2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
5 #include <linux/time.h>
7 #include <linux/reiserfs_fs.h>
8 #include <linux/reiserfs_acl.h>
9 #include <linux/reiserfs_xattr.h>
10 #include <linux/exportfs.h>
11 #include <linux/smp_lock.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/slab.h>
15 #include <asm/uaccess.h>
16 #include <asm/unaligned.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mpage.h>
19 #include <linux/writeback.h>
20 #include <linux/quotaops.h>
21 #include <linux/swap.h>
23 int reiserfs_commit_write(struct file *f, struct page *page,
24 unsigned from, unsigned to);
25 int reiserfs_prepare_write(struct file *f, struct page *page,
26 unsigned from, unsigned to);
28 void reiserfs_evict_inode(struct inode *inode)
30 /* We need blocks for transaction + (user+group) quota update (possibly delete) */
32 JOURNAL_PER_BALANCE_CNT * 2 +
33 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
34 struct reiserfs_transaction_handle th;
38 if (!inode->i_nlink && !is_bad_inode(inode))
39 dquot_initialize(inode);
41 truncate_inode_pages(&inode->i_data, 0);
45 depth = reiserfs_write_lock_once(inode->i_sb);
47 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
48 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
49 reiserfs_delete_xattrs(inode);
51 if (journal_begin(&th, inode->i_sb, jbegin_count))
53 reiserfs_update_inode_transaction(inode);
55 reiserfs_discard_prealloc(&th, inode);
57 err = reiserfs_delete_object(&th, inode);
59 /* Do quota update inside a transaction for journaled quotas. We must do that
60 * after delete_object so that quota updates go into the same transaction as
61 * stat data deletion */
63 dquot_free_inode(inode);
65 if (journal_end(&th, inode->i_sb, jbegin_count))
68 /* check return value from reiserfs_delete_object after
69 * ending the transaction
74 /* all items of file are deleted, so we can remove "save" link */
75 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything
76 * about an error here */
78 /* no object items are in the tree */
82 end_writeback(inode); /* note this must go after the journal_end to prevent deadlock */
85 reiserfs_write_unlock_once(inode->i_sb, depth);
92 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
93 __u32 objectid, loff_t offset, int type, int length)
95 key->version = version;
97 key->on_disk_key.k_dir_id = dirid;
98 key->on_disk_key.k_objectid = objectid;
99 set_cpu_key_k_offset(key, offset);
100 set_cpu_key_k_type(key, type);
101 key->key_length = length;
104 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
105 offset and type of key */
106 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
107 int type, int length)
109 _make_cpu_key(key, get_inode_item_key_version(inode),
110 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
111 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
116 // when key is 0, do not set version and short key
118 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
120 loff_t offset, int type, int length,
121 int entry_count /*or ih_free_space */ )
124 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
125 ih->ih_key.k_objectid =
126 cpu_to_le32(key->on_disk_key.k_objectid);
128 put_ih_version(ih, version);
129 set_le_ih_k_offset(ih, offset);
130 set_le_ih_k_type(ih, type);
131 put_ih_item_len(ih, length);
132 /* set_ih_free_space (ih, 0); */
133 // for directory items it is entry count, for directs and stat
134 // datas - 0xffff, for indirects - 0
135 put_ih_entry_count(ih, entry_count);
139 // FIXME: we might cache recently accessed indirect item
141 // Ugh. Not too eager for that....
142 // I cut the code until such time as I see a convincing argument (benchmark).
143 // I don't want a bloated inode struct..., and I don't like code complexity....
145 /* cutting the code is fine, since it really isn't in use yet and is easy
146 ** to add back in. But, Vladimir has a really good idea here. Think
147 ** about what happens for reading a file. For each page,
148 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
149 ** an indirect item. This indirect item has X number of pointers, where
150 ** X is a big number if we've done the block allocation right. But,
151 ** we only use one or two of these pointers during each call to readpage,
152 ** needlessly researching again later on.
154 ** The size of the cache could be dynamic based on the size of the file.
156 ** I'd also like to see us cache the location the stat data item, since
157 ** we are needlessly researching for that frequently.
162 /* If this page has a file tail in it, and
163 ** it was read in by get_block_create_0, the page data is valid,
164 ** but tail is still sitting in a direct item, and we can't write to
165 ** it. So, look through this page, and check all the mapped buffers
166 ** to make sure they have valid block numbers. Any that don't need
167 ** to be unmapped, so that block_prepare_write will correctly call
168 ** reiserfs_get_block to convert the tail into an unformatted node
170 static inline void fix_tail_page_for_writing(struct page *page)
172 struct buffer_head *head, *next, *bh;
174 if (page && page_has_buffers(page)) {
175 head = page_buffers(page);
178 next = bh->b_this_page;
179 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
180 reiserfs_unmap_buffer(bh);
183 } while (bh != head);
187 /* reiserfs_get_block does not need to allocate a block only if it has been
188 done already or non-hole position has been found in the indirect item */
189 static inline int allocation_needed(int retval, b_blocknr_t allocated,
190 struct item_head *ih,
191 __le32 * item, int pos_in_item)
195 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
196 get_block_num(item, pos_in_item))
201 static inline int indirect_item_found(int retval, struct item_head *ih)
203 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
206 static inline void set_block_dev_mapped(struct buffer_head *bh,
207 b_blocknr_t block, struct inode *inode)
209 map_bh(bh, inode->i_sb, block);
213 // files which were created in the earlier version can not be longer,
216 static int file_capable(struct inode *inode, sector_t block)
218 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file.
219 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
225 static int restart_transaction(struct reiserfs_transaction_handle *th,
226 struct inode *inode, struct treepath *path)
228 struct super_block *s = th->t_super;
229 int len = th->t_blocks_allocated;
232 BUG_ON(!th->t_trans_id);
233 BUG_ON(!th->t_refcount);
237 /* we cannot restart while nested */
238 if (th->t_refcount > 1) {
241 reiserfs_update_sd(th, inode);
242 err = journal_end(th, s, len);
244 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
246 reiserfs_update_inode_transaction(inode);
251 // it is called by get_block when create == 0. Returns block number
252 // for 'block'-th logical block of file. When it hits direct item it
253 // returns 0 (being called from bmap) or read direct item into piece
254 // of page (bh_result)
256 // Please improve the english/clarity in the comment above, as it is
257 // hard to understand.
259 static int _get_block_create_0(struct inode *inode, sector_t block,
260 struct buffer_head *bh_result, int args)
262 INITIALIZE_PATH(path);
264 struct buffer_head *bh;
265 struct item_head *ih, tmp_ih;
272 unsigned long offset;
274 // prepare the key to look for the 'block'-th block of file
275 make_cpu_key(&key, inode,
276 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
279 result = search_for_position_by_key(inode->i_sb, &key, &path);
280 if (result != POSITION_FOUND) {
283 kunmap(bh_result->b_page);
284 if (result == IO_ERROR)
286 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
287 // That there is some MMAPED data associated with it that is yet to be written to disk.
288 if ((args & GET_BLOCK_NO_HOLE)
289 && !PageUptodate(bh_result->b_page)) {
295 bh = get_last_bh(&path);
297 if (is_indirect_le_ih(ih)) {
298 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
300 /* FIXME: here we could cache indirect item or part of it in
301 the inode to avoid search_by_key in case of subsequent
303 blocknr = get_block_num(ind_item, path.pos_in_item);
306 map_bh(bh_result, inode->i_sb, blocknr);
307 if (path.pos_in_item ==
308 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
309 set_buffer_boundary(bh_result);
312 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
313 // That there is some MMAPED data associated with it that is yet to be written to disk.
314 if ((args & GET_BLOCK_NO_HOLE)
315 && !PageUptodate(bh_result->b_page)) {
321 kunmap(bh_result->b_page);
324 // requested data are in direct item(s)
325 if (!(args & GET_BLOCK_READ_DIRECT)) {
326 // we are called by bmap. FIXME: we can not map block of file
327 // when it is stored in direct item(s)
330 kunmap(bh_result->b_page);
334 /* if we've got a direct item, and the buffer or page was uptodate,
335 ** we don't want to pull data off disk again. skip to the
336 ** end, where we map the buffer and return
338 if (buffer_uptodate(bh_result)) {
342 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
343 ** pages without any buffers. If the page is up to date, we don't want
344 ** read old data off disk. Set the up to date bit on the buffer instead
345 ** and jump to the end
347 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
348 set_buffer_uptodate(bh_result);
351 // read file tail into part of page
352 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
353 copy_item_head(&tmp_ih, ih);
355 /* we only want to kmap if we are reading the tail into the page.
356 ** this is not the common case, so we don't kmap until we are
357 ** sure we need to. But, this means the item might move if
361 p = (char *)kmap(bh_result->b_page);
364 memset(p, 0, inode->i_sb->s_blocksize);
366 if (!is_direct_le_ih(ih)) {
369 /* make sure we don't read more bytes than actually exist in
370 ** the file. This can happen in odd cases where i_size isn't
371 ** correct, and when direct item padding results in a few
372 ** extra bytes at the end of the direct item
374 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
376 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
378 inode->i_size - (le_ih_k_offset(ih) - 1) -
382 chars = ih_item_len(ih) - path.pos_in_item;
384 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
391 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
392 // we done, if read direct item is not the last item of
393 // node FIXME: we could try to check right delimiting key
394 // to see whether direct item continues in the right
395 // neighbor or rely on i_size
398 // update key to look for the next piece
399 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
400 result = search_for_position_by_key(inode->i_sb, &key, &path);
401 if (result != POSITION_FOUND)
402 // i/o error most likely
404 bh = get_last_bh(&path);
408 flush_dcache_page(bh_result->b_page);
409 kunmap(bh_result->b_page);
414 if (result == IO_ERROR)
417 /* this buffer has valid data, but isn't valid for io. mapping it to
418 * block #0 tells the rest of reiserfs it just has a tail in it
420 map_bh(bh_result, inode->i_sb, 0);
421 set_buffer_uptodate(bh_result);
425 // this is called to create file map. So, _get_block_create_0 will not
427 static int reiserfs_bmap(struct inode *inode, sector_t block,
428 struct buffer_head *bh_result, int create)
430 if (!file_capable(inode, block))
433 reiserfs_write_lock(inode->i_sb);
434 /* do not read the direct item */
435 _get_block_create_0(inode, block, bh_result, 0);
436 reiserfs_write_unlock(inode->i_sb);
440 /* special version of get_block that is only used by grab_tail_page right
441 ** now. It is sent to block_prepare_write, and when you try to get a
442 ** block past the end of the file (or a block from a hole) it returns
443 ** -ENOENT instead of a valid buffer. block_prepare_write expects to
444 ** be able to do i/o on the buffers returned, unless an error value
447 ** So, this allows block_prepare_write to be used for reading a single block
448 ** in a page. Where it does not produce a valid page for holes, or past the
449 ** end of the file. This turns out to be exactly what we need for reading
450 ** tails for conversion.
