]> git.karo-electronics.de Git - mv-sheeva.git/blob - fs/xfs/linux-2.6/xfs_buf.c
489b7f63fd1fe9d3e2faa997a6b976d22b586a2f
[mv-sheeva.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.  All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11  *
12  * Further, this software is distributed without any warranty that it is
13  * free of the rightful claim of any third person regarding infringement
14  * or the like.  Any license provided herein, whether implied or
15  * otherwise, applies only to this software file.  Patent licenses, if
16  * any, provided herein do not apply to combinations of this program with
17  * other software, or any other product whatsoever.
18  *
19  * You should have received a copy of the GNU General Public License along
20  * with this program; if not, write the Free Software Foundation, Inc., 59
21  * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22  *
23  * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24  * Mountain View, CA  94043, or:
25  *
26  * http://www.sgi.com
27  *
28  * For further information regarding this notice, see:
29  *
30  * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31  */
32
33 /*
34  *      The xfs_buf.c code provides an abstract buffer cache model on top
35  *      of the Linux page cache.  Cached metadata blocks for a file system
36  *      are hashed to the inode for the block device.  xfs_buf.c assembles
37  *      buffers (xfs_buf_t) on demand to aggregate such cached pages for I/O.
38  *
39  *      Written by Steve Lord, Jim Mostek, Russell Cattelan
40  *                  and Rajagopal Ananthanarayanan ("ananth") at SGI.
41  *
42  */
43
44 #include <linux/stddef.h>
45 #include <linux/errno.h>
46 #include <linux/slab.h>
47 #include <linux/pagemap.h>
48 #include <linux/init.h>
49 #include <linux/vmalloc.h>
50 #include <linux/bio.h>
51 #include <linux/sysctl.h>
52 #include <linux/proc_fs.h>
53 #include <linux/workqueue.h>
54 #include <linux/percpu.h>
55 #include <linux/blkdev.h>
56 #include <linux/hash.h>
57 #include <linux/kthread.h>
58
59 #include "xfs_linux.h"
60
61 /*
62  * File wide globals
63  */
64
65 STATIC kmem_cache_t *pagebuf_zone;
66 STATIC kmem_shaker_t pagebuf_shake;
67 STATIC int xfsbufd_wakeup(int, gfp_t);
68 STATIC void pagebuf_delwri_queue(xfs_buf_t *, int);
69
70 STATIC struct workqueue_struct *xfslogd_workqueue;
71 struct workqueue_struct *xfsdatad_workqueue;
72
73 /*
74  * Pagebuf debugging
75  */
76
77 #ifdef PAGEBUF_TRACE
78 void
79 pagebuf_trace(
80         xfs_buf_t       *pb,
81         char            *id,
82         void            *data,
83         void            *ra)
84 {
85         ktrace_enter(pagebuf_trace_buf,
86                 pb, id,
87                 (void *)(unsigned long)pb->pb_flags,
88                 (void *)(unsigned long)pb->pb_hold.counter,
89                 (void *)(unsigned long)pb->pb_sema.count.counter,
90                 (void *)current,
91                 data, ra,
92                 (void *)(unsigned long)((pb->pb_file_offset>>32) & 0xffffffff),
93                 (void *)(unsigned long)(pb->pb_file_offset & 0xffffffff),
94                 (void *)(unsigned long)pb->pb_buffer_length,
95                 NULL, NULL, NULL, NULL, NULL);
96 }
97 ktrace_t *pagebuf_trace_buf;
98 #define PAGEBUF_TRACE_SIZE      4096
99 #define PB_TRACE(pb, id, data)  \
100         pagebuf_trace(pb, id, (void *)data, (void *)__builtin_return_address(0))
101 #else
102 #define PB_TRACE(pb, id, data)  do { } while (0)
103 #endif
104
105 #ifdef PAGEBUF_LOCK_TRACKING
106 # define PB_SET_OWNER(pb)       ((pb)->pb_last_holder = current->pid)
107 # define PB_CLEAR_OWNER(pb)     ((pb)->pb_last_holder = -1)
108 # define PB_GET_OWNER(pb)       ((pb)->pb_last_holder)
109 #else
110 # define PB_SET_OWNER(pb)       do { } while (0)
111 # define PB_CLEAR_OWNER(pb)     do { } while (0)
112 # define PB_GET_OWNER(pb)       do { } while (0)
113 #endif
114
115 /*
116  * Pagebuf allocation / freeing.
117  */
118
119 #define pb_to_gfp(flags) \
120         ((((flags) & PBF_READ_AHEAD) ? __GFP_NORETRY : \
121           ((flags) & PBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
122
123 #define pb_to_km(flags) \
124          (((flags) & PBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
125
126
127 #define pagebuf_allocate(flags) \
128         kmem_zone_alloc(pagebuf_zone, pb_to_km(flags))
129 #define pagebuf_deallocate(pb) \
130         kmem_zone_free(pagebuf_zone, (pb));
131
132 /*
133  * Page Region interfaces.
134  *
135  * For pages in filesystems where the blocksize is smaller than the
136  * pagesize, we use the page->private field (long) to hold a bitmap
137  * of uptodate regions within the page.
138  *
139  * Each such region is "bytes per page / bits per long" bytes long.
140  *
141  * NBPPR == number-of-bytes-per-page-region
142  * BTOPR == bytes-to-page-region (rounded up)
143  * BTOPRT == bytes-to-page-region-truncated (rounded down)
144  */
145 #if (BITS_PER_LONG == 32)
146 #define PRSHIFT         (PAGE_CACHE_SHIFT - 5)  /* (32 == 1<<5) */
147 #elif (BITS_PER_LONG == 64)
148 #define PRSHIFT         (PAGE_CACHE_SHIFT - 6)  /* (64 == 1<<6) */
149 #else
150 #error BITS_PER_LONG must be 32 or 64
151 #endif
152 #define NBPPR           (PAGE_CACHE_SIZE/BITS_PER_LONG)
153 #define BTOPR(b)        (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
154 #define BTOPRT(b)       (((unsigned int)(b) >> PRSHIFT))
155
156 STATIC unsigned long
157 page_region_mask(
158         size_t          offset,
159         size_t          length)
160 {
161         unsigned long   mask;
162         int             first, final;
163
164         first = BTOPR(offset);
165         final = BTOPRT(offset + length - 1);
166         first = min(first, final);
167
168         mask = ~0UL;
169         mask <<= BITS_PER_LONG - (final - first);
170         mask >>= BITS_PER_LONG - (final);
171
172         ASSERT(offset + length <= PAGE_CACHE_SIZE);
173         ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
174
175         return mask;
176 }
177
178 STATIC inline void
179 set_page_region(
180         struct page     *page,
181         size_t          offset,
182         size_t          length)
183 {
184         set_page_private(page,
185                 page_private(page) | page_region_mask(offset, length));
186         if (page_private(page) == ~0UL)
187                 SetPageUptodate(page);
188 }
189
190 STATIC inline int
191 test_page_region(
192         struct page     *page,
193         size_t          offset,
194         size_t          length)
195 {
196         unsigned long   mask = page_region_mask(offset, length);
197
198         return (mask && (page_private(page) & mask) == mask);
199 }
200
201 /*
202  * Mapping of multi-page buffers into contiguous virtual space
203  */
204
205 typedef struct a_list {
206         void            *vm_addr;
207         struct a_list   *next;
208 } a_list_t;
209
210 STATIC a_list_t         *as_free_head;
211 STATIC int              as_list_len;
212 STATIC DEFINE_SPINLOCK(as_lock);
213
214 /*
215  * Try to batch vunmaps because they are costly.
216  */
217 STATIC void
218 free_address(
219         void            *addr)
220 {
221         a_list_t        *aentry;
222
223         aentry = kmalloc(sizeof(a_list_t), GFP_ATOMIC & ~__GFP_HIGH);
224         if (likely(aentry)) {
225                 spin_lock(&as_lock);
226                 aentry->next = as_free_head;
227                 aentry->vm_addr = addr;
228                 as_free_head = aentry;
229                 as_list_len++;
230                 spin_unlock(&as_lock);
231         } else {
232                 vunmap(addr);
233         }
234 }
235
236 STATIC void
237 purge_addresses(void)
238 {
239         a_list_t        *aentry, *old;
240
241         if (as_free_head == NULL)
242                 return;
243
244         spin_lock(&as_lock);
245         aentry = as_free_head;
246         as_free_head = NULL;
247         as_list_len = 0;
248         spin_unlock(&as_lock);
249
250         while ((old = aentry) != NULL) {
251                 vunmap(aentry->vm_addr);
252                 aentry = aentry->next;
253                 kfree(old);
254         }
255 }
256
257 /*
258  *      Internal pagebuf object manipulation
259  */
260
261 STATIC void
262 _pagebuf_initialize(
263         xfs_buf_t               *pb,
264         xfs_buftarg_t           *target,
265         loff_t                  range_base,
266         size_t                  range_length,
267         page_buf_flags_t        flags)
268 {
269         /*
270          * We don't want certain flags to appear in pb->pb_flags.
