]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/udf/super.c
fs: udf: parse_options: blocksize check
[karo-tx-linux.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <linux/log2.h>
60 #include <asm/byteorder.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67
68 #define VDS_POS_PRIMARY_VOL_DESC        0
69 #define VDS_POS_UNALLOC_SPACE_DESC      1
70 #define VDS_POS_LOGICAL_VOL_DESC        2
71 #define VDS_POS_PARTITION_DESC          3
72 #define VDS_POS_IMP_USE_VOL_DESC        4
73 #define VDS_POS_VOL_DESC_PTR            5
74 #define VDS_POS_TERMINATING_DESC        6
75 #define VDS_POS_LENGTH                  7
76
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78
79 #define VSD_FIRST_SECTOR_OFFSET         32768
80 #define VSD_MAX_SECTOR_OFFSET           0x800000
81
82 enum { UDF_MAX_LINKS = 0xffff };
83
84 /* These are the "meat" - everything else is stuffing */
85 static int udf_fill_super(struct super_block *, void *, int);
86 static void udf_put_super(struct super_block *);
87 static int udf_sync_fs(struct super_block *, int);
88 static int udf_remount_fs(struct super_block *, int *, char *);
89 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
90 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
91                             struct kernel_lb_addr *);
92 static void udf_load_fileset(struct super_block *, struct buffer_head *,
93                              struct kernel_lb_addr *);
94 static void udf_open_lvid(struct super_block *);
95 static void udf_close_lvid(struct super_block *);
96 static unsigned int udf_count_free(struct super_block *);
97 static int udf_statfs(struct dentry *, struct kstatfs *);
98 static int udf_show_options(struct seq_file *, struct dentry *);
99
100 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
101 {
102         struct logicalVolIntegrityDesc *lvid;
103         unsigned int partnum;
104         unsigned int offset;
105
106         if (!UDF_SB(sb)->s_lvid_bh)
107                 return NULL;
108         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
109         partnum = le32_to_cpu(lvid->numOfPartitions);
110         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
111              offsetof(struct logicalVolIntegrityDesc, impUse)) /
112              (2 * sizeof(uint32_t)) < partnum) {
113                 udf_err(sb, "Logical volume integrity descriptor corrupted "
114                         "(numOfPartitions = %u)!\n", partnum);
115                 return NULL;
116         }
117         /* The offset is to skip freeSpaceTable and sizeTable arrays */
118         offset = partnum * 2 * sizeof(uint32_t);
119         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
120 }
121
122 /* UDF filesystem type */
123 static struct dentry *udf_mount(struct file_system_type *fs_type,
124                       int flags, const char *dev_name, void *data)
125 {
126         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
127 }
128
129 static struct file_system_type udf_fstype = {
130         .owner          = THIS_MODULE,
131         .name           = "udf",
132         .mount          = udf_mount,
133         .kill_sb        = kill_block_super,
134         .fs_flags       = FS_REQUIRES_DEV,
135 };
136 MODULE_ALIAS_FS("udf");
137
138 static struct kmem_cache *udf_inode_cachep;
139
140 static struct inode *udf_alloc_inode(struct super_block *sb)
141 {
142         struct udf_inode_info *ei;
143         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
144         if (!ei)
145                 return NULL;
146
147         ei->i_unique = 0;
148         ei->i_lenExtents = 0;
149         ei->i_next_alloc_block = 0;
150         ei->i_next_alloc_goal = 0;
151         ei->i_strat4096 = 0;
152         init_rwsem(&ei->i_data_sem);
153         ei->cached_extent.lstart = -1;
154         spin_lock_init(&ei->i_extent_cache_lock);
155
156         return &ei->vfs_inode;
157 }
158
159 static void udf_i_callback(struct rcu_head *head)
160 {
161         struct inode *inode = container_of(head, struct inode, i_rcu);
162         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
163 }
164
165 static void udf_destroy_inode(struct inode *inode)
166 {
167         call_rcu(&inode->i_rcu, udf_i_callback);
168 }
169
170 static void init_once(void *foo)
171 {
172         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
173
174         ei->i_ext.i_data = NULL;
175         inode_init_once(&ei->vfs_inode);
176 }
177
178 static int init_inodecache(void)
179 {
180         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
181                                              sizeof(struct udf_inode_info),
182                                              0, (SLAB_RECLAIM_ACCOUNT |
183                                                  SLAB_MEM_SPREAD),
184                                              init_once);
185         if (!udf_inode_cachep)
186                 return -ENOMEM;
187         return 0;
188 }
189
190 static void destroy_inodecache(void)
191 {
192         /*
193          * Make sure all delayed rcu free inodes are flushed before we
194          * destroy cache.
195          */
196         rcu_barrier();
197         kmem_cache_destroy(udf_inode_cachep);
198 }
199
200 /* Superblock operations */
201 static const struct super_operations udf_sb_ops = {
202         .alloc_inode    = udf_alloc_inode,
203         .destroy_inode  = udf_destroy_inode,
204         .write_inode    = udf_write_inode,
205         .evict_inode    = udf_evict_inode,
206         .put_super      = udf_put_super,
207         .sync_fs        = udf_sync_fs,
208         .statfs         = udf_statfs,
209         .remount_fs     = udf_remount_fs,
210         .show_options   = udf_show_options,
211 };
212
213 struct udf_options {
214         unsigned char novrs;
215         unsigned int blocksize;
216         unsigned int session;
217         unsigned int lastblock;
218         unsigned int anchor;
219         unsigned int volume;
220         unsigned short partition;
221         unsigned int fileset;
222         unsigned int rootdir;
223         unsigned int flags;
224         umode_t umask;
225         kgid_t gid;
226         kuid_t uid;
227         umode_t fmode;
228         umode_t dmode;
229         struct nls_table *nls_map;
230 };
231
232 static int __init init_udf_fs(void)
233 {
234         int err;
235
236         err = init_inodecache();
237         if (err)
238                 goto out1;
239         err = register_filesystem(&udf_fstype);
240         if (err)
241                 goto out;
242
243         return 0;
244
245 out:
246         destroy_inodecache();
247
248 out1:
249         return err;
250 }
251
252 static void __exit exit_udf_fs(void)
253 {
254         unregister_filesystem(&udf_fstype);
255         destroy_inodecache();
256 }
257
258 module_init(init_udf_fs)
259 module_exit(exit_udf_fs)
260
261 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
262 {
263         struct udf_sb_info *sbi = UDF_SB(sb);
264
265         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
266                                   GFP_KERNEL);
267         if (!sbi->s_partmaps) {
268                 udf_err(sb, "Unable to allocate space for %d partition maps\n",
269                         count);
270                 sbi->s_partitions = 0;
271                 return -ENOMEM;
272         }
273
274         sbi->s_partitions = count;
275         return 0;
276 }
277
278 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
279 {
280         int i;
281         int nr_groups = bitmap->s_nr_groups;
282         int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
283                                                 nr_groups);
284
285         for (i = 0; i < nr_groups; i++)
286                 if (bitmap->s_block_bitmap[i])
287                         brelse(bitmap->s_block_bitmap[i]);
288
289         if (size <= PAGE_SIZE)
290                 kfree(bitmap);
291         else
292                 vfree(bitmap);
293 }
294
295 static void udf_free_partition(struct udf_part_map *map)
296 {
297         int i;
298         struct udf_meta_data *mdata;
299
300         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
301                 iput(map->s_uspace.s_table);
302         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
303                 iput(map->s_fspace.s_table);
304         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
305                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
306         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
307                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
308         if (map->s_partition_type == UDF_SPARABLE_MAP15)
309                 for (i = 0; i < 4; i++)
310                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
311         else if (map->s_partition_type == UDF_METADATA_MAP25) {
312                 mdata = &map->s_type_specific.s_metadata;
313                 iput(mdata->s_metadata_fe);
314                 mdata->s_metadata_fe = NULL;
315
316                 iput(mdata->s_mirror_fe);
317                 mdata->s_mirror_fe = NULL;
318
319                 iput(mdata->s_bitmap_fe);
320                 mdata->s_bitmap_fe = NULL;
321         }
322 }
323
324 static void udf_sb_free_partitions(struct super_block *sb)
325 {
326         struct udf_sb_info *sbi = UDF_SB(sb);
327         int i;
328         if (sbi->s_partmaps == NULL)
329                 return;
330         for (i = 0; i < sbi->s_partitions; i++)
331                 udf_free_partition(&sbi->s_partmaps[i]);
332         kfree(sbi->s_partmaps);
333         sbi->s_partmaps = NULL;
334 }
335
336 static int udf_show_options(struct seq_file *seq, struct dentry *root)
337 {
338         struct super_block *sb = root->d_sb;
339         struct udf_sb_info *sbi = UDF_SB(sb);
340
341         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
342                 seq_puts(seq, ",nostrict");
343         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
344                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
345         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
346                 seq_puts(seq, ",unhide");
347         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
348                 seq_puts(seq, ",undelete");
349         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
350                 seq_puts(seq, ",noadinicb");
351         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
352                 seq_puts(seq, ",shortad");
353         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
354                 seq_puts(seq, ",uid=forget");
355         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
356                 seq_puts(seq, ",uid=ignore");
357         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
358                 seq_puts(seq, ",gid=forget");
359         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
360                 seq_puts(seq, ",gid=ignore");
361         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
362                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
363         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
364                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
365         if (sbi->s_umask != 0)
366                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
367         if (sbi->s_fmode != UDF_INVALID_MODE)
368                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
369         if (sbi->s_dmode != UDF_INVALID_MODE)
370                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
371         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
372                 seq_printf(seq, ",session=%u", sbi->s_session);
373         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
374                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
375         if (sbi->s_anchor != 0)
376                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
377         /*
378          * volume, partition, fileset and rootdir seem to be ignored
379          * currently
380          */
381         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
382                 seq_puts(seq, ",utf8");
383         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
384                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
385
386         return 0;
387 }
388
389 /*
390  * udf_parse_options
391  *
392  * PURPOSE
393  *      Parse mount options.