452 ** The point of the wrapper is forcing a certain value for create, even
453 ** though the VFS layer is calling this function with create==1. If you
454 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
455 ** don't use this function.
457 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
458 struct buffer_head *bh_result,
461 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
464 /* This is special helper for reiserfs_get_block in case we are executing
465 direct_IO request. */
466 static int reiserfs_get_blocks_direct_io(struct inode *inode,
468 struct buffer_head *bh_result,
473 bh_result->b_page = NULL;
475 /* We set the b_size before reiserfs_get_block call since it is
476 referenced in convert_tail_for_hole() that may be called from
477 reiserfs_get_block() */
478 bh_result->b_size = (1 << inode->i_blkbits);
480 ret = reiserfs_get_block(inode, iblock, bh_result,
481 create | GET_BLOCK_NO_DANGLE);
485 /* don't allow direct io onto tail pages */
486 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
487 /* make sure future calls to the direct io funcs for this offset
488 ** in the file fail by unmapping the buffer
490 clear_buffer_mapped(bh_result);
493 /* Possible unpacked tail. Flush the data before pages have
495 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
498 reiserfs_write_lock(inode->i_sb);
500 err = reiserfs_commit_for_inode(inode);
501 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
503 reiserfs_write_unlock(inode->i_sb);
513 ** helper function for when reiserfs_get_block is called for a hole
514 ** but the file tail is still in a direct item
515 ** bh_result is the buffer head for the hole
516 ** tail_offset is the offset of the start of the tail in the file
518 ** This calls prepare_write, which will start a new transaction
519 ** you should not be in a transaction, or have any paths held when you
522 static int convert_tail_for_hole(struct inode *inode,
523 struct buffer_head *bh_result,
527 unsigned long tail_end;
528 unsigned long tail_start;
529 struct page *tail_page;
530 struct page *hole_page = bh_result->b_page;
533 if ((tail_offset & (bh_result->b_size - 1)) != 1)
536 /* always try to read until the end of the block */
537 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
538 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
540 index = tail_offset >> PAGE_CACHE_SHIFT;
541 /* hole_page can be zero in case of direct_io, we are sure
542 that we cannot get here if we write with O_DIRECT into
544 if (!hole_page || index != hole_page->index) {
545 tail_page = grab_cache_page(inode->i_mapping, index);
551 tail_page = hole_page;
554 /* we don't have to make sure the conversion did not happen while
555 ** we were locking the page because anyone that could convert
556 ** must first take i_mutex.
558 ** We must fix the tail page for writing because it might have buffers
559 ** that are mapped, but have a block number of 0. This indicates tail
560 ** data that has been read directly into the page, and block_prepare_write
561 ** won't trigger a get_block in this case.
563 fix_tail_page_for_writing(tail_page);
564 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
568 /* tail conversion might change the data in the page */
569 flush_dcache_page(tail_page);
571 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
574 if (tail_page != hole_page) {
575 unlock_page(tail_page);
576 page_cache_release(tail_page);
582 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
585 b_blocknr_t * allocated_block_nr,
586 struct treepath *path, int flags)
588 BUG_ON(!th->t_trans_id);
590 #ifdef REISERFS_PREALLOCATE
591 if (!(flags & GET_BLOCK_NO_IMUX)) {
592 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
596 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
600 int reiserfs_get_block(struct inode *inode, sector_t block,
601 struct buffer_head *bh_result, int create)
603 int repeat, retval = 0;
604 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int
605 INITIALIZE_PATH(path);
608 struct buffer_head *bh, *unbh = NULL;
609 struct item_head *ih, tmp_ih;
614 struct reiserfs_transaction_handle *th = NULL;
615 /* space reserved in transaction batch:
616 . 3 balancings in direct->indirect conversion
617 . 1 block involved into reiserfs_update_sd()
618 XXX in practically impossible worst case direct2indirect()
619 can incur (much) more than 3 balancings.
620 quota update for user, group */
622 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
623 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
627 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
629 lock_depth = reiserfs_write_lock_once(inode->i_sb);
630 version = get_inode_item_key_version(inode);
632 if (!file_capable(inode, block)) {
633 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
637 /* if !create, we aren't changing the FS, so we don't need to
638 ** log anything, so we don't need to start a transaction
640 if (!(create & GET_BLOCK_CREATE)) {
642 /* find number of block-th logical block of the file */
643 ret = _get_block_create_0(inode, block, bh_result,
644 create | GET_BLOCK_READ_DIRECT);
645 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
649 * if we're already in a transaction, make sure to close
650 * any new transactions we start in this func
652 if ((create & GET_BLOCK_NO_DANGLE) ||
653 reiserfs_transaction_running(inode->i_sb))
656 /* If file is of such a size, that it might have a tail and tails are enabled
657 ** we should mark it as possibly needing tail packing on close
659 if ((have_large_tails(inode->i_sb)
660 && inode->i_size < i_block_size(inode) * 4)
661 || (have_small_tails(inode->i_sb)
662 && inode->i_size < i_block_size(inode)))
663 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
665 /* set the key of the first byte in the 'block'-th block of file */
666 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
667 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
669 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
674 reiserfs_update_inode_transaction(inode);
678 retval = search_for_position_by_key(inode->i_sb, &key, &path);
679 if (retval == IO_ERROR) {
684 bh = get_last_bh(&path);
686 item = get_item(&path);
687 pos_in_item = path.pos_in_item;
689 fs_gen = get_generation(inode->i_sb);
690 copy_item_head(&tmp_ih, ih);
692 if (allocation_needed
693 (retval, allocated_block_nr, ih, item, pos_in_item)) {
694 /* we have to allocate block for the unformatted node */
701 _allocate_block(th, block, inode, &allocated_block_nr,
704 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
705 /* restart the transaction to give the journal a chance to free
706 ** some blocks. releases the path, so we have to go back to
707 ** research if we succeed on the second try
709 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
710 retval = restart_transaction(th, inode, &path);
714 _allocate_block(th, block, inode,
715 &allocated_block_nr, NULL, create);
717 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
720 if (repeat == QUOTA_EXCEEDED)
727 if (fs_changed(fs_gen, inode->i_sb)
728 && item_moved(&tmp_ih, &path)) {
733 if (indirect_item_found(retval, ih)) {
734 b_blocknr_t unfm_ptr;
735 /* 'block'-th block is in the file already (there is
736 corresponding cell in some indirect item). But it may be
737 zero unformatted node pointer (hole) */
738 unfm_ptr = get_block_num(item, pos_in_item);
740 /* use allocated block to plug the hole */
741 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
742 if (fs_changed(fs_gen, inode->i_sb)
743 && item_moved(&tmp_ih, &path)) {
744 reiserfs_restore_prepared_buffer(inode->i_sb,
748 set_buffer_new(bh_result);
749 if (buffer_dirty(bh_result)
750 && reiserfs_data_ordered(inode->i_sb))
751 reiserfs_add_ordered_list(inode, bh_result);
752 put_block_num(item, pos_in_item, allocated_block_nr);
753 unfm_ptr = allocated_block_nr;
754 journal_mark_dirty(th, inode->i_sb, bh);
755 reiserfs_update_sd(th, inode);
757 set_block_dev_mapped(bh_result, unfm_ptr, inode);
761 retval = reiserfs_end_persistent_transaction(th);
763 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
765 /* the item was found, so new blocks were not added to the file
766 ** there is no need to make sure the inode is updated with this
777 /* desired position is not found or is in the direct item. We have
778 to append file with holes up to 'block'-th block converting
779 direct items to indirect one if necessary */
782 if (is_statdata_le_ih(ih)) {
784 struct cpu_key tmp_key;
786 /* indirect item has to be inserted */
787 make_le_item_head(&tmp_ih, &key, version, 1,
788 TYPE_INDIRECT, UNFM_P_SIZE,
789 0 /* free_space */ );
791 if (cpu_key_k_offset(&key) == 1) {
792 /* we are going to add 'block'-th block to the file. Use
793 allocated block for that */
794 unp = cpu_to_le32(allocated_block_nr);
795 set_block_dev_mapped(bh_result,
796 allocated_block_nr, inode);
797 set_buffer_new(bh_result);
801 set_cpu_key_k_offset(&tmp_key, 1);
802 PATH_LAST_POSITION(&path)++;
805 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
806 inode, (char *)&unp);
808 reiserfs_free_block(th, inode,
809 allocated_block_nr, 1);
810 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
812 //mark_tail_converted (inode);
813 } else if (is_direct_le_ih(ih)) {
814 /* direct item has to be converted */
818 ((le_ih_k_offset(ih) -
819 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
