]> git.karo-electronics.de Git - mv-sheeva.git/blob - fs/ubifs/debug.c
UBIFS: be more informative in failure mode
[mv-sheeva.git] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29
30 #define UBIFS_DBG_PRESERVE_UBI
31
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/debugfs.h>
35 #include <linux/math64.h>
36 #include <linux/uaccess.h>
37
38 #ifdef CONFIG_UBIFS_FS_DEBUG
39
40 DEFINE_SPINLOCK(dbg_lock);
41
42 static char dbg_key_buf0[128];
43 static char dbg_key_buf1[128];
44
45 static const char *get_key_fmt(int fmt)
46 {
47         switch (fmt) {
48         case UBIFS_SIMPLE_KEY_FMT:
49                 return "simple";
50         default:
51                 return "unknown/invalid format";
52         }
53 }
54
55 static const char *get_key_hash(int hash)
56 {
57         switch (hash) {
58         case UBIFS_KEY_HASH_R5:
59                 return "R5";
60         case UBIFS_KEY_HASH_TEST:
61                 return "test";
62         default:
63                 return "unknown/invalid name hash";
64         }
65 }
66
67 static const char *get_key_type(int type)
68 {
69         switch (type) {
70         case UBIFS_INO_KEY:
71                 return "inode";
72         case UBIFS_DENT_KEY:
73                 return "direntry";
74         case UBIFS_XENT_KEY:
75                 return "xentry";
76         case UBIFS_DATA_KEY:
77                 return "data";
78         case UBIFS_TRUN_KEY:
79                 return "truncate";
80         default:
81                 return "unknown/invalid key";
82         }
83 }
84
85 static const char *get_dent_type(int type)
86 {
87         switch (type) {
88         case UBIFS_ITYPE_REG:
89                 return "file";
90         case UBIFS_ITYPE_DIR:
91                 return "dir";
92         case UBIFS_ITYPE_LNK:
93                 return "symlink";
94         case UBIFS_ITYPE_BLK:
95                 return "blkdev";
96         case UBIFS_ITYPE_CHR:
97                 return "char dev";
98         case UBIFS_ITYPE_FIFO:
99                 return "fifo";
100         case UBIFS_ITYPE_SOCK:
101                 return "socket";
102         default:
103                 return "unknown/invalid type";
104         }
105 }
106
107 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
108                         char *buffer)
109 {
110         char *p = buffer;
111         int type = key_type(c, key);
112
113         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
114                 switch (type) {
115                 case UBIFS_INO_KEY:
116                         sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
117                                get_key_type(type));
118                         break;
119                 case UBIFS_DENT_KEY:
120                 case UBIFS_XENT_KEY:
121                         sprintf(p, "(%lu, %s, %#08x)",
122                                 (unsigned long)key_inum(c, key),
123                                 get_key_type(type), key_hash(c, key));
124                         break;
125                 case UBIFS_DATA_KEY:
126                         sprintf(p, "(%lu, %s, %u)",
127                                 (unsigned long)key_inum(c, key),
128                                 get_key_type(type), key_block(c, key));
129                         break;
130                 case UBIFS_TRUN_KEY:
131                         sprintf(p, "(%lu, %s)",
132                                 (unsigned long)key_inum(c, key),
133                                 get_key_type(type));
134                         break;
135                 default:
136                         sprintf(p, "(bad key type: %#08x, %#08x)",
137                                 key->u32[0], key->u32[1]);
138                 }
139         } else
140                 sprintf(p, "bad key format %d", c->key_fmt);
141 }
142
143 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
144 {
145         /* dbg_lock must be held */
146         sprintf_key(c, key, dbg_key_buf0);
147         return dbg_key_buf0;
148 }
149
150 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
151 {
152         /* dbg_lock must be held */
153         sprintf_key(c, key, dbg_key_buf1);
154         return dbg_key_buf1;
155 }
156
157 const char *dbg_ntype(int type)
158 {
159         switch (type) {
160         case UBIFS_PAD_NODE:
161                 return "padding node";
162         case UBIFS_SB_NODE:
163                 return "superblock node";
164         case UBIFS_MST_NODE:
165                 return "master node";
166         case UBIFS_REF_NODE:
167                 return "reference node";
168         case UBIFS_INO_NODE:
169                 return "inode node";
170         case UBIFS_DENT_NODE:
171                 return "direntry node";
172         case UBIFS_XENT_NODE:
173                 return "xentry node";
174         case UBIFS_DATA_NODE:
175                 return "data node";
176         case UBIFS_TRUN_NODE:
177                 return "truncate node";
178         case UBIFS_IDX_NODE:
179                 return "indexing node";
180         case UBIFS_CS_NODE:
181                 return "commit start node";
182         case UBIFS_ORPH_NODE:
183                 return "orphan node";
184         default:
185                 return "unknown node";
186         }
187 }
188
189 static const char *dbg_gtype(int type)
190 {
191         switch (type) {
192         case UBIFS_NO_NODE_GROUP:
193                 return "no node group";
194         case UBIFS_IN_NODE_GROUP:
195                 return "in node group";
196         case UBIFS_LAST_OF_NODE_GROUP:
197                 return "last of node group";
198         default:
199                 return "unknown";
200         }
201 }
202
203 const char *dbg_cstate(int cmt_state)
204 {
205         switch (cmt_state) {
206         case COMMIT_RESTING:
207                 return "commit resting";
208         case COMMIT_BACKGROUND:
209                 return "background commit requested";
210         case COMMIT_REQUIRED:
211                 return "commit required";
212         case COMMIT_RUNNING_BACKGROUND:
213                 return "BACKGROUND commit running";
214         case COMMIT_RUNNING_REQUIRED:
215                 return "commit running and required";
216         case COMMIT_BROKEN:
217                 return "broken commit";
218         default:
219                 return "unknown commit state";
220         }
221 }
222
223 const char *dbg_jhead(int jhead)
224 {
225         switch (jhead) {
226         case GCHD:
227                 return "0 (GC)";
228         case BASEHD:
229                 return "1 (base)";
230         case DATAHD:
231                 return "2 (data)";
232         default:
233                 return "unknown journal head";
234         }
235 }
236
237 static void dump_ch(const struct ubifs_ch *ch)
238 {
239         printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
240         printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
241         printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
242                dbg_ntype(ch->node_type));
243         printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
244                dbg_gtype(ch->group_type));
245         printk(KERN_DEBUG "\tsqnum          %llu\n",
246                (unsigned long long)le64_to_cpu(ch->sqnum));
247         printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
248 }
249
250 void dbg_dump_inode(struct ubifs_info *c, const struct inode *inode)
251 {
252         const struct ubifs_inode *ui = ubifs_inode(inode);
253         struct qstr nm = { .name = NULL };
254         union ubifs_key key;
255         struct ubifs_dent_node *dent, *pdent = NULL;
256         int count = 2;
257
258         printk(KERN_DEBUG "Dump in-memory inode:");
259         printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
260         printk(KERN_DEBUG "\tsize           %llu\n",
261                (unsigned long long)i_size_read(inode));
262         printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
263         printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
264         printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
265         printk(KERN_DEBUG "\tatime          %u.%u\n",
266                (unsigned int)inode->i_atime.tv_sec,
267                (unsigned int)inode->i_atime.tv_nsec);
268         printk(KERN_DEBUG "\tmtime          %u.%u\n",
269                (unsigned int)inode->i_mtime.tv_sec,
270                (unsigned int)inode->i_mtime.tv_nsec);
271         printk(KERN_DEBUG "\tctime          %u.%u\n",
272                (unsigned int)inode->i_ctime.tv_sec,
273                (unsigned int)inode->i_ctime.tv_nsec);
274         printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
275         printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
276         printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
277         printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
278         printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
279         printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
280         printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
281         printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
282                (unsigned long long)ui->synced_i_size);
283         printk(KERN_DEBUG "\tui_size        %llu\n",
284                (unsigned long long)ui->ui_size);
285         printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
286         printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
287         printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
288         printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
289         printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
290
291         if (!S_ISDIR(inode->i_mode))
292                 return;
293
294         printk(KERN_DEBUG "List of directory entries:\n");
295         ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
296
297         lowest_dent_key(c, &key, inode->i_ino);
298         while (1) {
299                 dent = ubifs_tnc_next_ent(c, &key, &nm);
300                 if (IS_ERR(dent)) {
301                         if (PTR_ERR(dent) != -ENOENT)
302                                 printk(KERN_DEBUG "error %ld\n", PTR_ERR(dent));
303                         break;
304                 }
305
306                 printk(KERN_DEBUG "\t%d: %s (%s)\n",
307                        count++, dent->name, get_dent_type(dent->type));
308
309                 nm.name = dent->name;
310                 nm.len = le16_to_cpu(dent->nlen);
311                 kfree(pdent);
312                 pdent = dent;
313                 key_read(c, &dent->key, &key);
314         }
315         kfree(pdent);
316 }
317
318 void dbg_dump_node(const struct ubifs_info *c, const void *node)
319 {
320         int i, n;
321         union ubifs_key key;
322         const struct ubifs_ch *ch = node;
323
324         if (dbg_is_tst_rcvry(c))
325                 return;
326
327         /* If the magic is incorrect, just hexdump the first bytes */
328         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
329                 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
330                 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
331                                (void *)node, UBIFS_CH_SZ, 1);
332                 return;
333         }
334
335         spin_lock(&dbg_lock);
336         dump_ch(node);
337
338         switch (ch->node_type) {
339         case UBIFS_PAD_NODE:
340         {
341                 const struct ubifs_pad_node *pad = node;
342
343                 printk(KERN_DEBUG "\tpad_len        %u\n",
344                        le32_to_cpu(pad->pad_len));
345                 break;
346         }
347         case UBIFS_SB_NODE:
348         {
349                 const struct ubifs_sb_node *sup = node;
350                 unsigned int sup_flags = le32_to_cpu(sup->flags);
351
352                 printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
353                        (int)sup->key_hash, get_key_hash(sup->key_hash));
354                 printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
355                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
356                 printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
357                 printk(KERN_DEBUG "\t  big_lpt      %u\n",
358                        !!(sup_flags & UBIFS_FLG_BIGLPT));
359                 printk(KERN_DEBUG "\t  space_fixup  %u\n",
360                        !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
361                 printk(KERN_DEBUG "\tmin_io_size    %u\n",
362                        le32_to_cpu(sup->min_io_size));
363                 printk(KERN_DEBUG "\tleb_size       %u\n",
364                        le32_to_cpu(sup->leb_size));
365                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
366                        le32_to_cpu(sup->leb_cnt));
367                 printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
368                        le32_to_cpu(sup->max_leb_cnt));
369                 printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
370                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
371                 printk(KERN_DEBUG "\tlog_lebs       %u\n",
372                        le32_to_cpu(sup->log_lebs));
373                 printk(KERN_DEBUG "\tlpt_lebs       %u\n",
374                        le32_to_cpu(sup->lpt_lebs));
375                 printk(KERN_DEBUG "\torph_lebs      %u\n",
376                        le32_to_cpu(sup->orph_lebs));
377                 printk(KERN_DEBUG "\tjhead_cnt      %u\n",
378                        le32_to_cpu(sup->jhead_cnt));
379                 printk(KERN_DEBUG "\tfanout         %u\n",
380                        le32_to_cpu(sup->fanout));
381                 printk(KERN_DEBUG "\tlsave_cnt      %u\n",
382                        le32_to_cpu(sup->lsave_cnt));
383                 printk(KERN_DEBUG "\tdefault_compr  %u\n",
384                        (int)le16_to_cpu(sup->default_compr));
385                 printk(KERN_DEBUG "\trp_size        %llu\n",
386                        (unsigned long long)le64_to_cpu(sup->rp_size));
387                 printk(KERN_DEBUG "\trp_uid         %u\n",
388                        le32_to_cpu(sup->rp_uid));
389                 printk(KERN_DEBUG "\trp_gid         %u\n",
390                        le32_to_cpu(sup->rp_gid));
391                 printk(KERN_DEBUG "\tfmt_version    %u\n",
392                        le32_to_cpu(sup->fmt_version));