394  *
395  * DESCRIPTION
396  *      The following mount options are supported:
397  *
398  *      gid=            Set the default group.
399  *      umask=          Set the default umask.
400  *      mode=           Set the default file permissions.
401  *      dmode=          Set the default directory permissions.
402  *      uid=            Set the default user.
403  *      bs=             Set the block size.
404  *      unhide          Show otherwise hidden files.
405  *      undelete        Show deleted files in lists.
406  *      adinicb         Embed data in the inode (default)
407  *      noadinicb       Don't embed data in the inode
408  *      shortad         Use short ad's
409  *      longad          Use long ad's (default)
410  *      nostrict        Unset strict conformance
411  *      iocharset=      Set the NLS character set
412  *
413  *      The remaining are for debugging and disaster recovery:
414  *
415  *      novrs           Skip volume sequence recognition
416  *
417  *      The following expect a offset from 0.
418  *
419  *      session=        Set the CDROM session (default= last session)
420  *      anchor=         Override standard anchor location. (default= 256)
421  *      volume=         Override the VolumeDesc location. (unused)
422  *      partition=      Override the PartitionDesc location. (unused)
423  *      lastblock=      Set the last block of the filesystem/
424  *
425  *      The following expect a offset from the partition root.
426  *
427  *      fileset=        Override the fileset block location. (unused)
428  *      rootdir=        Override the root directory location. (unused)
429  *              WARNING: overriding the rootdir to a non-directory may
430  *              yield highly unpredictable results.
431  *
432  * PRE-CONDITIONS
433  *      options         Pointer to mount options string.
434  *      uopts           Pointer to mount options variable.
435  *
436  * POST-CONDITIONS
437  *      <return>        1       Mount options parsed okay.
438  *      <return>        0       Error parsing mount options.
439  *
440  * HISTORY
441  *      July 1, 1997 - Andrew E. Mileski
442  *      Written, tested, and released.
443  */
444
445 enum {
446         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
447         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
448         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
449         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
450         Opt_rootdir, Opt_utf8, Opt_iocharset,
451         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
452         Opt_fmode, Opt_dmode
453 };
454
455 static const match_table_t tokens = {
456         {Opt_novrs,     "novrs"},
457         {Opt_nostrict,  "nostrict"},
458         {Opt_bs,        "bs=%u"},
459         {Opt_unhide,    "unhide"},
460         {Opt_undelete,  "undelete"},
461         {Opt_noadinicb, "noadinicb"},
462         {Opt_adinicb,   "adinicb"},
463         {Opt_shortad,   "shortad"},
464         {Opt_longad,    "longad"},
465         {Opt_uforget,   "uid=forget"},
466         {Opt_uignore,   "uid=ignore"},
467         {Opt_gforget,   "gid=forget"},
468         {Opt_gignore,   "gid=ignore"},
469         {Opt_gid,       "gid=%u"},
470         {Opt_uid,       "uid=%u"},
471         {Opt_umask,     "umask=%o"},
472         {Opt_session,   "session=%u"},
473         {Opt_lastblock, "lastblock=%u"},
474         {Opt_anchor,    "anchor=%u"},
475         {Opt_volume,    "volume=%u"},
476         {Opt_partition, "partition=%u"},
477         {Opt_fileset,   "fileset=%u"},
478         {Opt_rootdir,   "rootdir=%u"},
479         {Opt_utf8,      "utf8"},
480         {Opt_iocharset, "iocharset=%s"},
481         {Opt_fmode,     "mode=%o"},
482         {Opt_dmode,     "dmode=%o"},
483         {Opt_err,       NULL}
484 };
485
486 static int udf_parse_options(char *options, struct udf_options *uopt,
487                              bool remount)
488 {
489         char *p;
490         int option;
491
492         uopt->novrs = 0;
493         uopt->partition = 0xFFFF;
494         uopt->session = 0xFFFFFFFF;
495         uopt->lastblock = 0;
496         uopt->anchor = 0;
497         uopt->volume = 0xFFFFFFFF;
498         uopt->rootdir = 0xFFFFFFFF;
499         uopt->fileset = 0xFFFFFFFF;
500         uopt->nls_map = NULL;
501
502         if (!options)
503                 return 1;
504
505         while ((p = strsep(&options, ",")) != NULL) {
506                 substring_t args[MAX_OPT_ARGS];
507                 int token;
508                 unsigned n;
509                 if (!*p)
510                         continue;
511
512                 token = match_token(p, tokens, args);
513                 switch (token) {
514                 case Opt_novrs:
515                         uopt->novrs = 1;
516                         break;
517                 case Opt_bs:
518                         if (match_int(&args[0], &option))
519                                 return 0;
520                         n = option;
521                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
522                                 return 0;
523                         uopt->blocksize = n;
524                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
525                         break;
526                 case Opt_unhide:
527                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
528                         break;
529                 case Opt_undelete:
530                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
531                         break;
532                 case Opt_noadinicb:
533                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
534                         break;
535                 case Opt_adinicb:
536                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
537                         break;
538                 case Opt_shortad:
539                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
540                         break;
541                 case Opt_longad:
542                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
543                         break;
544                 case Opt_gid:
545                         if (match_int(args, &option))
546                                 return 0;
547                         uopt->gid = make_kgid(current_user_ns(), option);
548                         if (!gid_valid(uopt->gid))
549                                 return 0;
550                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
551                         break;
552                 case Opt_uid:
553                         if (match_int(args, &option))
554                                 return 0;
555                         uopt->uid = make_kuid(current_user_ns(), option);
556                         if (!uid_valid(uopt->uid))
557                                 return 0;
558                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
559                         break;
560                 case Opt_umask:
561                         if (match_octal(args, &option))
562                                 return 0;
563                         uopt->umask = option;
564                         break;
565                 case Opt_nostrict:
566                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
567                         break;
568                 case Opt_session:
569                         if (match_int(args, &option))
570                                 return 0;
571                         uopt->session = option;
572                         if (!remount)
573                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
574                         break;
575                 case Opt_lastblock:
576                         if (match_int(args, &option))
577                                 return 0;
578                         uopt->lastblock = option;
579                         if (!remount)
580                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
581                         break;
582                 case Opt_anchor:
583                         if (match_int(args, &option))
584                                 return 0;
585                         uopt->anchor = option;
586                         break;
587                 case Opt_volume:
588                         if (match_int(args, &option))
589                                 return 0;
590                         uopt->volume = option;
591                         break;
592                 case Opt_partition:
593                         if (match_int(args, &option))
594                                 return 0;
595                         uopt->partition = option;
596                         break;
597                 case Opt_fileset:
598                         if (match_int(args, &option))
599                                 return 0;
600                         uopt->fileset = option;
601                         break;
602                 case Opt_rootdir:
603                         if (match_int(args, &option))
604                                 return 0;
605                         uopt->rootdir = option;
606                         break;
607                 case Opt_utf8:
608                         uopt->flags |= (1 << UDF_FLAG_UTF8);
609                         break;
610 #ifdef CONFIG_UDF_NLS
611                 case Opt_iocharset:
612                         uopt->nls_map = load_nls(args[0].from);
613                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
614                         break;
615 #endif
616                 case Opt_uignore:
617                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
618                         break;
619                 case Opt_uforget:
620                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
621                         break;
622                 case Opt_gignore:
623                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
624                         break;
625                 case Opt_gforget:
626                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
627                         break;
628                 case Opt_fmode:
629                         if (match_octal(args, &option))
630                                 return 0;
631                         uopt->fmode = option & 0777;
632                         break;
633                 case Opt_dmode:
634                         if (match_octal(args, &option))
635                                 return 0;
636                         uopt->dmode = option & 0777;
637                         break;
638                 default:
639                         pr_err("bad mount option \"%s\" or missing value\n", p);
640                         return 0;
641                 }
642         }
643         return 1;
644 }
645
646 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
647 {
648         struct udf_options uopt;
649         struct udf_sb_info *sbi = UDF_SB(sb);
650         int error = 0;
651         struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
652
653         if (lvidiu) {
654                 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
655                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
656                         return -EACCES;
657         }
658
659         uopt.flags = sbi->s_flags;
660         uopt.uid   = sbi->s_uid;
661         uopt.gid   = sbi->s_gid;
662         uopt.umask = sbi->s_umask;
663         uopt.fmode = sbi->s_fmode;
664         uopt.dmode = sbi->s_dmode;
665
666         if (!udf_parse_options(options, &uopt, true))
667                 return -EINVAL;
668
669         write_lock(&sbi->s_cred_lock);
670         sbi->s_flags = uopt.flags;
671         sbi->s_uid   = uopt.uid;
672         sbi->s_gid   = uopt.gid;
673         sbi->s_umask = uopt.umask;
674         sbi->s_fmode = uopt.fmode;
675         sbi->s_dmode = uopt.dmode;
676         write_unlock(&sbi->s_cred_lock);
677
678         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
679                 goto out_unlock;
680
681         if (*flags & MS_RDONLY)
682                 udf_close_lvid(sb);
683         else
684                 udf_open_lvid(sb);
685
686 out_unlock:
687         return error;
688 }
689
690 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
691 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
692 static loff_t udf_check_vsd(struct super_block *sb)
693 {
694         struct volStructDesc *vsd = NULL;
695         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
696         int sectorsize;
697         struct buffer_head *bh = NULL;
698         int nsr02 = 0;
699         int nsr03 = 0;
700         struct udf_sb_info *sbi;
701
702         sbi = UDF_SB(sb);
703         if (sb->s_blocksize < sizeof(struct volStructDesc))
704                 sectorsize = sizeof(struct volStructDesc);
705         else
706                 sectorsize = sb->s_blocksize;
707
708         sector += (sbi->s_session << sb->s_blocksize_bits);
709
710         udf_debug("Starting at sector %u (%ld byte sectors)\n",
711                   (unsigned int)(sector >> sb->s_blocksize_bits),
712                   sb->s_blocksize);
713         /* Process the sequence (if applicable). The hard limit on the sector
714          * offset is arbitrary, hopefully large enough so that all valid UDF
715          * filesystems will be recognised. There is no mention of an upper
716          * bound to the size of the volume recognition area in the standard.
