]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/userfaultfd.c
userfaultfd: non-cooperative: userfaultfd_remove revalidate vma in MADV_DONTNEED
[karo-tx-linux.git] / fs / userfaultfd.c
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36         UFFD_STATE_WAIT_API,
37         UFFD_STATE_RUNNING,
38 };
39
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  */
44 struct userfaultfd_ctx {
45         /* waitqueue head for the pending (i.e. not read) userfaults */
46         wait_queue_head_t fault_pending_wqh;
47         /* waitqueue head for the userfaults */
48         wait_queue_head_t fault_wqh;
49         /* waitqueue head for the pseudo fd to wakeup poll/read */
50         wait_queue_head_t fd_wqh;
51         /* waitqueue head for events */
52         wait_queue_head_t event_wqh;
53         /* a refile sequence protected by fault_pending_wqh lock */
54         struct seqcount refile_seq;
55         /* pseudo fd refcounting */
56         atomic_t refcount;
57         /* userfaultfd syscall flags */
58         unsigned int flags;
59         /* features requested from the userspace */
60         unsigned int features;
61         /* state machine */
62         enum userfaultfd_state state;
63         /* released */
64         bool released;
65         /* mm with one ore more vmas attached to this userfaultfd_ctx */
66         struct mm_struct *mm;
67 };
68
69 struct userfaultfd_fork_ctx {
70         struct userfaultfd_ctx *orig;
71         struct userfaultfd_ctx *new;
72         struct list_head list;
73 };
74
75 struct userfaultfd_unmap_ctx {
76         struct userfaultfd_ctx *ctx;
77         unsigned long start;
78         unsigned long end;
79         struct list_head list;
80 };
81
82 struct userfaultfd_wait_queue {
83         struct uffd_msg msg;
84         wait_queue_t wq;
85         struct userfaultfd_ctx *ctx;
86         bool waken;
87 };
88
89 struct userfaultfd_wake_range {
90         unsigned long start;
91         unsigned long len;
92 };
93
94 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
95                                      int wake_flags, void *key)
96 {
97         struct userfaultfd_wake_range *range = key;
98         int ret;
99         struct userfaultfd_wait_queue *uwq;
100         unsigned long start, len;
101
102         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103         ret = 0;
104         /* len == 0 means wake all */
105         start = range->start;
106         len = range->len;
107         if (len && (start > uwq->msg.arg.pagefault.address ||
108                     start + len <= uwq->msg.arg.pagefault.address))
109                 goto out;
110         WRITE_ONCE(uwq->waken, true);
111         /*
112          * The implicit smp_mb__before_spinlock in try_to_wake_up()
113          * renders uwq->waken visible to other CPUs before the task is
114          * waken.
115          */
116         ret = wake_up_state(wq->private, mode);
117         if (ret)
118                 /*
119                  * Wake only once, autoremove behavior.
120                  *
121                  * After the effect of list_del_init is visible to the
122                  * other CPUs, the waitqueue may disappear from under
123                  * us, see the !list_empty_careful() in
124                  * handle_userfault(). try_to_wake_up() has an
125                  * implicit smp_mb__before_spinlock, and the
126                  * wq->private is read before calling the extern
127                  * function "wake_up_state" (which in turns calls
128                  * try_to_wake_up). While the spin_lock;spin_unlock;
129                  * wouldn't be enough, the smp_mb__before_spinlock is
130                  * enough to avoid an explicit smp_mb() here.
131                  */
132                 list_del_init(&wq->task_list);
133 out:
134         return ret;
135 }
136
137 /**
138  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
139  * context.
140  * @ctx: [in] Pointer to the userfaultfd context.
141  *
142  * Returns: In case of success, returns not zero.
143  */
144 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
145 {
146         if (!atomic_inc_not_zero(&ctx->refcount))
147                 BUG();
148 }
149
150 /**
151  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
152  * context.
153  * @ctx: [in] Pointer to userfaultfd context.
154  *
155  * The userfaultfd context reference must have been previously acquired either
156  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
157  */
158 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
159 {
160         if (atomic_dec_and_test(&ctx->refcount)) {
161                 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
162                 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
163                 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
164                 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
165                 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
166                 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
167                 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
168                 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
169                 mmdrop(ctx->mm);
170                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
171         }
172 }
173
174 static inline void msg_init(struct uffd_msg *msg)
175 {
176         BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
177         /*
178          * Must use memset to zero out the paddings or kernel data is
179          * leaked to userland.
180          */
181         memset(msg, 0, sizeof(struct uffd_msg));
182 }
183
184 static inline struct uffd_msg userfault_msg(unsigned long address,
185                                             unsigned int flags,
186                                             unsigned long reason)
187 {
188         struct uffd_msg msg;
189         msg_init(&msg);
190         msg.event = UFFD_EVENT_PAGEFAULT;
191         msg.arg.pagefault.address = address;
192         if (flags & FAULT_FLAG_WRITE)
193                 /*
194                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
195                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
196                  * was not set in a UFFD_EVENT_PAGEFAULT, it means it
197                  * was a read fault, otherwise if set it means it's
198                  * a write fault.
199                  */
200                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
201         if (reason & VM_UFFD_WP)
202                 /*
203                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
204                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
205                  * not set in a UFFD_EVENT_PAGEFAULT, it means it was
206                  * a missing fault, otherwise if set it means it's a
207                  * write protect fault.
208                  */
209                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
210         return msg;
211 }
212
213 #ifdef CONFIG_HUGETLB_PAGE
214 /*
215  * Same functionality as userfaultfd_must_wait below with modifications for
216  * hugepmd ranges.
217  */
218 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
219                                          unsigned long address,
220                                          unsigned long flags,
221                                          unsigned long reason)
222 {
223         struct mm_struct *mm = ctx->mm;
224         pte_t *pte;
225         bool ret = true;
226
227         VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
228
229         pte = huge_pte_offset(mm, address);
230         if (!pte)
231                 goto out;
232
233         ret = false;
234
235         /*
236          * Lockless access: we're in a wait_event so it's ok if it
237          * changes under us.
238          */
239         if (huge_pte_none(*pte))
240                 ret = true;
241         if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
242                 ret = true;
243 out:
244         return ret;
245 }
246 #else
247 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
248                                          unsigned long address,
249                                          unsigned long flags,
250                                          unsigned long reason)
251 {
252         return false;   /* should never get here */
253 }
254 #endif /* CONFIG_HUGETLB_PAGE */
255
256 /*
257  * Verify the pagetables are still not ok after having reigstered into
258  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
259  * userfault that has already been resolved, if userfaultfd_read and
260  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
261  * threads.
262  */
263 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
264                                          unsigned long address,
265                                          unsigned long flags,
266                                          unsigned long reason)
267 {
268         struct mm_struct *mm = ctx->mm;
269         pgd_t *pgd;
270         pud_t *pud;
271         pmd_t *pmd, _pmd;
272         pte_t *pte;
273         bool ret = true;
274
275         VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
276
277         pgd = pgd_offset(mm, address);
278         if (!pgd_present(*pgd))
279                 goto out;
280         pud = pud_offset(pgd, address);
281         if (!pud_present(*pud))
282                 goto out;
283         pmd = pmd_offset(pud, address);
284         /*
285          * READ_ONCE must function as a barrier with narrower scope
286          * and it must be equivalent to:
287          *      _pmd = *pmd; barrier();
288          *
289          * This is to deal with the instability (as in
290          * pmd_trans_unstable) of the pmd.
