]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/splice.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[karo-tx-linux.git] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
36
37 /*
38  * Attempt to steal a page from a pipe buffer. This should perhaps go into
39  * a vm helper function, it's already simplified quite a bit by the
40  * addition of remove_mapping(). If success is returned, the caller may
41  * attempt to reuse this page for another destination.
42  */
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44                                      struct pipe_buffer *buf)
45 {
46         struct page *page = buf->page;
47         struct address_space *mapping;
48
49         lock_page(page);
50
51         mapping = page_mapping(page);
52         if (mapping) {
53                 WARN_ON(!PageUptodate(page));
54
55                 /*
56                  * At least for ext2 with nobh option, we need to wait on
57                  * writeback completing on this page, since we'll remove it
58                  * from the pagecache.  Otherwise truncate wont wait on the
59                  * page, allowing the disk blocks to be reused by someone else
60                  * before we actually wrote our data to them. fs corruption
61                  * ensues.
62                  */
63                 wait_on_page_writeback(page);
64
65                 if (page_has_private(page) &&
66                     !try_to_release_page(page, GFP_KERNEL))
67                         goto out_unlock;
68
69                 /*
70                  * If we succeeded in removing the mapping, set LRU flag
71                  * and return good.
72                  */
73                 if (remove_mapping(mapping, page)) {
74                         buf->flags |= PIPE_BUF_FLAG_LRU;
75                         return 0;
76                 }
77         }
78
79         /*
80          * Raced with truncate or failed to remove page from current
81          * address space, unlock and return failure.
82          */
83 out_unlock:
84         unlock_page(page);
85         return 1;
86 }
87
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89                                         struct pipe_buffer *buf)
90 {
91         page_cache_release(buf->page);
92         buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 }
94
95 /*
96  * Check whether the contents of buf is OK to access. Since the content
97  * is a page cache page, IO may be in flight.
98  */
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100                                        struct pipe_buffer *buf)
101 {
102         struct page *page = buf->page;
103         int err;
104
105         if (!PageUptodate(page)) {
106                 lock_page(page);
107
108                 /*
109                  * Page got truncated/unhashed. This will cause a 0-byte
110                  * splice, if this is the first page.
111                  */
112                 if (!page->mapping) {
113                         err = -ENODATA;
114                         goto error;
115                 }
116
117                 /*
118                  * Uh oh, read-error from disk.
119                  */
120                 if (!PageUptodate(page)) {
121                         err = -EIO;
122                         goto error;
123                 }
124
125                 /*
126                  * Page is ok afterall, we are done.
127                  */
128                 unlock_page(page);
129         }
130
131         return 0;
132 error:
133         unlock_page(page);
134         return err;
135 }
136
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138         .can_merge = 0,
139         .confirm = page_cache_pipe_buf_confirm,
140         .release = page_cache_pipe_buf_release,
141         .steal = page_cache_pipe_buf_steal,
142         .get = generic_pipe_buf_get,
143 };
144
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146                                     struct pipe_buffer *buf)
147 {
148         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149                 return 1;
150
151         buf->flags |= PIPE_BUF_FLAG_LRU;
152         return generic_pipe_buf_steal(pipe, buf);
153 }
154
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156         .can_merge = 0,
157         .confirm = generic_pipe_buf_confirm,
158         .release = page_cache_pipe_buf_release,
159         .steal = user_page_pipe_buf_steal,
160         .get = generic_pipe_buf_get,
161 };
162
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165         smp_mb();
166         if (waitqueue_active(&pipe->wait))
167                 wake_up_interruptible(&pipe->wait);
168         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170
171 /**
172  * splice_to_pipe - fill passed data into a pipe
173  * @pipe:       pipe to fill
174  * @spd:        data to fill
175  *
176  * Description:
177  *    @spd contains a map of pages and len/offset tuples, along with
178  *    the struct pipe_buf_operations associated with these pages. This
179  *    function will link that data to the pipe.
180  *
181  */
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183                        struct splice_pipe_desc *spd)
184 {
185         unsigned int spd_pages = spd->nr_pages;
186         int ret, do_wakeup, page_nr;
187
188         ret = 0;
189         do_wakeup = 0;
190         page_nr = 0;
191
192         pipe_lock(pipe);
193
194         for (;;) {
195                 if (!pipe->readers) {
196                         send_sig(SIGPIPE, current, 0);
197                         if (!ret)
198                                 ret = -EPIPE;
199                         break;
200                 }
201
202                 if (pipe->nrbufs < pipe->buffers) {
203                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
204                         struct pipe_buffer *buf = pipe->bufs + newbuf;
205
206                         buf->page = spd->pages[page_nr];
207                         buf->offset = spd->partial[page_nr].offset;
208                         buf->len = spd->partial[page_nr].len;
209                         buf->private = spd->partial[page_nr].private;
210                         buf->ops = spd->ops;
211                         if (spd->flags & SPLICE_F_GIFT)
212                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
213
214                         pipe->nrbufs++;
215                         page_nr++;
216                         ret += buf->len;
217
218                         if (pipe->files)
219                                 do_wakeup = 1;
220
221                         if (!--spd->nr_pages)
222                                 break;
223                         if (pipe->nrbufs < pipe->buffers)
224                                 continue;
225
226                         break;
227                 }
228
229                 if (spd->flags & SPLICE_F_NONBLOCK) {
230                         if (!ret)
231                                 ret = -EAGAIN;
232                         break;
233                 }
234
235                 if (signal_pending(current)) {
236                         if (!ret)
237                                 ret = -ERESTARTSYS;
238                         break;
239                 }
240
241                 if (do_wakeup) {
242                         smp_mb();
243                         if (waitqueue_active(&pipe->wait))
244                                 wake_up_interruptible_sync(&pipe->wait);
245                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
246                         do_wakeup = 0;
247                 }
248
249                 pipe->waiting_writers++;
250                 pipe_wait(pipe);
251                 pipe->waiting_writers--;
252         }
253
254         pipe_unlock(pipe);
255
256         if (do_wakeup)
257                 wakeup_pipe_readers(pipe);
258
259         while (page_nr < spd_pages)
260                 spd->spd_release(spd, page_nr++);
261
262         return ret;
263 }
264
265 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
266 {
267         page_cache_release(spd->pages[i]);
268 }
269
270 /*
271  * Check if we need to grow the arrays holding pages and partial page
272  * descriptions.
