]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/splice.c
splice: fix user pointer access in get_iovec_page_array() (CVE-2008-0600)
[karo-tx-linux.git] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31
32 struct partial_page {
33         unsigned int offset;
34         unsigned int len;
35 };
36
37 /*
38  * Passed to splice_to_pipe
39  */
40 struct splice_pipe_desc {
41         struct page **pages;            /* page map */
42         struct partial_page *partial;   /* pages[] may not be contig */
43         int nr_pages;                   /* number of pages in map */
44         unsigned int flags;             /* splice flags */
45         const struct pipe_buf_operations *ops;/* ops associated with output pipe */
46 };
47
48 /*
49  * Attempt to steal a page from a pipe buffer. This should perhaps go into
50  * a vm helper function, it's already simplified quite a bit by the
51  * addition of remove_mapping(). If success is returned, the caller may
52  * attempt to reuse this page for another destination.
53  */
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
55                                      struct pipe_buffer *buf)
56 {
57         struct page *page = buf->page;
58         struct address_space *mapping;
59
60         lock_page(page);
61
62         mapping = page_mapping(page);
63         if (mapping) {
64                 WARN_ON(!PageUptodate(page));
65
66                 /*
67                  * At least for ext2 with nobh option, we need to wait on
68                  * writeback completing on this page, since we'll remove it
69                  * from the pagecache.  Otherwise truncate wont wait on the
70                  * page, allowing the disk blocks to be reused by someone else
71                  * before we actually wrote our data to them. fs corruption
72                  * ensues.
73                  */
74                 wait_on_page_writeback(page);
75
76                 if (PagePrivate(page))
77                         try_to_release_page(page, GFP_KERNEL);
78
79                 /*
80                  * If we succeeded in removing the mapping, set LRU flag
81                  * and return good.
82                  */
83                 if (remove_mapping(mapping, page)) {
84                         buf->flags |= PIPE_BUF_FLAG_LRU;
85                         return 0;
86                 }
87         }
88
89         /*
90          * Raced with truncate or failed to remove page from current
91          * address space, unlock and return failure.
92          */
93         unlock_page(page);
94         return 1;
95 }
96
97 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
98                                         struct pipe_buffer *buf)
99 {
100         page_cache_release(buf->page);
101         buf->flags &= ~PIPE_BUF_FLAG_LRU;
102 }
103
104 static int page_cache_pipe_buf_pin(struct pipe_inode_info *pipe,
105                                    struct pipe_buffer *buf)
106 {
107         struct page *page = buf->page;
108         int err;
109
110         if (!PageUptodate(page)) {
111                 lock_page(page);
112
113                 /*
114                  * Page got truncated/unhashed. This will cause a 0-byte
115                  * splice, if this is the first page.
116                  */
117                 if (!page->mapping) {
118                         err = -ENODATA;
119                         goto error;
120                 }
121
122                 /*
123                  * Uh oh, read-error from disk.
124                  */
125                 if (!PageUptodate(page)) {
126                         err = -EIO;
127                         goto error;
128                 }
129
130                 /*
131                  * Page is ok afterall, we are done.
132                  */
133                 unlock_page(page);
134         }
135
136         return 0;
137 error:
138         unlock_page(page);
139         return err;
140 }
141
142 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
143         .can_merge = 0,
144         .map = generic_pipe_buf_map,
145         .unmap = generic_pipe_buf_unmap,
146         .pin = page_cache_pipe_buf_pin,
147         .release = page_cache_pipe_buf_release,
148         .steal = page_cache_pipe_buf_steal,
149         .get = generic_pipe_buf_get,
150 };
151
152 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
153                                     struct pipe_buffer *buf)
154 {
155         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
156                 return 1;
157
158         buf->flags |= PIPE_BUF_FLAG_LRU;
159         return generic_pipe_buf_steal(pipe, buf);
160 }
161
162 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
163         .can_merge = 0,
164         .map = generic_pipe_buf_map,
165         .unmap = generic_pipe_buf_unmap,
166         .pin = generic_pipe_buf_pin,
167         .release = page_cache_pipe_buf_release,
168         .steal = user_page_pipe_buf_steal,
169         .get = generic_pipe_buf_get,
170 };
171
172 /*
173  * Pipe output worker. This sets up our pipe format with the page cache
174  * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
175  */
176 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177                               struct splice_pipe_desc *spd)
178 {
179         unsigned int spd_pages = spd->nr_pages;
180         int ret, do_wakeup, page_nr;
181
182         ret = 0;
183         do_wakeup = 0;
184         page_nr = 0;
185
186         if (pipe->inode)
187                 mutex_lock(&pipe->inode->i_mutex);
188
189         for (;;) {
190                 if (!pipe->readers) {
191                         send_sig(SIGPIPE, current, 0);
192                         if (!ret)
193                                 ret = -EPIPE;
194                         break;
195                 }
196
197                 if (pipe->nrbufs < PIPE_BUFFERS) {
198                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
199                         struct pipe_buffer *buf = pipe->bufs + newbuf;
200
201                         buf->page = spd->pages[page_nr];
202                         buf->offset = spd->partial[page_nr].offset;
203                         buf->len = spd->partial[page_nr].len;
204                         buf->ops = spd->ops;
205                         if (spd->flags & SPLICE_F_GIFT)
206                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
207
208                         pipe->nrbufs++;
209                         page_nr++;
210                         ret += buf->len;
211
212                         if (pipe->inode)
213                                 do_wakeup = 1;
214
215                         if (!--spd->nr_pages)
216                                 break;
217                         if (pipe->nrbufs < PIPE_BUFFERS)
218                                 continue;
219
220                         break;
221                 }
222
223                 if (spd->flags & SPLICE_F_NONBLOCK) {
224                         if (!ret)
225                                 ret = -EAGAIN;
226                         break;
227                 }
228
229                 if (signal_pending(current)) {
230                         if (!ret)
231                                 ret = -ERESTARTSYS;
232                         break;
233                 }
234
235                 if (do_wakeup) {
236                         smp_mb();