820 if (tail_offset == cpu_key_k_offset(&key)) {
821 /* direct item we just found fits into block we have
822 to map. Convert it into unformatted node: use
823 bh_result for the conversion */
824 set_block_dev_mapped(bh_result,
825 allocated_block_nr, inode);
829 /* we have to padd file tail stored in direct item(s)
830 up to block size and convert it to unformatted
831 node. FIXME: this should also get into page cache */
835 * ugly, but we can only end the transaction if
838 BUG_ON(!th->t_refcount);
839 if (th->t_refcount == 1) {
841 reiserfs_end_persistent_transaction
849 convert_tail_for_hole(inode, bh_result,
852 if (retval != -ENOSPC)
853 reiserfs_error(inode->i_sb,
855 "convert tail failed "
856 "inode %lu, error %d",
859 if (allocated_block_nr) {
860 /* the bitmap, the super, and the stat data == 3 */
862 th = reiserfs_persistent_transaction(inode->i_sb, 3);
864 reiserfs_free_block(th,
874 direct2indirect(th, inode, &path, unbh,
877 reiserfs_unmap_buffer(unbh);
878 reiserfs_free_block(th, inode,
879 allocated_block_nr, 1);
882 /* it is important the set_buffer_uptodate is done after
883 ** the direct2indirect. The buffer might contain valid
884 ** data newer than the data on disk (read by readpage, changed,
885 ** and then sent here by writepage). direct2indirect needs
886 ** to know if unbh was already up to date, so it can decide
887 ** if the data in unbh needs to be replaced with data from
890 set_buffer_uptodate(unbh);
892 /* unbh->b_page == NULL in case of DIRECT_IO request, this means
893 buffer will disappear shortly, so it should not be added to
896 /* we've converted the tail, so we must
897 ** flush unbh before the transaction commits
899 reiserfs_add_tail_list(inode, unbh);
901 /* mark it dirty now to prevent commit_write from adding
902 ** this buffer to the inode's dirty buffer list
905 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
906 * It's still atomic, but it sets the page dirty too,
907 * which makes it eligible for writeback at any time by the
908 * VM (which was also the case with __mark_buffer_dirty())
910 mark_buffer_dirty(unbh);
913 /* append indirect item with holes if needed, when appending
914 pointer to 'block'-th block use block, which is already
916 struct cpu_key tmp_key;
917 unp_t unf_single = 0; // We use this in case we need to allocate only
918 // one block which is a fastpath
920 __u64 max_to_insert =
921 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
925 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
926 "vs-804: invalid position for append");
927 /* indirect item has to be appended, set up key of that position */
928 make_cpu_key(&tmp_key, inode,
929 le_key_k_offset(version,
932 inode->i_sb->s_blocksize),
933 //pos_in_item * inode->i_sb->s_blocksize,
934 TYPE_INDIRECT, 3); // key type is unimportant
936 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
937 "green-805: invalid offset");
940 ((cpu_key_k_offset(&key) -
941 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
944 if (blocks_needed == 1) {
947 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
954 if (blocks_needed <= max_to_insert) {
955 /* we are going to add target block to the file. Use allocated
957 un[blocks_needed - 1] =
958 cpu_to_le32(allocated_block_nr);
959 set_block_dev_mapped(bh_result,
960 allocated_block_nr, inode);
961 set_buffer_new(bh_result);
964 /* paste hole to the indirect item */
965 /* If kmalloc failed, max_to_insert becomes zero and it means we
966 only have space for one block */
968 max_to_insert ? max_to_insert : 1;
971 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
976 if (blocks_needed != 1)
980 reiserfs_free_block(th, inode,
981 allocated_block_nr, 1);
985 /* We need to mark new file size in case this function will be
986 interrupted/aborted later on. And we may do this only for
989 inode->i_sb->s_blocksize * blocks_needed;
996 /* this loop could log more blocks than we had originally asked
997 ** for. So, we have to allow the transaction to end if it is
998 ** too big or too full. Update the inode so things are
999 ** consistent if we crash before the function returns
1001 ** release the path so that anybody waiting on the path before
1002 ** ending their transaction will be able to continue.
1004 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1005 retval = restart_transaction(th, inode, &path);
1010 * inserting indirect pointers for a hole can take a
1011 * long time. reschedule if needed and also release the write
1014 if (need_resched()) {
1015 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1017 lock_depth = reiserfs_write_lock_once(inode->i_sb);
1020 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1021 if (retval == IO_ERROR) {
1025 if (retval == POSITION_FOUND) {
1026 reiserfs_warning(inode->i_sb, "vs-825",
1027 "%K should not be found", &key);
1029 if (allocated_block_nr)
1030 reiserfs_free_block(th, inode,
1031 allocated_block_nr, 1);
1035 bh = get_last_bh(&path);
1037 item = get_item(&path);
1038 pos_in_item = path.pos_in_item;
1044 if (th && (!dangle || (retval && !th->t_trans_id))) {
1047 reiserfs_update_sd(th, inode);
1048 err = reiserfs_end_persistent_transaction(th);
1053 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1054 reiserfs_check_path(&path);
1059 reiserfs_readpages(struct file *file, struct address_space *mapping,
1060 struct list_head *pages, unsigned nr_pages)
1062 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1065 /* Compute real number of used bytes by file
1066 * Following three functions can go away when we'll have enough space in stat item
1068 static int real_space_diff(struct inode *inode, int sd_size)
1071 loff_t blocksize = inode->i_sb->s_blocksize;
1073 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1076 /* End of file is also in full block with indirect reference, so round
1077 ** up to the next block.
1079 ** there is just no way to know if the tail is actually packed
1080 ** on the file, so we have to assume it isn't. When we pack the
1081 ** tail, we add 4 bytes to pretend there really is an unformatted
1086 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1091 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1094 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1095 return inode->i_size +
1096 (loff_t) (real_space_diff(inode, sd_size));
1098 return ((loff_t) real_space_diff(inode, sd_size)) +
1099 (((loff_t) blocks) << 9);
1102 /* Compute number of blocks used by file in ReiserFS counting */
1103 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1105 loff_t bytes = inode_get_bytes(inode);
1106 loff_t real_space = real_space_diff(inode, sd_size);
1108 /* keeps fsck and non-quota versions of reiserfs happy */
1109 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1110 bytes += (loff_t) 511;
1113 /* files from before the quota patch might i_blocks such that
1114 ** bytes < real_space. Deal with that here to prevent it from
1117 if (bytes < real_space)
1119 return (bytes - real_space) >> 9;
1123 // BAD: new directories have stat data of new type and all other items
1124 // of old type. Version stored in the inode says about body items, so
1125 // in update_stat_data we can not rely on inode, but have to check
1126 // item version directly
1129 // called by read_locked_inode
1130 static void init_inode(struct inode *inode, struct treepath *path)
1132 struct buffer_head *bh;
1133 struct item_head *ih;
1135 //int version = ITEM_VERSION_1;
1137 bh = PATH_PLAST_BUFFER(path);
1138 ih = PATH_PITEM_HEAD(path);
1140 copy_key(INODE_PKEY(inode), &(ih->ih_key));
1142 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1143 REISERFS_I(inode)->i_flags = 0;
1144 REISERFS_I(inode)->i_prealloc_block = 0;
1145 REISERFS_I(inode)->i_prealloc_count = 0;
1146 REISERFS_I(inode)->i_trans_id = 0;
1147 REISERFS_I(inode)->i_jl = NULL;
1148 reiserfs_init_xattr_rwsem(inode);
1150 if (stat_data_v1(ih)) {
1151 struct stat_data_v1 *sd =
1152 (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1153 unsigned long blocks;
1155 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1156 set_inode_sd_version(inode, STAT_DATA_V1);
1157 inode->i_mode = sd_v1_mode(sd);
1158 inode->i_nlink = sd_v1_nlink(sd);
1159 inode->i_uid = sd_v1_uid(sd);
1160 inode->i_gid = sd_v1_gid(sd);
1161 inode->i_size = sd_v1_size(sd);
1162 inode->i_atime.tv_sec = sd_v1_atime(sd);
1163 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1164 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1165 inode->i_atime.tv_nsec = 0;
1166 inode->i_ctime.tv_nsec = 0;
1167 inode->i_mtime.tv_nsec = 0;
1169 inode->i_blocks = sd_v1_blocks(sd);
1170 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1171 blocks = (inode->i_size + 511) >> 9;
1172 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1173 if (inode->i_blocks > blocks) {
1174 // there was a bug in <=3.5.23 when i_blocks could take negative
1175 // values. Starting from 3.5.17 this value could even be stored in
1176 // stat data. For such files we set i_blocks based on file
1177 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1178 // only updated if file's inode will ever change
1179 inode->i_blocks = blocks;
1182 rdev = sd_v1_rdev(sd);
1183 REISERFS_I(inode)->i_first_direct_byte =
1184 sd_v1_first_direct_byte(sd);
1185 /* an early bug in the quota code can give us an odd number for the
1186 ** block count. This is incorrect, fix it here.
