]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/udf/super.c
ARM: dts: imx6qdl: add support for Ka-Ro TX6 modules
[karo-tx-linux.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <linux/log2.h>
60 #include <asm/byteorder.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67
68 #define VDS_POS_PRIMARY_VOL_DESC        0
69 #define VDS_POS_UNALLOC_SPACE_DESC      1
70 #define VDS_POS_LOGICAL_VOL_DESC        2
71 #define VDS_POS_PARTITION_DESC          3
72 #define VDS_POS_IMP_USE_VOL_DESC        4
73 #define VDS_POS_VOL_DESC_PTR            5
74 #define VDS_POS_TERMINATING_DESC        6
75 #define VDS_POS_LENGTH                  7
76
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78
79 enum { UDF_MAX_LINKS = 0xffff };
80
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static int udf_sync_fs(struct super_block *, int);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88                             struct kernel_lb_addr *);
89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
90                              struct kernel_lb_addr *);
91 static void udf_open_lvid(struct super_block *);
92 static void udf_close_lvid(struct super_block *);
93 static unsigned int udf_count_free(struct super_block *);
94 static int udf_statfs(struct dentry *, struct kstatfs *);
95 static int udf_show_options(struct seq_file *, struct dentry *);
96
97 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
98 {
99         struct logicalVolIntegrityDesc *lvid;
100         unsigned int partnum;
101         unsigned int offset;
102
103         if (!UDF_SB(sb)->s_lvid_bh)
104                 return NULL;
105         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
106         partnum = le32_to_cpu(lvid->numOfPartitions);
107         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
108              offsetof(struct logicalVolIntegrityDesc, impUse)) /
109              (2 * sizeof(uint32_t)) < partnum) {
110                 udf_err(sb, "Logical volume integrity descriptor corrupted "
111                         "(numOfPartitions = %u)!\n", partnum);
112                 return NULL;
113         }
114         /* The offset is to skip freeSpaceTable and sizeTable arrays */
115         offset = partnum * 2 * sizeof(uint32_t);
116         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
117 }
118
119 /* UDF filesystem type */
120 static struct dentry *udf_mount(struct file_system_type *fs_type,
121                       int flags, const char *dev_name, void *data)
122 {
123         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
124 }
125
126 static struct file_system_type udf_fstype = {
127         .owner          = THIS_MODULE,
128         .name           = "udf",
129         .mount          = udf_mount,
130         .kill_sb        = kill_block_super,
131         .fs_flags       = FS_REQUIRES_DEV,
132 };
133 MODULE_ALIAS_FS("udf");
134
135 static struct kmem_cache *udf_inode_cachep;
136
137 static struct inode *udf_alloc_inode(struct super_block *sb)
138 {
139         struct udf_inode_info *ei;
140         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
141         if (!ei)
142                 return NULL;
143
144         ei->i_unique = 0;
145         ei->i_lenExtents = 0;
146         ei->i_next_alloc_block = 0;
147         ei->i_next_alloc_goal = 0;
148         ei->i_strat4096 = 0;
149         init_rwsem(&ei->i_data_sem);
150         ei->cached_extent.lstart = -1;
151         spin_lock_init(&ei->i_extent_cache_lock);
152
153         return &ei->vfs_inode;
154 }
155
156 static void udf_i_callback(struct rcu_head *head)
157 {
158         struct inode *inode = container_of(head, struct inode, i_rcu);
159         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
160 }
161
162 static void udf_destroy_inode(struct inode *inode)
163 {
164         call_rcu(&inode->i_rcu, udf_i_callback);
165 }
166
167 static void init_once(void *foo)
168 {
169         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
170
171         ei->i_ext.i_data = NULL;
172         inode_init_once(&ei->vfs_inode);
173 }
174
175 static int init_inodecache(void)
176 {
177         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
178                                              sizeof(struct udf_inode_info),
179                                              0, (SLAB_RECLAIM_ACCOUNT |
180                                                  SLAB_MEM_SPREAD),
181                                              init_once);
182         if (!udf_inode_cachep)
183                 return -ENOMEM;
184         return 0;
185 }
186
187 static void destroy_inodecache(void)
188 {
189         /*
190          * Make sure all delayed rcu free inodes are flushed before we
191          * destroy cache.
192          */
193         rcu_barrier();
194         kmem_cache_destroy(udf_inode_cachep);
195 }
196
197 /* Superblock operations */
198 static const struct super_operations udf_sb_ops = {
199         .alloc_inode    = udf_alloc_inode,
200         .destroy_inode  = udf_destroy_inode,
201         .write_inode    = udf_write_inode,
202         .evict_inode    = udf_evict_inode,
203         .put_super      = udf_put_super,
204         .sync_fs        = udf_sync_fs,
205         .statfs         = udf_statfs,
206         .remount_fs     = udf_remount_fs,
207         .show_options   = udf_show_options,
208 };
209
210 struct udf_options {
211         unsigned char novrs;
212         unsigned int blocksize;
213         unsigned int session;
214         unsigned int lastblock;
215         unsigned int anchor;
216         unsigned int volume;
217         unsigned short partition;
218         unsigned int fileset;
219         unsigned int rootdir;
220         unsigned int flags;
221         umode_t umask;
222         kgid_t gid;
223         kuid_t uid;
224         umode_t fmode;
225         umode_t dmode;
226         struct nls_table *nls_map;
227 };
228
229 static int __init init_udf_fs(void)
230 {
231         int err;
232
233         err = init_inodecache();
234         if (err)
235                 goto out1;
236         err = register_filesystem(&udf_fstype);
237         if (err)
238                 goto out;
239
240         return 0;
241
242 out:
243         destroy_inodecache();
244
245 out1:
246         return err;
247 }
248
249 static void __exit exit_udf_fs(void)
250 {
251         unregister_filesystem(&udf_fstype);
252         destroy_inodecache();
253 }
254
255 module_init(init_udf_fs)
256 module_exit(exit_udf_fs)
257
258 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
259 {
260         struct udf_sb_info *sbi = UDF_SB(sb);
261
262         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
263                                   GFP_KERNEL);
264         if (!sbi->s_partmaps) {
265                 udf_err(sb, "Unable to allocate space for %d partition maps\n",
266                         count);
267                 sbi->s_partitions = 0;
268                 return -ENOMEM;
269         }
270
271         sbi->s_partitions = count;
272         return 0;
273 }
274
275 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
276 {
277         int i;
278         int nr_groups = bitmap->s_nr_groups;
279         int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
280                                                 nr_groups);
281
282         for (i = 0; i < nr_groups; i++)
283                 if (bitmap->s_block_bitmap[i])
284                         brelse(bitmap->s_block_bitmap[i]);
285
286         if (size <= PAGE_SIZE)
287                 kfree(bitmap);
288         else
289                 vfree(bitmap);
290 }
291
292 static void udf_free_partition(struct udf_part_map *map)
293 {
294         int i;
295         struct udf_meta_data *mdata;
296
297         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
298                 iput(map->s_uspace.s_table);
299         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
300                 iput(map->s_fspace.s_table);
301         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
302                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
303         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
304                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
305         if (map->s_partition_type == UDF_SPARABLE_MAP15)
306                 for (i = 0; i < 4; i++)
307                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
308         else if (map->s_partition_type == UDF_METADATA_MAP25) {
309                 mdata = &map->s_type_specific.s_metadata;
310                 iput(mdata->s_metadata_fe);
311                 mdata->s_metadata_fe = NULL;
312
313                 iput(mdata->s_mirror_fe);
314                 mdata->s_mirror_fe = NULL;
315
316                 iput(mdata->s_bitmap_fe);
317                 mdata->s_bitmap_fe = NULL;
318         }
319 }
320
321 static void udf_sb_free_partitions(struct super_block *sb)
322 {
323         struct udf_sb_info *sbi = UDF_SB(sb);
324         int i;
325         if (sbi->s_partmaps == NULL)
326                 return;
327         for (i = 0; i < sbi->s_partitions; i++)
328                 udf_free_partition(&sbi->s_partmaps[i]);
329         kfree(sbi->s_partmaps);
330         sbi->s_partmaps = NULL;
331 }
332
333 static int udf_show_options(struct seq_file *seq, struct dentry *root)
334 {
335         struct super_block *sb = root->d_sb;
336         struct udf_sb_info *sbi = UDF_SB(sb);
337
338         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
339                 seq_puts(seq, ",nostrict");
340         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
341                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
342         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
343                 seq_puts(seq, ",unhide");
344         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
345                 seq_puts(seq, ",undelete");
346         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
347                 seq_puts(seq, ",noadinicb");
348         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
349                 seq_puts(seq, ",shortad");
350         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
351                 seq_puts(seq, ",uid=forget");
352         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
353                 seq_puts(seq, ",uid=ignore");
354         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
355                 seq_puts(seq, ",gid=forget");
356         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
357                 seq_puts(seq, ",gid=ignore");
358         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
359                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
360         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
361                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
362         if (sbi->s_umask != 0)
363                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
364         if (sbi->s_fmode != UDF_INVALID_MODE)
365                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
366         if (sbi->s_dmode != UDF_INVALID_MODE)
367                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
368         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
369                 seq_printf(seq, ",session=%u", sbi->s_session);
370         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
371                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
372         if (sbi->s_anchor != 0)
373                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
374         /*
375          * volume, partition, fileset and rootdir seem to be ignored
376          * currently
377          */
378         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
379                 seq_puts(seq, ",utf8");
380         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
381                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
382
383         return 0;
384 }
385
386 /*
387  * udf_parse_options
388  *
389  * PURPOSE
390  *      Parse mount options.