237                         if (waitqueue_active(&pipe->wait))
238                                 wake_up_interruptible_sync(&pipe->wait);
239                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
240                         do_wakeup = 0;
241                 }
242
243                 pipe->waiting_writers++;
244                 pipe_wait(pipe);
245                 pipe->waiting_writers--;
246         }
247
248         if (pipe->inode) {
249                 mutex_unlock(&pipe->inode->i_mutex);
250
251                 if (do_wakeup) {
252                         smp_mb();
253                         if (waitqueue_active(&pipe->wait))
254                                 wake_up_interruptible(&pipe->wait);
255                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
256                 }
257         }
258
259         while (page_nr < spd_pages)
260                 page_cache_release(spd->pages[page_nr++]);
261
262         return ret;
263 }
264
265 static int
266 __generic_file_splice_read(struct file *in, loff_t *ppos,
267                            struct pipe_inode_info *pipe, size_t len,
268                            unsigned int flags)
269 {
270         struct address_space *mapping = in->f_mapping;
271         unsigned int loff, nr_pages;
272         struct page *pages[PIPE_BUFFERS];
273         struct partial_page partial[PIPE_BUFFERS];
274         struct page *page;
275         pgoff_t index, end_index;
276         loff_t isize;
277         int error, page_nr;
278         struct splice_pipe_desc spd = {
279                 .pages = pages,
280                 .partial = partial,
281                 .flags = flags,
282                 .ops = &page_cache_pipe_buf_ops,
283         };
284
285         index = *ppos >> PAGE_CACHE_SHIFT;
286         loff = *ppos & ~PAGE_CACHE_MASK;
287         nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
288
289         if (nr_pages > PIPE_BUFFERS)
290                 nr_pages = PIPE_BUFFERS;
291
292         /*
293          * Don't try to 2nd guess the read-ahead logic, call into
294          * page_cache_readahead() like the page cache reads would do.
295          */
296         page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
297
298         /*
299          * Now fill in the holes:
300          */
301         error = 0;
302
303         /*
304          * Lookup the (hopefully) full range of pages we need.
305          */
306         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
307
308         /*
309          * If find_get_pages_contig() returned fewer pages than we needed,
310          * allocate the rest.
311          */
312         index += spd.nr_pages;
313         while (spd.nr_pages < nr_pages) {
314                 /*
315                  * Page could be there, find_get_pages_contig() breaks on
316                  * the first hole.
317                  */
318                 page = find_get_page(mapping, index);
319                 if (!page) {
320                         /*
321                          * Make sure the read-ahead engine is notified
322                          * about this failure.
323                          */
324                         handle_ra_miss(mapping, &in->f_ra, index);
325
326                         /*
327                          * page didn't exist, allocate one.
328                          */
329                         page = page_cache_alloc_cold(mapping);
330                         if (!page)
331                                 break;
332
333                         error = add_to_page_cache_lru(page, mapping, index,
334                                               GFP_KERNEL);
335                         if (unlikely(error)) {
336                                 page_cache_release(page);
337                                 if (error == -EEXIST)
338                                         continue;
339                                 break;
340                         }
341                         /*
342                          * add_to_page_cache() locks the page, unlock it
343                          * to avoid convoluting the logic below even more.
344                          */
345                         unlock_page(page);
346                 }
347
348                 pages[spd.nr_pages++] = page;
349                 index++;
350         }
351
352         /*
353          * Now loop over the map and see if we need to start IO on any
354          * pages, fill in the partial map, etc.
355          */
356         index = *ppos >> PAGE_CACHE_SHIFT;
357         nr_pages = spd.nr_pages;
358         spd.nr_pages = 0;
359         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
360                 unsigned int this_len;
361
362                 if (!len)
363                         break;
364
365                 /*
366                  * this_len is the max we'll use from this page
367                  */
368                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
369                 page = pages[page_nr];
370
371                 /*
372                  * If the page isn't uptodate, we may need to start io on it
373                  */
374                 if (!PageUptodate(page)) {
375                         /*
376                          * If in nonblock mode then dont block on waiting
377                          * for an in-flight io page
378                          */
379                         if (flags & SPLICE_F_NONBLOCK) {
380                                 if (TestSetPageLocked(page))
381                                         break;
382                         } else
383                                 lock_page(page);
384
385                         /*
386                          * page was truncated, stop here. if this isn't the
387                          * first page, we'll just complete what we already
388                          * added
389                          */
390                         if (!page->mapping) {
391                                 unlock_page(page);
392                                 break;
393                         }
394                         /*
395                          * page was already under io and is now done, great
396                          */
397                         if (PageUptodate(page)) {
398                                 unlock_page(page);
399                                 goto fill_it;
400                         }
401
402                         /*
403                          * need to read in the page
404                          */
405                         error = mapping->a_ops->readpage(in, page);
406                         if (unlikely(error)) {
407                                 /*
408                                  * We really should re-lookup the page here,
409                                  * but it complicates things a lot. Instead
410                                  * lets just do what we already stored, and
411                                  * we'll get it the next time we are called.
412                                  */
413                                 if (error == AOP_TRUNCATED_PAGE)
414                                         error = 0;
415
416                                 break;
417                         }
418                 }
419 fill_it:
420                 /*
421                  * i_size must be checked after PageUptodate.
