]> git.karo-electronics.de Git - linux-beck.git/blob - fs/xfs/linux-2.6/xfs_buf.c
Merge branch 'kmemcheck-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-beck.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_sb.h"
38 #include "xfs_inum.h"
39 #include "xfs_ag.h"
40 #include "xfs_dmapi.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43
44 static kmem_zone_t *xfs_buf_zone;
45 STATIC int xfsbufd(void *);
46 STATIC int xfsbufd_wakeup(int, gfp_t);
47 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
48 static struct shrinker xfs_buf_shake = {
49         .shrink = xfsbufd_wakeup,
50         .seeks = DEFAULT_SEEKS,
51 };
52
53 static struct workqueue_struct *xfslogd_workqueue;
54 struct workqueue_struct *xfsdatad_workqueue;
55 struct workqueue_struct *xfsconvertd_workqueue;
56
57 #ifdef XFS_BUF_LOCK_TRACKING
58 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
59 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
60 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
61 #else
62 # define XB_SET_OWNER(bp)       do { } while (0)
63 # define XB_CLEAR_OWNER(bp)     do { } while (0)
64 # define XB_GET_OWNER(bp)       do { } while (0)
65 #endif
66
67 #define xb_to_gfp(flags) \
68         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
69           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
70
71 #define xb_to_km(flags) \
72          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
73
74 #define xfs_buf_allocate(flags) \
75         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
76 #define xfs_buf_deallocate(bp) \
77         kmem_zone_free(xfs_buf_zone, (bp));
78
79 static inline int
80 xfs_buf_is_vmapped(
81         struct xfs_buf  *bp)
82 {
83         /*
84          * Return true if the buffer is vmapped.
85          *
86          * The XBF_MAPPED flag is set if the buffer should be mapped, but the
87          * code is clever enough to know it doesn't have to map a single page,
88          * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
89          */
90         return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
91 }
92
93 static inline int
94 xfs_buf_vmap_len(
95         struct xfs_buf  *bp)
96 {
97         return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
98 }
99
100 /*
101  *      Page Region interfaces.
102  *
103  *      For pages in filesystems where the blocksize is smaller than the
104  *      pagesize, we use the page->private field (long) to hold a bitmap
105  *      of uptodate regions within the page.
106  *
107  *      Each such region is "bytes per page / bits per long" bytes long.
108  *
109  *      NBPPR == number-of-bytes-per-page-region
110  *      BTOPR == bytes-to-page-region (rounded up)
111  *      BTOPRT == bytes-to-page-region-truncated (rounded down)
112  */
113 #if (BITS_PER_LONG == 32)
114 #define PRSHIFT         (PAGE_CACHE_SHIFT - 5)  /* (32 == 1<<5) */
115 #elif (BITS_PER_LONG == 64)
116 #define PRSHIFT         (PAGE_CACHE_SHIFT - 6)  /* (64 == 1<<6) */
117 #else
118 #error BITS_PER_LONG must be 32 or 64
119 #endif
120 #define NBPPR           (PAGE_CACHE_SIZE/BITS_PER_LONG)
121 #define BTOPR(b)        (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
122 #define BTOPRT(b)       (((unsigned int)(b) >> PRSHIFT))
123
124 STATIC unsigned long
125 page_region_mask(
126         size_t          offset,
127         size_t          length)
128 {
129         unsigned long   mask;
130         int             first, final;
131
132         first = BTOPR(offset);
133         final = BTOPRT(offset + length - 1);
134         first = min(first, final);
135
136         mask = ~0UL;
137         mask <<= BITS_PER_LONG - (final - first);
138         mask >>= BITS_PER_LONG - (final);
139
140         ASSERT(offset + length <= PAGE_CACHE_SIZE);
141         ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
142
143         return mask;
144 }
145
146 STATIC void
147 set_page_region(
148         struct page     *page,
149         size_t          offset,
150         size_t          length)
151 {
152         set_page_private(page,
153                 page_private(page) | page_region_mask(offset, length));
154         if (page_private(page) == ~0UL)
155                 SetPageUptodate(page);
156 }
157
158 STATIC int
159 test_page_region(
160         struct page     *page,
161         size_t          offset,
162         size_t          length)
163 {
164         unsigned long   mask = page_region_mask(offset, length);
165
166         return (mask && (page_private(page) & mask) == mask);
167 }
168
169 /*
170  *      Mapping of multi-page buffers into contiguous virtual space
171  */
172
173 typedef struct a_list {
174         void            *vm_addr;
175         struct a_list   *next;
176 } a_list_t;
177
178 static a_list_t         *as_free_head;
179 static int              as_list_len;
180 static DEFINE_SPINLOCK(as_lock);
181
182 /*
183  *      Try to batch vunmaps because they are costly.
184  */
185 STATIC void
186 free_address(
187         void            *addr)
188 {
189         a_list_t        *aentry;
190
191 #ifdef CONFIG_XEN
192         /*
193          * Xen needs to be able to make sure it can get an exclusive
194          * RO mapping of pages it wants to turn into a pagetable.  If
195          * a newly allocated page is also still being vmap()ed by xfs,
196          * it will cause pagetable construction to fail.  This is a
197          * quick workaround to always eagerly unmap pages so that Xen
198          * is happy.
199          */
200         vunmap(addr);
201         return;
202 #endif
203
204         aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
205         if (likely(aentry)) {
206                 spin_lock(&as_lock);
207                 aentry->next = as_free_head;
208                 aentry->vm_addr = addr;
209                 as_free_head = aentry;
210                 as_list_len++;
211                 spin_unlock(&as_lock);
212         } else {
213                 vunmap(addr);
214         }
215 }
216
217 STATIC void
218 purge_addresses(void)
219 {
220         a_list_t        *aentry, *old;
221
222         if (as_free_head == NULL)
223                 return;
224
225         spin_lock(&as_lock);
226         aentry = as_free_head;
227         as_free_head = NULL;
228         as_list_len = 0;
229         spin_unlock(&as_lock);
230
231         while ((old = aentry) != NULL) {
232                 vunmap(aentry->vm_addr);
233                 aentry = aentry->next;
234                 kfree(old);
235         }
236 }
237
238 /*
239  *      Internal xfs_buf_t object manipulation
240  */
241
242 STATIC void
243 _xfs_buf_initialize(
244         xfs_buf_t               *bp,
245         xfs_buftarg_t           *target,
246         xfs_off_t               range_base,
247         size_t                  range_length,
248         xfs_buf_flags_t         flags)
249 {
250         /*
251          * We don't want certain flags to appear in b_flags.
252          */
253         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
254
255         memset(bp, 0, sizeof(xfs_buf_t));
256         atomic_set(&bp->b_hold, 1);
257         init_completion(&bp->b_iowait);
258         INIT_LIST_HEAD(&bp->b_list);
259         INIT_LIST_HEAD(&bp->b_hash_list);
260         init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
261         XB_SET_OWNER(bp);
262         bp->b_target = target;
263         bp->b_file_offset = range_base;
264         /*
265          * Set buffer_length and count_desired to the same value initially.
266          * I/O routines should use count_desired, which will be the same in
267          * most cases but may be reset (e.g. XFS recovery).
