]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/ubifs/debug.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[karo-tx-linux.git] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29
30 #define UBIFS_DBG_PRESERVE_UBI
31
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
37 #include <linux/slab.h>
38
39 #ifdef CONFIG_UBIFS_FS_DEBUG
40
41 DEFINE_SPINLOCK(dbg_lock);
42
43 static char dbg_key_buf0[128];
44 static char dbg_key_buf1[128];
45
46 unsigned int ubifs_msg_flags;
47 unsigned int ubifs_chk_flags;
48 unsigned int ubifs_tst_flags;
49
50 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
51 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
52 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
53
54 MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
55 MODULE_PARM_DESC(debug_chks, "Debug check flags");
56 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
57
58 static const char *get_key_fmt(int fmt)
59 {
60         switch (fmt) {
61         case UBIFS_SIMPLE_KEY_FMT:
62                 return "simple";
63         default:
64                 return "unknown/invalid format";
65         }
66 }
67
68 static const char *get_key_hash(int hash)
69 {
70         switch (hash) {
71         case UBIFS_KEY_HASH_R5:
72                 return "R5";
73         case UBIFS_KEY_HASH_TEST:
74                 return "test";
75         default:
76                 return "unknown/invalid name hash";
77         }
78 }
79
80 static const char *get_key_type(int type)
81 {
82         switch (type) {
83         case UBIFS_INO_KEY:
84                 return "inode";
85         case UBIFS_DENT_KEY:
86                 return "direntry";
87         case UBIFS_XENT_KEY:
88                 return "xentry";
89         case UBIFS_DATA_KEY:
90                 return "data";
91         case UBIFS_TRUN_KEY:
92                 return "truncate";
93         default:
94                 return "unknown/invalid key";
95         }
96 }
97
98 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
99                         char *buffer)
100 {
101         char *p = buffer;
102         int type = key_type(c, key);
103
104         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
105                 switch (type) {
106                 case UBIFS_INO_KEY:
107                         sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
108                                get_key_type(type));
109                         break;
110                 case UBIFS_DENT_KEY:
111                 case UBIFS_XENT_KEY:
112                         sprintf(p, "(%lu, %s, %#08x)",
113                                 (unsigned long)key_inum(c, key),
114                                 get_key_type(type), key_hash(c, key));
115                         break;
116                 case UBIFS_DATA_KEY:
117                         sprintf(p, "(%lu, %s, %u)",
118                                 (unsigned long)key_inum(c, key),
119                                 get_key_type(type), key_block(c, key));
120                         break;
121                 case UBIFS_TRUN_KEY:
122                         sprintf(p, "(%lu, %s)",
123                                 (unsigned long)key_inum(c, key),
124                                 get_key_type(type));
125                         break;
126                 default:
127                         sprintf(p, "(bad key type: %#08x, %#08x)",
128                                 key->u32[0], key->u32[1]);
129                 }
130         } else
131                 sprintf(p, "bad key format %d", c->key_fmt);
132 }
133
134 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
135 {
136         /* dbg_lock must be held */
137         sprintf_key(c, key, dbg_key_buf0);
138         return dbg_key_buf0;
139 }
140
141 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
142 {
143         /* dbg_lock must be held */
144         sprintf_key(c, key, dbg_key_buf1);
145         return dbg_key_buf1;
146 }
147
148 const char *dbg_ntype(int type)
149 {
150         switch (type) {
151         case UBIFS_PAD_NODE:
152                 return "padding node";
153         case UBIFS_SB_NODE:
154                 return "superblock node";
155         case UBIFS_MST_NODE:
156                 return "master node";
157         case UBIFS_REF_NODE:
158                 return "reference node";
159         case UBIFS_INO_NODE:
160                 return "inode node";
161         case UBIFS_DENT_NODE:
162                 return "direntry node";
163         case UBIFS_XENT_NODE:
164                 return "xentry node";
165         case UBIFS_DATA_NODE:
166                 return "data node";
167         case UBIFS_TRUN_NODE:
168                 return "truncate node";
169         case UBIFS_IDX_NODE:
170                 return "indexing node";
171         case UBIFS_CS_NODE:
172                 return "commit start node";
173         case UBIFS_ORPH_NODE:
174                 return "orphan node";
175         default:
176                 return "unknown node";
177         }
178 }
179
180 static const char *dbg_gtype(int type)
181 {
182         switch (type) {
183         case UBIFS_NO_NODE_GROUP:
184                 return "no node group";
185         case UBIFS_IN_NODE_GROUP:
186                 return "in node group";
187         case UBIFS_LAST_OF_NODE_GROUP:
188                 return "last of node group";
189         default:
190                 return "unknown";
191         }
192 }
193
194 const char *dbg_cstate(int cmt_state)
195 {
196         switch (cmt_state) {
197         case COMMIT_RESTING:
198                 return "commit resting";
199         case COMMIT_BACKGROUND:
200                 return "background commit requested";
201         case COMMIT_REQUIRED:
202                 return "commit required";
203         case COMMIT_RUNNING_BACKGROUND:
204                 return "BACKGROUND commit running";
205         case COMMIT_RUNNING_REQUIRED:
206                 return "commit running and required";
207         case COMMIT_BROKEN:
208                 return "broken commit";
209         default:
210                 return "unknown commit state";
211         }
212 }
213
214 const char *dbg_jhead(int jhead)
215 {
216         switch (jhead) {
217         case GCHD:
218                 return "0 (GC)";
219         case BASEHD:
220                 return "1 (base)";
221         case DATAHD:
222                 return "2 (data)";
223         default:
224                 return "unknown journal head";
225         }
226 }
227
228 static void dump_ch(const struct ubifs_ch *ch)
229 {
230         printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
231         printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
232         printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
233                dbg_ntype(ch->node_type));
234         printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
235                dbg_gtype(ch->group_type));
236         printk(KERN_DEBUG "\tsqnum          %llu\n",
237                (unsigned long long)le64_to_cpu(ch->sqnum));
238         printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
239 }
240
241 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
242 {
243         const struct ubifs_inode *ui = ubifs_inode(inode);
244
245         printk(KERN_DEBUG "Dump in-memory inode:");
246         printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
247         printk(KERN_DEBUG "\tsize           %llu\n",
248                (unsigned long long)i_size_read(inode));
249         printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
250         printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
251         printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
252         printk(KERN_DEBUG "\tatime          %u.%u\n",
253                (unsigned int)inode->i_atime.tv_sec,
254                (unsigned int)inode->i_atime.tv_nsec);
255         printk(KERN_DEBUG "\tmtime          %u.%u\n",
256                (unsigned int)inode->i_mtime.tv_sec,
257                (unsigned int)inode->i_mtime.tv_nsec);
258         printk(KERN_DEBUG "\tctime          %u.%u\n",
259                (unsigned int)inode->i_ctime.tv_sec,
260                (unsigned int)inode->i_ctime.tv_nsec);
261         printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
262         printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
263         printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
264         printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
265         printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
266         printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
267         printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
268         printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
269                (unsigned long long)ui->synced_i_size);
270         printk(KERN_DEBUG "\tui_size        %llu\n",
271                (unsigned long long)ui->ui_size);
272         printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
273         printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
274         printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
275         printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
276         printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
277 }
278
279 void dbg_dump_node(const struct ubifs_info *c, const void *node)
280 {
281         int i, n;
282         union ubifs_key key;
283         const struct ubifs_ch *ch = node;
284
285         if (dbg_failure_mode)
286                 return;
287
288         /* If the magic is incorrect, just hexdump the first bytes */
289         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
290                 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
291                 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
292                                (void *)node, UBIFS_CH_SZ, 1);
293                 return;
294         }
295
296         spin_lock(&dbg_lock);
297         dump_ch(node);
298
299         switch (ch->node_type) {
300         case UBIFS_PAD_NODE:
301         {
302                 const struct ubifs_pad_node *pad = node;
303
304                 printk(KERN_DEBUG "\tpad_len        %u\n",
305                        le32_to_cpu(pad->pad_len));
306                 break;
307         }
308         case UBIFS_SB_NODE:
309         {
310                 const struct ubifs_sb_node *sup = node;
311                 unsigned int sup_flags = le32_to_cpu(sup->flags);
312
313                 printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
314                        (int)sup->key_hash, get_key_hash(sup->key_hash));
315                 printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
316                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
317                 printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
318                 printk(KERN_DEBUG "\t  big_lpt      %u\n",
319                        !!(sup_flags & UBIFS_FLG_BIGLPT));
320                 printk(KERN_DEBUG "\tmin_io_size    %u\n",
321                        le32_to_cpu(sup->min_io_size));
322                 printk(KERN_DEBUG "\tleb_size       %u\n",
323                        le32_to_cpu(sup->leb_size));
324                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
325                        le32_to_cpu(sup->leb_cnt));
326                 printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
327                        le32_to_cpu(sup->max_leb_cnt));
328                 printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
329                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
330                 printk(KERN_DEBUG "\tlog_lebs       %u\n",
331                        le32_to_cpu(sup->log_lebs));
332                 printk(KERN_DEBUG "\tlpt_lebs       %u\n",
333                        le32_to_cpu(sup->lpt_lebs));
334                 printk(KERN_DEBUG "\torph_lebs      %u\n",
335                        le32_to_cpu(sup->orph_lebs));
336                 printk(KERN_DEBUG "\tjhead_cnt      %u\n",
337                        le32_to_cpu(sup->jhead_cnt));
338                 printk(KERN_DEBUG "\tfanout         %u\n",
339                        le32_to_cpu(sup->fanout));
340                 printk(KERN_DEBUG "\tlsave_cnt      %u\n",
341                        le32_to_cpu(sup->lsave_cnt));
342                 printk(KERN_DEBUG "\tdefault_compr  %u\n",
343                        (int)le16_to_cpu(sup->default_compr));
344                 printk(KERN_DEBUG "\trp_size        %llu\n",
345                        (unsigned long long)le64_to_cpu(sup->rp_size));
346                 printk(KERN_DEBUG "\trp_uid         %u\n",
347                        le32_to_cpu(sup->rp_uid));
348                 printk(KERN_DEBUG "\trp_gid         %u\n",
349                        le32_to_cpu(sup->rp_gid));
350                 printk(KERN_DEBUG "\tfmt_version    %u\n",
351                        le32_to_cpu(sup->fmt_version));
352                 printk(KERN_DEBUG "\ttime_gran      %u\n",
353                        le32_to_cpu(sup->time_gran));
354                 printk(KERN_DEBUG "\tUUID           %pUB\n",
355                        sup->uuid);
356                 break;
357         }
358         case UBIFS_MST_NODE:
359         {
360                 const struct ubifs_mst_node *mst = node;
361
362                 printk(KERN_DEBUG "\thighest_inum   %llu\n",
363                        (unsigned long long)le64_to_cpu(mst->highest_inum));
364                 printk(KERN_DEBUG "\tcommit number  %llu\n",
365                        (unsigned long long)le64_to_cpu(mst->cmt_no));
366                 printk(KERN_DEBUG "\tflags          %#x\n",
367                        le32_to_cpu(mst->flags));
368                 printk(KERN_DEBUG "\tlog_lnum       %u\n",
369                        le32_to_cpu(mst->log_lnum));
370                 printk(KERN_DEBUG "\troot_lnum      %u\n",
371                        le32_to_cpu(mst->root_lnum));
372                 printk(KERN_DEBUG "\troot_offs      %u\n",
373                        le32_to_cpu(mst->root_offs));
374                 printk(KERN_DEBUG "\troot_len       %u\n",
375                        le32_to_cpu(mst->root_len));
376                 printk(KERN_DEBUG "\tgc_lnum        %u\n",
377                        le32_to_cpu(mst->gc_lnum));
378                 printk(KERN_DEBUG "\tihead_lnum     %u\n",
379                        le32_to_cpu(mst->ihead_lnum));
380                 printk(KERN_DEBUG "\tihead_offs     %u\n",
381                        le32_to_cpu(mst->ihead_offs));
382                 printk(KERN_DEBUG "\tindex_size     %llu\n",
383                        (unsigned long long)le64_to_cpu(mst->index_size));
384                 printk(KERN_DEBUG "\tlpt_lnum       %u\n",
385                        le32_to_cpu(mst->lpt_lnum));
386                 printk(KERN_DEBUG "\tlpt_offs       %u\n",
387                        le32_to_cpu(mst->lpt_offs));
388                 printk(KERN_DEBUG "\tnhead_lnum     %u\n",
389                        le32_to_cpu(mst->nhead_lnum));
390                 printk(KERN_DEBUG "\tnhead_offs     %u\n",