422                  */
423                 isize = i_size_read(mapping->host);
424                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
425                 if (unlikely(!isize || index > end_index))
426                         break;
427
428                 /*
429                  * if this is the last page, see if we need to shrink
430                  * the length and stop
431                  */
432                 if (end_index == index) {
433                         unsigned int plen;
434
435                         /*
436                          * max good bytes in this page
437                          */
438                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
439                         if (plen <= loff)
440                                 break;
441
442                         /*
443                          * force quit after adding this page
444                          */
445                         this_len = min(this_len, plen - loff);
446                         len = this_len;
447                 }
448
449                 partial[page_nr].offset = loff;
450                 partial[page_nr].len = this_len;
451                 len -= this_len;
452                 loff = 0;
453                 spd.nr_pages++;
454                 index++;
455         }
456
457         /*
458          * Release any pages at the end, if we quit early. 'page_nr' is how far
459          * we got, 'nr_pages' is how many pages are in the map.
460          */
461         while (page_nr < nr_pages)
462                 page_cache_release(pages[page_nr++]);
463
464         if (spd.nr_pages)
465                 return splice_to_pipe(pipe, &spd);
466
467         return error;
468 }
469
470 /**
471  * generic_file_splice_read - splice data from file to a pipe
472  * @in:         file to splice from
473  * @pipe:       pipe to splice to
474  * @len:        number of bytes to splice
475  * @flags:      splice modifier flags
476  *
477  * Will read pages from given file and fill them into a pipe.
478  */
479 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
480                                  struct pipe_inode_info *pipe, size_t len,
481                                  unsigned int flags)
482 {
483         ssize_t spliced;
484         int ret;
485         loff_t isize, left;
486
487         isize = i_size_read(in->f_mapping->host);
488         if (unlikely(*ppos >= isize))
489                 return 0;
490
491         left = isize - *ppos;
492         if (unlikely(left < len))
493                 len = left;
494
495         ret = 0;
496         spliced = 0;
497         while (len) {
498                 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
499
500                 if (ret < 0)
501                         break;
502                 else if (!ret) {
503                         if (spliced)
504                                 break;
505                         if (flags & SPLICE_F_NONBLOCK) {
506                                 ret = -EAGAIN;
507                                 break;
508                         }
509                 }
510
511                 *ppos += ret;
512                 len -= ret;
513                 spliced += ret;
514         }
515
516         if (spliced)
517                 return spliced;
518
519         return ret;
520 }
521
522 EXPORT_SYMBOL(generic_file_splice_read);
523
524 /*
525  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
526  * using sendpage(). Return the number of bytes sent.
527  */
528 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
529                             struct pipe_buffer *buf, struct splice_desc *sd)
530 {
531         struct file *file = sd->file;
532         loff_t pos = sd->pos;
533         int ret, more;
534
535         ret = buf->ops->pin(pipe, buf);
536         if (!ret) {
537                 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
538
539                 ret = file->f_op->sendpage(file, buf->page, buf->offset,
540                                            sd->len, &pos, more);
541         }
542
543         return ret;
544 }
545
546 /*
547  * This is a little more tricky than the file -> pipe splicing. There are
548  * basically three cases:
549  *
550  *      - Destination page already exists in the address space and there
551  *        are users of it. For that case we have no other option that
552  *        copying the data. Tough luck.
553  *      - Destination page already exists in the address space, but there
554  *        are no users of it. Make sure it's uptodate, then drop it. Fall
555  *        through to last case.
556  *      - Destination page does not exist, we can add the pipe page to
557  *        the page cache and avoid the copy.
558  *
559  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
560  * sd->flags), we attempt to migrate pages from the pipe to the output
561  * file address space page cache. This is possible if no one else has
562  * the pipe page referenced outside of the pipe and page cache. If
563  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
564  * a new page in the output file page cache and fill/dirty that.
565  */
566 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
567                         struct splice_desc *sd)
568 {
569         struct file *file = sd->file;
570         struct address_space *mapping = file->f_mapping;
571         unsigned int offset, this_len;
572         struct page *page;
573         pgoff_t index;
574         int ret;
575
576         /*
577          * make sure the data in this buffer is uptodate
578          */
579         ret = buf->ops->pin(pipe, buf);
580         if (unlikely(ret))
581                 return ret;
582
583         index = sd->pos >> PAGE_CACHE_SHIFT;
584         offset = sd->pos & ~PAGE_CACHE_MASK;
585
586         this_len = sd->len;
587         if (this_len + offset > PAGE_CACHE_SIZE)
588                 this_len = PAGE_CACHE_SIZE - offset;
589
590 find_page:
591         page = find_lock_page(mapping, index);
592         if (!page) {
593                 ret = -ENOMEM;
594                 page = page_cache_alloc_cold(mapping);
595                 if (unlikely(!page))
596                         goto out_ret;
597
598                 /*
599                  * This will also lock the page
600                  */
601                 ret = add_to_page_cache_lru(page, mapping, index,
602                                             GFP_KERNEL);
603                 if (unlikely(ret))
604                         goto out_release;
605         }
606
607         ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
608         if (unlikely(ret)) {
609                 loff_t isize = i_size_read(mapping->host);
610
611                 if (ret != AOP_TRUNCATED_PAGE)
612                         unlock_page(page);
613                 page_cache_release(page);
614                 if (ret == AOP_TRUNCATED_PAGE)
615                         goto find_page;
616
617                 /*
618                  * prepare_write() may have instantiated a few blocks
619                  * outside i_size.  Trim these off again.