393                 printk(KERN_DEBUG "\ttime_gran      %u\n",
394                        le32_to_cpu(sup->time_gran));
395                 printk(KERN_DEBUG "\tUUID           %pUB\n",
396                        sup->uuid);
397                 break;
398         }
399         case UBIFS_MST_NODE:
400         {
401                 const struct ubifs_mst_node *mst = node;
402
403                 printk(KERN_DEBUG "\thighest_inum   %llu\n",
404                        (unsigned long long)le64_to_cpu(mst->highest_inum));
405                 printk(KERN_DEBUG "\tcommit number  %llu\n",
406                        (unsigned long long)le64_to_cpu(mst->cmt_no));
407                 printk(KERN_DEBUG "\tflags          %#x\n",
408                        le32_to_cpu(mst->flags));
409                 printk(KERN_DEBUG "\tlog_lnum       %u\n",
410                        le32_to_cpu(mst->log_lnum));
411                 printk(KERN_DEBUG "\troot_lnum      %u\n",
412                        le32_to_cpu(mst->root_lnum));
413                 printk(KERN_DEBUG "\troot_offs      %u\n",
414                        le32_to_cpu(mst->root_offs));
415                 printk(KERN_DEBUG "\troot_len       %u\n",
416                        le32_to_cpu(mst->root_len));
417                 printk(KERN_DEBUG "\tgc_lnum        %u\n",
418                        le32_to_cpu(mst->gc_lnum));
419                 printk(KERN_DEBUG "\tihead_lnum     %u\n",
420                        le32_to_cpu(mst->ihead_lnum));
421                 printk(KERN_DEBUG "\tihead_offs     %u\n",
422                        le32_to_cpu(mst->ihead_offs));
423                 printk(KERN_DEBUG "\tindex_size     %llu\n",
424                        (unsigned long long)le64_to_cpu(mst->index_size));
425                 printk(KERN_DEBUG "\tlpt_lnum       %u\n",
426                        le32_to_cpu(mst->lpt_lnum));
427                 printk(KERN_DEBUG "\tlpt_offs       %u\n",
428                        le32_to_cpu(mst->lpt_offs));
429                 printk(KERN_DEBUG "\tnhead_lnum     %u\n",
430                        le32_to_cpu(mst->nhead_lnum));
431                 printk(KERN_DEBUG "\tnhead_offs     %u\n",
432                        le32_to_cpu(mst->nhead_offs));
433                 printk(KERN_DEBUG "\tltab_lnum      %u\n",
434                        le32_to_cpu(mst->ltab_lnum));
435                 printk(KERN_DEBUG "\tltab_offs      %u\n",
436                        le32_to_cpu(mst->ltab_offs));
437                 printk(KERN_DEBUG "\tlsave_lnum     %u\n",
438                        le32_to_cpu(mst->lsave_lnum));
439                 printk(KERN_DEBUG "\tlsave_offs     %u\n",
440                        le32_to_cpu(mst->lsave_offs));
441                 printk(KERN_DEBUG "\tlscan_lnum     %u\n",
442                        le32_to_cpu(mst->lscan_lnum));
443                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
444                        le32_to_cpu(mst->leb_cnt));
445                 printk(KERN_DEBUG "\tempty_lebs     %u\n",
446                        le32_to_cpu(mst->empty_lebs));
447                 printk(KERN_DEBUG "\tidx_lebs       %u\n",
448                        le32_to_cpu(mst->idx_lebs));
449                 printk(KERN_DEBUG "\ttotal_free     %llu\n",
450                        (unsigned long long)le64_to_cpu(mst->total_free));
451                 printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
452                        (unsigned long long)le64_to_cpu(mst->total_dirty));
453                 printk(KERN_DEBUG "\ttotal_used     %llu\n",
454                        (unsigned long long)le64_to_cpu(mst->total_used));
455                 printk(KERN_DEBUG "\ttotal_dead     %llu\n",
456                        (unsigned long long)le64_to_cpu(mst->total_dead));
457                 printk(KERN_DEBUG "\ttotal_dark     %llu\n",
458                        (unsigned long long)le64_to_cpu(mst->total_dark));
459                 break;
460         }
461         case UBIFS_REF_NODE:
462         {
463                 const struct ubifs_ref_node *ref = node;
464
465                 printk(KERN_DEBUG "\tlnum           %u\n",
466                        le32_to_cpu(ref->lnum));
467                 printk(KERN_DEBUG "\toffs           %u\n",
468                        le32_to_cpu(ref->offs));
469                 printk(KERN_DEBUG "\tjhead          %u\n",
470                        le32_to_cpu(ref->jhead));
471                 break;
472         }
473         case UBIFS_INO_NODE:
474         {
475                 const struct ubifs_ino_node *ino = node;
476
477                 key_read(c, &ino->key, &key);
478                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
479                 printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
480                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
481                 printk(KERN_DEBUG "\tsize           %llu\n",
482                        (unsigned long long)le64_to_cpu(ino->size));
483                 printk(KERN_DEBUG "\tnlink          %u\n",
484                        le32_to_cpu(ino->nlink));
485                 printk(KERN_DEBUG "\tatime          %lld.%u\n",
486                        (long long)le64_to_cpu(ino->atime_sec),
487                        le32_to_cpu(ino->atime_nsec));
488                 printk(KERN_DEBUG "\tmtime          %lld.%u\n",
489                        (long long)le64_to_cpu(ino->mtime_sec),
490                        le32_to_cpu(ino->mtime_nsec));
491                 printk(KERN_DEBUG "\tctime          %lld.%u\n",
492                        (long long)le64_to_cpu(ino->ctime_sec),
493                        le32_to_cpu(ino->ctime_nsec));
494                 printk(KERN_DEBUG "\tuid            %u\n",
495                        le32_to_cpu(ino->uid));
496                 printk(KERN_DEBUG "\tgid            %u\n",
497                        le32_to_cpu(ino->gid));
498                 printk(KERN_DEBUG "\tmode           %u\n",
499                        le32_to_cpu(ino->mode));
500                 printk(KERN_DEBUG "\tflags          %#x\n",
501                        le32_to_cpu(ino->flags));
502                 printk(KERN_DEBUG "\txattr_cnt      %u\n",
503                        le32_to_cpu(ino->xattr_cnt));
504                 printk(KERN_DEBUG "\txattr_size     %u\n",
505                        le32_to_cpu(ino->xattr_size));
506                 printk(KERN_DEBUG "\txattr_names    %u\n",
507                        le32_to_cpu(ino->xattr_names));
508                 printk(KERN_DEBUG "\tcompr_type     %#x\n",
509                        (int)le16_to_cpu(ino->compr_type));
510                 printk(KERN_DEBUG "\tdata len       %u\n",
511                        le32_to_cpu(ino->data_len));
512                 break;
513         }
514         case UBIFS_DENT_NODE:
515         case UBIFS_XENT_NODE:
516         {
517                 const struct ubifs_dent_node *dent = node;
518                 int nlen = le16_to_cpu(dent->nlen);
519
520                 key_read(c, &dent->key, &key);
521                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
522                 printk(KERN_DEBUG "\tinum           %llu\n",
523                        (unsigned long long)le64_to_cpu(dent->inum));
524                 printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
525                 printk(KERN_DEBUG "\tnlen           %d\n", nlen);
526                 printk(KERN_DEBUG "\tname           ");
527
528                 if (nlen > UBIFS_MAX_NLEN)
529                         printk(KERN_DEBUG "(bad name length, not printing, "
530                                           "bad or corrupted node)");
531                 else {
532                         for (i = 0; i < nlen && dent->name[i]; i++)
533                                 printk(KERN_CONT "%c", dent->name[i]);
534                 }
535                 printk(KERN_CONT "\n");
536
537                 break;
538         }
539         case UBIFS_DATA_NODE:
540         {
541                 const struct ubifs_data_node *dn = node;
542                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
543
544                 key_read(c, &dn->key, &key);
545                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
546                 printk(KERN_DEBUG "\tsize           %u\n",
547                        le32_to_cpu(dn->size));
548                 printk(KERN_DEBUG "\tcompr_typ      %d\n",
549                        (int)le16_to_cpu(dn->compr_type));
550                 printk(KERN_DEBUG "\tdata size      %d\n",
551                        dlen);
552                 printk(KERN_DEBUG "\tdata:\n");
553                 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
554                                (void *)&dn->data, dlen, 0);
555                 break;
556         }
557         case UBIFS_TRUN_NODE:
558         {
559                 const struct ubifs_trun_node *trun = node;
560
561                 printk(KERN_DEBUG "\tinum           %u\n",
562                        le32_to_cpu(trun->inum));
563                 printk(KERN_DEBUG "\told_size       %llu\n",
564                        (unsigned long long)le64_to_cpu(trun->old_size));
565                 printk(KERN_DEBUG "\tnew_size       %llu\n",
566                        (unsigned long long)le64_to_cpu(trun->new_size));
567                 break;
568         }
569         case UBIFS_IDX_NODE:
570         {
571                 const struct ubifs_idx_node *idx = node;
572
573                 n = le16_to_cpu(idx->child_cnt);
574                 printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
575                 printk(KERN_DEBUG "\tlevel          %d\n",
576                        (int)le16_to_cpu(idx->level));
577                 printk(KERN_DEBUG "\tBranches:\n");
578
579                 for (i = 0; i < n && i < c->fanout - 1; i++) {
580                         const struct ubifs_branch *br;
581
582                         br = ubifs_idx_branch(c, idx, i);
583                         key_read(c, &br->key, &key);
584                         printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
585                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
586                                le32_to_cpu(br->len), DBGKEY(&key));
587                 }
588                 break;
589         }
590         case UBIFS_CS_NODE:
591                 break;
592         case UBIFS_ORPH_NODE:
593         {
594                 const struct ubifs_orph_node *orph = node;
595
596                 printk(KERN_DEBUG "\tcommit number  %llu\n",
597                        (unsigned long long)
598                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
599                 printk(KERN_DEBUG "\tlast node flag %llu\n",
600                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
601                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
602                 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
603                 for (i = 0; i < n; i++)
604                         printk(KERN_DEBUG "\t  ino %llu\n",
605                                (unsigned long long)le64_to_cpu(orph->inos[i]));
606                 break;
607         }
608         default:
609                 printk(KERN_DEBUG "node type %d was not recognized\n",
610                        (int)ch->node_type);
611         }
612         spin_unlock(&dbg_lock);
613 }
614
615 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
616 {
617         spin_lock(&dbg_lock);
618         printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
619                req->new_ino, req->dirtied_ino);
620         printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
621                req->new_ino_d, req->dirtied_ino_d);
622         printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
623                req->new_page, req->dirtied_page);
624         printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
625                req->new_dent, req->mod_dent);
626         printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
627         printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
628                req->data_growth, req->dd_growth);
629         spin_unlock(&dbg_lock);
630 }
631
632 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
633 {
634         spin_lock(&dbg_lock);
635         printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
636                "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
637         printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
638                "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
639                lst->total_dirty);
640         printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
641                "total_dead %lld\n", lst->total_used, lst->total_dark,
642                lst->total_dead);
643         spin_unlock(&dbg_lock);
644 }
645
646 void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
647 {
648         int i;
649         struct rb_node *rb;
650         struct ubifs_bud *bud;
651         struct ubifs_gced_idx_leb *idx_gc;
652         long long available, outstanding, free;
653
654         spin_lock(&c->space_lock);
655         spin_lock(&dbg_lock);
656         printk(KERN_DEBUG "(pid %d) Budgeting info: data budget sum %lld, "
657                "total budget sum %lld\n", current->pid,
658                bi->data_growth + bi->dd_growth,
659                bi->data_growth + bi->dd_growth + bi->idx_growth);
660         printk(KERN_DEBUG "\tbudg_data_growth %lld, budg_dd_growth %lld, "
661                "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
662                bi->idx_growth);
663         printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %llu, "
664                "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
665                bi->uncommitted_idx);
666         printk(KERN_DEBUG "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
667                bi->page_budget, bi->inode_budget, bi->dent_budget);
668         printk(KERN_DEBUG "\tnospace %u, nospace_rp %u\n",
669                bi->nospace, bi->nospace_rp);
670         printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
671                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
672
673         if (bi != &c->bi)
674                 /*
675                  * If we are dumping saved budgeting data, do not print
676                  * additional information which is about the current state, not
677                  * the old one which corresponded to the saved budgeting data.