391                        le32_to_cpu(mst->nhead_offs));
392                 printk(KERN_DEBUG "\tltab_lnum      %u\n",
393                        le32_to_cpu(mst->ltab_lnum));
394                 printk(KERN_DEBUG "\tltab_offs      %u\n",
395                        le32_to_cpu(mst->ltab_offs));
396                 printk(KERN_DEBUG "\tlsave_lnum     %u\n",
397                        le32_to_cpu(mst->lsave_lnum));
398                 printk(KERN_DEBUG "\tlsave_offs     %u\n",
399                        le32_to_cpu(mst->lsave_offs));
400                 printk(KERN_DEBUG "\tlscan_lnum     %u\n",
401                        le32_to_cpu(mst->lscan_lnum));
402                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
403                        le32_to_cpu(mst->leb_cnt));
404                 printk(KERN_DEBUG "\tempty_lebs     %u\n",
405                        le32_to_cpu(mst->empty_lebs));
406                 printk(KERN_DEBUG "\tidx_lebs       %u\n",
407                        le32_to_cpu(mst->idx_lebs));
408                 printk(KERN_DEBUG "\ttotal_free     %llu\n",
409                        (unsigned long long)le64_to_cpu(mst->total_free));
410                 printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
411                        (unsigned long long)le64_to_cpu(mst->total_dirty));
412                 printk(KERN_DEBUG "\ttotal_used     %llu\n",
413                        (unsigned long long)le64_to_cpu(mst->total_used));
414                 printk(KERN_DEBUG "\ttotal_dead     %llu\n",
415                        (unsigned long long)le64_to_cpu(mst->total_dead));
416                 printk(KERN_DEBUG "\ttotal_dark     %llu\n",
417                        (unsigned long long)le64_to_cpu(mst->total_dark));
418                 break;
419         }
420         case UBIFS_REF_NODE:
421         {
422                 const struct ubifs_ref_node *ref = node;
423
424                 printk(KERN_DEBUG "\tlnum           %u\n",
425                        le32_to_cpu(ref->lnum));
426                 printk(KERN_DEBUG "\toffs           %u\n",
427                        le32_to_cpu(ref->offs));
428                 printk(KERN_DEBUG "\tjhead          %u\n",
429                        le32_to_cpu(ref->jhead));
430                 break;
431         }
432         case UBIFS_INO_NODE:
433         {
434                 const struct ubifs_ino_node *ino = node;
435
436                 key_read(c, &ino->key, &key);
437                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
438                 printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
439                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
440                 printk(KERN_DEBUG "\tsize           %llu\n",
441                        (unsigned long long)le64_to_cpu(ino->size));
442                 printk(KERN_DEBUG "\tnlink          %u\n",
443                        le32_to_cpu(ino->nlink));
444                 printk(KERN_DEBUG "\tatime          %lld.%u\n",
445                        (long long)le64_to_cpu(ino->atime_sec),
446                        le32_to_cpu(ino->atime_nsec));
447                 printk(KERN_DEBUG "\tmtime          %lld.%u\n",
448                        (long long)le64_to_cpu(ino->mtime_sec),
449                        le32_to_cpu(ino->mtime_nsec));
450                 printk(KERN_DEBUG "\tctime          %lld.%u\n",
451                        (long long)le64_to_cpu(ino->ctime_sec),
452                        le32_to_cpu(ino->ctime_nsec));
453                 printk(KERN_DEBUG "\tuid            %u\n",
454                        le32_to_cpu(ino->uid));
455                 printk(KERN_DEBUG "\tgid            %u\n",
456                        le32_to_cpu(ino->gid));
457                 printk(KERN_DEBUG "\tmode           %u\n",
458                        le32_to_cpu(ino->mode));
459                 printk(KERN_DEBUG "\tflags          %#x\n",
460                        le32_to_cpu(ino->flags));
461                 printk(KERN_DEBUG "\txattr_cnt      %u\n",
462                        le32_to_cpu(ino->xattr_cnt));
463                 printk(KERN_DEBUG "\txattr_size     %u\n",
464                        le32_to_cpu(ino->xattr_size));
465                 printk(KERN_DEBUG "\txattr_names    %u\n",
466                        le32_to_cpu(ino->xattr_names));
467                 printk(KERN_DEBUG "\tcompr_type     %#x\n",
468                        (int)le16_to_cpu(ino->compr_type));
469                 printk(KERN_DEBUG "\tdata len       %u\n",
470                        le32_to_cpu(ino->data_len));
471                 break;
472         }
473         case UBIFS_DENT_NODE:
474         case UBIFS_XENT_NODE:
475         {
476                 const struct ubifs_dent_node *dent = node;
477                 int nlen = le16_to_cpu(dent->nlen);
478
479                 key_read(c, &dent->key, &key);
480                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
481                 printk(KERN_DEBUG "\tinum           %llu\n",
482                        (unsigned long long)le64_to_cpu(dent->inum));
483                 printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
484                 printk(KERN_DEBUG "\tnlen           %d\n", nlen);
485                 printk(KERN_DEBUG "\tname           ");
486
487                 if (nlen > UBIFS_MAX_NLEN)
488                         printk(KERN_DEBUG "(bad name length, not printing, "
489                                           "bad or corrupted node)");
490                 else {
491                         for (i = 0; i < nlen && dent->name[i]; i++)
492                                 printk(KERN_CONT "%c", dent->name[i]);
493                 }
494                 printk(KERN_CONT "\n");
495
496                 break;
497         }
498         case UBIFS_DATA_NODE:
499         {
500                 const struct ubifs_data_node *dn = node;
501                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
502
503                 key_read(c, &dn->key, &key);
504                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
505                 printk(KERN_DEBUG "\tsize           %u\n",
506                        le32_to_cpu(dn->size));
507                 printk(KERN_DEBUG "\tcompr_typ      %d\n",
508                        (int)le16_to_cpu(dn->compr_type));
509                 printk(KERN_DEBUG "\tdata size      %d\n",
510                        dlen);
511                 printk(KERN_DEBUG "\tdata:\n");
512                 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
513                                (void *)&dn->data, dlen, 0);
514                 break;
515         }
516         case UBIFS_TRUN_NODE:
517         {
518                 const struct ubifs_trun_node *trun = node;
519
520                 printk(KERN_DEBUG "\tinum           %u\n",
521                        le32_to_cpu(trun->inum));
522                 printk(KERN_DEBUG "\told_size       %llu\n",
523                        (unsigned long long)le64_to_cpu(trun->old_size));
524                 printk(KERN_DEBUG "\tnew_size       %llu\n",
525                        (unsigned long long)le64_to_cpu(trun->new_size));
526                 break;
527         }
528         case UBIFS_IDX_NODE:
529         {
530                 const struct ubifs_idx_node *idx = node;
531
532                 n = le16_to_cpu(idx->child_cnt);
533                 printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
534                 printk(KERN_DEBUG "\tlevel          %d\n",
535                        (int)le16_to_cpu(idx->level));
536                 printk(KERN_DEBUG "\tBranches:\n");
537
538                 for (i = 0; i < n && i < c->fanout - 1; i++) {
539                         const struct ubifs_branch *br;
540
541                         br = ubifs_idx_branch(c, idx, i);
542                         key_read(c, &br->key, &key);
543                         printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
544                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
545                                le32_to_cpu(br->len), DBGKEY(&key));
546                 }
547                 break;
548         }
549         case UBIFS_CS_NODE:
550                 break;
551         case UBIFS_ORPH_NODE:
552         {
553                 const struct ubifs_orph_node *orph = node;
554
555                 printk(KERN_DEBUG "\tcommit number  %llu\n",
556                        (unsigned long long)
557                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
558                 printk(KERN_DEBUG "\tlast node flag %llu\n",
559                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
560                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
561                 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
562                 for (i = 0; i < n; i++)
563                         printk(KERN_DEBUG "\t  ino %llu\n",
564                                (unsigned long long)le64_to_cpu(orph->inos[i]));
565                 break;
566         }
567         default:
568                 printk(KERN_DEBUG "node type %d was not recognized\n",
569                        (int)ch->node_type);
570         }
571         spin_unlock(&dbg_lock);
572 }
573
574 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
575 {
576         spin_lock(&dbg_lock);
577         printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
578                req->new_ino, req->dirtied_ino);
579         printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
580                req->new_ino_d, req->dirtied_ino_d);
581         printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
582                req->new_page, req->dirtied_page);
583         printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
584                req->new_dent, req->mod_dent);
585         printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
586         printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
587                req->data_growth, req->dd_growth);
588         spin_unlock(&dbg_lock);
589 }
590
591 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
592 {
593         spin_lock(&dbg_lock);
594         printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
595                "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
596         printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
597                "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
598                lst->total_dirty);
599         printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
600                "total_dead %lld\n", lst->total_used, lst->total_dark,
601                lst->total_dead);
602         spin_unlock(&dbg_lock);
603 }
604
605 void dbg_dump_budg(struct ubifs_info *c)
606 {
607         int i;
608         struct rb_node *rb;
609         struct ubifs_bud *bud;
610         struct ubifs_gced_idx_leb *idx_gc;
611         long long available, outstanding, free;
612
613         ubifs_assert(spin_is_locked(&c->space_lock));
614         spin_lock(&dbg_lock);
615         printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
616                "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
617                c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
618         printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
619                "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
620                c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
621                c->freeable_cnt);
622         printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
623                "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
624                c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
625         printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
626                "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
627                atomic_long_read(&c->dirty_zn_cnt),
628                atomic_long_read(&c->clean_zn_cnt));
629         printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
630                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
631         printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
632                c->gc_lnum, c->ihead_lnum);
633         /* If we are in R/O mode, journal heads do not exist */
634         if (c->jheads)
635                 for (i = 0; i < c->jhead_cnt; i++)
636                         printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
637                                dbg_jhead(c->jheads[i].wbuf.jhead),
638                                c->jheads[i].wbuf.lnum);
639         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
640                 bud = rb_entry(rb, struct ubifs_bud, rb);
641                 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
642         }
643         list_for_each_entry(bud, &c->old_buds, list)
644                 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
645         list_for_each_entry(idx_gc, &c->idx_gc, list)
646                 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
647                        idx_gc->lnum, idx_gc->unmap);
648         printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
649
650         /* Print budgeting predictions */
651         available = ubifs_calc_available(c, c->min_idx_lebs);
652         outstanding = c->budg_data_growth + c->budg_dd_growth;
653         free = ubifs_get_free_space_nolock(c);
654         printk(KERN_DEBUG "Budgeting predictions:\n");
655         printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
656                available, outstanding, free);
657         spin_unlock(&dbg_lock);
658 }
659
660 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
661 {
662         int i, spc, dark = 0, dead = 0;
663         struct rb_node *rb;
664         struct ubifs_bud *bud;
665
666         spc = lp->free + lp->dirty;
667         if (spc < c->dead_wm)
668                 dead = spc;
669         else
670                 dark = ubifs_calc_dark(c, spc);
671
672         if (lp->flags & LPROPS_INDEX)
673                 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
674                        "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
675                        lp->dirty, c->leb_size - spc, spc, lp->flags);
676         else
677                 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
678                        "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
679                        "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
680                        c->leb_size - spc, spc, dark, dead,
681                        (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
682
683         if (lp->flags & LPROPS_TAKEN) {
684                 if (lp->flags & LPROPS_INDEX)
685                         printk(KERN_CONT "index, taken");
686                 else
687                         printk(KERN_CONT "taken");
688         } else {
689                 const char *s;
690
691                 if (lp->flags & LPROPS_INDEX) {
692                         switch (lp->flags & LPROPS_CAT_MASK) {
693                         case LPROPS_DIRTY_IDX:
694                                 s = "dirty index";