291          */
292         _pmd = READ_ONCE(*pmd);
293         if (!pmd_present(_pmd))
294                 goto out;
295
296         ret = false;
297         if (pmd_trans_huge(_pmd))
298                 goto out;
299
300         /*
301          * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
302          * and use the standard pte_offset_map() instead of parsing _pmd.
303          */
304         pte = pte_offset_map(pmd, address);
305         /*
306          * Lockless access: we're in a wait_event so it's ok if it
307          * changes under us.
308          */
309         if (pte_none(*pte))
310                 ret = true;
311         pte_unmap(pte);
312
313 out:
314         return ret;
315 }
316
317 /*
318  * The locking rules involved in returning VM_FAULT_RETRY depending on
319  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
320  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
321  * recommendation in __lock_page_or_retry is not an understatement.
322  *
323  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
324  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
325  * not set.
326  *
327  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
328  * set, VM_FAULT_RETRY can still be returned if and only if there are
329  * fatal_signal_pending()s, and the mmap_sem must be released before
330  * returning it.
331  */
332 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
333 {
334         struct mm_struct *mm = vmf->vma->vm_mm;
335         struct userfaultfd_ctx *ctx;
336         struct userfaultfd_wait_queue uwq;
337         int ret;
338         bool must_wait, return_to_userland;
339         long blocking_state;
340
341         BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
342
343         ret = VM_FAULT_SIGBUS;
344         ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
345         if (!ctx)
346                 goto out;
347
348         BUG_ON(ctx->mm != mm);
349
350         VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
351         VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
352
353         /*
354          * If it's already released don't get it. This avoids to loop
355          * in __get_user_pages if userfaultfd_release waits on the
356          * caller of handle_userfault to release the mmap_sem.
357          */
358         if (unlikely(ACCESS_ONCE(ctx->released)))
359                 goto out;
360
361         /*
362          * We don't do userfault handling for the final child pid update.
363          */
364         if (current->flags & PF_EXITING)
365                 goto out;
366
367         /*
368          * Check that we can return VM_FAULT_RETRY.
369          *
370          * NOTE: it should become possible to return VM_FAULT_RETRY
371          * even if FAULT_FLAG_TRIED is set without leading to gup()
372          * -EBUSY failures, if the userfaultfd is to be extended for
373          * VM_UFFD_WP tracking and we intend to arm the userfault
374          * without first stopping userland access to the memory. For
375          * VM_UFFD_MISSING userfaults this is enough for now.
376          */
377         if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
378                 /*
379                  * Validate the invariant that nowait must allow retry
380                  * to be sure not to return SIGBUS erroneously on
381                  * nowait invocations.
382                  */
383                 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
384 #ifdef CONFIG_DEBUG_VM
385                 if (printk_ratelimit()) {
386                         printk(KERN_WARNING
387                                "FAULT_FLAG_ALLOW_RETRY missing %x\n",
388                                vmf->flags);
389                         dump_stack();
390                 }
391 #endif
392                 goto out;
393         }
394
395         /*
396          * Handle nowait, not much to do other than tell it to retry
397          * and wait.
398          */
399         ret = VM_FAULT_RETRY;
400         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
401                 goto out;
402
403         /* take the reference before dropping the mmap_sem */
404         userfaultfd_ctx_get(ctx);
405
406         init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
407         uwq.wq.private = current;
408         uwq.msg = userfault_msg(vmf->address, vmf->flags, reason);
409         uwq.ctx = ctx;
410         uwq.waken = false;
411
412         return_to_userland =
413                 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
414                 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
415         blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
416                          TASK_KILLABLE;
417
418         spin_lock(&ctx->fault_pending_wqh.lock);
419         /*
420          * After the __add_wait_queue the uwq is visible to userland
421          * through poll/read().
422          */
423         __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
424         /*
425          * The smp_mb() after __set_current_state prevents the reads
426          * following the spin_unlock to happen before the list_add in
427          * __add_wait_queue.
428          */
429         set_current_state(blocking_state);
430         spin_unlock(&ctx->fault_pending_wqh.lock);
431
432         if (!is_vm_hugetlb_page(vmf->vma))
433                 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
434                                                   reason);
435         else
436                 must_wait = userfaultfd_huge_must_wait(ctx, vmf->address,
437                                                        vmf->flags, reason);
438         up_read(&mm->mmap_sem);
439
440         if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
441                    (return_to_userland ? !signal_pending(current) :
442                     !fatal_signal_pending(current)))) {
443                 wake_up_poll(&ctx->fd_wqh, POLLIN);
444                 schedule();
445                 ret |= VM_FAULT_MAJOR;
446
447                 /*
448                  * False wakeups can orginate even from rwsem before
449                  * up_read() however userfaults will wait either for a
450                  * targeted wakeup on the specific uwq waitqueue from
451                  * wake_userfault() or for signals or for uffd
452                  * release.
453                  */
454                 while (!READ_ONCE(uwq.waken)) {
455                         /*
456                          * This needs the full smp_store_mb()
457                          * guarantee as the state write must be
458                          * visible to other CPUs before reading
459                          * uwq.waken from other CPUs.
460                          */
461                         set_current_state(blocking_state);
462                         if (READ_ONCE(uwq.waken) ||
463                             READ_ONCE(ctx->released) ||
464                             (return_to_userland ? signal_pending(current) :
465                              fatal_signal_pending(current)))
466                                 break;
467                         schedule();
468                 }
469         }
470
471         __set_current_state(TASK_RUNNING);
472
473         if (return_to_userland) {
474                 if (signal_pending(current) &&
475                     !fatal_signal_pending(current)) {
476                         /*
477                          * If we got a SIGSTOP or SIGCONT and this is
478                          * a normal userland page fault, just let
479                          * userland return so the signal will be
480                          * handled and gdb debugging works.  The page
481                          * fault code immediately after we return from
482                          * this function is going to release the
483                          * mmap_sem and it's not depending on it
484                          * (unlike gup would if we were not to return
485                          * VM_FAULT_RETRY).
486                          *
487                          * If a fatal signal is pending we still take
488                          * the streamlined VM_FAULT_RETRY failure path
489                          * and there's no need to retake the mmap_sem
490                          * in such case.
491                          */
492                         down_read(&mm->mmap_sem);
493                         ret = VM_FAULT_NOPAGE;
494                 }
495         }
496
497         /*
498          * Here we race with the list_del; list_add in
499          * userfaultfd_ctx_read(), however because we don't ever run
500          * list_del_init() to refile across the two lists, the prev
501          * and next pointers will never point to self. list_add also
502          * would never let any of the two pointers to point to
503          * self. So list_empty_careful won't risk to see both pointers
504          * pointing to self at any time during the list refile. The
505          * only case where list_del_init() is called is the full
506          * removal in the wake function and there we don't re-list_add
507          * and it's fine not to block on the spinlock. The uwq on this
508          * kernel stack can be released after the list_del_init.