620                  */
621                 if (sd->pos + this_len > isize)
622                         vmtruncate(mapping->host, isize);
623
624                 goto out_ret;
625         }
626
627         if (buf->page != page) {
628                 /*
629                  * Careful, ->map() uses KM_USER0!
630                  */
631                 char *src = buf->ops->map(pipe, buf, 1);
632                 char *dst = kmap_atomic(page, KM_USER1);
633
634                 memcpy(dst + offset, src + buf->offset, this_len);
635                 flush_dcache_page(page);
636                 kunmap_atomic(dst, KM_USER1);
637                 buf->ops->unmap(pipe, buf, src);
638         }
639
640         ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
641         if (ret) {
642                 if (ret == AOP_TRUNCATED_PAGE) {
643                         page_cache_release(page);
644                         goto find_page;
645                 }
646                 if (ret < 0)
647                         goto out;
648                 /*
649                  * Partial write has happened, so 'ret' already initialized by
650                  * number of bytes written, Where is nothing we have to do here.
651                  */
652         } else
653                 ret = this_len;
654         /*
655          * Return the number of bytes written and mark page as
656          * accessed, we are now done!
657          */
658         mark_page_accessed(page);
659 out:
660         unlock_page(page);
661 out_release:
662         page_cache_release(page);
663 out_ret:
664         return ret;
665 }
666
667 /*
668  * Pipe input worker. Most of this logic works like a regular pipe, the
669  * key here is the 'actor' worker passed in that actually moves the data
670  * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
671  */
672 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe,
673                            struct file *out, loff_t *ppos, size_t len,
674                            unsigned int flags, splice_actor *actor)
675 {
676         int ret, do_wakeup, err;
677         struct splice_desc sd;
678
679         ret = 0;
680         do_wakeup = 0;
681
682         sd.total_len = len;
683         sd.flags = flags;
684         sd.file = out;
685         sd.pos = *ppos;
686
687         for (;;) {
688                 if (pipe->nrbufs) {
689                         struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
690                         const struct pipe_buf_operations *ops = buf->ops;
691
692                         sd.len = buf->len;
693                         if (sd.len > sd.total_len)
694                                 sd.len = sd.total_len;
695
696                         err = actor(pipe, buf, &sd);
697                         if (err <= 0) {
698                                 if (!ret && err != -ENODATA)
699                                         ret = err;
700
701                                 break;
702                         }
703
704                         ret += err;
705                         buf->offset += err;
706                         buf->len -= err;
707
708                         sd.len -= err;
709                         sd.pos += err;
710                         sd.total_len -= err;
711                         if (sd.len)
712                                 continue;
713
714                         if (!buf->len) {
715                                 buf->ops = NULL;
716                                 ops->release(pipe, buf);
717                                 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
718                                 pipe->nrbufs--;
719                                 if (pipe->inode)
720                                         do_wakeup = 1;
721                         }
722
723                         if (!sd.total_len)
724                                 break;
725                 }
726
727                 if (pipe->nrbufs)
728                         continue;
729                 if (!pipe->writers)
730                         break;
731                 if (!pipe->waiting_writers) {
732                         if (ret)
733                                 break;
734                 }
735
736                 if (flags & SPLICE_F_NONBLOCK) {
737                         if (!ret)
738                                 ret = -EAGAIN;
739                         break;
740                 }
741
742                 if (signal_pending(current)) {
743                         if (!ret)
744                                 ret = -ERESTARTSYS;
745                         break;
746                 }
747
748                 if (do_wakeup) {
749                         smp_mb();
750                         if (waitqueue_active(&pipe->wait))
751                                 wake_up_interruptible_sync(&pipe->wait);
752                         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
753                         do_wakeup = 0;
754                 }
755
756                 pipe_wait(pipe);
757         }
758
759         if (do_wakeup) {
760                 smp_mb();
761                 if (waitqueue_active(&pipe->wait))
762                         wake_up_interruptible(&pipe->wait);
763                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
764         }
765
766         return ret;
767 }
768 EXPORT_SYMBOL(__splice_from_pipe);
769
770 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
771                          loff_t *ppos, size_t len, unsigned int flags,
772                          splice_actor *actor)
773 {
774         ssize_t ret;
775         struct inode *inode = out->f_mapping->host;
776
777         /*
778          * The actor worker might be calling ->prepare_write and
779          * ->commit_write. Most of the time, these expect i_mutex to
780          * be held. Since this may result in an ABBA deadlock with
781          * pipe->inode, we have to order lock acquiry here.
782          */
783         inode_double_lock(inode, pipe->inode);
784         ret = __splice_from_pipe(pipe, out, ppos, len, flags, actor);
785         inode_double_unlock(inode, pipe->inode);
786
787         return ret;
788 }
789
790 /**
791  * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
792  * @pipe:       pipe info
793  * @out:        file to write to
794  * @len:        number of bytes to splice
795  * @flags:      splice modifier flags
796  *
797  * Will either move or copy pages (determined by @flags options) from
798  * the given pipe inode to the given file. The caller is responsible
799  * for acquiring i_mutex on both inodes.
800  *
801  */
802 ssize_t
803 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
804                                  loff_t *ppos, size_t len, unsigned int flags)
805 {
806         struct address_space *mapping = out->f_mapping;
807         struct inode *inode = mapping->host;
808         ssize_t ret;
809         int err;
810
811         err = remove_suid(out->f_path.dentry);
812         if (unlikely(err))
813                 return err;
814
815         ret = __splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
816         if (ret > 0) {
817                 unsigned long nr_pages;
818
819                 *ppos += ret;
820                 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
821
822                 /*
823                  * If file or inode is SYNC and we actually wrote some data,
824                  * sync it.