1188 if (inode->i_blocks & 1) {
1191 inode_set_bytes(inode,
1192 to_real_used_space(inode, inode->i_blocks,
1194 /* nopack is initially zero for v1 objects. For v2 objects,
1195 nopack is initialised from sd_attrs */
1196 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1198 // new stat data found, but object may have old items
1199 // (directories and symlinks)
1200 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1202 inode->i_mode = sd_v2_mode(sd);
1203 inode->i_nlink = sd_v2_nlink(sd);
1204 inode->i_uid = sd_v2_uid(sd);
1205 inode->i_size = sd_v2_size(sd);
1206 inode->i_gid = sd_v2_gid(sd);
1207 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1208 inode->i_atime.tv_sec = sd_v2_atime(sd);
1209 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1210 inode->i_ctime.tv_nsec = 0;
1211 inode->i_mtime.tv_nsec = 0;
1212 inode->i_atime.tv_nsec = 0;
1213 inode->i_blocks = sd_v2_blocks(sd);
1214 rdev = sd_v2_rdev(sd);
1215 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1216 inode->i_generation =
1217 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1219 inode->i_generation = sd_v2_generation(sd);
1221 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1222 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1224 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1225 REISERFS_I(inode)->i_first_direct_byte = 0;
1226 set_inode_sd_version(inode, STAT_DATA_V2);
1227 inode_set_bytes(inode,
1228 to_real_used_space(inode, inode->i_blocks,
1230 /* read persistent inode attributes from sd and initialise
1231 generic inode flags from them */
1232 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1233 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1237 if (S_ISREG(inode->i_mode)) {
1238 inode->i_op = &reiserfs_file_inode_operations;
1239 inode->i_fop = &reiserfs_file_operations;
1240 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1241 } else if (S_ISDIR(inode->i_mode)) {
1242 inode->i_op = &reiserfs_dir_inode_operations;
1243 inode->i_fop = &reiserfs_dir_operations;
1244 } else if (S_ISLNK(inode->i_mode)) {
1245 inode->i_op = &reiserfs_symlink_inode_operations;
1246 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1248 inode->i_blocks = 0;
1249 inode->i_op = &reiserfs_special_inode_operations;
1250 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1254 // update new stat data with inode fields
1255 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1257 struct stat_data *sd_v2 = (struct stat_data *)sd;
1260 set_sd_v2_mode(sd_v2, inode->i_mode);
1261 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1262 set_sd_v2_uid(sd_v2, inode->i_uid);
1263 set_sd_v2_size(sd_v2, size);
1264 set_sd_v2_gid(sd_v2, inode->i_gid);
1265 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1266 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1267 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1268 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1269 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1270 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1272 set_sd_v2_generation(sd_v2, inode->i_generation);
1273 flags = REISERFS_I(inode)->i_attrs;
1274 i_attrs_to_sd_attrs(inode, &flags);
1275 set_sd_v2_attrs(sd_v2, flags);
1278 // used to copy inode's fields to old stat data
1279 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1281 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1283 set_sd_v1_mode(sd_v1, inode->i_mode);
1284 set_sd_v1_uid(sd_v1, inode->i_uid);
1285 set_sd_v1_gid(sd_v1, inode->i_gid);
1286 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1287 set_sd_v1_size(sd_v1, size);
1288 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1289 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1290 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1292 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1293 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1295 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1297 // Sigh. i_first_direct_byte is back
1298 set_sd_v1_first_direct_byte(sd_v1,
1299 REISERFS_I(inode)->i_first_direct_byte);
1302 /* NOTE, you must prepare the buffer head before sending it here,
1303 ** and then log it after the call
1305 static void update_stat_data(struct treepath *path, struct inode *inode,
1308 struct buffer_head *bh;
1309 struct item_head *ih;
1311 bh = PATH_PLAST_BUFFER(path);
1312 ih = PATH_PITEM_HEAD(path);
1314 if (!is_statdata_le_ih(ih))
1315 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1316 INODE_PKEY(inode), ih);
1318 if (stat_data_v1(ih)) {
1319 // path points to old stat data
1320 inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1322 inode2sd(B_I_PITEM(bh, ih), inode, size);
1328 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1329 struct inode *inode, loff_t size)
1332 INITIALIZE_PATH(path);
1333 struct buffer_head *bh;
1335 struct item_head *ih, tmp_ih;
1338 BUG_ON(!th->t_trans_id);
1340 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant
1344 /* look for the object's stat data */
1345 retval = search_item(inode->i_sb, &key, &path);
1346 if (retval == IO_ERROR) {
1347 reiserfs_error(inode->i_sb, "vs-13050",
1348 "i/o failure occurred trying to "
1349 "update %K stat data", &key);
1352 if (retval == ITEM_NOT_FOUND) {
1353 pos = PATH_LAST_POSITION(&path);
1355 if (inode->i_nlink == 0) {
1356 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1359 reiserfs_warning(inode->i_sb, "vs-13060",
1360 "stat data of object %k (nlink == %d) "
1361 "not found (pos %d)",
1362 INODE_PKEY(inode), inode->i_nlink,
1364 reiserfs_check_path(&path);
1368 /* sigh, prepare_for_journal might schedule. When it schedules the
1369 ** FS might change. We have to detect that, and loop back to the
1370 ** search if the stat data item has moved
1372 bh = get_last_bh(&path);
1374 copy_item_head(&tmp_ih, ih);
1375 fs_gen = get_generation(inode->i_sb);
1376 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1377 if (fs_changed(fs_gen, inode->i_sb)
1378 && item_moved(&tmp_ih, &path)) {
1379 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1380 continue; /* Stat_data item has been moved after scheduling. */
1384 update_stat_data(&path, inode, size);
1385 journal_mark_dirty(th, th->t_super, bh);
1390 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1391 ** does a make_bad_inode when things go wrong. But, we need to make sure
1392 ** and clear the key in the private portion of the inode, otherwise a
1393 ** corresponding iput might try to delete whatever object the inode last
1396 static void reiserfs_make_bad_inode(struct inode *inode)
1398 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1399 make_bad_inode(inode);
1403 // initially this function was derived from minix or ext2's analog and
1404 // evolved as the prototype did
1407 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1409 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1410 inode->i_ino = args->objectid;
1411 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1415 /* looks for stat data in the tree, and fills up the fields of in-core
1416 inode stat data fields */
1417 void reiserfs_read_locked_inode(struct inode *inode,
1418 struct reiserfs_iget_args *args)
1420 INITIALIZE_PATH(path_to_sd);
1422 unsigned long dirino;
1425 dirino = args->dirid;
1427 /* set version 1, version 2 could be used too, because stat data
1428 key is the same in both versions */
1429 key.version = KEY_FORMAT_3_5;
1430 key.on_disk_key.k_dir_id = dirino;
1431 key.on_disk_key.k_objectid = inode->i_ino;
1432 key.on_disk_key.k_offset = 0;
1433 key.on_disk_key.k_type = 0;
1435 /* look for the object's stat data */
1436 retval = search_item(inode->i_sb, &key, &path_to_sd);
1437 if (retval == IO_ERROR) {
1438 reiserfs_error(inode->i_sb, "vs-13070",
1439 "i/o failure occurred trying to find "
1440 "stat data of %K", &key);
1441 reiserfs_make_bad_inode(inode);
1444 if (retval != ITEM_FOUND) {
1445 /* a stale NFS handle can trigger this without it being an error */
1446 pathrelse(&path_to_sd);
1447 reiserfs_make_bad_inode(inode);
1452 init_inode(inode, &path_to_sd);
1454 /* It is possible that knfsd is trying to access inode of a file
1455 that is being removed from the disk by some other thread. As we
1456 update sd on unlink all that is required is to check for nlink
1457 here. This bug was first found by Sizif when debugging
1458 SquidNG/Butterfly, forgotten, and found again after Philippe
1459 Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1461 More logical fix would require changes in fs/inode.c:iput() to
1462 remove inode from hash-table _after_ fs cleaned disk stuff up and
1463 in iget() to return NULL if I_FREEING inode is found in
1465 /* Currently there is one place where it's ok to meet inode with
1466 nlink==0: processing of open-unlinked and half-truncated files
1467 during mount (fs/reiserfs/super.c:finish_unfinished()). */
1468 if ((inode->i_nlink == 0) &&
1469 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1470 reiserfs_warning(inode->i_sb, "vs-13075",
1471 "dead inode read from disk %K. "
1472 "This is likely to be race with knfsd. Ignore",
1474 reiserfs_make_bad_inode(inode);
1477 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */
1482 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1484 * @inode: inode from hash table to check
1485 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1487 * This function is called by iget5_locked() to distinguish reiserfs inodes
1488 * having the same inode numbers. Such inodes can only exist due to some
1489 * error condition. One of them should be bad. Inodes with identical
1490 * inode numbers (objectids) are distinguished by parent directory ids.
1493 int reiserfs_find_actor(struct inode *inode, void *opaque)
1495 struct reiserfs_iget_args *args;
1498 /* args is already in CPU order */
1499 return (inode->i_ino == args->objectid) &&
1500 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1503 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1505 struct inode *inode;
1506 struct reiserfs_iget_args args;
1508 args.objectid = key->on_disk_key.k_objectid;
1509 args.dirid = key->on_disk_key.k_dir_id;
1510 reiserfs_write_unlock(s);
1511 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1512 reiserfs_find_actor, reiserfs_init_locked_inode,
1514 reiserfs_write_lock(s);
1516 return ERR_PTR(-ENOMEM);
1518 if (inode->i_state & I_NEW) {
1519 reiserfs_read_locked_inode(inode, &args);
1520 unlock_new_inode(inode);
1523 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1524 /* either due to i/o error or a stale NFS handle */
1531 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1532 u32 objectid, u32 dir_id, u32 generation)
1536 struct inode *inode;
1538 key.on_disk_key.k_objectid = objectid;
1539 key.on_disk_key.k_dir_id = dir_id;
1540 reiserfs_write_lock(sb);
1541 inode = reiserfs_iget(sb, &key);
1542 if (inode && !IS_ERR(inode) && generation != 0 &&
1543 generation != inode->i_generation) {
1547 reiserfs_write_unlock(sb);
1549 return d_obtain_alias(inode);
1552 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1553 int fh_len, int fh_type)
1555 /* fhtype happens to reflect the number of u32s encoded.
1556 * due to a bug in earlier code, fhtype might indicate there
1557 * are more u32s then actually fitted.
1558 * so if fhtype seems to be more than len, reduce fhtype.