273  */
274 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
275 {
276         unsigned int buffers = ACCESS_ONCE(pipe->buffers);
277
278         spd->nr_pages_max = buffers;
279         if (buffers <= PIPE_DEF_BUFFERS)
280                 return 0;
281
282         spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
283         spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
284
285         if (spd->pages && spd->partial)
286                 return 0;
287
288         kfree(spd->pages);
289         kfree(spd->partial);
290         return -ENOMEM;
291 }
292
293 void splice_shrink_spd(struct splice_pipe_desc *spd)
294 {
295         if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
296                 return;
297
298         kfree(spd->pages);
299         kfree(spd->partial);
300 }
301
302 static int
303 __generic_file_splice_read(struct file *in, loff_t *ppos,
304                            struct pipe_inode_info *pipe, size_t len,
305                            unsigned int flags)
306 {
307         struct address_space *mapping = in->f_mapping;
308         unsigned int loff, nr_pages, req_pages;
309         struct page *pages[PIPE_DEF_BUFFERS];
310         struct partial_page partial[PIPE_DEF_BUFFERS];
311         struct page *page;
312         pgoff_t index, end_index;
313         loff_t isize;
314         int error, page_nr;
315         struct splice_pipe_desc spd = {
316                 .pages = pages,
317                 .partial = partial,
318                 .nr_pages_max = PIPE_DEF_BUFFERS,
319                 .flags = flags,
320                 .ops = &page_cache_pipe_buf_ops,
321                 .spd_release = spd_release_page,
322         };
323
324         if (splice_grow_spd(pipe, &spd))
325                 return -ENOMEM;
326
327         index = *ppos >> PAGE_CACHE_SHIFT;
328         loff = *ppos & ~PAGE_CACHE_MASK;
329         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
330         nr_pages = min(req_pages, spd.nr_pages_max);
331
332         /*
333          * Lookup the (hopefully) full range of pages we need.
334          */
335         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
336         index += spd.nr_pages;
337
338         /*
339          * If find_get_pages_contig() returned fewer pages than we needed,
340          * readahead/allocate the rest and fill in the holes.
341          */
342         if (spd.nr_pages < nr_pages)
343                 page_cache_sync_readahead(mapping, &in->f_ra, in,
344                                 index, req_pages - spd.nr_pages);
345
346         error = 0;
347         while (spd.nr_pages < nr_pages) {
348                 /*
349                  * Page could be there, find_get_pages_contig() breaks on
350                  * the first hole.
351                  */
352                 page = find_get_page(mapping, index);
353                 if (!page) {
354                         /*
355                          * page didn't exist, allocate one.
356                          */
357                         page = page_cache_alloc_cold(mapping);
358                         if (!page)
359                                 break;
360
361                         error = add_to_page_cache_lru(page, mapping, index,
362                                                 GFP_KERNEL);
363                         if (unlikely(error)) {
364                                 page_cache_release(page);
365                                 if (error == -EEXIST)
366                                         continue;
367                                 break;
368                         }
369                         /*
370                          * add_to_page_cache() locks the page, unlock it
371                          * to avoid convoluting the logic below even more.
372                          */
373                         unlock_page(page);
374                 }
375
376                 spd.pages[spd.nr_pages++] = page;
377                 index++;
378         }
379
380         /*
381          * Now loop over the map and see if we need to start IO on any
382          * pages, fill in the partial map, etc.
383          */
384         index = *ppos >> PAGE_CACHE_SHIFT;
385         nr_pages = spd.nr_pages;
386         spd.nr_pages = 0;
387         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
388                 unsigned int this_len;
389
390                 if (!len)
391                         break;
392
393                 /*
394                  * this_len is the max we'll use from this page
395                  */
396                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
397                 page = spd.pages[page_nr];
398
399                 if (PageReadahead(page))
400                         page_cache_async_readahead(mapping, &in->f_ra, in,
401                                         page, index, req_pages - page_nr);
402
403                 /*
404                  * If the page isn't uptodate, we may need to start io on it
405                  */
406                 if (!PageUptodate(page)) {
407                         lock_page(page);
408
409                         /*
410                          * Page was truncated, or invalidated by the
411                          * filesystem.  Redo the find/create, but this time the
412                          * page is kept locked, so there's no chance of another
413                          * race with truncate/invalidate.
414                          */
415                         if (!page->mapping) {
416                                 unlock_page(page);
417                                 page = find_or_create_page(mapping, index,
418                                                 mapping_gfp_mask(mapping));
419
420                                 if (!page) {
421                                         error = -ENOMEM;
422                                         break;
423                                 }
424                                 page_cache_release(spd.pages[page_nr]);
425                                 spd.pages[page_nr] = page;
426                         }
427                         /*
428                          * page was already under io and is now done, great
429                          */
430                         if (PageUptodate(page)) {
431                                 unlock_page(page);
432                                 goto fill_it;
433                         }
434
435                         /*
436                          * need to read in the page
437                          */
438                         error = mapping->a_ops->readpage(in, page);
439                         if (unlikely(error)) {
440                                 /*
441                                  * We really should re-lookup the page here,
442                                  * but it complicates things a lot. Instead
443                                  * lets just do what we already stored, and
444                                  * we'll get it the next time we are called.
445                                  */
446                                 if (error == AOP_TRUNCATED_PAGE)
447                                         error = 0;
448
449                                 break;
450                         }
451                 }
452 fill_it:
453                 /*
454                  * i_size must be checked after PageUptodate.
455                  */
456                 isize = i_size_read(mapping->host);
457                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
458                 if (unlikely(!isize || index > end_index))
459                         break;
460
461                 /*
462                  * if this is the last page, see if we need to shrink
463                  * the length and stop
464                  */
465                 if (end_index == index) {
466                         unsigned int plen;
467
468                         /*
469                          * max good bytes in this page
470                          */
471                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
472                         if (plen <= loff)
473                                 break;
474
475                         /*
476                          * force quit after adding this page
477                          */
478                         this_len = min(this_len, plen - loff);
479                         len = this_len;
480                 }
481
482                 spd.partial[page_nr].offset = loff;
483                 spd.partial[page_nr].len = this_len;
484                 len -= this_len;
485                 loff = 0;
486                 spd.nr_pages++;
487                 index++;
488         }
489
490         /*
491          * Release any pages at the end, if we quit early. 'page_nr' is how far
492          * we got, 'nr_pages' is how many pages are in the map.
493          */
494         while (page_nr < nr_pages)
495                 page_cache_release(spd.pages[page_nr++]);
496         in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
497
498         if (spd.nr_pages)
499                 error = splice_to_pipe(pipe, &spd);
500
501         splice_shrink_spd(&spd);
502         return error;
503 }
504
505 /**
506  * generic_file_splice_read - splice data from file to a pipe
507  * @in:         file to splice from
508  * @ppos:       position in @in
509  * @pipe:       pipe to splice to
510  * @len:        number of bytes to splice
511  * @flags:      splice modifier flags
512  *
513  * Description:
514  *    Will read pages from given file and fill them into a pipe. Can be
515  *    used as long as the address_space operations for the source implements
516  *    a readpage() hook.