717          *  The limit will prevent the code to read all the sectors of a
718          * specially crafted image (like a bluray disc full of CD001 sectors),
719          * potentially causing minutes or even hours of uninterruptible I/O
720          * activity. This actually happened with uninitialised SSD partitions
721          * (all 0xFF) before the check for the limit and all valid IDs were
722          * added */
723         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
724              sector += sectorsize) {
725                 /* Read a block */
726                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
727                 if (!bh)
728                         break;
729
730                 /* Look for ISO  descriptors */
731                 vsd = (struct volStructDesc *)(bh->b_data +
732                                               (sector & (sb->s_blocksize - 1)));
733
734                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
735                                     VSD_STD_ID_LEN)) {
736                         switch (vsd->structType) {
737                         case 0:
738                                 udf_debug("ISO9660 Boot Record found\n");
739                                 break;
740                         case 1:
741                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
742                                 break;
743                         case 2:
744                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
745                                 break;
746                         case 3:
747                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
748                                 break;
749                         case 255:
750                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
751                                 break;
752                         default:
753                                 udf_debug("ISO9660 VRS (%u) found\n",
754                                           vsd->structType);
755                                 break;
756                         }
757                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
758                                     VSD_STD_ID_LEN))
759                         ; /* nothing */
760                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
761                                     VSD_STD_ID_LEN)) {
762                         brelse(bh);
763                         break;
764                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
765                                     VSD_STD_ID_LEN))
766                         nsr02 = sector;
767                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
768                                     VSD_STD_ID_LEN))
769                         nsr03 = sector;
770                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
771                                     VSD_STD_ID_LEN))
772                         ; /* nothing */
773                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
774                                     VSD_STD_ID_LEN))
775                         ; /* nothing */
776                 else {
777                         /* invalid id : end of volume recognition area */
778                         brelse(bh);
779                         break;
780                 }
781                 brelse(bh);
782         }
783
784         if (nsr03)
785                 return nsr03;
786         else if (nsr02)
787                 return nsr02;
788         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
789                         VSD_FIRST_SECTOR_OFFSET)
790                 return -1;
791         else
792                 return 0;
793 }
794
795 static int udf_find_fileset(struct super_block *sb,
796                             struct kernel_lb_addr *fileset,
797                             struct kernel_lb_addr *root)
798 {
799         struct buffer_head *bh = NULL;
800         long lastblock;
801         uint16_t ident;
802         struct udf_sb_info *sbi;
803
804         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
805             fileset->partitionReferenceNum != 0xFFFF) {
806                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
807
808                 if (!bh) {
809                         return 1;
810                 } else if (ident != TAG_IDENT_FSD) {
811                         brelse(bh);
812                         return 1;
813                 }
814
815         }
816
817         sbi = UDF_SB(sb);
818         if (!bh) {
819                 /* Search backwards through the partitions */
820                 struct kernel_lb_addr newfileset;
821
822 /* --> cvg: FIXME - is it reasonable? */
823                 return 1;
824
825                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
826                      (newfileset.partitionReferenceNum != 0xFFFF &&
827                       fileset->logicalBlockNum == 0xFFFFFFFF &&
828                       fileset->partitionReferenceNum == 0xFFFF);
829                      newfileset.partitionReferenceNum--) {
830                         lastblock = sbi->s_partmaps
831                                         [newfileset.partitionReferenceNum]
832                                                 .s_partition_len;
833                         newfileset.logicalBlockNum = 0;
834
835                         do {
836                                 bh = udf_read_ptagged(sb, &newfileset, 0,
837                                                       &ident);
838                                 if (!bh) {
839                                         newfileset.logicalBlockNum++;
840                                         continue;
841                                 }
842
843                                 switch (ident) {
844                                 case TAG_IDENT_SBD:
845                                 {
846                                         struct spaceBitmapDesc *sp;
847                                         sp = (struct spaceBitmapDesc *)
848                                                                 bh->b_data;
849                                         newfileset.logicalBlockNum += 1 +
850                                                 ((le32_to_cpu(sp->numOfBytes) +
851                                                   sizeof(struct spaceBitmapDesc)
852                                                   - 1) >> sb->s_blocksize_bits);
853                                         brelse(bh);
854                                         break;
855                                 }
856                                 case TAG_IDENT_FSD:
857                                         *fileset = newfileset;
858                                         break;
859                                 default:
860                                         newfileset.logicalBlockNum++;
861                                         brelse(bh);
862                                         bh = NULL;
863                                         break;
864                                 }
865                         } while (newfileset.logicalBlockNum < lastblock &&
866                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
867                                  fileset->partitionReferenceNum == 0xFFFF);
868                 }
869         }
870
871         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
872              fileset->partitionReferenceNum != 0xFFFF) && bh) {
873                 udf_debug("Fileset at block=%d, partition=%d\n",
874                           fileset->logicalBlockNum,
875                           fileset->partitionReferenceNum);
876
877                 sbi->s_partition = fileset->partitionReferenceNum;
878                 udf_load_fileset(sb, bh, root);
879                 brelse(bh);
880                 return 0;
881         }
882         return 1;
883 }
884
885 /*
886  * Load primary Volume Descriptor Sequence
887  *
888  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
889  * should be tried.
890  */
891 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
892 {
893         struct primaryVolDesc *pvoldesc;
894         struct ustr *instr, *outstr;
895         struct buffer_head *bh;
896         uint16_t ident;
897         int ret = -ENOMEM;
898
899         instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
900         if (!instr)
901                 return -ENOMEM;
902
903         outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
904         if (!outstr)
905                 goto out1;
906
907         bh = udf_read_tagged(sb, block, block, &ident);
908         if (!bh) {
909                 ret = -EAGAIN;
910                 goto out2;
911         }
912
913         if (ident != TAG_IDENT_PVD) {
914                 ret = -EIO;
915                 goto out_bh;
916         }
917
918         pvoldesc = (struct primaryVolDesc *)bh->b_data;
919
920         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
921                               pvoldesc->recordingDateAndTime)) {
922 #ifdef UDFFS_DEBUG
923                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
924                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
925                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
926                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
927 #endif
928         }
929
930         if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
931                 if (udf_CS0toUTF8(outstr, instr)) {
932                         strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
933                                 outstr->u_len > 31 ? 31 : outstr->u_len);
934                         udf_debug("volIdent[] = '%s'\n",
935                                   UDF_SB(sb)->s_volume_ident);
936                 }
937
938         if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
939                 if (udf_CS0toUTF8(outstr, instr))
940                         udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
941
942         ret = 0;
943 out_bh:
944         brelse(bh);
945 out2:
946         kfree(outstr);
947 out1:
948         kfree(instr);
949         return ret;
950 }
951
952 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
953                                         u32 meta_file_loc, u32 partition_num)
954 {
955         struct kernel_lb_addr addr;
956         struct inode *metadata_fe;
957
958         addr.logicalBlockNum = meta_file_loc;
959         addr.partitionReferenceNum = partition_num;
960
961         metadata_fe = udf_iget(sb, &addr);
962
963         if (metadata_fe == NULL)
964                 udf_warn(sb, "metadata inode efe not found\n");
965         else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
966                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
967                 iput(metadata_fe);
968                 metadata_fe = NULL;
969         }
970
971         return metadata_fe;
972 }
973
974 static int udf_load_metadata_files(struct super_block *sb, int partition)
975 {
976         struct udf_sb_info *sbi = UDF_SB(sb);
977         struct udf_part_map *map;
978         struct udf_meta_data *mdata;
979         struct kernel_lb_addr addr;
980
981         map = &sbi->s_partmaps[partition];
982         mdata = &map->s_type_specific.s_metadata;
983
984         /* metadata address */
985         udf_debug("Metadata file location: block = %d part = %d\n",
986                   mdata->s_meta_file_loc, map->s_partition_num);
987
988         mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
989                 mdata->s_meta_file_loc, map->s_partition_num);
990
991         if (mdata->s_metadata_fe == NULL) {
992                 /* mirror file entry */
993                 udf_debug("Mirror metadata file location: block = %d part = %d\n",
994                           mdata->s_mirror_file_loc, map->s_partition_num);
995
996                 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
997                         mdata->s_mirror_file_loc, map->s_partition_num);
998
999                 if (mdata->s_mirror_fe == NULL) {
1000                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1001                         return -EIO;
1002                 }
1003         }
1004
1005         /*
1006          * bitmap file entry
1007          * Note:
1008          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1009         */
1010         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1011                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1012                 addr.partitionReferenceNum = map->s_partition_num;
1013
1014                 udf_debug("Bitmap file location: block = %d part = %d\n",
1015                           addr.logicalBlockNum, addr.partitionReferenceNum);
1016
1017                 mdata->s_bitmap_fe = udf_iget(sb, &addr);
1018                 if (mdata->s_bitmap_fe == NULL) {
1019                         if (sb->s_flags & MS_RDONLY)
1020                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1021                         else {