268          */
269         bp->b_buffer_length = bp->b_count_desired = range_length;
270         bp->b_flags = flags;
271         bp->b_bn = XFS_BUF_DADDR_NULL;
272         atomic_set(&bp->b_pin_count, 0);
273         init_waitqueue_head(&bp->b_waiters);
274
275         XFS_STATS_INC(xb_create);
276
277         trace_xfs_buf_init(bp, _RET_IP_);
278 }
279
280 /*
281  *      Allocate a page array capable of holding a specified number
282  *      of pages, and point the page buf at it.
283  */
284 STATIC int
285 _xfs_buf_get_pages(
286         xfs_buf_t               *bp,
287         int                     page_count,
288         xfs_buf_flags_t         flags)
289 {
290         /* Make sure that we have a page list */
291         if (bp->b_pages == NULL) {
292                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
293                 bp->b_page_count = page_count;
294                 if (page_count <= XB_PAGES) {
295                         bp->b_pages = bp->b_page_array;
296                 } else {
297                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
298                                         page_count, xb_to_km(flags));
299                         if (bp->b_pages == NULL)
300                                 return -ENOMEM;
301                 }
302                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
303         }
304         return 0;
305 }
306
307 /*
308  *      Frees b_pages if it was allocated.
309  */
310 STATIC void
311 _xfs_buf_free_pages(
312         xfs_buf_t       *bp)
313 {
314         if (bp->b_pages != bp->b_page_array) {
315                 kmem_free(bp->b_pages);
316                 bp->b_pages = NULL;
317         }
318 }
319
320 /*
321  *      Releases the specified buffer.
322  *
323  *      The modification state of any associated pages is left unchanged.
324  *      The buffer most not be on any hash - use xfs_buf_rele instead for
325  *      hashed and refcounted buffers
326  */
327 void
328 xfs_buf_free(
329         xfs_buf_t               *bp)
330 {
331         trace_xfs_buf_free(bp, _RET_IP_);
332
333         ASSERT(list_empty(&bp->b_hash_list));
334
335         if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
336                 uint            i;
337
338                 if (xfs_buf_is_vmapped(bp))
339                         free_address(bp->b_addr - bp->b_offset);
340
341                 for (i = 0; i < bp->b_page_count; i++) {
342                         struct page     *page = bp->b_pages[i];
343
344                         if (bp->b_flags & _XBF_PAGE_CACHE)
345                                 ASSERT(!PagePrivate(page));
346                         page_cache_release(page);
347                 }
348         }
349         _xfs_buf_free_pages(bp);
350         xfs_buf_deallocate(bp);
351 }
352
353 /*
354  *      Finds all pages for buffer in question and builds it's page list.
355  */
356 STATIC int
357 _xfs_buf_lookup_pages(
358         xfs_buf_t               *bp,
359         uint                    flags)
360 {
361         struct address_space    *mapping = bp->b_target->bt_mapping;
362         size_t                  blocksize = bp->b_target->bt_bsize;
363         size_t                  size = bp->b_count_desired;
364         size_t                  nbytes, offset;
365         gfp_t                   gfp_mask = xb_to_gfp(flags);
366         unsigned short          page_count, i;
367         pgoff_t                 first;
368         xfs_off_t               end;
369         int                     error;
370
371         end = bp->b_file_offset + bp->b_buffer_length;
372         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
373
374         error = _xfs_buf_get_pages(bp, page_count, flags);
375         if (unlikely(error))
376                 return error;
377         bp->b_flags |= _XBF_PAGE_CACHE;
378
379         offset = bp->b_offset;
380         first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
381
382         for (i = 0; i < bp->b_page_count; i++) {
383                 struct page     *page;
384                 uint            retries = 0;
385
386               retry:
387                 page = find_or_create_page(mapping, first + i, gfp_mask);
388                 if (unlikely(page == NULL)) {
389                         if (flags & XBF_READ_AHEAD) {
390                                 bp->b_page_count = i;
391                                 for (i = 0; i < bp->b_page_count; i++)
392                                         unlock_page(bp->b_pages[i]);
393                                 return -ENOMEM;
394                         }
395
396                         /*
397                          * This could deadlock.
398                          *
399                          * But until all the XFS lowlevel code is revamped to
400                          * handle buffer allocation failures we can't do much.
401                          */
402                         if (!(++retries % 100))
403                                 printk(KERN_ERR
404                                         "XFS: possible memory allocation "
405                                         "deadlock in %s (mode:0x%x)\n",
406                                         __func__, gfp_mask);
407
408                         XFS_STATS_INC(xb_page_retries);
409                         xfsbufd_wakeup(0, gfp_mask);
410                         congestion_wait(BLK_RW_ASYNC, HZ/50);
411                         goto retry;
412                 }
413
414                 XFS_STATS_INC(xb_page_found);
415
416                 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
417                 size -= nbytes;
418
419                 ASSERT(!PagePrivate(page));
420                 if (!PageUptodate(page)) {
421                         page_count--;
422                         if (blocksize >= PAGE_CACHE_SIZE) {
423                                 if (flags & XBF_READ)
424                                         bp->b_flags |= _XBF_PAGE_LOCKED;
425                         } else if (!PagePrivate(page)) {
426                                 if (test_page_region(page, offset, nbytes))
427                                         page_count++;
428                         }
429                 }
430
431                 bp->b_pages[i] = page;
432                 offset = 0;
433         }
434
435         if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
436                 for (i = 0; i < bp->b_page_count; i++)
437                         unlock_page(bp->b_pages[i]);
438         }
439
440         if (page_count == bp->b_page_count)
441                 bp->b_flags |= XBF_DONE;
442
443         return error;
444 }
445
446 /*
447  *      Map buffer into kernel address-space if nessecary.
448  */
449 STATIC int
450 _xfs_buf_map_pages(
451         xfs_buf_t               *bp,
452         uint                    flags)
453 {
454         /* A single page buffer is always mappable */
455         if (bp->b_page_count == 1) {
456                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
457                 bp->b_flags |= XBF_MAPPED;
458         } else if (flags & XBF_MAPPED) {
459                 if (as_list_len > 64)
460                         purge_addresses();
461                 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
462                                         VM_MAP, PAGE_KERNEL);
463                 if (unlikely(bp->b_addr == NULL))
464                         return -ENOMEM;
465                 bp->b_addr += bp->b_offset;
466                 bp->b_flags |= XBF_MAPPED;
467         }
468
469         return 0;
470 }
471
472 /*
473  *      Finding and Reading Buffers
474  */
475
476 /*
477  *      Look up, and creates if absent, a lockable buffer for
478  *      a given range of an inode.  The buffer is returned
479  *      locked.  If other overlapping buffers exist, they are
480  *      released before the new buffer is created and locked,
481  *      which may imply that this call will block until those buffers
482  *      are unlocked.  No I/O is implied by this call.