517  *
518  */
519 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
520                                  struct pipe_inode_info *pipe, size_t len,
521                                  unsigned int flags)
522 {
523         loff_t isize, left;
524         int ret;
525
526         if (IS_DAX(in->f_mapping->host))
527                 return default_file_splice_read(in, ppos, pipe, len, flags);
528
529         isize = i_size_read(in->f_mapping->host);
530         if (unlikely(*ppos >= isize))
531                 return 0;
532
533         left = isize - *ppos;
534         if (unlikely(left < len))
535                 len = left;
536
537         ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
538         if (ret > 0) {
539                 *ppos += ret;
540                 file_accessed(in);
541         }
542
543         return ret;
544 }
545 EXPORT_SYMBOL(generic_file_splice_read);
546
547 static const struct pipe_buf_operations default_pipe_buf_ops = {
548         .can_merge = 0,
549         .confirm = generic_pipe_buf_confirm,
550         .release = generic_pipe_buf_release,
551         .steal = generic_pipe_buf_steal,
552         .get = generic_pipe_buf_get,
553 };
554
555 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
556                                     struct pipe_buffer *buf)
557 {
558         return 1;
559 }
560
561 /* Pipe buffer operations for a socket and similar. */
562 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
563         .can_merge = 0,
564         .confirm = generic_pipe_buf_confirm,
565         .release = generic_pipe_buf_release,
566         .steal = generic_pipe_buf_nosteal,
567         .get = generic_pipe_buf_get,
568 };
569 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
570
571 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
572                             unsigned long vlen, loff_t offset)
573 {
574         mm_segment_t old_fs;
575         loff_t pos = offset;
576         ssize_t res;
577
578         old_fs = get_fs();
579         set_fs(get_ds());
580         /* The cast to a user pointer is valid due to the set_fs() */
581         res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
582         set_fs(old_fs);
583
584         return res;
585 }
586
587 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
588                             loff_t pos)
589 {
590         mm_segment_t old_fs;
591         ssize_t res;
592
593         old_fs = get_fs();
594         set_fs(get_ds());
595         /* The cast to a user pointer is valid due to the set_fs() */
596         res = vfs_write(file, (__force const char __user *)buf, count, &pos);
597         set_fs(old_fs);
598
599         return res;
600 }
601 EXPORT_SYMBOL(kernel_write);
602
603 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
604                                  struct pipe_inode_info *pipe, size_t len,
605                                  unsigned int flags)
606 {
607         unsigned int nr_pages;
608         unsigned int nr_freed;
609         size_t offset;
610         struct page *pages[PIPE_DEF_BUFFERS];
611         struct partial_page partial[PIPE_DEF_BUFFERS];
612         struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
613         ssize_t res;
614         size_t this_len;
615         int error;
616         int i;
617         struct splice_pipe_desc spd = {
618                 .pages = pages,
619                 .partial = partial,
620                 .nr_pages_max = PIPE_DEF_BUFFERS,
621                 .flags = flags,
622                 .ops = &default_pipe_buf_ops,
623                 .spd_release = spd_release_page,
624         };
625
626         if (splice_grow_spd(pipe, &spd))
627                 return -ENOMEM;
628
629         res = -ENOMEM;
630         vec = __vec;
631         if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
632                 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
633                 if (!vec)
634                         goto shrink_ret;
635         }
636
637         offset = *ppos & ~PAGE_CACHE_MASK;
638         nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
639
640         for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
641                 struct page *page;
642
643                 page = alloc_page(GFP_USER);
644                 error = -ENOMEM;
645                 if (!page)
646                         goto err;
647
648                 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
649                 vec[i].iov_base = (void __user *) page_address(page);
650                 vec[i].iov_len = this_len;
651                 spd.pages[i] = page;
652                 spd.nr_pages++;
653                 len -= this_len;
654                 offset = 0;
655         }
656
657         res = kernel_readv(in, vec, spd.nr_pages, *ppos);
658         if (res < 0) {
659                 error = res;
660                 goto err;
661         }
662
663         error = 0;
664         if (!res)
665                 goto err;
666
667         nr_freed = 0;
668         for (i = 0; i < spd.nr_pages; i++) {
669                 this_len = min_t(size_t, vec[i].iov_len, res);
670                 spd.partial[i].offset = 0;
671                 spd.partial[i].len = this_len;
672                 if (!this_len) {
673                         __free_page(spd.pages[i]);
674                         spd.pages[i] = NULL;
675                         nr_freed++;
676                 }
677                 res -= this_len;
678         }
679         spd.nr_pages -= nr_freed;
680
681         res = splice_to_pipe(pipe, &spd);
682         if (res > 0)
683                 *ppos += res;
684
685 shrink_ret:
686         if (vec != __vec)
687                 kfree(vec);
688         splice_shrink_spd(&spd);
689         return res;
690
691 err:
692         for (i = 0; i < spd.nr_pages; i++)
693                 __free_page(spd.pages[i]);
694
695         res = error;
696         goto shrink_ret;
697 }
698 EXPORT_SYMBOL(default_file_splice_read);
699
700 /*
701  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
702  * using sendpage(). Return the number of bytes sent.
703  */
704 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
705                             struct pipe_buffer *buf, struct splice_desc *sd)
706 {
707         struct file *file = sd->u.file;
708         loff_t pos = sd->pos;
709         int more;
710
711         if (!likely(file->f_op->sendpage))
712                 return -EINVAL;
713
714         more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
715
716         if (sd->len < sd->total_len && pipe->nrbufs > 1)
717                 more |= MSG_SENDPAGE_NOTLAST;
718
719         return file->f_op->sendpage(file, buf->page, buf->offset,
720                                     sd->len, &pos, more);
721 }
722
723 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
724 {
725         smp_mb();
726         if (waitqueue_active(&pipe->wait))
727                 wake_up_interruptible(&pipe->wait);
728         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
729 }
730
731 /**
732  * splice_from_pipe_feed - feed available data from a pipe to a file
733  * @pipe:       pipe to splice from
734  * @sd:         information to @actor
735  * @actor:      handler that splices the data
736  *
737  * Description:
738  *    This function loops over the pipe and calls @actor to do the
739  *    actual moving of a single struct pipe_buffer to the desired
740  *    destination.  It returns when there's no more buffers left in
741  *    the pipe or if the requested number of bytes (@sd->total_len)
742  *    have been copied.  It returns a positive number (one) if the
743  *    pipe needs to be filled with more data, zero if the required
744  *    number of bytes have been copied and -errno on error.
745  *
746  *    This, together with splice_from_pipe_{begin,end,next}, may be
747  *    used to implement the functionality of __splice_from_pipe() when
748  *    locking is required around copying the pipe buffers to the
749  *    destination.
750  */
751 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
752                           splice_actor *actor)
753 {
754         int ret;
755
756         while (pipe->nrbufs) {
757                 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
758                 const struct pipe_buf_operations *ops = buf->ops;
759
760                 sd->len = buf->len;
761                 if (sd->len > sd->total_len)
762                         sd->len = sd->total_len;
763
764                 ret = buf->ops->confirm(pipe, buf);
765                 if (unlikely(ret)) {
766                         if (ret == -ENODATA)
767                                 ret = 0;
768                         return ret;
769                 }
770
771                 ret = actor(pipe, buf, sd);
772                 if (ret <= 0)
773                         return ret;
774
775                 buf->offset += ret;
776                 buf->len -= ret;
777
778                 sd->num_spliced += ret;
779                 sd->len -= ret;
780                 sd->pos += ret;
781                 sd->total_len -= ret;
782
783                 if (!buf->len) {
784                         buf->ops = NULL;
785                         ops->release(pipe, buf);
786                         pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
787                         pipe->nrbufs--;
788                         if (pipe->files)
789                                 sd->need_wakeup = true;
790                 }
791
792                 if (!sd->total_len)
793                         return 0;
794         }
795
796         return 1;
797 }
798
799 /**
800  * splice_from_pipe_next - wait for some data to splice from
801  * @pipe:       pipe to splice from
802  * @sd:         information about the splice operation
803  *
804  * Description:
805  *    This function will wait for some data and return a positive
806  *    value (one) if pipe buffers are available.  It will return zero
807  *    or -errno if no more data needs to be spliced.