271          */
272         flags &= ~(PBF_LOCK|PBF_MAPPED|PBF_DONT_BLOCK|PBF_READ_AHEAD);
273
274         memset(pb, 0, sizeof(xfs_buf_t));
275         atomic_set(&pb->pb_hold, 1);
276         init_MUTEX_LOCKED(&pb->pb_iodonesema);
277         INIT_LIST_HEAD(&pb->pb_list);
278         INIT_LIST_HEAD(&pb->pb_hash_list);
279         init_MUTEX_LOCKED(&pb->pb_sema); /* held, no waiters */
280         PB_SET_OWNER(pb);
281         pb->pb_target = target;
282         pb->pb_file_offset = range_base;
283         /*
284          * Set buffer_length and count_desired to the same value initially.
285          * I/O routines should use count_desired, which will be the same in
286          * most cases but may be reset (e.g. XFS recovery).
287          */
288         pb->pb_buffer_length = pb->pb_count_desired = range_length;
289         pb->pb_flags = flags | PBF_NONE;
290         pb->pb_bn = XFS_BUF_DADDR_NULL;
291         atomic_set(&pb->pb_pin_count, 0);
292         init_waitqueue_head(&pb->pb_waiters);
293
294         XFS_STATS_INC(pb_create);
295         PB_TRACE(pb, "initialize", target);
296 }
297
298 /*
299  * Allocate a page array capable of holding a specified number
300  * of pages, and point the page buf at it.
301  */
302 STATIC int
303 _pagebuf_get_pages(
304         xfs_buf_t               *pb,
305         int                     page_count,
306         page_buf_flags_t        flags)
307 {
308         /* Make sure that we have a page list */
309         if (pb->pb_pages == NULL) {
310                 pb->pb_offset = page_buf_poff(pb->pb_file_offset);
311                 pb->pb_page_count = page_count;
312                 if (page_count <= PB_PAGES) {
313                         pb->pb_pages = pb->pb_page_array;
314                 } else {
315                         pb->pb_pages = kmem_alloc(sizeof(struct page *) *
316                                         page_count, pb_to_km(flags));
317                         if (pb->pb_pages == NULL)
318                                 return -ENOMEM;
319                 }
320                 memset(pb->pb_pages, 0, sizeof(struct page *) * page_count);
321         }
322         return 0;
323 }
324
325 /*
326  *      Frees pb_pages if it was malloced.
327  */
328 STATIC void
329 _pagebuf_free_pages(
330         xfs_buf_t       *bp)
331 {
332         if (bp->pb_pages != bp->pb_page_array) {
333                 kmem_free(bp->pb_pages,
334                           bp->pb_page_count * sizeof(struct page *));
335         }
336 }
337
338 /*
339  *      Releases the specified buffer.
340  *
341  *      The modification state of any associated pages is left unchanged.
342  *      The buffer most not be on any hash - use pagebuf_rele instead for
343  *      hashed and refcounted buffers
344  */
345 void
346 pagebuf_free(
347         xfs_buf_t               *bp)
348 {
349         PB_TRACE(bp, "free", 0);
350
351         ASSERT(list_empty(&bp->pb_hash_list));
352
353         if (bp->pb_flags & _PBF_PAGE_CACHE) {
354                 uint            i;
355
356                 if ((bp->pb_flags & PBF_MAPPED) && (bp->pb_page_count > 1))
357                         free_address(bp->pb_addr - bp->pb_offset);
358
359                 for (i = 0; i < bp->pb_page_count; i++)
360                         page_cache_release(bp->pb_pages[i]);
361                 _pagebuf_free_pages(bp);
362         } else if (bp->pb_flags & _PBF_KMEM_ALLOC) {
363                  /*
364                   * XXX(hch): bp->pb_count_desired might be incorrect (see
365                   * pagebuf_associate_memory for details), but fortunately
366                   * the Linux version of kmem_free ignores the len argument..
367                   */
368                 kmem_free(bp->pb_addr, bp->pb_count_desired);
369                 _pagebuf_free_pages(bp);
370         }
371
372         pagebuf_deallocate(bp);
373 }
374
375 /*
376  *      Finds all pages for buffer in question and builds it's page list.
377  */
378 STATIC int
379 _pagebuf_lookup_pages(
380         xfs_buf_t               *bp,
381         uint                    flags)
382 {
383         struct address_space    *mapping = bp->pb_target->pbr_mapping;
384         size_t                  blocksize = bp->pb_target->pbr_bsize;
385         size_t                  size = bp->pb_count_desired;
386         size_t                  nbytes, offset;
387         gfp_t                   gfp_mask = pb_to_gfp(flags);
388         unsigned short          page_count, i;
389         pgoff_t                 first;
390         loff_t                  end;
391         int                     error;
392
393         end = bp->pb_file_offset + bp->pb_buffer_length;
394         page_count = page_buf_btoc(end) - page_buf_btoct(bp->pb_file_offset);
395
396         error = _pagebuf_get_pages(bp, page_count, flags);
397         if (unlikely(error))
398                 return error;
399         bp->pb_flags |= _PBF_PAGE_CACHE;
400
401         offset = bp->pb_offset;
402         first = bp->pb_file_offset >> PAGE_CACHE_SHIFT;
403
404         for (i = 0; i < bp->pb_page_count; i++) {
405                 struct page     *page;
406                 uint            retries = 0;
407
408               retry:
409                 page = find_or_create_page(mapping, first + i, gfp_mask);
410                 if (unlikely(page == NULL)) {
411                         if (flags & PBF_READ_AHEAD) {
412                                 bp->pb_page_count = i;
413                                 for (i = 0; i < bp->pb_page_count; i++)
414                                         unlock_page(bp->pb_pages[i]);
415                                 return -ENOMEM;
416                         }
417
418                         /*
419                          * This could deadlock.
420                          *
421                          * But until all the XFS lowlevel code is revamped to
422                          * handle buffer allocation failures we can't do much.
423                          */
424                         if (!(++retries % 100))
425                                 printk(KERN_ERR
426                                         "XFS: possible memory allocation "
427                                         "deadlock in %s (mode:0x%x)\n",
428                                         __FUNCTION__, gfp_mask);
429
430                         XFS_STATS_INC(pb_page_retries);
431                         xfsbufd_wakeup(0, gfp_mask);
432                         blk_congestion_wait(WRITE, HZ/50);
433                         goto retry;
434                 }
435
436                 XFS_STATS_INC(pb_page_found);
437
438                 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
439                 size -= nbytes;
440
441                 if (!PageUptodate(page)) {
442                         page_count--;
443                         if (blocksize >= PAGE_CACHE_SIZE) {
444                                 if (flags & PBF_READ)
445                                         bp->pb_locked = 1;
446                         } else if (!PagePrivate(page)) {
447                                 if (test_page_region(page, offset, nbytes))
448                                         page_count++;
449                         }
450                 }
451
452                 bp->pb_pages[i] = page;
453                 offset = 0;
454         }
455
456         if (!bp->pb_locked) {
457                 for (i = 0; i < bp->pb_page_count; i++)
458                         unlock_page(bp->pb_pages[i]);
459         }
460
461         bp->pb_flags &= ~PBF_NONE;
462
463         PB_TRACE(bp, "lookup_pages", (long)page_count);
464         return error;
465 }
466
467 /*
468  *      Map buffer into kernel address-space if nessecary.
