operations = {
2268 .lookup = proc_attr_dir_lookup,
2269 .getattr = pid_getattr,
2270 .setattr = proc_setattr,
2275 #ifdef CONFIG_ELF_CORE
2276 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2277 size_t count, loff_t *ppos)
2279 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2280 struct mm_struct *mm;
2281 char buffer[PROC_NUMBUF];
2289 mm = get_task_mm(task);
2291 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2292 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2293 MMF_DUMP_FILTER_SHIFT));
2295 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2298 put_task_struct(task);
2303 static ssize_t proc_coredump_filter_write(struct file *file,
2304 const char __user *buf,
2308 struct task_struct *task;
2309 struct mm_struct *mm;
2310 char buffer[PROC_NUMBUF], *end;
2317 memset(buffer, 0, sizeof(buffer));
2318 if (count > sizeof(buffer) - 1)
2319 count = sizeof(buffer) - 1;
2320 if (copy_from_user(buffer, buf, count))
2324 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2327 if (end - buffer == 0)
2331 task = get_proc_task(file->f_dentry->d_inode);
2336 mm = get_task_mm(task);
2340 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2342 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2344 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2349 put_task_struct(task);
2354 static const struct file_operations proc_coredump_filter_operations = {
2355 .read = proc_coredump_filter_read,
2356 .write = proc_coredump_filter_write,
2357 .llseek = generic_file_llseek,
2364 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2367 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2368 pid_t tgid = task_tgid_nr_ns(current, ns);
2369 char tmp[PROC_NUMBUF];
2372 sprintf(tmp, "%d", tgid);
2373 return vfs_readlink(dentry,buffer,buflen,tmp);
2376 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2378 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2379 pid_t tgid = task_tgid_nr_ns(current, ns);
2380 char *name = ERR_PTR(-ENOENT);
2384 name = ERR_PTR(-ENOMEM);
2386 sprintf(name, "%d", tgid);
2388 nd_set_link(nd, name);
2392 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2395 char *s = nd_get_link(nd);
2400 static const struct inode_operations proc_self_inode_operations = {
2401 .readlink = proc_self_readlink,
2402 .follow_link = proc_self_follow_link,
2403 .put_link = proc_self_put_link,
2409 * These are the directory entries in the root directory of /proc
2410 * that properly belong to the /proc filesystem, as they describe
2411 * describe something that is process related.
2413 static const struct pid_entry proc_base_stuff[] = {
2414 NOD("self", S_IFLNK|S_IRWXUGO,
2415 &proc_self_inode_operations, NULL, {}),
2419 * Exceptional case: normally we are not allowed to unhash a busy
2420 * directory. In this case, however, we can do it - no aliasing problems
2421 * due to the way we treat inodes.
2423 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2425 struct inode *inode = dentry->d_inode;
2426 struct task_struct *task = get_proc_task(inode);
2428 put_task_struct(task);
2435 static const struct dentry_operations proc_base_dentry_operations =
2437 .d_revalidate = proc_base_revalidate,
2438 .d_delete = pid_delete_dentry,
2441 static struct dentry *proc_base_instantiate(struct inode *dir,
2442 struct dentry *dentry, struct task_struct *task, const void *ptr)
2444 const struct pid_entry *p = ptr;
2445 struct inode *inode;
2446 struct proc_inode *ei;
2447 struct dentry *error = ERR_PTR(-EINVAL);
2449 /* Allocate the inode */
2450 error = ERR_PTR(-ENOMEM);
2451 inode = new_inode(dir->i_sb);
2455 /* Initialize the inode */
2457 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2460 * grab the reference to the task.