509          */
510         if (!list_empty_careful(&uwq.wq.task_list)) {
511                 spin_lock(&ctx->fault_pending_wqh.lock);
512                 /*
513                  * No need of list_del_init(), the uwq on the stack
514                  * will be freed shortly anyway.
515                  */
516                 list_del(&uwq.wq.task_list);
517                 spin_unlock(&ctx->fault_pending_wqh.lock);
518         }
519
520         /*
521          * ctx may go away after this if the userfault pseudo fd is
522          * already released.
523          */
524         userfaultfd_ctx_put(ctx);
525
526 out:
527         return ret;
528 }
529
530 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
531                                               struct userfaultfd_wait_queue *ewq)
532 {
533         if (WARN_ON_ONCE(current->flags & PF_EXITING))
534                 goto out;
535
536         ewq->ctx = ctx;
537         init_waitqueue_entry(&ewq->wq, current);
538
539         spin_lock(&ctx->event_wqh.lock);
540         /*
541          * After the __add_wait_queue the uwq is visible to userland
542          * through poll/read().
543          */
544         __add_wait_queue(&ctx->event_wqh, &ewq->wq);
545         for (;;) {
546                 set_current_state(TASK_KILLABLE);
547                 if (ewq->msg.event == 0)
548                         break;
549                 if (ACCESS_ONCE(ctx->released) ||
550                     fatal_signal_pending(current)) {
551                         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
552                         if (ewq->msg.event == UFFD_EVENT_FORK) {
553                                 struct userfaultfd_ctx *new;
554
555                                 new = (struct userfaultfd_ctx *)
556                                         (unsigned long)
557                                         ewq->msg.arg.reserved.reserved1;
558
559                                 userfaultfd_ctx_put(new);
560                         }
561                         break;
562                 }
563
564                 spin_unlock(&ctx->event_wqh.lock);
565
566                 wake_up_poll(&ctx->fd_wqh, POLLIN);
567                 schedule();
568
569                 spin_lock(&ctx->event_wqh.lock);
570         }
571         __set_current_state(TASK_RUNNING);
572         spin_unlock(&ctx->event_wqh.lock);
573
574         /*
575          * ctx may go away after this if the userfault pseudo fd is
576          * already released.
577          */
578 out:
579         userfaultfd_ctx_put(ctx);
580 }
581
582 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
583                                        struct userfaultfd_wait_queue *ewq)
584 {
585         ewq->msg.event = 0;
586         wake_up_locked(&ctx->event_wqh);
587         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
588 }
589
590 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
591 {
592         struct userfaultfd_ctx *ctx = NULL, *octx;
593         struct userfaultfd_fork_ctx *fctx;
594
595         octx = vma->vm_userfaultfd_ctx.ctx;
596         if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
597                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
598                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
599                 return 0;
600         }
601
602         list_for_each_entry(fctx, fcs, list)
603                 if (fctx->orig == octx) {
604                         ctx = fctx->new;
605                         break;
606                 }
607
608         if (!ctx) {
609                 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
610                 if (!fctx)
611                         return -ENOMEM;
612
613                 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
614                 if (!ctx) {
615                         kfree(fctx);
616                         return -ENOMEM;
617                 }
618
619                 atomic_set(&ctx->refcount, 1);
620                 ctx->flags = octx->flags;
621                 ctx->state = UFFD_STATE_RUNNING;
622                 ctx->features = octx->features;
623                 ctx->released = false;
624                 ctx->mm = vma->vm_mm;
625                 atomic_inc(&ctx->mm->mm_count);
626
627                 userfaultfd_ctx_get(octx);
628                 fctx->orig = octx;
629                 fctx->new = ctx;
630                 list_add_tail(&fctx->list, fcs);
631         }
632
633         vma->vm_userfaultfd_ctx.ctx = ctx;
634         return 0;
635 }
636
637 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
638 {
639         struct userfaultfd_ctx *ctx = fctx->orig;
640         struct userfaultfd_wait_queue ewq;
641
642         msg_init(&ewq.msg);
643
644         ewq.msg.event = UFFD_EVENT_FORK;
645         ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
646
647         userfaultfd_event_wait_completion(ctx, &ewq);
648 }
649
650 void dup_userfaultfd_complete(struct list_head *fcs)
651 {
652         struct userfaultfd_fork_ctx *fctx, *n;
653
654         list_for_each_entry_safe(fctx, n, fcs, list) {
655                 dup_fctx(fctx);
656                 list_del(&fctx->list);
657                 kfree(fctx);
658         }
659 }
660
661 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
662                              struct vm_userfaultfd_ctx *vm_ctx)
663 {
664         struct userfaultfd_ctx *ctx;
665
666         ctx = vma->vm_userfaultfd_ctx.ctx;
667         if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
668                 vm_ctx->ctx = ctx;
669                 userfaultfd_ctx_get(ctx);
670         }
671 }
672
673 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
674                                  unsigned long from, unsigned long to,
675                                  unsigned long len)
676 {
677         struct userfaultfd_ctx *ctx = vm_ctx->ctx;
678         struct userfaultfd_wait_queue ewq;
679
680         if (!ctx)
681                 return;
682
683         if (to & ~PAGE_MASK) {
684                 userfaultfd_ctx_put(ctx);
685                 return;
686         }
687
688         msg_init(&ewq.msg);
689
690         ewq.msg.event = UFFD_EVENT_REMAP;
691         ewq.msg.arg.remap.from = from;
692         ewq.msg.arg.remap.to = to;
693         ewq.msg.arg.remap.len = len;
694
695         userfaultfd_event_wait_completion(ctx, &ewq);
696 }
697
698 bool userfaultfd_remove(struct vm_area_struct *vma,
699                         unsigned long start, unsigned long end)
700 {
701         struct mm_struct *mm = vma->vm_mm;
702         struct userfaultfd_ctx *ctx;
703         struct userfaultfd_wait_queue ewq;
704
705         ctx = vma->vm_userfaultfd_ctx.ctx;
706         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
707                 return true;
708
709         userfaultfd_ctx_get(ctx);
710         up_read(&mm->mmap_sem);
711
712         msg_init(&ewq.msg);
713
714         ewq.msg.event = UFFD_EVENT_REMOVE;
715         ewq.msg.arg.remove.start = start;
716         ewq.msg.arg.remove.end = end;
717
718         userfaultfd_event_wait_completion(ctx, &ewq);
719
720         return false;
721 }
722
723 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
724                           unsigned long start, unsigned long end)
725 {
726         struct userfaultfd_unmap_ctx *unmap_ctx;
727
728         list_for_each_entry(unmap_ctx, unmaps, list)
729                 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
730                     unmap_ctx->end == end)
731                         return true;
732
733         return false;
734 }
735
736 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
737                            unsigned long start, unsigned long end,
738                            struct list_head *unmaps)
739 {
740         for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
741                 struct userfaultfd_unmap_ctx *unmap_ctx;
742                 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
743
744                 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
745                     has_unmap_ctx(ctx, unmaps, start, end))
746                         continue;
747
748                 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
749                 if (!unmap_ctx)
750                         return -ENOMEM;
751
752                 userfaultfd_ctx_get(ctx);
753                 unmap_ctx->ctx = ctx;
754                 unmap_ctx->start = start;
755                 unmap_ctx->end = end;
756                 list_add_tail(&unmap_ctx->list, unmaps);
757         }
758
759         return 0;
760 }
761
762 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
763 {
764         struct userfaultfd_unmap_ctx *ctx, *n;
765         struct userfaultfd_wait_queue ewq;
766
767         list_for_each_entry_safe(ctx, n, uf, list) {
768                 msg_init(&ewq.msg);
769
770                 ewq.msg.event = UFFD_EVENT_UNMAP;
771                 ewq.msg.arg.remove.start = ctx->start;
772                 ewq.msg.arg.remove.end = ctx->end;
773
774                 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
775
776                 list_del(&ctx->list);
777                 kfree(ctx);
778         }
779 }
780
781 static int userfaultfd_release(struct inode *inode, struct file *file)
782 {
783         struct userfaultfd_ctx *ctx = file->private_data;
784         struct mm_struct *mm = ctx->mm;
785         struct vm_area_struct *vma, *prev;
786         /* len == 0 means wake all */
787         struct userfaultfd_wake_range range = { .len = 0, };
788         unsigned long new_flags;
789
790         ACCESS_ONCE(ctx->released) = true;
791
792         if (!mmget_not_zero(mm))
793                 goto wakeup;
794
795         /*
796          * Flush page faults out of all CPUs. NOTE: all page faults
797          * must be retried without returning VM_FAULT_SIGBUS if
798          * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
799          * changes while handle_userfault released the mmap_sem. So
800          * it's critical that released is set to true (above), before
801          * taking the mmap_sem for writing.