483  */
484 xfs_buf_t *
485 _xfs_buf_find(
486         xfs_buftarg_t           *btp,   /* block device target          */
487         xfs_off_t               ioff,   /* starting offset of range     */
488         size_t                  isize,  /* length of range              */
489         xfs_buf_flags_t         flags,
490         xfs_buf_t               *new_bp)
491 {
492         xfs_off_t               range_base;
493         size_t                  range_length;
494         xfs_bufhash_t           *hash;
495         xfs_buf_t               *bp, *n;
496
497         range_base = (ioff << BBSHIFT);
498         range_length = (isize << BBSHIFT);
499
500         /* Check for IOs smaller than the sector size / not sector aligned */
501         ASSERT(!(range_length < (1 << btp->bt_sshift)));
502         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
503
504         hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
505
506         spin_lock(&hash->bh_lock);
507
508         list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
509                 ASSERT(btp == bp->b_target);
510                 if (bp->b_file_offset == range_base &&
511                     bp->b_buffer_length == range_length) {
512                         /*
513                          * If we look at something, bring it to the
514                          * front of the list for next time.
515                          */
516                         atomic_inc(&bp->b_hold);
517                         list_move(&bp->b_hash_list, &hash->bh_list);
518                         goto found;
519                 }
520         }
521
522         /* No match found */
523         if (new_bp) {
524                 _xfs_buf_initialize(new_bp, btp, range_base,
525                                 range_length, flags);
526                 new_bp->b_hash = hash;
527                 list_add(&new_bp->b_hash_list, &hash->bh_list);
528         } else {
529                 XFS_STATS_INC(xb_miss_locked);
530         }
531
532         spin_unlock(&hash->bh_lock);
533         return new_bp;
534
535 found:
536         spin_unlock(&hash->bh_lock);
537
538         /* Attempt to get the semaphore without sleeping,
539          * if this does not work then we need to drop the
540          * spinlock and do a hard attempt on the semaphore.
541          */
542         if (down_trylock(&bp->b_sema)) {
543                 if (!(flags & XBF_TRYLOCK)) {
544                         /* wait for buffer ownership */
545                         xfs_buf_lock(bp);
546                         XFS_STATS_INC(xb_get_locked_waited);
547                 } else {
548                         /* We asked for a trylock and failed, no need
549                          * to look at file offset and length here, we
550                          * know that this buffer at least overlaps our
551                          * buffer and is locked, therefore our buffer
552                          * either does not exist, or is this buffer.
553                          */
554                         xfs_buf_rele(bp);
555                         XFS_STATS_INC(xb_busy_locked);
556                         return NULL;
557                 }
558         } else {
559                 /* trylock worked */
560                 XB_SET_OWNER(bp);
561         }
562
563         if (bp->b_flags & XBF_STALE) {
564                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
565                 bp->b_flags &= XBF_MAPPED;
566         }
567
568         trace_xfs_buf_find(bp, flags, _RET_IP_);
569         XFS_STATS_INC(xb_get_locked);
570         return bp;
571 }
572
573 /*
574  *      Assembles a buffer covering the specified range.
575  *      Storage in memory for all portions of the buffer will be allocated,
576  *      although backing storage may not be.
577  */
578 xfs_buf_t *
579 xfs_buf_get(
580         xfs_buftarg_t           *target,/* target for buffer            */
581         xfs_off_t               ioff,   /* starting offset of range     */
582         size_t                  isize,  /* length of range              */
583         xfs_buf_flags_t         flags)
584 {
585         xfs_buf_t               *bp, *new_bp;
586         int                     error = 0, i;
587
588         new_bp = xfs_buf_allocate(flags);
589         if (unlikely(!new_bp))
590                 return NULL;
591
592         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
593         if (bp == new_bp) {
594                 error = _xfs_buf_lookup_pages(bp, flags);
595                 if (error)
596                         goto no_buffer;
597         } else {
598                 xfs_buf_deallocate(new_bp);
599                 if (unlikely(bp == NULL))
600                         return NULL;
601         }
602
603         for (i = 0; i < bp->b_page_count; i++)
604                 mark_page_accessed(bp->b_pages[i]);
605
606         if (!(bp->b_flags & XBF_MAPPED)) {
607                 error = _xfs_buf_map_pages(bp, flags);
608                 if (unlikely(error)) {
609                         printk(KERN_WARNING "%s: failed to map pages\n",
610                                         __func__);
611                         goto no_buffer;
612                 }
613         }
614
615         XFS_STATS_INC(xb_get);
616
617         /*
618          * Always fill in the block number now, the mapped cases can do
619          * their own overlay of this later.
620          */
621         bp->b_bn = ioff;
622         bp->b_count_desired = bp->b_buffer_length;
623
624         trace_xfs_buf_get(bp, flags, _RET_IP_);
625         return bp;
626
627  no_buffer:
628         if (flags & (XBF_LOCK | XBF_TRYLOCK))
629                 xfs_buf_unlock(bp);
630         xfs_buf_rele(bp);
631         return NULL;
632 }
633
634 STATIC int
635 _xfs_buf_read(
636         xfs_buf_t               *bp,
637         xfs_buf_flags_t         flags)
638 {
639         int                     status;
640
641         ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
642         ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
643
644         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
645                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
646         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
647                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
648
649         status = xfs_buf_iorequest(bp);
650         if (!status && !(flags & XBF_ASYNC))
651                 status = xfs_buf_iowait(bp);
652         return status;
653 }
654
655 xfs_buf_t *
656 xfs_buf_read(
657         xfs_buftarg_t           *target,
658         xfs_off_t               ioff,
659         size_t                  isize,
660         xfs_buf_flags_t         flags)
661 {
662         xfs_buf_t               *bp;
663
664         flags |= XBF_READ;
665
666         bp = xfs_buf_get(target, ioff, isize, flags);
667         if (bp) {
668                 trace_xfs_buf_read(bp, flags, _RET_IP_);
669
670                 if (!XFS_BUF_ISDONE(bp)) {
671                         XFS_STATS_INC(xb_get_read);
672                         _xfs_buf_read(bp, flags);
673                 } else if (flags & XBF_ASYNC) {
674                         /*
675                          * Read ahead call which is already satisfied,
676                          * drop the buffer
677                          */
678                         goto no_buffer;
679                 } else {
680                         /* We do not want read in the flags */
681                         bp->b_flags &= ~XBF_READ;
682                 }
683         }
684
685         return bp;
686
687  no_buffer:
688         if (flags & (XBF_LOCK | XBF_TRYLOCK))
689                 xfs_buf_unlock(bp);
690         xfs_buf_rele(bp);
691         return NULL;
692 }
693
694 /*
695  *      If we are not low on memory then do the readahead in a deadlock
696  *      safe manner.