2462 ei->pid = get_task_pid(task, PIDTYPE_PID);
2466 inode->i_mode = p->mode;
2467 if (S_ISDIR(inode->i_mode))
2469 if (S_ISLNK(inode->i_mode))
2472 inode->i_op = p->iop;
2474 inode->i_fop = p->fop;
2476 dentry->d_op = &proc_base_dentry_operations;
2477 d_add(dentry, inode);
2486 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2488 struct dentry *error;
2489 struct task_struct *task = get_proc_task(dir);
2490 const struct pid_entry *p, *last;
2492 error = ERR_PTR(-ENOENT);
2497 /* Lookup the directory entry */
2498 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2499 for (p = proc_base_stuff; p <= last; p++) {
2500 if (p->len != dentry->d_name.len)
2502 if (!memcmp(dentry->d_name.name, p->name, p->len))
2508 error = proc_base_instantiate(dir, dentry, task, p);
2511 put_task_struct(task);
2516 static int proc_base_fill_cache(struct file *filp, void *dirent,
2517 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2519 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2520 proc_base_instantiate, task, p);
2523 #ifdef CONFIG_TASK_IO_ACCOUNTING
2524 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2526 struct task_io_accounting acct = task->ioac;
2527 unsigned long flags;
2529 if (whole && lock_task_sighand(task, &flags)) {
2530 struct task_struct *t = task;
2532 task_io_accounting_add(&acct, &task->signal->ioac);
2533 while_each_thread(task, t)
2534 task_io_accounting_add(&acct, &t->ioac);
2536 unlock_task_sighand(task, &flags);
2538 return sprintf(buffer,
2543 "read_bytes: %llu\n"
2544 "write_bytes: %llu\n"
2545 "cancelled_write_bytes: %llu\n",
2546 (unsigned long long)acct.rchar,
2547 (unsigned long long)acct.wchar,
2548 (unsigned long long)acct.syscr,
2549 (unsigned long long)acct.syscw,
2550 (unsigned long long)acct.read_bytes,
2551 (unsigned long long)acct.write_bytes,
2552 (unsigned long long)acct.cancelled_write_bytes);
2555 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2557 return do_io_accounting(task, buffer, 0);
2560 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2562 return do_io_accounting(task, buffer, 1);
2564 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2566 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2567 struct pid *pid, struct task_struct *task)
2569 seq_printf(m, "%08x\n", task->personality);
2576 static const struct file_operations proc_task_operations;
2577 static const struct inode_operations proc_task_inode_operations;
2579 static const struct pid_entry tgid_base_stuff[] = {
2580 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2581 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2582 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2584 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2586 REG("environ", S_IRUSR, proc_environ_operations),
2587 INF("auxv", S_IRUSR, proc_pid_auxv),
2588 ONE("status", S_IRUGO, proc_pid_status),
2589 ONE("personality", S_IRUSR, proc_pid_personality),
2590 INF("limits", S_IRUSR, proc_pid_limits),
2591 #ifdef CONFIG_SCHED_DEBUG
2592 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2594 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2595 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2596 INF("syscall", S_IRUSR, proc_pid_syscall),
2598 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2599 ONE("stat", S_IRUGO, proc_tgid_stat),
2600 ONE("statm", S_IRUGO, proc_pid_statm),
2601 REG("maps", S_IRUGO, proc_maps_operations),
2603 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2605 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2606 LNK("cwd", proc_cwd_link),
2607 LNK("root", proc_root_link),
2608 LNK("exe", proc_exe_link),
2609 REG("mounts", S_IRUGO, proc_mounts_operations),
2610 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2611 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2612 #ifdef CONFIG_PROC_PAGE_MONITOR
2613 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2614 REG("smaps", S_IRUGO, proc_smaps_operations),
2615 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2617 #ifdef CONFIG_SECURITY
2618 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2620 #ifdef CONFIG_KALLSYMS
2621 INF("wchan", S_IRUGO, proc_pid_wchan),
2623 #ifdef CONFIG_STACKTRACE
2624 ONE("stack", S_IRUSR, proc_pid_stack),
2626 #ifdef CONFIG_SCHEDSTATS
2627 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2629 #ifdef CONFIG_LATENCYTOP
2630 REG("latency", S_IRUGO, proc_lstats_operations),
2632 #ifdef CONFIG_PROC_PID_CPUSET
2633 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2635 #ifdef CONFIG_CGROUPS
2636 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2638 INF("oom_score", S_IRUGO, proc_oom_score),
2639 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2640 #ifdef CONFIG_AUDITSYSCALL
2641 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2642 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2644 #ifdef CONFIG_FAULT_INJECTION
2645 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2647 #ifdef CONFIG_ELF_CORE
2648 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2650 #ifdef CONFIG_TASK_IO_ACCOUNTING
2651 INF("io", S_IRUGO, proc_tgid_io_accounting),
2655 static int proc_tgid_base_readdir(struct file * filp,
2656 void * dirent, filldir_t filldir)
2658 return proc_pident_readdir(filp,dirent,filldir,
2659 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2662 static const struct file_operations proc_tgid_base_operations = {
2663 .read = generic_read_dir,
2664 .readdir = proc_tgid_base_readdir,
2667 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2668 return proc_pident_lookup(dir, dentry,
2669 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2672 static const struct inode_operations proc_tgid_base_inode_operations = {
2673 .lookup = proc_tgid_base_lookup,
2674 .getattr = pid_getattr,
2675 .setattr = proc_setattr,
2678 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2680 struct dentry *dentry, *leader, *dir;
2681 char buf[PROC_NUMBUF];
2685 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2686 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2688 shrink_dcache_parent(dentry);
2694 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2695 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2700 name.len = strlen(name.name);
2701 dir = d_hash_and_lookup(leader, &name);
2703 goto out_put_leader;
2706 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2707 dentry = d_hash_and_lookup(dir, &name);
2709 shrink_dcache_parent(dentry);
2722 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2723 * @task: task that should be flushed.