802          */
803         down_write(&mm->mmap_sem);
804         prev = NULL;
805         for (vma = mm->mmap; vma; vma = vma->vm_next) {
806                 cond_resched();
807                 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
808                        !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
809                 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
810                         prev = vma;
811                         continue;
812                 }
813                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
814                 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
815                                  new_flags, vma->anon_vma,
816                                  vma->vm_file, vma->vm_pgoff,
817                                  vma_policy(vma),
818                                  NULL_VM_UFFD_CTX);
819                 if (prev)
820                         vma = prev;
821                 else
822                         prev = vma;
823                 vma->vm_flags = new_flags;
824                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
825         }
826         up_write(&mm->mmap_sem);
827         mmput(mm);
828 wakeup:
829         /*
830          * After no new page faults can wait on this fault_*wqh, flush
831          * the last page faults that may have been already waiting on
832          * the fault_*wqh.
833          */
834         spin_lock(&ctx->fault_pending_wqh.lock);
835         __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
836         __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
837         spin_unlock(&ctx->fault_pending_wqh.lock);
838
839         wake_up_poll(&ctx->fd_wqh, POLLHUP);
840         userfaultfd_ctx_put(ctx);
841         return 0;
842 }
843
844 /* fault_pending_wqh.lock must be hold by the caller */
845 static inline struct userfaultfd_wait_queue *find_userfault_in(
846                 wait_queue_head_t *wqh)
847 {
848         wait_queue_t *wq;
849         struct userfaultfd_wait_queue *uwq;
850
851         VM_BUG_ON(!spin_is_locked(&wqh->lock));
852
853         uwq = NULL;
854         if (!waitqueue_active(wqh))
855                 goto out;
856         /* walk in reverse to provide FIFO behavior to read userfaults */
857         wq = list_last_entry(&wqh->task_list, typeof(*wq), task_list);
858         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
859 out:
860         return uwq;
861 }
862
863 static inline struct userfaultfd_wait_queue *find_userfault(
864                 struct userfaultfd_ctx *ctx)
865 {
866         return find_userfault_in(&ctx->fault_pending_wqh);
867 }
868
869 static inline struct userfaultfd_wait_queue *find_userfault_evt(
870                 struct userfaultfd_ctx *ctx)
871 {
872         return find_userfault_in(&ctx->event_wqh);
873 }
874
875 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
876 {
877         struct userfaultfd_ctx *ctx = file->private_data;
878         unsigned int ret;
879
880         poll_wait(file, &ctx->fd_wqh, wait);
881
882         switch (ctx->state) {
883         case UFFD_STATE_WAIT_API:
884                 return POLLERR;
885         case UFFD_STATE_RUNNING:
886                 /*
887                  * poll() never guarantees that read won't block.
888                  * userfaults can be waken before they're read().
889                  */
890                 if (unlikely(!(file->f_flags & O_NONBLOCK)))
891                         return POLLERR;
892                 /*
893                  * lockless access to see if there are pending faults
894                  * __pollwait last action is the add_wait_queue but
895                  * the spin_unlock would allow the waitqueue_active to
896                  * pass above the actual list_add inside
897                  * add_wait_queue critical section. So use a full
898                  * memory barrier to serialize the list_add write of
899                  * add_wait_queue() with the waitqueue_active read
900                  * below.
901                  */
902                 ret = 0;
903                 smp_mb();
904                 if (waitqueue_active(&ctx->fault_pending_wqh))
905                         ret = POLLIN;
906                 else if (waitqueue_active(&ctx->event_wqh))
907                         ret = POLLIN;
908
909                 return ret;
910         default:
911                 WARN_ON_ONCE(1);
912                 return POLLERR;
913         }
914 }
915
916 static const struct file_operations userfaultfd_fops;
917
918 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
919                                   struct userfaultfd_ctx *new,
920                                   struct uffd_msg *msg)
921 {
922         int fd;
923         struct file *file;
924         unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
925
926         fd = get_unused_fd_flags(flags);
927         if (fd < 0)
928                 return fd;
929
930         file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
931                                   O_RDWR | flags);
932         if (IS_ERR(file)) {
933                 put_unused_fd(fd);
934                 return PTR_ERR(file);
935         }
936
937         fd_install(fd, file);
938         msg->arg.reserved.reserved1 = 0;
939         msg->arg.fork.ufd = fd;
940
941         return 0;
942 }
943
944 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
945                                     struct uffd_msg *msg)
946 {
947         ssize_t ret;
948         DECLARE_WAITQUEUE(wait, current);
949         struct userfaultfd_wait_queue *uwq;
950         /*
951          * Handling fork event requires sleeping operations, so
952          * we drop the event_wqh lock, then do these ops, then
953          * lock it back and wake up the waiter. While the lock is
954          * dropped the ewq may go away so we keep track of it
955          * carefully.
956          */
957         LIST_HEAD(fork_event);
958         struct userfaultfd_ctx *fork_nctx = NULL;
959
960         /* always take the fd_wqh lock before the fault_pending_wqh lock */
961         spin_lock(&ctx->fd_wqh.lock);
962         __add_wait_queue(&ctx->fd_wqh, &wait);
963         for (;;) {
964                 set_current_state(TASK_INTERRUPTIBLE);
965                 spin_lock(&ctx->fault_pending_wqh.lock);
966                 uwq = find_userfault(ctx);
967                 if (uwq) {
968                         /*
969                          * Use a seqcount to repeat the lockless check
970                          * in wake_userfault() to avoid missing
971                          * wakeups because during the refile both
972                          * waitqueue could become empty if this is the
973                          * only userfault.