391  *
392  * DESCRIPTION
393  *      The following mount options are supported:
394  *
395  *      gid=            Set the default group.
396  *      umask=          Set the default umask.
397  *      mode=           Set the default file permissions.
398  *      dmode=          Set the default directory permissions.
399  *      uid=            Set the default user.
400  *      bs=             Set the block size.
401  *      unhide          Show otherwise hidden files.
402  *      undelete        Show deleted files in lists.
403  *      adinicb         Embed data in the inode (default)
404  *      noadinicb       Don't embed data in the inode
405  *      shortad         Use short ad's
406  *      longad          Use long ad's (default)
407  *      nostrict        Unset strict conformance
408  *      iocharset=      Set the NLS character set
409  *
410  *      The remaining are for debugging and disaster recovery:
411  *
412  *      novrs           Skip volume sequence recognition
413  *
414  *      The following expect a offset from 0.
415  *
416  *      session=        Set the CDROM session (default= last session)
417  *      anchor=         Override standard anchor location. (default= 256)
418  *      volume=         Override the VolumeDesc location. (unused)
419  *      partition=      Override the PartitionDesc location. (unused)
420  *      lastblock=      Set the last block of the filesystem/
421  *
422  *      The following expect a offset from the partition root.
423  *
424  *      fileset=        Override the fileset block location. (unused)
425  *      rootdir=        Override the root directory location. (unused)
426  *              WARNING: overriding the rootdir to a non-directory may
427  *              yield highly unpredictable results.
428  *
429  * PRE-CONDITIONS
430  *      options         Pointer to mount options string.
431  *      uopts           Pointer to mount options variable.
432  *
433  * POST-CONDITIONS
434  *      <return>        1       Mount options parsed okay.
435  *      <return>        0       Error parsing mount options.
436  *
437  * HISTORY
438  *      July 1, 1997 - Andrew E. Mileski
439  *      Written, tested, and released.
440  */
441
442 enum {
443         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
444         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
445         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
446         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
447         Opt_rootdir, Opt_utf8, Opt_iocharset,
448         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
449         Opt_fmode, Opt_dmode
450 };
451
452 static const match_table_t tokens = {
453         {Opt_novrs,     "novrs"},
454         {Opt_nostrict,  "nostrict"},
455         {Opt_bs,        "bs=%u"},
456         {Opt_unhide,    "unhide"},
457         {Opt_undelete,  "undelete"},
458         {Opt_noadinicb, "noadinicb"},
459         {Opt_adinicb,   "adinicb"},
460         {Opt_shortad,   "shortad"},
461         {Opt_longad,    "longad"},
462         {Opt_uforget,   "uid=forget"},
463         {Opt_uignore,   "uid=ignore"},
464         {Opt_gforget,   "gid=forget"},
465         {Opt_gignore,   "gid=ignore"},
466         {Opt_gid,       "gid=%u"},
467         {Opt_uid,       "uid=%u"},
468         {Opt_umask,     "umask=%o"},
469         {Opt_session,   "session=%u"},
470         {Opt_lastblock, "lastblock=%u"},
471         {Opt_anchor,    "anchor=%u"},
472         {Opt_volume,    "volume=%u"},
473         {Opt_partition, "partition=%u"},
474         {Opt_fileset,   "fileset=%u"},
475         {Opt_rootdir,   "rootdir=%u"},
476         {Opt_utf8,      "utf8"},
477         {Opt_iocharset, "iocharset=%s"},
478         {Opt_fmode,     "mode=%o"},
479         {Opt_dmode,     "dmode=%o"},
480         {Opt_err,       NULL}
481 };
482
483 static int udf_parse_options(char *options, struct udf_options *uopt,
484                              bool remount)
485 {
486         char *p;
487         int option;
488
489         uopt->novrs = 0;
490         uopt->partition = 0xFFFF;
491         uopt->session = 0xFFFFFFFF;
492         uopt->lastblock = 0;
493         uopt->anchor = 0;
494         uopt->volume = 0xFFFFFFFF;
495         uopt->rootdir = 0xFFFFFFFF;
496         uopt->fileset = 0xFFFFFFFF;
497         uopt->nls_map = NULL;
498
499         if (!options)
500                 return 1;
501
502         while ((p = strsep(&options, ",")) != NULL) {
503                 substring_t args[MAX_OPT_ARGS];
504                 int token;
505                 if (!*p)
506                         continue;
507
508                 token = match_token(p, tokens, args);
509                 switch (token) {
510                 case Opt_novrs:
511                         uopt->novrs = 1;
512                         break;
513                 case Opt_bs:
514                         if (match_int(&args[0], &option))
515                                 return 0;
516                         uopt->blocksize = option;
517                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
518                         break;
519                 case Opt_unhide:
520                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
521                         break;
522                 case Opt_undelete:
523                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
524                         break;
525                 case Opt_noadinicb:
526                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
527                         break;
528                 case Opt_adinicb:
529                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
530                         break;
531                 case Opt_shortad:
532                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
533                         break;
534                 case Opt_longad:
535                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
536                         break;
537                 case Opt_gid:
538                         if (match_int(args, &option))
539                                 return 0;
540                         uopt->gid = make_kgid(current_user_ns(), option);
541                         if (!gid_valid(uopt->gid))
542                                 return 0;
543                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
544                         break;
545                 case Opt_uid:
546                         if (match_int(args, &option))
547                                 return 0;
548                         uopt->uid = make_kuid(current_user_ns(), option);
549                         if (!uid_valid(uopt->uid))
550                                 return 0;
551                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
552                         break;
553                 case Opt_umask:
554                         if (match_octal(args, &option))
555                                 return 0;
556                         uopt->umask = option;
557                         break;
558                 case Opt_nostrict:
559                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
560                         break;
561                 case Opt_session:
562                         if (match_int(args, &option))
563                                 return 0;
564                         uopt->session = option;
565                         if (!remount)
566                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
567                         break;
568                 case Opt_lastblock:
569                         if (match_int(args, &option))
570                                 return 0;
571                         uopt->lastblock = option;
572                         if (!remount)
573                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
574                         break;
575                 case Opt_anchor:
576                         if (match_int(args, &option))
577                                 return 0;
578                         uopt->anchor = option;
579                         break;
580                 case Opt_volume:
581                         if (match_int(args, &option))
582                                 return 0;
583                         uopt->volume = option;
584                         break;
585                 case Opt_partition:
586                         if (match_int(args, &option))
587                                 return 0;
588                         uopt->partition = option;
589                         break;
590                 case Opt_fileset:
591                         if (match_int(args, &option))
592                                 return 0;
593                         uopt->fileset = option;
594                         break;
595                 case Opt_rootdir:
596                         if (match_int(args, &option))
597                                 return 0;
598                         uopt->rootdir = option;
599                         break;
600                 case Opt_utf8:
601                         uopt->flags |= (1 << UDF_FLAG_UTF8);
602                         break;
603 #ifdef CONFIG_UDF_NLS
604                 case Opt_iocharset:
605                         uopt->nls_map = load_nls(args[0].from);
606                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
607                         break;
608 #endif
609                 case Opt_uignore:
610                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
611                         break;
612                 case Opt_uforget:
613                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
614                         break;
615                 case Opt_gignore:
616                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
617                         break;
618                 case Opt_gforget:
619                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
620                         break;
621                 case Opt_fmode:
622                         if (match_octal(args, &option))
623                                 return 0;
624                         uopt->fmode = option & 0777;
625                         break;
626                 case Opt_dmode:
627                         if (match_octal(args, &option))
628                                 return 0;
629                         uopt->dmode = option & 0777;
630                         break;
631                 default:
632                         pr_err("bad mount option \"%s\" or missing value\n", p);
633                         return 0;
634                 }
635         }
636         return 1;
637 }
638
639 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
640 {
641         struct udf_options uopt;
642         struct udf_sb_info *sbi = UDF_SB(sb);
643         int error = 0;
644         struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
645
646         if (lvidiu) {
647                 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
648                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
649                         return -EACCES;
650         }
651
652         uopt.flags = sbi->s_flags;
653         uopt.uid   = sbi->s_uid;
654         uopt.gid   = sbi->s_gid;
655         uopt.umask = sbi->s_umask;
656         uopt.fmode = sbi->s_fmode;
657         uopt.dmode = sbi->s_dmode;
658
659         if (!udf_parse_options(options, &uopt, true))
660                 return -EINVAL;
661
662         write_lock(&sbi->s_cred_lock);
663         sbi->s_flags = uopt.flags;
664         sbi->s_uid   = uopt.uid;
665         sbi->s_gid   = uopt.gid;
666         sbi->s_umask = uopt.umask;
667         sbi->s_fmode = uopt.fmode;
668         sbi->s_dmode = uopt.dmode;
669         write_unlock(&sbi->s_cred_lock);
670
671         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
672                 goto out_unlock;
673
674         if (*flags & MS_RDONLY)
675                 udf_close_lvid(sb);
676         else
677                 udf_open_lvid(sb);
678
679 out_unlock:
680         return error;
681 }
682
683 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
684 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
685 static loff_t udf_check_vsd(struct super_block *sb)
686 {
687         struct volStructDesc *vsd = NULL;
688         loff_t sector = 32768;
689         int sectorsize;
690         struct buffer_head *bh = NULL;
691         int nsr02 = 0;
692         int nsr03 = 0;
693         struct udf_sb_info *sbi;
694
695         sbi = UDF_SB(sb);
696         if (sb->s_blocksize < sizeof(struct volStructDesc))
697                 sectorsize = sizeof(struct volStructDesc);
698         else
699                 sectorsize = sb->s_blocksize;