678                  */
679                 goto out_unlock;
680
681         printk(KERN_DEBUG "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
682                c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
683         printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
684                "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
685                atomic_long_read(&c->dirty_zn_cnt),
686                atomic_long_read(&c->clean_zn_cnt));
687         printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
688                c->gc_lnum, c->ihead_lnum);
689
690         /* If we are in R/O mode, journal heads do not exist */
691         if (c->jheads)
692                 for (i = 0; i < c->jhead_cnt; i++)
693                         printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
694                                dbg_jhead(c->jheads[i].wbuf.jhead),
695                                c->jheads[i].wbuf.lnum);
696         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
697                 bud = rb_entry(rb, struct ubifs_bud, rb);
698                 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
699         }
700         list_for_each_entry(bud, &c->old_buds, list)
701                 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
702         list_for_each_entry(idx_gc, &c->idx_gc, list)
703                 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
704                        idx_gc->lnum, idx_gc->unmap);
705         printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
706
707         /* Print budgeting predictions */
708         available = ubifs_calc_available(c, c->bi.min_idx_lebs);
709         outstanding = c->bi.data_growth + c->bi.dd_growth;
710         free = ubifs_get_free_space_nolock(c);
711         printk(KERN_DEBUG "Budgeting predictions:\n");
712         printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
713                available, outstanding, free);
714 out_unlock:
715         spin_unlock(&dbg_lock);
716         spin_unlock(&c->space_lock);
717 }
718
719 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
720 {
721         int i, spc, dark = 0, dead = 0;
722         struct rb_node *rb;
723         struct ubifs_bud *bud;
724
725         spc = lp->free + lp->dirty;
726         if (spc < c->dead_wm)
727                 dead = spc;
728         else
729                 dark = ubifs_calc_dark(c, spc);
730
731         if (lp->flags & LPROPS_INDEX)
732                 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
733                        "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
734                        lp->dirty, c->leb_size - spc, spc, lp->flags);
735         else
736                 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
737                        "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
738                        "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
739                        c->leb_size - spc, spc, dark, dead,
740                        (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
741
742         if (lp->flags & LPROPS_TAKEN) {
743                 if (lp->flags & LPROPS_INDEX)
744                         printk(KERN_CONT "index, taken");
745                 else
746                         printk(KERN_CONT "taken");
747         } else {
748                 const char *s;
749
750                 if (lp->flags & LPROPS_INDEX) {
751                         switch (lp->flags & LPROPS_CAT_MASK) {
752                         case LPROPS_DIRTY_IDX:
753                                 s = "dirty index";
754                                 break;
755                         case LPROPS_FRDI_IDX:
756                                 s = "freeable index";
757                                 break;
758                         default:
759                                 s = "index";
760                         }
761                 } else {
762                         switch (lp->flags & LPROPS_CAT_MASK) {
763                         case LPROPS_UNCAT:
764                                 s = "not categorized";
765                                 break;
766                         case LPROPS_DIRTY:
767                                 s = "dirty";
768                                 break;
769                         case LPROPS_FREE:
770                                 s = "free";
771                                 break;
772                         case LPROPS_EMPTY:
773                                 s = "empty";
774                                 break;
775                         case LPROPS_FREEABLE:
776                                 s = "freeable";
777                                 break;
778                         default:
779                                 s = NULL;
780                                 break;
781                         }
782                 }
783                 printk(KERN_CONT "%s", s);
784         }
785
786         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
787                 bud = rb_entry(rb, struct ubifs_bud, rb);
788                 if (bud->lnum == lp->lnum) {
789                         int head = 0;
790                         for (i = 0; i < c->jhead_cnt; i++) {
791                                 /*
792                                  * Note, if we are in R/O mode or in the middle
793                                  * of mounting/re-mounting, the write-buffers do
794                                  * not exist.
795                                  */
796                                 if (c->jheads &&
797                                     lp->lnum == c->jheads[i].wbuf.lnum) {
798                                         printk(KERN_CONT ", jhead %s",
799                                                dbg_jhead(i));
800                                         head = 1;
801                                 }
802                         }
803                         if (!head)
804                                 printk(KERN_CONT ", bud of jhead %s",
805                                        dbg_jhead(bud->jhead));
806                 }
807         }
808         if (lp->lnum == c->gc_lnum)
809                 printk(KERN_CONT ", GC LEB");
810         printk(KERN_CONT ")\n");
811 }
812
813 void dbg_dump_lprops(struct ubifs_info *c)
814 {
815         int lnum, err;
816         struct ubifs_lprops lp;
817         struct ubifs_lp_stats lst;
818
819         printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
820                current->pid);
821         ubifs_get_lp_stats(c, &lst);
822         dbg_dump_lstats(&lst);
823
824         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
825                 err = ubifs_read_one_lp(c, lnum, &lp);
826                 if (err)
827                         ubifs_err("cannot read lprops for LEB %d", lnum);
828
829                 dbg_dump_lprop(c, &lp);
830         }
831         printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
832                current->pid);
833 }
834
835 void dbg_dump_lpt_info(struct ubifs_info *c)
836 {
837         int i;
838
839         spin_lock(&dbg_lock);
840         printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
841         printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
842         printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
843         printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
844         printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
845         printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
846         printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
847         printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
848         printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
849         printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
850         printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
851         printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
852         printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
853         printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
854         printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
855         printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
856         printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
857         printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
858         printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
859         printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
860         printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
861                c->nhead_lnum, c->nhead_offs);
862         printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
863                c->ltab_lnum, c->ltab_offs);
864         if (c->big_lpt)
865                 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
866                        c->lsave_lnum, c->lsave_offs);
867         for (i = 0; i < c->lpt_lebs; i++)
868                 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
869                        "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
870                        c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
871         spin_unlock(&dbg_lock);
872 }
873
874 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
875 {
876         struct ubifs_scan_leb *sleb;
877         struct ubifs_scan_node *snod;
878         void *buf;
879
880         if (dbg_is_tst_rcvry(c))
881                 return;
882
883         printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
884                current->pid, lnum);
885
886         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
887         if (!buf) {
888                 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
889                 return;
890         }
891
892         sleb = ubifs_scan(c, lnum, 0, buf, 0);
893         if (IS_ERR(sleb)) {
894                 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
895                 goto out;
896         }
897
898         printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
899                sleb->nodes_cnt, sleb->endpt);
900
901         list_for_each_entry(snod, &sleb->nodes, list) {
902                 cond_resched();
903                 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
904                        snod->offs, snod->len);
905                 dbg_dump_node(c, snod->node);
906         }
907
908         printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
909                current->pid, lnum);
910         ubifs_scan_destroy(sleb);
911
912 out:
913         vfree(buf);
914         return;
915 }
916
917 void dbg_dump_znode(const struct ubifs_info *c,
918                     const struct ubifs_znode *znode)
919 {
920         int n;
921         const struct ubifs_zbranch *zbr;
922
923         spin_lock(&dbg_lock);
924         if (znode->parent)
925                 zbr = &znode->parent->zbranch[znode->iip];
926         else
927                 zbr = &c->zroot;
928
929         printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
930                " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
931                zbr->len, znode->parent, znode->iip, znode->level,
932                znode->child_cnt, znode->flags);
933
934         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
935                 spin_unlock(&dbg_lock);
936                 return;
937         }
938
939         printk(KERN_DEBUG "zbranches:\n");
940         for (n = 0; n < znode->child_cnt; n++) {
941                 zbr = &znode->zbranch[n];
942                 if (znode->level > 0)
943                         printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
944                                           "%s\n", n, zbr->znode, zbr->lnum,
945                                           zbr->offs, zbr->len,
946                                           DBGKEY(&zbr->key));
947                 else
948                         printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
949                                           "%s\n", n, zbr->znode, zbr->lnum,
950                                           zbr->offs, zbr->len,
951                                           DBGKEY(&zbr->key));
952         }
953         spin_unlock(&dbg_lock);
954 }
955
956 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
957 {
958         int i;
959
960         printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
961                current->pid, cat, heap->cnt);
962         for (i = 0; i < heap->cnt; i++) {
963                 struct ubifs_lprops *lprops = heap->arr[i];
964
965                 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
966                        "flags %d\n", i, lprops->lnum, lprops->hpos,
967                        lprops->free, lprops->dirty, lprops->flags);
968         }
969         printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
970 }
971
972 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
973                     struct ubifs_nnode *parent, int iip)
974 {
975         int i;
976
977         printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
978         printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
979                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
980         printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
981                pnode->flags, iip, pnode->level, pnode->num);
982         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
983                 struct ubifs_lprops *lp = &pnode->lprops[i];
984
985                 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
986                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
987         }
988 }
989
990 void dbg_dump_tnc(struct ubifs_info *c)
991 {
992         struct ubifs_znode *znode;
993         int level;
994
995         printk(KERN_DEBUG "\n");
996         printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
997         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
998         level = znode->level;
999         printk(KERN_DEBUG "== Level %d ==\n", level);
1000         while (znode) {
1001                 if (level != znode->level) {
1002                         level = znode->level;
1003                         printk(KERN_DEBUG "== Level %d ==\n", level);
1004                 }
1005                 dbg_dump_znode(c, znode);
1006                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1007         }
1008         printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
1009 }
1010
1011 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1012                       void *priv)
1013 {
1014         dbg_dump_znode(c, znode);
1015         return 0;
1016 }
1017
1018 /**
1019  * dbg_dump_index - dump the on-flash index.
1020  * @c: UBIFS file-system description object
1021  *
1022  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
1023  * which dumps only in-memory znodes and does not read znodes which from flash.
1024  */
1025 void dbg_dump_index(struct ubifs_info *c)
1026 {
1027         dbg_walk_index(c, NULL, dump_znode, NULL);
1028 }
1029
1030 /**
1031  * dbg_save_space_info - save information about flash space.
1032  * @c: UBIFS file-system description object
1033  *
1034  * This function saves information about UBIFS free space, dirty space, etc, in
1035  * order to check it later.
1036  */
1037 void dbg_save_space_info(struct ubifs_info *c)
1038 {
1039         struct ubifs_debug_info *d = c->dbg;
1040         int freeable_cnt;
1041
1042         spin_lock(&c->space_lock);
1043         memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1044         memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1045         d->saved_idx_gc_cnt = c->idx_gc_cnt;
1046
1047         /*
1048          * We use a dirty hack here and zero out @c->freeable_cnt, because it
1049          * affects the free space calculations, and UBIFS might not know about
1050          * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1051          * only when we read their lprops, and we do this only lazily, upon the
1052          * need. So at any given point of time @c->freeable_cnt might be not
1053          * exactly accurate.
1054          *
1055          * Just one example about the issue we hit when we did not zero
1056          * @c->freeable_cnt.
1057          * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1058          *    amount of free space in @d->saved_free
1059          * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1060          *    information from flash, where we cache LEBs from various
1061          *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1062          *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1063          *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1064          *    -> 'ubifs_add_to_cat()').
1065          * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1066          *    becomes %1.
1067          * 4. We calculate the amount of free space when the re-mount is
1068          *    finished in 'dbg_check_space_info()' and it does not match
1069          *    @d->saved_free.
1070          */
1071         freeable_cnt = c->freeable_cnt;
1072         c->freeable_cnt = 0;
1073         d->saved_free = ubifs_get_free_space_nolock(c);
1074         c->freeable_cnt = freeable_cnt;
1075         spin_unlock(&c->space_lock);
1076 }
1077
1078 /**
1079  * dbg_check_space_info - check flash space information.
1080  * @c: UBIFS file-system description object
1081  *
1082  * This function compares current flash space information with the information
1083  * which was saved when the 'dbg_save_space_info()' function was called.
1084  * Returns zero if the information has not changed, and %-EINVAL it it has
1085  * changed.
1086  */
1087 int dbg_check_space_info(struct ubifs_info *c)
1088 {
1089         struct ubifs_debug_info *d = c->dbg;
1090         struct ubifs_lp_stats lst;
1091         long long free;
1092         int freeable_cnt;
1093
1094         spin_lock(&c->space_lock);
1095         freeable_cnt = c->freeable_cnt;
1096         c->freeable_cnt = 0;
1097         free = ubifs_get_free_space_nolock(c);
1098         c->freeable_cnt = freeable_cnt;
1099         spin_unlock(&c->space_lock);
1100
1101         if (free != d->saved_free) {
1102                 ubifs_err("free space changed from %lld to %lld",
1103                           d->saved_free, free);
1104                 goto out;
1105         }
1106
1107         return 0;
1108
1109 out:
1110         ubifs_msg("saved lprops statistics dump");
1111         dbg_dump_lstats(&d->saved_lst);
1112         ubifs_msg("saved budgeting info dump");
1113         dbg_dump_budg(c, &d->saved_bi);
1114         ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1115         ubifs_msg("current lprops statistics dump");
1116         ubifs_get_lp_stats(c, &lst);
1117         dbg_dump_lstats(&lst);
1118         ubifs_msg("current budgeting info dump");
1119         dbg_dump_budg(c, &c->bi);
1120         dump_stack();
1121         return -EINVAL;
1122 }
1123
1124 /**
1125  * dbg_check_synced_i_size - check synchronized inode size.
1126  * @c: UBIFS file-system description object
1127  * @inode: inode to check
1128  *
1129  * If inode is clean, synchronized inode size has to be equivalent to current
1130  * inode size. This function has to be called only for locked inodes (@i_mutex
1131  * has to be locked). Returns %0 if synchronized inode size if correct, and
1132  * %-EINVAL if not.