695                                 break;
696                         case LPROPS_FRDI_IDX:
697                                 s = "freeable index";
698                                 break;
699                         default:
700                                 s = "index";
701                         }
702                 } else {
703                         switch (lp->flags & LPROPS_CAT_MASK) {
704                         case LPROPS_UNCAT:
705                                 s = "not categorized";
706                                 break;
707                         case LPROPS_DIRTY:
708                                 s = "dirty";
709                                 break;
710                         case LPROPS_FREE:
711                                 s = "free";
712                                 break;
713                         case LPROPS_EMPTY:
714                                 s = "empty";
715                                 break;
716                         case LPROPS_FREEABLE:
717                                 s = "freeable";
718                                 break;
719                         default:
720                                 s = NULL;
721                                 break;
722                         }
723                 }
724                 printk(KERN_CONT "%s", s);
725         }
726
727         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
728                 bud = rb_entry(rb, struct ubifs_bud, rb);
729                 if (bud->lnum == lp->lnum) {
730                         int head = 0;
731                         for (i = 0; i < c->jhead_cnt; i++) {
732                                 if (lp->lnum == c->jheads[i].wbuf.lnum) {
733                                         printk(KERN_CONT ", jhead %s",
734                                                dbg_jhead(i));
735                                         head = 1;
736                                 }
737                         }
738                         if (!head)
739                                 printk(KERN_CONT ", bud of jhead %s",
740                                        dbg_jhead(bud->jhead));
741                 }
742         }
743         if (lp->lnum == c->gc_lnum)
744                 printk(KERN_CONT ", GC LEB");
745         printk(KERN_CONT ")\n");
746 }
747
748 void dbg_dump_lprops(struct ubifs_info *c)
749 {
750         int lnum, err;
751         struct ubifs_lprops lp;
752         struct ubifs_lp_stats lst;
753
754         printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
755                current->pid);
756         ubifs_get_lp_stats(c, &lst);
757         dbg_dump_lstats(&lst);
758
759         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
760                 err = ubifs_read_one_lp(c, lnum, &lp);
761                 if (err)
762                         ubifs_err("cannot read lprops for LEB %d", lnum);
763
764                 dbg_dump_lprop(c, &lp);
765         }
766         printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
767                current->pid);
768 }
769
770 void dbg_dump_lpt_info(struct ubifs_info *c)
771 {
772         int i;
773
774         spin_lock(&dbg_lock);
775         printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
776         printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
777         printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
778         printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
779         printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
780         printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
781         printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
782         printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
783         printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
784         printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
785         printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
786         printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
787         printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
788         printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
789         printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
790         printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
791         printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
792         printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
793         printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
794         printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
795         printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
796                c->nhead_lnum, c->nhead_offs);
797         printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
798                c->ltab_lnum, c->ltab_offs);
799         if (c->big_lpt)
800                 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
801                        c->lsave_lnum, c->lsave_offs);
802         for (i = 0; i < c->lpt_lebs; i++)
803                 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
804                        "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
805                        c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
806         spin_unlock(&dbg_lock);
807 }
808
809 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
810 {
811         struct ubifs_scan_leb *sleb;
812         struct ubifs_scan_node *snod;
813         void *buf;
814
815         if (dbg_failure_mode)
816                 return;
817
818         printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
819                current->pid, lnum);
820
821         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
822         if (!buf) {
823                 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
824                 return;
825         }
826
827         sleb = ubifs_scan(c, lnum, 0, buf, 0);
828         if (IS_ERR(sleb)) {
829                 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
830                 goto out;
831         }
832
833         printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
834                sleb->nodes_cnt, sleb->endpt);
835
836         list_for_each_entry(snod, &sleb->nodes, list) {
837                 cond_resched();
838                 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
839                        snod->offs, snod->len);
840                 dbg_dump_node(c, snod->node);
841         }
842
843         printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
844                current->pid, lnum);
845         ubifs_scan_destroy(sleb);
846
847 out:
848         vfree(buf);
849         return;
850 }
851
852 void dbg_dump_znode(const struct ubifs_info *c,
853                     const struct ubifs_znode *znode)
854 {
855         int n;
856         const struct ubifs_zbranch *zbr;
857
858         spin_lock(&dbg_lock);
859         if (znode->parent)
860                 zbr = &znode->parent->zbranch[znode->iip];
861         else
862                 zbr = &c->zroot;
863
864         printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
865                " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
866                zbr->len, znode->parent, znode->iip, znode->level,
867                znode->child_cnt, znode->flags);
868
869         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
870                 spin_unlock(&dbg_lock);
871                 return;
872         }
873
874         printk(KERN_DEBUG "zbranches:\n");
875         for (n = 0; n < znode->child_cnt; n++) {
876                 zbr = &znode->zbranch[n];
877                 if (znode->level > 0)
878                         printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
879                                           "%s\n", n, zbr->znode, zbr->lnum,
880                                           zbr->offs, zbr->len,
881                                           DBGKEY(&zbr->key));
882                 else
883                         printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
884                                           "%s\n", n, zbr->znode, zbr->lnum,
885                                           zbr->offs, zbr->len,
886                                           DBGKEY(&zbr->key));
887         }
888         spin_unlock(&dbg_lock);
889 }
890
891 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
892 {
893         int i;
894
895         printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
896                current->pid, cat, heap->cnt);
897         for (i = 0; i < heap->cnt; i++) {
898                 struct ubifs_lprops *lprops = heap->arr[i];
899
900                 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
901                        "flags %d\n", i, lprops->lnum, lprops->hpos,
902                        lprops->free, lprops->dirty, lprops->flags);
903         }
904         printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
905 }
906
907 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
908                     struct ubifs_nnode *parent, int iip)
909 {
910         int i;
911
912         printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
913         printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
914                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
915         printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
916                pnode->flags, iip, pnode->level, pnode->num);
917         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
918                 struct ubifs_lprops *lp = &pnode->lprops[i];
919
920                 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
921                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
922         }
923 }
924
925 void dbg_dump_tnc(struct ubifs_info *c)
926 {
927         struct ubifs_znode *znode;
928         int level;
929
930         printk(KERN_DEBUG "\n");
931         printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
932         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
933         level = znode->level;
934         printk(KERN_DEBUG "== Level %d ==\n", level);
935         while (znode) {
936                 if (level != znode->level) {
937                         level = znode->level;
938                         printk(KERN_DEBUG "== Level %d ==\n", level);
939                 }
940                 dbg_dump_znode(c, znode);
941                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
942         }
943         printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
944 }
945
946 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
947                       void *priv)
948 {
949         dbg_dump_znode(c, znode);
950         return 0;
951 }
952
953 /**
954  * dbg_dump_index - dump the on-flash index.
955  * @c: UBIFS file-system description object
956  *
957  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
958  * which dumps only in-memory znodes and does not read znodes which from flash.
959  */
960 void dbg_dump_index(struct ubifs_info *c)
961 {
962         dbg_walk_index(c, NULL, dump_znode, NULL);
963 }
964
965 /**
966  * dbg_save_space_info - save information about flash space.
967  * @c: UBIFS file-system description object
968  *
969  * This function saves information about UBIFS free space, dirty space, etc, in
970  * order to check it later.
971  */
972 void dbg_save_space_info(struct ubifs_info *c)
973 {
974         struct ubifs_debug_info *d = c->dbg;
975         int freeable_cnt;
976
977         spin_lock(&c->space_lock);
978         memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
979
980         /*
981          * We use a dirty hack here and zero out @c->freeable_cnt, because it
982          * affects the free space calculations, and UBIFS might not know about
983          * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
984          * only when we read their lprops, and we do this only lazily, upon the
985          * need. So at any given point of time @c->freeable_cnt might be not
986          * exactly accurate.
987          *
988          * Just one example about the issue we hit when we did not zero
989          * @c->freeable_cnt.
990          * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
991          *    amount of free space in @d->saved_free
992          * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
993          *    information from flash, where we cache LEBs from various
994          *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
995          *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
996          *    -> 'ubifs_get_pnode()' -> 'update_cats()'
997          *    -> 'ubifs_add_to_cat()').
998          * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
999          *    becomes %1.
1000          * 4. We calculate the amount of free space when the re-mount is
1001          *    finished in 'dbg_check_space_info()' and it does not match
1002          *    @d->saved_free.
1003          */
1004         freeable_cnt = c->freeable_cnt;
1005         c->freeable_cnt = 0;
1006         d->saved_free = ubifs_get_free_space_nolock(c);
1007         c->freeable_cnt = freeable_cnt;
1008         spin_unlock(&c->space_lock);
1009 }
1010
1011 /**
1012  * dbg_check_space_info - check flash space information.
1013  * @c: UBIFS file-system description object
1014  *
1015  * This function compares current flash space information with the information
1016  * which was saved when the 'dbg_save_space_info()' function was called.
1017  * Returns zero if the information has not changed, and %-EINVAL it it has
1018  * changed.
1019  */
1020 int dbg_check_space_info(struct ubifs_info *c)
1021 {
1022         struct ubifs_debug_info *d = c->dbg;
1023         struct ubifs_lp_stats lst;
1024         long long free;
1025         int freeable_cnt;
1026
1027         spin_lock(&c->space_lock);
1028         freeable_cnt = c->freeable_cnt;
1029         c->freeable_cnt = 0;
1030         free = ubifs_get_free_space_nolock(c);
1031         c->freeable_cnt = freeable_cnt;
1032         spin_unlock(&c->space_lock);
1033
1034         if (free != d->saved_free) {
1035                 ubifs_err("free space changed from %lld to %lld",
1036                           d->saved_free, free);
1037                 goto out;
1038         }
1039
1040         return 0;
1041
1042 out:
1043         ubifs_msg("saved lprops statistics dump");
1044         dbg_dump_lstats(&d->saved_lst);
1045         ubifs_get_lp_stats(c, &lst);
1046
1047         ubifs_msg("current lprops statistics dump");
1048         dbg_dump_lstats(&lst);
1049
1050         spin_lock(&c->space_lock);
1051         dbg_dump_budg(c);
1052         spin_unlock(&c->space_lock);
1053         dump_stack();
1054         return -EINVAL;
1055 }
1056
1057 /**
1058  * dbg_check_synced_i_size - check synchronized inode size.
1059  * @inode: inode to check
1060  *
1061  * If inode is clean, synchronized inode size has to be equivalent to current
1062  * inode size. This function has to be called only for locked inodes (@i_mutex
1063  * has to be locked). Returns %0 if synchronized inode size if correct, and
1064  * %-EINVAL if not.