2725 * When flushing dentries from proc, one needs to flush them from global
2726 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2727 * in. This call is supposed to do all of this job.
2729 * Looks in the dcache for
2731 * /proc/@tgid/task/@pid
2732 * if either directory is present flushes it and all of it'ts children
2735 * It is safe and reasonable to cache /proc entries for a task until
2736 * that task exits. After that they just clog up the dcache with
2737 * useless entries, possibly causing useful dcache entries to be
2738 * flushed instead. This routine is proved to flush those useless
2739 * dcache entries at process exit time.
2741 * NOTE: This routine is just an optimization so it does not guarantee
2742 * that no dcache entries will exist at process exit time it
2743 * just makes it very unlikely that any will persist.
2746 void proc_flush_task(struct task_struct *task)
2749 struct pid *pid, *tgid;
2752 pid = task_pid(task);
2753 tgid = task_tgid(task);
2755 for (i = 0; i <= pid->level; i++) {
2756 upid = &pid->numbers[i];
2757 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2758 tgid->numbers[i].nr);
2761 upid = &pid->numbers[pid->level];
2763 pid_ns_release_proc(upid->ns);
2766 static struct dentry *proc_pid_instantiate(struct inode *dir,
2767 struct dentry * dentry,
2768 struct task_struct *task, const void *ptr)
2770 struct dentry *error = ERR_PTR(-ENOENT);
2771 struct inode *inode;
2773 inode = proc_pid_make_inode(dir->i_sb, task);
2777 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2778 inode->i_op = &proc_tgid_base_inode_operations;
2779 inode->i_fop = &proc_tgid_base_operations;
2780 inode->i_flags|=S_IMMUTABLE;
2782 inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2783 ARRAY_SIZE(tgid_base_stuff));
2785 dentry->d_op = &pid_dentry_operations;
2787 d_add(dentry, inode);
2788 /* Close the race of the process dying before we return the dentry */
2789 if (pid_revalidate(dentry, NULL))
2795 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2797 struct dentry *result = ERR_PTR(-ENOENT);
2798 struct task_struct *task;
2800 struct pid_namespace *ns;
2802 result = proc_base_lookup(dir, dentry);
2803 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2806 tgid = name_to_int(dentry);
2810 ns = dentry->d_sb->s_fs_info;
2812 task = find_task_by_pid_ns(tgid, ns);
2814 get_task_struct(task);
2819 result = proc_pid_instantiate(dir, dentry, task, NULL);
2820 put_task_struct(task);
2826 * Find the first task with tgid >= tgid
2831 struct task_struct *task;
2833 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2838 put_task_struct(iter.task);
2842 pid = find_ge_pid(iter.tgid, ns);
2844 iter.tgid = pid_nr_ns(pid, ns);
2845 iter.task = pid_task(pid, PIDTYPE_PID);
2846 /* What we to know is if the pid we have find is the
2847 * pid of a thread_group_leader. Testing for task
2848 * being a thread_group_leader is the obvious thing
2849 * todo but there is a window when it fails, due to
2850 * the pid transfer logic in de_thread.
2852 * So we perform the straight forward test of seeing
2853 * if the pid we have found is the pid of a thread
2854 * group leader, and don't worry if the task we have
2855 * found doesn't happen to be a thread group leader.
2856 * As we don't care in the case of readdir.