974                          */
975                         write_seqcount_begin(&ctx->refile_seq);
976
977                         /*
978                          * The fault_pending_wqh.lock prevents the uwq
979                          * to disappear from under us.
980                          *
981                          * Refile this userfault from
982                          * fault_pending_wqh to fault_wqh, it's not
983                          * pending anymore after we read it.
984                          *
985                          * Use list_del() by hand (as
986                          * userfaultfd_wake_function also uses
987                          * list_del_init() by hand) to be sure nobody
988                          * changes __remove_wait_queue() to use
989                          * list_del_init() in turn breaking the
990                          * !list_empty_careful() check in
991                          * handle_userfault(). The uwq->wq.task_list
992                          * must never be empty at any time during the
993                          * refile, or the waitqueue could disappear
994                          * from under us. The "wait_queue_head_t"
995                          * parameter of __remove_wait_queue() is unused
996                          * anyway.
997                          */
998                         list_del(&uwq->wq.task_list);
999                         __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1000
1001                         write_seqcount_end(&ctx->refile_seq);
1002
1003                         /* careful to always initialize msg if ret == 0 */
1004                         *msg = uwq->msg;
1005                         spin_unlock(&ctx->fault_pending_wqh.lock);
1006                         ret = 0;
1007                         break;
1008                 }
1009                 spin_unlock(&ctx->fault_pending_wqh.lock);
1010
1011                 spin_lock(&ctx->event_wqh.lock);
1012                 uwq = find_userfault_evt(ctx);
1013                 if (uwq) {
1014                         *msg = uwq->msg;
1015
1016                         if (uwq->msg.event == UFFD_EVENT_FORK) {
1017                                 fork_nctx = (struct userfaultfd_ctx *)
1018                                         (unsigned long)
1019                                         uwq->msg.arg.reserved.reserved1;
1020                                 list_move(&uwq->wq.task_list, &fork_event);
1021                                 spin_unlock(&ctx->event_wqh.lock);
1022                                 ret = 0;
1023                                 break;
1024                         }
1025
1026                         userfaultfd_event_complete(ctx, uwq);
1027                         spin_unlock(&ctx->event_wqh.lock);
1028                         ret = 0;
1029                         break;
1030                 }
1031                 spin_unlock(&ctx->event_wqh.lock);
1032
1033                 if (signal_pending(current)) {
1034                         ret = -ERESTARTSYS;
1035                         break;
1036                 }
1037                 if (no_wait) {
1038                         ret = -EAGAIN;
1039                         break;
1040                 }
1041                 spin_unlock(&ctx->fd_wqh.lock);
1042                 schedule();
1043                 spin_lock(&ctx->fd_wqh.lock);
1044         }
1045         __remove_wait_queue(&ctx->fd_wqh, &wait);
1046         __set_current_state(TASK_RUNNING);
1047         spin_unlock(&ctx->fd_wqh.lock);
1048
1049         if (!ret && msg->event == UFFD_EVENT_FORK) {
1050                 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1051
1052                 if (!ret) {
1053                         spin_lock(&ctx->event_wqh.lock);
1054                         if (!list_empty(&fork_event)) {
1055                                 uwq = list_first_entry(&fork_event,
1056                                                        typeof(*uwq),
1057                                                        wq.task_list);
1058                                 list_del(&uwq->wq.task_list);
1059                                 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1060                                 userfaultfd_event_complete(ctx, uwq);
1061                         }
1062                         spin_unlock(&ctx->event_wqh.lock);
1063                 }
1064         }
1065
1066         return ret;
1067 }
1068
1069 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1070                                 size_t count, loff_t *ppos)
1071 {
1072         struct userfaultfd_ctx *ctx = file->private_data;
1073         ssize_t _ret, ret = 0;
1074         struct uffd_msg msg;
1075         int no_wait = file->f_flags & O_NONBLOCK;
1076
1077         if (ctx->state == UFFD_STATE_WAIT_API)
1078                 return -EINVAL;
1079
1080         for (;;) {
1081                 if (count < sizeof(msg))
1082                         return ret ? ret : -EINVAL;
1083                 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1084                 if (_ret < 0)
1085                         return ret ? ret : _ret;
1086                 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1087                         return ret ? ret : -EFAULT;
1088                 ret += sizeof(msg);
1089                 buf += sizeof(msg);
1090                 count -= sizeof(msg);
1091                 /*
1092                  * Allow to read more than one fault at time but only
1093                  * block if waiting for the very first one.
1094                  */
1095                 no_wait = O_NONBLOCK;
1096         }
1097 }
1098
1099 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1100                              struct userfaultfd_wake_range *range)
1101 {
1102         unsigned long start, end;
1103
1104         start = range->start;
1105         end = range->start + range->len;
1106
1107         spin_lock(&ctx->fault_pending_wqh.lock);
1108         /* wake all in the range and autoremove */
1109         if (waitqueue_active(&ctx->fault_pending_wqh))
1110                 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1111                                      range);
1112         if (waitqueue_active(&ctx->fault_wqh))
1113                 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1114         spin_unlock(&ctx->fault_pending_wqh.lock);
1115 }
1116
1117 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1118                                            struct userfaultfd_wake_range *range)
1119 {
1120         unsigned seq;
1121         bool need_wakeup;
1122
1123         /*
1124          * To be sure waitqueue_active() is not reordered by the CPU
1125          * before the pagetable update, use an explicit SMP memory
1126          * barrier here. PT lock release or up_read(mmap_sem) still
1127          * have release semantics that can allow the
1128          * waitqueue_active() to be reordered before the pte update.
1129          */
1130         smp_mb();
1131
1132         /*
1133          * Use waitqueue_active because it's very frequent to
1134          * change the address space atomically even if there are no
1135          * userfaults yet. So we take the spinlock only when we're
1136          * sure we've userfaults to wake.