1065  */
1066 int dbg_check_synced_i_size(struct inode *inode)
1067 {
1068         int err = 0;
1069         struct ubifs_inode *ui = ubifs_inode(inode);
1070
1071         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1072                 return 0;
1073         if (!S_ISREG(inode->i_mode))
1074                 return 0;
1075
1076         mutex_lock(&ui->ui_mutex);
1077         spin_lock(&ui->ui_lock);
1078         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1079                 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1080                           "is clean", ui->ui_size, ui->synced_i_size);
1081                 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1082                           inode->i_mode, i_size_read(inode));
1083                 dbg_dump_stack();
1084                 err = -EINVAL;
1085         }
1086         spin_unlock(&ui->ui_lock);
1087         mutex_unlock(&ui->ui_mutex);
1088         return err;
1089 }
1090
1091 /*
1092  * dbg_check_dir - check directory inode size and link count.
1093  * @c: UBIFS file-system description object
1094  * @dir: the directory to calculate size for
1095  * @size: the result is returned here
1096  *
1097  * This function makes sure that directory size and link count are correct.
1098  * Returns zero in case of success and a negative error code in case of
1099  * failure.
1100  *
1101  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1102  * calling this function.
1103  */
1104 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
1105 {
1106         unsigned int nlink = 2;
1107         union ubifs_key key;
1108         struct ubifs_dent_node *dent, *pdent = NULL;
1109         struct qstr nm = { .name = NULL };
1110         loff_t size = UBIFS_INO_NODE_SZ;
1111
1112         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1113                 return 0;
1114
1115         if (!S_ISDIR(dir->i_mode))
1116                 return 0;
1117
1118         lowest_dent_key(c, &key, dir->i_ino);
1119         while (1) {
1120                 int err;
1121
1122                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1123                 if (IS_ERR(dent)) {
1124                         err = PTR_ERR(dent);
1125                         if (err == -ENOENT)
1126                                 break;
1127                         return err;
1128                 }
1129
1130                 nm.name = dent->name;
1131                 nm.len = le16_to_cpu(dent->nlen);
1132                 size += CALC_DENT_SIZE(nm.len);
1133                 if (dent->type == UBIFS_ITYPE_DIR)
1134                         nlink += 1;
1135                 kfree(pdent);
1136                 pdent = dent;
1137                 key_read(c, &dent->key, &key);
1138         }
1139         kfree(pdent);
1140
1141         if (i_size_read(dir) != size) {
1142                 ubifs_err("directory inode %lu has size %llu, "
1143                           "but calculated size is %llu", dir->i_ino,
1144                           (unsigned long long)i_size_read(dir),
1145                           (unsigned long long)size);
1146                 dump_stack();
1147                 return -EINVAL;
1148         }
1149         if (dir->i_nlink != nlink) {
1150                 ubifs_err("directory inode %lu has nlink %u, but calculated "
1151                           "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1152                 dump_stack();
1153                 return -EINVAL;
1154         }
1155
1156         return 0;
1157 }
1158
1159 /**
1160  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1161  * @c: UBIFS file-system description object
1162  * @zbr1: first zbranch
1163  * @zbr2: following zbranch
1164  *
1165  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1166  * names of the direntries/xentries which are referred by the keys. This
1167  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1168  * sure the name of direntry/xentry referred by @zbr1 is less than
1169  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1170  * and a negative error code in case of failure.
1171  */
1172 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1173                                struct ubifs_zbranch *zbr2)
1174 {
1175         int err, nlen1, nlen2, cmp;
1176         struct ubifs_dent_node *dent1, *dent2;
1177         union ubifs_key key;
1178
1179         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1180         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1181         if (!dent1)
1182                 return -ENOMEM;
1183         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1184         if (!dent2) {
1185                 err = -ENOMEM;
1186                 goto out_free;
1187         }
1188
1189         err = ubifs_tnc_read_node(c, zbr1, dent1);
1190         if (err)
1191                 goto out_free;
1192         err = ubifs_validate_entry(c, dent1);
1193         if (err)
1194                 goto out_free;
1195
1196         err = ubifs_tnc_read_node(c, zbr2, dent2);
1197         if (err)
1198                 goto out_free;
1199         err = ubifs_validate_entry(c, dent2);
1200         if (err)
1201                 goto out_free;
1202
1203         /* Make sure node keys are the same as in zbranch */
1204         err = 1;
1205         key_read(c, &dent1->key, &key);
1206         if (keys_cmp(c, &zbr1->key, &key)) {
1207                 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1208                         zbr1->offs, DBGKEY(&key));
1209                 dbg_err("but it should have key %s according to tnc",
1210                         DBGKEY(&zbr1->key));
1211                 dbg_dump_node(c, dent1);
1212                 goto out_free;
1213         }
1214
1215         key_read(c, &dent2->key, &key);
1216         if (keys_cmp(c, &zbr2->key, &key)) {
1217                 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1218                         zbr1->offs, DBGKEY(&key));
1219                 dbg_err("but it should have key %s according to tnc",
1220                         DBGKEY(&zbr2->key));
1221                 dbg_dump_node(c, dent2);
1222                 goto out_free;
1223         }
1224
1225         nlen1 = le16_to_cpu(dent1->nlen);
1226         nlen2 = le16_to_cpu(dent2->nlen);
1227
1228         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1229         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1230                 err = 0;
1231                 goto out_free;
1232         }
1233         if (cmp == 0 && nlen1 == nlen2)
1234                 dbg_err("2 xent/dent nodes with the same name");
1235         else
1236                 dbg_err("bad order of colliding key %s",
1237                         DBGKEY(&key));
1238
1239         ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1240         dbg_dump_node(c, dent1);
1241         ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1242         dbg_dump_node(c, dent2);
1243
1244 out_free:
1245         kfree(dent2);
1246         kfree(dent1);
1247         return err;
1248 }
1249
1250 /**
1251  * dbg_check_znode - check if znode is all right.
1252  * @c: UBIFS file-system description object
1253  * @zbr: zbranch which points to this znode
1254  *
1255  * This function makes sure that znode referred to by @zbr is all right.
1256  * Returns zero if it is, and %-EINVAL if it is not.
1257  */
1258 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1259 {
1260         struct ubifs_znode *znode = zbr->znode;
1261         struct ubifs_znode *zp = znode->parent;
1262         int n, err, cmp;
1263
1264         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1265                 err = 1;
1266                 goto out;
1267         }
1268         if (znode->level < 0) {
1269                 err = 2;
1270                 goto out;
1271         }
1272         if (znode->iip < 0 || znode->iip >= c->fanout) {
1273                 err = 3;
1274                 goto out;
1275         }
1276
1277         if (zbr->len == 0)
1278                 /* Only dirty zbranch may have no on-flash nodes */
1279                 if (!ubifs_zn_dirty(znode)) {
1280                         err = 4;
1281                         goto out;
1282                 }
1283
1284         if (ubifs_zn_dirty(znode)) {
1285                 /*
1286                  * If znode is dirty, its parent has to be dirty as well. The
1287                  * order of the operation is important, so we have to have
1288                  * memory barriers.
1289                  */
1290                 smp_mb();
1291                 if (zp && !ubifs_zn_dirty(zp)) {
1292                         /*
1293                          * The dirty flag is atomic and is cleared outside the
1294                          * TNC mutex, so znode's dirty flag may now have
1295                          * been cleared. The child is always cleared before the
1296                          * parent, so we just need to check again.
1297                          */
1298                         smp_mb();
1299                         if (ubifs_zn_dirty(znode)) {
1300                                 err = 5;
1301                                 goto out;
1302                         }
1303                 }
1304         }
1305
1306         if (zp) {
1307                 const union ubifs_key *min, *max;
1308
1309                 if (znode->level != zp->level - 1) {
1310                         err = 6;
1311                         goto out;
1312                 }
1313
1314                 /* Make sure the 'parent' pointer in our znode is correct */
1315                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1316                 if (!err) {
1317                         /* This zbranch does not exist in the parent */
1318                         err = 7;
1319                         goto out;
1320                 }
1321
1322                 if (znode->iip >= zp->child_cnt) {
1323                         err = 8;
1324                         goto out;
1325                 }
1326
1327                 if (znode->iip != n) {
1328                         /* This may happen only in case of collisions */
1329                         if (keys_cmp(c, &zp->zbranch[n].key,
1330                                      &zp->zbranch[znode->iip].key)) {
1331                                 err = 9;
1332                                 goto out;
1333                         }
1334                         n = znode->iip;
1335                 }
1336
1337                 /*
1338                  * Make sure that the first key in our znode is greater than or
1339                  * equal to the key in the pointing zbranch.
1340                  */
1341                 min = &zbr->key;
1342                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1343                 if (cmp == 1) {
1344                         err = 10;
1345                         goto out;
1346                 }
1347
1348                 if (n + 1 < zp->child_cnt) {
1349                         max = &zp->zbranch[n + 1].key;
1350
1351                         /*
1352                          * Make sure the last key in our znode is less or
1353                          * equivalent than the key in the zbranch which goes
1354                          * after our pointing zbranch.
1355                          */
1356                         cmp = keys_cmp(c, max,
1357                                 &znode->zbranch[znode->child_cnt - 1].key);
1358                         if (cmp == -1) {
1359                                 err = 11;
1360                                 goto out;
1361                         }
1362                 }
1363         } else {
1364                 /* This may only be root znode */
1365                 if (zbr != &c->zroot) {
1366                         err = 12;
1367                         goto out;
1368                 }
1369         }
1370
1371         /*
1372          * Make sure that next key is greater or equivalent then the previous
1373          * one.
1374          */
1375         for (n = 1; n < znode->child_cnt; n++) {
1376                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1377                                &znode->zbranch[n].key);
1378                 if (cmp > 0) {
1379                         err = 13;
1380                         goto out;
1381                 }
1382                 if (cmp == 0) {
1383                         /* This can only be keys with colliding hash */
1384                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1385                                 err = 14;
1386                                 goto out;
1387                         }
1388
1389                         if (znode->level != 0 || c->replaying)
1390                                 continue;
1391
1392                         /*
1393                          * Colliding keys should follow binary order of
1394                          * corresponding xentry/dentry names.
1395                          */
1396                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1397                                                   &znode->zbranch[n]);
1398                         if (err < 0)
1399                                 return err;
1400                         if (err) {
1401                                 err = 15;
1402                                 goto out;
1403                         }
1404                 }
1405         }
1406
1407         for (n = 0; n < znode->child_cnt; n++) {
1408                 if (!znode->zbranch[n].znode &&
1409                     (znode->zbranch[n].lnum == 0 ||
1410                      znode->zbranch[n].len == 0)) {
1411                         err = 16;
1412                         goto out;
1413                 }
1414
1415                 if (znode->zbranch[n].lnum != 0 &&
1416                     znode->zbranch[n].len == 0) {
1417                         err = 17;
1418                         goto out;
1419                 }
1420
1421                 if (znode->zbranch[n].lnum == 0 &&
1422                     znode->zbranch[n].len != 0) {
1423                         err = 18;
1424                         goto out;
1425                 }
1426
1427                 if (znode->zbranch[n].lnum == 0 &&
1428                     znode->zbranch[n].offs != 0) {
1429                         err = 19;
1430                         goto out;
1431                 }
1432
1433                 if (znode->level != 0 && znode->zbranch[n].znode)
1434                         if (znode->zbranch[n].znode->parent != znode) {
1435                                 err = 20;
1436                                 goto out;
1437                         }
1438         }
1439
1440         return 0;
1441
1442 out:
1443         ubifs_err("failed, error %d", err);
1444         ubifs_msg("dump of the znode");
1445         dbg_dump_znode(c, znode);
1446         if (zp) {
1447                 ubifs_msg("dump of the parent znode");
1448                 dbg_dump_znode(c, zp);
1449         }
1450         dump_stack();
1451         return -EINVAL;
1452 }
1453
1454 /**
1455  * dbg_check_tnc - check TNC tree.