700
701         sector += (sbi->s_session << sb->s_blocksize_bits);
702
703         udf_debug("Starting at sector %u (%ld byte sectors)\n",
704                   (unsigned int)(sector >> sb->s_blocksize_bits),
705                   sb->s_blocksize);
706         /* Process the sequence (if applicable) */
707         for (; !nsr02 && !nsr03; sector += sectorsize) {
708                 /* Read a block */
709                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
710                 if (!bh)
711                         break;
712
713                 /* Look for ISO  descriptors */
714                 vsd = (struct volStructDesc *)(bh->b_data +
715                                               (sector & (sb->s_blocksize - 1)));
716
717                 if (vsd->stdIdent[0] == 0) {
718                         brelse(bh);
719                         break;
720                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
721                                     VSD_STD_ID_LEN)) {
722                         switch (vsd->structType) {
723                         case 0:
724                                 udf_debug("ISO9660 Boot Record found\n");
725                                 break;
726                         case 1:
727                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
728                                 break;
729                         case 2:
730                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
731                                 break;
732                         case 3:
733                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
734                                 break;
735                         case 255:
736                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
737                                 break;
738                         default:
739                                 udf_debug("ISO9660 VRS (%u) found\n",
740                                           vsd->structType);
741                                 break;
742                         }
743                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
744                                     VSD_STD_ID_LEN))
745                         ; /* nothing */
746                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
747                                     VSD_STD_ID_LEN)) {
748                         brelse(bh);
749                         break;
750                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
751                                     VSD_STD_ID_LEN))
752                         nsr02 = sector;
753                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
754                                     VSD_STD_ID_LEN))
755                         nsr03 = sector;
756                 brelse(bh);
757         }
758
759         if (nsr03)
760                 return nsr03;
761         else if (nsr02)
762                 return nsr02;
763         else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
764                 return -1;
765         else
766                 return 0;
767 }
768
769 static int udf_find_fileset(struct super_block *sb,
770                             struct kernel_lb_addr *fileset,
771                             struct kernel_lb_addr *root)
772 {
773         struct buffer_head *bh = NULL;
774         long lastblock;
775         uint16_t ident;
776         struct udf_sb_info *sbi;
777
778         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
779             fileset->partitionReferenceNum != 0xFFFF) {
780                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
781
782                 if (!bh) {
783                         return 1;
784                 } else if (ident != TAG_IDENT_FSD) {
785                         brelse(bh);
786                         return 1;
787                 }
788
789         }
790
791         sbi = UDF_SB(sb);
792         if (!bh) {
793                 /* Search backwards through the partitions */
794                 struct kernel_lb_addr newfileset;
795
796 /* --> cvg: FIXME - is it reasonable? */
797                 return 1;
798
799                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
800                      (newfileset.partitionReferenceNum != 0xFFFF &&
801                       fileset->logicalBlockNum == 0xFFFFFFFF &&
802                       fileset->partitionReferenceNum == 0xFFFF);
803                      newfileset.partitionReferenceNum--) {
804                         lastblock = sbi->s_partmaps
805                                         [newfileset.partitionReferenceNum]
806                                                 .s_partition_len;
807                         newfileset.logicalBlockNum = 0;
808
809                         do {
810                                 bh = udf_read_ptagged(sb, &newfileset, 0,
811                                                       &ident);
812                                 if (!bh) {
813                                         newfileset.logicalBlockNum++;
814                                         continue;
815                                 }
816
817                                 switch (ident) {
818                                 case TAG_IDENT_SBD:
819                                 {
820                                         struct spaceBitmapDesc *sp;
821                                         sp = (struct spaceBitmapDesc *)
822                                                                 bh->b_data;
823                                         newfileset.logicalBlockNum += 1 +
824                                                 ((le32_to_cpu(sp->numOfBytes) +
825                                                   sizeof(struct spaceBitmapDesc)
826                                                   - 1) >> sb->s_blocksize_bits);
827                                         brelse(bh);
828                                         break;
829                                 }
830                                 case TAG_IDENT_FSD:
831                                         *fileset = newfileset;
832                                         break;
833                                 default:
834                                         newfileset.logicalBlockNum++;
835                                         brelse(bh);
836                                         bh = NULL;
837                                         break;
838                                 }
839                         } while (newfileset.logicalBlockNum < lastblock &&
840                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
841                                  fileset->partitionReferenceNum == 0xFFFF);
842                 }
843         }
844
845         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
846              fileset->partitionReferenceNum != 0xFFFF) && bh) {
847                 udf_debug("Fileset at block=%d, partition=%d\n",
848                           fileset->logicalBlockNum,
849                           fileset->partitionReferenceNum);
850
851                 sbi->s_partition = fileset->partitionReferenceNum;
852                 udf_load_fileset(sb, bh, root);
853                 brelse(bh);
854                 return 0;
855         }
856         return 1;
857 }
858
859 /*
860  * Load primary Volume Descriptor Sequence
861  *
862  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
863  * should be tried.
864  */
865 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
866 {
867         struct primaryVolDesc *pvoldesc;
868         struct ustr *instr, *outstr;
869         struct buffer_head *bh;
870         uint16_t ident;
871         int ret = -ENOMEM;
872
873         instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
874         if (!instr)
875                 return -ENOMEM;
876
877         outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
878         if (!outstr)
879                 goto out1;
880
881         bh = udf_read_tagged(sb, block, block, &ident);
882         if (!bh) {
883                 ret = -EAGAIN;
884                 goto out2;
885         }
886
887         if (ident != TAG_IDENT_PVD) {
888                 ret = -EIO;
889                 goto out_bh;
890         }
891
892         pvoldesc = (struct primaryVolDesc *)bh->b_data;
893
894         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
895                               pvoldesc->recordingDateAndTime)) {
896 #ifdef UDFFS_DEBUG
897                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
898                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
899                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
900                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
901 #endif
902         }
903
904         if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
905                 if (udf_CS0toUTF8(outstr, instr)) {
906                         strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
907                                 outstr->u_len > 31 ? 31 : outstr->u_len);
908                         udf_debug("volIdent[] = '%s'\n",
909                                   UDF_SB(sb)->s_volume_ident);
910                 }
911
912         if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
913                 if (udf_CS0toUTF8(outstr, instr))
914                         udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
915
916         ret = 0;
917 out_bh:
918         brelse(bh);
919 out2:
920         kfree(outstr);
921 out1:
922         kfree(instr);
923         return ret;
924 }
925
926 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
927                                         u32 meta_file_loc, u32 partition_num)
928 {
929         struct kernel_lb_addr addr;
930         struct inode *metadata_fe;
931
932         addr.logicalBlockNum = meta_file_loc;
933         addr.partitionReferenceNum = partition_num;
934
935         metadata_fe = udf_iget(sb, &addr);
936
937         if (metadata_fe == NULL)
938                 udf_warn(sb, "metadata inode efe not found\n");
939         else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
940                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
941                 iput(metadata_fe);
942                 metadata_fe = NULL;
943         }
944
945         return metadata_fe;
946 }
947
948 static int udf_load_metadata_files(struct super_block *sb, int partition)
949 {
950         struct udf_sb_info *sbi = UDF_SB(sb);
951         struct udf_part_map *map;
952         struct udf_meta_data *mdata;
953         struct kernel_lb_addr addr;
954
955         map = &sbi->s_partmaps[partition];
956         mdata = &map->s_type_specific.s_metadata;
957
958         /* metadata address */
959         udf_debug("Metadata file location: block = %d part = %d\n",
960                   mdata->s_meta_file_loc, map->s_partition_num);
961
962         mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
963                 mdata->s_meta_file_loc, map->s_partition_num);
964
965         if (mdata->s_metadata_fe == NULL) {
966                 /* mirror file entry */
967                 udf_debug("Mirror metadata file location: block = %d part = %d\n",
968                           mdata->s_mirror_file_loc, map->s_partition_num);
969
970                 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
971                         mdata->s_mirror_file_loc, map->s_partition_num);
972
973                 if (mdata->s_mirror_fe == NULL) {
974                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
975                         return -EIO;
976                 }
977         }
978
979         /*
980          * bitmap file entry
981          * Note:
982          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
983         */
984         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
985                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
986                 addr.partitionReferenceNum = map->s_partition_num;
987
988                 udf_debug("Bitmap file location: block = %d part = %d\n",
989                           addr.logicalBlockNum, addr.partitionReferenceNum);
990
991                 mdata->s_bitmap_fe = udf_iget(sb, &addr);
992                 if (mdata->s_bitmap_fe == NULL) {
993                         if (sb->s_flags & MS_RDONLY)
994                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
995                         else {
996                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
997                                 return -EIO;
998                         }
999                 }
1000         }
1001
1002         udf_debug("udf_load_metadata_files Ok\n");