808  */
809 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
810 {
811         while (!pipe->nrbufs) {
812                 if (!pipe->writers)
813                         return 0;
814
815                 if (!pipe->waiting_writers && sd->num_spliced)
816                         return 0;
817
818                 if (sd->flags & SPLICE_F_NONBLOCK)
819                         return -EAGAIN;
820
821                 if (signal_pending(current))
822                         return -ERESTARTSYS;
823
824                 if (sd->need_wakeup) {
825                         wakeup_pipe_writers(pipe);
826                         sd->need_wakeup = false;
827                 }
828
829                 pipe_wait(pipe);
830         }
831
832         return 1;
833 }
834
835 /**
836  * splice_from_pipe_begin - start splicing from pipe
837  * @sd:         information about the splice operation
838  *
839  * Description:
840  *    This function should be called before a loop containing
841  *    splice_from_pipe_next() and splice_from_pipe_feed() to
842  *    initialize the necessary fields of @sd.
843  */
844 static void splice_from_pipe_begin(struct splice_desc *sd)
845 {
846         sd->num_spliced = 0;
847         sd->need_wakeup = false;
848 }
849
850 /**
851  * splice_from_pipe_end - finish splicing from pipe
852  * @pipe:       pipe to splice from
853  * @sd:         information about the splice operation
854  *
855  * Description:
856  *    This function will wake up pipe writers if necessary.  It should
857  *    be called after a loop containing splice_from_pipe_next() and
858  *    splice_from_pipe_feed().
859  */
860 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
861 {
862         if (sd->need_wakeup)
863                 wakeup_pipe_writers(pipe);
864 }
865
866 /**
867  * __splice_from_pipe - splice data from a pipe to given actor
868  * @pipe:       pipe to splice from
869  * @sd:         information to @actor
870  * @actor:      handler that splices the data
871  *
872  * Description:
873  *    This function does little more than loop over the pipe and call
874  *    @actor to do the actual moving of a single struct pipe_buffer to
875  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
876  *    pipe_to_user.
877  *
878  */
879 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
880                            splice_actor *actor)
881 {
882         int ret;
883
884         splice_from_pipe_begin(sd);
885         do {
886                 ret = splice_from_pipe_next(pipe, sd);
887                 if (ret > 0)
888                         ret = splice_from_pipe_feed(pipe, sd, actor);
889         } while (ret > 0);
890         splice_from_pipe_end(pipe, sd);
891
892         return sd->num_spliced ? sd->num_spliced : ret;
893 }
894 EXPORT_SYMBOL(__splice_from_pipe);
895
896 /**
897  * splice_from_pipe - splice data from a pipe to a file
898  * @pipe:       pipe to splice from
899  * @out:        file to splice to
900  * @ppos:       position in @out
901  * @len:        how many bytes to splice
902  * @flags:      splice modifier flags
903  * @actor:      handler that splices the data
904  *
905  * Description:
906  *    See __splice_from_pipe. This function locks the pipe inode,
907  *    otherwise it's identical to __splice_from_pipe().
908  *
909  */
910 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
911                          loff_t *ppos, size_t len, unsigned int flags,
912                          splice_actor *actor)
913 {
914         ssize_t ret;
915         struct splice_desc sd = {
916                 .total_len = len,
917                 .flags = flags,
918                 .pos = *ppos,
919                 .u.file = out,
920         };
921
922         pipe_lock(pipe);
923         ret = __splice_from_pipe(pipe, &sd, actor);
924         pipe_unlock(pipe);
925
926         return ret;
927 }
928
929 /**
930  * iter_file_splice_write - splice data from a pipe to a file
931  * @pipe:       pipe info
932  * @out:        file to write to
933  * @ppos:       position in @out
934  * @len:        number of bytes to splice
935  * @flags:      splice modifier flags
936  *
937  * Description:
938  *    Will either move or copy pages (determined by @flags options) from
939  *    the given pipe inode to the given file.
940  *    This one is ->write_iter-based.
941  *
942  */
943 ssize_t
944 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
945                           loff_t *ppos, size_t len, unsigned int flags)
946 {
947         struct splice_desc sd = {
948                 .total_len = len,
949                 .flags = flags,
950                 .pos = *ppos,
951                 .u.file = out,
952         };
953         int nbufs = pipe->buffers;
954         struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
955                                         GFP_KERNEL);
956         ssize_t ret;
957
958         if (unlikely(!array))
959                 return -ENOMEM;
960
961         pipe_lock(pipe);
962
963         splice_from_pipe_begin(&sd);
964         while (sd.total_len) {
965                 struct iov_iter from;
966                 size_t left;
967                 int n, idx;
968
969                 ret = splice_from_pipe_next(pipe, &sd);
970                 if (ret <= 0)
971                         break;
972
973                 if (unlikely(nbufs < pipe->buffers)) {
974                         kfree(array);
975                         nbufs = pipe->buffers;
976                         array = kcalloc(nbufs, sizeof(struct bio_vec),
977                                         GFP_KERNEL);
978                         if (!array) {
979                                 ret = -ENOMEM;
980                                 break;
981                         }
982                 }
983
984                 /* build the vector */
985                 left = sd.total_len;
986                 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
987                         struct pipe_buffer *buf = pipe->bufs + idx;
988                         size_t this_len = buf->len;
989
990                         if (this_len > left)
991                                 this_len = left;
992
993                         if (idx == pipe->buffers - 1)
994                                 idx = -1;
995
996                         ret = buf->ops->confirm(pipe, buf);
997                         if (unlikely(ret)) {
998                                 if (ret == -ENODATA)
999                                         ret = 0;
1000                                 goto done;
1001                         }
1002
1003                         array[n].bv_page = buf->page;
1004                         array[n].bv_len = this_len;
1005                         array[n].bv_offset = buf->offset;
1006                         left -= this_len;
1007                 }
1008
1009                 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1010                               sd.total_len - left);
1011                 ret = vfs_iter_write(out, &from, &sd.pos);
1012                 if (ret <= 0)
1013                         break;
1014
1015                 sd.num_spliced += ret;
1016                 sd.total_len -= ret;
1017                 *ppos = sd.pos;
1018
1019                 /* dismiss the fully eaten buffers, adjust the partial one */
1020                 while (ret) {
1021                         struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1022                         if (ret >= buf->len) {
1023                                 const struct pipe_buf_operations *ops = buf->ops;
1024                                 ret -= buf->len;
1025                                 buf->len = 0;
1026                                 buf->ops = NULL;
1027                                 ops->release(pipe, buf);
1028                                 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1029                                 pipe->nrbufs--;
1030                                 if (pipe->files)
1031                                         sd.need_wakeup = true;
1032                         } else {
1033                                 buf->offset += ret;
1034                                 buf->len -= ret;
1035                                 ret = 0;
1036                         }
1037                 }
1038         }
1039 done:
1040         kfree(array);
1041         splice_from_pipe_end(pipe, &sd);
1042
1043         pipe_unlock(pipe);
1044
1045         if (sd.num_spliced)
1046                 ret = sd.num_spliced;
1047
1048         return ret;
1049 }
1050
1051 EXPORT_SYMBOL(iter_file_splice_write);
1052
1053 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1054                           struct splice_desc *sd)
1055 {
1056         int ret;
1057         void *data;
1058         loff_t tmp = sd->pos;
1059
1060         data = kmap(buf->page);
1061         ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1062         kunmap(buf->page);
1063
1064         return ret;
1065 }
1066
1067 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1068                                          struct file *out, loff_t *ppos,
1069                                          size_t len, unsigned int flags)
1070 {
1071         ssize_t ret;
1072
1073         ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1074         if (ret > 0)
1075                 *ppos += ret;
1076
1077         return ret;
1078 }
1079
1080 /**
1081  * generic_splice_sendpage - splice data from a pipe to a socket
1082  * @pipe:       pipe to splice from
1083  * @out:        socket to write to
1084  * @ppos:       position in @out
1085  * @len:        number of bytes to splice
1086  * @flags:      splice modifier flags
1087  *
1088  * Description:
1089  *    Will send @len bytes from the pipe to a network socket. No data copying
1090  *    is involved.