469  */
470 STATIC int
471 _pagebuf_map_pages(
472         xfs_buf_t               *bp,
473         uint                    flags)
474 {
475         /* A single page buffer is always mappable */
476         if (bp->pb_page_count == 1) {
477                 bp->pb_addr = page_address(bp->pb_pages[0]) + bp->pb_offset;
478                 bp->pb_flags |= PBF_MAPPED;
479         } else if (flags & PBF_MAPPED) {
480                 if (as_list_len > 64)
481                         purge_addresses();
482                 bp->pb_addr = vmap(bp->pb_pages, bp->pb_page_count,
483                                 VM_MAP, PAGE_KERNEL);
484                 if (unlikely(bp->pb_addr == NULL))
485                         return -ENOMEM;
486                 bp->pb_addr += bp->pb_offset;
487                 bp->pb_flags |= PBF_MAPPED;
488         }
489
490         return 0;
491 }
492
493 /*
494  *      Finding and Reading Buffers
495  */
496
497 /*
498  *      _pagebuf_find
499  *
500  *      Looks up, and creates if absent, a lockable buffer for
501  *      a given range of an inode.  The buffer is returned
502  *      locked.  If other overlapping buffers exist, they are
503  *      released before the new buffer is created and locked,
504  *      which may imply that this call will block until those buffers
505  *      are unlocked.  No I/O is implied by this call.
506  */
507 xfs_buf_t *
508 _pagebuf_find(
509         xfs_buftarg_t           *btp,   /* block device target          */
510         loff_t                  ioff,   /* starting offset of range     */
511         size_t                  isize,  /* length of range              */
512         page_buf_flags_t        flags,  /* PBF_TRYLOCK                  */
513         xfs_buf_t               *new_pb)/* newly allocated buffer       */
514 {
515         loff_t                  range_base;
516         size_t                  range_length;
517         xfs_bufhash_t           *hash;
518         xfs_buf_t               *pb, *n;
519
520         range_base = (ioff << BBSHIFT);
521         range_length = (isize << BBSHIFT);
522
523         /* Check for IOs smaller than the sector size / not sector aligned */
524         ASSERT(!(range_length < (1 << btp->pbr_sshift)));
525         ASSERT(!(range_base & (loff_t)btp->pbr_smask));
526
527         hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
528
529         spin_lock(&hash->bh_lock);
530
531         list_for_each_entry_safe(pb, n, &hash->bh_list, pb_hash_list) {
532                 ASSERT(btp == pb->pb_target);
533                 if (pb->pb_file_offset == range_base &&
534                     pb->pb_buffer_length == range_length) {
535                         /*
536                          * If we look at something bring it to the
537                          * front of the list for next time.
538                          */
539                         atomic_inc(&pb->pb_hold);
540                         list_move(&pb->pb_hash_list, &hash->bh_list);
541                         goto found;
542                 }
543         }
544
545         /* No match found */
546         if (new_pb) {
547                 _pagebuf_initialize(new_pb, btp, range_base,
548                                 range_length, flags);
549                 new_pb->pb_hash = hash;
550                 list_add(&new_pb->pb_hash_list, &hash->bh_list);
551         } else {
552                 XFS_STATS_INC(pb_miss_locked);
553         }
554
555         spin_unlock(&hash->bh_lock);
556         return new_pb;
557
558 found:
559         spin_unlock(&hash->bh_lock);
560
561         /* Attempt to get the semaphore without sleeping,
562          * if this does not work then we need to drop the
563          * spinlock and do a hard attempt on the semaphore.
564          */
565         if (down_trylock(&pb->pb_sema)) {
566                 if (!(flags & PBF_TRYLOCK)) {
567                         /* wait for buffer ownership */
568                         PB_TRACE(pb, "get_lock", 0);
569                         pagebuf_lock(pb);
570                         XFS_STATS_INC(pb_get_locked_waited);
571                 } else {
572                         /* We asked for a trylock and failed, no need
573                          * to look at file offset and length here, we
574                          * know that this pagebuf at least overlaps our
575                          * pagebuf and is locked, therefore our buffer
576                          * either does not exist, or is this buffer
577                          */
578
579                         pagebuf_rele(pb);
580                         XFS_STATS_INC(pb_busy_locked);
581                         return (NULL);
582                 }
583         } else {
584                 /* trylock worked */
585                 PB_SET_OWNER(pb);
586         }
587
588         if (pb->pb_flags & PBF_STALE) {
589                 ASSERT((pb->pb_flags & _PBF_DELWRI_Q) == 0);
590                 pb->pb_flags &= PBF_MAPPED;
591         }
592         PB_TRACE(pb, "got_lock", 0);
593         XFS_STATS_INC(pb_get_locked);
594         return (pb);
595 }
596
597 /*
598  *      xfs_buf_get_flags assembles a buffer covering the specified range.
599  *
600  *      Storage in memory for all portions of the buffer will be allocated,
601  *      although backing storage may not be.
602  */
603 xfs_buf_t *
604 xfs_buf_get_flags(                      /* allocate a buffer            */
605         xfs_buftarg_t           *target,/* target for buffer            */
606         loff_t                  ioff,   /* starting offset of range     */
607         size_t                  isize,  /* length of range              */
608         page_buf_flags_t        flags)  /* PBF_TRYLOCK                  */
609 {
610         xfs_buf_t               *pb, *new_pb;
611         int                     error = 0, i;
612
613         new_pb = pagebuf_allocate(flags);
614         if (unlikely(!new_pb))
615                 return NULL;
616
617         pb = _pagebuf_find(target, ioff, isize, flags, new_pb);
618         if (pb == new_pb) {
619                 error = _pagebuf_lookup_pages(pb, flags);
620                 if (error)
621                         goto no_buffer;
622         } else {
623                 pagebuf_deallocate(new_pb);
624                 if (unlikely(pb == NULL))
625                         return NULL;
626         }
627
628         for (i = 0; i < pb->pb_page_count; i++)
629                 mark_page_accessed(pb->pb_pages[i]);
630
631         if (!(pb->pb_flags & PBF_MAPPED)) {
632                 error = _pagebuf_map_pages(pb, flags);
633                 if (unlikely(error)) {
634                         printk(KERN_WARNING "%s: failed to map pages\n",
635                                         __FUNCTION__);
636                         goto no_buffer;
637                 }
638         }
639
640         XFS_STATS_INC(pb_get);
641
642         /*
643          * Always fill in the block number now, the mapped cases can do
644          * their own overlay of this later.
645          */
646         pb->pb_bn = ioff;
647         pb->pb_count_desired = pb->pb_buffer_length;
648
649         PB_TRACE(pb, "get", (unsigned long)flags);
650         return pb;
651
652  no_buffer:
653         if (flags & (PBF_LOCK | PBF_TRYLOCK))
654                 pagebuf_unlock(pb);
655         pagebuf_rele(pb);
656         return NULL;
657 }
658
659 xfs_buf_t *
660 xfs_buf_read_flags(
661         xfs_buftarg_t           *target,
662         loff_t                  ioff,
663         size_t                  isize,
664         page_buf_flags_t        flags)
665 {
666         xfs_buf_t               *pb;
667
668         flags |= PBF_READ;
669
670         pb = xfs_buf_get_flags(target, ioff, isize, flags);
671         if (pb) {
672                 if (!XFS_BUF_ISDONE(pb)) {
673                         PB_TRACE(pb, "read", (unsigned long)flags);
674                         XFS_STATS_INC(pb_get_read);
675                         pagebuf_iostart(pb, flags);
676                 } else if (flags & PBF_ASYNC) {
677                         PB_TRACE(pb, "read_async", (unsigned long)flags);
678                         /*
679                          * Read ahead call which is already satisfied,
680                          * drop the buffer
681                          */
682                         goto no_buffer;
683                 } else {
684                         PB_TRACE(pb, "read_done", (unsigned long)flags);
685                         /* We do not want read in the flags */
686                         pb->pb_flags &= ~PBF_READ;
687                 }
688         }
689
690         return pb;
691
692  no_buffer:
693         if (flags & (PBF_LOCK | PBF_TRYLOCK))
694                 pagebuf_unlock(pb);
695         pagebuf_rele(pb);
696         return NULL;
697 }
698
699 /*
700  * If we are not low on memory then do the readahead in a deadlock
701  * safe manner.