1003         return 0;
1004 }
1005
1006 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1007                              struct kernel_lb_addr *root)
1008 {
1009         struct fileSetDesc *fset;
1010
1011         fset = (struct fileSetDesc *)bh->b_data;
1012
1013         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1014
1015         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1016
1017         udf_debug("Rootdir at block=%d, partition=%d\n",
1018                   root->logicalBlockNum, root->partitionReferenceNum);
1019 }
1020
1021 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1022 {
1023         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1024         return DIV_ROUND_UP(map->s_partition_len +
1025                             (sizeof(struct spaceBitmapDesc) << 3),
1026                             sb->s_blocksize * 8);
1027 }
1028
1029 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1030 {
1031         struct udf_bitmap *bitmap;
1032         int nr_groups;
1033         int size;
1034
1035         nr_groups = udf_compute_nr_groups(sb, index);
1036         size = sizeof(struct udf_bitmap) +
1037                 (sizeof(struct buffer_head *) * nr_groups);
1038
1039         if (size <= PAGE_SIZE)
1040                 bitmap = kzalloc(size, GFP_KERNEL);
1041         else
1042                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1043
1044         if (bitmap == NULL)
1045                 return NULL;
1046
1047         bitmap->s_nr_groups = nr_groups;
1048         return bitmap;
1049 }
1050
1051 static int udf_fill_partdesc_info(struct super_block *sb,
1052                 struct partitionDesc *p, int p_index)
1053 {
1054         struct udf_part_map *map;
1055         struct udf_sb_info *sbi = UDF_SB(sb);
1056         struct partitionHeaderDesc *phd;
1057
1058         map = &sbi->s_partmaps[p_index];
1059
1060         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1061         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1062
1063         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1064                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1065         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1066                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1067         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1068                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1069         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1070                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1071
1072         udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1073                   p_index, map->s_partition_type,
1074                   map->s_partition_root, map->s_partition_len);
1075
1076         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1077             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1078                 return 0;
1079
1080         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1081         if (phd->unallocSpaceTable.extLength) {
1082                 struct kernel_lb_addr loc = {
1083                         .logicalBlockNum = le32_to_cpu(
1084                                 phd->unallocSpaceTable.extPosition),
1085                         .partitionReferenceNum = p_index,
1086                 };
1087
1088                 map->s_uspace.s_table = udf_iget(sb, &loc);
1089                 if (!map->s_uspace.s_table) {
1090                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1091                                   p_index);
1092                         return -EIO;
1093                 }
1094                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1095                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1096                           p_index, map->s_uspace.s_table->i_ino);
1097         }
1098
1099         if (phd->unallocSpaceBitmap.extLength) {
1100                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1101                 if (!bitmap)
1102                         return -ENOMEM;
1103                 map->s_uspace.s_bitmap = bitmap;
1104                 bitmap->s_extPosition = le32_to_cpu(
1105                                 phd->unallocSpaceBitmap.extPosition);
1106                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1107                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1108                           p_index, bitmap->s_extPosition);
1109         }
1110
1111         if (phd->partitionIntegrityTable.extLength)
1112                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1113
1114         if (phd->freedSpaceTable.extLength) {
1115                 struct kernel_lb_addr loc = {
1116                         .logicalBlockNum = le32_to_cpu(
1117                                 phd->freedSpaceTable.extPosition),
1118                         .partitionReferenceNum = p_index,
1119                 };
1120
1121                 map->s_fspace.s_table = udf_iget(sb, &loc);
1122                 if (!map->s_fspace.s_table) {
1123                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1124                                   p_index);
1125                         return -EIO;
1126                 }
1127
1128                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1129                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1130                           p_index, map->s_fspace.s_table->i_ino);
1131         }
1132
1133         if (phd->freedSpaceBitmap.extLength) {
1134                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1135                 if (!bitmap)
1136                         return -ENOMEM;
1137                 map->s_fspace.s_bitmap = bitmap;
1138                 bitmap->s_extPosition = le32_to_cpu(
1139                                 phd->freedSpaceBitmap.extPosition);
1140                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1141                 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1142                           p_index, bitmap->s_extPosition);
1143         }
1144         return 0;
1145 }
1146
1147 static void udf_find_vat_block(struct super_block *sb, int p_index,
1148                                int type1_index, sector_t start_block)
1149 {
1150         struct udf_sb_info *sbi = UDF_SB(sb);
1151         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1152         sector_t vat_block;
1153         struct kernel_lb_addr ino;
1154
1155         /*
1156          * VAT file entry is in the last recorded block. Some broken disks have
1157          * it a few blocks before so try a bit harder...
1158          */
1159         ino.partitionReferenceNum = type1_index;
1160         for (vat_block = start_block;
1161              vat_block >= map->s_partition_root &&
1162              vat_block >= start_block - 3 &&
1163              !sbi->s_vat_inode; vat_block--) {
1164                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1165                 sbi->s_vat_inode = udf_iget(sb, &ino);
1166         }
1167 }
1168
1169 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1170 {
1171         struct udf_sb_info *sbi = UDF_SB(sb);
1172         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1173         struct buffer_head *bh = NULL;
1174         struct udf_inode_info *vati;
1175         uint32_t pos;
1176         struct virtualAllocationTable20 *vat20;
1177         sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1178
1179         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1180         if (!sbi->s_vat_inode &&
1181             sbi->s_last_block != blocks - 1) {
1182                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1183                           (unsigned long)sbi->s_last_block,
1184                           (unsigned long)blocks - 1);
1185                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1186         }
1187         if (!sbi->s_vat_inode)
1188                 return -EIO;
1189
1190         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1191                 map->s_type_specific.s_virtual.s_start_offset = 0;
1192                 map->s_type_specific.s_virtual.s_num_entries =
1193                         (sbi->s_vat_inode->i_size - 36) >> 2;
1194         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1195                 vati = UDF_I(sbi->s_vat_inode);
1196                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1197                         pos = udf_block_map(sbi->s_vat_inode, 0);
1198                         bh = sb_bread(sb, pos);
1199                         if (!bh)
1200                                 return -EIO;
1201                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1202                 } else {
1203                         vat20 = (struct virtualAllocationTable20 *)
1204                                                         vati->i_ext.i_data;
1205                 }
1206
1207                 map->s_type_specific.s_virtual.s_start_offset =
1208                         le16_to_cpu(vat20->lengthHeader);
1209                 map->s_type_specific.s_virtual.s_num_entries =
1210                         (sbi->s_vat_inode->i_size -
1211                                 map->s_type_specific.s_virtual.
1212                                         s_start_offset) >> 2;
1213                 brelse(bh);
1214         }
1215         return 0;
1216 }
1217
1218 /*
1219  * Load partition descriptor block
1220  *
1221  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1222  * sequence.
1223  */
1224 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1225 {
1226         struct buffer_head *bh;
1227         struct partitionDesc *p;
1228         struct udf_part_map *map;
1229         struct udf_sb_info *sbi = UDF_SB(sb);
1230         int i, type1_idx;
1231         uint16_t partitionNumber;
1232         uint16_t ident;
1233         int ret;
1234
1235         bh = udf_read_tagged(sb, block, block, &ident);
1236         if (!bh)
1237                 return -EAGAIN;
1238         if (ident != TAG_IDENT_PD) {
1239                 ret = 0;
1240                 goto out_bh;
1241         }
1242
1243         p = (struct partitionDesc *)bh->b_data;
1244         partitionNumber = le16_to_cpu(p->partitionNumber);
1245
1246         /* First scan for TYPE1, SPARABLE and METADATA partitions */
1247         for (i = 0; i < sbi->s_partitions; i++) {
1248                 map = &sbi->s_partmaps[i];
1249                 udf_debug("Searching map: (%d == %d)\n",
1250                           map->s_partition_num, partitionNumber);
1251                 if (map->s_partition_num == partitionNumber &&
1252                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1253                      map->s_partition_type == UDF_SPARABLE_MAP15))
1254                         break;
1255         }
1256
1257         if (i >= sbi->s_partitions) {
1258                 udf_debug("Partition (%d) not found in partition map\n",
1259                           partitionNumber);
1260                 ret = 0;
1261                 goto out_bh;
1262         }
1263
1264         ret = udf_fill_partdesc_info(sb, p, i);
1265         if (ret < 0)
1266                 goto out_bh;
1267
1268         /*
1269          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1270          * PHYSICAL partitions are already set up
1271          */
1272         type1_idx = i;
1273         for (i = 0; i < sbi->s_partitions; i++) {
1274                 map = &sbi->s_partmaps[i];
1275
1276                 if (map->s_partition_num == partitionNumber &&
1277                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1278                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1279                      map->s_partition_type == UDF_METADATA_MAP25))
1280                         break;
1281         }
1282
1283         if (i >= sbi->s_partitions) {
1284                 ret = 0;
1285                 goto out_bh;
1286         }
1287
1288         ret = udf_fill_partdesc_info(sb, p, i);
1289         if (ret < 0)
1290                 goto out_bh;
1291
1292         if (map->s_partition_type == UDF_METADATA_MAP25) {
1293                 ret = udf_load_metadata_files(sb, i);
1294                 if (ret < 0) {
1295                         udf_err(sb, "error loading MetaData partition map %d\n",
1296                                 i);
1297                         goto out_bh;
1298                 }
1299         } else {
1300                 /*
1301                  * If we have a partition with virtual map, we don't handle
1302                  * writing to it (we overwrite blocks instead of relocating
1303                  * them).