1456  * @c: UBIFS file-system description object
1457  * @extra: do extra checks that are possible at start commit
1458  *
1459  * This function traverses whole TNC tree and checks every znode. Returns zero
1460  * if everything is all right and %-EINVAL if something is wrong with TNC.
1461  */
1462 int dbg_check_tnc(struct ubifs_info *c, int extra)
1463 {
1464         struct ubifs_znode *znode;
1465         long clean_cnt = 0, dirty_cnt = 0;
1466         int err, last;
1467
1468         if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1469                 return 0;
1470
1471         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1472         if (!c->zroot.znode)
1473                 return 0;
1474
1475         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1476         while (1) {
1477                 struct ubifs_znode *prev;
1478                 struct ubifs_zbranch *zbr;
1479
1480                 if (!znode->parent)
1481                         zbr = &c->zroot;
1482                 else
1483                         zbr = &znode->parent->zbranch[znode->iip];
1484
1485                 err = dbg_check_znode(c, zbr);
1486                 if (err)
1487                         return err;
1488
1489                 if (extra) {
1490                         if (ubifs_zn_dirty(znode))
1491                                 dirty_cnt += 1;
1492                         else
1493                                 clean_cnt += 1;
1494                 }
1495
1496                 prev = znode;
1497                 znode = ubifs_tnc_postorder_next(znode);
1498                 if (!znode)
1499                         break;
1500
1501                 /*
1502                  * If the last key of this znode is equivalent to the first key
1503                  * of the next znode (collision), then check order of the keys.
1504                  */
1505                 last = prev->child_cnt - 1;
1506                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1507                     !keys_cmp(c, &prev->zbranch[last].key,
1508                               &znode->zbranch[0].key)) {
1509                         err = dbg_check_key_order(c, &prev->zbranch[last],
1510                                                   &znode->zbranch[0]);
1511                         if (err < 0)
1512                                 return err;
1513                         if (err) {
1514                                 ubifs_msg("first znode");
1515                                 dbg_dump_znode(c, prev);
1516                                 ubifs_msg("second znode");
1517                                 dbg_dump_znode(c, znode);
1518                                 return -EINVAL;
1519                         }
1520                 }
1521         }
1522
1523         if (extra) {
1524                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1525                         ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1526                                   atomic_long_read(&c->clean_zn_cnt),
1527                                   clean_cnt);
1528                         return -EINVAL;
1529                 }
1530                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1531                         ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1532                                   atomic_long_read(&c->dirty_zn_cnt),
1533                                   dirty_cnt);
1534                         return -EINVAL;
1535                 }
1536         }
1537
1538         return 0;
1539 }
1540
1541 /**
1542  * dbg_walk_index - walk the on-flash index.
1543  * @c: UBIFS file-system description object
1544  * @leaf_cb: called for each leaf node
1545  * @znode_cb: called for each indexing node
1546  * @priv: private data which is passed to callbacks
1547  *
1548  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1549  * node and @znode_cb for each indexing node. Returns zero in case of success
1550  * and a negative error code in case of failure.
1551  *
1552  * It would be better if this function removed every znode it pulled to into
1553  * the TNC, so that the behavior more closely matched the non-debugging
1554  * behavior.
1555  */
1556 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1557                    dbg_znode_callback znode_cb, void *priv)
1558 {
1559         int err;
1560         struct ubifs_zbranch *zbr;
1561         struct ubifs_znode *znode, *child;
1562
1563         mutex_lock(&c->tnc_mutex);
1564         /* If the root indexing node is not in TNC - pull it */
1565         if (!c->zroot.znode) {
1566                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1567                 if (IS_ERR(c->zroot.znode)) {
1568                         err = PTR_ERR(c->zroot.znode);
1569                         c->zroot.znode = NULL;
1570                         goto out_unlock;
1571                 }
1572         }
1573
1574         /*
1575          * We are going to traverse the indexing tree in the postorder manner.
1576          * Go down and find the leftmost indexing node where we are going to
1577          * start from.
1578          */
1579         znode = c->zroot.znode;
1580         while (znode->level > 0) {
1581                 zbr = &znode->zbranch[0];
1582                 child = zbr->znode;
1583                 if (!child) {
1584                         child = ubifs_load_znode(c, zbr, znode, 0);
1585                         if (IS_ERR(child)) {
1586                                 err = PTR_ERR(child);
1587                                 goto out_unlock;
1588                         }
1589                         zbr->znode = child;
1590                 }
1591
1592                 znode = child;
1593         }
1594
1595         /* Iterate over all indexing nodes */
1596         while (1) {
1597                 int idx;
1598
1599                 cond_resched();
1600
1601                 if (znode_cb) {
1602                         err = znode_cb(c, znode, priv);
1603                         if (err) {
1604                                 ubifs_err("znode checking function returned "
1605                                           "error %d", err);
1606                                 dbg_dump_znode(c, znode);
1607                                 goto out_dump;
1608                         }
1609                 }
1610                 if (leaf_cb && znode->level == 0) {
1611                         for (idx = 0; idx < znode->child_cnt; idx++) {
1612                                 zbr = &znode->zbranch[idx];
1613                                 err = leaf_cb(c, zbr, priv);
1614                                 if (err) {
1615                                         ubifs_err("leaf checking function "
1616                                                   "returned error %d, for leaf "
1617                                                   "at LEB %d:%d",
1618                                                   err, zbr->lnum, zbr->offs);
1619                                         goto out_dump;
1620                                 }
1621                         }
1622                 }
1623
1624                 if (!znode->parent)
1625                         break;
1626
1627                 idx = znode->iip + 1;
1628                 znode = znode->parent;
1629                 if (idx < znode->child_cnt) {
1630                         /* Switch to the next index in the parent */
1631                         zbr = &znode->zbranch[idx];
1632                         child = zbr->znode;
1633                         if (!child) {
1634                                 child = ubifs_load_znode(c, zbr, znode, idx);
1635                                 if (IS_ERR(child)) {
1636                                         err = PTR_ERR(child);
1637                                         goto out_unlock;
1638                                 }
1639                                 zbr->znode = child;
1640                         }
1641                         znode = child;
1642                 } else
1643                         /*
1644                          * This is the last child, switch to the parent and
1645                          * continue.
1646                          */
1647                         continue;
1648
1649                 /* Go to the lowest leftmost znode in the new sub-tree */
1650                 while (znode->level > 0) {
1651                         zbr = &znode->zbranch[0];
1652                         child = zbr->znode;
1653                         if (!child) {
1654                                 child = ubifs_load_znode(c, zbr, znode, 0);
1655                                 if (IS_ERR(child)) {
1656                                         err = PTR_ERR(child);
1657                                         goto out_unlock;
1658                                 }
1659                                 zbr->znode = child;
1660                         }
1661                         znode = child;
1662                 }
1663         }
1664
1665         mutex_unlock(&c->tnc_mutex);
1666         return 0;
1667
1668 out_dump:
1669         if (znode->parent)
1670                 zbr = &znode->parent->zbranch[znode->iip];
1671         else
1672                 zbr = &c->zroot;
1673         ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1674         dbg_dump_znode(c, znode);
1675 out_unlock:
1676         mutex_unlock(&c->tnc_mutex);
1677         return err;
1678 }
1679
1680 /**
1681  * add_size - add znode size to partially calculated index size.
1682  * @c: UBIFS file-system description object
1683  * @znode: znode to add size for
1684  * @priv: partially calculated index size
1685  *
1686  * This is a helper function for 'dbg_check_idx_size()' which is called for
1687  * every indexing node and adds its size to the 'long long' variable pointed to
1688  * by @priv.
1689  */
1690 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1691 {
1692         long long *idx_size = priv;
1693         int add;
1694
1695         add = ubifs_idx_node_sz(c, znode->child_cnt);
1696         add = ALIGN(add, 8);
1697         *idx_size += add;
1698         return 0;
1699 }
1700
1701 /**
1702  * dbg_check_idx_size - check index size.
1703  * @c: UBIFS file-system description object
1704  * @idx_size: size to check
1705  *
1706  * This function walks the UBIFS index, calculates its size and checks that the
1707  * size is equivalent to @idx_size. Returns zero in case of success and a
1708  * negative error code in case of failure.
1709  */
1710 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1711 {
1712         int err;
1713         long long calc = 0;
1714
1715         if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1716                 return 0;
1717
1718         err = dbg_walk_index(c, NULL, add_size, &calc);
1719         if (err) {
1720                 ubifs_err("error %d while walking the index", err);
1721                 return err;
1722         }
1723
1724         if (calc != idx_size) {
1725                 ubifs_err("index size check failed: calculated size is %lld, "
1726                           "should be %lld", calc, idx_size);
1727                 dump_stack();
1728                 return -EINVAL;
1729         }
1730
1731         return 0;
1732 }
1733
1734 /**
1735  * struct fsck_inode - information about an inode used when checking the file-system.
1736  * @rb: link in the RB-tree of inodes
1737  * @inum: inode number
1738  * @mode: inode type, permissions, etc
1739  * @nlink: inode link count
1740  * @xattr_cnt: count of extended attributes
1741  * @references: how many directory/xattr entries refer this inode (calculated
1742  *              while walking the index)
1743  * @calc_cnt: for directory inode count of child directories
1744  * @size: inode size (read from on-flash inode)
1745  * @xattr_sz: summary size of all extended attributes (read from on-flash
1746  *            inode)
1747  * @calc_sz: for directories calculated directory size
1748  * @calc_xcnt: count of extended attributes
1749  * @calc_xsz: calculated summary size of all extended attributes
1750  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1751  *             inode (read from on-flash inode)
1752  * @calc_xnms: calculated sum of lengths of all extended attribute names
1753  */
1754 struct fsck_inode {
1755         struct rb_node rb;
1756         ino_t inum;
1757         umode_t mode;
1758         unsigned int nlink;
1759         unsigned int xattr_cnt;
1760         int references;
1761         int calc_cnt;
1762         long long size;
1763         unsigned int xattr_sz;
1764         long long calc_sz;
1765         long long calc_xcnt;
1766         long long calc_xsz;
1767         unsigned int xattr_nms;
1768         long long calc_xnms;
1769 };
1770
1771 /**
1772  * struct fsck_data - private FS checking information.
1773  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1774  */
1775 struct fsck_data {
1776         struct rb_root inodes;
1777 };
1778
1779 /**
1780  * add_inode - add inode information to RB-tree of inodes.
1781  * @c: UBIFS file-system description object
1782  * @fsckd: FS checking information
1783  * @ino: raw UBIFS inode to add
1784  *
1785  * This is a helper function for 'check_leaf()' which adds information about
1786  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1787  * case of success and a negative error code in case of failure.