1133  */
1134 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1135 {
1136         int err = 0;
1137         struct ubifs_inode *ui = ubifs_inode(inode);
1138
1139         if (!dbg_is_chk_gen(c))
1140                 return 0;
1141         if (!S_ISREG(inode->i_mode))
1142                 return 0;
1143
1144         mutex_lock(&ui->ui_mutex);
1145         spin_lock(&ui->ui_lock);
1146         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1147                 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1148                           "is clean", ui->ui_size, ui->synced_i_size);
1149                 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1150                           inode->i_mode, i_size_read(inode));
1151                 dbg_dump_stack();
1152                 err = -EINVAL;
1153         }
1154         spin_unlock(&ui->ui_lock);
1155         mutex_unlock(&ui->ui_mutex);
1156         return err;
1157 }
1158
1159 /*
1160  * dbg_check_dir - check directory inode size and link count.
1161  * @c: UBIFS file-system description object
1162  * @dir: the directory to calculate size for
1163  * @size: the result is returned here
1164  *
1165  * This function makes sure that directory size and link count are correct.
1166  * Returns zero in case of success and a negative error code in case of
1167  * failure.
1168  *
1169  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1170  * calling this function.
1171  */
1172 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1173 {
1174         unsigned int nlink = 2;
1175         union ubifs_key key;
1176         struct ubifs_dent_node *dent, *pdent = NULL;
1177         struct qstr nm = { .name = NULL };
1178         loff_t size = UBIFS_INO_NODE_SZ;
1179
1180         if (!dbg_is_chk_gen(c))
1181                 return 0;
1182
1183         if (!S_ISDIR(dir->i_mode))
1184                 return 0;
1185
1186         lowest_dent_key(c, &key, dir->i_ino);
1187         while (1) {
1188                 int err;
1189
1190                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1191                 if (IS_ERR(dent)) {
1192                         err = PTR_ERR(dent);
1193                         if (err == -ENOENT)
1194                                 break;
1195                         return err;
1196                 }
1197
1198                 nm.name = dent->name;
1199                 nm.len = le16_to_cpu(dent->nlen);
1200                 size += CALC_DENT_SIZE(nm.len);
1201                 if (dent->type == UBIFS_ITYPE_DIR)
1202                         nlink += 1;
1203                 kfree(pdent);
1204                 pdent = dent;
1205                 key_read(c, &dent->key, &key);
1206         }
1207         kfree(pdent);
1208
1209         if (i_size_read(dir) != size) {
1210                 ubifs_err("directory inode %lu has size %llu, "
1211                           "but calculated size is %llu", dir->i_ino,
1212                           (unsigned long long)i_size_read(dir),
1213                           (unsigned long long)size);
1214                 dbg_dump_inode(c, dir);
1215                 dump_stack();
1216                 return -EINVAL;
1217         }
1218         if (dir->i_nlink != nlink) {
1219                 ubifs_err("directory inode %lu has nlink %u, but calculated "
1220                           "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1221                 dbg_dump_inode(c, dir);
1222                 dump_stack();
1223                 return -EINVAL;
1224         }
1225
1226         return 0;
1227 }
1228
1229 /**
1230  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1231  * @c: UBIFS file-system description object
1232  * @zbr1: first zbranch
1233  * @zbr2: following zbranch
1234  *
1235  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1236  * names of the direntries/xentries which are referred by the keys. This
1237  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1238  * sure the name of direntry/xentry referred by @zbr1 is less than
1239  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1240  * and a negative error code in case of failure.
1241  */
1242 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1243                                struct ubifs_zbranch *zbr2)
1244 {
1245         int err, nlen1, nlen2, cmp;
1246         struct ubifs_dent_node *dent1, *dent2;
1247         union ubifs_key key;
1248
1249         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1250         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1251         if (!dent1)
1252                 return -ENOMEM;
1253         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1254         if (!dent2) {
1255                 err = -ENOMEM;
1256                 goto out_free;
1257         }
1258
1259         err = ubifs_tnc_read_node(c, zbr1, dent1);
1260         if (err)
1261                 goto out_free;
1262         err = ubifs_validate_entry(c, dent1);
1263         if (err)
1264                 goto out_free;
1265
1266         err = ubifs_tnc_read_node(c, zbr2, dent2);
1267         if (err)
1268                 goto out_free;
1269         err = ubifs_validate_entry(c, dent2);
1270         if (err)
1271                 goto out_free;
1272
1273         /* Make sure node keys are the same as in zbranch */
1274         err = 1;
1275         key_read(c, &dent1->key, &key);
1276         if (keys_cmp(c, &zbr1->key, &key)) {
1277                 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1278                         zbr1->offs, DBGKEY(&key));
1279                 dbg_err("but it should have key %s according to tnc",
1280                         DBGKEY(&zbr1->key));
1281                 dbg_dump_node(c, dent1);
1282                 goto out_free;
1283         }
1284
1285         key_read(c, &dent2->key, &key);
1286         if (keys_cmp(c, &zbr2->key, &key)) {
1287                 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1288                         zbr1->offs, DBGKEY(&key));
1289                 dbg_err("but it should have key %s according to tnc",
1290                         DBGKEY(&zbr2->key));
1291                 dbg_dump_node(c, dent2);
1292                 goto out_free;
1293         }
1294
1295         nlen1 = le16_to_cpu(dent1->nlen);
1296         nlen2 = le16_to_cpu(dent2->nlen);
1297
1298         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1299         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1300                 err = 0;
1301                 goto out_free;
1302         }
1303         if (cmp == 0 && nlen1 == nlen2)
1304                 dbg_err("2 xent/dent nodes with the same name");
1305         else
1306                 dbg_err("bad order of colliding key %s",
1307                         DBGKEY(&key));
1308
1309         ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1310         dbg_dump_node(c, dent1);
1311         ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1312         dbg_dump_node(c, dent2);
1313
1314 out_free:
1315         kfree(dent2);
1316         kfree(dent1);
1317         return err;
1318 }
1319
1320 /**
1321  * dbg_check_znode - check if znode is all right.
1322  * @c: UBIFS file-system description object
1323  * @zbr: zbranch which points to this znode
1324  *
1325  * This function makes sure that znode referred to by @zbr is all right.
1326  * Returns zero if it is, and %-EINVAL if it is not.
1327  */
1328 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1329 {
1330         struct ubifs_znode *znode = zbr->znode;
1331         struct ubifs_znode *zp = znode->parent;
1332         int n, err, cmp;
1333
1334         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1335                 err = 1;
1336                 goto out;
1337         }
1338         if (znode->level < 0) {
1339                 err = 2;
1340                 goto out;
1341         }
1342         if (znode->iip < 0 || znode->iip >= c->fanout) {
1343                 err = 3;
1344                 goto out;
1345         }
1346
1347         if (zbr->len == 0)
1348                 /* Only dirty zbranch may have no on-flash nodes */
1349                 if (!ubifs_zn_dirty(znode)) {
1350                         err = 4;
1351                         goto out;
1352                 }
1353
1354         if (ubifs_zn_dirty(znode)) {
1355                 /*
1356                  * If znode is dirty, its parent has to be dirty as well. The
1357                  * order of the operation is important, so we have to have
1358                  * memory barriers.
1359                  */
1360                 smp_mb();
1361                 if (zp && !ubifs_zn_dirty(zp)) {
1362                         /*
1363                          * The dirty flag is atomic and is cleared outside the
1364                          * TNC mutex, so znode's dirty flag may now have
1365                          * been cleared. The child is always cleared before the
1366                          * parent, so we just need to check again.
1367                          */
1368                         smp_mb();
1369                         if (ubifs_zn_dirty(znode)) {
1370                                 err = 5;
1371                                 goto out;
1372                         }
1373                 }
1374         }
1375
1376         if (zp) {
1377                 const union ubifs_key *min, *max;
1378
1379                 if (znode->level != zp->level - 1) {
1380                         err = 6;
1381                         goto out;
1382                 }
1383
1384                 /* Make sure the 'parent' pointer in our znode is correct */
1385                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1386                 if (!err) {
1387                         /* This zbranch does not exist in the parent */
1388                         err = 7;
1389                         goto out;
1390                 }
1391
1392                 if (znode->iip >= zp->child_cnt) {
1393                         err = 8;
1394                         goto out;
1395                 }
1396
1397                 if (znode->iip != n) {
1398                         /* This may happen only in case of collisions */
1399                         if (keys_cmp(c, &zp->zbranch[n].key,
1400                                      &zp->zbranch[znode->iip].key)) {
1401                                 err = 9;
1402                                 goto out;
1403                         }
1404                         n = znode->iip;
1405                 }
1406
1407                 /*
1408                  * Make sure that the first key in our znode is greater than or
1409                  * equal to the key in the pointing zbranch.
1410                  */
1411                 min = &zbr->key;
1412                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1413                 if (cmp == 1) {
1414                         err = 10;
1415                         goto out;
1416                 }
1417
1418                 if (n + 1 < zp->child_cnt) {
1419                         max = &zp->zbranch[n + 1].key;
1420
1421                         /*
1422                          * Make sure the last key in our znode is less or
1423                          * equivalent than the key in the zbranch which goes
1424                          * after our pointing zbranch.
1425                          */
1426                         cmp = keys_cmp(c, max,
1427                                 &znode->zbranch[znode->child_cnt - 1].key);
1428                         if (cmp == -1) {
1429                                 err = 11;
1430                                 goto out;
1431                         }
1432                 }
1433         } else {
1434                 /* This may only be root znode */
1435                 if (zbr != &c->zroot) {
1436                         err = 12;
1437                         goto out;
1438                 }
1439         }
1440
1441         /*
1442          * Make sure that next key is greater or equivalent then the previous
1443          * one.
1444          */
1445         for (n = 1; n < znode->child_cnt; n++) {
1446                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1447                                &znode->zbranch[n].key);
1448                 if (cmp > 0) {
1449                         err = 13;
1450                         goto out;
1451                 }
1452                 if (cmp == 0) {
1453                         /* This can only be keys with colliding hash */
1454                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1455                                 err = 14;
1456                                 goto out;
1457                         }
1458
1459                         if (znode->level != 0 || c->replaying)
1460                                 continue;
1461
1462                         /*
1463                          * Colliding keys should follow binary order of
1464                          * corresponding xentry/dentry names.
1465                          */
1466                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1467                                                   &znode->zbranch[n]);
1468                         if (err < 0)
1469                                 return err;
1470                         if (err) {
1471                                 err = 15;
1472                                 goto out;
1473                         }
1474                 }
1475         }
1476
1477         for (n = 0; n < znode->child_cnt; n++) {
1478                 if (!znode->zbranch[n].znode &&
1479                     (znode->zbranch[n].lnum == 0 ||
1480                      znode->zbranch[n].len == 0)) {
1481                         err = 16;
1482                         goto out;
1483                 }
1484
1485                 if (znode->zbranch[n].lnum != 0 &&
1486                     znode->zbranch[n].len == 0) {
1487                         err = 17;
1488                         goto out;
1489                 }
1490
1491                 if (znode->zbranch[n].lnum == 0 &&
1492                     znode->zbranch[n].len != 0) {
1493                         err = 18;
1494                         goto out;
1495                 }
1496
1497                 if (znode->zbranch[n].lnum == 0 &&
1498                     znode->zbranch[n].offs != 0) {
1499                         err = 19;
1500                         goto out;
1501                 }
1502
1503                 if (znode->level != 0 && znode->zbranch[n].znode)
1504                         if (znode->zbranch[n].znode->parent != znode) {
1505                                 err = 20;
1506                                 goto out;
1507                         }
1508         }
1509
1510         return 0;
1511
1512 out:
1513         ubifs_err("failed, error %d", err);
1514         ubifs_msg("dump of the znode");
1515         dbg_dump_znode(c, znode);
1516         if (zp) {
1517                 ubifs_msg("dump of the parent znode");
1518                 dbg_dump_znode(c, zp);
1519         }
1520         dump_stack();
1521         return -EINVAL;
1522 }
1523
1524 /**
1525  * dbg_check_tnc - check TNC tree.
1526  * @c: UBIFS file-system description object
1527  * @extra: do extra checks that are possible at start commit
1528  *
1529  * This function traverses whole TNC tree and checks every znode. Returns zero
1530  * if everything is all right and %-EINVAL if something is wrong with TNC.