1137          */
1138         do {
1139                 seq = read_seqcount_begin(&ctx->refile_seq);
1140                 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1141                         waitqueue_active(&ctx->fault_wqh);
1142                 cond_resched();
1143         } while (read_seqcount_retry(&ctx->refile_seq, seq));
1144         if (need_wakeup)
1145                 __wake_userfault(ctx, range);
1146 }
1147
1148 static __always_inline int validate_range(struct mm_struct *mm,
1149                                           __u64 start, __u64 len)
1150 {
1151         __u64 task_size = mm->task_size;
1152
1153         if (start & ~PAGE_MASK)
1154                 return -EINVAL;
1155         if (len & ~PAGE_MASK)
1156                 return -EINVAL;
1157         if (!len)
1158                 return -EINVAL;
1159         if (start < mmap_min_addr)
1160                 return -EINVAL;
1161         if (start >= task_size)
1162                 return -EINVAL;
1163         if (len > task_size - start)
1164                 return -EINVAL;
1165         return 0;
1166 }
1167
1168 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1169 {
1170         return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1171                 vma_is_shmem(vma);
1172 }
1173
1174 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1175                                 unsigned long arg)
1176 {
1177         struct mm_struct *mm = ctx->mm;
1178         struct vm_area_struct *vma, *prev, *cur;
1179         int ret;
1180         struct uffdio_register uffdio_register;
1181         struct uffdio_register __user *user_uffdio_register;
1182         unsigned long vm_flags, new_flags;
1183         bool found;
1184         bool non_anon_pages;
1185         unsigned long start, end, vma_end;
1186
1187         user_uffdio_register = (struct uffdio_register __user *) arg;
1188
1189         ret = -EFAULT;
1190         if (copy_from_user(&uffdio_register, user_uffdio_register,
1191                            sizeof(uffdio_register)-sizeof(__u64)))
1192                 goto out;
1193
1194         ret = -EINVAL;
1195         if (!uffdio_register.mode)
1196                 goto out;
1197         if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1198                                      UFFDIO_REGISTER_MODE_WP))
1199                 goto out;
1200         vm_flags = 0;
1201         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1202                 vm_flags |= VM_UFFD_MISSING;
1203         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1204                 vm_flags |= VM_UFFD_WP;
1205                 /*
1206                  * FIXME: remove the below error constraint by
1207                  * implementing the wprotect tracking mode.
1208                  */
1209                 ret = -EINVAL;
1210                 goto out;
1211         }
1212
1213         ret = validate_range(mm, uffdio_register.range.start,
1214                              uffdio_register.range.len);
1215         if (ret)
1216                 goto out;
1217
1218         start = uffdio_register.range.start;
1219         end = start + uffdio_register.range.len;
1220
1221         ret = -ENOMEM;
1222         if (!mmget_not_zero(mm))
1223                 goto out;
1224
1225         down_write(&mm->mmap_sem);
1226         vma = find_vma_prev(mm, start, &prev);
1227         if (!vma)
1228                 goto out_unlock;
1229
1230         /* check that there's at least one vma in the range */
1231         ret = -EINVAL;
1232         if (vma->vm_start >= end)
1233                 goto out_unlock;
1234
1235         /*
1236          * If the first vma contains huge pages, make sure start address
1237          * is aligned to huge page size.
1238          */
1239         if (is_vm_hugetlb_page(vma)) {
1240                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1241
1242                 if (start & (vma_hpagesize - 1))
1243                         goto out_unlock;
1244         }
1245
1246         /*
1247          * Search for not compatible vmas.
1248          */
1249         found = false;
1250         non_anon_pages = false;
1251         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1252                 cond_resched();
1253
1254                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1255                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1256
1257                 /* check not compatible vmas */
1258                 ret = -EINVAL;
1259                 if (!vma_can_userfault(cur))
1260                         goto out_unlock;
1261                 /*
1262                  * If this vma contains ending address, and huge pages
1263                  * check alignment.
1264                  */
1265                 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1266                     end > cur->vm_start) {
1267                         unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1268
1269                         ret = -EINVAL;
1270
1271                         if (end & (vma_hpagesize - 1))
1272                                 goto out_unlock;
1273                 }
1274
1275                 /*
1276                  * Check that this vma isn't already owned by a
1277                  * different userfaultfd. We can't allow more than one
1278                  * userfaultfd to own a single vma simultaneously or we
1279                  * wouldn't know which one to deliver the userfaults to.
1280                  */
1281                 ret = -EBUSY;
1282                 if (cur->vm_userfaultfd_ctx.ctx &&
1283                     cur->vm_userfaultfd_ctx.ctx != ctx)
1284                         goto out_unlock;
1285
1286                 /*
1287                  * Note vmas containing huge pages
1288                  */
1289                 if (is_vm_hugetlb_page(cur) || vma_is_shmem(cur))
1290                         non_anon_pages = true;
1291
1292                 found = true;
1293         }
1294         BUG_ON(!found);
1295
1296         if (vma->vm_start < start)
1297                 prev = vma;
1298
1299         ret = 0;
1300         do {
1301                 cond_resched();
1302
1303                 BUG_ON(!vma_can_userfault(vma));
1304                 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1305                        vma->vm_userfaultfd_ctx.ctx != ctx);
1306
1307                 /*
1308                  * Nothing to do: this vma is already registered into this
1309                  * userfaultfd and with the right tracking mode too.
1310                  */
1311                 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1312                     (vma->vm_flags & vm_flags) == vm_flags)
1313                         goto skip;
1314
1315                 if (vma->vm_start > start)
1316                         start = vma->vm_start;
1317                 vma_end = min(end, vma->vm_end);
1318
1319                 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1320                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1321                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1322                                  vma_policy(vma),
1323                                  ((struct vm_userfaultfd_ctx){ ctx }));
1324                 if (prev) {
1325                         vma = prev;
1326                         goto next;
1327                 }
1328                 if (vma->vm_start < start) {
1329                         ret = split_vma(mm, vma, start, 1);
1330                         if (ret)
1331                                 break;
1332                 }
1333                 if (vma->vm_end > end) {
1334                         ret = split_vma(mm, vma, end, 0);
1335                         if (ret)
1336                                 break;
1337                 }
1338         next:
1339                 /*
1340                  * In the vma_merge() successful mprotect-like case 8:
1341                  * the next vma was merged into the current one and
1342                  * the current one has not been updated yet.
1343                  */
1344                 vma->vm_flags = new_flags;
1345                 vma->vm_userfaultfd_ctx.ctx = ctx;
1346
1347         skip:
1348                 prev = vma;
1349                 start = vma->vm_end;
1350                 vma = vma->vm_next;
1351         } while (vma && vma->vm_start < end);
1352 out_unlock:
1353         up_write(&mm->mmap_sem);
1354         mmput(mm);
1355         if (!ret) {
1356                 /*
1357                  * Now that we scanned all vmas we can already tell
1358                  * userland which ioctls methods are guaranteed to
1359                  * succeed on this range.
1360                  */
1361                 if (put_user(non_anon_pages ? UFFD_API_RANGE_IOCTLS_BASIC :
1362                              UFFD_API_RANGE_IOCTLS,
1363                              &user_uffdio_register->ioctls))
1364                         ret = -EFAULT;
1365         }
1366 out:
1367         return ret;
1368 }
1369
1370 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1371                                   unsigned long arg)
1372 {
1373         struct mm_struct *mm = ctx->mm;
1374         struct vm_area_struct *vma, *prev, *cur;
1375         int ret;
1376         struct uffdio_range uffdio_unregister;
1377         unsigned long new_flags;
1378         bool found;
1379         unsigned long start, end, vma_end;
1380         const void __user *buf = (void __user *)arg;
1381
1382         ret = -EFAULT;
1383         if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1384                 goto out;
1385
1386         ret = validate_range(mm, uffdio_unregister.start,
1387                              uffdio_unregister.len);
1388         if (ret)
1389                 goto out;
1390
1391         start = uffdio_unregister.start;
1392         end = start + uffdio_unregister.len;
1393
1394         ret = -ENOMEM;
1395         if (!mmget_not_zero(mm))
1396                 goto out;
1397
1398         down_write(&mm->mmap_sem);
1399         vma = find_vma_prev(mm, start, &prev);
1400         if (!vma)
1401                 goto out_unlock;
1402
1403         /* check that there's at least one vma in the range */
1404         ret = -EINVAL;
1405         if (vma->vm_start >= end)
1406                 goto out_unlock;
1407
1408         /*
1409          * If the first vma contains huge pages, make sure start address
1410          * is aligned to huge page size.