825                  */
826                 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
827                         err = generic_osync_inode(inode, mapping,
828                                                   OSYNC_METADATA|OSYNC_DATA);
829
830                         if (err)
831                                 ret = err;
832                 }
833                 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
834         }
835
836         return ret;
837 }
838
839 EXPORT_SYMBOL(generic_file_splice_write_nolock);
840
841 /**
842  * generic_file_splice_write - splice data from a pipe to a file
843  * @pipe:       pipe info
844  * @out:        file to write to
845  * @len:        number of bytes to splice
846  * @flags:      splice modifier flags
847  *
848  * Will either move or copy pages (determined by @flags options) from
849  * the given pipe inode to the given file.
850  *
851  */
852 ssize_t
853 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
854                           loff_t *ppos, size_t len, unsigned int flags)
855 {
856         struct address_space *mapping = out->f_mapping;
857         struct inode *inode = mapping->host;
858         ssize_t ret;
859         int err;
860
861         err = should_remove_suid(out->f_path.dentry);
862         if (unlikely(err)) {
863                 mutex_lock(&inode->i_mutex);
864                 err = __remove_suid(out->f_path.dentry, err);
865                 mutex_unlock(&inode->i_mutex);
866                 if (err)
867                         return err;
868         }
869
870         ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
871         if (ret > 0) {
872                 unsigned long nr_pages;
873
874                 *ppos += ret;
875                 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
876
877                 /*
878                  * If file or inode is SYNC and we actually wrote some data,
879                  * sync it.
880                  */
881                 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
882                         mutex_lock(&inode->i_mutex);
883                         err = generic_osync_inode(inode, mapping,
884                                                   OSYNC_METADATA|OSYNC_DATA);
885                         mutex_unlock(&inode->i_mutex);
886
887                         if (err)
888                                 ret = err;
889                 }
890                 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
891         }
892
893         return ret;
894 }
895
896 EXPORT_SYMBOL(generic_file_splice_write);
897
898 /**
899  * generic_splice_sendpage - splice data from a pipe to a socket
900  * @inode:      pipe inode
901  * @out:        socket to write to
902  * @len:        number of bytes to splice
903  * @flags:      splice modifier flags
904  *
905  * Will send @len bytes from the pipe to a network socket. No data copying
906  * is involved.
907  *
908  */
909 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
910                                 loff_t *ppos, size_t len, unsigned int flags)
911 {
912         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
913 }
914
915 EXPORT_SYMBOL(generic_splice_sendpage);
916
917 /*
918  * Attempt to initiate a splice from pipe to file.
919  */
920 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
921                            loff_t *ppos, size_t len, unsigned int flags)
922 {
923         int ret;
924
925         if (unlikely(!out->f_op || !out->f_op->splice_write))
926                 return -EINVAL;
927
928         if (unlikely(!(out->f_mode & FMODE_WRITE)))
929                 return -EBADF;
930
931         ret = rw_verify_area(WRITE, out, ppos, len);
932         if (unlikely(ret < 0))
933                 return ret;
934
935         return out->f_op->splice_write(pipe, out, ppos, len, flags);
936 }
937
938 /*
939  * Attempt to initiate a splice from a file to a pipe.
940  */
941 static long do_splice_to(struct file *in, loff_t *ppos,
942                          struct pipe_inode_info *pipe, size_t len,
943                          unsigned int flags)
944 {
945         int ret;
946
947         if (unlikely(!in->f_op || !in->f_op->splice_read))
948                 return -EINVAL;
949
950         if (unlikely(!(in->f_mode & FMODE_READ)))
951                 return -EBADF;
952
953         ret = rw_verify_area(READ, in, ppos, len);
954         if (unlikely(ret < 0))
955                 return ret;
956
957         return in->f_op->splice_read(in, ppos, pipe, len, flags);
958 }
959
960 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
961                       size_t len, unsigned int flags)
962 {
963         struct pipe_inode_info *pipe;
964         long ret, bytes;
965         loff_t out_off;
966         umode_t i_mode;
967         int i;
968
969         /*
970          * We require the input being a regular file, as we don't want to
971          * randomly drop data for eg socket -> socket splicing. Use the
972          * piped splicing for that!
973          */
974         i_mode = in->f_path.dentry->d_inode->i_mode;
975         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
976                 return -EINVAL;
977
978         /*
979          * neither in nor out is a pipe, setup an internal pipe attached to
980          * 'out' and transfer the wanted data from 'in' to 'out' through that
981          */
982         pipe = current->splice_pipe;
983         if (unlikely(!pipe)) {
984                 pipe = alloc_pipe_info(NULL);
985                 if (!pipe)
986                         return -ENOMEM;
987
988                 /*
989                  * We don't have an immediate reader, but we'll read the stuff
990                  * out of the pipe right after the splice_to_pipe(). So set
991                  * PIPE_READERS appropriately.
992                  */
993                 pipe->readers = 1;
994
995                 current->splice_pipe = pipe;
996         }
997
998         /*
999          * Do the splice.