697  */
698 void
699 xfs_buf_readahead(
700         xfs_buftarg_t           *target,
701         xfs_off_t               ioff,
702         size_t                  isize,
703         xfs_buf_flags_t         flags)
704 {
705         struct backing_dev_info *bdi;
706
707         bdi = target->bt_mapping->backing_dev_info;
708         if (bdi_read_congested(bdi))
709                 return;
710
711         flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
712         xfs_buf_read(target, ioff, isize, flags);
713 }
714
715 xfs_buf_t *
716 xfs_buf_get_empty(
717         size_t                  len,
718         xfs_buftarg_t           *target)
719 {
720         xfs_buf_t               *bp;
721
722         bp = xfs_buf_allocate(0);
723         if (bp)
724                 _xfs_buf_initialize(bp, target, 0, len, 0);
725         return bp;
726 }
727
728 static inline struct page *
729 mem_to_page(
730         void                    *addr)
731 {
732         if ((!is_vmalloc_addr(addr))) {
733                 return virt_to_page(addr);
734         } else {
735                 return vmalloc_to_page(addr);
736         }
737 }
738
739 int
740 xfs_buf_associate_memory(
741         xfs_buf_t               *bp,
742         void                    *mem,
743         size_t                  len)
744 {
745         int                     rval;
746         int                     i = 0;
747         unsigned long           pageaddr;
748         unsigned long           offset;
749         size_t                  buflen;
750         int                     page_count;
751
752         pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
753         offset = (unsigned long)mem - pageaddr;
754         buflen = PAGE_CACHE_ALIGN(len + offset);
755         page_count = buflen >> PAGE_CACHE_SHIFT;
756
757         /* Free any previous set of page pointers */
758         if (bp->b_pages)
759                 _xfs_buf_free_pages(bp);
760
761         bp->b_pages = NULL;
762         bp->b_addr = mem;
763
764         rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
765         if (rval)
766                 return rval;
767
768         bp->b_offset = offset;
769
770         for (i = 0; i < bp->b_page_count; i++) {
771                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
772                 pageaddr += PAGE_CACHE_SIZE;
773         }
774
775         bp->b_count_desired = len;
776         bp->b_buffer_length = buflen;
777         bp->b_flags |= XBF_MAPPED;
778         bp->b_flags &= ~_XBF_PAGE_LOCKED;
779
780         return 0;
781 }
782
783 xfs_buf_t *
784 xfs_buf_get_noaddr(
785         size_t                  len,
786         xfs_buftarg_t           *target)
787 {
788         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
789         int                     error, i;
790         xfs_buf_t               *bp;
791
792         bp = xfs_buf_allocate(0);
793         if (unlikely(bp == NULL))
794                 goto fail;
795         _xfs_buf_initialize(bp, target, 0, len, 0);
796
797         error = _xfs_buf_get_pages(bp, page_count, 0);
798         if (error)
799                 goto fail_free_buf;
800
801         for (i = 0; i < page_count; i++) {
802                 bp->b_pages[i] = alloc_page(GFP_KERNEL);
803                 if (!bp->b_pages[i])
804                         goto fail_free_mem;
805         }
806         bp->b_flags |= _XBF_PAGES;
807
808         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
809         if (unlikely(error)) {
810                 printk(KERN_WARNING "%s: failed to map pages\n",
811                                 __func__);
812                 goto fail_free_mem;
813         }
814
815         xfs_buf_unlock(bp);
816
817         trace_xfs_buf_get_noaddr(bp, _RET_IP_);
818         return bp;
819
820  fail_free_mem:
821         while (--i >= 0)
822                 __free_page(bp->b_pages[i]);
823         _xfs_buf_free_pages(bp);
824  fail_free_buf:
825         xfs_buf_deallocate(bp);
826  fail:
827         return NULL;
828 }
829
830 /*
831  *      Increment reference count on buffer, to hold the buffer concurrently
832  *      with another thread which may release (free) the buffer asynchronously.
833  *      Must hold the buffer already to call this function.
834  */
835 void
836 xfs_buf_hold(
837         xfs_buf_t               *bp)
838 {
839         trace_xfs_buf_hold(bp, _RET_IP_);
840         atomic_inc(&bp->b_hold);
841 }
842
843 /*
844  *      Releases a hold on the specified buffer.  If the
845  *      the hold count is 1, calls xfs_buf_free.
846  */
847 void
848 xfs_buf_rele(
849         xfs_buf_t               *bp)
850 {
851         xfs_bufhash_t           *hash = bp->b_hash;
852
853         trace_xfs_buf_rele(bp, _RET_IP_);
854
855         if (unlikely(!hash)) {
856                 ASSERT(!bp->b_relse);
857                 if (atomic_dec_and_test(&bp->b_hold))
858                         xfs_buf_free(bp);
859                 return;
860         }
861
862         ASSERT(atomic_read(&bp->b_hold) > 0);
863         if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
864                 if (bp->b_relse) {
865                         atomic_inc(&bp->b_hold);
866                         spin_unlock(&hash->bh_lock);
867                         (*(bp->b_relse)) (bp);
868                 } else if (bp->b_flags & XBF_FS_MANAGED) {
869                         spin_unlock(&hash->bh_lock);
870                 } else {
871                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
872                         list_del_init(&bp->b_hash_list);
873                         spin_unlock(&hash->bh_lock);
874                         xfs_buf_free(bp);
875                 }
876         }
877 }
878
879
880 /*
881  *      Mutual exclusion on buffers.  Locking model:
882  *
883  *      Buffers associated with inodes for which buffer locking
884  *      is not enabled are not protected by semaphores, and are
885  *      assumed to be exclusively owned by the caller.  There is a
886  *      spinlock in the buffer, used by the caller when concurrent
887  *      access is possible.
888  */
889
890 /*
891  *      Locks a buffer object, if it is not already locked.
892  *      Note that this in no way locks the underlying pages, so it is only
893  *      useful for synchronizing concurrent use of buffer objects, not for
894  *      synchronizing independent access to the underlying pages.
895  */
896 int
897 xfs_buf_cond_lock(
898         xfs_buf_t               *bp)
899 {
900         int                     locked;
901
902         locked = down_trylock(&bp->b_sema) == 0;
903         if (locked)
904                 XB_SET_OWNER(bp);
905
906         trace_xfs_buf_cond_lock(bp, _RET_IP_);
907         return locked ? 0 : -EBUSY;
908 }
909
910 int
911 xfs_buf_lock_value(
912         xfs_buf_t               *bp)
913 {
914         return bp->b_sema.count;
915 }
916
917 /*
918  *      Locks a buffer object.
919  *      Note that this in no way locks the underlying pages, so it is only
920  *      useful for synchronizing concurrent use of buffer objects, not for
921  *      synchronizing independent access to the underlying pages.
922  */
923 void
924 xfs_buf_lock(
925         xfs_buf_t               *bp)
926 {
927         trace_xfs_buf_lock(bp, _RET_IP_);
928
929         if (atomic_read(&bp->b_io_remaining))
930                 blk_run_address_space(bp->b_target->bt_mapping);
931         down(&bp->b_sema);
932         XB_SET_OWNER(bp);
933
934         trace_xfs_buf_lock_done(bp, _RET_IP_);
935 }
936
937 /*
938  *      Releases the lock on the buffer object.
939  *      If the buffer is marked delwri but is not queued, do so before we
940  *      unlock the buffer as we need to set flags correctly.  We also need to
941  *      take a reference for the delwri queue because the unlocker is going to
942  *      drop their's and they don't know we just queued it.
943  */
944 void
945 xfs_buf_unlock(
946         xfs_buf_t               *bp)
947 {
948         if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
949                 atomic_inc(&bp->b_hold);
950                 bp->b_flags |= XBF_ASYNC;
951                 xfs_buf_delwri_queue(bp, 0);
952         }
953
954         XB_CLEAR_OWNER(bp);
955         up(&bp->b_sema);
956
957         trace_xfs_buf_unlock(bp, _RET_IP_);
958 }
959
960
961 /*
962  *      Pinning Buffer Storage in Memory
963  *      Ensure that no attempt to force a buffer to disk will succeed.