1531  */
1532 int dbg_check_tnc(struct ubifs_info *c, int extra)
1533 {
1534         struct ubifs_znode *znode;
1535         long clean_cnt = 0, dirty_cnt = 0;
1536         int err, last;
1537
1538         if (!dbg_is_chk_index(c))
1539                 return 0;
1540
1541         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1542         if (!c->zroot.znode)
1543                 return 0;
1544
1545         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1546         while (1) {
1547                 struct ubifs_znode *prev;
1548                 struct ubifs_zbranch *zbr;
1549
1550                 if (!znode->parent)
1551                         zbr = &c->zroot;
1552                 else
1553                         zbr = &znode->parent->zbranch[znode->iip];
1554
1555                 err = dbg_check_znode(c, zbr);
1556                 if (err)
1557                         return err;
1558
1559                 if (extra) {
1560                         if (ubifs_zn_dirty(znode))
1561                                 dirty_cnt += 1;
1562                         else
1563                                 clean_cnt += 1;
1564                 }
1565
1566                 prev = znode;
1567                 znode = ubifs_tnc_postorder_next(znode);
1568                 if (!znode)
1569                         break;
1570
1571                 /*
1572                  * If the last key of this znode is equivalent to the first key
1573                  * of the next znode (collision), then check order of the keys.
1574                  */
1575                 last = prev->child_cnt - 1;
1576                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1577                     !keys_cmp(c, &prev->zbranch[last].key,
1578                               &znode->zbranch[0].key)) {
1579                         err = dbg_check_key_order(c, &prev->zbranch[last],
1580                                                   &znode->zbranch[0]);
1581                         if (err < 0)
1582                                 return err;
1583                         if (err) {
1584                                 ubifs_msg("first znode");
1585                                 dbg_dump_znode(c, prev);
1586                                 ubifs_msg("second znode");
1587                                 dbg_dump_znode(c, znode);
1588                                 return -EINVAL;
1589                         }
1590                 }
1591         }
1592
1593         if (extra) {
1594                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1595                         ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1596                                   atomic_long_read(&c->clean_zn_cnt),
1597                                   clean_cnt);
1598                         return -EINVAL;
1599                 }
1600                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1601                         ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1602                                   atomic_long_read(&c->dirty_zn_cnt),
1603                                   dirty_cnt);
1604                         return -EINVAL;
1605                 }
1606         }
1607
1608         return 0;
1609 }
1610
1611 /**
1612  * dbg_walk_index - walk the on-flash index.
1613  * @c: UBIFS file-system description object
1614  * @leaf_cb: called for each leaf node
1615  * @znode_cb: called for each indexing node
1616  * @priv: private data which is passed to callbacks
1617  *
1618  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1619  * node and @znode_cb for each indexing node. Returns zero in case of success
1620  * and a negative error code in case of failure.
1621  *
1622  * It would be better if this function removed every znode it pulled to into
1623  * the TNC, so that the behavior more closely matched the non-debugging
1624  * behavior.
1625  */
1626 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1627                    dbg_znode_callback znode_cb, void *priv)
1628 {
1629         int err;
1630         struct ubifs_zbranch *zbr;
1631         struct ubifs_znode *znode, *child;
1632
1633         mutex_lock(&c->tnc_mutex);
1634         /* If the root indexing node is not in TNC - pull it */
1635         if (!c->zroot.znode) {
1636                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1637                 if (IS_ERR(c->zroot.znode)) {
1638                         err = PTR_ERR(c->zroot.znode);
1639                         c->zroot.znode = NULL;
1640                         goto out_unlock;
1641                 }
1642         }
1643
1644         /*
1645          * We are going to traverse the indexing tree in the postorder manner.
1646          * Go down and find the leftmost indexing node where we are going to
1647          * start from.
1648          */
1649         znode = c->zroot.znode;
1650         while (znode->level > 0) {
1651                 zbr = &znode->zbranch[0];
1652                 child = zbr->znode;
1653                 if (!child) {
1654                         child = ubifs_load_znode(c, zbr, znode, 0);
1655                         if (IS_ERR(child)) {
1656                                 err = PTR_ERR(child);
1657                                 goto out_unlock;
1658                         }
1659                         zbr->znode = child;
1660                 }
1661
1662                 znode = child;
1663         }
1664
1665         /* Iterate over all indexing nodes */
1666         while (1) {
1667                 int idx;
1668
1669                 cond_resched();
1670
1671                 if (znode_cb) {
1672                         err = znode_cb(c, znode, priv);
1673                         if (err) {
1674                                 ubifs_err("znode checking function returned "
1675                                           "error %d", err);
1676                                 dbg_dump_znode(c, znode);
1677                                 goto out_dump;
1678                         }
1679                 }
1680                 if (leaf_cb && znode->level == 0) {
1681                         for (idx = 0; idx < znode->child_cnt; idx++) {
1682                                 zbr = &znode->zbranch[idx];
1683                                 err = leaf_cb(c, zbr, priv);
1684                                 if (err) {
1685                                         ubifs_err("leaf checking function "
1686                                                   "returned error %d, for leaf "
1687                                                   "at LEB %d:%d",
1688                                                   err, zbr->lnum, zbr->offs);
1689                                         goto out_dump;
1690                                 }
1691                         }
1692                 }
1693
1694                 if (!znode->parent)
1695                         break;
1696
1697                 idx = znode->iip + 1;
1698                 znode = znode->parent;
1699                 if (idx < znode->child_cnt) {
1700                         /* Switch to the next index in the parent */
1701                         zbr = &znode->zbranch[idx];
1702                         child = zbr->znode;
1703                         if (!child) {
1704                                 child = ubifs_load_znode(c, zbr, znode, idx);
1705                                 if (IS_ERR(child)) {
1706                                         err = PTR_ERR(child);
1707                                         goto out_unlock;
1708                                 }
1709                                 zbr->znode = child;
1710                         }
1711                         znode = child;
1712                 } else
1713                         /*
1714                          * This is the last child, switch to the parent and
1715                          * continue.
1716                          */
1717                         continue;
1718
1719                 /* Go to the lowest leftmost znode in the new sub-tree */
1720                 while (znode->level > 0) {
1721                         zbr = &znode->zbranch[0];
1722                         child = zbr->znode;
1723                         if (!child) {
1724                                 child = ubifs_load_znode(c, zbr, znode, 0);
1725                                 if (IS_ERR(child)) {
1726                                         err = PTR_ERR(child);
1727                                         goto out_unlock;
1728                                 }
1729                                 zbr->znode = child;
1730                         }
1731                         znode = child;
1732                 }
1733         }
1734
1735         mutex_unlock(&c->tnc_mutex);
1736         return 0;
1737
1738 out_dump:
1739         if (znode->parent)
1740                 zbr = &znode->parent->zbranch[znode->iip];
1741         else
1742                 zbr = &c->zroot;
1743         ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1744         dbg_dump_znode(c, znode);
1745 out_unlock:
1746         mutex_unlock(&c->tnc_mutex);
1747         return err;
1748 }
1749
1750 /**
1751  * add_size - add znode size to partially calculated index size.
1752  * @c: UBIFS file-system description object
1753  * @znode: znode to add size for
1754  * @priv: partially calculated index size
1755  *
1756  * This is a helper function for 'dbg_check_idx_size()' which is called for
1757  * every indexing node and adds its size to the 'long long' variable pointed to
1758  * by @priv.
1759  */
1760 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1761 {
1762         long long *idx_size = priv;
1763         int add;
1764
1765         add = ubifs_idx_node_sz(c, znode->child_cnt);
1766         add = ALIGN(add, 8);
1767         *idx_size += add;
1768         return 0;
1769 }
1770
1771 /**
1772  * dbg_check_idx_size - check index size.
1773  * @c: UBIFS file-system description object
1774  * @idx_size: size to check
1775  *
1776  * This function walks the UBIFS index, calculates its size and checks that the
1777  * size is equivalent to @idx_size. Returns zero in case of success and a
1778  * negative error code in case of failure.
1779  */
1780 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1781 {
1782         int err;
1783         long long calc = 0;
1784
1785         if (!dbg_is_chk_index(c))
1786                 return 0;
1787
1788         err = dbg_walk_index(c, NULL, add_size, &calc);
1789         if (err) {
1790                 ubifs_err("error %d while walking the index", err);
1791                 return err;
1792         }
1793
1794         if (calc != idx_size) {
1795                 ubifs_err("index size check failed: calculated size is %lld, "
1796                           "should be %lld", calc, idx_size);
1797                 dump_stack();
1798                 return -EINVAL;
1799         }
1800
1801         return 0;
1802 }
1803
1804 /**
1805  * struct fsck_inode - information about an inode used when checking the file-system.
1806  * @rb: link in the RB-tree of inodes
1807  * @inum: inode number
1808  * @mode: inode type, permissions, etc
1809  * @nlink: inode link count
1810  * @xattr_cnt: count of extended attributes
1811  * @references: how many directory/xattr entries refer this inode (calculated
1812  *              while walking the index)
1813  * @calc_cnt: for directory inode count of child directories
1814  * @size: inode size (read from on-flash inode)
1815  * @xattr_sz: summary size of all extended attributes (read from on-flash
1816  *            inode)
1817  * @calc_sz: for directories calculated directory size
1818  * @calc_xcnt: count of extended attributes
1819  * @calc_xsz: calculated summary size of all extended attributes
1820  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1821  *             inode (read from on-flash inode)
1822  * @calc_xnms: calculated sum of lengths of all extended attribute names
1823  */
1824 struct fsck_inode {
1825         struct rb_node rb;
1826         ino_t inum;
1827         umode_t mode;
1828         unsigned int nlink;
1829         unsigned int xattr_cnt;
1830         int references;
1831         int calc_cnt;
1832         long long size;
1833         unsigned int xattr_sz;
1834         long long calc_sz;
1835         long long calc_xcnt;
1836         long long calc_xsz;
1837         unsigned int xattr_nms;
1838         long long calc_xnms;
1839 };
1840
1841 /**
1842  * struct fsck_data - private FS checking information.
1843  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1844  */
1845 struct fsck_data {
1846         struct rb_root inodes;
1847 };
1848
1849 /**
1850  * add_inode - add inode information to RB-tree of inodes.
1851  * @c: UBIFS file-system description object
1852  * @fsckd: FS checking information
1853  * @ino: raw UBIFS inode to add
1854  *
1855  * This is a helper function for 'check_leaf()' which adds information about
1856  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1857  * case of success and a negative error code in case of failure.
1858  */
1859 static struct fsck_inode *add_inode(struct ubifs_info *c,
1860                                     struct fsck_data *fsckd,
1861                                     struct ubifs_ino_node *ino)
1862 {
1863         struct rb_node **p, *parent = NULL;
1864         struct fsck_inode *fscki;
1865         ino_t inum = key_inum_flash(c, &ino->key);
1866         struct inode *inode;
1867         struct ubifs_inode *ui;
1868
1869         p = &fsckd->inodes.rb_node;
1870         while (*p) {
1871                 parent = *p;
1872                 fscki = rb_entry(parent, struct fsck_inode, rb);
1873                 if (inum < fscki->inum)
1874                         p = &(*p)->rb_left;
1875                 else if (inum > fscki->inum)
1876                         p = &(*p)->rb_right;
1877                 else
1878                         return fscki;
1879         }
1880
1881         if (inum > c->highest_inum) {
1882                 ubifs_err("too high inode number, max. is %lu",
1883                           (unsigned long)c->highest_inum);
1884                 return ERR_PTR(-EINVAL);
1885         }
1886
1887         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1888         if (!fscki)
1889                 return ERR_PTR(-ENOMEM);
1890
1891         inode = ilookup(c->vfs_sb, inum);
1892
1893         fscki->inum = inum;
1894         /*
1895          * If the inode is present in the VFS inode cache, use it instead of
1896          * the on-flash inode which might be out-of-date. E.g., the size might
1897          * be out-of-date. If we do not do this, the following may happen, for
1898          * example:
1899          *   1. A power cut happens
1900          *   2. We mount the file-system R/O, the replay process fixes up the
1901          *      inode size in the VFS cache, but on on-flash.
1902          *   3. 'check_leaf()' fails because it hits a data node beyond inode
1903          *      size.
1904          */
1905         if (!inode) {
1906                 fscki->nlink = le32_to_cpu(ino->nlink);
1907                 fscki->size = le64_to_cpu(ino->size);
1908                 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1909                 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1910                 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1911                 fscki->mode = le32_to_cpu(ino->mode);
1912         } else {
1913                 ui = ubifs_inode(inode);
1914                 fscki->nlink = inode->i_nlink;
1915                 fscki->size = inode->i_size;
1916                 fscki->xattr_cnt = ui->xattr_cnt;
1917                 fscki->xattr_sz = ui->xattr_size;
1918                 fscki->xattr_nms = ui->xattr_names;
1919                 fscki->mode = inode->i_mode;
1920                 iput(inode);
1921         }
1922
1923         if (S_ISDIR(fscki->mode)) {
1924                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1925                 fscki->calc_cnt = 2;
1926         }
1927
1928         rb_link_node(&fscki->rb, parent, p);
1929         rb_insert_color(&fscki->rb, &fsckd->inodes);
1930
1931         return fscki;
1932 }
1933
1934 /**
1935  * search_inode - search inode in the RB-tree of inodes.