1022                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1023                                 return -EIO;
1024                         }
1025                 }
1026         }
1027
1028         udf_debug("udf_load_metadata_files Ok\n");
1029         return 0;
1030 }
1031
1032 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1033                              struct kernel_lb_addr *root)
1034 {
1035         struct fileSetDesc *fset;
1036
1037         fset = (struct fileSetDesc *)bh->b_data;
1038
1039         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1040
1041         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1042
1043         udf_debug("Rootdir at block=%d, partition=%d\n",
1044                   root->logicalBlockNum, root->partitionReferenceNum);
1045 }
1046
1047 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1048 {
1049         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1050         return DIV_ROUND_UP(map->s_partition_len +
1051                             (sizeof(struct spaceBitmapDesc) << 3),
1052                             sb->s_blocksize * 8);
1053 }
1054
1055 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1056 {
1057         struct udf_bitmap *bitmap;
1058         int nr_groups;
1059         int size;
1060
1061         nr_groups = udf_compute_nr_groups(sb, index);
1062         size = sizeof(struct udf_bitmap) +
1063                 (sizeof(struct buffer_head *) * nr_groups);
1064
1065         if (size <= PAGE_SIZE)
1066                 bitmap = kzalloc(size, GFP_KERNEL);
1067         else
1068                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1069
1070         if (bitmap == NULL)
1071                 return NULL;
1072
1073         bitmap->s_nr_groups = nr_groups;
1074         return bitmap;
1075 }
1076
1077 static int udf_fill_partdesc_info(struct super_block *sb,
1078                 struct partitionDesc *p, int p_index)
1079 {
1080         struct udf_part_map *map;
1081         struct udf_sb_info *sbi = UDF_SB(sb);
1082         struct partitionHeaderDesc *phd;
1083
1084         map = &sbi->s_partmaps[p_index];
1085
1086         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1087         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1088
1089         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1090                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1091         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1092                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1093         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1094                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1095         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1096                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1097
1098         udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1099                   p_index, map->s_partition_type,
1100                   map->s_partition_root, map->s_partition_len);
1101
1102         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1103             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1104                 return 0;
1105
1106         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1107         if (phd->unallocSpaceTable.extLength) {
1108                 struct kernel_lb_addr loc = {
1109                         .logicalBlockNum = le32_to_cpu(
1110                                 phd->unallocSpaceTable.extPosition),
1111                         .partitionReferenceNum = p_index,
1112                 };
1113
1114                 map->s_uspace.s_table = udf_iget(sb, &loc);
1115                 if (!map->s_uspace.s_table) {
1116                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1117                                   p_index);
1118                         return -EIO;
1119                 }
1120                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1121                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1122                           p_index, map->s_uspace.s_table->i_ino);
1123         }
1124
1125         if (phd->unallocSpaceBitmap.extLength) {
1126                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1127                 if (!bitmap)
1128                         return -ENOMEM;
1129                 map->s_uspace.s_bitmap = bitmap;
1130                 bitmap->s_extPosition = le32_to_cpu(
1131                                 phd->unallocSpaceBitmap.extPosition);
1132                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1133                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1134                           p_index, bitmap->s_extPosition);
1135         }
1136
1137         if (phd->partitionIntegrityTable.extLength)
1138                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1139
1140         if (phd->freedSpaceTable.extLength) {
1141                 struct kernel_lb_addr loc = {
1142                         .logicalBlockNum = le32_to_cpu(
1143                                 phd->freedSpaceTable.extPosition),
1144                         .partitionReferenceNum = p_index,
1145                 };
1146
1147                 map->s_fspace.s_table = udf_iget(sb, &loc);
1148                 if (!map->s_fspace.s_table) {
1149                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1150                                   p_index);
1151                         return -EIO;
1152                 }
1153
1154                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1155                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1156                           p_index, map->s_fspace.s_table->i_ino);
1157         }
1158
1159         if (phd->freedSpaceBitmap.extLength) {
1160                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1161                 if (!bitmap)
1162                         return -ENOMEM;
1163                 map->s_fspace.s_bitmap = bitmap;
1164                 bitmap->s_extPosition = le32_to_cpu(
1165                                 phd->freedSpaceBitmap.extPosition);
1166                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1167                 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1168                           p_index, bitmap->s_extPosition);
1169         }
1170         return 0;
1171 }
1172
1173 static void udf_find_vat_block(struct super_block *sb, int p_index,
1174                                int type1_index, sector_t start_block)
1175 {
1176         struct udf_sb_info *sbi = UDF_SB(sb);
1177         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1178         sector_t vat_block;
1179         struct kernel_lb_addr ino;
1180
1181         /*
1182          * VAT file entry is in the last recorded block. Some broken disks have
1183          * it a few blocks before so try a bit harder...
1184          */
1185         ino.partitionReferenceNum = type1_index;
1186         for (vat_block = start_block;
1187              vat_block >= map->s_partition_root &&
1188              vat_block >= start_block - 3 &&
1189              !sbi->s_vat_inode; vat_block--) {
1190                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1191                 sbi->s_vat_inode = udf_iget(sb, &ino);
1192         }
1193 }
1194
1195 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1196 {
1197         struct udf_sb_info *sbi = UDF_SB(sb);
1198         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1199         struct buffer_head *bh = NULL;
1200         struct udf_inode_info *vati;
1201         uint32_t pos;
1202         struct virtualAllocationTable20 *vat20;
1203         sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1204
1205         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1206         if (!sbi->s_vat_inode &&
1207             sbi->s_last_block != blocks - 1) {
1208                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1209                           (unsigned long)sbi->s_last_block,
1210                           (unsigned long)blocks - 1);
1211                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1212         }
1213         if (!sbi->s_vat_inode)
1214                 return -EIO;
1215
1216         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1217                 map->s_type_specific.s_virtual.s_start_offset = 0;
1218                 map->s_type_specific.s_virtual.s_num_entries =
1219                         (sbi->s_vat_inode->i_size - 36) >> 2;
1220         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1221                 vati = UDF_I(sbi->s_vat_inode);
1222                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1223                         pos = udf_block_map(sbi->s_vat_inode, 0);
1224                         bh = sb_bread(sb, pos);
1225                         if (!bh)
1226                                 return -EIO;
1227                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1228                 } else {
1229                         vat20 = (struct virtualAllocationTable20 *)
1230                                                         vati->i_ext.i_data;
1231                 }
1232
1233                 map->s_type_specific.s_virtual.s_start_offset =
1234                         le16_to_cpu(vat20->lengthHeader);
1235                 map->s_type_specific.s_virtual.s_num_entries =
1236                         (sbi->s_vat_inode->i_size -
1237                                 map->s_type_specific.s_virtual.
1238                                         s_start_offset) >> 2;
1239                 brelse(bh);
1240         }
1241         return 0;
1242 }
1243
1244 /*
1245  * Load partition descriptor block
1246  *
1247  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1248  * sequence.
1249  */
1250 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1251 {
1252         struct buffer_head *bh;
1253         struct partitionDesc *p;
1254         struct udf_part_map *map;
1255         struct udf_sb_info *sbi = UDF_SB(sb);
1256         int i, type1_idx;
1257         uint16_t partitionNumber;
1258         uint16_t ident;
1259         int ret;
1260
1261         bh = udf_read_tagged(sb, block, block, &ident);
1262         if (!bh)
1263                 return -EAGAIN;
1264         if (ident != TAG_IDENT_PD) {
1265                 ret = 0;
1266                 goto out_bh;
1267         }
1268
1269         p = (struct partitionDesc *)bh->b_data;
1270         partitionNumber = le16_to_cpu(p->partitionNumber);
1271
1272         /* First scan for TYPE1, SPARABLE and METADATA partitions */
1273         for (i = 0; i < sbi->s_partitions; i++) {
1274                 map = &sbi->s_partmaps[i];
1275                 udf_debug("Searching map: (%d == %d)\n",
1276                           map->s_partition_num, partitionNumber);
1277                 if (map->s_partition_num == partitionNumber &&
1278                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1279                      map->s_partition_type == UDF_SPARABLE_MAP15))
1280                         break;
1281         }
1282
1283         if (i >= sbi->s_partitions) {
1284                 udf_debug("Partition (%d) not found in partition map\n",
1285                           partitionNumber);
1286                 ret = 0;
1287                 goto out_bh;
1288         }
1289
1290         ret = udf_fill_partdesc_info(sb, p, i);
1291         if (ret < 0)
1292                 goto out_bh;
1293
1294         /*
1295          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1296          * PHYSICAL partitions are already set up
1297          */
1298         type1_idx = i;
1299 #ifdef UDFFS_DEBUG
1300         map = NULL; /* supress 'maybe used uninitialized' warning */
1301 #endif
1302         for (i = 0; i < sbi->s_partitions; i++) {
1303                 map = &sbi->s_partmaps[i];
1304
1305                 if (map->s_partition_num == partitionNumber &&
1306                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1307                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1308                      map->s_partition_type == UDF_METADATA_MAP25))
1309                         break;
1310         }
1311
1312         if (i >= sbi->s_partitions) {
1313                 ret = 0;
1314                 goto out_bh;
1315         }
1316
1317         ret = udf_fill_partdesc_info(sb, p, i);
1318         if (ret < 0)
1319                 goto out_bh;
1320
1321         if (map->s_partition_type == UDF_METADATA_MAP25) {
1322                 ret = udf_load_metadata_files(sb, i);
1323                 if (ret < 0) {
1324                         udf_err(sb, "error loading MetaData partition map %d\n",
1325                                 i);
1326                         goto out_bh;
1327                 }
1328         } else {
1329                 /*
1330                  * If we have a partition with virtual map, we don't handle
1331                  * writing to it (we overwrite blocks instead of relocating
1332                  * them).