1411          */
1412         if (is_vm_hugetlb_page(vma)) {
1413                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1414
1415                 if (start & (vma_hpagesize - 1))
1416                         goto out_unlock;
1417         }
1418
1419         /*
1420          * Search for not compatible vmas.
1421          */
1422         found = false;
1423         ret = -EINVAL;
1424         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1425                 cond_resched();
1426
1427                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1428                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1429
1430                 /*
1431                  * Check not compatible vmas, not strictly required
1432                  * here as not compatible vmas cannot have an
1433                  * userfaultfd_ctx registered on them, but this
1434                  * provides for more strict behavior to notice
1435                  * unregistration errors.
1436                  */
1437                 if (!vma_can_userfault(cur))
1438                         goto out_unlock;
1439
1440                 found = true;
1441         }
1442         BUG_ON(!found);
1443
1444         if (vma->vm_start < start)
1445                 prev = vma;
1446
1447         ret = 0;
1448         do {
1449                 cond_resched();
1450
1451                 BUG_ON(!vma_can_userfault(vma));
1452
1453                 /*
1454                  * Nothing to do: this vma is already registered into this
1455                  * userfaultfd and with the right tracking mode too.
1456                  */
1457                 if (!vma->vm_userfaultfd_ctx.ctx)
1458                         goto skip;
1459
1460                 if (vma->vm_start > start)
1461                         start = vma->vm_start;
1462                 vma_end = min(end, vma->vm_end);
1463
1464                 if (userfaultfd_missing(vma)) {
1465                         /*
1466                          * Wake any concurrent pending userfault while
1467                          * we unregister, so they will not hang
1468                          * permanently and it avoids userland to call
1469                          * UFFDIO_WAKE explicitly.
1470                          */
1471                         struct userfaultfd_wake_range range;
1472                         range.start = start;
1473                         range.len = vma_end - start;
1474                         wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1475                 }
1476
1477                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1478                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1479                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1480                                  vma_policy(vma),
1481                                  NULL_VM_UFFD_CTX);
1482                 if (prev) {
1483                         vma = prev;
1484                         goto next;
1485                 }
1486                 if (vma->vm_start < start) {
1487                         ret = split_vma(mm, vma, start, 1);
1488                         if (ret)
1489                                 break;
1490                 }
1491                 if (vma->vm_end > end) {
1492                         ret = split_vma(mm, vma, end, 0);
1493                         if (ret)
1494                                 break;
1495                 }
1496         next:
1497                 /*
1498                  * In the vma_merge() successful mprotect-like case 8:
1499                  * the next vma was merged into the current one and
1500                  * the current one has not been updated yet.
1501                  */
1502                 vma->vm_flags = new_flags;
1503                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1504
1505         skip:
1506                 prev = vma;
1507                 start = vma->vm_end;
1508                 vma = vma->vm_next;
1509         } while (vma && vma->vm_start < end);
1510 out_unlock:
1511         up_write(&mm->mmap_sem);
1512         mmput(mm);
1513 out:
1514         return ret;
1515 }
1516
1517 /*
1518  * userfaultfd_wake may be used in combination with the
1519  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1520  */
1521 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1522                             unsigned long arg)
1523 {
1524         int ret;
1525         struct uffdio_range uffdio_wake;
1526         struct userfaultfd_wake_range range;
1527         const void __user *buf = (void __user *)arg;
1528
1529         ret = -EFAULT;
1530         if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1531                 goto out;
1532
1533         ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1534         if (ret)
1535                 goto out;
1536
1537         range.start = uffdio_wake.start;
1538         range.len = uffdio_wake.len;
1539
1540         /*
1541          * len == 0 means wake all and we don't want to wake all here,
1542          * so check it again to be sure.
1543          */
1544         VM_BUG_ON(!range.len);
1545
1546         wake_userfault(ctx, &range);
1547         ret = 0;
1548
1549 out:
1550         return ret;
1551 }
1552
1553 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1554                             unsigned long arg)
1555 {
1556         __s64 ret;
1557         struct uffdio_copy uffdio_copy;
1558         struct uffdio_copy __user *user_uffdio_copy;
1559         struct userfaultfd_wake_range range;
1560
1561         user_uffdio_copy = (struct uffdio_copy __user *) arg;
1562
1563         ret = -EFAULT;
1564         if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1565                            /* don't copy "copy" last field */
1566                            sizeof(uffdio_copy)-sizeof(__s64)))
1567                 goto out;
1568
1569         ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1570         if (ret)
1571                 goto out;
1572         /*
1573          * double check for wraparound just in case. copy_from_user()
1574          * will later check uffdio_copy.src + uffdio_copy.len to fit
1575          * in the userland range.
1576          */
1577         ret = -EINVAL;
1578         if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1579                 goto out;
1580         if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1581                 goto out;
1582         if (mmget_not_zero(ctx->mm)) {
1583                 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1584                                    uffdio_copy.len);
1585                 mmput(ctx->mm);
1586         } else {
1587                 return -ENOSPC;
1588         }
1589         if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1590                 return -EFAULT;
1591         if (ret < 0)
1592                 goto out;
1593         BUG_ON(!ret);
1594         /* len == 0 would wake all */
1595         range.len = ret;
1596         if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1597                 range.start = uffdio_copy.dst;
1598                 wake_userfault(ctx, &range);
1599         }
1600         ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1601 out:
1602         return ret;
1603 }
1604
1605 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1606                                 unsigned long arg)
1607 {
1608         __s64 ret;
1609         struct uffdio_zeropage uffdio_zeropage;
1610         struct uffdio_zeropage __user *user_uffdio_zeropage;
1611         struct userfaultfd_wake_range range;
1612
1613         user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1614
1615         ret = -EFAULT;
1616         if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1617                            /* don't copy "zeropage" last field */
1618                            sizeof(uffdio_zeropage)-sizeof(__s64)))
1619                 goto out;
1620
1621         ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1622                              uffdio_zeropage.range.len);
1623         if (ret)
1624                 goto out;
1625         ret = -EINVAL;
1626         if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1627                 goto out;
1628
1629         if (mmget_not_zero(ctx->mm)) {
1630                 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1631                                      uffdio_zeropage.range.len);
1632                 mmput(ctx->mm);
1633         }
1634         if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1635                 return -EFAULT;
1636         if (ret < 0)
1637                 goto out;
1638         /* len == 0 would wake all */
1639         BUG_ON(!ret);
1640         range.len = ret;
1641         if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1642                 range.start = uffdio_zeropage.range.start;
1643                 wake_userfault(ctx, &range);
1644         }
1645         ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1646 out:
1647         return ret;
1648 }
1649
1650 static inline unsigned int uffd_ctx_features(__u64 user_features)
1651 {
1652         /*
1653          * For the current set of features the bits just coincide
1654          */
1655         return (unsigned int)user_features;
1656 }
1657
1658 /*
1659  * userland asks for a certain API version and we return which bits
1660  * and ioctl commands are implemented in this kernel for such API
1661  * version or -EINVAL if unknown.