1936  * @fsckd: FS checking information
1937  * @inum: inode number to search
1938  *
1939  * This is a helper function for 'check_leaf()' which searches inode @inum in
1940  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1941  * the inode was not found.
1942  */
1943 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1944 {
1945         struct rb_node *p;
1946         struct fsck_inode *fscki;
1947
1948         p = fsckd->inodes.rb_node;
1949         while (p) {
1950                 fscki = rb_entry(p, struct fsck_inode, rb);
1951                 if (inum < fscki->inum)
1952                         p = p->rb_left;
1953                 else if (inum > fscki->inum)
1954                         p = p->rb_right;
1955                 else
1956                         return fscki;
1957         }
1958         return NULL;
1959 }
1960
1961 /**
1962  * read_add_inode - read inode node and add it to RB-tree of inodes.
1963  * @c: UBIFS file-system description object
1964  * @fsckd: FS checking information
1965  * @inum: inode number to read
1966  *
1967  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1968  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1969  * information pointer in case of success and a negative error code in case of
1970  * failure.
1971  */
1972 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1973                                          struct fsck_data *fsckd, ino_t inum)
1974 {
1975         int n, err;
1976         union ubifs_key key;
1977         struct ubifs_znode *znode;
1978         struct ubifs_zbranch *zbr;
1979         struct ubifs_ino_node *ino;
1980         struct fsck_inode *fscki;
1981
1982         fscki = search_inode(fsckd, inum);
1983         if (fscki)
1984                 return fscki;
1985
1986         ino_key_init(c, &key, inum);
1987         err = ubifs_lookup_level0(c, &key, &znode, &n);
1988         if (!err) {
1989                 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1990                 return ERR_PTR(-ENOENT);
1991         } else if (err < 0) {
1992                 ubifs_err("error %d while looking up inode %lu",
1993                           err, (unsigned long)inum);
1994                 return ERR_PTR(err);
1995         }
1996
1997         zbr = &znode->zbranch[n];
1998         if (zbr->len < UBIFS_INO_NODE_SZ) {
1999                 ubifs_err("bad node %lu node length %d",
2000                           (unsigned long)inum, zbr->len);
2001                 return ERR_PTR(-EINVAL);
2002         }
2003
2004         ino = kmalloc(zbr->len, GFP_NOFS);
2005         if (!ino)
2006                 return ERR_PTR(-ENOMEM);
2007
2008         err = ubifs_tnc_read_node(c, zbr, ino);
2009         if (err) {
2010                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2011                           zbr->lnum, zbr->offs, err);
2012                 kfree(ino);
2013                 return ERR_PTR(err);
2014         }
2015
2016         fscki = add_inode(c, fsckd, ino);
2017         kfree(ino);
2018         if (IS_ERR(fscki)) {
2019                 ubifs_err("error %ld while adding inode %lu node",
2020                           PTR_ERR(fscki), (unsigned long)inum);
2021                 return fscki;
2022         }
2023
2024         return fscki;
2025 }
2026
2027 /**
2028  * check_leaf - check leaf node.
2029  * @c: UBIFS file-system description object
2030  * @zbr: zbranch of the leaf node to check
2031  * @priv: FS checking information
2032  *
2033  * This is a helper function for 'dbg_check_filesystem()' which is called for
2034  * every single leaf node while walking the indexing tree. It checks that the
2035  * leaf node referred from the indexing tree exists, has correct CRC, and does
2036  * some other basic validation. This function is also responsible for building
2037  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2038  * calculates reference count, size, etc for each inode in order to later
2039  * compare them to the information stored inside the inodes and detect possible
2040  * inconsistencies. Returns zero in case of success and a negative error code
2041  * in case of failure.
2042  */
2043 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2044                       void *priv)
2045 {
2046         ino_t inum;
2047         void *node;
2048         struct ubifs_ch *ch;
2049         int err, type = key_type(c, &zbr->key);
2050         struct fsck_inode *fscki;
2051
2052         if (zbr->len < UBIFS_CH_SZ) {
2053                 ubifs_err("bad leaf length %d (LEB %d:%d)",
2054                           zbr->len, zbr->lnum, zbr->offs);
2055                 return -EINVAL;
2056         }
2057
2058         node = kmalloc(zbr->len, GFP_NOFS);
2059         if (!node)
2060                 return -ENOMEM;
2061
2062         err = ubifs_tnc_read_node(c, zbr, node);
2063         if (err) {
2064                 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2065                           zbr->lnum, zbr->offs, err);
2066                 goto out_free;
2067         }
2068
2069         /* If this is an inode node, add it to RB-tree of inodes */
2070         if (type == UBIFS_INO_KEY) {
2071                 fscki = add_inode(c, priv, node);
2072                 if (IS_ERR(fscki)) {
2073                         err = PTR_ERR(fscki);
2074                         ubifs_err("error %d while adding inode node", err);
2075                         goto out_dump;
2076                 }
2077                 goto out;
2078         }
2079
2080         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2081             type != UBIFS_DATA_KEY) {
2082                 ubifs_err("unexpected node type %d at LEB %d:%d",
2083                           type, zbr->lnum, zbr->offs);
2084                 err = -EINVAL;
2085                 goto out_free;
2086         }
2087
2088         ch = node;
2089         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2090                 ubifs_err("too high sequence number, max. is %llu",
2091                           c->max_sqnum);
2092                 err = -EINVAL;
2093                 goto out_dump;
2094         }
2095
2096         if (type == UBIFS_DATA_KEY) {
2097                 long long blk_offs;
2098                 struct ubifs_data_node *dn = node;
2099
2100                 /*
2101                  * Search the inode node this data node belongs to and insert
2102                  * it to the RB-tree of inodes.
2103                  */
2104                 inum = key_inum_flash(c, &dn->key);
2105                 fscki = read_add_inode(c, priv, inum);
2106                 if (IS_ERR(fscki)) {
2107                         err = PTR_ERR(fscki);
2108                         ubifs_err("error %d while processing data node and "
2109                                   "trying to find inode node %lu",
2110                                   err, (unsigned long)inum);
2111                         goto out_dump;
2112                 }
2113
2114                 /* Make sure the data node is within inode size */
2115                 blk_offs = key_block_flash(c, &dn->key);
2116                 blk_offs <<= UBIFS_BLOCK_SHIFT;
2117                 blk_offs += le32_to_cpu(dn->size);
2118                 if (blk_offs > fscki->size) {
2119                         ubifs_err("data node at LEB %d:%d is not within inode "
2120                                   "size %lld", zbr->lnum, zbr->offs,
2121                                   fscki->size);
2122                         err = -EINVAL;
2123                         goto out_dump;
2124                 }
2125         } else {
2126                 int nlen;
2127                 struct ubifs_dent_node *dent = node;
2128                 struct fsck_inode *fscki1;
2129
2130                 err = ubifs_validate_entry(c, dent);
2131                 if (err)
2132                         goto out_dump;
2133
2134                 /*
2135                  * Search the inode node this entry refers to and the parent
2136                  * inode node and insert them to the RB-tree of inodes.
2137                  */
2138                 inum = le64_to_cpu(dent->inum);
2139                 fscki = read_add_inode(c, priv, inum);
2140                 if (IS_ERR(fscki)) {
2141                         err = PTR_ERR(fscki);
2142                         ubifs_err("error %d while processing entry node and "
2143                                   "trying to find inode node %lu",
2144                                   err, (unsigned long)inum);
2145                         goto out_dump;
2146                 }
2147
2148                 /* Count how many direntries or xentries refers this inode */
2149                 fscki->references += 1;
2150
2151                 inum = key_inum_flash(c, &dent->key);
2152                 fscki1 = read_add_inode(c, priv, inum);
2153                 if (IS_ERR(fscki1)) {
2154                         err = PTR_ERR(fscki1);
2155                         ubifs_err("error %d while processing entry node and "
2156                                   "trying to find parent inode node %lu",
2157                                   err, (unsigned long)inum);
2158                         goto out_dump;
2159                 }
2160
2161                 nlen = le16_to_cpu(dent->nlen);
2162                 if (type == UBIFS_XENT_KEY) {
2163                         fscki1->calc_xcnt += 1;
2164                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2165                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2166                         fscki1->calc_xnms += nlen;
2167                 } else {
2168                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2169                         if (dent->type == UBIFS_ITYPE_DIR)
2170                                 fscki1->calc_cnt += 1;
2171                 }
2172         }
2173
2174 out:
2175         kfree(node);
2176         return 0;
2177
2178 out_dump:
2179         ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2180         dbg_dump_node(c, node);
2181 out_free:
2182         kfree(node);
2183         return err;
2184 }
2185
2186 /**
2187  * free_inodes - free RB-tree of inodes.
2188  * @fsckd: FS checking information
2189  */
2190 static void free_inodes(struct fsck_data *fsckd)
2191 {
2192         struct rb_node *this = fsckd->inodes.rb_node;
2193         struct fsck_inode *fscki;
2194
2195         while (this) {
2196                 if (this->rb_left)
2197                         this = this->rb_left;
2198                 else if (this->rb_right)
2199                         this = this->rb_right;
2200                 else {
2201                         fscki = rb_entry(this, struct fsck_inode, rb);
2202                         this = rb_parent(this);
2203                         if (this) {
2204                                 if (this->rb_left == &fscki->rb)
2205                                         this->rb_left = NULL;
2206                                 else
2207                                         this->rb_right = NULL;
2208                         }
2209                         kfree(fscki);
2210                 }
2211         }
2212 }
2213
2214 /**
2215  * check_inodes - checks all inodes.
2216  * @c: UBIFS file-system description object
2217  * @fsckd: FS checking information
2218  *
2219  * This is a helper function for 'dbg_check_filesystem()' which walks the
2220  * RB-tree of inodes after the index scan has been finished, and checks that
2221  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2222  * %-EINVAL if not, and a negative error code in case of failure.
2223  */
2224 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2225 {
2226         int n, err;
2227         union ubifs_key key;
2228         struct ubifs_znode *znode;
2229         struct ubifs_zbranch *zbr;
2230         struct ubifs_ino_node *ino;
2231         struct fsck_inode *fscki;
2232         struct rb_node *this = rb_first(&fsckd->inodes);
2233
2234         while (this) {
2235                 fscki = rb_entry(this, struct fsck_inode, rb);
2236                 this = rb_next(this);
2237
2238                 if (S_ISDIR(fscki->mode)) {
2239                         /*
2240                          * Directories have to have exactly one reference (they
2241                          * cannot have hardlinks), although root inode is an
2242                          * exception.
2243                          */
2244                         if (fscki->inum != UBIFS_ROOT_INO &&
2245                             fscki->references != 1) {
2246                                 ubifs_err("directory inode %lu has %d "
2247                                           "direntries which refer it, but "
2248                                           "should be 1",
2249                                           (unsigned long)fscki->inum,
2250                                           fscki->references);
2251                                 goto out_dump;
2252                         }
2253                         if (fscki->inum == UBIFS_ROOT_INO &&
2254                             fscki->references != 0) {
2255                                 ubifs_err("root inode %lu has non-zero (%d) "
2256                                           "direntries which refer it",
2257                                           (unsigned long)fscki->inum,
2258                                           fscki->references);
2259                                 goto out_dump;
2260                         }
2261                         if (fscki->calc_sz != fscki->size) {
2262                                 ubifs_err("directory inode %lu size is %lld, "
2263                                           "but calculated size is %lld",
2264                                           (unsigned long)fscki->inum,
2265                                           fscki->size, fscki->calc_sz);
2266                                 goto out_dump;
2267                         }
2268                         if (fscki->calc_cnt != fscki->nlink) {
2269                                 ubifs_err("directory inode %lu nlink is %d, "
2270                                           "but calculated nlink is %d",
2271                                           (unsigned long)fscki->inum,
2272                                           fscki->nlink, fscki->calc_cnt);
2273                                 goto out_dump;
2274                         }
2275                 } else {
2276                         if (fscki->references != fscki->nlink) {
2277                                 ubifs_err("inode %lu nlink is %d, but "
2278                                           "calculated nlink is %d",
2279                                           (unsigned long)fscki->inum,
2280                                           fscki->nlink, fscki->references);
2281                                 goto out_dump;
2282                         }
2283                 }
2284                 if (fscki->xattr_sz != fscki->calc_xsz) {
2285                         ubifs_err("inode %lu has xattr size %u, but "
2286                                   "calculated size is %lld",
2287                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2288                                   fscki->calc_xsz);
2289                         goto out_dump;
2290                 }
2291                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2292                         ubifs_err("inode %lu has %u xattrs, but "
2293                                   "calculated count is %lld",
2294                                   (unsigned long)fscki->inum,
2295                                   fscki->xattr_cnt, fscki->calc_xcnt);
2296                         goto out_dump;
2297                 }
2298                 if (fscki->xattr_nms != fscki->calc_xnms) {
2299                         ubifs_err("inode %lu has xattr names' size %u, but "
2300                                   "calculated names' size is %lld",
2301                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2302                                   fscki->calc_xnms);
2303                         goto out_dump;
2304                 }
2305         }
2306
2307         return 0;
2308
2309 out_dump:
2310         /* Read the bad inode and dump it */
2311         ino_key_init(c, &key, fscki->inum);
2312         err = ubifs_lookup_level0(c, &key, &znode, &n);
2313         if (!err) {
2314                 ubifs_err("inode %lu not found in index",
2315                           (unsigned long)fscki->inum);
2316                 return -ENOENT;
2317         } else if (err < 0) {
2318                 ubifs_err("error %d while looking up inode %lu",
2319                           err, (unsigned long)fscki->inum);
2320                 return err;
2321         }
2322
2323         zbr = &znode->zbranch[n];
2324         ino = kmalloc(zbr->len, GFP_NOFS);
2325         if (!ino)
2326                 return -ENOMEM;
2327
2328         err = ubifs_tnc_read_node(c, zbr, ino);
2329         if (err) {
2330                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2331                           zbr->lnum, zbr->offs, err);
2332                 kfree(ino);
2333                 return err;
2334         }
2335
2336         ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2337                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2338         dbg_dump_node(c, ino);
2339         kfree(ino);
2340         return -EINVAL;
2341 }
2342
2343 /**
2344  * dbg_check_filesystem - check the file-system.