2858 if (!iter.task || !has_group_leader_pid(iter.task)) {
2862 get_task_struct(iter.task);
2868 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2870 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2871 struct tgid_iter iter)
2873 char name[PROC_NUMBUF];
2874 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2875 return proc_fill_cache(filp, dirent, filldir, name, len,
2876 proc_pid_instantiate, iter.task, NULL);
2879 /* for the /proc/ directory itself, after non-process stuff has been done */
2880 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2882 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2883 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2884 struct tgid_iter iter;
2885 struct pid_namespace *ns;
2890 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2891 const struct pid_entry *p = &proc_base_stuff[nr];
2892 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2896 ns = filp->f_dentry->d_sb->s_fs_info;
2898 iter.tgid = filp->f_pos - TGID_OFFSET;
2899 for (iter = next_tgid(ns, iter);
2901 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2902 filp->f_pos = iter.tgid + TGID_OFFSET;
2903 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2904 put_task_struct(iter.task);
2908 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2910 put_task_struct(reaper);
2918 static const struct pid_entry tid_base_stuff[] = {
2919 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2920 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2921 REG("environ", S_IRUSR, proc_environ_operations),
2922 INF("auxv", S_IRUSR, proc_pid_auxv),
2923 ONE("status", S_IRUGO, proc_pid_status),
2924 ONE("personality", S_IRUSR, proc_pid_personality),
2925 INF("limits", S_IRUSR, proc_pid_limits),
2926 #ifdef CONFIG_SCHED_DEBUG
2927 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2929 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2930 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2931 INF("syscall", S_IRUSR, proc_pid_syscall),
2933 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2934 ONE("stat", S_IRUGO, proc_tid_stat),
2935 ONE("statm", S_IRUGO, proc_pid_statm),
2936 REG("maps", S_IRUGO, proc_maps_operations),
2938 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2940 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2941 LNK("cwd", proc_cwd_link),
2942 LNK("root", proc_root_link),
2943 LNK("exe", proc_exe_link),
2944 REG("mounts", S_IRUGO, proc_mounts_operations),
2945 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2946 #ifdef CONFIG_PROC_PAGE_MONITOR
2947 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2948 REG("smaps", S_IRUGO, proc_smaps_operations),
2949 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2951 #ifdef CONFIG_SECURITY
2952 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2954 #ifdef CONFIG_KALLSYMS
2955 INF("wchan", S_IRUGO, proc_pid_wchan),
2957 #ifdef CONFIG_STACKTRACE
2958 ONE("stack", S_IRUSR, proc_pid_stack),
2960 #ifdef CONFIG_SCHEDSTATS
2961 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2963 #ifdef CONFIG_LATENCYTOP
2964 REG("latency", S_IRUGO, proc_lstats_operations),
2966 #ifdef CONFIG_PROC_PID_CPUSET
2967 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2969 #ifdef CONFIG_CGROUPS
2970 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2972 INF("oom_score", S_IRUGO, proc_oom_score),
2973 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2974 #ifdef CONFIG_AUDITSYSCALL
2975 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2976 REG("sessionid", S_IRUSR, proc_sessionid_operations),
2978 #ifdef CONFIG_FAULT_INJECTION
2979 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2981 #ifdef CONFIG_TASK_IO_ACCOUNTING
2982 INF("io", S_IRUGO, proc_tid_io_accounting),
2986 static int proc_tid_base_readdir(struct file * filp,
2987 void * dirent, filldir_t filldir)
2989 return proc_pident_readdir(filp,dirent,filldir,
2990 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2993 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2994 return proc_pident_lookup(dir, dentry,
2995 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2998 static const struct file_operations proc_tid_base_operations = {
2999 .read = generic_read_dir,
3000 .readdir = proc_tid_base_readdir,
3003 static const struct inode_operations proc_tid_base_inode_operations = {
3004 .lookup = proc_tid_base_lookup,
3005 .getattr = pid_getattr,
3006 .setattr = proc_setattr,
3009 static struct dentry *proc_task_instantiate(struct inode *dir,
3010 struct dentry *dentry, struct task_struct *task, const void *ptr)
3012 struct dentry *error = ERR_PTR(-ENOENT);
3013 struct inode *inode;
3014 inode = proc_pid_make_inode(dir->i_sb, task);
3018 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3019 inode->i_op = &proc_tid_base_inode_operations;
3020 inode->i_fop = &proc_tid_base_operations;
3021 inode->i_flags|=S_IMMUTABLE;
3023 inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3024 ARRAY_SIZE(tid_base_stuff));
3026 dentry->d_op = &pid_dentry_operations;
3028 d_add(dentry, inode);
3029 /* Close the race of the process dying before we return the dentry */
3030 if (pid_revalidate(dentry, NULL))
3036 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3038 struct dentry *result = ERR_PTR(-ENOENT);
3039 struct task_struct *task;
3040 struct task_struct *leader = get_proc_task(dir);
3042 struct pid_namespace *ns;
3047 tid = name_to_int(dentry);
3051 ns = dentry->d_sb->s_fs_info;
3053 task = find_task_by_pid_ns(tid, ns);
3055 get_task_struct(task);
3059 if (!same_thread_group(leader, task))
3062 result = proc_task_instantiate(dir, dentry, task, NULL);
3064 put_task_struct(task);
3066 put_task_struct(leader);
3072 * Find the first tid of a thread group to return to user space.