1788  */
1789 static struct fsck_inode *add_inode(struct ubifs_info *c,
1790                                     struct fsck_data *fsckd,
1791                                     struct ubifs_ino_node *ino)
1792 {
1793         struct rb_node **p, *parent = NULL;
1794         struct fsck_inode *fscki;
1795         ino_t inum = key_inum_flash(c, &ino->key);
1796
1797         p = &fsckd->inodes.rb_node;
1798         while (*p) {
1799                 parent = *p;
1800                 fscki = rb_entry(parent, struct fsck_inode, rb);
1801                 if (inum < fscki->inum)
1802                         p = &(*p)->rb_left;
1803                 else if (inum > fscki->inum)
1804                         p = &(*p)->rb_right;
1805                 else
1806                         return fscki;
1807         }
1808
1809         if (inum > c->highest_inum) {
1810                 ubifs_err("too high inode number, max. is %lu",
1811                           (unsigned long)c->highest_inum);
1812                 return ERR_PTR(-EINVAL);
1813         }
1814
1815         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1816         if (!fscki)
1817                 return ERR_PTR(-ENOMEM);
1818
1819         fscki->inum = inum;
1820         fscki->nlink = le32_to_cpu(ino->nlink);
1821         fscki->size = le64_to_cpu(ino->size);
1822         fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1823         fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1824         fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1825         fscki->mode = le32_to_cpu(ino->mode);
1826         if (S_ISDIR(fscki->mode)) {
1827                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1828                 fscki->calc_cnt = 2;
1829         }
1830         rb_link_node(&fscki->rb, parent, p);
1831         rb_insert_color(&fscki->rb, &fsckd->inodes);
1832         return fscki;
1833 }
1834
1835 /**
1836  * search_inode - search inode in the RB-tree of inodes.
1837  * @fsckd: FS checking information
1838  * @inum: inode number to search
1839  *
1840  * This is a helper function for 'check_leaf()' which searches inode @inum in
1841  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1842  * the inode was not found.
1843  */
1844 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1845 {
1846         struct rb_node *p;
1847         struct fsck_inode *fscki;
1848
1849         p = fsckd->inodes.rb_node;
1850         while (p) {
1851                 fscki = rb_entry(p, struct fsck_inode, rb);
1852                 if (inum < fscki->inum)
1853                         p = p->rb_left;
1854                 else if (inum > fscki->inum)
1855                         p = p->rb_right;
1856                 else
1857                         return fscki;
1858         }
1859         return NULL;
1860 }
1861
1862 /**
1863  * read_add_inode - read inode node and add it to RB-tree of inodes.
1864  * @c: UBIFS file-system description object
1865  * @fsckd: FS checking information
1866  * @inum: inode number to read
1867  *
1868  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1869  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1870  * information pointer in case of success and a negative error code in case of
1871  * failure.
1872  */
1873 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1874                                          struct fsck_data *fsckd, ino_t inum)
1875 {
1876         int n, err;
1877         union ubifs_key key;
1878         struct ubifs_znode *znode;
1879         struct ubifs_zbranch *zbr;
1880         struct ubifs_ino_node *ino;
1881         struct fsck_inode *fscki;
1882
1883         fscki = search_inode(fsckd, inum);
1884         if (fscki)
1885                 return fscki;
1886
1887         ino_key_init(c, &key, inum);
1888         err = ubifs_lookup_level0(c, &key, &znode, &n);
1889         if (!err) {
1890                 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1891                 return ERR_PTR(-ENOENT);
1892         } else if (err < 0) {
1893                 ubifs_err("error %d while looking up inode %lu",
1894                           err, (unsigned long)inum);
1895                 return ERR_PTR(err);
1896         }
1897
1898         zbr = &znode->zbranch[n];
1899         if (zbr->len < UBIFS_INO_NODE_SZ) {
1900                 ubifs_err("bad node %lu node length %d",
1901                           (unsigned long)inum, zbr->len);
1902                 return ERR_PTR(-EINVAL);
1903         }
1904
1905         ino = kmalloc(zbr->len, GFP_NOFS);
1906         if (!ino)
1907                 return ERR_PTR(-ENOMEM);
1908
1909         err = ubifs_tnc_read_node(c, zbr, ino);
1910         if (err) {
1911                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1912                           zbr->lnum, zbr->offs, err);
1913                 kfree(ino);
1914                 return ERR_PTR(err);
1915         }
1916
1917         fscki = add_inode(c, fsckd, ino);
1918         kfree(ino);
1919         if (IS_ERR(fscki)) {
1920                 ubifs_err("error %ld while adding inode %lu node",
1921                           PTR_ERR(fscki), (unsigned long)inum);
1922                 return fscki;
1923         }
1924
1925         return fscki;
1926 }
1927
1928 /**
1929  * check_leaf - check leaf node.
1930  * @c: UBIFS file-system description object
1931  * @zbr: zbranch of the leaf node to check
1932  * @priv: FS checking information
1933  *
1934  * This is a helper function for 'dbg_check_filesystem()' which is called for
1935  * every single leaf node while walking the indexing tree. It checks that the
1936  * leaf node referred from the indexing tree exists, has correct CRC, and does
1937  * some other basic validation. This function is also responsible for building
1938  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1939  * calculates reference count, size, etc for each inode in order to later
1940  * compare them to the information stored inside the inodes and detect possible
1941  * inconsistencies. Returns zero in case of success and a negative error code
1942  * in case of failure.
1943  */
1944 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1945                       void *priv)
1946 {
1947         ino_t inum;
1948         void *node;
1949         struct ubifs_ch *ch;
1950         int err, type = key_type(c, &zbr->key);
1951         struct fsck_inode *fscki;
1952
1953         if (zbr->len < UBIFS_CH_SZ) {
1954                 ubifs_err("bad leaf length %d (LEB %d:%d)",
1955                           zbr->len, zbr->lnum, zbr->offs);
1956                 return -EINVAL;
1957         }
1958
1959         node = kmalloc(zbr->len, GFP_NOFS);
1960         if (!node)
1961                 return -ENOMEM;
1962
1963         err = ubifs_tnc_read_node(c, zbr, node);
1964         if (err) {
1965                 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1966                           zbr->lnum, zbr->offs, err);
1967                 goto out_free;
1968         }
1969
1970         /* If this is an inode node, add it to RB-tree of inodes */
1971         if (type == UBIFS_INO_KEY) {
1972                 fscki = add_inode(c, priv, node);
1973                 if (IS_ERR(fscki)) {
1974                         err = PTR_ERR(fscki);
1975                         ubifs_err("error %d while adding inode node", err);
1976                         goto out_dump;
1977                 }
1978                 goto out;
1979         }
1980
1981         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1982             type != UBIFS_DATA_KEY) {
1983                 ubifs_err("unexpected node type %d at LEB %d:%d",
1984                           type, zbr->lnum, zbr->offs);
1985                 err = -EINVAL;
1986                 goto out_free;
1987         }
1988
1989         ch = node;
1990         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1991                 ubifs_err("too high sequence number, max. is %llu",
1992                           c->max_sqnum);
1993                 err = -EINVAL;
1994                 goto out_dump;
1995         }
1996
1997         if (type == UBIFS_DATA_KEY) {
1998                 long long blk_offs;
1999                 struct ubifs_data_node *dn = node;
2000
2001                 /*
2002                  * Search the inode node this data node belongs to and insert
2003                  * it to the RB-tree of inodes.
2004                  */
2005                 inum = key_inum_flash(c, &dn->key);
2006                 fscki = read_add_inode(c, priv, inum);
2007                 if (IS_ERR(fscki)) {
2008                         err = PTR_ERR(fscki);
2009                         ubifs_err("error %d while processing data node and "
2010                                   "trying to find inode node %lu",
2011                                   err, (unsigned long)inum);
2012                         goto out_dump;
2013                 }
2014
2015                 /* Make sure the data node is within inode size */
2016                 blk_offs = key_block_flash(c, &dn->key);
2017                 blk_offs <<= UBIFS_BLOCK_SHIFT;
2018                 blk_offs += le32_to_cpu(dn->size);
2019                 if (blk_offs > fscki->size) {
2020                         ubifs_err("data node at LEB %d:%d is not within inode "
2021                                   "size %lld", zbr->lnum, zbr->offs,
2022                                   fscki->size);
2023                         err = -EINVAL;
2024                         goto out_dump;
2025                 }
2026         } else {
2027                 int nlen;
2028                 struct ubifs_dent_node *dent = node;
2029                 struct fsck_inode *fscki1;
2030
2031                 err = ubifs_validate_entry(c, dent);
2032                 if (err)
2033                         goto out_dump;
2034
2035                 /*
2036                  * Search the inode node this entry refers to and the parent
2037                  * inode node and insert them to the RB-tree of inodes.
2038                  */
2039                 inum = le64_to_cpu(dent->inum);
2040                 fscki = read_add_inode(c, priv, inum);
2041                 if (IS_ERR(fscki)) {
2042                         err = PTR_ERR(fscki);
2043                         ubifs_err("error %d while processing entry node and "
2044                                   "trying to find inode node %lu",
2045                                   err, (unsigned long)inum);
2046                         goto out_dump;
2047                 }
2048
2049                 /* Count how many direntries or xentries refers this inode */
2050                 fscki->references += 1;
2051
2052                 inum = key_inum_flash(c, &dent->key);
2053                 fscki1 = read_add_inode(c, priv, inum);
2054                 if (IS_ERR(fscki1)) {
2055                         err = PTR_ERR(fscki1);
2056                         ubifs_err("error %d while processing entry node and "
2057                                   "trying to find parent inode node %lu",
2058                                   err, (unsigned long)inum);
2059                         goto out_dump;
2060                 }
2061
2062                 nlen = le16_to_cpu(dent->nlen);
2063                 if (type == UBIFS_XENT_KEY) {
2064                         fscki1->calc_xcnt += 1;
2065                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2066                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2067                         fscki1->calc_xnms += nlen;
2068                 } else {
2069                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2070                         if (dent->type == UBIFS_ITYPE_DIR)
2071                                 fscki1->calc_cnt += 1;
2072                 }
2073         }
2074
2075 out:
2076         kfree(node);
2077         return 0;
2078
2079 out_dump:
2080         ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2081         dbg_dump_node(c, node);
2082 out_free:
2083         kfree(node);
2084         return err;
2085 }
2086
2087 /**
2088  * free_inodes - free RB-tree of inodes.
2089  * @fsckd: FS checking information
2090  */
2091 static void free_inodes(struct fsck_data *fsckd)
2092 {
2093         struct rb_node *this = fsckd->inodes.rb_node;
2094         struct fsck_inode *fscki;
2095
2096         while (this) {
2097                 if (this->rb_left)
2098                         this = this->rb_left;
2099                 else if (this->rb_right)
2100                         this = this->rb_right;
2101                 else {
2102                         fscki = rb_entry(this, struct fsck_inode, rb);
2103                         this = rb_parent(this);
2104                         if (this) {
2105                                 if (this->rb_left == &fscki->rb)
2106                                         this->rb_left = NULL;
2107                                 else
2108                                         this->rb_right = NULL;
2109                         }
2110                         kfree(fscki);
2111                 }
2112         }
2113 }
2114
2115 /**
2116  * check_inodes - checks all inodes.
2117  * @c: UBIFS file-system description object
2118  * @fsckd: FS checking information
2119  *
2120  * This is a helper function for 'dbg_check_filesystem()' which walks the
2121  * RB-tree of inodes after the index scan has been finished, and checks that
2122  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2123  * %-EINVAL if not, and a negative error code in case of failure.
2124  */
2125 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2126 {
2127         int n, err;
2128         union ubifs_key key;
2129         struct ubifs_znode *znode;
2130         struct ubifs_zbranch *zbr;
2131         struct ubifs_ino_node *ino;
2132         struct fsck_inode *fscki;
2133         struct rb_node *this = rb_first(&fsckd->inodes);
2134
2135         while (this) {
2136                 fscki = rb_entry(this, struct fsck_inode, rb);
2137                 this = rb_next(this);
2138
2139                 if (S_ISDIR(fscki->mode)) {
2140                         /*
2141                          * Directories have to have exactly one reference (they
2142                          * cannot have hardlinks), although root inode is an
2143                          * exception.