1304                  */
1305                 if (!(sb->s_flags & MS_RDONLY)) {
1306                         ret = -EACCES;
1307                         goto out_bh;
1308                 }
1309                 ret = udf_load_vat(sb, i, type1_idx);
1310                 if (ret < 0)
1311                         goto out_bh;
1312         }
1313         ret = 0;
1314 out_bh:
1315         /* In case loading failed, we handle cleanup in udf_fill_super */
1316         brelse(bh);
1317         return ret;
1318 }
1319
1320 static int udf_load_sparable_map(struct super_block *sb,
1321                                  struct udf_part_map *map,
1322                                  struct sparablePartitionMap *spm)
1323 {
1324         uint32_t loc;
1325         uint16_t ident;
1326         struct sparingTable *st;
1327         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1328         int i;
1329         struct buffer_head *bh;
1330
1331         map->s_partition_type = UDF_SPARABLE_MAP15;
1332         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1333         if (!is_power_of_2(sdata->s_packet_len)) {
1334                 udf_err(sb, "error loading logical volume descriptor: "
1335                         "Invalid packet length %u\n",
1336                         (unsigned)sdata->s_packet_len);
1337                 return -EIO;
1338         }
1339         if (spm->numSparingTables > 4) {
1340                 udf_err(sb, "error loading logical volume descriptor: "
1341                         "Too many sparing tables (%d)\n",
1342                         (int)spm->numSparingTables);
1343                 return -EIO;
1344         }
1345
1346         for (i = 0; i < spm->numSparingTables; i++) {
1347                 loc = le32_to_cpu(spm->locSparingTable[i]);
1348                 bh = udf_read_tagged(sb, loc, loc, &ident);
1349                 if (!bh)
1350                         continue;
1351
1352                 st = (struct sparingTable *)bh->b_data;
1353                 if (ident != 0 ||
1354                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1355                             strlen(UDF_ID_SPARING)) ||
1356                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1357                                                         sb->s_blocksize) {
1358                         brelse(bh);
1359                         continue;
1360                 }
1361
1362                 sdata->s_spar_map[i] = bh;
1363         }
1364         map->s_partition_func = udf_get_pblock_spar15;
1365         return 0;
1366 }
1367
1368 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1369                                struct kernel_lb_addr *fileset)
1370 {
1371         struct logicalVolDesc *lvd;
1372         int i, offset;
1373         uint8_t type;
1374         struct udf_sb_info *sbi = UDF_SB(sb);
1375         struct genericPartitionMap *gpm;
1376         uint16_t ident;
1377         struct buffer_head *bh;
1378         unsigned int table_len;
1379         int ret;
1380
1381         bh = udf_read_tagged(sb, block, block, &ident);
1382         if (!bh)
1383                 return -EAGAIN;
1384         BUG_ON(ident != TAG_IDENT_LVD);
1385         lvd = (struct logicalVolDesc *)bh->b_data;
1386         table_len = le32_to_cpu(lvd->mapTableLength);
1387         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1388                 udf_err(sb, "error loading logical volume descriptor: "
1389                         "Partition table too long (%u > %lu)\n", table_len,
1390                         sb->s_blocksize - sizeof(*lvd));
1391                 ret = -EIO;
1392                 goto out_bh;
1393         }
1394
1395         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1396         if (ret)
1397                 goto out_bh;
1398
1399         for (i = 0, offset = 0;
1400              i < sbi->s_partitions && offset < table_len;
1401              i++, offset += gpm->partitionMapLength) {
1402                 struct udf_part_map *map = &sbi->s_partmaps[i];
1403                 gpm = (struct genericPartitionMap *)
1404                                 &(lvd->partitionMaps[offset]);
1405                 type = gpm->partitionMapType;
1406                 if (type == 1) {
1407                         struct genericPartitionMap1 *gpm1 =
1408                                 (struct genericPartitionMap1 *)gpm;
1409                         map->s_partition_type = UDF_TYPE1_MAP15;
1410                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1411                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1412                         map->s_partition_func = NULL;
1413                 } else if (type == 2) {
1414                         struct udfPartitionMap2 *upm2 =
1415                                                 (struct udfPartitionMap2 *)gpm;
1416                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1417                                                 strlen(UDF_ID_VIRTUAL))) {
1418                                 u16 suf =
1419                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1420                                                         identSuffix)[0]);
1421                                 if (suf < 0x0200) {
1422                                         map->s_partition_type =
1423                                                         UDF_VIRTUAL_MAP15;
1424                                         map->s_partition_func =
1425                                                         udf_get_pblock_virt15;
1426                                 } else {
1427                                         map->s_partition_type =
1428                                                         UDF_VIRTUAL_MAP20;
1429                                         map->s_partition_func =
1430                                                         udf_get_pblock_virt20;
1431                                 }
1432                         } else if (!strncmp(upm2->partIdent.ident,
1433                                                 UDF_ID_SPARABLE,
1434                                                 strlen(UDF_ID_SPARABLE))) {
1435                                 ret = udf_load_sparable_map(sb, map,
1436                                         (struct sparablePartitionMap *)gpm);
1437                                 if (ret < 0)
1438                                         goto out_bh;
1439                         } else if (!strncmp(upm2->partIdent.ident,
1440                                                 UDF_ID_METADATA,
1441                                                 strlen(UDF_ID_METADATA))) {
1442                                 struct udf_meta_data *mdata =
1443                                         &map->s_type_specific.s_metadata;
1444                                 struct metadataPartitionMap *mdm =
1445                                                 (struct metadataPartitionMap *)
1446                                                 &(lvd->partitionMaps[offset]);
1447                                 udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1448                                           i, type, UDF_ID_METADATA);
1449
1450                                 map->s_partition_type = UDF_METADATA_MAP25;
1451                                 map->s_partition_func = udf_get_pblock_meta25;
1452
1453                                 mdata->s_meta_file_loc   =
1454                                         le32_to_cpu(mdm->metadataFileLoc);
1455                                 mdata->s_mirror_file_loc =
1456                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1457                                 mdata->s_bitmap_file_loc =
1458                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1459                                 mdata->s_alloc_unit_size =
1460                                         le32_to_cpu(mdm->allocUnitSize);
1461                                 mdata->s_align_unit_size =
1462                                         le16_to_cpu(mdm->alignUnitSize);
1463                                 if (mdm->flags & 0x01)
1464                                         mdata->s_flags |= MF_DUPLICATE_MD;
1465
1466                                 udf_debug("Metadata Ident suffix=0x%x\n",
1467                                           le16_to_cpu(*(__le16 *)
1468                                                       mdm->partIdent.identSuffix));
1469                                 udf_debug("Metadata part num=%d\n",
1470                                           le16_to_cpu(mdm->partitionNum));
1471                                 udf_debug("Metadata part alloc unit size=%d\n",
1472                                           le32_to_cpu(mdm->allocUnitSize));
1473                                 udf_debug("Metadata file loc=%d\n",
1474                                           le32_to_cpu(mdm->metadataFileLoc));
1475                                 udf_debug("Mirror file loc=%d\n",
1476                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1477                                 udf_debug("Bitmap file loc=%d\n",
1478                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1479                                 udf_debug("Flags: %d %d\n",
1480                                           mdata->s_flags, mdm->flags);
1481                         } else {
1482                                 udf_debug("Unknown ident: %s\n",
1483                                           upm2->partIdent.ident);
1484                                 continue;
1485                         }
1486                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1487                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1488                 }
1489                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1490                           i, map->s_partition_num, type, map->s_volumeseqnum);
1491         }
1492
1493         if (fileset) {
1494                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1495
1496                 *fileset = lelb_to_cpu(la->extLocation);
1497                 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1498                           fileset->logicalBlockNum,
1499                           fileset->partitionReferenceNum);
1500         }
1501         if (lvd->integritySeqExt.extLength)
1502                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1503         ret = 0;
1504 out_bh:
1505         brelse(bh);
1506         return ret;
1507 }
1508
1509 /*
1510  * udf_load_logicalvolint
1511  *
1512  */
1513 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1514 {
1515         struct buffer_head *bh = NULL;
1516         uint16_t ident;
1517         struct udf_sb_info *sbi = UDF_SB(sb);
1518         struct logicalVolIntegrityDesc *lvid;
1519
1520         while (loc.extLength > 0 &&
1521                (bh = udf_read_tagged(sb, loc.extLocation,
1522                                      loc.extLocation, &ident)) &&
1523                ident == TAG_IDENT_LVID) {
1524                 sbi->s_lvid_bh = bh;
1525                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1526
1527                 if (lvid->nextIntegrityExt.extLength)
1528                         udf_load_logicalvolint(sb,
1529                                 leea_to_cpu(lvid->nextIntegrityExt));
1530
1531                 if (sbi->s_lvid_bh != bh)
1532                         brelse(bh);
1533                 loc.extLength -= sb->s_blocksize;
1534                 loc.extLocation++;
1535         }
1536         if (sbi->s_lvid_bh != bh)
1537                 brelse(bh);
1538 }
1539
1540 /*
1541  * Process a main/reserve volume descriptor sequence.