1560 * 2 - objectid + dir_id - legacy support
1561 * 3 - objectid + dir_id + generation
1562 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1563 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1564 * 6 - as above plus generation of directory
1565 * 6 does not fit in NFSv2 handles
1567 if (fh_type > fh_len) {
1568 if (fh_type != 6 || fh_len != 5)
1569 reiserfs_warning(sb, "reiserfs-13077",
1570 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1575 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1576 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1579 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1580 int fh_len, int fh_type)
1585 return reiserfs_get_dentry(sb,
1586 (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1587 (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1588 (fh_type == 6) ? fid->raw[5] : 0);
1591 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1594 struct inode *inode = dentry->d_inode;
1600 data[0] = inode->i_ino;
1601 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1602 data[2] = inode->i_generation;
1604 /* no room for directory info? return what we've stored so far */
1605 if (maxlen < 5 || !need_parent)
1608 spin_lock(&dentry->d_lock);
1609 inode = dentry->d_parent->d_inode;
1610 data[3] = inode->i_ino;
1611 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1614 data[5] = inode->i_generation;
1617 spin_unlock(&dentry->d_lock);
1621 /* looks for stat data, then copies fields to it, marks the buffer
1622 containing stat data as dirty */
1623 /* reiserfs inodes are never really dirty, since the dirty inode call
1624 ** always logs them. This call allows the VFS inode marking routines
1625 ** to properly mark inodes for datasync and such, but only actually
1626 ** does something when called for a synchronous update.
1628 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1630 struct reiserfs_transaction_handle th;
1631 int jbegin_count = 1;
1633 if (inode->i_sb->s_flags & MS_RDONLY)
1635 /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1636 ** these cases are just when the system needs ram, not when the
1637 ** inode needs to reach disk for safety, and they can safely be
1638 ** ignored because the altered inode has already been logged.
1640 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1641 reiserfs_write_lock(inode->i_sb);
1642 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1643 reiserfs_update_sd(&th, inode);
1644 journal_end_sync(&th, inode->i_sb, jbegin_count);
1646 reiserfs_write_unlock(inode->i_sb);
1651 /* stat data of new object is inserted already, this inserts the item
1652 containing "." and ".." entries */
1653 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1654 struct inode *inode,
1655 struct item_head *ih, struct treepath *path,
1658 struct super_block *sb = th->t_super;
1659 char empty_dir[EMPTY_DIR_SIZE];
1660 char *body = empty_dir;
1664 BUG_ON(!th->t_trans_id);
1666 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1667 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1668 TYPE_DIRENTRY, 3 /*key length */ );
1670 /* compose item head for new item. Directories consist of items of
1671 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1672 is done by reiserfs_new_inode */
1673 if (old_format_only(sb)) {
1674 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1675 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1677 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1678 ih->ih_key.k_objectid,
1679 INODE_PKEY(dir)->k_dir_id,
1680 INODE_PKEY(dir)->k_objectid);
1682 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1683 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1685 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1686 ih->ih_key.k_objectid,
1687 INODE_PKEY(dir)->k_dir_id,
1688 INODE_PKEY(dir)->k_objectid);
1691 /* look for place in the tree for new item */
1692 retval = search_item(sb, &key, path);
1693 if (retval == IO_ERROR) {
1694 reiserfs_error(sb, "vs-13080",
1695 "i/o failure occurred creating new directory");
1698 if (retval == ITEM_FOUND) {
1700 reiserfs_warning(sb, "vs-13070",
1701 "object with this key exists (%k)",
1706 /* insert item, that is empty directory item */
1707 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1710 /* stat data of object has been inserted, this inserts the item
1711 containing the body of symlink */
1712 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */
1713 struct item_head *ih,
1714 struct treepath *path, const char *symname,
1717 struct super_block *sb = th->t_super;
1721 BUG_ON(!th->t_trans_id);
1723 _make_cpu_key(&key, KEY_FORMAT_3_5,
1724 le32_to_cpu(ih->ih_key.k_dir_id),
1725 le32_to_cpu(ih->ih_key.k_objectid),
1726 1, TYPE_DIRECT, 3 /*key length */ );
1728 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1729 0 /*free_space */ );
1731 /* look for place in the tree for new item */
1732 retval = search_item(sb, &key, path);
1733 if (retval == IO_ERROR) {
1734 reiserfs_error(sb, "vs-13080",
1735 "i/o failure occurred creating new symlink");
1738 if (retval == ITEM_FOUND) {
1740 reiserfs_warning(sb, "vs-13080",
1741 "object with this key exists (%k)",
1746 /* insert item, that is body of symlink */
1747 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1750 /* inserts the stat data into the tree, and then calls
1751 reiserfs_new_directory (to insert ".", ".." item if new object is
1752 directory) or reiserfs_new_symlink (to insert symlink body if new
1753 object is symlink) or nothing (if new object is regular file)
1755 NOTE! uid and gid must already be set in the inode. If we return
1756 non-zero due to an error, we have to drop the quota previously allocated
1757 for the fresh inode. This can only be done outside a transaction, so
1758 if we return non-zero, we also end the transaction. */
1759 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1760 struct inode *dir, int mode, const char *symname,
1761 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1762 strlen (symname) for symlinks) */
1763 loff_t i_size, struct dentry *dentry,
1764 struct inode *inode,
1765 struct reiserfs_security_handle *security)
1767 struct super_block *sb;
1768 struct reiserfs_iget_args args;
1769 INITIALIZE_PATH(path_to_key);
1771 struct item_head ih;
1772 struct stat_data sd;
1776 BUG_ON(!th->t_trans_id);
1778 dquot_initialize(inode);
1779 err = dquot_alloc_inode(inode);
1782 if (!dir->i_nlink) {
1789 /* item head of new item */
1790 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1791 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1792 if (!ih.ih_key.k_objectid) {
1796 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1797 if (old_format_only(sb))
1798 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1799 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1801 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1802 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1803 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1804 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1805 if (insert_inode_locked4(inode, args.objectid,
1806 reiserfs_find_actor, &args) < 0) {
1810 if (old_format_only(sb))
1811 /* not a perfect generation count, as object ids can be reused, but
1812 ** this is as good as reiserfs can do right now.
1813 ** note that the private part of inode isn't filled in yet, we have
1814 ** to use the directory.
1816 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1818 #if defined( USE_INODE_GENERATION_COUNTER )
1819 inode->i_generation =
1820 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1822 inode->i_generation = ++event;
1825 /* fill stat data */
1826 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1828 /* uid and gid must already be set by the caller for quota init */
1830 /* symlink cannot be immutable or append only, right? */
1831 if (S_ISLNK(inode->i_mode))
1832 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1834 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1835 inode->i_size = i_size;
1836 inode->i_blocks = 0;
1838 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1839 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1841 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1842 REISERFS_I(inode)->i_flags = 0;
1843 REISERFS_I(inode)->i_prealloc_block = 0;
1844 REISERFS_I(inode)->i_prealloc_count = 0;
1845 REISERFS_I(inode)->i_trans_id = 0;
1846 REISERFS_I(inode)->i_jl = NULL;
1847 REISERFS_I(inode)->i_attrs =
1848 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1849 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1850 reiserfs_init_xattr_rwsem(inode);
1852 /* key to search for correct place for new stat data */
1853 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1854 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1855 TYPE_STAT_DATA, 3 /*key length */ );
1857 /* find proper place for inserting of stat data */
1858 retval = search_item(sb, &key, &path_to_key);
1859 if (retval == IO_ERROR) {
1863 if (retval == ITEM_FOUND) {
1864 pathrelse(&path_to_key);
1868 if (old_format_only(sb)) {
1869 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1870 pathrelse(&path_to_key);
1871 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1875 inode2sd_v1(&sd, inode, inode->i_size);
1877 inode2sd(&sd, inode, inode->i_size);
1879 // store in in-core inode the key of stat data and version all
1880 // object items will have (directory items will have old offset
1881 // format, other new objects will consist of new items)
1882 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1883 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1885 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1886 if (old_format_only(sb))
1887 set_inode_sd_version(inode, STAT_DATA_V1);
1889 set_inode_sd_version(inode, STAT_DATA_V2);
1891 /* insert the stat data into the tree */
1892 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1893 if (REISERFS_I(dir)->new_packing_locality)
1894 th->displace_new_blocks = 1;
1897 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1901 reiserfs_check_path(&path_to_key);
1904 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1905 if (!th->displace_new_blocks)
1906 REISERFS_I(dir)->new_packing_locality = 0;
1908 if (S_ISDIR(mode)) {
1909 /* insert item with "." and ".." */
1911 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1914 if (S_ISLNK(mode)) {
1915 /* insert body of symlink */
1916 if (!old_format_only(sb))
1917 i_size = ROUND_UP(i_size);
1919 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1924 reiserfs_check_path(&path_to_key);
1925 journal_end(th, th->t_super, th->t_blocks_allocated);
1926 goto out_inserted_sd;
1929 if (reiserfs_posixacl(inode->i_sb)) {
1930 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1933 reiserfs_check_path(&path_to_key);
1934 journal_end(th, th->t_super, th->t_blocks_allocated);
1935 goto out_inserted_sd;
1937 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1938 reiserfs_warning(inode->i_sb, "jdm-13090",
1939 "ACLs aren't enabled in the fs, "
1940 "but vfs thinks they are!");
1941 } else if (IS_PRIVATE(dir))
1942 inode->i_flags |= S_PRIVATE;
1944 if (security->name) {
1945 retval = reiserfs_security_write(th, inode, security);
1948 reiserfs_check_path(&path_to_key);
1949 retval = journal_end(th, th->t_super,
1950 th->t_blocks_allocated);
1953 goto out_inserted_sd;
1957 reiserfs_update_sd(th, inode);
1958 reiserfs_check_path(&path_to_key);
1962 /* it looks like you can easily compress these two goto targets into
1963 * one. Keeping it like this doesn't actually hurt anything, and they
1964 * are place holders for what the quota code actually needs.
1967 /* Invalidate the object, nothing was inserted yet */
1968 INODE_PKEY(inode)->k_objectid = 0;
1970 /* Quota change must be inside a transaction for journaling */
1971 dquot_free_inode(inode);
1974 journal_end(th, th->t_super, th->t_blocks_allocated);
1975 /* Drop can be outside and it needs more credits so it's better to have it outside */
1977 inode->i_flags |= S_NOQUOTA;
1978 make_bad_inode(inode);
1982 th->t_trans_id = 0; /* so the caller can't use this handle later */
1983 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
1989 ** finds the tail page in the page cache,
1990 ** reads the last block in.