964  */
965 void
966 xfs_buf_pin(
967         xfs_buf_t               *bp)
968 {
969         trace_xfs_buf_pin(bp, _RET_IP_);
970         atomic_inc(&bp->b_pin_count);
971 }
972
973 void
974 xfs_buf_unpin(
975         xfs_buf_t               *bp)
976 {
977         trace_xfs_buf_unpin(bp, _RET_IP_);
978
979         if (atomic_dec_and_test(&bp->b_pin_count))
980                 wake_up_all(&bp->b_waiters);
981 }
982
983 int
984 xfs_buf_ispin(
985         xfs_buf_t               *bp)
986 {
987         return atomic_read(&bp->b_pin_count);
988 }
989
990 STATIC void
991 xfs_buf_wait_unpin(
992         xfs_buf_t               *bp)
993 {
994         DECLARE_WAITQUEUE       (wait, current);
995
996         if (atomic_read(&bp->b_pin_count) == 0)
997                 return;
998
999         add_wait_queue(&bp->b_waiters, &wait);
1000         for (;;) {
1001                 set_current_state(TASK_UNINTERRUPTIBLE);
1002                 if (atomic_read(&bp->b_pin_count) == 0)
1003                         break;
1004                 if (atomic_read(&bp->b_io_remaining))
1005                         blk_run_address_space(bp->b_target->bt_mapping);
1006                 schedule();
1007         }
1008         remove_wait_queue(&bp->b_waiters, &wait);
1009         set_current_state(TASK_RUNNING);
1010 }
1011
1012 /*
1013  *      Buffer Utility Routines
1014  */
1015
1016 STATIC void
1017 xfs_buf_iodone_work(
1018         struct work_struct      *work)
1019 {
1020         xfs_buf_t               *bp =
1021                 container_of(work, xfs_buf_t, b_iodone_work);
1022
1023         /*
1024          * We can get an EOPNOTSUPP to ordered writes.  Here we clear the
1025          * ordered flag and reissue them.  Because we can't tell the higher
1026          * layers directly that they should not issue ordered I/O anymore, they
1027          * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
1028          */
1029         if ((bp->b_error == EOPNOTSUPP) &&
1030             (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
1031                 trace_xfs_buf_ordered_retry(bp, _RET_IP_);
1032                 bp->b_flags &= ~XBF_ORDERED;
1033                 bp->b_flags |= _XFS_BARRIER_FAILED;
1034                 xfs_buf_iorequest(bp);
1035         } else if (bp->b_iodone)
1036                 (*(bp->b_iodone))(bp);
1037         else if (bp->b_flags & XBF_ASYNC)
1038                 xfs_buf_relse(bp);
1039 }
1040
1041 void
1042 xfs_buf_ioend(
1043         xfs_buf_t               *bp,
1044         int                     schedule)
1045 {
1046         trace_xfs_buf_iodone(bp, _RET_IP_);
1047
1048         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1049         if (bp->b_error == 0)
1050                 bp->b_flags |= XBF_DONE;
1051
1052         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1053                 if (schedule) {
1054                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1055                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1056                 } else {
1057                         xfs_buf_iodone_work(&bp->b_iodone_work);
1058                 }
1059         } else {
1060                 complete(&bp->b_iowait);
1061         }
1062 }
1063
1064 void
1065 xfs_buf_ioerror(
1066         xfs_buf_t               *bp,
1067         int                     error)
1068 {
1069         ASSERT(error >= 0 && error <= 0xffff);
1070         bp->b_error = (unsigned short)error;
1071         trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1072 }
1073
1074 int
1075 xfs_bawrite(
1076         void                    *mp,
1077         struct xfs_buf          *bp)
1078 {
1079         trace_xfs_buf_bawrite(bp, _RET_IP_);
1080
1081         ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
1082
1083         xfs_buf_delwri_dequeue(bp);
1084
1085         bp->b_flags &= ~(XBF_READ | XBF_DELWRI | XBF_READ_AHEAD);
1086         bp->b_flags |= (XBF_WRITE | XBF_ASYNC | _XBF_RUN_QUEUES);
1087
1088         bp->b_mount = mp;
1089         bp->b_strat = xfs_bdstrat_cb;
1090         return xfs_bdstrat_cb(bp);
1091 }
1092
1093 void
1094 xfs_bdwrite(
1095         void                    *mp,
1096         struct xfs_buf          *bp)
1097 {
1098         trace_xfs_buf_bdwrite(bp, _RET_IP_);
1099
1100         bp->b_strat = xfs_bdstrat_cb;
1101         bp->b_mount = mp;
1102
1103         bp->b_flags &= ~XBF_READ;
1104         bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1105
1106         xfs_buf_delwri_queue(bp, 1);
1107 }
1108
1109 STATIC void
1110 _xfs_buf_ioend(
1111         xfs_buf_t               *bp,
1112         int                     schedule)
1113 {
1114         if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1115                 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1116                 xfs_buf_ioend(bp, schedule);
1117         }
1118 }
1119
1120 STATIC void
1121 xfs_buf_bio_end_io(
1122         struct bio              *bio,
1123         int                     error)
1124 {
1125         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1126         unsigned int            blocksize = bp->b_target->bt_bsize;
1127         struct bio_vec          *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1128
1129         xfs_buf_ioerror(bp, -error);
1130
1131         if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1132                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1133
1134         do {
1135                 struct page     *page = bvec->bv_page;
1136
1137                 ASSERT(!PagePrivate(page));
1138                 if (unlikely(bp->b_error)) {
1139                         if (bp->b_flags & XBF_READ)
1140                                 ClearPageUptodate(page);
1141                 } else if (blocksize >= PAGE_CACHE_SIZE) {
1142                         SetPageUptodate(page);
1143                 } else if (!PagePrivate(page) &&
1144                                 (bp->b_flags & _XBF_PAGE_CACHE)) {
1145                         set_page_region(page, bvec->bv_offset, bvec->bv_len);
1146                 }
1147
1148                 if (--bvec >= bio->bi_io_vec)
1149                         prefetchw(&bvec->bv_page->flags);
1150
1151                 if (bp->b_flags & _XBF_PAGE_LOCKED)
1152                         unlock_page(page);
1153         } while (bvec >= bio->bi_io_vec);
1154
1155         _xfs_buf_ioend(bp, 1);
1156         bio_put(bio);
1157 }
1158
1159 STATIC void
1160 _xfs_buf_ioapply(
1161         xfs_buf_t               *bp)
1162 {
1163         int                     rw, map_i, total_nr_pages, nr_pages;
1164         struct bio              *bio;
1165         int                     offset = bp->b_offset;
1166         int                     size = bp->b_count_desired;
1167         sector_t                sector = bp->b_bn;
1168         unsigned int            blocksize = bp->b_target->bt_bsize;
1169
1170         total_nr_pages = bp->b_page_count;
1171         map_i = 0;
1172
1173         if (bp->b_flags & XBF_ORDERED) {
1174                 ASSERT(!(bp->b_flags & XBF_READ));
1175                 rw = WRITE_BARRIER;
1176         } else if (bp->b_flags & XBF_LOG_BUFFER) {
1177                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1178                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1179                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1180         } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1181                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1182                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1183                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1184         } else {
1185                 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1186                      (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1187         }
1188
1189         /* Special code path for reading a sub page size buffer in --
1190          * we populate up the whole page, and hence the other metadata
1191          * in the same page.  This optimization is only valid when the
1192          * filesystem block size is not smaller than the page size.