1542  *   @block             First block of first extent of the sequence.
1543  *   @lastblock         Lastblock of first extent of the sequence.
1544  *   @fileset           There we store extent containing root fileset
1545  *
1546  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1547  * sequence
1548  */
1549 static noinline int udf_process_sequence(
1550                 struct super_block *sb,
1551                 sector_t block, sector_t lastblock,
1552                 struct kernel_lb_addr *fileset)
1553 {
1554         struct buffer_head *bh = NULL;
1555         struct udf_vds_record vds[VDS_POS_LENGTH];
1556         struct udf_vds_record *curr;
1557         struct generic_desc *gd;
1558         struct volDescPtr *vdp;
1559         int done = 0;
1560         uint32_t vdsn;
1561         uint16_t ident;
1562         long next_s = 0, next_e = 0;
1563         int ret;
1564
1565         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1566
1567         /*
1568          * Read the main descriptor sequence and find which descriptors
1569          * are in it.
1570          */
1571         for (; (!done && block <= lastblock); block++) {
1572
1573                 bh = udf_read_tagged(sb, block, block, &ident);
1574                 if (!bh) {
1575                         udf_err(sb,
1576                                 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1577                                 (unsigned long long)block);
1578                         return -EAGAIN;
1579                 }
1580
1581                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1582                 gd = (struct generic_desc *)bh->b_data;
1583                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1584                 switch (ident) {
1585                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1586                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1587                         if (vdsn >= curr->volDescSeqNum) {
1588                                 curr->volDescSeqNum = vdsn;
1589                                 curr->block = block;
1590                         }
1591                         break;
1592                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1593                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1594                         if (vdsn >= curr->volDescSeqNum) {
1595                                 curr->volDescSeqNum = vdsn;
1596                                 curr->block = block;
1597
1598                                 vdp = (struct volDescPtr *)bh->b_data;
1599                                 next_s = le32_to_cpu(
1600                                         vdp->nextVolDescSeqExt.extLocation);
1601                                 next_e = le32_to_cpu(
1602                                         vdp->nextVolDescSeqExt.extLength);
1603                                 next_e = next_e >> sb->s_blocksize_bits;
1604                                 next_e += next_s;
1605                         }
1606                         break;
1607                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1608                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1609                         if (vdsn >= curr->volDescSeqNum) {
1610                                 curr->volDescSeqNum = vdsn;
1611                                 curr->block = block;
1612                         }
1613                         break;
1614                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1615                         curr = &vds[VDS_POS_PARTITION_DESC];
1616                         if (!curr->block)
1617                                 curr->block = block;
1618                         break;
1619                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1620                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1621                         if (vdsn >= curr->volDescSeqNum) {
1622                                 curr->volDescSeqNum = vdsn;
1623                                 curr->block = block;
1624                         }
1625                         break;
1626                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1627                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1628                         if (vdsn >= curr->volDescSeqNum) {
1629                                 curr->volDescSeqNum = vdsn;
1630                                 curr->block = block;
1631                         }
1632                         break;
1633                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1634                         vds[VDS_POS_TERMINATING_DESC].block = block;
1635                         if (next_e) {
1636                                 block = next_s;
1637                                 lastblock = next_e;
1638                                 next_s = next_e = 0;
1639                         } else
1640                                 done = 1;
1641                         break;
1642                 }
1643                 brelse(bh);
1644         }
1645         /*
1646          * Now read interesting descriptors again and process them
1647          * in a suitable order
1648          */
1649         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1650                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1651                 return -EAGAIN;
1652         }
1653         ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1654         if (ret < 0)
1655                 return ret;
1656
1657         if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1658                 ret = udf_load_logicalvol(sb,
1659                                           vds[VDS_POS_LOGICAL_VOL_DESC].block,
1660                                           fileset);
1661                 if (ret < 0)
1662                         return ret;
1663         }
1664
1665         if (vds[VDS_POS_PARTITION_DESC].block) {
1666                 /*
1667                  * We rescan the whole descriptor sequence to find
1668                  * partition descriptor blocks and process them.
1669                  */
1670                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1671                      block < vds[VDS_POS_TERMINATING_DESC].block;
1672                      block++) {
1673                         ret = udf_load_partdesc(sb, block);
1674                         if (ret < 0)
1675                                 return ret;
1676                 }
1677         }
1678
1679         return 0;
1680 }
1681
1682 /*
1683  * Load Volume Descriptor Sequence described by anchor in bh
1684  *
1685  * Returns <0 on error, 0 on success
1686  */
1687 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1688                              struct kernel_lb_addr *fileset)
1689 {
1690         struct anchorVolDescPtr *anchor;
1691         sector_t main_s, main_e, reserve_s, reserve_e;
1692         int ret;
1693
1694         anchor = (struct anchorVolDescPtr *)bh->b_data;
1695
1696         /* Locate the main sequence */
1697         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1698         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1699         main_e = main_e >> sb->s_blocksize_bits;
1700         main_e += main_s;
1701
1702         /* Locate the reserve sequence */
1703         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1704         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1705         reserve_e = reserve_e >> sb->s_blocksize_bits;
1706         reserve_e += reserve_s;
1707
1708         /* Process the main & reserve sequences */
1709         /* responsible for finding the PartitionDesc(s) */
1710         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1711         if (ret != -EAGAIN)
1712                 return ret;
1713         udf_sb_free_partitions(sb);
1714         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1715         if (ret < 0) {
1716                 udf_sb_free_partitions(sb);
1717                 /* No sequence was OK, return -EIO */
1718                 if (ret == -EAGAIN)
1719                         ret = -EIO;
1720         }
1721         return ret;
1722 }
1723
1724 /*
1725  * Check whether there is an anchor block in the given block and
1726  * load Volume Descriptor Sequence if so.
1727  *
1728  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1729  * block
1730  */
1731 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1732                                   struct kernel_lb_addr *fileset)
1733 {
1734         struct buffer_head *bh;
1735         uint16_t ident;
1736         int ret;
1737
1738         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1739             udf_fixed_to_variable(block) >=
1740             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1741                 return -EAGAIN;
1742
1743         bh = udf_read_tagged(sb, block, block, &ident);
1744         if (!bh)
1745                 return -EAGAIN;
1746         if (ident != TAG_IDENT_AVDP) {
1747                 brelse(bh);
1748                 return -EAGAIN;
1749         }
1750         ret = udf_load_sequence(sb, bh, fileset);
1751         brelse(bh);
1752         return ret;
1753 }
1754
1755 /*
1756  * Search for an anchor volume descriptor pointer.
1757  *
1758  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1759  * of anchors.
1760  */
1761 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1762                             struct kernel_lb_addr *fileset)
1763 {
1764         sector_t last[6];
1765         int i;
1766         struct udf_sb_info *sbi = UDF_SB(sb);
1767         int last_count = 0;
1768         int ret;
1769
1770         /* First try user provided anchor */
1771         if (sbi->s_anchor) {
1772                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1773                 if (ret != -EAGAIN)
1774                         return ret;
1775         }
1776         /*
1777          * according to spec, anchor is in either:
1778          *     block 256
1779          *     lastblock-256
1780          *     lastblock
1781          *  however, if the disc isn't closed, it could be 512.
1782          */
1783         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1784         if (ret != -EAGAIN)
1785                 return ret;
1786         /*
1787          * The trouble is which block is the last one. Drives often misreport
1788          * this so we try various possibilities.
1789          */
1790         last[last_count++] = *lastblock;
1791         if (*lastblock >= 1)
1792                 last[last_count++] = *lastblock - 1;
1793         last[last_count++] = *lastblock + 1;
1794         if (*lastblock >= 2)
1795                 last[last_count++] = *lastblock - 2;
1796         if (*lastblock >= 150)
1797                 last[last_count++] = *lastblock - 150;
1798         if (*lastblock >= 152)
1799                 last[last_count++] = *lastblock - 152;
1800
1801         for (i = 0; i < last_count; i++) {
1802                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1803                                 sb->s_blocksize_bits)
1804                         continue;
1805                 ret = udf_check_anchor_block(sb, last[i], fileset);
1806                 if (ret != -EAGAIN) {
1807                         if (!ret)
1808                                 *lastblock = last[i];
1809                         return ret;
1810                 }
1811                 if (last[i] < 256)
1812                         continue;
1813                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1814                 if (ret != -EAGAIN) {
1815                         if (!ret)
1816                                 *lastblock = last[i];
1817                         return ret;
1818                 }
1819         }
1820
1821         /* Finally try block 512 in case media is open */
1822         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1823 }
1824
1825 /*
1826  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1827  * area specified by it. The function expects sbi->s_lastblock to be the last
1828  * block on the media.
1829  *
1830  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1831  * was not found.