1000          */
1001         ret = 0;
1002         bytes = 0;
1003         out_off = 0;
1004
1005         while (len) {
1006                 size_t read_len, max_read_len;
1007
1008                 /*
1009                  * Do at most PIPE_BUFFERS pages worth of transfer:
1010                  */
1011                 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
1012
1013                 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
1014                 if (unlikely(ret <= 0))
1015                         goto out_release;
1016
1017                 read_len = ret;
1018
1019                 /*
1020                  * NOTE: nonblocking mode only applies to the input. We
1021                  * must not do the output in nonblocking mode as then we
1022                  * could get stuck data in the internal pipe:
1023                  */
1024                 ret = do_splice_from(pipe, out, &out_off, read_len,
1025                                      flags & ~SPLICE_F_NONBLOCK);
1026                 if (unlikely(ret <= 0))
1027                         goto out_release;
1028
1029                 bytes += ret;
1030                 len -= ret;
1031
1032                 /*
1033                  * In nonblocking mode, if we got back a short read then
1034                  * that was due to either an IO error or due to the
1035                  * pagecache entry not being there. In the IO error case
1036                  * the _next_ splice attempt will produce a clean IO error
1037                  * return value (not a short read), so in both cases it's
1038                  * correct to break out of the loop here:
1039                  */
1040                 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1041                         break;
1042         }
1043
1044         pipe->nrbufs = pipe->curbuf = 0;
1045
1046         return bytes;
1047
1048 out_release:
1049         /*
1050          * If we did an incomplete transfer we must release
1051          * the pipe buffers in question:
1052          */
1053         for (i = 0; i < PIPE_BUFFERS; i++) {
1054                 struct pipe_buffer *buf = pipe->bufs + i;
1055
1056                 if (buf->ops) {
1057                         buf->ops->release(pipe, buf);
1058                         buf->ops = NULL;
1059                 }
1060         }
1061         pipe->nrbufs = pipe->curbuf = 0;
1062
1063         /*
1064          * If we transferred some data, return the number of bytes:
1065          */
1066         if (bytes > 0)
1067                 return bytes;
1068
1069         return ret;
1070 }
1071
1072 /*
1073  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1074  * location, so checking ->i_pipe is not enough to verify that this is a
1075  * pipe.
1076  */
1077 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1078 {
1079         if (S_ISFIFO(inode->i_mode))
1080                 return inode->i_pipe;
1081
1082         return NULL;
1083 }
1084
1085 /*
1086  * Determine where to splice to/from.
1087  */
1088 static long do_splice(struct file *in, loff_t __user *off_in,
1089                       struct file *out, loff_t __user *off_out,
1090                       size_t len, unsigned int flags)
1091 {
1092         struct pipe_inode_info *pipe;
1093         loff_t offset, *off;
1094         long ret;
1095
1096         pipe = pipe_info(in->f_path.dentry->d_inode);
1097         if (pipe) {
1098                 if (off_in)
1099                         return -ESPIPE;
1100                 if (off_out) {
1101                         if (out->f_op->llseek == no_llseek)
1102                                 return -EINVAL;
1103                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1104                                 return -EFAULT;
1105                         off = &offset;
1106                 } else
1107                         off = &out->f_pos;
1108
1109                 ret = do_splice_from(pipe, out, off, len, flags);
1110
1111                 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1112                         ret = -EFAULT;
1113
1114                 return ret;
1115         }
1116
1117         pipe = pipe_info(out->f_path.dentry->d_inode);
1118         if (pipe) {
1119                 if (off_out)
1120                         return -ESPIPE;
1121                 if (off_in) {
1122                         if (in->f_op->llseek == no_llseek)
1123                                 return -EINVAL;
1124                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1125                                 return -EFAULT;
1126                         off = &offset;
1127                 } else
1128                         off = &in->f_pos;
1129
1130                 ret = do_splice_to(in, off, pipe, len, flags);
1131
1132                 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1133                         ret = -EFAULT;
1134
1135                 return ret;
1136         }
1137
1138         return -EINVAL;
1139 }
1140
1141 /*
1142  * Map an iov into an array of pages and offset/length tupples. With the
1143  * partial_page structure, we can map several non-contiguous ranges into
1144  * our ones pages[] map instead of splitting that operation into pieces.
1145  * Could easily be exported as a generic helper for other users, in which
1146  * case one would probably want to add a 'max_nr_pages' parameter as well.
1147  */
1148 static int get_iovec_page_array(const struct iovec __user *iov,
1149                                 unsigned int nr_vecs, struct page **pages,
1150                                 struct partial_page *partial, int aligned)
1151 {
1152         int buffers = 0, error = 0;
1153
1154         /*
1155          * It's ok to take the mmap_sem for reading, even
1156          * across a "get_user()".
1157          */
1158         down_read(&current->mm->mmap_sem);
1159
1160         while (nr_vecs) {
1161                 unsigned long off, npages;
1162                 void __user *base;
1163                 size_t len;
1164                 int i;
1165
1166                 /*
1167                  * Get user address base and length for this iovec.
1168                  */
1169                 error = get_user(base, &iov->iov_base);
1170                 if (unlikely(error))
1171                         break;
1172                 error = get_user(len, &iov->iov_len);
1173                 if (unlikely(error))
1174                         break;
1175
1176                 /*
1177                  * Sanity check this iovec. 0 read succeeds.
1178                  */
1179                 if (unlikely(!len))
1180                         break;
1181                 error = -EFAULT;
1182                 if (unlikely(!base))
1183                         break;
1184
1185                 if (!access_ok(VERIFY_READ, base, len))
1186                         break;
1187
1188                 /*
1189                  * Get this base offset and number of pages, then map
1190                  * in the user pages.
1191                  */
1192                 off = (unsigned long) base & ~PAGE_MASK;
1193
1194                 /*
1195                  * If asked for alignment, the offset must be zero and the
1196                  * length a multiple of the PAGE_SIZE.