1193          */
1194         if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1195             ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1196               (XBF_READ|_XBF_PAGE_LOCKED)) &&
1197             (blocksize >= PAGE_CACHE_SIZE)) {
1198                 bio = bio_alloc(GFP_NOIO, 1);
1199
1200                 bio->bi_bdev = bp->b_target->bt_bdev;
1201                 bio->bi_sector = sector - (offset >> BBSHIFT);
1202                 bio->bi_end_io = xfs_buf_bio_end_io;
1203                 bio->bi_private = bp;
1204
1205                 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1206                 size = 0;
1207
1208                 atomic_inc(&bp->b_io_remaining);
1209
1210                 goto submit_io;
1211         }
1212
1213 next_chunk:
1214         atomic_inc(&bp->b_io_remaining);
1215         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1216         if (nr_pages > total_nr_pages)
1217                 nr_pages = total_nr_pages;
1218
1219         bio = bio_alloc(GFP_NOIO, nr_pages);
1220         bio->bi_bdev = bp->b_target->bt_bdev;
1221         bio->bi_sector = sector;
1222         bio->bi_end_io = xfs_buf_bio_end_io;
1223         bio->bi_private = bp;
1224
1225         for (; size && nr_pages; nr_pages--, map_i++) {
1226                 int     rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1227
1228                 if (nbytes > size)
1229                         nbytes = size;
1230
1231                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1232                 if (rbytes < nbytes)
1233                         break;
1234
1235                 offset = 0;
1236                 sector += nbytes >> BBSHIFT;
1237                 size -= nbytes;
1238                 total_nr_pages--;
1239         }
1240
1241 submit_io:
1242         if (likely(bio->bi_size)) {
1243                 if (xfs_buf_is_vmapped(bp)) {
1244                         flush_kernel_vmap_range(bp->b_addr,
1245                                                 xfs_buf_vmap_len(bp));
1246                 }
1247                 submit_bio(rw, bio);
1248                 if (size)
1249                         goto next_chunk;
1250         } else {
1251                 bio_put(bio);
1252                 xfs_buf_ioerror(bp, EIO);
1253         }
1254 }
1255
1256 int
1257 xfs_buf_iorequest(
1258         xfs_buf_t               *bp)
1259 {
1260         trace_xfs_buf_iorequest(bp, _RET_IP_);
1261
1262         if (bp->b_flags & XBF_DELWRI) {
1263                 xfs_buf_delwri_queue(bp, 1);
1264                 return 0;
1265         }
1266
1267         if (bp->b_flags & XBF_WRITE) {
1268                 xfs_buf_wait_unpin(bp);
1269         }
1270
1271         xfs_buf_hold(bp);
1272
1273         /* Set the count to 1 initially, this will stop an I/O
1274          * completion callout which happens before we have started
1275          * all the I/O from calling xfs_buf_ioend too early.
1276          */
1277         atomic_set(&bp->b_io_remaining, 1);
1278         _xfs_buf_ioapply(bp);
1279         _xfs_buf_ioend(bp, 0);
1280
1281         xfs_buf_rele(bp);
1282         return 0;
1283 }
1284
1285 /*
1286  *      Waits for I/O to complete on the buffer supplied.
1287  *      It returns immediately if no I/O is pending.
1288  *      It returns the I/O error code, if any, or 0 if there was no error.
1289  */
1290 int
1291 xfs_buf_iowait(
1292         xfs_buf_t               *bp)
1293 {
1294         trace_xfs_buf_iowait(bp, _RET_IP_);
1295
1296         if (atomic_read(&bp->b_io_remaining))
1297                 blk_run_address_space(bp->b_target->bt_mapping);
1298         wait_for_completion(&bp->b_iowait);
1299
1300         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1301         return bp->b_error;
1302 }
1303
1304 xfs_caddr_t
1305 xfs_buf_offset(
1306         xfs_buf_t               *bp,
1307         size_t                  offset)
1308 {
1309         struct page             *page;
1310
1311         if (bp->b_flags & XBF_MAPPED)
1312                 return XFS_BUF_PTR(bp) + offset;
1313
1314         offset += bp->b_offset;
1315         page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1316         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1317 }
1318
1319 /*
1320  *      Move data into or out of a buffer.
1321  */
1322 void
1323 xfs_buf_iomove(
1324         xfs_buf_t               *bp,    /* buffer to process            */
1325         size_t                  boff,   /* starting buffer offset       */
1326         size_t                  bsize,  /* length to copy               */
1327         caddr_t                 data,   /* data address                 */
1328         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1329 {
1330         size_t                  bend, cpoff, csize;
1331         struct page             *page;
1332
1333         bend = boff + bsize;
1334         while (boff < bend) {
1335                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1336                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1337                 csize = min_t(size_t,
1338                               PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1339
1340                 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1341
1342                 switch (mode) {
1343                 case XBRW_ZERO:
1344                         memset(page_address(page) + cpoff, 0, csize);
1345                         break;
1346                 case XBRW_READ:
1347                         memcpy(data, page_address(page) + cpoff, csize);
1348                         break;
1349                 case XBRW_WRITE:
1350                         memcpy(page_address(page) + cpoff, data, csize);
1351                 }
1352
1353                 boff += csize;
1354                 data += csize;
1355         }
1356 }
1357
1358 /*
1359  *      Handling of buffer targets (buftargs).
1360  */
1361
1362 /*
1363  *      Wait for any bufs with callbacks that have been submitted but
1364  *      have not yet returned... walk the hash list for the target.
1365  */
1366 void
1367 xfs_wait_buftarg(
1368         xfs_buftarg_t   *btp)
1369 {
1370         xfs_buf_t       *bp, *n;
1371         xfs_bufhash_t   *hash;
1372         uint            i;
1373
1374         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1375                 hash = &btp->bt_hash[i];
1376 again:
1377                 spin_lock(&hash->bh_lock);
1378                 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1379                         ASSERT(btp == bp->b_target);
1380                         if (!(bp->b_flags & XBF_FS_MANAGED)) {
1381                                 spin_unlock(&hash->bh_lock);
1382                                 /*
1383                                  * Catch superblock reference count leaks
1384                                  * immediately
1385                                  */
1386                                 BUG_ON(bp->b_bn == 0);
1387                                 delay(100);
1388                                 goto again;
1389                         }
1390                 }
1391                 spin_unlock(&hash->bh_lock);
1392         }
1393 }
1394
1395 /*
1396  *      Allocate buffer hash table for a given target.
1397  *      For devices containing metadata (i.e. not the log/realtime devices)
1398  *      we need to allocate a much larger hash table.