2345  * @c: UBIFS file-system description object
2346  *
2347  * This function checks the file system, namely:
2348  * o makes sure that all leaf nodes exist and their CRCs are correct;
2349  * o makes sure inode nlink, size, xattr size/count are correct (for all
2350  *   inodes).
2351  *
2352  * The function reads whole indexing tree and all nodes, so it is pretty
2353  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2354  * not, and a negative error code in case of failure.
2355  */
2356 int dbg_check_filesystem(struct ubifs_info *c)
2357 {
2358         int err;
2359         struct fsck_data fsckd;
2360
2361         if (!dbg_is_chk_fs(c))
2362                 return 0;
2363
2364         fsckd.inodes = RB_ROOT;
2365         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2366         if (err)
2367                 goto out_free;
2368
2369         err = check_inodes(c, &fsckd);
2370         if (err)
2371                 goto out_free;
2372
2373         free_inodes(&fsckd);
2374         return 0;
2375
2376 out_free:
2377         ubifs_err("file-system check failed with error %d", err);
2378         dump_stack();
2379         free_inodes(&fsckd);
2380         return err;
2381 }
2382
2383 /**
2384  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2385  * @c: UBIFS file-system description object
2386  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2387  *
2388  * This function returns zero if the list of data nodes is sorted correctly,
2389  * and %-EINVAL if not.
2390  */
2391 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2392 {
2393         struct list_head *cur;
2394         struct ubifs_scan_node *sa, *sb;
2395
2396         if (!dbg_is_chk_gen(c))
2397                 return 0;
2398
2399         for (cur = head->next; cur->next != head; cur = cur->next) {
2400                 ino_t inuma, inumb;
2401                 uint32_t blka, blkb;
2402
2403                 cond_resched();
2404                 sa = container_of(cur, struct ubifs_scan_node, list);
2405                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2406
2407                 if (sa->type != UBIFS_DATA_NODE) {
2408                         ubifs_err("bad node type %d", sa->type);
2409                         dbg_dump_node(c, sa->node);
2410                         return -EINVAL;
2411                 }
2412                 if (sb->type != UBIFS_DATA_NODE) {
2413                         ubifs_err("bad node type %d", sb->type);
2414                         dbg_dump_node(c, sb->node);
2415                         return -EINVAL;
2416                 }
2417
2418                 inuma = key_inum(c, &sa->key);
2419                 inumb = key_inum(c, &sb->key);
2420
2421                 if (inuma < inumb)
2422                         continue;
2423                 if (inuma > inumb) {
2424                         ubifs_err("larger inum %lu goes before inum %lu",
2425                                   (unsigned long)inuma, (unsigned long)inumb);
2426                         goto error_dump;
2427                 }
2428
2429                 blka = key_block(c, &sa->key);
2430                 blkb = key_block(c, &sb->key);
2431
2432                 if (blka > blkb) {
2433                         ubifs_err("larger block %u goes before %u", blka, blkb);
2434                         goto error_dump;
2435                 }
2436                 if (blka == blkb) {
2437                         ubifs_err("two data nodes for the same block");
2438                         goto error_dump;
2439                 }
2440         }
2441
2442         return 0;
2443
2444 error_dump:
2445         dbg_dump_node(c, sa->node);
2446         dbg_dump_node(c, sb->node);
2447         return -EINVAL;
2448 }
2449
2450 /**
2451  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2452  * @c: UBIFS file-system description object
2453  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2454  *
2455  * This function returns zero if the list of non-data nodes is sorted correctly,
2456  * and %-EINVAL if not.
2457  */
2458 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2459 {
2460         struct list_head *cur;
2461         struct ubifs_scan_node *sa, *sb;
2462
2463         if (!dbg_is_chk_gen(c))
2464                 return 0;
2465
2466         for (cur = head->next; cur->next != head; cur = cur->next) {
2467                 ino_t inuma, inumb;
2468                 uint32_t hasha, hashb;
2469
2470                 cond_resched();
2471                 sa = container_of(cur, struct ubifs_scan_node, list);
2472                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2473
2474                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2475                     sa->type != UBIFS_XENT_NODE) {
2476                         ubifs_err("bad node type %d", sa->type);
2477                         dbg_dump_node(c, sa->node);
2478                         return -EINVAL;
2479                 }
2480                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2481                     sa->type != UBIFS_XENT_NODE) {
2482                         ubifs_err("bad node type %d", sb->type);
2483                         dbg_dump_node(c, sb->node);
2484                         return -EINVAL;
2485                 }
2486
2487                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2488                         ubifs_err("non-inode node goes before inode node");
2489                         goto error_dump;
2490                 }
2491
2492                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2493                         continue;
2494
2495                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2496                         /* Inode nodes are sorted in descending size order */
2497                         if (sa->len < sb->len) {
2498                                 ubifs_err("smaller inode node goes first");
2499                                 goto error_dump;
2500                         }
2501                         continue;
2502                 }
2503
2504                 /*
2505                  * This is either a dentry or xentry, which should be sorted in
2506                  * ascending (parent ino, hash) order.
2507                  */
2508                 inuma = key_inum(c, &sa->key);
2509                 inumb = key_inum(c, &sb->key);
2510
2511                 if (inuma < inumb)
2512                         continue;
2513                 if (inuma > inumb) {
2514                         ubifs_err("larger inum %lu goes before inum %lu",
2515                                   (unsigned long)inuma, (unsigned long)inumb);
2516                         goto error_dump;
2517                 }
2518
2519                 hasha = key_block(c, &sa->key);
2520                 hashb = key_block(c, &sb->key);
2521
2522                 if (hasha > hashb) {
2523                         ubifs_err("larger hash %u goes before %u",
2524                                   hasha, hashb);
2525                         goto error_dump;
2526                 }
2527         }
2528
2529         return 0;
2530
2531 error_dump:
2532         ubifs_msg("dumping first node");
2533         dbg_dump_node(c, sa->node);
2534         ubifs_msg("dumping second node");
2535         dbg_dump_node(c, sb->node);
2536         return -EINVAL;
2537         return 0;
2538 }
2539
2540 /* Failure mode for recovery testing */
2541
2542 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2543
2544 struct failure_mode_info {
2545         struct list_head list;
2546         struct ubifs_info *c;
2547 };
2548
2549 static LIST_HEAD(fmi_list);
2550 static DEFINE_SPINLOCK(fmi_lock);
2551
2552 static unsigned int next;
2553
2554 static int simple_rand(void)
2555 {
2556         if (next == 0)
2557                 next = current->pid;
2558         next = next * 1103515245 + 12345;
2559         return (next >> 16) & 32767;
2560 }
2561
2562 static void failure_mode_init(struct ubifs_info *c)
2563 {
2564         struct failure_mode_info *fmi;
2565
2566         fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2567         if (!fmi) {
2568                 ubifs_err("Failed to register failure mode - no memory");
2569                 return;
2570         }
2571         fmi->c = c;
2572         spin_lock(&fmi_lock);
2573         list_add_tail(&fmi->list, &fmi_list);
2574         spin_unlock(&fmi_lock);
2575 }
2576
2577 static void failure_mode_exit(struct ubifs_info *c)
2578 {
2579         struct failure_mode_info *fmi, *tmp;
2580
2581         spin_lock(&fmi_lock);
2582         list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2583                 if (fmi->c == c) {
2584                         list_del(&fmi->list);
2585                         kfree(fmi);
2586                 }
2587         spin_unlock(&fmi_lock);
2588 }
2589
2590 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2591 {
2592         struct failure_mode_info *fmi;
2593
2594         spin_lock(&fmi_lock);
2595         list_for_each_entry(fmi, &fmi_list, list)
2596                 if (fmi->c->ubi == desc) {
2597                         struct ubifs_info *c = fmi->c;
2598
2599                         spin_unlock(&fmi_lock);
2600                         return c;
2601                 }
2602         spin_unlock(&fmi_lock);
2603         return NULL;
2604 }
2605
2606 static int in_failure_mode(struct ubi_volume_desc *desc)
2607 {
2608         struct ubifs_info *c = dbg_find_info(desc);
2609
2610         if (c && dbg_is_tst_rcvry(c))
2611                 return c->dbg->failure_mode;
2612         return 0;
2613 }
2614
2615 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2616 {
2617         struct ubifs_info *c = dbg_find_info(desc);
2618         struct ubifs_debug_info *d;
2619
2620         if (!c || !dbg_is_tst_rcvry(c))
2621                 return 0;
2622         d = c->dbg;
2623         if (d->failure_mode)
2624                 return 1;
2625         if (!d->fail_cnt) {
2626                 /* First call - decide delay to failure */
2627                 if (chance(1, 2)) {
2628                         unsigned int delay = 1 << (simple_rand() >> 11);
2629
2630                         if (chance(1, 2)) {
2631                                 d->fail_delay = 1;
2632                                 d->fail_timeout = jiffies +
2633                                                   msecs_to_jiffies(delay);
2634                                 ubifs_warn("failing after %ums", delay);
2635                         } else {
2636                                 d->fail_delay = 2;
2637                                 d->fail_cnt_max = delay;
2638                                 ubifs_warn("failing after %u calls", delay);
2639                         }
2640                 }
2641                 d->fail_cnt += 1;
2642         }
2643         /* Determine if failure delay has expired */
2644         if (d->fail_delay == 1) {
2645                 if (time_before(jiffies, d->fail_timeout))
2646                         return 0;
2647         } else if (d->fail_delay == 2)
2648                 if (d->fail_cnt++ < d->fail_cnt_max)
2649                         return 0;
2650         if (lnum == UBIFS_SB_LNUM) {
2651                 if (write) {
2652                         if (chance(1, 2))
2653                                 return 0;
2654                 } else if (chance(19, 20))
2655                         return 0;
2656                 ubifs_warn("failing in super block LEB %d", lnum);
2657         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2658                 if (chance(19, 20))
2659                         return 0;
2660                 ubifs_warn("failing in master LEB %d", lnum);
2661         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2662                 if (write) {
2663                         if (chance(99, 100))
2664                                 return 0;
2665                 } else if (chance(399, 400))
2666                         return 0;
2667                 ubifs_warn("failing in log LEB %d", lnum);
2668         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2669                 if (write) {
2670                         if (chance(7, 8))
2671                                 return 0;
2672                 } else if (chance(19, 20))
2673                         return 0;
2674                 ubifs_warn("failing in LPT LEB %d", lnum);
2675         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2676                 if (write) {
2677                         if (chance(1, 2))
2678                                 return 0;
2679                 } else if (chance(9, 10))
2680                         return 0;
2681                 ubifs_warn("failing in orphan LEB %d", lnum);
2682         } else if (lnum == c->ihead_lnum) {
2683                 if (chance(99, 100))
2684                         return 0;
2685                 ubifs_warn("failing in index head LEB %d", lnum);
2686         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2687                 if (chance(9, 10))
2688                         return 0;
2689                 ubifs_warn("failing in GC head LEB %d", lnum);
2690         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2691                    !ubifs_search_bud(c, lnum)) {
2692                 if (chance(19, 20))
2693                         return 0;
2694                 ubifs_warn("failing in non-bud LEB %d", lnum);
2695         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2696                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2697                 if (chance(999, 1000))
2698                         return 0;
2699                 ubifs_warn("failing in bud LEB %d commit running", lnum);
2700         } else {
2701                 if (chance(9999, 10000))
2702                         return 0;
2703                 ubifs_warn("failing in bud LEB %d commit not running", lnum);
2704         }
2705
2706         d->failure_mode = 1;
2707         dump_stack();
2708         return 1;
2709 }
2710
2711 static void cut_data(const void *buf, int len)
2712 {
2713         int flen, i;
2714         unsigned char *p = (void *)buf;
2715
2716         flen = (len * (long long)simple_rand()) >> 15;
2717         for (i = flen; i < len; i++)
2718                 p[i] = 0xff;
2719 }
2720
2721 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2722                  int len, int check)
2723 {
2724         if (in_failure_mode(desc))
2725                 return -EROFS;
2726         return ubi_leb_read(desc, lnum, buf, offset, len, check);
2727 }
2728
2729 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2730                   int offset, int len, int dtype)
2731 {
2732         int err, failing;
2733
2734         if (in_failure_mode(desc))
2735                 return -EROFS;
2736         failing = do_fail(desc, lnum, 1);
2737         if (failing)
2738                 cut_data(buf, len);
2739         err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2740         if (err)
2741                 return err;
2742         if (failing)
2743                 return -EROFS;
2744         return 0;
2745 }
2746
2747 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2748                    int len, int dtype)
2749 {
2750         int err;
2751
2752         if (do_fail(desc, lnum, 1))
2753                 return -EROFS;
2754         err = ubi_leb_change(desc, lnum, buf, len, dtype);
2755         if (err)
2756                 return err;
2757         if (do_fail(desc, lnum, 1))
2758                 return -EROFS;
2759         return 0;
2760 }
2761
2762 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2763 {
2764         int err;
2765
2766         if (do_fail(desc, lnum, 0))
2767                 return -EROFS;
2768         err = ubi_leb_erase(desc, lnum);
2769         if (err)
2770                 return err;
2771         if (do_fail(desc, lnum, 0))
2772                 return -EROFS;
2773         return 0;
2774 }
2775
2776 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2777 {
2778         int err;
2779
2780         if (do_fail(desc, lnum, 0))
2781                 return -EROFS;
2782         err = ubi_leb_unmap(desc, lnum);
2783         if (err)
2784                 return err;
2785         if (do_fail(desc, lnum, 0))
2786                 return -EROFS;
2787         return 0;
2788 }
2789
2790 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2791 {
2792         if (in_failure_mode(desc))
2793                 return -EROFS;
2794         return ubi_is_mapped(desc, lnum);
2795 }
2796
2797 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2798 {
2799         int err;
2800
2801         if (do_fail(desc, lnum, 0))
2802                 return -EROFS;
2803         err = ubi_leb_map(desc, lnum, dtype);
2804         if (err)
2805                 return err;
2806         if (do_fail(desc, lnum, 0))
2807                 return -EROFS;
2808         return 0;
2809 }
2810
2811 /**
2812  * ubifs_debugging_init - initialize UBIFS debugging.