702  */
703 void
704 pagebuf_readahead(
705         xfs_buftarg_t           *target,
706         loff_t                  ioff,
707         size_t                  isize,
708         page_buf_flags_t        flags)
709 {
710         struct backing_dev_info *bdi;
711
712         bdi = target->pbr_mapping->backing_dev_info;
713         if (bdi_read_congested(bdi))
714                 return;
715
716         flags |= (PBF_TRYLOCK|PBF_ASYNC|PBF_READ_AHEAD);
717         xfs_buf_read_flags(target, ioff, isize, flags);
718 }
719
720 xfs_buf_t *
721 pagebuf_get_empty(
722         size_t                  len,
723         xfs_buftarg_t           *target)
724 {
725         xfs_buf_t               *pb;
726
727         pb = pagebuf_allocate(0);
728         if (pb)
729                 _pagebuf_initialize(pb, target, 0, len, 0);
730         return pb;
731 }
732
733 static inline struct page *
734 mem_to_page(
735         void                    *addr)
736 {
737         if (((unsigned long)addr < VMALLOC_START) ||
738             ((unsigned long)addr >= VMALLOC_END)) {
739                 return virt_to_page(addr);
740         } else {
741                 return vmalloc_to_page(addr);
742         }
743 }
744
745 int
746 pagebuf_associate_memory(
747         xfs_buf_t               *pb,
748         void                    *mem,
749         size_t                  len)
750 {
751         int                     rval;
752         int                     i = 0;
753         size_t                  ptr;
754         size_t                  end, end_cur;
755         off_t                   offset;
756         int                     page_count;
757
758         page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
759         offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
760         if (offset && (len > PAGE_CACHE_SIZE))
761                 page_count++;
762
763         /* Free any previous set of page pointers */
764         if (pb->pb_pages)
765                 _pagebuf_free_pages(pb);
766
767         pb->pb_pages = NULL;
768         pb->pb_addr = mem;
769
770         rval = _pagebuf_get_pages(pb, page_count, 0);
771         if (rval)
772                 return rval;
773
774         pb->pb_offset = offset;
775         ptr = (size_t) mem & PAGE_CACHE_MASK;
776         end = PAGE_CACHE_ALIGN((size_t) mem + len);
777         end_cur = end;
778         /* set up first page */
779         pb->pb_pages[0] = mem_to_page(mem);
780
781         ptr += PAGE_CACHE_SIZE;
782         pb->pb_page_count = ++i;
783         while (ptr < end) {
784                 pb->pb_pages[i] = mem_to_page((void *)ptr);
785                 pb->pb_page_count = ++i;
786                 ptr += PAGE_CACHE_SIZE;
787         }
788         pb->pb_locked = 0;
789
790         pb->pb_count_desired = pb->pb_buffer_length = len;
791         pb->pb_flags |= PBF_MAPPED;
792
793         return 0;
794 }
795
796 xfs_buf_t *
797 pagebuf_get_no_daddr(
798         size_t                  len,
799         xfs_buftarg_t           *target)
800 {
801         size_t                  malloc_len = len;
802         xfs_buf_t               *bp;
803         void                    *data;
804         int                     error;
805
806         bp = pagebuf_allocate(0);
807         if (unlikely(bp == NULL))
808                 goto fail;
809         _pagebuf_initialize(bp, target, 0, len, 0);
810
811  try_again:
812         data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL);
813         if (unlikely(data == NULL))
814                 goto fail_free_buf;
815
816         /* check whether alignment matches.. */
817         if ((__psunsigned_t)data !=
818             ((__psunsigned_t)data & ~target->pbr_smask)) {
819                 /* .. else double the size and try again */
820                 kmem_free(data, malloc_len);
821                 malloc_len <<= 1;
822                 goto try_again;
823         }
824
825         error = pagebuf_associate_memory(bp, data, len);
826         if (error)
827                 goto fail_free_mem;
828         bp->pb_flags |= _PBF_KMEM_ALLOC;
829
830         pagebuf_unlock(bp);
831
832         PB_TRACE(bp, "no_daddr", data);
833         return bp;
834  fail_free_mem:
835         kmem_free(data, malloc_len);
836  fail_free_buf:
837         pagebuf_free(bp);
838  fail:
839         return NULL;
840 }
841
842 /*
843  *      pagebuf_hold
844  *
845  *      Increment reference count on buffer, to hold the buffer concurrently
846  *      with another thread which may release (free) the buffer asynchronously.
847  *
848  *      Must hold the buffer already to call this function.
849  */
850 void
851 pagebuf_hold(
852         xfs_buf_t               *pb)
853 {
854         atomic_inc(&pb->pb_hold);
855         PB_TRACE(pb, "hold", 0);
856 }
857
858 /*
859  *      pagebuf_rele
860  *
861  *      pagebuf_rele releases a hold on the specified buffer.  If the
862  *      the hold count is 1, pagebuf_rele calls pagebuf_free.
863  */
864 void
865 pagebuf_rele(
866         xfs_buf_t               *pb)
867 {
868         xfs_bufhash_t           *hash = pb->pb_hash;
869
870         PB_TRACE(pb, "rele", pb->pb_relse);
871
872         /*
873          * pagebuf_lookup buffers are not hashed, not delayed write,
874          * and don't have their own release routines.  Special case.
875          */
876         if (unlikely(!hash)) {
877                 ASSERT(!pb->pb_relse);
878                 if (atomic_dec_and_test(&pb->pb_hold))
879                         xfs_buf_free(pb);
880                 return;
881         }
882
883         if (atomic_dec_and_lock(&pb->pb_hold, &hash->bh_lock)) {
884                 int             do_free = 1;
885
886                 if (pb->pb_relse) {
887                         atomic_inc(&pb->pb_hold);
888                         spin_unlock(&hash->bh_lock);
889                         (*(pb->pb_relse)) (pb);
890                         spin_lock(&hash->bh_lock);
891                         do_free = 0;
892                 }
893
894                 if (pb->pb_flags & PBF_FS_MANAGED) {
895                         do_free = 0;
896                 }
897
898                 if (do_free) {
899                         ASSERT((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == 0);
900                         list_del_init(&pb->pb_hash_list);
901                         spin_unlock(&hash->bh_lock);
902                         pagebuf_free(pb);
903                 } else {
904                         spin_unlock(&hash->bh_lock);
905                 }
906         } else {
907                 /*
908                  * Catch reference count leaks
909                  */
910                 ASSERT(atomic_read(&pb->pb_hold) >= 0);
911         }
912 }
913
914
915 /*
916  *      Mutual exclusion on buffers.  Locking model:
917  *
918  *      Buffers associated with inodes for which buffer locking
919  *      is not enabled are not protected by semaphores, and are
920  *      assumed to be exclusively owned by the caller.  There is a
921  *      spinlock in the buffer, used by the caller when concurrent
922  *      access is possible.
923  */
924
925 /*
926  *      pagebuf_cond_lock
927  *
928  *      pagebuf_cond_lock locks a buffer object, if it is not already locked.
929  *      Note that this in no way
930  *      locks the underlying pages, so it is only useful for synchronizing
931  *      concurrent use of page buffer objects, not for synchronizing independent
932  *      access to the underlying pages.
933  */
934 int
935 pagebuf_cond_lock(                      /* lock buffer, if not locked   */
936                                         /* returns -EBUSY if locked)    */
937         xfs_buf_t               *pb)
938 {
939         int                     locked;
940
941         locked = down_trylock(&pb->pb_sema) == 0;
942         if (locked) {
943                 PB_SET_OWNER(pb);
944         }
945         PB_TRACE(pb, "cond_lock", (long)locked);
946         return(locked ? 0 : -EBUSY);
947 }
948
949 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
950 /*
951  *      pagebuf_lock_value
952  *
953  *      Return lock value for a pagebuf
954  */
955 int
956 pagebuf_lock_value(
957         xfs_buf_t               *pb)
958 {
959         return(atomic_read(&pb->pb_sema.count));
960 }
961 #endif
962
963 /*
964  *      pagebuf_lock
965  *
966  *      pagebuf_lock locks a buffer object.  Note that this in no way
967  *      locks the underlying pages, so it is only useful for synchronizing
968  *      concurrent use of page buffer objects, not for synchronizing independent
969  *      access to the underlying pages.
970  */
971 int
972 pagebuf_lock(
973         xfs_buf_t               *pb)
974 {
975         PB_TRACE(pb, "lock", 0);
976         if (atomic_read(&pb->pb_io_remaining))
977                 blk_run_address_space(pb->pb_target->pbr_mapping);
978         down(&pb->pb_sema);
979         PB_SET_OWNER(pb);
980         PB_TRACE(pb, "locked", 0);
981         return 0;
982 }
983
984 /*
985  *      pagebuf_unlock
986  *
987  *      pagebuf_unlock releases the lock on the buffer object created by
988  *      pagebuf_lock or pagebuf_cond_lock (not any pinning of underlying pages
989  *      created by pagebuf_pin).
990  *
991  *      If the buffer is marked delwri but is not queued, do so before we
992  *      unlock the buffer as we need to set flags correctly. We also need to
993  *      take a reference for the delwri queue because the unlocker is going to
994  *      drop their's and they don't know we just queued it.