1333                  */
1334                 if (!(sb->s_flags & MS_RDONLY)) {
1335                         ret = -EACCES;
1336                         goto out_bh;
1337                 }
1338                 ret = udf_load_vat(sb, i, type1_idx);
1339                 if (ret < 0)
1340                         goto out_bh;
1341         }
1342         ret = 0;
1343 out_bh:
1344         /* In case loading failed, we handle cleanup in udf_fill_super */
1345         brelse(bh);
1346         return ret;
1347 }
1348
1349 static int udf_load_sparable_map(struct super_block *sb,
1350                                  struct udf_part_map *map,
1351                                  struct sparablePartitionMap *spm)
1352 {
1353         uint32_t loc;
1354         uint16_t ident;
1355         struct sparingTable *st;
1356         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1357         int i;
1358         struct buffer_head *bh;
1359
1360         map->s_partition_type = UDF_SPARABLE_MAP15;
1361         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1362         if (!is_power_of_2(sdata->s_packet_len)) {
1363                 udf_err(sb, "error loading logical volume descriptor: "
1364                         "Invalid packet length %u\n",
1365                         (unsigned)sdata->s_packet_len);
1366                 return -EIO;
1367         }
1368         if (spm->numSparingTables > 4) {
1369                 udf_err(sb, "error loading logical volume descriptor: "
1370                         "Too many sparing tables (%d)\n",
1371                         (int)spm->numSparingTables);
1372                 return -EIO;
1373         }
1374
1375         for (i = 0; i < spm->numSparingTables; i++) {
1376                 loc = le32_to_cpu(spm->locSparingTable[i]);
1377                 bh = udf_read_tagged(sb, loc, loc, &ident);
1378                 if (!bh)
1379                         continue;
1380
1381                 st = (struct sparingTable *)bh->b_data;
1382                 if (ident != 0 ||
1383                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1384                             strlen(UDF_ID_SPARING)) ||
1385                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1386                                                         sb->s_blocksize) {
1387                         brelse(bh);
1388                         continue;
1389                 }
1390
1391                 sdata->s_spar_map[i] = bh;
1392         }
1393         map->s_partition_func = udf_get_pblock_spar15;
1394         return 0;
1395 }
1396
1397 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1398                                struct kernel_lb_addr *fileset)
1399 {
1400         struct logicalVolDesc *lvd;
1401         int i, offset;
1402         uint8_t type;
1403         struct udf_sb_info *sbi = UDF_SB(sb);
1404         struct genericPartitionMap *gpm;
1405         uint16_t ident;
1406         struct buffer_head *bh;
1407         unsigned int table_len;
1408         int ret;
1409
1410         bh = udf_read_tagged(sb, block, block, &ident);
1411         if (!bh)
1412                 return -EAGAIN;
1413         BUG_ON(ident != TAG_IDENT_LVD);
1414         lvd = (struct logicalVolDesc *)bh->b_data;
1415         table_len = le32_to_cpu(lvd->mapTableLength);
1416         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1417                 udf_err(sb, "error loading logical volume descriptor: "
1418                         "Partition table too long (%u > %lu)\n", table_len,
1419                         sb->s_blocksize - sizeof(*lvd));
1420                 ret = -EIO;
1421                 goto out_bh;
1422         }
1423
1424         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1425         if (ret)
1426                 goto out_bh;
1427
1428         for (i = 0, offset = 0;
1429              i < sbi->s_partitions && offset < table_len;
1430              i++, offset += gpm->partitionMapLength) {
1431                 struct udf_part_map *map = &sbi->s_partmaps[i];
1432                 gpm = (struct genericPartitionMap *)
1433                                 &(lvd->partitionMaps[offset]);
1434                 type = gpm->partitionMapType;
1435                 if (type == 1) {
1436                         struct genericPartitionMap1 *gpm1 =
1437                                 (struct genericPartitionMap1 *)gpm;
1438                         map->s_partition_type = UDF_TYPE1_MAP15;
1439                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1440                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1441                         map->s_partition_func = NULL;
1442                 } else if (type == 2) {
1443                         struct udfPartitionMap2 *upm2 =
1444                                                 (struct udfPartitionMap2 *)gpm;
1445                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1446                                                 strlen(UDF_ID_VIRTUAL))) {
1447                                 u16 suf =
1448                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1449                                                         identSuffix)[0]);
1450                                 if (suf < 0x0200) {
1451                                         map->s_partition_type =
1452                                                         UDF_VIRTUAL_MAP15;
1453                                         map->s_partition_func =
1454                                                         udf_get_pblock_virt15;
1455                                 } else {
1456                                         map->s_partition_type =
1457                                                         UDF_VIRTUAL_MAP20;
1458                                         map->s_partition_func =
1459                                                         udf_get_pblock_virt20;
1460                                 }
1461                         } else if (!strncmp(upm2->partIdent.ident,
1462                                                 UDF_ID_SPARABLE,
1463                                                 strlen(UDF_ID_SPARABLE))) {
1464                                 ret = udf_load_sparable_map(sb, map,
1465                                         (struct sparablePartitionMap *)gpm);
1466                                 if (ret < 0)
1467                                         goto out_bh;
1468                         } else if (!strncmp(upm2->partIdent.ident,
1469                                                 UDF_ID_METADATA,
1470                                                 strlen(UDF_ID_METADATA))) {
1471                                 struct udf_meta_data *mdata =
1472                                         &map->s_type_specific.s_metadata;
1473                                 struct metadataPartitionMap *mdm =
1474                                                 (struct metadataPartitionMap *)
1475                                                 &(lvd->partitionMaps[offset]);
1476                                 udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1477                                           i, type, UDF_ID_METADATA);
1478
1479                                 map->s_partition_type = UDF_METADATA_MAP25;
1480                                 map->s_partition_func = udf_get_pblock_meta25;
1481
1482                                 mdata->s_meta_file_loc   =
1483                                         le32_to_cpu(mdm->metadataFileLoc);
1484                                 mdata->s_mirror_file_loc =
1485                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1486                                 mdata->s_bitmap_file_loc =
1487                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1488                                 mdata->s_alloc_unit_size =
1489                                         le32_to_cpu(mdm->allocUnitSize);
1490                                 mdata->s_align_unit_size =
1491                                         le16_to_cpu(mdm->alignUnitSize);
1492                                 if (mdm->flags & 0x01)
1493                                         mdata->s_flags |= MF_DUPLICATE_MD;
1494
1495                                 udf_debug("Metadata Ident suffix=0x%x\n",
1496                                           le16_to_cpu(*(__le16 *)
1497                                                       mdm->partIdent.identSuffix));
1498                                 udf_debug("Metadata part num=%d\n",
1499                                           le16_to_cpu(mdm->partitionNum));
1500                                 udf_debug("Metadata part alloc unit size=%d\n",
1501                                           le32_to_cpu(mdm->allocUnitSize));
1502                                 udf_debug("Metadata file loc=%d\n",
1503                                           le32_to_cpu(mdm->metadataFileLoc));
1504                                 udf_debug("Mirror file loc=%d\n",
1505                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1506                                 udf_debug("Bitmap file loc=%d\n",
1507                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1508                                 udf_debug("Flags: %d %d\n",
1509                                           mdata->s_flags, mdm->flags);
1510                         } else {
1511                                 udf_debug("Unknown ident: %s\n",
1512                                           upm2->partIdent.ident);
1513                                 continue;
1514                         }
1515                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1516                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1517                 }
1518                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1519                           i, map->s_partition_num, type, map->s_volumeseqnum);
1520         }
1521
1522         if (fileset) {
1523                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1524
1525                 *fileset = lelb_to_cpu(la->extLocation);
1526                 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1527                           fileset->logicalBlockNum,
1528                           fileset->partitionReferenceNum);
1529         }
1530         if (lvd->integritySeqExt.extLength)
1531                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1532         ret = 0;
1533 out_bh:
1534         brelse(bh);
1535         return ret;
1536 }
1537
1538 /*
1539  * udf_load_logicalvolint
1540  *
1541  */
1542 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1543 {
1544         struct buffer_head *bh = NULL;
1545         uint16_t ident;
1546         struct udf_sb_info *sbi = UDF_SB(sb);
1547         struct logicalVolIntegrityDesc *lvid;
1548
1549         while (loc.extLength > 0 &&
1550                (bh = udf_read_tagged(sb, loc.extLocation,
1551                                      loc.extLocation, &ident)) &&
1552                ident == TAG_IDENT_LVID) {
1553                 sbi->s_lvid_bh = bh;
1554                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1555
1556                 if (lvid->nextIntegrityExt.extLength)
1557                         udf_load_logicalvolint(sb,
1558                                 leea_to_cpu(lvid->nextIntegrityExt));
1559
1560                 if (sbi->s_lvid_bh != bh)
1561                         brelse(bh);
1562                 loc.extLength -= sb->s_blocksize;
1563                 loc.extLocation++;
1564         }
1565         if (sbi->s_lvid_bh != bh)
1566                 brelse(bh);
1567 }
1568
1569 /*
1570  * Process a main/reserve volume descriptor sequence.