2144                          */
2145                         if (fscki->inum != UBIFS_ROOT_INO &&
2146                             fscki->references != 1) {
2147                                 ubifs_err("directory inode %lu has %d "
2148                                           "direntries which refer it, but "
2149                                           "should be 1",
2150                                           (unsigned long)fscki->inum,
2151                                           fscki->references);
2152                                 goto out_dump;
2153                         }
2154                         if (fscki->inum == UBIFS_ROOT_INO &&
2155                             fscki->references != 0) {
2156                                 ubifs_err("root inode %lu has non-zero (%d) "
2157                                           "direntries which refer it",
2158                                           (unsigned long)fscki->inum,
2159                                           fscki->references);
2160                                 goto out_dump;
2161                         }
2162                         if (fscki->calc_sz != fscki->size) {
2163                                 ubifs_err("directory inode %lu size is %lld, "
2164                                           "but calculated size is %lld",
2165                                           (unsigned long)fscki->inum,
2166                                           fscki->size, fscki->calc_sz);
2167                                 goto out_dump;
2168                         }
2169                         if (fscki->calc_cnt != fscki->nlink) {
2170                                 ubifs_err("directory inode %lu nlink is %d, "
2171                                           "but calculated nlink is %d",
2172                                           (unsigned long)fscki->inum,
2173                                           fscki->nlink, fscki->calc_cnt);
2174                                 goto out_dump;
2175                         }
2176                 } else {
2177                         if (fscki->references != fscki->nlink) {
2178                                 ubifs_err("inode %lu nlink is %d, but "
2179                                           "calculated nlink is %d",
2180                                           (unsigned long)fscki->inum,
2181                                           fscki->nlink, fscki->references);
2182                                 goto out_dump;
2183                         }
2184                 }
2185                 if (fscki->xattr_sz != fscki->calc_xsz) {
2186                         ubifs_err("inode %lu has xattr size %u, but "
2187                                   "calculated size is %lld",
2188                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2189                                   fscki->calc_xsz);
2190                         goto out_dump;
2191                 }
2192                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2193                         ubifs_err("inode %lu has %u xattrs, but "
2194                                   "calculated count is %lld",
2195                                   (unsigned long)fscki->inum,
2196                                   fscki->xattr_cnt, fscki->calc_xcnt);
2197                         goto out_dump;
2198                 }
2199                 if (fscki->xattr_nms != fscki->calc_xnms) {
2200                         ubifs_err("inode %lu has xattr names' size %u, but "
2201                                   "calculated names' size is %lld",
2202                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2203                                   fscki->calc_xnms);
2204                         goto out_dump;
2205                 }
2206         }
2207
2208         return 0;
2209
2210 out_dump:
2211         /* Read the bad inode and dump it */
2212         ino_key_init(c, &key, fscki->inum);
2213         err = ubifs_lookup_level0(c, &key, &znode, &n);
2214         if (!err) {
2215                 ubifs_err("inode %lu not found in index",
2216                           (unsigned long)fscki->inum);
2217                 return -ENOENT;
2218         } else if (err < 0) {
2219                 ubifs_err("error %d while looking up inode %lu",
2220                           err, (unsigned long)fscki->inum);
2221                 return err;
2222         }
2223
2224         zbr = &znode->zbranch[n];
2225         ino = kmalloc(zbr->len, GFP_NOFS);
2226         if (!ino)
2227                 return -ENOMEM;
2228
2229         err = ubifs_tnc_read_node(c, zbr, ino);
2230         if (err) {
2231                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2232                           zbr->lnum, zbr->offs, err);
2233                 kfree(ino);
2234                 return err;
2235         }
2236
2237         ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2238                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2239         dbg_dump_node(c, ino);
2240         kfree(ino);
2241         return -EINVAL;
2242 }
2243
2244 /**
2245  * dbg_check_filesystem - check the file-system.
2246  * @c: UBIFS file-system description object
2247  *
2248  * This function checks the file system, namely:
2249  * o makes sure that all leaf nodes exist and their CRCs are correct;
2250  * o makes sure inode nlink, size, xattr size/count are correct (for all
2251  *   inodes).
2252  *
2253  * The function reads whole indexing tree and all nodes, so it is pretty
2254  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2255  * not, and a negative error code in case of failure.
2256  */
2257 int dbg_check_filesystem(struct ubifs_info *c)
2258 {
2259         int err;
2260         struct fsck_data fsckd;
2261
2262         if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2263                 return 0;
2264
2265         fsckd.inodes = RB_ROOT;
2266         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2267         if (err)
2268                 goto out_free;
2269
2270         err = check_inodes(c, &fsckd);
2271         if (err)
2272                 goto out_free;
2273
2274         free_inodes(&fsckd);
2275         return 0;
2276
2277 out_free:
2278         ubifs_err("file-system check failed with error %d", err);
2279         dump_stack();
2280         free_inodes(&fsckd);
2281         return err;
2282 }
2283
2284 /**
2285  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2286  * @c: UBIFS file-system description object
2287  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2288  *
2289  * This function returns zero if the list of data nodes is sorted correctly,
2290  * and %-EINVAL if not.
2291  */
2292 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2293 {
2294         struct list_head *cur;
2295         struct ubifs_scan_node *sa, *sb;
2296
2297         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2298                 return 0;
2299
2300         for (cur = head->next; cur->next != head; cur = cur->next) {
2301                 ino_t inuma, inumb;
2302                 uint32_t blka, blkb;
2303
2304                 cond_resched();
2305                 sa = container_of(cur, struct ubifs_scan_node, list);
2306                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2307
2308                 if (sa->type != UBIFS_DATA_NODE) {
2309                         ubifs_err("bad node type %d", sa->type);
2310                         dbg_dump_node(c, sa->node);
2311                         return -EINVAL;
2312                 }
2313                 if (sb->type != UBIFS_DATA_NODE) {
2314                         ubifs_err("bad node type %d", sb->type);
2315                         dbg_dump_node(c, sb->node);
2316                         return -EINVAL;
2317                 }
2318
2319                 inuma = key_inum(c, &sa->key);
2320                 inumb = key_inum(c, &sb->key);
2321
2322                 if (inuma < inumb)
2323                         continue;
2324                 if (inuma > inumb) {
2325                         ubifs_err("larger inum %lu goes before inum %lu",
2326                                   (unsigned long)inuma, (unsigned long)inumb);
2327                         goto error_dump;
2328                 }
2329
2330                 blka = key_block(c, &sa->key);
2331                 blkb = key_block(c, &sb->key);
2332
2333                 if (blka > blkb) {
2334                         ubifs_err("larger block %u goes before %u", blka, blkb);
2335                         goto error_dump;
2336                 }
2337                 if (blka == blkb) {
2338                         ubifs_err("two data nodes for the same block");
2339                         goto error_dump;
2340                 }
2341         }
2342
2343         return 0;
2344
2345 error_dump:
2346         dbg_dump_node(c, sa->node);
2347         dbg_dump_node(c, sb->node);
2348         return -EINVAL;
2349 }
2350
2351 /**
2352  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2353  * @c: UBIFS file-system description object
2354  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2355  *
2356  * This function returns zero if the list of non-data nodes is sorted correctly,
2357  * and %-EINVAL if not.
2358  */
2359 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2360 {
2361         struct list_head *cur;
2362         struct ubifs_scan_node *sa, *sb;
2363
2364         if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2365                 return 0;
2366
2367         for (cur = head->next; cur->next != head; cur = cur->next) {
2368                 ino_t inuma, inumb;
2369                 uint32_t hasha, hashb;
2370
2371                 cond_resched();
2372                 sa = container_of(cur, struct ubifs_scan_node, list);
2373                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2374
2375                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2376                     sa->type != UBIFS_XENT_NODE) {
2377                         ubifs_err("bad node type %d", sa->type);
2378                         dbg_dump_node(c, sa->node);
2379                         return -EINVAL;
2380                 }
2381                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2382                     sa->type != UBIFS_XENT_NODE) {
2383                         ubifs_err("bad node type %d", sb->type);
2384                         dbg_dump_node(c, sb->node);
2385                         return -EINVAL;
2386                 }
2387
2388                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2389                         ubifs_err("non-inode node goes before inode node");
2390                         goto error_dump;
2391                 }
2392
2393                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2394                         continue;
2395
2396                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2397                         /* Inode nodes are sorted in descending size order */
2398                         if (sa->len < sb->len) {
2399                                 ubifs_err("smaller inode node goes first");
2400                                 goto error_dump;
2401                         }
2402                         continue;
2403                 }
2404
2405                 /*
2406                  * This is either a dentry or xentry, which should be sorted in
2407                  * ascending (parent ino, hash) order.