1197                  */
1198                 error = -EINVAL;
1199                 if (aligned && (off || len & ~PAGE_MASK))
1200                         break;
1201
1202                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1203                 if (npages > PIPE_BUFFERS - buffers)
1204                         npages = PIPE_BUFFERS - buffers;
1205
1206                 error = get_user_pages(current, current->mm,
1207                                        (unsigned long) base, npages, 0, 0,
1208                                        &pages[buffers], NULL);
1209
1210                 if (unlikely(error <= 0))
1211                         break;
1212
1213                 /*
1214                  * Fill this contiguous range into the partial page map.
1215                  */
1216                 for (i = 0; i < error; i++) {
1217                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1218
1219                         partial[buffers].offset = off;
1220                         partial[buffers].len = plen;
1221
1222                         off = 0;
1223                         len -= plen;
1224                         buffers++;
1225                 }
1226
1227                 /*
1228                  * We didn't complete this iov, stop here since it probably
1229                  * means we have to move some of this into a pipe to
1230                  * be able to continue.
1231                  */
1232                 if (len)
1233                         break;
1234
1235                 /*
1236                  * Don't continue if we mapped fewer pages than we asked for,
1237                  * or if we mapped the max number of pages that we have
1238                  * room for.
1239                  */
1240                 if (error < npages || buffers == PIPE_BUFFERS)
1241                         break;
1242
1243                 nr_vecs--;
1244                 iov++;
1245         }
1246
1247         up_read(&current->mm->mmap_sem);
1248
1249         if (buffers)
1250                 return buffers;
1251
1252         return error;
1253 }
1254
1255 /*
1256  * vmsplice splices a user address range into a pipe. It can be thought of
1257  * as splice-from-memory, where the regular splice is splice-from-file (or
1258  * to file). In both cases the output is a pipe, naturally.
1259  *
1260  * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1261  * not the other way around. Splicing from user memory is a simple operation
1262  * that can be supported without any funky alignment restrictions or nasty
1263  * vm tricks. We simply map in the user memory and fill them into a pipe.
1264  * The reverse isn't quite as easy, though. There are two possible solutions
1265  * for that:
1266  *
1267  *      - memcpy() the data internally, at which point we might as well just
1268  *        do a regular read() on the buffer anyway.
1269  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1270  *        has restriction limitations on both ends of the pipe).
1271  *
1272  * Alas, it isn't here.
1273  *
1274  */
1275 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1276                         unsigned long nr_segs, unsigned int flags)
1277 {
1278         struct pipe_inode_info *pipe;
1279         struct page *pages[PIPE_BUFFERS];
1280         struct partial_page partial[PIPE_BUFFERS];
1281         struct splice_pipe_desc spd = {
1282                 .pages = pages,
1283                 .partial = partial,
1284                 .flags = flags,
1285                 .ops = &user_page_pipe_buf_ops,
1286         };
1287
1288         pipe = pipe_info(file->f_path.dentry->d_inode);
1289         if (!pipe)
1290                 return -EBADF;
1291         if (unlikely(nr_segs > UIO_MAXIOV))
1292                 return -EINVAL;
1293         else if (unlikely(!nr_segs))
1294                 return 0;
1295
1296         spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1297                                             flags & SPLICE_F_GIFT);
1298         if (spd.nr_pages <= 0)
1299                 return spd.nr_pages;
1300
1301         return splice_to_pipe(pipe, &spd);
1302 }
1303
1304 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1305                              unsigned long nr_segs, unsigned int flags)
1306 {
1307         struct file *file;
1308         long error;
1309         int fput;
1310
1311         error = -EBADF;
1312         file = fget_light(fd, &fput);
1313         if (file) {
1314                 if (file->f_mode & FMODE_WRITE)
1315                         error = do_vmsplice(file, iov, nr_segs, flags);
1316
1317                 fput_light(file, fput);
1318         }
1319
1320         return error;
1321 }
1322
1323 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1324                            int fd_out, loff_t __user *off_out,
1325                            size_t len, unsigned int flags)
1326 {
1327         long error;
1328         struct file *in, *out;
1329         int fput_in, fput_out;
1330
1331         if (unlikely(!len))
1332                 return 0;
1333
1334         error = -EBADF;
1335         in = fget_light(fd_in, &fput_in);
1336         if (in) {
1337                 if (in->f_mode & FMODE_READ) {
1338                         out = fget_light(fd_out, &fput_out);
1339                         if (out) {
1340                                 if (out->f_mode & FMODE_WRITE)
1341                                         error = do_splice(in, off_in,
1342                                                           out, off_out,
1343                                                           len, flags);
1344                                 fput_light(out, fput_out);
1345                         }
1346                 }
1347
1348                 fput_light(in, fput_in);
1349         }
1350
1351         return error;
1352 }
1353
1354 /*
1355  * Make sure there's data to read. Wait for input if we can, otherwise
1356  * return an appropriate error.
1357  */
1358 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1359 {
1360         int ret;
1361
1362         /*
1363          * Check ->nrbufs without the inode lock first. This function
1364          * is speculative anyways, so missing one is ok.
1365          */
1366         if (pipe->nrbufs)
1367                 return 0;
1368
1369         ret = 0;
1370         mutex_lock(&pipe->inode->i_mutex);
1371
1372         while (!pipe->nrbufs) {
1373                 if (signal_pending(current)) {
1374                         ret = -ERESTARTSYS;
1375                         break;
1376                 }
1377                 if (!pipe->writers)
1378                         break;
1379                 if (!pipe->waiting_writers) {
1380                         if (flags & SPLICE_F_NONBLOCK) {
1381                                 ret = -EAGAIN;
1382                                 break;
1383                         }
1384                 }
1385                 pipe_wait(pipe);
1386         }
1387
1388         mutex_unlock(&pipe->inode->i_mutex);
1389         return ret;
1390 }
1391
1392 /*
1393  * Make sure there's writeable room. Wait for room if we can, otherwise
1394  * return an appropriate error.