1662  */
1663 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1664                            unsigned long arg)
1665 {
1666         struct uffdio_api uffdio_api;
1667         void __user *buf = (void __user *)arg;
1668         int ret;
1669         __u64 features;
1670
1671         ret = -EINVAL;
1672         if (ctx->state != UFFD_STATE_WAIT_API)
1673                 goto out;
1674         ret = -EFAULT;
1675         if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1676                 goto out;
1677         features = uffdio_api.features;
1678         if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1679                 memset(&uffdio_api, 0, sizeof(uffdio_api));
1680                 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1681                         goto out;
1682                 ret = -EINVAL;
1683                 goto out;
1684         }
1685         /* report all available features and ioctls to userland */
1686         uffdio_api.features = UFFD_API_FEATURES;
1687         uffdio_api.ioctls = UFFD_API_IOCTLS;
1688         ret = -EFAULT;
1689         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1690                 goto out;
1691         ctx->state = UFFD_STATE_RUNNING;
1692         /* only enable the requested features for this uffd context */
1693         ctx->features = uffd_ctx_features(features);
1694         ret = 0;
1695 out:
1696         return ret;
1697 }
1698
1699 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1700                               unsigned long arg)
1701 {
1702         int ret = -EINVAL;
1703         struct userfaultfd_ctx *ctx = file->private_data;
1704
1705         if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1706                 return -EINVAL;
1707
1708         switch(cmd) {
1709         case UFFDIO_API:
1710                 ret = userfaultfd_api(ctx, arg);
1711                 break;
1712         case UFFDIO_REGISTER:
1713                 ret = userfaultfd_register(ctx, arg);
1714                 break;
1715         case UFFDIO_UNREGISTER:
1716                 ret = userfaultfd_unregister(ctx, arg);
1717                 break;
1718         case UFFDIO_WAKE:
1719                 ret = userfaultfd_wake(ctx, arg);
1720                 break;
1721         case UFFDIO_COPY:
1722                 ret = userfaultfd_copy(ctx, arg);
1723                 break;
1724         case UFFDIO_ZEROPAGE:
1725                 ret = userfaultfd_zeropage(ctx, arg);
1726                 break;
1727         }
1728         return ret;
1729 }
1730
1731 #ifdef CONFIG_PROC_FS
1732 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1733 {
1734         struct userfaultfd_ctx *ctx = f->private_data;
1735         wait_queue_t *wq;
1736         struct userfaultfd_wait_queue *uwq;
1737         unsigned long pending = 0, total = 0;
1738
1739         spin_lock(&ctx->fault_pending_wqh.lock);
1740         list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1741                 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1742                 pending++;
1743                 total++;
1744         }
1745         list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1746                 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1747                 total++;
1748         }
1749         spin_unlock(&ctx->fault_pending_wqh.lock);
1750
1751         /*
1752          * If more protocols will be added, there will be all shown
1753          * separated by a space. Like this:
1754          *      protocols: aa:... bb:...
1755          */
1756         seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1757                    pending, total, UFFD_API, UFFD_API_FEATURES,
1758                    UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1759 }
1760 #endif
1761
1762 static const struct file_operations userfaultfd_fops = {
1763 #ifdef CONFIG_PROC_FS
1764         .show_fdinfo    = userfaultfd_show_fdinfo,
1765 #endif
1766         .release        = userfaultfd_release,
1767         .poll           = userfaultfd_poll,
1768         .read           = userfaultfd_read,
1769         .unlocked_ioctl = userfaultfd_ioctl,
1770         .compat_ioctl   = userfaultfd_ioctl,
1771         .llseek         = noop_llseek,
1772 };
1773
1774 static void init_once_userfaultfd_ctx(void *mem)
1775 {
1776         struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1777
1778         init_waitqueue_head(&ctx->fault_pending_wqh);
1779         init_waitqueue_head(&ctx->fault_wqh);
1780         init_waitqueue_head(&ctx->event_wqh);
1781         init_waitqueue_head(&ctx->fd_wqh);
1782         seqcount_init(&ctx->refile_seq);
1783 }
1784
1785 /**
1786  * userfaultfd_file_create - Creates a userfaultfd file pointer.
1787  * @flags: Flags for the userfaultfd file.
1788  *
1789  * This function creates a userfaultfd file pointer, w/out installing
1790  * it into the fd table. This is useful when the userfaultfd file is
1791  * used during the initialization of data structures that require
1792  * extra setup after the userfaultfd creation. So the userfaultfd
1793  * creation is split into the file pointer creation phase, and the
1794  * file descriptor installation phase.  In this way races with
1795  * userspace closing the newly installed file descriptor can be
1796  * avoided.  Returns a userfaultfd file pointer, or a proper error
1797  * pointer.
1798  */
1799 static struct file *userfaultfd_file_create(int flags)
1800 {
1801         struct file *file;
1802         struct userfaultfd_ctx *ctx;
1803
1804         BUG_ON(!current->mm);
1805
1806         /* Check the UFFD_* constants for consistency.  */
1807         BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1808         BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1809
1810         file = ERR_PTR(-EINVAL);
1811         if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1812                 goto out;
1813
1814         file = ERR_PTR(-ENOMEM);
1815         ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1816         if (!ctx)
1817                 goto out;
1818
1819         atomic_set(&ctx->refcount, 1);
1820         ctx->flags = flags;
1821         ctx->features = 0;
1822         ctx->state = UFFD_STATE_WAIT_API;
1823         ctx->released = false;
1824         ctx->mm = current->mm;
1825         /* prevent the mm struct to be freed */
1826         mmgrab(ctx->mm);
1827
1828         file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1829                                   O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1830         if (IS_ERR(file)) {
1831                 mmdrop(ctx->mm);
1832                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1833         }
1834 out:
1835         return file;
1836 }
1837
1838 SYSCALL_DEFINE1(userfaultfd, int, flags)
1839 {
1840         int fd, error;
1841         struct file *file;
1842
1843         error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1844         if (error < 0)
1845                 return error;
1846         fd = error;
1847
1848         file = userfaultfd_file_create(flags);
1849         if (IS_ERR(file)) {
1850                 error = PTR_ERR(file);
1851                 goto err_put_unused_fd;
1852         }
1853         fd_install(fd, file);
1854
1855         return fd;
1856
1857 err_put_unused_fd:
1858         put_unused_fd(fd);
1859
1860         return error;
1861 }
1862
1863 static int __init userfaultfd_init(void)
1864 {
1865         userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1866                                                 sizeof(struct userfaultfd_ctx),
1867                                                 0,
1868                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1869                                                 init_once_userfaultfd_ctx);
1870         return 0;
1871 }
1872 __initcall(userfaultfd_init);