1832  */
1833 static int udf_find_anchor(struct super_block *sb,
1834                            struct kernel_lb_addr *fileset)
1835 {
1836         struct udf_sb_info *sbi = UDF_SB(sb);
1837         sector_t lastblock = sbi->s_last_block;
1838         int ret;
1839
1840         ret = udf_scan_anchors(sb, &lastblock, fileset);
1841         if (ret != -EAGAIN)
1842                 goto out;
1843
1844         /* No anchor found? Try VARCONV conversion of block numbers */
1845         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1846         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1847         /* Firstly, we try to not convert number of the last block */
1848         ret = udf_scan_anchors(sb, &lastblock, fileset);
1849         if (ret != -EAGAIN)
1850                 goto out;
1851
1852         lastblock = sbi->s_last_block;
1853         /* Secondly, we try with converted number of the last block */
1854         ret = udf_scan_anchors(sb, &lastblock, fileset);
1855         if (ret < 0) {
1856                 /* VARCONV didn't help. Clear it. */
1857                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1858         }
1859 out:
1860         if (ret == 0)
1861                 sbi->s_last_block = lastblock;
1862         return ret;
1863 }
1864
1865 /*
1866  * Check Volume Structure Descriptor, find Anchor block and load Volume
1867  * Descriptor Sequence.
1868  *
1869  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1870  * block was not found.
1871  */
1872 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1873                         int silent, struct kernel_lb_addr *fileset)
1874 {
1875         struct udf_sb_info *sbi = UDF_SB(sb);
1876         loff_t nsr_off;
1877         int ret;
1878
1879         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1880                 if (!silent)
1881                         udf_warn(sb, "Bad block size\n");
1882                 return -EINVAL;
1883         }
1884         sbi->s_last_block = uopt->lastblock;
1885         if (!uopt->novrs) {
1886                 /* Check that it is NSR02 compliant */
1887                 nsr_off = udf_check_vsd(sb);
1888                 if (!nsr_off) {
1889                         if (!silent)
1890                                 udf_warn(sb, "No VRS found\n");
1891                         return 0;
1892                 }
1893                 if (nsr_off == -1)
1894                         udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1895                 if (!sbi->s_last_block)
1896                         sbi->s_last_block = udf_get_last_block(sb);
1897         } else {
1898                 udf_debug("Validity check skipped because of novrs option\n");
1899         }
1900
1901         /* Look for anchor block and load Volume Descriptor Sequence */
1902         sbi->s_anchor = uopt->anchor;
1903         ret = udf_find_anchor(sb, fileset);
1904         if (ret < 0) {
1905                 if (!silent && ret == -EAGAIN)
1906                         udf_warn(sb, "No anchor found\n");
1907                 return ret;
1908         }
1909         return 0;
1910 }
1911
1912 static void udf_open_lvid(struct super_block *sb)
1913 {
1914         struct udf_sb_info *sbi = UDF_SB(sb);
1915         struct buffer_head *bh = sbi->s_lvid_bh;
1916         struct logicalVolIntegrityDesc *lvid;
1917         struct logicalVolIntegrityDescImpUse *lvidiu;
1918
1919         if (!bh)
1920                 return;
1921         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1922         lvidiu = udf_sb_lvidiu(sb);
1923         if (!lvidiu)
1924                 return;
1925
1926         mutex_lock(&sbi->s_alloc_mutex);
1927         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1928         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1929         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1930                                 CURRENT_TIME);
1931         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1932
1933         lvid->descTag.descCRC = cpu_to_le16(
1934                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1935                         le16_to_cpu(lvid->descTag.descCRCLength)));
1936
1937         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1938         mark_buffer_dirty(bh);
1939         sbi->s_lvid_dirty = 0;
1940         mutex_unlock(&sbi->s_alloc_mutex);
1941         /* Make opening of filesystem visible on the media immediately */
1942         sync_dirty_buffer(bh);
1943 }
1944
1945 static void udf_close_lvid(struct super_block *sb)
1946 {
1947         struct udf_sb_info *sbi = UDF_SB(sb);
1948         struct buffer_head *bh = sbi->s_lvid_bh;
1949         struct logicalVolIntegrityDesc *lvid;
1950         struct logicalVolIntegrityDescImpUse *lvidiu;
1951
1952         if (!bh)
1953                 return;
1954         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1955         lvidiu = udf_sb_lvidiu(sb);
1956         if (!lvidiu)
1957                 return;
1958
1959         mutex_lock(&sbi->s_alloc_mutex);
1960         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1961         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1962         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1963         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1964                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1965         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1966                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1967         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1968                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1969         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1970
1971         lvid->descTag.descCRC = cpu_to_le16(
1972                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1973                                 le16_to_cpu(lvid->descTag.descCRCLength)));
1974
1975         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1976         /*
1977          * We set buffer uptodate unconditionally here to avoid spurious
1978          * warnings from mark_buffer_dirty() when previous EIO has marked
1979          * the buffer as !uptodate
1980          */
1981         set_buffer_uptodate(bh);
1982         mark_buffer_dirty(bh);
1983         sbi->s_lvid_dirty = 0;
1984         mutex_unlock(&sbi->s_alloc_mutex);
1985         /* Make closing of filesystem visible on the media immediately */
1986         sync_dirty_buffer(bh);
1987 }
1988
1989 u64 lvid_get_unique_id(struct super_block *sb)
1990 {
1991         struct buffer_head *bh;
1992         struct udf_sb_info *sbi = UDF_SB(sb);
1993         struct logicalVolIntegrityDesc *lvid;
1994         struct logicalVolHeaderDesc *lvhd;
1995         u64 uniqueID;
1996         u64 ret;
1997
1998         bh = sbi->s_lvid_bh;
1999         if (!bh)
2000                 return 0;
2001
2002         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2003         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2004
2005         mutex_lock(&sbi->s_alloc_mutex);
2006         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2007         if (!(++uniqueID & 0xFFFFFFFF))
2008                 uniqueID += 16;
2009         lvhd->uniqueID = cpu_to_le64(uniqueID);
2010         mutex_unlock(&sbi->s_alloc_mutex);
2011         mark_buffer_dirty(bh);
2012
2013         return ret;
2014 }
2015
2016 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2017 {
2018         int ret = -EINVAL;
2019         struct inode *inode = NULL;
2020         struct udf_options uopt;
2021         struct kernel_lb_addr rootdir, fileset;
2022         struct udf_sb_info *sbi;
2023
2024         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2025         uopt.uid = INVALID_UID;
2026         uopt.gid = INVALID_GID;
2027         uopt.umask = 0;
2028         uopt.fmode = UDF_INVALID_MODE;
2029         uopt.dmode = UDF_INVALID_MODE;
2030
2031         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2032         if (!sbi)
2033                 return -ENOMEM;
2034
2035         sb->s_fs_info = sbi;
2036
2037         mutex_init(&sbi->s_alloc_mutex);
2038
2039         if (!udf_parse_options((char *)options, &uopt, false))
2040                 goto error_out;
2041
2042         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2043             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2044                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2045                 goto error_out;
2046         }
2047 #ifdef CONFIG_UDF_NLS
2048         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2049                 uopt.nls_map = load_nls_default();
2050                 if (!uopt.nls_map)
2051                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2052                 else
2053                         udf_debug("Using default NLS map\n");
2054         }
2055 #endif
2056         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2057                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2058
2059         fileset.logicalBlockNum = 0xFFFFFFFF;
2060         fileset.partitionReferenceNum = 0xFFFF;
2061
2062         sbi->s_flags = uopt.flags;
2063         sbi->s_uid = uopt.uid;
2064         sbi->s_gid = uopt.gid;
2065         sbi->s_umask = uopt.umask;
2066         sbi->s_fmode = uopt.fmode;
2067         sbi->s_dmode = uopt.dmode;
2068         sbi->s_nls_map = uopt.nls_map;
2069         rwlock_init(&sbi->s_cred_lock);
2070
2071         if (uopt.session == 0xFFFFFFFF)
2072                 sbi->s_session = udf_get_last_session(sb);
2073         else
2074                 sbi->s_session = uopt.session;
2075
2076         udf_debug("Multi-session=%d\n", sbi->s_session);
2077
2078         /* Fill in the rest of the superblock */
2079         sb->s_op = &udf_sb_ops;
2080         sb->s_export_op = &udf_export_ops;
2081
2082         sb->s_magic = UDF_SUPER_MAGIC;
2083         sb->s_time_gran = 1000;
2084
2085         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2086                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2087         } else {
2088                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2089                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2090                 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2091                         if (!silent)
2092                                 pr_notice("Rescanning with blocksize %d\n",
2093                                           UDF_DEFAULT_BLOCKSIZE);
2094                         brelse(sbi->s_lvid_bh);
2095                         sbi->s_lvid_bh = NULL;
2096                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2097                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2098                 }
2099         }
2100         if (ret < 0) {
2101                 if (ret == -EAGAIN) {
2102                         udf_warn(sb, "No partition found (1)\n");
2103                         ret = -EINVAL;
2104                 }
2105                 goto error_out;
2106         }
2107
2108         udf_debug("Lastblock=%d\n", sbi->s_last_block);
2109
2110         if (sbi->s_lvid_bh) {
2111                 struct logicalVolIntegrityDescImpUse *lvidiu =
2112                                                         udf_sb_lvidiu(sb);
2113                 uint16_t minUDFReadRev;
2114                 uint16_t minUDFWriteRev;
2115
2116                 if (!lvidiu) {
2117                         ret = -EINVAL;
2118                         goto error_out;
2119                 }
2120                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2121                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2122                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2123                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2124                                 minUDFReadRev,
2125                                 UDF_MAX_READ_VERSION);
2126                         ret = -EINVAL;
2127                         goto error_out;
2128                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2129                            !(sb->s_flags & MS_RDONLY)) {
2130                         ret = -EACCES;
2131                         goto error_out;
2132                 }
2133
2134                 sbi->s_udfrev = minUDFWriteRev;
2135
2136                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2137                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2138                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2139                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2140         }
2141
2142         if (!sbi->s_partitions) {
2143                 udf_warn(sb, "No partition found (2)\n");
2144                 ret = -EINVAL;
2145                 goto error_out;
2146         }
2147
2148         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2149                         UDF_PART_FLAG_READ_ONLY &&
2150             !(sb->s_flags & MS_RDONLY)) {
2151                 ret = -EACCES;
2152                 goto error_out;
2153         }
2154
2155         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2156                 udf_warn(sb, "No fileset found\n");
2157                 ret = -EINVAL;
2158                 goto error_out;
2159         }
2160
2161         if (!silent) {
2162                 struct timestamp ts;
2163                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2164                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2165                          sbi->s_volume_ident,
2166                          le16_to_cpu(ts.year), ts.month, ts.day,
2167                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2168         }
2169         if (!(sb->s_flags & MS_RDONLY))
2170                 udf_open_lvid(sb);
2171
2172         /* Assign the root inode */
2173         /* assign inodes by physical block number */
2174         /* perhaps it's not extensible enough, but for now ... */
2175         inode = udf_iget(sb, &rootdir);
2176         if (!inode) {
2177                 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2178                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2179                 ret = -EIO;
2180                 goto error_out;
2181         }
2182
2183         /* Allocate a dentry for the root inode */
2184         sb->s_root = d_make_root(inode);
2185         if (!sb->s_root) {
2186                 udf_err(sb, "Couldn't allocate root dentry\n");
2187                 ret = -ENOMEM;
2188                 goto error_out;
2189         }
2190         sb->s_maxbytes = MAX_LFS_FILESIZE;
2191         sb->s_max_links = UDF_MAX_LINKS;
2192         return 0;
2193
2194 error_out:
2195         if (sbi->s_vat_inode)
2196                 iput(sbi->s_vat_inode);
2197 #ifdef CONFIG_UDF_NLS
2198         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2199                 unload_nls(sbi->s_nls_map);
2200 #endif
2201         if (!(sb->s_flags & MS_RDONLY))
2202                 udf_close_lvid(sb);
2203         brelse(sbi->s_lvid_bh);
2204         udf_sb_free_partitions(sb);
2205         kfree(sbi);
2206         sb->s_fs_info = NULL;
2207
2208         return ret;
2209 }
2210
2211 void _udf_err(struct super_block *sb, const char *function,
2212               const char *fmt, ...)