3074 * Usually this is just the thread group leader, but if the users
3075 * buffer was too small or there was a seek into the middle of the
3076 * directory we have more work todo.
3078 * In the case of a short read we start with find_task_by_pid.
3080 * In the case of a seek we start with the leader and walk nr
3083 static struct task_struct *first_tid(struct task_struct *leader,
3084 int tid, int nr, struct pid_namespace *ns)
3086 struct task_struct *pos;
3089 /* Attempt to start with the pid of a thread */
3090 if (tid && (nr > 0)) {
3091 pos = find_task_by_pid_ns(tid, ns);
3092 if (pos && (pos->group_leader == leader))
3096 /* If nr exceeds the number of threads there is nothing todo */
3098 if (nr && nr >= get_nr_threads(leader))
3101 /* If we haven't found our starting place yet start
3102 * with the leader and walk nr threads forward.
3104 for (pos = leader; nr > 0; --nr) {
3105 pos = next_thread(pos);
3106 if (pos == leader) {
3112 get_task_struct(pos);
3119 * Find the next thread in the thread list.
3120 * Return NULL if there is an error or no next thread.
3122 * The reference to the input task_struct is released.
3124 static struct task_struct *next_tid(struct task_struct *start)
3126 struct task_struct *pos = NULL;
3128 if (pid_alive(start)) {
3129 pos = next_thread(start);
3130 if (thread_group_leader(pos))
3133 get_task_struct(pos);
3136 put_task_struct(start);
3140 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3141 struct task_struct *task, int tid)
3143 char name[PROC_NUMBUF];
3144 int len = snprintf(name, sizeof(name), "%d", tid);
3145 return proc_fill_cache(filp, dirent, filldir, name, len,
3146 proc_task_instantiate, task, NULL);
3149 /* for the /proc/TGID/task/ directories */
3150 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3152 struct dentry *dentry = filp->f_path.dentry;
3153 struct inode *inode = dentry->d_inode;
3154 struct task_struct *leader = NULL;
3155 struct task_struct *task;
3156 int retval = -ENOENT;
3159 struct pid_namespace *ns;
3161 task = get_proc_task(inode);
3165 if (pid_alive(task)) {
3166 leader = task->group_leader;
3167 get_task_struct(leader);
3170 put_task_struct(task);
3175 switch ((unsigned long)filp->f_pos) {
3178 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3183 ino = parent_ino(dentry);
3184 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3190 /* f_version caches the tgid value that the last readdir call couldn't
3191 * return. lseek aka telldir automagically resets f_version to 0.
3193 ns = filp->f_dentry->d_sb->s_fs_info;
3194 tid = (int)filp->f_version;
3195 filp->f_version = 0;
3196 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3198 task = next_tid(task), filp->f_pos++) {
3199 tid = task_pid_nr_ns(task, ns);
3200 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3201 /* returning this tgid failed, save it as the first
3202 * pid for the next readir call */
3203 filp->f_version = (u64)tid;
3204 put_task_struct(task);
3209 put_task_struct(leader);
3214 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3216 struct inode *inode = dentry->d_inode;
3217 struct task_struct *p = get_proc_task(inode);
3218 generic_fillattr(inode, stat);
3221 stat->nlink += get_nr_threads(p);
3228 static const struct inode_operations proc_task_inode_operations = {
3229 .lookup = proc_task_lookup,
3230 .getattr = proc_task_getattr,
3231 .setattr = proc_setattr,
3234 static const struct file_operations proc_task_operations = {
3235 .read = generic_read_dir,
3236 .readdir = proc_task_readdir,