1571  *   @block             First block of first extent of the sequence.
1572  *   @lastblock         Lastblock of first extent of the sequence.
1573  *   @fileset           There we store extent containing root fileset
1574  *
1575  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1576  * sequence
1577  */
1578 static noinline int udf_process_sequence(
1579                 struct super_block *sb,
1580                 sector_t block, sector_t lastblock,
1581                 struct kernel_lb_addr *fileset)
1582 {
1583         struct buffer_head *bh = NULL;
1584         struct udf_vds_record vds[VDS_POS_LENGTH];
1585         struct udf_vds_record *curr;
1586         struct generic_desc *gd;
1587         struct volDescPtr *vdp;
1588         int done = 0;
1589         uint32_t vdsn;
1590         uint16_t ident;
1591         long next_s = 0, next_e = 0;
1592         int ret;
1593
1594         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1595
1596         /*
1597          * Read the main descriptor sequence and find which descriptors
1598          * are in it.
1599          */
1600         for (; (!done && block <= lastblock); block++) {
1601
1602                 bh = udf_read_tagged(sb, block, block, &ident);
1603                 if (!bh) {
1604                         udf_err(sb,
1605                                 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1606                                 (unsigned long long)block);
1607                         return -EAGAIN;
1608                 }
1609
1610                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1611                 gd = (struct generic_desc *)bh->b_data;
1612                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1613                 switch (ident) {
1614                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1615                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1616                         if (vdsn >= curr->volDescSeqNum) {
1617                                 curr->volDescSeqNum = vdsn;
1618                                 curr->block = block;
1619                         }
1620                         break;
1621                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1622                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1623                         if (vdsn >= curr->volDescSeqNum) {
1624                                 curr->volDescSeqNum = vdsn;
1625                                 curr->block = block;
1626
1627                                 vdp = (struct volDescPtr *)bh->b_data;
1628                                 next_s = le32_to_cpu(
1629                                         vdp->nextVolDescSeqExt.extLocation);
1630                                 next_e = le32_to_cpu(
1631                                         vdp->nextVolDescSeqExt.extLength);
1632                                 next_e = next_e >> sb->s_blocksize_bits;
1633                                 next_e += next_s;
1634                         }
1635                         break;
1636                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1637                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1638                         if (vdsn >= curr->volDescSeqNum) {
1639                                 curr->volDescSeqNum = vdsn;
1640                                 curr->block = block;
1641                         }
1642                         break;
1643                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1644                         curr = &vds[VDS_POS_PARTITION_DESC];
1645                         if (!curr->block)
1646                                 curr->block = block;
1647                         break;
1648                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1649                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1650                         if (vdsn >= curr->volDescSeqNum) {
1651                                 curr->volDescSeqNum = vdsn;
1652                                 curr->block = block;
1653                         }
1654                         break;
1655                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1656                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1657                         if (vdsn >= curr->volDescSeqNum) {
1658                                 curr->volDescSeqNum = vdsn;
1659                                 curr->block = block;
1660                         }
1661                         break;
1662                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1663                         vds[VDS_POS_TERMINATING_DESC].block = block;
1664                         if (next_e) {
1665                                 block = next_s;
1666                                 lastblock = next_e;
1667                                 next_s = next_e = 0;
1668                         } else
1669                                 done = 1;
1670                         break;
1671                 }
1672                 brelse(bh);
1673         }
1674         /*
1675          * Now read interesting descriptors again and process them
1676          * in a suitable order
1677          */
1678         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1679                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1680                 return -EAGAIN;
1681         }
1682         ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1683         if (ret < 0)
1684                 return ret;
1685
1686         if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1687                 ret = udf_load_logicalvol(sb,
1688                                           vds[VDS_POS_LOGICAL_VOL_DESC].block,
1689                                           fileset);
1690                 if (ret < 0)
1691                         return ret;
1692         }
1693
1694         if (vds[VDS_POS_PARTITION_DESC].block) {
1695                 /*
1696                  * We rescan the whole descriptor sequence to find
1697                  * partition descriptor blocks and process them.
1698                  */
1699                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1700                      block < vds[VDS_POS_TERMINATING_DESC].block;
1701                      block++) {
1702                         ret = udf_load_partdesc(sb, block);
1703                         if (ret < 0)
1704                                 return ret;
1705                 }
1706         }
1707
1708         return 0;
1709 }
1710
1711 /*
1712  * Load Volume Descriptor Sequence described by anchor in bh
1713  *
1714  * Returns <0 on error, 0 on success
1715  */
1716 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1717                              struct kernel_lb_addr *fileset)
1718 {
1719         struct anchorVolDescPtr *anchor;
1720         sector_t main_s, main_e, reserve_s, reserve_e;
1721         int ret;
1722
1723         anchor = (struct anchorVolDescPtr *)bh->b_data;
1724
1725         /* Locate the main sequence */
1726         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1727         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1728         main_e = main_e >> sb->s_blocksize_bits;
1729         main_e += main_s;
1730
1731         /* Locate the reserve sequence */
1732         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1733         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1734         reserve_e = reserve_e >> sb->s_blocksize_bits;
1735         reserve_e += reserve_s;
1736
1737         /* Process the main & reserve sequences */
1738         /* responsible for finding the PartitionDesc(s) */
1739         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1740         if (ret != -EAGAIN)
1741                 return ret;
1742         udf_sb_free_partitions(sb);
1743         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1744         if (ret < 0) {
1745                 udf_sb_free_partitions(sb);
1746                 /* No sequence was OK, return -EIO */
1747                 if (ret == -EAGAIN)
1748                         ret = -EIO;
1749         }
1750         return ret;
1751 }
1752
1753 /*
1754  * Check whether there is an anchor block in the given block and
1755  * load Volume Descriptor Sequence if so.
1756  *
1757  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1758  * block
1759  */
1760 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1761                                   struct kernel_lb_addr *fileset)
1762 {
1763         struct buffer_head *bh;
1764         uint16_t ident;
1765         int ret;
1766
1767         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1768             udf_fixed_to_variable(block) >=
1769             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1770                 return -EAGAIN;
1771
1772         bh = udf_read_tagged(sb, block, block, &ident);
1773         if (!bh)
1774                 return -EAGAIN;
1775         if (ident != TAG_IDENT_AVDP) {
1776                 brelse(bh);
1777                 return -EAGAIN;
1778         }
1779         ret = udf_load_sequence(sb, bh, fileset);
1780         brelse(bh);
1781         return ret;
1782 }
1783
1784 /*
1785  * Search for an anchor volume descriptor pointer.
1786  *
1787  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1788  * of anchors.
1789  */
1790 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1791                             struct kernel_lb_addr *fileset)
1792 {
1793         sector_t last[6];
1794         int i;
1795         struct udf_sb_info *sbi = UDF_SB(sb);
1796         int last_count = 0;
1797         int ret;
1798
1799         /* First try user provided anchor */
1800         if (sbi->s_anchor) {
1801                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1802                 if (ret != -EAGAIN)
1803                         return ret;
1804         }
1805         /*
1806          * according to spec, anchor is in either:
1807          *     block 256
1808          *     lastblock-256
1809          *     lastblock
1810          *  however, if the disc isn't closed, it could be 512.
1811          */
1812         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1813         if (ret != -EAGAIN)
1814                 return ret;
1815         /*
1816          * The trouble is which block is the last one. Drives often misreport
1817          * this so we try various possibilities.
1818          */
1819         last[last_count++] = *lastblock;
1820         if (*lastblock >= 1)
1821                 last[last_count++] = *lastblock - 1;
1822         last[last_count++] = *lastblock + 1;
1823         if (*lastblock >= 2)
1824                 last[last_count++] = *lastblock - 2;
1825         if (*lastblock >= 150)
1826                 last[last_count++] = *lastblock - 150;
1827         if (*lastblock >= 152)
1828                 last[last_count++] = *lastblock - 152;
1829
1830         for (i = 0; i < last_count; i++) {
1831                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1832                                 sb->s_blocksize_bits)
1833                         continue;
1834                 ret = udf_check_anchor_block(sb, last[i], fileset);
1835                 if (ret != -EAGAIN) {
1836                         if (!ret)
1837                                 *lastblock = last[i];
1838                         return ret;
1839                 }
1840                 if (last[i] < 256)
1841                         continue;
1842                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1843                 if (ret != -EAGAIN) {
1844                         if (!ret)
1845                                 *lastblock = last[i];
1846                         return ret;
1847                 }
1848         }
1849
1850         /* Finally try block 512 in case media is open */
1851         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1852 }
1853
1854 /*
1855  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1856  * area specified by it. The function expects sbi->s_lastblock to be the last
1857  * block on the media.
1858  *
1859  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1860  * was not found.