995  */
996 void
997 pagebuf_unlock(                         /* unlock buffer                */
998         xfs_buf_t               *pb)    /* buffer to unlock             */
999 {
1000         if ((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == PBF_DELWRI) {
1001                 atomic_inc(&pb->pb_hold);
1002                 pb->pb_flags |= PBF_ASYNC;
1003                 pagebuf_delwri_queue(pb, 0);
1004         }
1005
1006         PB_CLEAR_OWNER(pb);
1007         up(&pb->pb_sema);
1008         PB_TRACE(pb, "unlock", 0);
1009 }
1010
1011
1012 /*
1013  *      Pinning Buffer Storage in Memory
1014  */
1015
1016 /*
1017  *      pagebuf_pin
1018  *
1019  *      pagebuf_pin locks all of the memory represented by a buffer in
1020  *      memory.  Multiple calls to pagebuf_pin and pagebuf_unpin, for
1021  *      the same or different buffers affecting a given page, will
1022  *      properly count the number of outstanding "pin" requests.  The
1023  *      buffer may be released after the pagebuf_pin and a different
1024  *      buffer used when calling pagebuf_unpin, if desired.
1025  *      pagebuf_pin should be used by the file system when it wants be
1026  *      assured that no attempt will be made to force the affected
1027  *      memory to disk.  It does not assure that a given logical page
1028  *      will not be moved to a different physical page.
1029  */
1030 void
1031 pagebuf_pin(
1032         xfs_buf_t               *pb)
1033 {
1034         atomic_inc(&pb->pb_pin_count);
1035         PB_TRACE(pb, "pin", (long)pb->pb_pin_count.counter);
1036 }
1037
1038 /*
1039  *      pagebuf_unpin
1040  *
1041  *      pagebuf_unpin reverses the locking of memory performed by
1042  *      pagebuf_pin.  Note that both functions affected the logical
1043  *      pages associated with the buffer, not the buffer itself.
1044  */
1045 void
1046 pagebuf_unpin(
1047         xfs_buf_t               *pb)
1048 {
1049         if (atomic_dec_and_test(&pb->pb_pin_count)) {
1050                 wake_up_all(&pb->pb_waiters);
1051         }
1052         PB_TRACE(pb, "unpin", (long)pb->pb_pin_count.counter);
1053 }
1054
1055 int
1056 pagebuf_ispin(
1057         xfs_buf_t               *pb)
1058 {
1059         return atomic_read(&pb->pb_pin_count);
1060 }
1061
1062 /*
1063  *      pagebuf_wait_unpin
1064  *
1065  *      pagebuf_wait_unpin waits until all of the memory associated
1066  *      with the buffer is not longer locked in memory.  It returns
1067  *      immediately if none of the affected pages are locked.
1068  */
1069 static inline void
1070 _pagebuf_wait_unpin(
1071         xfs_buf_t               *pb)
1072 {
1073         DECLARE_WAITQUEUE       (wait, current);
1074
1075         if (atomic_read(&pb->pb_pin_count) == 0)
1076                 return;
1077
1078         add_wait_queue(&pb->pb_waiters, &wait);
1079         for (;;) {
1080                 set_current_state(TASK_UNINTERRUPTIBLE);
1081                 if (atomic_read(&pb->pb_pin_count) == 0)
1082                         break;
1083                 if (atomic_read(&pb->pb_io_remaining))
1084                         blk_run_address_space(pb->pb_target->pbr_mapping);
1085                 schedule();
1086         }
1087         remove_wait_queue(&pb->pb_waiters, &wait);
1088         set_current_state(TASK_RUNNING);
1089 }
1090
1091 /*
1092  *      Buffer Utility Routines
1093  */
1094
1095 /*
1096  *      pagebuf_iodone
1097  *
1098  *      pagebuf_iodone marks a buffer for which I/O is in progress
1099  *      done with respect to that I/O.  The pb_iodone routine, if
1100  *      present, will be called as a side-effect.
1101  */
1102 STATIC void
1103 pagebuf_iodone_work(
1104         void                    *v)
1105 {
1106         xfs_buf_t               *bp = (xfs_buf_t *)v;
1107
1108         if (bp->pb_iodone)
1109                 (*(bp->pb_iodone))(bp);
1110         else if (bp->pb_flags & PBF_ASYNC)
1111                 xfs_buf_relse(bp);
1112 }
1113
1114 void
1115 pagebuf_iodone(
1116         xfs_buf_t               *pb,
1117         int                     schedule)
1118 {
1119         pb->pb_flags &= ~(PBF_READ | PBF_WRITE);
1120         if (pb->pb_error == 0)
1121                 pb->pb_flags &= ~PBF_NONE;
1122
1123         PB_TRACE(pb, "iodone", pb->pb_iodone);
1124
1125         if ((pb->pb_iodone) || (pb->pb_flags & PBF_ASYNC)) {
1126                 if (schedule) {
1127                         INIT_WORK(&pb->pb_iodone_work, pagebuf_iodone_work, pb);
1128                         queue_work(xfslogd_workqueue, &pb->pb_iodone_work);
1129                 } else {
1130                         pagebuf_iodone_work(pb);
1131                 }
1132         } else {
1133                 up(&pb->pb_iodonesema);
1134         }
1135 }
1136
1137 /*
1138  *      pagebuf_ioerror
1139  *
1140  *      pagebuf_ioerror sets the error code for a buffer.
1141  */
1142 void
1143 pagebuf_ioerror(                        /* mark/clear buffer error flag */
1144         xfs_buf_t               *pb,    /* buffer to mark               */
1145         int                     error)  /* error to store (0 if none)   */
1146 {
1147         ASSERT(error >= 0 && error <= 0xffff);
1148         pb->pb_error = (unsigned short)error;
1149         PB_TRACE(pb, "ioerror", (unsigned long)error);
1150 }
1151
1152 /*
1153  *      pagebuf_iostart
1154  *
1155  *      pagebuf_iostart initiates I/O on a buffer, based on the flags supplied.
1156  *      If necessary, it will arrange for any disk space allocation required,
1157  *      and it will break up the request if the block mappings require it.
1158  *      The pb_iodone routine in the buffer supplied will only be called
1159  *      when all of the subsidiary I/O requests, if any, have been completed.
1160  *      pagebuf_iostart calls the pagebuf_ioinitiate routine or
1161  *      pagebuf_iorequest, if the former routine is not defined, to start
1162  *      the I/O on a given low-level request.
1163  */
1164 int
1165 pagebuf_iostart(                        /* start I/O on a buffer          */
1166         xfs_buf_t               *pb,    /* buffer to start                */
1167         page_buf_flags_t        flags)  /* PBF_LOCK, PBF_ASYNC, PBF_READ, */
1168                                         /* PBF_WRITE, PBF_DELWRI,         */
1169                                         /* PBF_DONT_BLOCK                 */
1170 {
1171         int                     status = 0;
1172
1173         PB_TRACE(pb, "iostart", (unsigned long)flags);
1174
1175         if (flags & PBF_DELWRI) {
1176                 pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC);
1177                 pb->pb_flags |= flags & (PBF_DELWRI | PBF_ASYNC);
1178                 pagebuf_delwri_queue(pb, 1);
1179                 return status;
1180         }
1181
1182         pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC | PBF_DELWRI | \
1183                         PBF_READ_AHEAD | _PBF_RUN_QUEUES);
1184         pb->pb_flags |= flags & (PBF_READ | PBF_WRITE | PBF_ASYNC | \
1185                         PBF_READ_AHEAD | _PBF_RUN_QUEUES);
1186
1187         BUG_ON(pb->pb_bn == XFS_BUF_DADDR_NULL);
1188
1189         /* For writes allow an alternate strategy routine to precede
1190          * the actual I/O request (which may not be issued at all in
1191          * a shutdown situation, for example).
1192          */
1193         status = (flags & PBF_WRITE) ?
1194                 pagebuf_iostrategy(pb) : pagebuf_iorequest(pb);
1195
1196         /* Wait for I/O if we are not an async request.
1197          * Note: async I/O request completion will release the buffer,
1198          * and that can already be done by this point.  So using the
1199          * buffer pointer from here on, after async I/O, is invalid.