1091  *
1092  */
1093 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1094                                 loff_t *ppos, size_t len, unsigned int flags)
1095 {
1096         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1097 }
1098
1099 EXPORT_SYMBOL(generic_splice_sendpage);
1100
1101 /*
1102  * Attempt to initiate a splice from pipe to file.
1103  */
1104 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1105                            loff_t *ppos, size_t len, unsigned int flags)
1106 {
1107         ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1108                                 loff_t *, size_t, unsigned int);
1109
1110         if (out->f_op->splice_write)
1111                 splice_write = out->f_op->splice_write;
1112         else
1113                 splice_write = default_file_splice_write;
1114
1115         return splice_write(pipe, out, ppos, len, flags);
1116 }
1117
1118 /*
1119  * Attempt to initiate a splice from a file to a pipe.
1120  */
1121 static long do_splice_to(struct file *in, loff_t *ppos,
1122                          struct pipe_inode_info *pipe, size_t len,
1123                          unsigned int flags)
1124 {
1125         ssize_t (*splice_read)(struct file *, loff_t *,
1126                                struct pipe_inode_info *, size_t, unsigned int);
1127         int ret;
1128
1129         if (unlikely(!(in->f_mode & FMODE_READ)))
1130                 return -EBADF;
1131
1132         ret = rw_verify_area(READ, in, ppos, len);
1133         if (unlikely(ret < 0))
1134                 return ret;
1135
1136         if (in->f_op->splice_read)
1137                 splice_read = in->f_op->splice_read;
1138         else
1139                 splice_read = default_file_splice_read;
1140
1141         return splice_read(in, ppos, pipe, len, flags);
1142 }
1143
1144 /**
1145  * splice_direct_to_actor - splices data directly between two non-pipes
1146  * @in:         file to splice from
1147  * @sd:         actor information on where to splice to
1148  * @actor:      handles the data splicing
1149  *
1150  * Description:
1151  *    This is a special case helper to splice directly between two
1152  *    points, without requiring an explicit pipe. Internally an allocated
1153  *    pipe is cached in the process, and reused during the lifetime of
1154  *    that process.
1155  *
1156  */
1157 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1158                                splice_direct_actor *actor)
1159 {
1160         struct pipe_inode_info *pipe;
1161         long ret, bytes;
1162         umode_t i_mode;
1163         size_t len;
1164         int i, flags;
1165
1166         /*
1167          * We require the input being a regular file, as we don't want to
1168          * randomly drop data for eg socket -> socket splicing. Use the
1169          * piped splicing for that!
1170          */
1171         i_mode = file_inode(in)->i_mode;
1172         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1173                 return -EINVAL;
1174
1175         /*
1176          * neither in nor out is a pipe, setup an internal pipe attached to
1177          * 'out' and transfer the wanted data from 'in' to 'out' through that
1178          */
1179         pipe = current->splice_pipe;
1180         if (unlikely(!pipe)) {
1181                 pipe = alloc_pipe_info();
1182                 if (!pipe)
1183                         return -ENOMEM;
1184
1185                 /*
1186                  * We don't have an immediate reader, but we'll read the stuff
1187                  * out of the pipe right after the splice_to_pipe(). So set
1188                  * PIPE_READERS appropriately.
1189                  */
1190                 pipe->readers = 1;
1191
1192                 current->splice_pipe = pipe;
1193         }
1194
1195         /*
1196          * Do the splice.
1197          */
1198         ret = 0;
1199         bytes = 0;
1200         len = sd->total_len;
1201         flags = sd->flags;
1202
1203         /*
1204          * Don't block on output, we have to drain the direct pipe.
1205          */
1206         sd->flags &= ~SPLICE_F_NONBLOCK;
1207
1208         while (len) {
1209                 size_t read_len;
1210                 loff_t pos = sd->pos, prev_pos = pos;
1211
1212                 ret = do_splice_to(in, &pos, pipe, len, flags);
1213                 if (unlikely(ret <= 0))
1214                         goto out_release;
1215
1216                 read_len = ret;
1217                 sd->total_len = read_len;
1218
1219                 /*
1220                  * NOTE: nonblocking mode only applies to the input. We
1221                  * must not do the output in nonblocking mode as then we
1222                  * could get stuck data in the internal pipe:
1223                  */
1224                 ret = actor(pipe, sd);
1225                 if (unlikely(ret <= 0)) {
1226                         sd->pos = prev_pos;
1227                         goto out_release;
1228                 }
1229
1230                 bytes += ret;
1231                 len -= ret;
1232                 sd->pos = pos;
1233
1234                 if (ret < read_len) {
1235                         sd->pos = prev_pos + ret;
1236                         goto out_release;
1237                 }
1238         }
1239
1240 done:
1241         pipe->nrbufs = pipe->curbuf = 0;
1242         file_accessed(in);
1243         return bytes;
1244
1245 out_release:
1246         /*
1247          * If we did an incomplete transfer we must release
1248          * the pipe buffers in question:
1249          */
1250         for (i = 0; i < pipe->buffers; i++) {
1251                 struct pipe_buffer *buf = pipe->bufs + i;
1252
1253                 if (buf->ops) {
1254                         buf->ops->release(pipe, buf);
1255                         buf->ops = NULL;
1256                 }
1257         }
1258
1259         if (!bytes)
1260                 bytes = ret;
1261
1262         goto done;
1263 }
1264 EXPORT_SYMBOL(splice_direct_to_actor);
1265
1266 static int direct_splice_actor(struct pipe_inode_info *pipe,
1267                                struct splice_desc *sd)
1268 {
1269         struct file *file = sd->u.file;
1270
1271         return do_splice_from(pipe, file, sd->opos, sd->total_len,
1272                               sd->flags);
1273 }
1274
1275 /**
1276  * do_splice_direct - splices data directly between two files
1277  * @in:         file to splice from
1278  * @ppos:       input file offset
1279  * @out:        file to splice to
1280  * @opos:       output file offset
1281  * @len:        number of bytes to splice
1282  * @flags:      splice modifier flags
1283  *
1284  * Description:
1285  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1286  *    doing it in the application would incur an extra system call
1287  *    (splice in + splice out, as compared to just sendfile()). So this helper
1288  *    can splice directly through a process-private pipe.