1861  */
1862 static int udf_find_anchor(struct super_block *sb,
1863                            struct kernel_lb_addr *fileset)
1864 {
1865         struct udf_sb_info *sbi = UDF_SB(sb);
1866         sector_t lastblock = sbi->s_last_block;
1867         int ret;
1868
1869         ret = udf_scan_anchors(sb, &lastblock, fileset);
1870         if (ret != -EAGAIN)
1871                 goto out;
1872
1873         /* No anchor found? Try VARCONV conversion of block numbers */
1874         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1875         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1876         /* Firstly, we try to not convert number of the last block */
1877         ret = udf_scan_anchors(sb, &lastblock, fileset);
1878         if (ret != -EAGAIN)
1879                 goto out;
1880
1881         lastblock = sbi->s_last_block;
1882         /* Secondly, we try with converted number of the last block */
1883         ret = udf_scan_anchors(sb, &lastblock, fileset);
1884         if (ret < 0) {
1885                 /* VARCONV didn't help. Clear it. */
1886                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1887         }
1888 out:
1889         if (ret == 0)
1890                 sbi->s_last_block = lastblock;
1891         return ret;
1892 }
1893
1894 /*
1895  * Check Volume Structure Descriptor, find Anchor block and load Volume
1896  * Descriptor Sequence.
1897  *
1898  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1899  * block was not found.
1900  */
1901 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1902                         int silent, struct kernel_lb_addr *fileset)
1903 {
1904         struct udf_sb_info *sbi = UDF_SB(sb);
1905         loff_t nsr_off;
1906         int ret;
1907
1908         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1909                 if (!silent)
1910                         udf_warn(sb, "Bad block size\n");
1911                 return -EINVAL;
1912         }
1913         sbi->s_last_block = uopt->lastblock;
1914         if (!uopt->novrs) {
1915                 /* Check that it is NSR02 compliant */
1916                 nsr_off = udf_check_vsd(sb);
1917                 if (!nsr_off) {
1918                         if (!silent)
1919                                 udf_warn(sb, "No VRS found\n");
1920                         return 0;
1921                 }
1922                 if (nsr_off == -1)
1923                         udf_debug("Failed to read sector at offset %d. "
1924                                   "Assuming open disc. Skipping validity "
1925                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1926                 if (!sbi->s_last_block)
1927                         sbi->s_last_block = udf_get_last_block(sb);
1928         } else {
1929                 udf_debug("Validity check skipped because of novrs option\n");
1930         }
1931
1932         /* Look for anchor block and load Volume Descriptor Sequence */
1933         sbi->s_anchor = uopt->anchor;
1934         ret = udf_find_anchor(sb, fileset);
1935         if (ret < 0) {
1936                 if (!silent && ret == -EAGAIN)
1937                         udf_warn(sb, "No anchor found\n");
1938                 return ret;
1939         }
1940         return 0;
1941 }
1942
1943 static void udf_open_lvid(struct super_block *sb)
1944 {
1945         struct udf_sb_info *sbi = UDF_SB(sb);
1946         struct buffer_head *bh = sbi->s_lvid_bh;
1947         struct logicalVolIntegrityDesc *lvid;
1948         struct logicalVolIntegrityDescImpUse *lvidiu;
1949
1950         if (!bh)
1951                 return;
1952         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1953         lvidiu = udf_sb_lvidiu(sb);
1954         if (!lvidiu)
1955                 return;
1956
1957         mutex_lock(&sbi->s_alloc_mutex);
1958         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1959         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1960         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1961                                 CURRENT_TIME);
1962         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1963
1964         lvid->descTag.descCRC = cpu_to_le16(
1965                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1966                         le16_to_cpu(lvid->descTag.descCRCLength)));
1967
1968         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1969         mark_buffer_dirty(bh);
1970         sbi->s_lvid_dirty = 0;
1971         mutex_unlock(&sbi->s_alloc_mutex);
1972         /* Make opening of filesystem visible on the media immediately */
1973         sync_dirty_buffer(bh);
1974 }
1975
1976 static void udf_close_lvid(struct super_block *sb)
1977 {
1978         struct udf_sb_info *sbi = UDF_SB(sb);
1979         struct buffer_head *bh = sbi->s_lvid_bh;
1980         struct logicalVolIntegrityDesc *lvid;
1981         struct logicalVolIntegrityDescImpUse *lvidiu;
1982
1983         if (!bh)
1984                 return;
1985         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1986         lvidiu = udf_sb_lvidiu(sb);
1987         if (!lvidiu)
1988                 return;
1989
1990         mutex_lock(&sbi->s_alloc_mutex);
1991         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1992         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1993         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1994         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1995                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1996         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1997                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1998         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1999                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2000         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2001
2002         lvid->descTag.descCRC = cpu_to_le16(
2003                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2004                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2005
2006         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2007         /*
2008          * We set buffer uptodate unconditionally here to avoid spurious
2009          * warnings from mark_buffer_dirty() when previous EIO has marked
2010          * the buffer as !uptodate
2011          */
2012         set_buffer_uptodate(bh);
2013         mark_buffer_dirty(bh);
2014         sbi->s_lvid_dirty = 0;
2015         mutex_unlock(&sbi->s_alloc_mutex);
2016         /* Make closing of filesystem visible on the media immediately */
2017         sync_dirty_buffer(bh);
2018 }
2019
2020 u64 lvid_get_unique_id(struct super_block *sb)
2021 {
2022         struct buffer_head *bh;
2023         struct udf_sb_info *sbi = UDF_SB(sb);
2024         struct logicalVolIntegrityDesc *lvid;
2025         struct logicalVolHeaderDesc *lvhd;
2026         u64 uniqueID;
2027         u64 ret;
2028
2029         bh = sbi->s_lvid_bh;
2030         if (!bh)
2031                 return 0;
2032
2033         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2034         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2035
2036         mutex_lock(&sbi->s_alloc_mutex);
2037         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2038         if (!(++uniqueID & 0xFFFFFFFF))
2039                 uniqueID += 16;
2040         lvhd->uniqueID = cpu_to_le64(uniqueID);
2041         mutex_unlock(&sbi->s_alloc_mutex);
2042         mark_buffer_dirty(bh);
2043
2044         return ret;
2045 }
2046
2047 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2048 {
2049         int ret = -EINVAL;
2050         struct inode *inode = NULL;
2051         struct udf_options uopt;
2052         struct kernel_lb_addr rootdir, fileset;
2053         struct udf_sb_info *sbi;
2054
2055         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2056         uopt.uid = INVALID_UID;
2057         uopt.gid = INVALID_GID;
2058         uopt.umask = 0;
2059         uopt.fmode = UDF_INVALID_MODE;
2060         uopt.dmode = UDF_INVALID_MODE;
2061
2062         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2063         if (!sbi)
2064                 return -ENOMEM;
2065
2066         sb->s_fs_info = sbi;
2067
2068         mutex_init(&sbi->s_alloc_mutex);
2069
2070         if (!udf_parse_options((char *)options, &uopt, false))
2071                 goto error_out;
2072
2073         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2074             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2075                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2076                 goto error_out;
2077         }
2078 #ifdef CONFIG_UDF_NLS
2079         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2080                 uopt.nls_map = load_nls_default();
2081                 if (!uopt.nls_map)
2082                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2083                 else
2084                         udf_debug("Using default NLS map\n");
2085         }
2086 #endif
2087         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2088                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2089
2090         fileset.logicalBlockNum = 0xFFFFFFFF;
2091         fileset.partitionReferenceNum = 0xFFFF;
2092
2093         sbi->s_flags = uopt.flags;
2094         sbi->s_uid = uopt.uid;
2095         sbi->s_gid = uopt.gid;
2096         sbi->s_umask = uopt.umask;
2097         sbi->s_fmode = uopt.fmode;
2098         sbi->s_dmode = uopt.dmode;
2099         sbi->s_nls_map = uopt.nls_map;
2100         rwlock_init(&sbi->s_cred_lock);
2101
2102         if (uopt.session == 0xFFFFFFFF)
2103                 sbi->s_session = udf_get_last_session(sb);
2104         else
2105                 sbi->s_session = uopt.session;
2106
2107         udf_debug("Multi-session=%d\n", sbi->s_session);
2108
2109         /* Fill in the rest of the superblock */
2110         sb->s_op = &udf_sb_ops;
2111         sb->s_export_op = &udf_export_ops;
2112
2113         sb->s_magic = UDF_SUPER_MAGIC;
2114         sb->s_time_gran = 1000;
2115
2116         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2117                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2118         } else {
2119                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2120                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2121                 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2122                         if (!silent)
2123                                 pr_notice("Rescanning with blocksize %d\n",
2124                                           UDF_DEFAULT_BLOCKSIZE);
2125                         brelse(sbi->s_lvid_bh);
2126                         sbi->s_lvid_bh = NULL;
2127                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2128                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2129                 }
2130         }
2131         if (ret < 0) {
2132                 if (ret == -EAGAIN) {
2133                         udf_warn(sb, "No partition found (1)\n");
2134                         ret = -EINVAL;
2135                 }
2136                 goto error_out;
2137         }
2138
2139         udf_debug("Lastblock=%d\n", sbi->s_last_block);
2140
2141         if (sbi->s_lvid_bh) {
2142                 struct logicalVolIntegrityDescImpUse *lvidiu =
2143                                                         udf_sb_lvidiu(sb);
2144                 uint16_t minUDFReadRev;
2145                 uint16_t minUDFWriteRev;