1200          */
1201         if (!status && !(flags & PBF_ASYNC))
1202                 status = pagebuf_iowait(pb);
1203
1204         return status;
1205 }
1206
1207 /*
1208  * Helper routine for pagebuf_iorequest
1209  */
1210
1211 STATIC __inline__ int
1212 _pagebuf_iolocked(
1213         xfs_buf_t               *pb)
1214 {
1215         ASSERT(pb->pb_flags & (PBF_READ|PBF_WRITE));
1216         if (pb->pb_flags & PBF_READ)
1217                 return pb->pb_locked;
1218         return 0;
1219 }
1220
1221 STATIC __inline__ void
1222 _pagebuf_iodone(
1223         xfs_buf_t               *pb,
1224         int                     schedule)
1225 {
1226         if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) {
1227                 pb->pb_locked = 0;
1228                 pagebuf_iodone(pb, schedule);
1229         }
1230 }
1231
1232 STATIC int
1233 bio_end_io_pagebuf(
1234         struct bio              *bio,
1235         unsigned int            bytes_done,
1236         int                     error)
1237 {
1238         xfs_buf_t               *pb = (xfs_buf_t *)bio->bi_private;
1239         unsigned int            blocksize = pb->pb_target->pbr_bsize;
1240         struct bio_vec          *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1241
1242         if (bio->bi_size)
1243                 return 1;
1244
1245         if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1246                 pb->pb_error = EIO;
1247
1248         do {
1249                 struct page     *page = bvec->bv_page;
1250
1251                 if (unlikely(pb->pb_error)) {
1252                         if (pb->pb_flags & PBF_READ)
1253                                 ClearPageUptodate(page);
1254                         SetPageError(page);
1255                 } else if (blocksize == PAGE_CACHE_SIZE) {
1256                         SetPageUptodate(page);
1257                 } else if (!PagePrivate(page) &&
1258                                 (pb->pb_flags & _PBF_PAGE_CACHE)) {
1259                         set_page_region(page, bvec->bv_offset, bvec->bv_len);
1260                 }
1261
1262                 if (--bvec >= bio->bi_io_vec)
1263                         prefetchw(&bvec->bv_page->flags);
1264
1265                 if (_pagebuf_iolocked(pb)) {
1266                         unlock_page(page);
1267                 }
1268         } while (bvec >= bio->bi_io_vec);
1269
1270         _pagebuf_iodone(pb, 1);
1271         bio_put(bio);
1272         return 0;
1273 }
1274
1275 STATIC void
1276 _pagebuf_ioapply(
1277         xfs_buf_t               *pb)
1278 {
1279         int                     i, rw, map_i, total_nr_pages, nr_pages;
1280         struct bio              *bio;
1281         int                     offset = pb->pb_offset;
1282         int                     size = pb->pb_count_desired;
1283         sector_t                sector = pb->pb_bn;
1284         unsigned int            blocksize = pb->pb_target->pbr_bsize;
1285         int                     locking = _pagebuf_iolocked(pb);
1286
1287         total_nr_pages = pb->pb_page_count;
1288         map_i = 0;
1289
1290         if (pb->pb_flags & _PBF_RUN_QUEUES) {
1291                 pb->pb_flags &= ~_PBF_RUN_QUEUES;
1292                 rw = (pb->pb_flags & PBF_READ) ? READ_SYNC : WRITE_SYNC;
1293         } else {
1294                 rw = (pb->pb_flags & PBF_READ) ? READ : WRITE;
1295         }
1296
1297         /* Special code path for reading a sub page size pagebuf in --
1298          * we populate up the whole page, and hence the other metadata
1299          * in the same page.  This optimization is only valid when the
1300          * filesystem block size and the page size are equal.
1301          */
1302         if ((pb->pb_buffer_length < PAGE_CACHE_SIZE) &&
1303             (pb->pb_flags & PBF_READ) && locking &&
1304             (blocksize == PAGE_CACHE_SIZE)) {
1305                 bio = bio_alloc(GFP_NOIO, 1);
1306
1307                 bio->bi_bdev = pb->pb_target->pbr_bdev;
1308                 bio->bi_sector = sector - (offset >> BBSHIFT);
1309                 bio->bi_end_io = bio_end_io_pagebuf;
1310                 bio->bi_private = pb;
1311
1312                 bio_add_page(bio, pb->pb_pages[0], PAGE_CACHE_SIZE, 0);
1313                 size = 0;
1314
1315                 atomic_inc(&pb->pb_io_remaining);
1316
1317                 goto submit_io;
1318         }
1319
1320         /* Lock down the pages which we need to for the request */
1321         if (locking && (pb->pb_flags & PBF_WRITE) && (pb->pb_locked == 0)) {
1322                 for (i = 0; size; i++) {
1323                         int             nbytes = PAGE_CACHE_SIZE - offset;
1324                         struct page     *page = pb->pb_pages[i];
1325
1326                         if (nbytes > size)
1327                                 nbytes = size;
1328
1329                         lock_page(page);
1330
1331                         size -= nbytes;
1332                         offset = 0;
1333                 }
1334                 offset = pb->pb_offset;
1335                 size = pb->pb_count_desired;
1336         }
1337
1338 next_chunk:
1339         atomic_inc(&pb->pb_io_remaining);
1340         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1341         if (nr_pages > total_nr_pages)
1342                 nr_pages = total_nr_pages;
1343
1344         bio = bio_alloc(GFP_NOIO, nr_pages);
1345         bio->bi_bdev = pb->pb_target->pbr_bdev;
1346         bio->bi_sector = sector;
1347         bio->bi_end_io = bio_end_io_pagebuf;
1348         bio->bi_private = pb;
1349
1350         for (; size && nr_pages; nr_pages--, map_i++) {
1351                 int     nbytes = PAGE_CACHE_SIZE - offset;
1352
1353                 if (nbytes > size)
1354                         nbytes = size;
1355
1356                 if (bio_add_page(bio, pb->pb_pages[map_i],
1357                                         nbytes, offset) < nbytes)
1358                         break;
1359
1360                 offset = 0;
1361                 sector += nbytes >> BBSHIFT;
1362                 size -= nbytes;
1363                 total_nr_pages--;
1364         }
1365
1366 submit_io:
1367         if (likely(bio->bi_size)) {
1368                 submit_bio(rw, bio);
1369                 if (size)
1370                         goto next_chunk;
1371         } else {
1372                 bio_put(bio);
1373                 pagebuf_ioerror(pb, EIO);
1374         }
1375 }
1376
1377 /*
1378  *      pagebuf_iorequest -- the core I/O request routine.
1379  */
1380 int
1381 pagebuf_iorequest(                      /* start real I/O               */
1382         xfs_buf_t               *pb)    /* buffer to convey to device   */
1383 {
1384         PB_TRACE(pb, "iorequest", 0);
1385
1386         if (pb->pb_flags & PBF_DELWRI) {
1387                 pagebuf_delwri_queue(pb, 1);
1388                 return 0;
1389         }
1390
1391         if (pb->pb_flags & PBF_WRITE) {
1392                 _pagebuf_wait_unpin(pb);
1393         }
1394
1395         pagebuf_hold(pb);
1396
1397         /* Set the count to 1 initially, this will stop an I/O
1398          * completion callout which happens before we have started
1399          * all the I/O from calling pagebuf_iodone too early.
1400          */
1401         atomic_set(&pb->pb_io_remaining, 1);
1402         _pagebuf_ioapply(pb);
1403         _pagebuf_iodone(pb, 0);
1404
1405         pagebuf_rele(pb);
1406         return 0;
1407 }
1408
1409 /*
1410  *      pagebuf_iowait
1411  *
1412  *      pagebuf_iowait waits for I/O to complete on the buffer supplied.
1413  *      It returns immediately if no I/O is pending.  In any case, it returns
1414  *      the error code, if any, or 0 if there is no error.
1415  */
1416 int
1417 pagebuf_iowait(
1418         xfs_buf_t               *pb)
1419 {
1420         PB_TRACE(pb, "iowait", 0);
1421         if (atomic_read(&pb->pb_io_remaining))
1422                 blk_run_address_space(pb->pb_target->pbr_mapping);
1423         down(&pb->pb_iodonesema);
1424         PB_TRACE(pb, "iowaited", (long)pb->pb_error);
1425         return pb->pb_error;
1426 }
1427
1428 caddr_t
1429 pagebuf_offset(
1430         xfs_buf_t               *pb,
1431         size_t                  offset)
1432 {
1433         struct page             *page;
1434
1435         offset += pb->pb_offset;
1436
1437         page = pb->pb_pages[offset >> PAGE_CACHE_SHIFT];
1438         return (caddr_t) page_address(page) + (offset & (PAGE_CACHE_SIZE - 1));
1439 }
1440
1441 /*
1442  *      pagebuf_iomove
1443  *
1444  *      Move data into or out of a buffer.