2213 {
2214         struct va_format vaf;
2215         va_list args;
2216
2217         va_start(args, fmt);
2218
2219         vaf.fmt = fmt;
2220         vaf.va = &args;
2221
2222         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2223
2224         va_end(args);
2225 }
2226
2227 void _udf_warn(struct super_block *sb, const char *function,
2228                const char *fmt, ...)
2229 {
2230         struct va_format vaf;
2231         va_list args;
2232
2233         va_start(args, fmt);
2234
2235         vaf.fmt = fmt;
2236         vaf.va = &args;
2237
2238         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2239
2240         va_end(args);
2241 }
2242
2243 static void udf_put_super(struct super_block *sb)
2244 {
2245         struct udf_sb_info *sbi;
2246
2247         sbi = UDF_SB(sb);
2248
2249         if (sbi->s_vat_inode)
2250                 iput(sbi->s_vat_inode);
2251 #ifdef CONFIG_UDF_NLS
2252         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2253                 unload_nls(sbi->s_nls_map);
2254 #endif
2255         if (!(sb->s_flags & MS_RDONLY))
2256                 udf_close_lvid(sb);
2257         brelse(sbi->s_lvid_bh);
2258         udf_sb_free_partitions(sb);
2259         kfree(sb->s_fs_info);
2260         sb->s_fs_info = NULL;
2261 }
2262
2263 static int udf_sync_fs(struct super_block *sb, int wait)
2264 {
2265         struct udf_sb_info *sbi = UDF_SB(sb);
2266
2267         mutex_lock(&sbi->s_alloc_mutex);
2268         if (sbi->s_lvid_dirty) {
2269                 /*
2270                  * Blockdevice will be synced later so we don't have to submit
2271                  * the buffer for IO
2272                  */
2273                 mark_buffer_dirty(sbi->s_lvid_bh);
2274                 sbi->s_lvid_dirty = 0;
2275         }
2276         mutex_unlock(&sbi->s_alloc_mutex);
2277
2278         return 0;
2279 }
2280
2281 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2282 {
2283         struct super_block *sb = dentry->d_sb;
2284         struct udf_sb_info *sbi = UDF_SB(sb);
2285         struct logicalVolIntegrityDescImpUse *lvidiu;
2286         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2287
2288         lvidiu = udf_sb_lvidiu(sb);
2289         buf->f_type = UDF_SUPER_MAGIC;
2290         buf->f_bsize = sb->s_blocksize;
2291         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2292         buf->f_bfree = udf_count_free(sb);
2293         buf->f_bavail = buf->f_bfree;
2294         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2295                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2296                         + buf->f_bfree;
2297         buf->f_ffree = buf->f_bfree;
2298         buf->f_namelen = UDF_NAME_LEN - 2;
2299         buf->f_fsid.val[0] = (u32)id;
2300         buf->f_fsid.val[1] = (u32)(id >> 32);
2301
2302         return 0;
2303 }
2304
2305 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2306                                           struct udf_bitmap *bitmap)
2307 {
2308         struct buffer_head *bh = NULL;
2309         unsigned int accum = 0;
2310         int index;
2311         int block = 0, newblock;
2312         struct kernel_lb_addr loc;
2313         uint32_t bytes;
2314         uint8_t *ptr;
2315         uint16_t ident;
2316         struct spaceBitmapDesc *bm;
2317
2318         loc.logicalBlockNum = bitmap->s_extPosition;
2319         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2320         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2321
2322         if (!bh) {
2323                 udf_err(sb, "udf_count_free failed\n");
2324                 goto out;
2325         } else if (ident != TAG_IDENT_SBD) {
2326                 brelse(bh);
2327                 udf_err(sb, "udf_count_free failed\n");
2328                 goto out;
2329         }
2330
2331         bm = (struct spaceBitmapDesc *)bh->b_data;
2332         bytes = le32_to_cpu(bm->numOfBytes);
2333         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2334         ptr = (uint8_t *)bh->b_data;
2335
2336         while (bytes > 0) {
2337                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2338                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2339                                         cur_bytes * 8);
2340                 bytes -= cur_bytes;
2341                 if (bytes) {
2342                         brelse(bh);
2343                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2344                         bh = udf_tread(sb, newblock);
2345                         if (!bh) {
2346                                 udf_debug("read failed\n");
2347                                 goto out;
2348                         }
2349                         index = 0;
2350                         ptr = (uint8_t *)bh->b_data;
2351                 }
2352         }
2353         brelse(bh);
2354 out:
2355         return accum;
2356 }
2357
2358 static unsigned int udf_count_free_table(struct super_block *sb,
2359                                          struct inode *table)
2360 {
2361         unsigned int accum = 0;
2362         uint32_t elen;
2363         struct kernel_lb_addr eloc;
2364         int8_t etype;
2365         struct extent_position epos;
2366
2367         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2368         epos.block = UDF_I(table)->i_location;
2369         epos.offset = sizeof(struct unallocSpaceEntry);
2370         epos.bh = NULL;
2371
2372         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2373                 accum += (elen >> table->i_sb->s_blocksize_bits);
2374
2375         brelse(epos.bh);
2376         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2377
2378         return accum;
2379 }
2380
2381 static unsigned int udf_count_free(struct super_block *sb)
2382 {
2383         unsigned int accum = 0;
2384         struct udf_sb_info *sbi;
2385         struct udf_part_map *map;
2386
2387         sbi = UDF_SB(sb);
2388         if (sbi->s_lvid_bh) {
2389                 struct logicalVolIntegrityDesc *lvid =
2390                         (struct logicalVolIntegrityDesc *)
2391                         sbi->s_lvid_bh->b_data;
2392                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2393                         accum = le32_to_cpu(
2394                                         lvid->freeSpaceTable[sbi->s_partition]);
2395                         if (accum == 0xFFFFFFFF)
2396                                 accum = 0;
2397                 }
2398         }
2399
2400         if (accum)
2401                 return accum;
2402
2403         map = &sbi->s_partmaps[sbi->s_partition];
2404         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2405                 accum += udf_count_free_bitmap(sb,
2406                                                map->s_uspace.s_bitmap);
2407         }
2408         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2409                 accum += udf_count_free_bitmap(sb,
2410                                                map->s_fspace.s_bitmap);
2411         }
2412         if (accum)
2413                 return accum;
2414
2415         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2416                 accum += udf_count_free_table(sb,
2417                                               map->s_uspace.s_table);
2418         }
2419         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2420                 accum += udf_count_free_table(sb,
2421                                               map->s_fspace.s_table);
2422         }
2423
2424         return accum;
2425 }