2408                  */
2409                 inuma = key_inum(c, &sa->key);
2410                 inumb = key_inum(c, &sb->key);
2411
2412                 if (inuma < inumb)
2413                         continue;
2414                 if (inuma > inumb) {
2415                         ubifs_err("larger inum %lu goes before inum %lu",
2416                                   (unsigned long)inuma, (unsigned long)inumb);
2417                         goto error_dump;
2418                 }
2419
2420                 hasha = key_block(c, &sa->key);
2421                 hashb = key_block(c, &sb->key);
2422
2423                 if (hasha > hashb) {
2424                         ubifs_err("larger hash %u goes before %u", hasha, hashb);
2425                         goto error_dump;
2426                 }
2427         }
2428
2429         return 0;
2430
2431 error_dump:
2432         ubifs_msg("dumping first node");
2433         dbg_dump_node(c, sa->node);
2434         ubifs_msg("dumping second node");
2435         dbg_dump_node(c, sb->node);
2436         return -EINVAL;
2437         return 0;
2438 }
2439
2440 static int invocation_cnt;
2441
2442 int dbg_force_in_the_gaps(void)
2443 {
2444         if (!dbg_force_in_the_gaps_enabled)
2445                 return 0;
2446         /* Force in-the-gaps every 8th commit */
2447         return !((invocation_cnt++) & 0x7);
2448 }
2449
2450 /* Failure mode for recovery testing */
2451
2452 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2453
2454 struct failure_mode_info {
2455         struct list_head list;
2456         struct ubifs_info *c;
2457 };
2458
2459 static LIST_HEAD(fmi_list);
2460 static DEFINE_SPINLOCK(fmi_lock);
2461
2462 static unsigned int next;
2463
2464 static int simple_rand(void)
2465 {
2466         if (next == 0)
2467                 next = current->pid;
2468         next = next * 1103515245 + 12345;
2469         return (next >> 16) & 32767;
2470 }
2471
2472 static void failure_mode_init(struct ubifs_info *c)
2473 {
2474         struct failure_mode_info *fmi;
2475
2476         fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2477         if (!fmi) {
2478                 ubifs_err("Failed to register failure mode - no memory");
2479                 return;
2480         }
2481         fmi->c = c;
2482         spin_lock(&fmi_lock);
2483         list_add_tail(&fmi->list, &fmi_list);
2484         spin_unlock(&fmi_lock);
2485 }
2486
2487 static void failure_mode_exit(struct ubifs_info *c)
2488 {
2489         struct failure_mode_info *fmi, *tmp;
2490
2491         spin_lock(&fmi_lock);
2492         list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2493                 if (fmi->c == c) {
2494                         list_del(&fmi->list);
2495                         kfree(fmi);
2496                 }
2497         spin_unlock(&fmi_lock);
2498 }
2499
2500 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2501 {
2502         struct failure_mode_info *fmi;
2503
2504         spin_lock(&fmi_lock);
2505         list_for_each_entry(fmi, &fmi_list, list)
2506                 if (fmi->c->ubi == desc) {
2507                         struct ubifs_info *c = fmi->c;
2508
2509                         spin_unlock(&fmi_lock);
2510                         return c;
2511                 }
2512         spin_unlock(&fmi_lock);
2513         return NULL;
2514 }
2515
2516 static int in_failure_mode(struct ubi_volume_desc *desc)
2517 {
2518         struct ubifs_info *c = dbg_find_info(desc);
2519
2520         if (c && dbg_failure_mode)
2521                 return c->dbg->failure_mode;
2522         return 0;
2523 }
2524
2525 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2526 {
2527         struct ubifs_info *c = dbg_find_info(desc);
2528         struct ubifs_debug_info *d;
2529
2530         if (!c || !dbg_failure_mode)
2531                 return 0;
2532         d = c->dbg;
2533         if (d->failure_mode)
2534                 return 1;
2535         if (!d->fail_cnt) {
2536                 /* First call - decide delay to failure */
2537                 if (chance(1, 2)) {
2538                         unsigned int delay = 1 << (simple_rand() >> 11);
2539
2540                         if (chance(1, 2)) {
2541                                 d->fail_delay = 1;
2542                                 d->fail_timeout = jiffies +
2543                                                   msecs_to_jiffies(delay);
2544                                 dbg_rcvry("failing after %ums", delay);
2545                         } else {
2546                                 d->fail_delay = 2;
2547                                 d->fail_cnt_max = delay;
2548                                 dbg_rcvry("failing after %u calls", delay);
2549                         }
2550                 }
2551                 d->fail_cnt += 1;
2552         }
2553         /* Determine if failure delay has expired */
2554         if (d->fail_delay == 1) {
2555                 if (time_before(jiffies, d->fail_timeout))
2556                         return 0;
2557         } else if (d->fail_delay == 2)
2558                 if (d->fail_cnt++ < d->fail_cnt_max)
2559                         return 0;
2560         if (lnum == UBIFS_SB_LNUM) {
2561                 if (write) {
2562                         if (chance(1, 2))
2563                                 return 0;
2564                 } else if (chance(19, 20))
2565                         return 0;
2566                 dbg_rcvry("failing in super block LEB %d", lnum);
2567         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2568                 if (chance(19, 20))
2569                         return 0;
2570                 dbg_rcvry("failing in master LEB %d", lnum);
2571         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2572                 if (write) {
2573                         if (chance(99, 100))
2574                                 return 0;
2575                 } else if (chance(399, 400))
2576                         return 0;
2577                 dbg_rcvry("failing in log LEB %d", lnum);
2578         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2579                 if (write) {
2580                         if (chance(7, 8))
2581                                 return 0;
2582                 } else if (chance(19, 20))
2583                         return 0;
2584                 dbg_rcvry("failing in LPT LEB %d", lnum);
2585         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2586                 if (write) {
2587                         if (chance(1, 2))
2588                                 return 0;
2589                 } else if (chance(9, 10))
2590                         return 0;
2591                 dbg_rcvry("failing in orphan LEB %d", lnum);
2592         } else if (lnum == c->ihead_lnum) {
2593                 if (chance(99, 100))
2594                         return 0;
2595                 dbg_rcvry("failing in index head LEB %d", lnum);
2596         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2597                 if (chance(9, 10))
2598                         return 0;
2599                 dbg_rcvry("failing in GC head LEB %d", lnum);
2600         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2601                    !ubifs_search_bud(c, lnum)) {
2602                 if (chance(19, 20))
2603                         return 0;
2604                 dbg_rcvry("failing in non-bud LEB %d", lnum);
2605         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2606                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2607                 if (chance(999, 1000))
2608                         return 0;
2609                 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2610         } else {
2611                 if (chance(9999, 10000))
2612                         return 0;
2613                 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2614         }
2615         ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2616         d->failure_mode = 1;
2617         dump_stack();
2618         return 1;
2619 }
2620
2621 static void cut_data(const void *buf, int len)
2622 {
2623         int flen, i;
2624         unsigned char *p = (void *)buf;
2625
2626         flen = (len * (long long)simple_rand()) >> 15;
2627         for (i = flen; i < len; i++)
2628                 p[i] = 0xff;
2629 }
2630
2631 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2632                  int len, int check)
2633 {
2634         if (in_failure_mode(desc))
2635                 return -EIO;
2636         return ubi_leb_read(desc, lnum, buf, offset, len, check);
2637 }
2638
2639 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2640                   int offset, int len, int dtype)
2641 {
2642         int err, failing;
2643
2644         if (in_failure_mode(desc))
2645                 return -EIO;
2646         failing = do_fail(desc, lnum, 1);
2647         if (failing)
2648                 cut_data(buf, len);
2649         err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2650         if (err)
2651                 return err;
2652         if (failing)
2653                 return -EIO;
2654         return 0;
2655 }
2656
2657 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2658                    int len, int dtype)
2659 {
2660         int err;
2661
2662         if (do_fail(desc, lnum, 1))
2663                 return -EIO;
2664         err = ubi_leb_change(desc, lnum, buf, len, dtype);
2665         if (err)
2666                 return err;
2667         if (do_fail(desc, lnum, 1))
2668                 return -EIO;
2669         return 0;
2670 }
2671
2672 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2673 {
2674         int err;
2675
2676         if (do_fail(desc, lnum, 0))
2677                 return -EIO;
2678         err = ubi_leb_erase(desc, lnum);
2679         if (err)
2680                 return err;
2681         if (do_fail(desc, lnum, 0))
2682                 return -EIO;
2683         return 0;
2684 }
2685
2686 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2687 {
2688         int err;
2689
2690         if (do_fail(desc, lnum, 0))
2691                 return -EIO;
2692         err = ubi_leb_unmap(desc, lnum);
2693         if (err)
2694                 return err;
2695         if (do_fail(desc, lnum, 0))
2696                 return -EIO;
2697         return 0;
2698 }
2699
2700 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2701 {
2702         if (in_failure_mode(desc))
2703                 return -EIO;
2704         return ubi_is_mapped(desc, lnum);
2705 }
2706
2707 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2708 {
2709         int err;
2710
2711         if (do_fail(desc, lnum, 0))
2712                 return -EIO;
2713         err = ubi_leb_map(desc, lnum, dtype);
2714         if (err)
2715                 return err;
2716         if (do_fail(desc, lnum, 0))
2717                 return -EIO;
2718         return 0;
2719 }
2720
2721 /**
2722  * ubifs_debugging_init - initialize UBIFS debugging.
2723  * @c: UBIFS file-system description object
2724  *
2725  * This function initializes debugging-related data for the file system.
2726  * Returns zero in case of success and a negative error code in case of
2727  * failure.
2728  */
2729 int ubifs_debugging_init(struct ubifs_info *c)
2730 {
2731         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2732         if (!c->dbg)
2733                 return -ENOMEM;
2734
2735         failure_mode_init(c);
2736         return 0;
2737 }
2738
2739 /**
2740  * ubifs_debugging_exit - free debugging data.
2741  * @c: UBIFS file-system description object
2742  */
2743 void ubifs_debugging_exit(struct ubifs_info *c)
2744 {
2745         failure_mode_exit(c);
2746         kfree(c->dbg);
2747 }
2748
2749 /*
2750  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2751  * contain the stuff specific to particular file-system mounts.
2752  */
2753 static struct dentry *dfs_rootdir;
2754
2755 /**
2756  * dbg_debugfs_init - initialize debugfs file-system.
2757  *
2758  * UBIFS uses debugfs file-system to expose various debugging knobs to
2759  * user-space. This function creates "ubifs" directory in the debugfs
2760  * file-system. Returns zero in case of success and a negative error code in
2761  * case of failure.
2762  */
2763 int dbg_debugfs_init(void)
2764 {
2765         dfs_rootdir = debugfs_create_dir("ubifs", NULL);
2766         if (IS_ERR(dfs_rootdir)) {
2767                 int err = PTR_ERR(dfs_rootdir);
2768                 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2769                           "error %d\n", err);
2770                 return err;
2771         }
2772
2773         return 0;
2774 }
2775
2776 /**
2777  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2778  */
2779 void dbg_debugfs_exit(void)
2780 {
2781         debugfs_remove(dfs_rootdir);
2782 }
2783
2784 static int open_debugfs_file(struct inode *inode, struct file *file)
2785 {
2786         file->private_data = inode->i_private;
2787         return 0;
2788 }
2789
2790 static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2791                                   size_t count, loff_t *ppos)
2792 {
2793         struct ubifs_info *c = file->private_data;
2794         struct ubifs_debug_info *d = c->dbg;
2795
2796         if (file->f_path.dentry == d->dfs_dump_lprops)
2797                 dbg_dump_lprops(c);
2798         else if (file->f_path.dentry == d->dfs_dump_budg) {
2799                 spin_lock(&c->space_lock);
2800                 dbg_dump_budg(c);
2801                 spin_unlock(&c->space_lock);
2802         } else if (file->f_path.dentry == d->dfs_dump_tnc) {
2803                 mutex_lock(&c->tnc_mutex);
2804                 dbg_dump_tnc(c);
2805                 mutex_unlock(&c->tnc_mutex);
2806         } else
2807                 return -EINVAL;
2808
2809         *ppos += count;
2810         return count;
2811 }
2812
2813 static const struct file_operations dfs_fops = {
2814         .open = open_debugfs_file,
2815         .write = write_debugfs_file,
2816         .owner = THIS_MODULE,
2817         .llseek = default_llseek,
2818 };
2819
2820 /**
2821  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2822  * @c: UBIFS file-system description object
2823  *
2824  * This function creates all debugfs files for this instance of UBIFS. Returns
2825  * zero in case of success and a negative error code in case of failure.
2826  *
2827  * Note, the only reason we have not merged this function with the
2828  * 'ubifs_debugging_init()' function is because it is better to initialize
2829  * debugfs interfaces at the very end of the mount process, and remove them at
2830  * the very beginning of the mount process.
2831  */
2832 int dbg_debugfs_init_fs(struct ubifs_info *c)
2833 {
2834         int err;
2835         const char *fname;
2836         struct dentry *dent;
2837         struct ubifs_debug_info *d = c->dbg;
2838
2839         sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2840         fname = d->dfs_dir_name;
2841         dent = debugfs_create_dir(fname, dfs_rootdir);
2842         if (IS_ERR_OR_NULL(dent))
2843                 goto out;
2844         d->dfs_dir = dent;
2845
2846         fname = "dump_lprops";
2847         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2848         if (IS_ERR_OR_NULL(dent))
2849                 goto out_remove;
2850         d->dfs_dump_lprops = dent;
2851
2852         fname = "dump_budg";
2853         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2854         if (IS_ERR_OR_NULL(dent))
2855                 goto out_remove;
2856         d->dfs_dump_budg = dent;
2857
2858         fname = "dump_tnc";
2859         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2860         if (IS_ERR_OR_NULL(dent))
2861                 goto out_remove;
2862         d->dfs_dump_tnc = dent;
2863
2864         return 0;
2865
2866 out_remove:
2867         debugfs_remove_recursive(d->dfs_dir);
2868 out:
2869         err = dent ? PTR_ERR(dent) : -ENODEV;
2870         ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2871                   fname, err);
2872         return err;
2873 }
2874
2875 /**
2876  * dbg_debugfs_exit_fs - remove all debugfs files.
2877  * @c: UBIFS file-system description object
2878  */
2879 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2880 {
2881         debugfs_remove_recursive(c->dbg->dfs_dir);
2882 }
2883
2884 #endif /* CONFIG_UBIFS_FS_DEBUG */