1445  */
1446 void
1447 pagebuf_iomove(
1448         xfs_buf_t               *pb,    /* buffer to process            */
1449         size_t                  boff,   /* starting buffer offset       */
1450         size_t                  bsize,  /* length to copy               */
1451         caddr_t                 data,   /* data address                 */
1452         page_buf_rw_t           mode)   /* read/write flag              */
1453 {
1454         size_t                  bend, cpoff, csize;
1455         struct page             *page;
1456
1457         bend = boff + bsize;
1458         while (boff < bend) {
1459                 page = pb->pb_pages[page_buf_btoct(boff + pb->pb_offset)];
1460                 cpoff = page_buf_poff(boff + pb->pb_offset);
1461                 csize = min_t(size_t,
1462                               PAGE_CACHE_SIZE-cpoff, pb->pb_count_desired-boff);
1463
1464                 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1465
1466                 switch (mode) {
1467                 case PBRW_ZERO:
1468                         memset(page_address(page) + cpoff, 0, csize);
1469                         break;
1470                 case PBRW_READ:
1471                         memcpy(data, page_address(page) + cpoff, csize);
1472                         break;
1473                 case PBRW_WRITE:
1474                         memcpy(page_address(page) + cpoff, data, csize);
1475                 }
1476
1477                 boff += csize;
1478                 data += csize;
1479         }
1480 }
1481
1482 /*
1483  *      Handling of buftargs.
1484  */
1485
1486 /*
1487  * Wait for any bufs with callbacks that have been submitted but
1488  * have not yet returned... walk the hash list for the target.
1489  */
1490 void
1491 xfs_wait_buftarg(
1492         xfs_buftarg_t   *btp)
1493 {
1494         xfs_buf_t       *bp, *n;
1495         xfs_bufhash_t   *hash;
1496         uint            i;
1497
1498         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1499                 hash = &btp->bt_hash[i];
1500 again:
1501                 spin_lock(&hash->bh_lock);
1502                 list_for_each_entry_safe(bp, n, &hash->bh_list, pb_hash_list) {
1503                         ASSERT(btp == bp->pb_target);
1504                         if (!(bp->pb_flags & PBF_FS_MANAGED)) {
1505                                 spin_unlock(&hash->bh_lock);
1506                                 /*
1507                                  * Catch superblock reference count leaks
1508                                  * immediately
1509                                  */
1510                                 BUG_ON(bp->pb_bn == 0);
1511                                 delay(100);
1512                                 goto again;
1513                         }
1514                 }
1515                 spin_unlock(&hash->bh_lock);
1516         }
1517 }
1518
1519 /*
1520  * Allocate buffer hash table for a given target.
1521  * For devices containing metadata (i.e. not the log/realtime devices)
1522  * we need to allocate a much larger hash table.
1523  */
1524 STATIC void
1525 xfs_alloc_bufhash(
1526         xfs_buftarg_t           *btp,
1527         int                     external)
1528 {
1529         unsigned int            i;
1530
1531         btp->bt_hashshift = external ? 3 : 8;   /* 8 or 256 buckets */
1532         btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1533         btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1534                                         sizeof(xfs_bufhash_t), KM_SLEEP);
1535         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1536                 spin_lock_init(&btp->bt_hash[i].bh_lock);
1537                 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1538         }
1539 }
1540
1541 STATIC void
1542 xfs_free_bufhash(
1543         xfs_buftarg_t           *btp)
1544 {
1545         kmem_free(btp->bt_hash,
1546                         (1 << btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1547         btp->bt_hash = NULL;
1548 }
1549
1550 void
1551 xfs_free_buftarg(
1552         xfs_buftarg_t           *btp,
1553         int                     external)
1554 {
1555         xfs_flush_buftarg(btp, 1);
1556         if (external)
1557                 xfs_blkdev_put(btp->pbr_bdev);
1558         xfs_free_bufhash(btp);
1559         iput(btp->pbr_mapping->host);
1560         kmem_free(btp, sizeof(*btp));
1561 }
1562
1563 STATIC int
1564 xfs_setsize_buftarg_flags(
1565         xfs_buftarg_t           *btp,
1566         unsigned int            blocksize,
1567         unsigned int            sectorsize,
1568         int                     verbose)
1569 {
1570         btp->pbr_bsize = blocksize;
1571         btp->pbr_sshift = ffs(sectorsize) - 1;
1572         btp->pbr_smask = sectorsize - 1;
1573
1574         if (set_blocksize(btp->pbr_bdev, sectorsize)) {
1575                 printk(KERN_WARNING
1576                         "XFS: Cannot set_blocksize to %u on device %s\n",
1577                         sectorsize, XFS_BUFTARG_NAME(btp));
1578                 return EINVAL;
1579         }
1580
1581         if (verbose &&
1582             (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1583                 printk(KERN_WARNING
1584                         "XFS: %u byte sectors in use on device %s.  "
1585                         "This is suboptimal; %u or greater is ideal.\n",
1586                         sectorsize, XFS_BUFTARG_NAME(btp),
1587                         (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1588         }
1589
1590         return 0;
1591 }
1592
1593 /*
1594 * When allocating the initial buffer target we have not yet
1595 * read in the superblock, so don't know what sized sectors
1596 * are being used is at this early stage.  Play safe.
1597 */
1598 STATIC int
1599 xfs_setsize_buftarg_early(
1600         xfs_buftarg_t           *btp,
1601         struct block_device     *bdev)
1602 {
1603         return xfs_setsize_buftarg_flags(btp,
1604                         PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1605 }
1606
1607 int
1608 xfs_setsize_buftarg(
1609         xfs_buftarg_t           *btp,
1610         unsigned int            blocksize,
1611         unsigned int            sectorsize)
1612 {
1613         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1614 }
1615
1616 STATIC int
1617 xfs_mapping_buftarg(
1618         xfs_buftarg_t           *btp,
1619         struct block_device     *bdev)
1620 {
1621         struct backing_dev_info *bdi;
1622         struct inode            *inode;
1623         struct address_space    *mapping;
1624         static struct address_space_operations mapping_aops = {
1625                 .sync_page = block_sync_page,
1626         };
1627
1628         inode = new_inode(bdev->bd_inode->i_sb);
1629         if (!inode) {
1630                 printk(KERN_WARNING
1631                         "XFS: Cannot allocate mapping inode for device %s\n",
1632                         XFS_BUFTARG_NAME(btp));
1633                 return ENOMEM;
1634         }
1635         inode->i_mode = S_IFBLK;
1636         inode->i_bdev = bdev;
1637         inode->i_rdev = bdev->bd_dev;
1638         bdi = blk_get_backing_dev_info(bdev);
1639         if (!bdi)
1640                 bdi = &default_backing_dev_info;
1641         mapping = &inode->i_data;
1642         mapping->a_ops = &mapping_aops;
1643         mapping->backing_dev_info = bdi;
1644         mapping_set_gfp_mask(mapping, GFP_NOFS);
1645         btp->pbr_mapping = mapping;
1646         return 0;
1647 }
1648
1649 xfs_buftarg_t *
1650 xfs_alloc_buftarg(
1651         struct block_device     *bdev,
1652         int                     external)
1653 {
1654         xfs_buftarg_t           *btp;
1655
1656         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1657
1658         btp->pbr_dev =  bdev->bd_dev;
1659         btp->pbr_bdev = bdev;
1660         if (xfs_setsize_buftarg_early(btp, bdev))
1661                 goto error;
1662         if (xfs_mapping_buftarg(btp, bdev))
1663                 goto error;
1664         xfs_alloc_bufhash(btp, external);
1665         return btp;
1666
1667 error:
1668         kmem_free(btp, sizeof(*btp));
1669         return NULL;
1670 }
1671
1672
1673 /*
1674  * Pagebuf delayed write buffer handling
1675  */
1676
1677 STATIC LIST_HEAD(pbd_delwrite_queue);
1678 STATIC DEFINE_SPINLOCK(pbd_delwrite_lock);
1679
1680 STATIC void
1681 pagebuf_delwri_queue(
1682         xfs_buf_t               *pb,
1683         int                     unlock)
1684 {
1685         PB_TRACE(pb, "delwri_q", (long)unlock);
1686         ASSERT((pb->pb_flags & (PBF_DELWRI|PBF_ASYNC)) ==
1687                                         (PBF_DELWRI|PBF_ASYNC));
1688
1689         spin_lock(&pbd_delwrite_lock);