1399  */
1400 STATIC void
1401 xfs_alloc_bufhash(
1402         xfs_buftarg_t           *btp,
1403         int                     external)
1404 {
1405         unsigned int            i;
1406
1407         btp->bt_hashshift = external ? 3 : 8;   /* 8 or 256 buckets */
1408         btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1409         btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1410                                         sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1411         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1412                 spin_lock_init(&btp->bt_hash[i].bh_lock);
1413                 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1414         }
1415 }
1416
1417 STATIC void
1418 xfs_free_bufhash(
1419         xfs_buftarg_t           *btp)
1420 {
1421         kmem_free(btp->bt_hash);
1422         btp->bt_hash = NULL;
1423 }
1424
1425 /*
1426  *      buftarg list for delwrite queue processing
1427  */
1428 static LIST_HEAD(xfs_buftarg_list);
1429 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1430
1431 STATIC void
1432 xfs_register_buftarg(
1433         xfs_buftarg_t           *btp)
1434 {
1435         spin_lock(&xfs_buftarg_lock);
1436         list_add(&btp->bt_list, &xfs_buftarg_list);
1437         spin_unlock(&xfs_buftarg_lock);
1438 }
1439
1440 STATIC void
1441 xfs_unregister_buftarg(
1442         xfs_buftarg_t           *btp)
1443 {
1444         spin_lock(&xfs_buftarg_lock);
1445         list_del(&btp->bt_list);
1446         spin_unlock(&xfs_buftarg_lock);
1447 }
1448
1449 void
1450 xfs_free_buftarg(
1451         struct xfs_mount        *mp,
1452         struct xfs_buftarg      *btp)
1453 {
1454         xfs_flush_buftarg(btp, 1);
1455         if (mp->m_flags & XFS_MOUNT_BARRIER)
1456                 xfs_blkdev_issue_flush(btp);
1457         xfs_free_bufhash(btp);
1458         iput(btp->bt_mapping->host);
1459
1460         /* Unregister the buftarg first so that we don't get a
1461          * wakeup finding a non-existent task
1462          */
1463         xfs_unregister_buftarg(btp);
1464         kthread_stop(btp->bt_task);
1465
1466         kmem_free(btp);
1467 }
1468
1469 STATIC int
1470 xfs_setsize_buftarg_flags(
1471         xfs_buftarg_t           *btp,
1472         unsigned int            blocksize,
1473         unsigned int            sectorsize,
1474         int                     verbose)
1475 {
1476         btp->bt_bsize = blocksize;
1477         btp->bt_sshift = ffs(sectorsize) - 1;
1478         btp->bt_smask = sectorsize - 1;
1479
1480         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1481                 printk(KERN_WARNING
1482                         "XFS: Cannot set_blocksize to %u on device %s\n",
1483                         sectorsize, XFS_BUFTARG_NAME(btp));
1484                 return EINVAL;
1485         }
1486
1487         if (verbose &&
1488             (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1489                 printk(KERN_WARNING
1490                         "XFS: %u byte sectors in use on device %s.  "
1491                         "This is suboptimal; %u or greater is ideal.\n",
1492                         sectorsize, XFS_BUFTARG_NAME(btp),
1493                         (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1494         }
1495
1496         return 0;
1497 }
1498
1499 /*
1500  *      When allocating the initial buffer target we have not yet
1501  *      read in the superblock, so don't know what sized sectors
1502  *      are being used is at this early stage.  Play safe.
1503  */
1504 STATIC int
1505 xfs_setsize_buftarg_early(
1506         xfs_buftarg_t           *btp,
1507         struct block_device     *bdev)
1508 {
1509         return xfs_setsize_buftarg_flags(btp,
1510                         PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1511 }
1512
1513 int
1514 xfs_setsize_buftarg(
1515         xfs_buftarg_t           *btp,
1516         unsigned int            blocksize,
1517         unsigned int            sectorsize)
1518 {
1519         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1520 }
1521
1522 STATIC int
1523 xfs_mapping_buftarg(
1524         xfs_buftarg_t           *btp,
1525         struct block_device     *bdev)
1526 {
1527         struct backing_dev_info *bdi;
1528         struct inode            *inode;
1529         struct address_space    *mapping;
1530         static const struct address_space_operations mapping_aops = {
1531                 .sync_page = block_sync_page,
1532                 .migratepage = fail_migrate_page,
1533         };
1534
1535         inode = new_inode(bdev->bd_inode->i_sb);
1536         if (!inode) {
1537                 printk(KERN_WARNING
1538                         "XFS: Cannot allocate mapping inode for device %s\n",
1539                         XFS_BUFTARG_NAME(btp));
1540                 return ENOMEM;
1541         }
1542         inode->i_mode = S_IFBLK;
1543         inode->i_bdev = bdev;
1544         inode->i_rdev = bdev->bd_dev;
1545         bdi = blk_get_backing_dev_info(bdev);
1546         if (!bdi)
1547                 bdi = &default_backing_dev_info;
1548         mapping = &inode->i_data;
1549         mapping->a_ops = &mapping_aops;
1550         mapping->backing_dev_info = bdi;
1551         mapping_set_gfp_mask(mapping, GFP_NOFS);
1552         btp->bt_mapping = mapping;
1553         return 0;
1554 }
1555
1556 STATIC int
1557 xfs_alloc_delwrite_queue(
1558         xfs_buftarg_t           *btp)
1559 {
1560         int     error = 0;
1561
1562         INIT_LIST_HEAD(&btp->bt_list);
1563         INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1564         spin_lock_init(&btp->bt_delwrite_lock);
1565         btp->bt_flags = 0;
1566         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1567         if (IS_ERR(btp->bt_task)) {
1568                 error = PTR_ERR(btp->bt_task);
1569                 goto out_error;
1570         }
1571         xfs_register_buftarg(btp);
1572 out_error:
1573         return error;
1574 }
1575
1576 xfs_buftarg_t *
1577 xfs_alloc_buftarg(
1578         struct block_device     *bdev,
1579         int                     external)
1580 {
1581         xfs_buftarg_t           *btp;
1582
1583         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1584
1585         btp->bt_dev =  bdev->bd_dev;
1586         btp->bt_bdev = bdev;
1587         if (xfs_setsize_buftarg_early(btp, bdev))
1588                 goto error;
1589         if (xfs_mapping_buftarg(btp, bdev))
1590                 goto error;
1591         if (xfs_alloc_delwrite_queue(btp))
1592                 goto error;
1593         xfs_alloc_bufhash(btp, external);
1594         return btp;
1595
1596 error:
1597         kmem_free(btp);
1598         return NULL;
1599 }
1600
1601
1602 /*
1603  *      Delayed write buffer handling
1604  */
1605 STATIC void
1606 xfs_buf_delwri_queue(
1607         xfs_buf_t               *bp,
1608         int                     unlock)
1609 {
1610         struct list_head        *dwq = &bp->b_target->bt_delwrite_queue;
1611         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1612
1613         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1614
1615         ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1616
1617         spin_lock(dwlk);
1618         /* If already in the queue, dequeue and place at tail */
1619         if (!list_empty(&bp->b_list)) {
1620                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1621                 if (unlock)
1622                         atomic_dec(&bp->b_hold);
1623                 list_del(&bp->b_list);
1624         }
1625
1626         bp->b_flags |= _XBF_DELWRI_Q;
1627         list_add_tail(&bp->b_list, dwq);
1628         bp->b_queuetime = jiffies;
1629         spin_unlock(dwlk);
1630
1631         if (unlock)
1632                 xfs_buf_unlock(bp);
1633 }
1634
1635 void
1636 xfs_buf_delwri_dequeue(
1637         xfs_buf_t               *bp)
1638 {
1639         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1640         int                     dequeued = 0;
1641
1642         spin_lock(dwlk);
1643         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1644                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1645                 list_del_init(&bp->b_list);
1646                 dequeued = 1;
1647         }
1648         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1649         spin_unlock(dwlk);
1650
1651         if (dequeued)
1652                 xfs_buf_rele(bp);
1653
1654         trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1655 }
1656
1657 STATIC void
1658 xfs_buf_runall_queues(
1659         struct workqueue_struct *queue)
1660 {
1661         flush_workqueue(queue);
1662 }
1663
1664 STATIC int
1665 xfsbufd_wakeup(
1666         int                     priority,
1667         gfp_t                   mask)
1668 {
1669         xfs_buftarg_t           *btp;
1670
1671         spin_lock(&xfs_buftarg_lock);
1672         list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1673                 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1674                         continue;
1675                 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1676                 wake_up_process(btp->bt_task);
1677         }
1678         spin_unlock(&xfs_buftarg_lock);
1679         return 0;
1680 }
1681
1682 /*
1683  * Move as many buffers as specified to the supplied list
1684  * idicating if we skipped any buffers to prevent deadlocks.