2813  * @c: UBIFS file-system description object
2814  *
2815  * This function initializes debugging-related data for the file system.
2816  * Returns zero in case of success and a negative error code in case of
2817  * failure.
2818  */
2819 int ubifs_debugging_init(struct ubifs_info *c)
2820 {
2821         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2822         if (!c->dbg)
2823                 return -ENOMEM;
2824
2825         failure_mode_init(c);
2826         return 0;
2827 }
2828
2829 /**
2830  * ubifs_debugging_exit - free debugging data.
2831  * @c: UBIFS file-system description object
2832  */
2833 void ubifs_debugging_exit(struct ubifs_info *c)
2834 {
2835         failure_mode_exit(c);
2836         kfree(c->dbg);
2837 }
2838
2839 /*
2840  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2841  * contain the stuff specific to particular file-system mounts.
2842  */
2843 static struct dentry *dfs_rootdir;
2844
2845 /**
2846  * dbg_debugfs_init - initialize debugfs file-system.
2847  *
2848  * UBIFS uses debugfs file-system to expose various debugging knobs to
2849  * user-space. This function creates "ubifs" directory in the debugfs
2850  * file-system. Returns zero in case of success and a negative error code in
2851  * case of failure.
2852  */
2853 int dbg_debugfs_init(void)
2854 {
2855         dfs_rootdir = debugfs_create_dir("ubifs", NULL);
2856         if (IS_ERR_OR_NULL(dfs_rootdir)) {
2857                 int err = dfs_rootdir ? PTR_ERR(dfs_rootdir) : -ENODEV;
2858                 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2859                           "error %d\n", err);
2860                 return err;
2861         }
2862
2863         return 0;
2864 }
2865
2866 /**
2867  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2868  */
2869 void dbg_debugfs_exit(void)
2870 {
2871         debugfs_remove(dfs_rootdir);
2872 }
2873
2874 static int open_debugfs_file(struct inode *inode, struct file *file)
2875 {
2876         file->private_data = inode->i_private;
2877         return nonseekable_open(inode, file);
2878 }
2879
2880 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2881                              loff_t *ppos)
2882 {
2883         struct dentry *dent = file->f_path.dentry;
2884         struct ubifs_info *c = file->private_data;
2885         struct ubifs_debug_info *d = c->dbg;
2886         char buf[3];
2887         int val;
2888
2889         if (dent == d->dfs_chk_gen)
2890                 val = d->chk_gen;
2891         else if (dent == d->dfs_chk_index)
2892                 val = d->chk_index;
2893         else if (dent == d->dfs_chk_orph)
2894                 val = d->chk_orph;
2895         else if (dent == d->dfs_chk_lprops)
2896                 val = d->chk_lprops;
2897         else if (dent == d->dfs_chk_fs)
2898                 val = d->chk_fs;
2899         else if (dent == d->dfs_tst_rcvry)
2900                 val = d->tst_rcvry;
2901         else
2902                 return -EINVAL;
2903
2904         if (val)
2905                 buf[0] = '1';
2906         else
2907                 buf[0] = '0';
2908         buf[1] = '\n';
2909         buf[2] = 0x00;
2910
2911         return simple_read_from_buffer(u, count, ppos, buf, 2);
2912 }
2913
2914 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2915                               size_t count, loff_t *ppos)
2916 {
2917         struct ubifs_info *c = file->private_data;
2918         struct ubifs_debug_info *d = c->dbg;
2919         struct dentry *dent = file->f_path.dentry;
2920         size_t buf_size;
2921         char buf[8];
2922         int val;
2923
2924         /*
2925          * TODO: this is racy - the file-system might have already been
2926          * unmounted and we'd oops in this case. The plan is to fix it with
2927          * help of 'iterate_supers_type()' which we should have in v3.0: when
2928          * a debugfs opened, we rember FS's UUID in file->private_data. Then
2929          * whenever we access the FS via a debugfs file, we iterate all UBIFS
2930          * superblocks and fine the one with the same UUID, and take the
2931          * locking right.
2932          *
2933          * The other way to go suggested by Al Viro is to create a separate
2934          * 'ubifs-debug' file-system instead.
2935          */
2936         if (file->f_path.dentry == d->dfs_dump_lprops) {
2937                 dbg_dump_lprops(c);
2938                 return count;
2939         }
2940         if (file->f_path.dentry == d->dfs_dump_budg) {
2941                 dbg_dump_budg(c, &c->bi);
2942                 return count;
2943         }
2944         if (file->f_path.dentry == d->dfs_dump_tnc) {
2945                 mutex_lock(&c->tnc_mutex);
2946                 dbg_dump_tnc(c);
2947                 mutex_unlock(&c->tnc_mutex);
2948                 return count;
2949         }
2950
2951         buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2952         if (copy_from_user(buf, u, buf_size))
2953                 return -EFAULT;
2954
2955         if (buf[0] == '1')
2956                 val = 1;
2957         else if (buf[0] == '0')
2958                 val = 0;
2959         else
2960                 return -EINVAL;
2961
2962         if (dent == d->dfs_chk_gen)
2963                 d->chk_gen = val;
2964         else if (dent == d->dfs_chk_index)
2965                 d->chk_index = val;
2966         else if (dent == d->dfs_chk_orph)
2967                 d->chk_orph = val;
2968         else if (dent == d->dfs_chk_lprops)
2969                 d->chk_lprops = val;
2970         else if (dent == d->dfs_chk_fs)
2971                 d->chk_fs = val;
2972         else if (dent == d->dfs_tst_rcvry)
2973                 d->tst_rcvry = val;
2974         else
2975                 return -EINVAL;
2976
2977         return count;
2978 }
2979
2980 static const struct file_operations dfs_fops = {
2981         .open = open_debugfs_file,
2982         .read = dfs_file_read,
2983         .write = dfs_file_write,
2984         .owner = THIS_MODULE,
2985         .llseek = no_llseek,
2986 };
2987
2988 /**
2989  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2990  * @c: UBIFS file-system description object
2991  *
2992  * This function creates all debugfs files for this instance of UBIFS. Returns
2993  * zero in case of success and a negative error code in case of failure.
2994  *
2995  * Note, the only reason we have not merged this function with the
2996  * 'ubifs_debugging_init()' function is because it is better to initialize
2997  * debugfs interfaces at the very end of the mount process, and remove them at
2998  * the very beginning of the mount process.
2999  */
3000 int dbg_debugfs_init_fs(struct ubifs_info *c)
3001 {
3002         int err, n;
3003         const char *fname;
3004         struct dentry *dent;
3005         struct ubifs_debug_info *d = c->dbg;
3006
3007         n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
3008                      c->vi.ubi_num, c->vi.vol_id);
3009         if (n == UBIFS_DFS_DIR_LEN) {
3010                 /* The array size is too small */
3011                 fname = UBIFS_DFS_DIR_NAME;
3012                 dent = ERR_PTR(-EINVAL);
3013                 goto out;
3014         }
3015
3016         fname = d->dfs_dir_name;
3017         dent = debugfs_create_dir(fname, dfs_rootdir);
3018         if (IS_ERR_OR_NULL(dent))
3019                 goto out;
3020         d->dfs_dir = dent;
3021
3022         fname = "dump_lprops";
3023         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
3024         if (IS_ERR_OR_NULL(dent))
3025                 goto out_remove;
3026         d->dfs_dump_lprops = dent;
3027
3028         fname = "dump_budg";
3029         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
3030         if (IS_ERR_OR_NULL(dent))
3031                 goto out_remove;
3032         d->dfs_dump_budg = dent;
3033
3034         fname = "dump_tnc";
3035         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
3036         if (IS_ERR_OR_NULL(dent))
3037                 goto out_remove;
3038         d->dfs_dump_tnc = dent;
3039
3040         fname = "chk_general";
3041         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
3042                                    &dfs_fops);
3043         if (IS_ERR_OR_NULL(dent))
3044                 goto out_remove;
3045         d->dfs_chk_gen = dent;
3046
3047         fname = "chk_index";
3048         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
3049                                    &dfs_fops);
3050         if (IS_ERR_OR_NULL(dent))
3051                 goto out_remove;
3052         d->dfs_chk_index = dent;
3053
3054         fname = "chk_orphans";
3055         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
3056                                    &dfs_fops);
3057         if (IS_ERR_OR_NULL(dent))
3058                 goto out_remove;
3059         d->dfs_chk_orph = dent;
3060
3061         fname = "chk_lprops";
3062         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
3063                                    &dfs_fops);
3064         if (IS_ERR_OR_NULL(dent))
3065                 goto out_remove;
3066         d->dfs_chk_lprops = dent;
3067
3068         fname = "chk_fs";
3069         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
3070                                    &dfs_fops);
3071         if (IS_ERR_OR_NULL(dent))
3072                 goto out_remove;
3073         d->dfs_chk_fs = dent;
3074
3075         fname = "tst_recovery";
3076         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
3077                                    &dfs_fops);
3078         if (IS_ERR_OR_NULL(dent))
3079                 goto out_remove;
3080         d->dfs_tst_rcvry = dent;
3081
3082         return 0;
3083
3084 out_remove:
3085         debugfs_remove_recursive(d->dfs_dir);
3086 out:
3087         err = dent ? PTR_ERR(dent) : -ENODEV;
3088         ubifs_err("cannot create \"%s\" debugfs filr or directory, error %d\n",
3089                   fname, err);
3090         return err;
3091 }
3092
3093 /**
3094  * dbg_debugfs_exit_fs - remove all debugfs files.
3095  * @c: UBIFS file-system description object
3096  */
3097 void dbg_debugfs_exit_fs(struct ubifs_info *c)
3098 {
3099         debugfs_remove_recursive(c->dbg->dfs_dir);
3100 }
3101
3102 #endif /* CONFIG_UBIFS_FS_DEBUG */