1690         /* If already in the queue, dequeue and place at tail */
1691         if (!list_empty(&pb->pb_list)) {
1692                 ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
1693                 if (unlock) {
1694                         atomic_dec(&pb->pb_hold);
1695                 }
1696                 list_del(&pb->pb_list);
1697         }
1698
1699         pb->pb_flags |= _PBF_DELWRI_Q;
1700         list_add_tail(&pb->pb_list, &pbd_delwrite_queue);
1701         pb->pb_queuetime = jiffies;
1702         spin_unlock(&pbd_delwrite_lock);
1703
1704         if (unlock)
1705                 pagebuf_unlock(pb);
1706 }
1707
1708 void
1709 pagebuf_delwri_dequeue(
1710         xfs_buf_t               *pb)
1711 {
1712         int                     dequeued = 0;
1713
1714         spin_lock(&pbd_delwrite_lock);
1715         if ((pb->pb_flags & PBF_DELWRI) && !list_empty(&pb->pb_list)) {
1716                 ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
1717                 list_del_init(&pb->pb_list);
1718                 dequeued = 1;
1719         }
1720         pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
1721         spin_unlock(&pbd_delwrite_lock);
1722
1723         if (dequeued)
1724                 pagebuf_rele(pb);
1725
1726         PB_TRACE(pb, "delwri_dq", (long)dequeued);
1727 }
1728
1729 STATIC void
1730 pagebuf_runall_queues(
1731         struct workqueue_struct *queue)
1732 {
1733         flush_workqueue(queue);
1734 }
1735
1736 /* Defines for pagebuf daemon */
1737 STATIC struct task_struct *xfsbufd_task;
1738 STATIC int xfsbufd_force_flush;
1739 STATIC int xfsbufd_force_sleep;
1740
1741 STATIC int
1742 xfsbufd_wakeup(
1743         int             priority,
1744         gfp_t           mask)
1745 {
1746         if (xfsbufd_force_sleep)
1747                 return 0;
1748         xfsbufd_force_flush = 1;
1749         barrier();
1750         wake_up_process(xfsbufd_task);
1751         return 0;
1752 }
1753
1754 STATIC int
1755 xfsbufd(
1756         void                    *data)
1757 {
1758         struct list_head        tmp;
1759         unsigned long           age;
1760         xfs_buftarg_t           *target;
1761         xfs_buf_t               *pb, *n;
1762
1763         current->flags |= PF_MEMALLOC;
1764
1765         INIT_LIST_HEAD(&tmp);
1766         do {
1767                 if (unlikely(freezing(current))) {
1768                         xfsbufd_force_sleep = 1;
1769                         refrigerator();
1770                 } else {
1771                         xfsbufd_force_sleep = 0;
1772                 }
1773
1774                 schedule_timeout_interruptible
1775                         (xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1776
1777                 age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1778                 spin_lock(&pbd_delwrite_lock);
1779                 list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
1780                         PB_TRACE(pb, "walkq1", (long)pagebuf_ispin(pb));
1781                         ASSERT(pb->pb_flags & PBF_DELWRI);
1782
1783                         if (!pagebuf_ispin(pb) && !pagebuf_cond_lock(pb)) {
1784                                 if (!xfsbufd_force_flush &&
1785                                     time_before(jiffies,
1786                                                 pb->pb_queuetime + age)) {
1787                                         pagebuf_unlock(pb);
1788                                         break;
1789                                 }
1790
1791                                 pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
1792                                 pb->pb_flags |= PBF_WRITE;
1793                                 list_move(&pb->pb_list, &tmp);
1794                         }
1795                 }
1796                 spin_unlock(&pbd_delwrite_lock);
1797
1798                 while (!list_empty(&tmp)) {
1799                         pb = list_entry(tmp.next, xfs_buf_t, pb_list);
1800                         target = pb->pb_target;
1801
1802                         list_del_init(&pb->pb_list);
1803                         pagebuf_iostrategy(pb);
1804
1805                         blk_run_address_space(target->pbr_mapping);
1806                 }
1807
1808                 if (as_list_len > 0)
1809                         purge_addresses();
1810
1811                 xfsbufd_force_flush = 0;
1812         } while (!kthread_should_stop());
1813
1814         return 0;
1815 }
1816
1817 /*
1818  * Go through all incore buffers, and release buffers if they belong to
1819  * the given device. This is used in filesystem error handling to
1820  * preserve the consistency of its metadata.
1821  */
1822 int
1823 xfs_flush_buftarg(
1824         xfs_buftarg_t           *target,
1825         int                     wait)
1826 {
1827         struct list_head        tmp;
1828         xfs_buf_t               *pb, *n;
1829         int                     pincount = 0;
1830
1831         pagebuf_runall_queues(xfsdatad_workqueue);
1832         pagebuf_runall_queues(xfslogd_workqueue);
1833
1834         INIT_LIST_HEAD(&tmp);
1835         spin_lock(&pbd_delwrite_lock);
1836         list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
1837
1838                 if (pb->pb_target != target)
1839                         continue;
1840
1841                 ASSERT(pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q));
1842                 PB_TRACE(pb, "walkq2", (long)pagebuf_ispin(pb));
1843                 if (pagebuf_ispin(pb)) {
1844                         pincount++;
1845                         continue;
1846                 }
1847
1848                 list_move(&pb->pb_list, &tmp);
1849         }
1850         spin_unlock(&pbd_delwrite_lock);
1851
1852         /*
1853          * Dropped the delayed write list lock, now walk the temporary list
1854          */
1855         list_for_each_entry_safe(pb, n, &tmp, pb_list) {
1856                 pagebuf_lock(pb);
1857                 pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
1858                 pb->pb_flags |= PBF_WRITE;
1859                 if (wait)
1860                         pb->pb_flags &= ~PBF_ASYNC;
1861                 else
1862                         list_del_init(&pb->pb_list);
1863
1864                 pagebuf_iostrategy(pb);
1865         }
1866
1867         /*
1868          * Remaining list items must be flushed before returning
1869          */
1870         while (!list_empty(&tmp)) {
1871                 pb = list_entry(tmp.next, xfs_buf_t, pb_list);
1872
1873                 list_del_init(&pb->pb_list);
1874                 xfs_iowait(pb);
1875                 xfs_buf_relse(pb);
1876         }
1877
1878         if (wait)
1879                 blk_run_address_space(target->pbr_mapping);
1880
1881         return pincount;
1882 }
1883
1884 int __init
1885 pagebuf_init(void)
1886 {
1887         int             error = -ENOMEM;
1888
1889 #ifdef PAGEBUF_TRACE
1890         pagebuf_trace_buf = ktrace_alloc(PAGEBUF_TRACE_SIZE, KM_SLEEP);
1891 #endif
1892
1893         pagebuf_zone = kmem_zone_init(sizeof(xfs_buf_t), "xfs_buf");
1894         if (!pagebuf_zone)
1895                 goto out_free_trace_buf;
1896
1897         xfslogd_workqueue = create_workqueue("xfslogd");
1898         if (!xfslogd_workqueue)
1899                 goto out_free_buf_zone;
1900
1901         xfsdatad_workqueue = create_workqueue("xfsdatad");
1902         if (!xfsdatad_workqueue)
1903                 goto out_destroy_xfslogd_workqueue;
1904
1905         xfsbufd_task = kthread_run(xfsbufd, NULL, "xfsbufd");
1906         if (IS_ERR(xfsbufd_task)) {
1907                 error = PTR_ERR(xfsbufd_task);
1908                 goto out_destroy_xfsdatad_workqueue;
1909         }
1910
1911         pagebuf_shake = kmem_shake_register(xfsbufd_wakeup);
1912         if (!pagebuf_shake)
1913                 goto out_stop_xfsbufd;
1914
1915         return 0;
1916
1917  out_stop_xfsbufd:
1918         kthread_stop(xfsbufd_task);
1919  out_destroy_xfsdatad_workqueue:
1920         destroy_workqueue(xfsdatad_workqueue);
1921  out_destroy_xfslogd_workqueue:
1922         destroy_workqueue(xfslogd_workqueue);
1923  out_free_buf_zone:
1924         kmem_zone_destroy(pagebuf_zone);
1925  out_free_trace_buf:
1926 #ifdef PAGEBUF_TRACE
1927         ktrace_free(pagebuf_trace_buf);
1928 #endif
1929         return error;
1930 }
1931
1932 void
1933 pagebuf_terminate(void)
1934 {
1935         kmem_shake_deregister(pagebuf_shake);
1936         kthread_stop(xfsbufd_task);
1937         destroy_workqueue(xfsdatad_workqueue);
1938         destroy_workqueue(xfslogd_workqueue);
1939         kmem_zone_destroy(pagebuf_zone);
1940 #ifdef PAGEBUF_TRACE
1941         ktrace_free(pagebuf_trace_buf);
1942 #endif
1943 }