1289  *
1290  */
1291 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1292                       loff_t *opos, size_t len, unsigned int flags)
1293 {
1294         struct splice_desc sd = {
1295                 .len            = len,
1296                 .total_len      = len,
1297                 .flags          = flags,
1298                 .pos            = *ppos,
1299                 .u.file         = out,
1300                 .opos           = opos,
1301         };
1302         long ret;
1303
1304         if (unlikely(!(out->f_mode & FMODE_WRITE)))
1305                 return -EBADF;
1306
1307         if (unlikely(out->f_flags & O_APPEND))
1308                 return -EINVAL;
1309
1310         ret = rw_verify_area(WRITE, out, opos, len);
1311         if (unlikely(ret < 0))
1312                 return ret;
1313
1314         ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1315         if (ret > 0)
1316                 *ppos = sd.pos;
1317
1318         return ret;
1319 }
1320 EXPORT_SYMBOL(do_splice_direct);
1321
1322 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1323                                struct pipe_inode_info *opipe,
1324                                size_t len, unsigned int flags);
1325
1326 /*
1327  * Determine where to splice to/from.
1328  */
1329 static long do_splice(struct file *in, loff_t __user *off_in,
1330                       struct file *out, loff_t __user *off_out,
1331                       size_t len, unsigned int flags)
1332 {
1333         struct pipe_inode_info *ipipe;
1334         struct pipe_inode_info *opipe;
1335         loff_t offset;
1336         long ret;
1337
1338         ipipe = get_pipe_info(in);
1339         opipe = get_pipe_info(out);
1340
1341         if (ipipe && opipe) {
1342                 if (off_in || off_out)
1343                         return -ESPIPE;
1344
1345                 if (!(in->f_mode & FMODE_READ))
1346                         return -EBADF;
1347
1348                 if (!(out->f_mode & FMODE_WRITE))
1349                         return -EBADF;
1350
1351                 /* Splicing to self would be fun, but... */
1352                 if (ipipe == opipe)
1353                         return -EINVAL;
1354
1355                 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1356         }
1357
1358         if (ipipe) {
1359                 if (off_in)
1360                         return -ESPIPE;
1361                 if (off_out) {
1362                         if (!(out->f_mode & FMODE_PWRITE))
1363                                 return -EINVAL;
1364                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1365                                 return -EFAULT;
1366                 } else {
1367                         offset = out->f_pos;
1368                 }
1369
1370                 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1371                         return -EBADF;
1372
1373                 if (unlikely(out->f_flags & O_APPEND))
1374                         return -EINVAL;
1375
1376                 ret = rw_verify_area(WRITE, out, &offset, len);
1377                 if (unlikely(ret < 0))
1378                         return ret;
1379
1380                 file_start_write(out);
1381                 ret = do_splice_from(ipipe, out, &offset, len, flags);
1382                 file_end_write(out);
1383
1384                 if (!off_out)
1385                         out->f_pos = offset;
1386                 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1387                         ret = -EFAULT;
1388
1389                 return ret;
1390         }
1391
1392         if (opipe) {
1393                 if (off_out)
1394                         return -ESPIPE;
1395                 if (off_in) {
1396                         if (!(in->f_mode & FMODE_PREAD))
1397                                 return -EINVAL;
1398                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1399                                 return -EFAULT;
1400                 } else {
1401                         offset = in->f_pos;
1402                 }
1403
1404                 ret = do_splice_to(in, &offset, opipe, len, flags);
1405
1406                 if (!off_in)
1407                         in->f_pos = offset;
1408                 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1409                         ret = -EFAULT;
1410
1411                 return ret;
1412         }
1413
1414         return -EINVAL;
1415 }
1416
1417 /*
1418  * Map an iov into an array of pages and offset/length tupples. With the
1419  * partial_page structure, we can map several non-contiguous ranges into
1420  * our ones pages[] map instead of splitting that operation into pieces.
1421  * Could easily be exported as a generic helper for other users, in which
1422  * case one would probably want to add a 'max_nr_pages' parameter as well.
1423  */
1424 static int get_iovec_page_array(const struct iovec __user *iov,
1425                                 unsigned int nr_vecs, struct page **pages,
1426                                 struct partial_page *partial, bool aligned,
1427                                 unsigned int pipe_buffers)
1428 {
1429         int buffers = 0, error = 0;
1430
1431         while (nr_vecs) {
1432                 unsigned long off, npages;
1433                 struct iovec entry;
1434                 void __user *base;
1435                 size_t len;
1436                 int i;
1437
1438                 error = -EFAULT;
1439                 if (copy_from_user(&entry, iov, sizeof(entry)))
1440                         break;
1441
1442                 base = entry.iov_base;
1443                 len = entry.iov_len;
1444
1445                 /*
1446                  * Sanity check this iovec. 0 read succeeds.
1447                  */
1448                 error = 0;
1449                 if (unlikely(!len))
1450                         break;
1451                 error = -EFAULT;
1452                 if (!access_ok(VERIFY_READ, base, len))
1453                         break;
1454
1455                 /*
1456                  * Get this base offset and number of pages, then map
1457                  * in the user pages.
1458                  */
1459                 off = (unsigned long) base & ~PAGE_MASK;
1460
1461                 /*
1462                  * If asked for alignment, the offset must be zero and the
1463                  * length a multiple of the PAGE_SIZE.
1464                  */
1465                 error = -EINVAL;
1466                 if (aligned && (off || len & ~PAGE_MASK))
1467                         break;
1468
1469                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1470                 if (npages > pipe_buffers - buffers)
1471                         npages = pipe_buffers - buffers;
1472
1473                 error = get_user_pages_fast((unsigned long)base, npages,
1474                                         0, &pages[buffers]);
1475
1476                 if (unlikely(error <= 0))
1477                         break;
1478
1479                 /*
1480                  * Fill this contiguous range into the partial page map.
1481                  */
1482                 for (i = 0; i < error; i++) {
1483                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1484
1485                         partial[buffers].offset = off;
1486                         partial[buffers].len = plen;
1487
1488                         off = 0;
1489                         len -= plen;
1490                         buffers++;
1491                 }
1492
1493                 /*
1494                  * We didn't complete this iov, stop here since it probably
1495                  * means we have to move some of this into a pipe to
1496                  * be able to continue.
1497                  */
1498                 if (len)
1499                         break;
1500
1501                 /*
1502                  * Don't continue if we mapped fewer pages than we asked for,
1503                  * or if we mapped the max number of pages that we have
1504                  * room for.
1505                  */
1506                 if (error < npages || buffers == pipe_buffers)
1507                         break;
1508
1509                 nr_vecs--;
1510                 iov++;
1511         }
1512
1513         if (buffers)
1514                 return buffers;
1515
1516         return error;
1517 }
1518
1519 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1520                         struct splice_desc *sd)
1521 {
1522         int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1523         return n == sd->len ? n : -EFAULT;
1524 }
1525
1526 /*
1527  * For lack of a better implementation, implement vmsplice() to userspace
1528  * as a simple copy of the pipes pages to the user iov.