1992 ** On success, page_result is set to a locked, pinned page, and bh_result
1993 ** is set to an up to date buffer for the last block in the file. returns 0.
1995 ** tail conversion is not done, so bh_result might not be valid for writing
1996 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1997 ** trying to write the block.
1999 ** on failure, nonzero is returned, page_result and bh_result are untouched.
2001 static int grab_tail_page(struct inode *inode,
2002 struct page **page_result,
2003 struct buffer_head **bh_result)
2006 /* we want the page with the last byte in the file,
2007 ** not the page that will hold the next byte for appending
2009 unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2010 unsigned long pos = 0;
2011 unsigned long start = 0;
2012 unsigned long blocksize = inode->i_sb->s_blocksize;
2013 unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2014 struct buffer_head *bh;
2015 struct buffer_head *head;
2019 /* we know that we are only called with inode->i_size > 0.
2020 ** we also know that a file tail can never be as big as a block
2021 ** If i_size % blocksize == 0, our file is currently block aligned
2022 ** and it won't need converting or zeroing after a truncate.
2024 if ((offset & (blocksize - 1)) == 0) {
2027 page = grab_cache_page(inode->i_mapping, index);
2032 /* start within the page of the last block in the file */
2033 start = (offset / blocksize) * blocksize;
2035 error = block_prepare_write(page, start, offset,
2036 reiserfs_get_block_create_0);
2040 head = page_buffers(page);
2046 bh = bh->b_this_page;
2048 } while (bh != head);
2050 if (!buffer_uptodate(bh)) {
2051 /* note, this should never happen, prepare_write should
2052 ** be taking care of this for us. If the buffer isn't up to date,
2053 ** I've screwed up the code to find the buffer, or the code to
2054 ** call prepare_write
2056 reiserfs_error(inode->i_sb, "clm-6000",
2057 "error reading block %lu", bh->b_blocknr);
2062 *page_result = page;
2069 page_cache_release(page);
2074 ** vfs version of truncate file. Must NOT be called with
2075 ** a transaction already started.
2077 ** some code taken from block_truncate_page
2079 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2081 struct reiserfs_transaction_handle th;
2082 /* we want the offset for the first byte after the end of the file */
2083 unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2084 unsigned blocksize = inode->i_sb->s_blocksize;
2086 struct page *page = NULL;
2088 struct buffer_head *bh = NULL;
2092 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2094 if (inode->i_size > 0) {
2095 error = grab_tail_page(inode, &page, &bh);
2097 // -ENOENT means we truncated past the end of the file,
2098 // and get_block_create_0 could not find a block to read in,
2100 if (error != -ENOENT)
2101 reiserfs_error(inode->i_sb, "clm-6001",
2102 "grab_tail_page failed %d",
2109 /* so, if page != NULL, we have a buffer head for the offset at
2110 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2111 ** then we have an unformatted node. Otherwise, we have a direct item,
2112 ** and no zeroing is required on disk. We zero after the truncate,
2113 ** because the truncate might pack the item anyway
2114 ** (it will unmap bh if it packs).
2116 /* it is enough to reserve space in transaction for 2 balancings:
2117 one for "save" link adding and another for the first
2118 cut_from_item. 1 is for update_sd */
2119 error = journal_begin(&th, inode->i_sb,
2120 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2123 reiserfs_update_inode_transaction(inode);
2124 if (update_timestamps)
2125 /* we are doing real truncate: if the system crashes before the last
2126 transaction of truncating gets committed - on reboot the file
2127 either appears truncated properly or not truncated at all */
2128 add_save_link(&th, inode, 1);
2129 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2131 journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2135 /* check reiserfs_do_truncate after ending the transaction */
2141 if (update_timestamps) {
2142 error = remove_save_link(inode, 1 /* truncate */);
2148 length = offset & (blocksize - 1);
2149 /* if we are not on a block boundary */
2151 length = blocksize - length;
2152 zero_user(page, offset, length);
2153 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2154 mark_buffer_dirty(bh);
2158 page_cache_release(page);
2161 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2167 page_cache_release(page);
2170 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2175 static int map_block_for_writepage(struct inode *inode,
2176 struct buffer_head *bh_result,
2177 unsigned long block)
2179 struct reiserfs_transaction_handle th;
2181 struct item_head tmp_ih;
2182 struct item_head *ih;
2183 struct buffer_head *bh;
2186 INITIALIZE_PATH(path);
2188 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2189 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2191 int use_get_block = 0;
2192 int bytes_copied = 0;
2194 int trans_running = 0;
2196 /* catch places below that try to log something without starting a trans */
2199 if (!buffer_uptodate(bh_result)) {
2203 kmap(bh_result->b_page);
2205 reiserfs_write_lock(inode->i_sb);
2206 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2209 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2210 if (retval != POSITION_FOUND) {
2215 bh = get_last_bh(&path);
2217 item = get_item(&path);
2218 pos_in_item = path.pos_in_item;
2220 /* we've found an unformatted node */
2221 if (indirect_item_found(retval, ih)) {
2222 if (bytes_copied > 0) {
2223 reiserfs_warning(inode->i_sb, "clm-6002",
2224 "bytes_copied %d", bytes_copied);
2226 if (!get_block_num(item, pos_in_item)) {
2227 /* crap, we are writing to a hole */
2231 set_block_dev_mapped(bh_result,
2232 get_block_num(item, pos_in_item), inode);
2233 } else if (is_direct_le_ih(ih)) {
2235 p = page_address(bh_result->b_page);
2236 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2237 copy_size = ih_item_len(ih) - pos_in_item;
2239 fs_gen = get_generation(inode->i_sb);
2240 copy_item_head(&tmp_ih, ih);
2242 if (!trans_running) {
2243 /* vs-3050 is gone, no need to drop the path */
2244 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2247 reiserfs_update_inode_transaction(inode);
2249 if (fs_changed(fs_gen, inode->i_sb)
2250 && item_moved(&tmp_ih, &path)) {
2251 reiserfs_restore_prepared_buffer(inode->i_sb,
2257 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2259 if (fs_changed(fs_gen, inode->i_sb)
2260 && item_moved(&tmp_ih, &path)) {
2261 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2265 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2268 journal_mark_dirty(&th, inode->i_sb, bh);
2269 bytes_copied += copy_size;
2270 set_block_dev_mapped(bh_result, 0, inode);
2272 /* are there still bytes left? */
2273 if (bytes_copied < bh_result->b_size &&
2274 (byte_offset + bytes_copied) < inode->i_size) {
2275 set_cpu_key_k_offset(&key,
2276 cpu_key_k_offset(&key) +
2281 reiserfs_warning(inode->i_sb, "clm-6003",
2282 "bad item inode %lu", inode->i_ino);
2290 if (trans_running) {
2291 int err = journal_end(&th, inode->i_sb, jbegin_count);
2296 reiserfs_write_unlock(inode->i_sb);
2298 /* this is where we fill in holes in the file. */
2299 if (use_get_block) {
2300 retval = reiserfs_get_block(inode, block, bh_result,
2301 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2302 | GET_BLOCK_NO_DANGLE);
2304 if (!buffer_mapped(bh_result)
2305 || bh_result->b_blocknr == 0) {
2306 /* get_block failed to find a mapped unformatted node. */
2312 kunmap(bh_result->b_page);
2314 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2315 /* we've copied data from the page into the direct item, so the
2316 * buffer in the page is now clean, mark it to reflect that.
2318 lock_buffer(bh_result);
2319 clear_buffer_dirty(bh_result);
2320 unlock_buffer(bh_result);
2326 * mason@suse.com: updated in 2.5.54 to follow the same general io
2327 * start/recovery path as __block_write_full_page, along with special
2328 * code to handle reiserfs tails.
2330 static int reiserfs_write_full_page(struct page *page,
2331 struct writeback_control *wbc)
2333 struct inode *inode = page->mapping->host;
2334 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2336 unsigned long block;
2337 sector_t last_block;
2338 struct buffer_head *head, *bh;
2341 int checked = PageChecked(page);
2342 struct reiserfs_transaction_handle th;
2343 struct super_block *s = inode->i_sb;
2344 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2347 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2348 if (checked && (current->flags & PF_MEMALLOC)) {
2349 redirty_page_for_writepage(wbc, page);
2354 /* The page dirty bit is cleared before writepage is called, which
2355 * means we have to tell create_empty_buffers to make dirty buffers
2356 * The page really should be up to date at this point, so tossing
2357 * in the BH_Uptodate is just a sanity check.
2359 if (!page_has_buffers(page)) {
2360 create_empty_buffers(page, s->s_blocksize,
2361 (1 << BH_Dirty) | (1 << BH_Uptodate));
2363 head = page_buffers(page);
2365 /* last page in the file, zero out any contents past the
2366 ** last byte in the file
2368 if (page->index >= end_index) {
2369 unsigned last_offset;
2371 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2372 /* no file contents in this page */
2373 if (page->index >= end_index + 1 || !last_offset) {
2377 zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2380 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2381 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2382 /* first map all the buffers, logging any direct items we find */
2384 if (block > last_block) {
2386 * This can happen when the block size is less than
2387 * the page size. The corresponding bytes in the page
2388 * were zero filled above
2390 clear_buffer_dirty(bh);
2391 set_buffer_uptodate(bh);
2392 } else if ((checked || buffer_dirty(bh)) &&
2393 (!buffer_mapped(bh) || (buffer_mapped(bh)
2396 /* not mapped yet, or it points to a direct item, search
2397 * the btree for the mapping info, and log any direct
2400 if ((error = map_block_for_writepage(inode, bh, block))) {
2404 bh = bh->b_this_page;
2406 } while (bh != head);
2409 * we start the transaction after map_block_for_writepage,
2410 * because it can create holes in the file (an unbounded operation).