1685  */
1686 STATIC int
1687 xfs_buf_delwri_split(
1688         xfs_buftarg_t   *target,
1689         struct list_head *list,
1690         unsigned long   age)
1691 {
1692         xfs_buf_t       *bp, *n;
1693         struct list_head *dwq = &target->bt_delwrite_queue;
1694         spinlock_t      *dwlk = &target->bt_delwrite_lock;
1695         int             skipped = 0;
1696         int             force;
1697
1698         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1699         INIT_LIST_HEAD(list);
1700         spin_lock(dwlk);
1701         list_for_each_entry_safe(bp, n, dwq, b_list) {
1702                 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1703                 ASSERT(bp->b_flags & XBF_DELWRI);
1704
1705                 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1706                         if (!force &&
1707                             time_before(jiffies, bp->b_queuetime + age)) {
1708                                 xfs_buf_unlock(bp);
1709                                 break;
1710                         }
1711
1712                         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1713                                          _XBF_RUN_QUEUES);
1714                         bp->b_flags |= XBF_WRITE;
1715                         list_move_tail(&bp->b_list, list);
1716                 } else
1717                         skipped++;
1718         }
1719         spin_unlock(dwlk);
1720
1721         return skipped;
1722
1723 }
1724
1725 STATIC int
1726 xfsbufd(
1727         void            *data)
1728 {
1729         struct list_head tmp;
1730         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1731         int             count;
1732         xfs_buf_t       *bp;
1733
1734         current->flags |= PF_MEMALLOC;
1735
1736         set_freezable();
1737
1738         do {
1739                 if (unlikely(freezing(current))) {
1740                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1741                         refrigerator();
1742                 } else {
1743                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1744                 }
1745
1746                 schedule_timeout_interruptible(
1747                         xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1748
1749                 xfs_buf_delwri_split(target, &tmp,
1750                                 xfs_buf_age_centisecs * msecs_to_jiffies(10));
1751
1752                 count = 0;
1753                 while (!list_empty(&tmp)) {
1754                         bp = list_entry(tmp.next, xfs_buf_t, b_list);
1755                         ASSERT(target == bp->b_target);
1756
1757                         list_del_init(&bp->b_list);
1758                         xfs_buf_iostrategy(bp);
1759                         count++;
1760                 }
1761
1762                 if (as_list_len > 0)
1763                         purge_addresses();
1764                 if (count)
1765                         blk_run_address_space(target->bt_mapping);
1766
1767         } while (!kthread_should_stop());
1768
1769         return 0;
1770 }
1771
1772 /*
1773  *      Go through all incore buffers, and release buffers if they belong to
1774  *      the given device. This is used in filesystem error handling to
1775  *      preserve the consistency of its metadata.
1776  */
1777 int
1778 xfs_flush_buftarg(
1779         xfs_buftarg_t   *target,
1780         int             wait)
1781 {
1782         struct list_head tmp;
1783         xfs_buf_t       *bp, *n;
1784         int             pincount = 0;
1785
1786         xfs_buf_runall_queues(xfsconvertd_workqueue);
1787         xfs_buf_runall_queues(xfsdatad_workqueue);
1788         xfs_buf_runall_queues(xfslogd_workqueue);
1789
1790         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1791         pincount = xfs_buf_delwri_split(target, &tmp, 0);
1792
1793         /*
1794          * Dropped the delayed write list lock, now walk the temporary list
1795          */
1796         list_for_each_entry_safe(bp, n, &tmp, b_list) {
1797                 ASSERT(target == bp->b_target);
1798                 if (wait)
1799                         bp->b_flags &= ~XBF_ASYNC;
1800                 else
1801                         list_del_init(&bp->b_list);
1802
1803                 xfs_buf_iostrategy(bp);
1804         }
1805
1806         if (wait)
1807                 blk_run_address_space(target->bt_mapping);
1808
1809         /*
1810          * Remaining list items must be flushed before returning
1811          */
1812         while (!list_empty(&tmp)) {
1813                 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1814
1815                 list_del_init(&bp->b_list);
1816                 xfs_iowait(bp);
1817                 xfs_buf_relse(bp);
1818         }
1819
1820         return pincount;
1821 }
1822
1823 int __init
1824 xfs_buf_init(void)
1825 {
1826         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1827                                                 KM_ZONE_HWALIGN, NULL);
1828         if (!xfs_buf_zone)
1829                 goto out;
1830
1831         xfslogd_workqueue = create_workqueue("xfslogd");
1832         if (!xfslogd_workqueue)
1833                 goto out_free_buf_zone;
1834
1835         xfsdatad_workqueue = create_workqueue("xfsdatad");
1836         if (!xfsdatad_workqueue)
1837                 goto out_destroy_xfslogd_workqueue;
1838
1839         xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1840         if (!xfsconvertd_workqueue)
1841                 goto out_destroy_xfsdatad_workqueue;
1842
1843         register_shrinker(&xfs_buf_shake);
1844         return 0;
1845
1846  out_destroy_xfsdatad_workqueue:
1847         destroy_workqueue(xfsdatad_workqueue);
1848  out_destroy_xfslogd_workqueue:
1849         destroy_workqueue(xfslogd_workqueue);
1850  out_free_buf_zone:
1851         kmem_zone_destroy(xfs_buf_zone);
1852  out:
1853         return -ENOMEM;
1854 }
1855
1856 void
1857 xfs_buf_terminate(void)
1858 {
1859         unregister_shrinker(&xfs_buf_shake);
1860         destroy_workqueue(xfsconvertd_workqueue);
1861         destroy_workqueue(xfsdatad_workqueue);
1862         destroy_workqueue(xfslogd_workqueue);
1863         kmem_zone_destroy(xfs_buf_zone);
1864 }
1865
1866 #ifdef CONFIG_KDB_MODULES
1867 struct list_head *
1868 xfs_get_buftarg_list(void)
1869 {
1870         return &xfs_buftarg_list;
1871 }
1872 #endif