1529  */
1530 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1531                              unsigned long nr_segs, unsigned int flags)
1532 {
1533         struct pipe_inode_info *pipe;
1534         struct splice_desc sd;
1535         long ret;
1536         struct iovec iovstack[UIO_FASTIOV];
1537         struct iovec *iov = iovstack;
1538         struct iov_iter iter;
1539
1540         pipe = get_pipe_info(file);
1541         if (!pipe)
1542                 return -EBADF;
1543
1544         ret = import_iovec(READ, uiov, nr_segs,
1545                            ARRAY_SIZE(iovstack), &iov, &iter);
1546         if (ret < 0)
1547                 return ret;
1548
1549         sd.total_len = iov_iter_count(&iter);
1550         sd.len = 0;
1551         sd.flags = flags;
1552         sd.u.data = &iter;
1553         sd.pos = 0;
1554
1555         if (sd.total_len) {
1556                 pipe_lock(pipe);
1557                 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1558                 pipe_unlock(pipe);
1559         }
1560
1561         kfree(iov);
1562         return ret;
1563 }
1564
1565 /*
1566  * vmsplice splices a user address range into a pipe. It can be thought of
1567  * as splice-from-memory, where the regular splice is splice-from-file (or
1568  * to file). In both cases the output is a pipe, naturally.
1569  */
1570 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1571                              unsigned long nr_segs, unsigned int flags)
1572 {
1573         struct pipe_inode_info *pipe;
1574         struct page *pages[PIPE_DEF_BUFFERS];
1575         struct partial_page partial[PIPE_DEF_BUFFERS];
1576         struct splice_pipe_desc spd = {
1577                 .pages = pages,
1578                 .partial = partial,
1579                 .nr_pages_max = PIPE_DEF_BUFFERS,
1580                 .flags = flags,
1581                 .ops = &user_page_pipe_buf_ops,
1582                 .spd_release = spd_release_page,
1583         };
1584         long ret;
1585
1586         pipe = get_pipe_info(file);
1587         if (!pipe)
1588                 return -EBADF;
1589
1590         if (splice_grow_spd(pipe, &spd))
1591                 return -ENOMEM;
1592
1593         spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1594                                             spd.partial, false,
1595                                             spd.nr_pages_max);
1596         if (spd.nr_pages <= 0)
1597                 ret = spd.nr_pages;
1598         else
1599                 ret = splice_to_pipe(pipe, &spd);
1600
1601         splice_shrink_spd(&spd);
1602         return ret;
1603 }
1604
1605 /*
1606  * Note that vmsplice only really supports true splicing _from_ user memory
1607  * to a pipe, not the other way around. Splicing from user memory is a simple
1608  * operation that can be supported without any funky alignment restrictions
1609  * or nasty vm tricks. We simply map in the user memory and fill them into
1610  * a pipe. The reverse isn't quite as easy, though. There are two possible
1611  * solutions for that:
1612  *
1613  *      - memcpy() the data internally, at which point we might as well just
1614  *        do a regular read() on the buffer anyway.
1615  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1616  *        has restriction limitations on both ends of the pipe).
1617  *
1618  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1619  *
1620  */
1621 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1622                 unsigned long, nr_segs, unsigned int, flags)
1623 {
1624         struct fd f;
1625         long error;
1626
1627         if (unlikely(nr_segs > UIO_MAXIOV))
1628                 return -EINVAL;
1629         else if (unlikely(!nr_segs))
1630                 return 0;
1631
1632         error = -EBADF;
1633         f = fdget(fd);
1634         if (f.file) {
1635                 if (f.file->f_mode & FMODE_WRITE)
1636                         error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1637                 else if (f.file->f_mode & FMODE_READ)
1638                         error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1639
1640                 fdput(f);
1641         }
1642
1643         return error;
1644 }
1645
1646 #ifdef CONFIG_COMPAT
1647 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1648                     unsigned int, nr_segs, unsigned int, flags)
1649 {
1650         unsigned i;
1651         struct iovec __user *iov;
1652         if (nr_segs > UIO_MAXIOV)
1653                 return -EINVAL;
1654         iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1655         for (i = 0; i < nr_segs; i++) {
1656                 struct compat_iovec v;
1657                 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1658                     get_user(v.iov_len, &iov32[i].iov_len) ||
1659                     put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1660                     put_user(v.iov_len, &iov[i].iov_len))
1661                         return -EFAULT;
1662         }
1663         return sys_vmsplice(fd, iov, nr_segs, flags);
1664 }
1665 #endif
1666
1667 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1668                 int, fd_out, loff_t __user *, off_out,
1669                 size_t, len, unsigned int, flags)
1670 {
1671         struct fd in, out;
1672         long error;
1673
1674         if (unlikely(!len))
1675                 return 0;
1676
1677         error = -EBADF;
1678         in = fdget(fd_in);
1679         if (in.file) {
1680                 if (in.file->f_mode & FMODE_READ) {
1681                         out = fdget(fd_out);
1682                         if (out.file) {
1683                                 if (out.file->f_mode & FMODE_WRITE)
1684                                         error = do_splice(in.file, off_in,
1685                                                           out.file, off_out,
1686                                                           len, flags);
1687                                 fdput(out);
1688                         }
1689                 }
1690                 fdput(in);
1691         }
1692         return error;
1693 }
1694
1695 /*
1696  * Make sure there's data to read. Wait for input if we can, otherwise
1697  * return an appropriate error.
1698  */
1699 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1700 {
1701         int ret;
1702
1703         /*
1704          * Check ->nrbufs without the inode lock first. This function
1705          * is speculative anyways, so missing one is ok.
1706          */
1707         if (pipe->nrbufs)
1708                 return 0;
1709
1710         ret = 0;
1711         pipe_lock(pipe);
1712
1713         while (!pipe->nrbufs) {
1714                 if (signal_pending(current)) {
1715                         ret = -ERESTARTSYS;
1716                         break;
1717                 }
1718                 if (!pipe->writers)
1719                         break;
1720                 if (!pipe->waiting_writers) {
1721                         if (flags & SPLICE_F_NONBLOCK) {
1722                                 ret = -EAGAIN;
1723                                 break;
1724                         }
1725                 }
1726                 pipe_wait(pipe);
1727         }
1728
1729         pipe_unlock(pipe);
1730         return ret;
1731 }
1732
1733 /*
1734  * Make sure there's writeable room. Wait for room if we can, otherwise
1735  * return an appropriate error.
1736  */
1737 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1738 {
1739         int ret;
1740
1741         /*
1742          * Check ->nrbufs without the inode lock first. This function
1743          * is speculative anyways, so missing one is ok.
1744          */
1745         if (pipe->nrbufs < pipe->buffers)
1746                 return 0;
1747
1748         ret = 0;
1749         pipe_lock(pipe);
1750
1751         while (pipe->nrbufs >= pipe->buffers) {
1752                 if (!pipe->readers) {
1753                         send_sig(SIGPIPE, current, 0);
1754                         ret = -EPIPE;
1755                         break;
1756                 }
1757                 if (flags & SPLICE_F_NONBLOCK) {
1758                         ret = -EAGAIN;
1759                         break;
1760                 }
1761                 if (signal_pending(current)) {
1762                         ret = -ERESTARTSYS;
1763                         break;
1764                 }
1765                 pipe->waiting_writers++;
1766                 pipe_wait(pipe);
1767                 pipe->waiting_writers--;
1768         }
1769
1770         pipe_unlock(pipe);
1771         return ret;
1772 }
1773
1774 /*
1775  * Splice contents of ipipe to opipe.