2411 * starting it here, we can make a reliable estimate for how many
2412 * blocks we're going to log
2415 ClearPageChecked(page);
2416 reiserfs_write_lock(s);
2417 error = journal_begin(&th, s, bh_per_page + 1);
2419 reiserfs_write_unlock(s);
2422 reiserfs_update_inode_transaction(inode);
2424 /* now go through and lock any dirty buffers on the page */
2427 if (!buffer_mapped(bh))
2429 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2433 reiserfs_prepare_for_journal(s, bh, 1);
2434 journal_mark_dirty(&th, s, bh);
2437 /* from this point on, we know the buffer is mapped to a
2438 * real block and not a direct item
2440 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2443 if (!trylock_buffer(bh)) {
2444 redirty_page_for_writepage(wbc, page);
2448 if (test_clear_buffer_dirty(bh)) {
2449 mark_buffer_async_write(bh);
2453 } while ((bh = bh->b_this_page) != head);
2456 error = journal_end(&th, s, bh_per_page + 1);
2457 reiserfs_write_unlock(s);
2461 BUG_ON(PageWriteback(page));
2462 set_page_writeback(page);
2466 * since any buffer might be the only dirty buffer on the page,
2467 * the first submit_bh can bring the page out of writeback.
2468 * be careful with the buffers.
2471 struct buffer_head *next = bh->b_this_page;
2472 if (buffer_async_write(bh)) {
2473 submit_bh(WRITE, bh);
2478 } while (bh != head);
2484 * if this page only had a direct item, it is very possible for
2485 * no io to be required without there being an error. Or,
2486 * someone else could have locked them and sent them down the
2487 * pipe without locking the page
2491 if (!buffer_uptodate(bh)) {
2495 bh = bh->b_this_page;
2496 } while (bh != head);
2498 SetPageUptodate(page);
2499 end_page_writeback(page);
2504 /* catches various errors, we need to make sure any valid dirty blocks
2505 * get to the media. The page is currently locked and not marked for
2508 ClearPageUptodate(page);
2512 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2514 mark_buffer_async_write(bh);
2517 * clear any dirty bits that might have come from getting
2518 * attached to a dirty page
2520 clear_buffer_dirty(bh);
2522 bh = bh->b_this_page;
2523 } while (bh != head);
2525 BUG_ON(PageWriteback(page));
2526 set_page_writeback(page);
2529 struct buffer_head *next = bh->b_this_page;
2530 if (buffer_async_write(bh)) {
2531 clear_buffer_dirty(bh);
2532 submit_bh(WRITE, bh);
2537 } while (bh != head);
2541 static int reiserfs_readpage(struct file *f, struct page *page)
2543 return block_read_full_page(page, reiserfs_get_block);
2546 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2548 struct inode *inode = page->mapping->host;
2549 reiserfs_wait_on_write_block(inode->i_sb);
2550 return reiserfs_write_full_page(page, wbc);
2553 static void reiserfs_truncate_failed_write(struct inode *inode)
2555 truncate_inode_pages(inode->i_mapping, inode->i_size);
2556 reiserfs_truncate_file(inode, 0);
2559 static int reiserfs_write_begin(struct file *file,
2560 struct address_space *mapping,
2561 loff_t pos, unsigned len, unsigned flags,
2562 struct page **pagep, void **fsdata)
2564 struct inode *inode;
2570 inode = mapping->host;
2572 if (flags & AOP_FLAG_CONT_EXPAND &&
2573 (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2575 *fsdata = (void *)(unsigned long)flags;
2578 index = pos >> PAGE_CACHE_SHIFT;
2579 page = grab_cache_page_write_begin(mapping, index, flags);
2584 reiserfs_wait_on_write_block(inode->i_sb);
2585 fix_tail_page_for_writing(page);
2586 if (reiserfs_transaction_running(inode->i_sb)) {
2587 struct reiserfs_transaction_handle *th;
2588 th = (struct reiserfs_transaction_handle *)current->
2590 BUG_ON(!th->t_refcount);
2591 BUG_ON(!th->t_trans_id);
2592 old_ref = th->t_refcount;
2595 ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2596 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2597 struct reiserfs_transaction_handle *th = current->journal_info;
2598 /* this gets a little ugly. If reiserfs_get_block returned an
2599 * error and left a transacstion running, we've got to close it,
2600 * and we've got to free handle if it was a persistent transaction.
2602 * But, if we had nested into an existing transaction, we need
2603 * to just drop the ref count on the handle.
2605 * If old_ref == 0, the transaction is from reiserfs_get_block,
2606 * and it was a persistent trans. Otherwise, it was nested above.
2608 if (th->t_refcount > old_ref) {
2613 reiserfs_write_lock(inode->i_sb);
2614 err = reiserfs_end_persistent_transaction(th);
2615 reiserfs_write_unlock(inode->i_sb);
2623 page_cache_release(page);
2624 /* Truncate allocated blocks */
2625 reiserfs_truncate_failed_write(inode);
2630 int reiserfs_prepare_write(struct file *f, struct page *page,
2631 unsigned from, unsigned to)
2633 struct inode *inode = page->mapping->host;
2637 reiserfs_write_unlock(inode->i_sb);
2638 reiserfs_wait_on_write_block(inode->i_sb);
2639 reiserfs_write_lock(inode->i_sb);
2641 fix_tail_page_for_writing(page);
2642 if (reiserfs_transaction_running(inode->i_sb)) {
2643 struct reiserfs_transaction_handle *th;
2644 th = (struct reiserfs_transaction_handle *)current->
2646 BUG_ON(!th->t_refcount);
2647 BUG_ON(!th->t_trans_id);
2648 old_ref = th->t_refcount;
2652 ret = block_prepare_write(page, from, to, reiserfs_get_block);
2653 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2654 struct reiserfs_transaction_handle *th = current->journal_info;
2655 /* this gets a little ugly. If reiserfs_get_block returned an
2656 * error and left a transacstion running, we've got to close it,
2657 * and we've got to free handle if it was a persistent transaction.
2659 * But, if we had nested into an existing transaction, we need
2660 * to just drop the ref count on the handle.
2662 * If old_ref == 0, the transaction is from reiserfs_get_block,
2663 * and it was a persistent trans. Otherwise, it was nested above.
2665 if (th->t_refcount > old_ref) {
2670 reiserfs_write_lock(inode->i_sb);
2671 err = reiserfs_end_persistent_transaction(th);
2672 reiserfs_write_unlock(inode->i_sb);
2682 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2684 return generic_block_bmap(as, block, reiserfs_bmap);
2687 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2688 loff_t pos, unsigned len, unsigned copied,
2689 struct page *page, void *fsdata)
2691 struct inode *inode = page->mapping->host;
2694 struct reiserfs_transaction_handle *th;
2697 bool locked = false;
2699 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2702 reiserfs_wait_on_write_block(inode->i_sb);
2703 if (reiserfs_transaction_running(inode->i_sb))
2704 th = current->journal_info;
2708 start = pos & (PAGE_CACHE_SIZE - 1);
2709 if (unlikely(copied < len)) {
2710 if (!PageUptodate(page))
2713 page_zero_new_buffers(page, start + copied, start + len);
2715 flush_dcache_page(page);
2717 reiserfs_commit_page(inode, page, start, start + copied);
2719 /* generic_commit_write does this for us, but does not update the
2720 ** transaction tracking stuff when the size changes. So, we have
2721 ** to do the i_size updates here.
2723 if (pos + copied > inode->i_size) {
2724 struct reiserfs_transaction_handle myth;
2725 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2727 /* If the file have grown beyond the border where it
2728 can have a tail, unmark it as needing a tail
2730 if ((have_large_tails(inode->i_sb)
2731 && inode->i_size > i_block_size(inode) * 4)
2732 || (have_small_tails(inode->i_sb)
2733 && inode->i_size > i_block_size(inode)))
2734 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2736 ret = journal_begin(&myth, inode->i_sb, 1);
2740 reiserfs_update_inode_transaction(inode);
2741 inode->i_size = pos + copied;
2743 * this will just nest into our transaction. It's important
2744 * to use mark_inode_dirty so the inode gets pushed around on the
2745 * dirty lists, and so that O_SYNC works as expected
2747 mark_inode_dirty(inode);
2748 reiserfs_update_sd(&myth, inode);
2750 ret = journal_end(&myth, inode->i_sb, 1);
2756 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2760 mark_inode_dirty(inode);
2761 ret = reiserfs_end_persistent_transaction(th);
2768 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2770 page_cache_release(page);
2772 if (pos + len > inode->i_size)
2773 reiserfs_truncate_failed_write(inode);
2775 return ret == 0 ? copied : ret;
2778 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2782 reiserfs_update_sd(th, inode);
2783 ret = reiserfs_end_persistent_transaction(th);
2788 int reiserfs_commit_write(struct file *f, struct page *page,
2789 unsigned from, unsigned to)
2791 struct inode *inode = page->mapping->host;
2792 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2795 struct reiserfs_transaction_handle *th = NULL;
2797 reiserfs_write_unlock(inode->i_sb);
2798 reiserfs_wait_on_write_block(inode->i_sb);
2799 reiserfs_write_lock(inode->i_sb);
2801 if (reiserfs_transaction_running(inode->i_sb)) {
2802 th = current->journal_info;
2804 reiserfs_commit_page(inode, page, from, to);
2806 /* generic_commit_write does this for us, but does not update the
2807 ** transaction tracking stuff when the size changes. So, we have
2808 ** to do the i_size updates here.