2146
2147                 if (!lvidiu) {
2148                         ret = -EINVAL;
2149                         goto error_out;
2150                 }
2151                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2152                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2153                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2154                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2155                                 minUDFReadRev,
2156                                 UDF_MAX_READ_VERSION);
2157                         ret = -EINVAL;
2158                         goto error_out;
2159                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2160                            !(sb->s_flags & MS_RDONLY)) {
2161                         ret = -EACCES;
2162                         goto error_out;
2163                 }
2164
2165                 sbi->s_udfrev = minUDFWriteRev;
2166
2167                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2168                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2169                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2170                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2171         }
2172
2173         if (!sbi->s_partitions) {
2174                 udf_warn(sb, "No partition found (2)\n");
2175                 ret = -EINVAL;
2176                 goto error_out;
2177         }
2178
2179         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2180                         UDF_PART_FLAG_READ_ONLY &&
2181             !(sb->s_flags & MS_RDONLY)) {
2182                 ret = -EACCES;
2183                 goto error_out;
2184         }
2185
2186         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2187                 udf_warn(sb, "No fileset found\n");
2188                 ret = -EINVAL;
2189                 goto error_out;
2190         }
2191
2192         if (!silent) {
2193                 struct timestamp ts;
2194                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2195                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2196                          sbi->s_volume_ident,
2197                          le16_to_cpu(ts.year), ts.month, ts.day,
2198                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2199         }
2200         if (!(sb->s_flags & MS_RDONLY))
2201                 udf_open_lvid(sb);
2202
2203         /* Assign the root inode */
2204         /* assign inodes by physical block number */
2205         /* perhaps it's not extensible enough, but for now ... */
2206         inode = udf_iget(sb, &rootdir);
2207         if (!inode) {
2208                 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2209                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2210                 ret = -EIO;
2211                 goto error_out;
2212         }
2213
2214         /* Allocate a dentry for the root inode */
2215         sb->s_root = d_make_root(inode);
2216         if (!sb->s_root) {
2217                 udf_err(sb, "Couldn't allocate root dentry\n");
2218                 ret = -ENOMEM;
2219                 goto error_out;
2220         }
2221         sb->s_maxbytes = MAX_LFS_FILESIZE;
2222         sb->s_max_links = UDF_MAX_LINKS;
2223         return 0;
2224
2225 error_out:
2226         if (sbi->s_vat_inode)
2227                 iput(sbi->s_vat_inode);
2228 #ifdef CONFIG_UDF_NLS
2229         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2230                 unload_nls(sbi->s_nls_map);
2231 #endif
2232         if (!(sb->s_flags & MS_RDONLY))
2233                 udf_close_lvid(sb);
2234         brelse(sbi->s_lvid_bh);
2235         udf_sb_free_partitions(sb);
2236         kfree(sbi);
2237         sb->s_fs_info = NULL;
2238
2239         return ret;
2240 }
2241
2242 void _udf_err(struct super_block *sb, const char *function,
2243               const char *fmt, ...)
2244 {
2245         struct va_format vaf;
2246         va_list args;
2247
2248         va_start(args, fmt);
2249
2250         vaf.fmt = fmt;
2251         vaf.va = &args;
2252
2253         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2254
2255         va_end(args);
2256 }
2257
2258 void _udf_warn(struct super_block *sb, const char *function,
2259                const char *fmt, ...)
2260 {
2261         struct va_format vaf;
2262         va_list args;
2263
2264         va_start(args, fmt);
2265
2266         vaf.fmt = fmt;
2267         vaf.va = &args;
2268
2269         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2270
2271         va_end(args);
2272 }
2273
2274 static void udf_put_super(struct super_block *sb)
2275 {
2276         struct udf_sb_info *sbi;
2277
2278         sbi = UDF_SB(sb);
2279
2280         if (sbi->s_vat_inode)
2281                 iput(sbi->s_vat_inode);
2282 #ifdef CONFIG_UDF_NLS
2283         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2284                 unload_nls(sbi->s_nls_map);
2285 #endif
2286         if (!(sb->s_flags & MS_RDONLY))
2287                 udf_close_lvid(sb);
2288         brelse(sbi->s_lvid_bh);
2289         udf_sb_free_partitions(sb);
2290         kfree(sb->s_fs_info);
2291         sb->s_fs_info = NULL;
2292 }
2293
2294 static int udf_sync_fs(struct super_block *sb, int wait)
2295 {
2296         struct udf_sb_info *sbi = UDF_SB(sb);
2297
2298         mutex_lock(&sbi->s_alloc_mutex);
2299         if (sbi->s_lvid_dirty) {
2300                 /*
2301                  * Blockdevice will be synced later so we don't have to submit
2302                  * the buffer for IO
2303                  */
2304                 mark_buffer_dirty(sbi->s_lvid_bh);
2305                 sbi->s_lvid_dirty = 0;
2306         }
2307         mutex_unlock(&sbi->s_alloc_mutex);
2308
2309         return 0;
2310 }
2311
2312 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2313 {
2314         struct super_block *sb = dentry->d_sb;
2315         struct udf_sb_info *sbi = UDF_SB(sb);
2316         struct logicalVolIntegrityDescImpUse *lvidiu;
2317         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2318
2319         lvidiu = udf_sb_lvidiu(sb);
2320         buf->f_type = UDF_SUPER_MAGIC;
2321         buf->f_bsize = sb->s_blocksize;
2322         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2323         buf->f_bfree = udf_count_free(sb);
2324         buf->f_bavail = buf->f_bfree;
2325         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2326                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2327                         + buf->f_bfree;
2328         buf->f_ffree = buf->f_bfree;
2329         buf->f_namelen = UDF_NAME_LEN - 2;
2330         buf->f_fsid.val[0] = (u32)id;
2331         buf->f_fsid.val[1] = (u32)(id >> 32);
2332
2333         return 0;
2334 }
2335
2336 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2337                                           struct udf_bitmap *bitmap)
2338 {
2339         struct buffer_head *bh = NULL;
2340         unsigned int accum = 0;
2341         int index;
2342         int block = 0, newblock;
2343         struct kernel_lb_addr loc;
2344         uint32_t bytes;
2345         uint8_t *ptr;
2346         uint16_t ident;
2347         struct spaceBitmapDesc *bm;
2348
2349         loc.logicalBlockNum = bitmap->s_extPosition;
2350         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2351         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2352
2353         if (!bh) {
2354                 udf_err(sb, "udf_count_free failed\n");
2355                 goto out;
2356         } else if (ident != TAG_IDENT_SBD) {
2357                 brelse(bh);
2358                 udf_err(sb, "udf_count_free failed\n");
2359                 goto out;
2360         }
2361
2362         bm = (struct spaceBitmapDesc *)bh->b_data;
2363         bytes = le32_to_cpu(bm->numOfBytes);
2364         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2365         ptr = (uint8_t *)bh->b_data;
2366
2367         while (bytes > 0) {
2368                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2369                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2370                                         cur_bytes * 8);
2371                 bytes -= cur_bytes;
2372                 if (bytes) {
2373                         brelse(bh);
2374                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2375                         bh = udf_tread(sb, newblock);
2376                         if (!bh) {
2377                                 udf_debug("read failed\n");
2378                                 goto out;
2379                         }
2380                         index = 0;
2381                         ptr = (uint8_t *)bh->b_data;
2382                 }
2383         }
2384         brelse(bh);
2385 out:
2386         return accum;
2387 }
2388
2389 static unsigned int udf_count_free_table(struct super_block *sb,
2390                                          struct inode *table)
2391 {
2392         unsigned int accum = 0;
2393         uint32_t elen;
2394         struct kernel_lb_addr eloc;
2395         int8_t etype;
2396         struct extent_position epos;
2397
2398         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2399         epos.block = UDF_I(table)->i_location;
2400         epos.offset = sizeof(struct unallocSpaceEntry);
2401         epos.bh = NULL;
2402
2403         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2404                 accum += (elen >> table->i_sb->s_blocksize_bits);
2405
2406         brelse(epos.bh);
2407         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2408
2409         return accum;
2410 }
2411
2412 static unsigned int udf_count_free(struct super_block *sb)
2413 {
2414         unsigned int accum = 0;
2415         struct udf_sb_info *sbi;
2416         struct udf_part_map *map;
2417
2418         sbi = UDF_SB(sb);
2419         if (sbi->s_lvid_bh) {
2420                 struct logicalVolIntegrityDesc *lvid =
2421                         (struct logicalVolIntegrityDesc *)
2422                         sbi->s_lvid_bh->b_data;
2423                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2424                         accum = le32_to_cpu(
2425                                         lvid->freeSpaceTable[sbi->s_partition]);
2426                         if (accum == 0xFFFFFFFF)
2427                                 accum = 0;
2428                 }
2429         }
2430
2431         if (accum)
2432                 return accum;
2433
2434         map = &sbi->s_partmaps[sbi->s_partition];
2435         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2436                 accum += udf_count_free_bitmap(sb,
2437                                                map->s_uspace.s_bitmap);
2438         }
2439         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2440                 accum += udf_count_free_bitmap(sb,
2441                                                map->s_fspace.s_bitmap);
2442         }
2443         if (accum)
2444                 return accum;
2445
2446         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2447                 accum += udf_count_free_table(sb,
2448                                               map->s_uspace.s_table);
2449         }
2450         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2451                 accum += udf_count_free_table(sb,
2452                                               map->s_fspace.s_table);
2453         }
2454
2455         return accum;
2456 }