1776  */
1777 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1778                                struct pipe_inode_info *opipe,
1779                                size_t len, unsigned int flags)
1780 {
1781         struct pipe_buffer *ibuf, *obuf;
1782         int ret = 0, nbuf;
1783         bool input_wakeup = false;
1784
1785
1786 retry:
1787         ret = ipipe_prep(ipipe, flags);
1788         if (ret)
1789                 return ret;
1790
1791         ret = opipe_prep(opipe, flags);
1792         if (ret)
1793                 return ret;
1794
1795         /*
1796          * Potential ABBA deadlock, work around it by ordering lock
1797          * grabbing by pipe info address. Otherwise two different processes
1798          * could deadlock (one doing tee from A -> B, the other from B -> A).
1799          */
1800         pipe_double_lock(ipipe, opipe);
1801
1802         do {
1803                 if (!opipe->readers) {
1804                         send_sig(SIGPIPE, current, 0);
1805                         if (!ret)
1806                                 ret = -EPIPE;
1807                         break;
1808                 }
1809
1810                 if (!ipipe->nrbufs && !ipipe->writers)
1811                         break;
1812
1813                 /*
1814                  * Cannot make any progress, because either the input
1815                  * pipe is empty or the output pipe is full.
1816                  */
1817                 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1818                         /* Already processed some buffers, break */
1819                         if (ret)
1820                                 break;
1821
1822                         if (flags & SPLICE_F_NONBLOCK) {
1823                                 ret = -EAGAIN;
1824                                 break;
1825                         }
1826
1827                         /*
1828                          * We raced with another reader/writer and haven't
1829                          * managed to process any buffers.  A zero return
1830                          * value means EOF, so retry instead.
1831                          */
1832                         pipe_unlock(ipipe);
1833                         pipe_unlock(opipe);
1834                         goto retry;
1835                 }
1836
1837                 ibuf = ipipe->bufs + ipipe->curbuf;
1838                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1839                 obuf = opipe->bufs + nbuf;
1840
1841                 if (len >= ibuf->len) {
1842                         /*
1843                          * Simply move the whole buffer from ipipe to opipe
1844                          */
1845                         *obuf = *ibuf;
1846                         ibuf->ops = NULL;
1847                         opipe->nrbufs++;
1848                         ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1849                         ipipe->nrbufs--;
1850                         input_wakeup = true;
1851                 } else {
1852                         /*
1853                          * Get a reference to this pipe buffer,
1854                          * so we can copy the contents over.
1855                          */
1856                         ibuf->ops->get(ipipe, ibuf);
1857                         *obuf = *ibuf;
1858
1859                         /*
1860                          * Don't inherit the gift flag, we need to
1861                          * prevent multiple steals of this page.
1862                          */
1863                         obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1864
1865                         obuf->len = len;
1866                         opipe->nrbufs++;
1867                         ibuf->offset += obuf->len;
1868                         ibuf->len -= obuf->len;
1869                 }
1870                 ret += obuf->len;
1871                 len -= obuf->len;
1872         } while (len);
1873
1874         pipe_unlock(ipipe);
1875         pipe_unlock(opipe);
1876
1877         /*
1878          * If we put data in the output pipe, wakeup any potential readers.
1879          */
1880         if (ret > 0)
1881                 wakeup_pipe_readers(opipe);
1882
1883         if (input_wakeup)
1884                 wakeup_pipe_writers(ipipe);
1885
1886         return ret;
1887 }
1888
1889 /*
1890  * Link contents of ipipe to opipe.
1891  */
1892 static int link_pipe(struct pipe_inode_info *ipipe,
1893                      struct pipe_inode_info *opipe,
1894                      size_t len, unsigned int flags)
1895 {
1896         struct pipe_buffer *ibuf, *obuf;
1897         int ret = 0, i = 0, nbuf;
1898
1899         /*
1900          * Potential ABBA deadlock, work around it by ordering lock
1901          * grabbing by pipe info address. Otherwise two different processes
1902          * could deadlock (one doing tee from A -> B, the other from B -> A).
1903          */
1904         pipe_double_lock(ipipe, opipe);
1905
1906         do {
1907                 if (!opipe->readers) {
1908                         send_sig(SIGPIPE, current, 0);
1909                         if (!ret)
1910                                 ret = -EPIPE;
1911                         break;
1912                 }
1913
1914                 /*
1915                  * If we have iterated all input buffers or ran out of
1916                  * output room, break.
1917                  */
1918                 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1919                         break;
1920
1921                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1922                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1923
1924                 /*
1925                  * Get a reference to this pipe buffer,
1926                  * so we can copy the contents over.
1927                  */
1928                 ibuf->ops->get(ipipe, ibuf);
1929
1930                 obuf = opipe->bufs + nbuf;
1931                 *obuf = *ibuf;
1932
1933                 /*
1934                  * Don't inherit the gift flag, we need to
1935                  * prevent multiple steals of this page.
1936                  */
1937                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1938
1939                 if (obuf->len > len)
1940                         obuf->len = len;
1941
1942                 opipe->nrbufs++;
1943                 ret += obuf->len;
1944                 len -= obuf->len;
1945                 i++;
1946         } while (len);
1947
1948         /*
1949          * return EAGAIN if we have the potential of some data in the
1950          * future, otherwise just return 0
1951          */
1952         if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1953                 ret = -EAGAIN;
1954
1955         pipe_unlock(ipipe);
1956         pipe_unlock(opipe);
1957
1958         /*
1959          * If we put data in the output pipe, wakeup any potential readers.
1960          */
1961         if (ret > 0)
1962                 wakeup_pipe_readers(opipe);
1963
1964         return ret;
1965 }
1966
1967 /*
1968  * This is a tee(1) implementation that works on pipes. It doesn't copy
1969  * any data, it simply references the 'in' pages on the 'out' pipe.
1970  * The 'flags' used are the SPLICE_F_* variants, currently the only
1971  * applicable one is SPLICE_F_NONBLOCK.
1972  */
1973 static long do_tee(struct file *in, struct file *out, size_t len,
1974                    unsigned int flags)
1975 {
1976         struct pipe_inode_info *ipipe = get_pipe_info(in);
1977         struct pipe_inode_info *opipe = get_pipe_info(out);
1978         int ret = -EINVAL;
1979
1980         /*
1981          * Duplicate the contents of ipipe to opipe without actually
1982          * copying the data.
1983          */
1984         if (ipipe && opipe && ipipe != opipe) {
1985                 /*
1986                  * Keep going, unless we encounter an error. The ipipe/opipe
1987                  * ordering doesn't really matter.
1988                  */
1989                 ret = ipipe_prep(ipipe, flags);
1990                 if (!ret) {
1991                         ret = opipe_prep(opipe, flags);
1992                         if (!ret)
1993                                 ret = link_pipe(ipipe, opipe, len, flags);
1994                 }
1995         }
1996
1997         return ret;
1998 }
1999
2000 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2001 {
2002         struct fd in;
2003         int error;
2004
2005         if (unlikely(!len))
2006                 return 0;
2007
2008         error = -EBADF;
2009         in = fdget(fdin);
2010         if (in.file) {
2011                 if (in.file->f_mode & FMODE_READ) {
2012                         struct fd out = fdget(fdout);
2013                         if (out.file) {
2014                                 if (out.file->f_mode & FMODE_WRITE)
2015                                         error = do_tee(in.file, out.file,
2016                                                         len, flags);
2017                                 fdput(out);
2018                         }
2019                 }
2020                 fdput(in);
2021         }
2022
2023         return error;
2024 }