2810 if (pos > inode->i_size) {
2811 struct reiserfs_transaction_handle myth;
2812 /* If the file have grown beyond the border where it
2813 can have a tail, unmark it as needing a tail
2815 if ((have_large_tails(inode->i_sb)
2816 && inode->i_size > i_block_size(inode) * 4)
2817 || (have_small_tails(inode->i_sb)
2818 && inode->i_size > i_block_size(inode)))
2819 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2821 ret = journal_begin(&myth, inode->i_sb, 1);
2825 reiserfs_update_inode_transaction(inode);
2826 inode->i_size = pos;
2828 * this will just nest into our transaction. It's important
2829 * to use mark_inode_dirty so the inode gets pushed around on the
2830 * dirty lists, and so that O_SYNC works as expected
2832 mark_inode_dirty(inode);
2833 reiserfs_update_sd(&myth, inode);
2835 ret = journal_end(&myth, inode->i_sb, 1);
2841 mark_inode_dirty(inode);
2842 ret = reiserfs_end_persistent_transaction(th);
2853 reiserfs_update_sd(th, inode);
2854 ret = reiserfs_end_persistent_transaction(th);
2860 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2862 if (reiserfs_attrs(inode->i_sb)) {
2863 if (sd_attrs & REISERFS_SYNC_FL)
2864 inode->i_flags |= S_SYNC;
2866 inode->i_flags &= ~S_SYNC;
2867 if (sd_attrs & REISERFS_IMMUTABLE_FL)
2868 inode->i_flags |= S_IMMUTABLE;
2870 inode->i_flags &= ~S_IMMUTABLE;
2871 if (sd_attrs & REISERFS_APPEND_FL)
2872 inode->i_flags |= S_APPEND;
2874 inode->i_flags &= ~S_APPEND;
2875 if (sd_attrs & REISERFS_NOATIME_FL)
2876 inode->i_flags |= S_NOATIME;
2878 inode->i_flags &= ~S_NOATIME;
2879 if (sd_attrs & REISERFS_NOTAIL_FL)
2880 REISERFS_I(inode)->i_flags |= i_nopack_mask;
2882 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2886 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2888 if (reiserfs_attrs(inode->i_sb)) {
2889 if (inode->i_flags & S_IMMUTABLE)
2890 *sd_attrs |= REISERFS_IMMUTABLE_FL;
2892 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2893 if (inode->i_flags & S_SYNC)
2894 *sd_attrs |= REISERFS_SYNC_FL;
2896 *sd_attrs &= ~REISERFS_SYNC_FL;
2897 if (inode->i_flags & S_NOATIME)
2898 *sd_attrs |= REISERFS_NOATIME_FL;
2900 *sd_attrs &= ~REISERFS_NOATIME_FL;
2901 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2902 *sd_attrs |= REISERFS_NOTAIL_FL;
2904 *sd_attrs &= ~REISERFS_NOTAIL_FL;
2908 /* decide if this buffer needs to stay around for data logging or ordered
2911 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2914 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2917 spin_lock(&j->j_dirty_buffers_lock);
2918 if (!buffer_mapped(bh)) {
2921 /* the page is locked, and the only places that log a data buffer
2922 * also lock the page.
2924 if (reiserfs_file_data_log(inode)) {
2926 * very conservative, leave the buffer pinned if
2927 * anyone might need it.
2929 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2932 } else if (buffer_dirty(bh)) {
2933 struct reiserfs_journal_list *jl;
2934 struct reiserfs_jh *jh = bh->b_private;
2936 /* why is this safe?
2937 * reiserfs_setattr updates i_size in the on disk
2938 * stat data before allowing vmtruncate to be called.
2940 * If buffer was put onto the ordered list for this
2941 * transaction, we know for sure either this transaction
2942 * or an older one already has updated i_size on disk,
2943 * and this ordered data won't be referenced in the file
2946 * if the buffer was put onto the ordered list for an older
2947 * transaction, we need to leave it around
2949 if (jh && (jl = jh->jl)
2950 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2954 if (ret && bh->b_private) {
2955 reiserfs_free_jh(bh);
2957 spin_unlock(&j->j_dirty_buffers_lock);
2962 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2963 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2965 struct buffer_head *head, *bh, *next;
2966 struct inode *inode = page->mapping->host;
2967 unsigned int curr_off = 0;
2970 BUG_ON(!PageLocked(page));
2973 ClearPageChecked(page);
2975 if (!page_has_buffers(page))
2978 head = page_buffers(page);
2981 unsigned int next_off = curr_off + bh->b_size;
2982 next = bh->b_this_page;
2985 * is this block fully invalidated?
2987 if (offset <= curr_off) {
2988 if (invalidatepage_can_drop(inode, bh))
2989 reiserfs_unmap_buffer(bh);
2993 curr_off = next_off;
2995 } while (bh != head);
2998 * We release buffers only if the entire page is being invalidated.
2999 * The get_block cached value has been unconditionally invalidated,
3000 * so real IO is not possible anymore.
3002 if (!offset && ret) {
3003 ret = try_to_release_page(page, 0);
3004 /* maybe should BUG_ON(!ret); - neilb */
3010 static int reiserfs_set_page_dirty(struct page *page)
3012 struct inode *inode = page->mapping->host;
3013 if (reiserfs_file_data_log(inode)) {
3014 SetPageChecked(page);
3015 return __set_page_dirty_nobuffers(page);
3017 return __set_page_dirty_buffers(page);
3021 * Returns 1 if the page's buffers were dropped. The page is locked.
3023 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3024 * in the buffers at page_buffers(page).
3026 * even in -o notail mode, we can't be sure an old mount without -o notail
3027 * didn't create files with tails.
3029 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3031 struct inode *inode = page->mapping->host;
3032 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3033 struct buffer_head *head;
3034 struct buffer_head *bh;
3037 WARN_ON(PageChecked(page));
3038 spin_lock(&j->j_dirty_buffers_lock);
3039 head = page_buffers(page);
3042 if (bh->b_private) {
3043 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3044 reiserfs_free_jh(bh);
3050 bh = bh->b_this_page;
3051 } while (bh != head);
3053 ret = try_to_free_buffers(page);
3054 spin_unlock(&j->j_dirty_buffers_lock);
3058 /* We thank Mingming Cao for helping us understand in great detail what
3059 to do in this section of the code. */
3060 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3061 const struct iovec *iov, loff_t offset,
3062 unsigned long nr_segs)
3064 struct file *file = iocb->ki_filp;
3065 struct inode *inode = file->f_mapping->host;
3068 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3070 reiserfs_get_blocks_direct_io, NULL);
3073 * In case of error extending write may have instantiated a few
3074 * blocks outside i_size. Trim these off again.
3076 if (unlikely((rw & WRITE) && ret < 0)) {
3077 loff_t isize = i_size_read(inode);
3078 loff_t end = offset + iov_length(iov, nr_segs);
3081 vmtruncate(inode, isize);
3087 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3089 struct inode *inode = dentry->d_inode;
3090 unsigned int ia_valid;
3094 error = inode_change_ok(inode, attr);
3098 /* must be turned off for recursive notify_change calls */
3099 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3101 depth = reiserfs_write_lock_once(inode->i_sb);
3102 if (is_quota_modification(inode, attr))
3103 dquot_initialize(inode);
3105 if (attr->ia_valid & ATTR_SIZE) {
3106 /* version 2 items will be caught by the s_maxbytes check
3107 ** done for us in vmtruncate
3109 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3110 attr->ia_size > MAX_NON_LFS) {
3114 /* fill in hole pointers in the expanding truncate case. */
3115 if (attr->ia_size > inode->i_size) {
3116 error = generic_cont_expand_simple(inode, attr->ia_size);
3117 if (REISERFS_I(inode)->i_prealloc_count > 0) {
3119 struct reiserfs_transaction_handle th;
3120 /* we're changing at most 2 bitmaps, inode + super */
3121 err = journal_begin(&th, inode->i_sb, 4);
3123 reiserfs_discard_prealloc(&th, inode);
3124 err = journal_end(&th, inode->i_sb, 4);
3132 * file size is changed, ctime and mtime are
3135 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3139 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3140 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3141 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3142 /* stat data of format v3.5 has 16 bit uid and gid */
3147 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3148 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3149 struct reiserfs_transaction_handle th;
3152 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3153 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3156 error = reiserfs_chown_xattrs(inode, attr);
3161 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3162 error = journal_begin(&th, inode->i_sb, jbegin_count);
3165 error = dquot_transfer(inode, attr);
3167 journal_end(&th, inode->i_sb, jbegin_count);
3171 /* Update corresponding info in inode so that everything is in
3172 * one transaction */
3173 if (attr->ia_valid & ATTR_UID)
3174 inode->i_uid = attr->ia_uid;
3175 if (attr->ia_valid & ATTR_GID)
3176 inode->i_gid = attr->ia_gid;
3177 mark_inode_dirty(inode);
3178 error = journal_end(&th, inode->i_sb, jbegin_count);
3184 * Relax the lock here, as it might truncate the
3185 * inode pages and wait for inode pages locks.
3186 * To release such page lock, the owner needs the
3189 reiserfs_write_unlock_once(inode->i_sb, depth);
3190 if ((attr->ia_valid & ATTR_SIZE) &&
3191 attr->ia_size != i_size_read(inode))
3192 error = vmtruncate(inode, attr->ia_size);
3195 setattr_copy(inode, attr);
3196 mark_inode_dirty(inode);
3198 depth = reiserfs_write_lock_once(inode->i_sb);
3200 if (!error && reiserfs_posixacl(inode->i_sb)) {
3201 if (attr->ia_valid & ATTR_MODE)
3202 error = reiserfs_acl_chmod(inode);
3206 reiserfs_write_unlock_once(inode->i_sb, depth);
3211 const struct address_space_operations reiserfs_address_space_operations = {
3212 .writepage = reiserfs_writepage,
3213 .readpage = reiserfs_readpage,
3214 .readpages = reiserfs_readpages,
3215 .releasepage = reiserfs_releasepage,
3216 .invalidatepage = reiserfs_invalidatepage,
3217 .sync_page = block_sync_page,
3218 .write_begin = reiserfs_write_begin,
3219 .write_end = reiserfs_write_end,
3220 .bmap = reiserfs_aop_bmap,
3221 .direct_IO = reiserfs_direct_IO,
3222 .set_page_dirty = reiserfs_set_page_dirty,