1395  */
1396 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1397 {
1398         int ret;
1399
1400         /*
1401          * Check ->nrbufs without the inode lock first. This function
1402          * is speculative anyways, so missing one is ok.
1403          */
1404         if (pipe->nrbufs < PIPE_BUFFERS)
1405                 return 0;
1406
1407         ret = 0;
1408         mutex_lock(&pipe->inode->i_mutex);
1409
1410         while (pipe->nrbufs >= PIPE_BUFFERS) {
1411                 if (!pipe->readers) {
1412                         send_sig(SIGPIPE, current, 0);
1413                         ret = -EPIPE;
1414                         break;
1415                 }
1416                 if (flags & SPLICE_F_NONBLOCK) {
1417                         ret = -EAGAIN;
1418                         break;
1419                 }
1420                 if (signal_pending(current)) {
1421                         ret = -ERESTARTSYS;
1422                         break;
1423                 }
1424                 pipe->waiting_writers++;
1425                 pipe_wait(pipe);
1426                 pipe->waiting_writers--;
1427         }
1428
1429         mutex_unlock(&pipe->inode->i_mutex);
1430         return ret;
1431 }
1432
1433 /*
1434  * Link contents of ipipe to opipe.
1435  */
1436 static int link_pipe(struct pipe_inode_info *ipipe,
1437                      struct pipe_inode_info *opipe,
1438                      size_t len, unsigned int flags)
1439 {
1440         struct pipe_buffer *ibuf, *obuf;
1441         int ret = 0, i = 0, nbuf;
1442
1443         /*
1444          * Potential ABBA deadlock, work around it by ordering lock
1445          * grabbing by inode address. Otherwise two different processes
1446          * could deadlock (one doing tee from A -> B, the other from B -> A).
1447          */
1448         inode_double_lock(ipipe->inode, opipe->inode);
1449
1450         do {
1451                 if (!opipe->readers) {
1452                         send_sig(SIGPIPE, current, 0);
1453                         if (!ret)
1454                                 ret = -EPIPE;
1455                         break;
1456                 }
1457
1458                 /*
1459                  * If we have iterated all input buffers or ran out of
1460                  * output room, break.
1461                  */
1462                 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1463                         break;
1464
1465                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1466                 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1467
1468                 /*
1469                  * Get a reference to this pipe buffer,
1470                  * so we can copy the contents over.
1471                  */
1472                 ibuf->ops->get(ipipe, ibuf);
1473
1474                 obuf = opipe->bufs + nbuf;
1475                 *obuf = *ibuf;
1476
1477                 /*
1478                  * Don't inherit the gift flag, we need to
1479                  * prevent multiple steals of this page.
1480                  */
1481                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1482
1483                 if (obuf->len > len)
1484                         obuf->len = len;
1485
1486                 opipe->nrbufs++;
1487                 ret += obuf->len;
1488                 len -= obuf->len;
1489                 i++;
1490         } while (len);
1491
1492         inode_double_unlock(ipipe->inode, opipe->inode);
1493
1494         /*
1495          * If we put data in the output pipe, wakeup any potential readers.
1496          */
1497         if (ret > 0) {
1498                 smp_mb();
1499                 if (waitqueue_active(&opipe->wait))
1500                         wake_up_interruptible(&opipe->wait);
1501                 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1502         }
1503
1504         return ret;
1505 }
1506
1507 /*
1508  * This is a tee(1) implementation that works on pipes. It doesn't copy
1509  * any data, it simply references the 'in' pages on the 'out' pipe.
1510  * The 'flags' used are the SPLICE_F_* variants, currently the only
1511  * applicable one is SPLICE_F_NONBLOCK.
1512  */
1513 static long do_tee(struct file *in, struct file *out, size_t len,
1514                    unsigned int flags)
1515 {
1516         struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1517         struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1518         int ret = -EINVAL;
1519
1520         /*
1521          * Duplicate the contents of ipipe to opipe without actually
1522          * copying the data.
1523          */
1524         if (ipipe && opipe && ipipe != opipe) {
1525                 /*
1526                  * Keep going, unless we encounter an error. The ipipe/opipe
1527                  * ordering doesn't really matter.
1528                  */
1529                 ret = link_ipipe_prep(ipipe, flags);
1530                 if (!ret) {
1531                         ret = link_opipe_prep(opipe, flags);
1532                         if (!ret) {
1533                                 ret = link_pipe(ipipe, opipe, len, flags);
1534                                 if (!ret && (flags & SPLICE_F_NONBLOCK))
1535                                         ret = -EAGAIN;
1536                         }
1537                 }
1538         }
1539
1540         return ret;
1541 }
1542
1543 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1544 {
1545         struct file *in;
1546         int error, fput_in;
1547
1548         if (unlikely(!len))
1549                 return 0;
1550
1551         error = -EBADF;
1552         in = fget_light(fdin, &fput_in);
1553         if (in) {
1554                 if (in->f_mode & FMODE_READ) {
1555                         int fput_out;
1556                         struct file *out = fget_light(fdout, &fput_out);
1557
1558                         if (out) {
1559                                 if (out->f_mode & FMODE_WRITE)
1560                                         error = do_tee(in, out, len, flags);
1561                                 fput_light(out, fput_out);
1562                         }
1563                 }
1564                 fput_light(in, fput_in);
1565         }
1566
1567         return error;
1568 }