]> git.karo-electronics.de Git - mv-sheeva.git/blob - fs/xfs/linux-2.6/xfs_buf.c
xfs: return the buffer locked from xfs_buf_get_uncached
[mv-sheeva.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_sb.h"
38 #include "xfs_inum.h"
39 #include "xfs_log.h"
40 #include "xfs_ag.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43
44 static kmem_zone_t *xfs_buf_zone;
45 STATIC int xfsbufd(void *);
46 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
47
48 static struct workqueue_struct *xfslogd_workqueue;
49 struct workqueue_struct *xfsdatad_workqueue;
50 struct workqueue_struct *xfsconvertd_workqueue;
51
52 #ifdef XFS_BUF_LOCK_TRACKING
53 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
54 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
55 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
56 #else
57 # define XB_SET_OWNER(bp)       do { } while (0)
58 # define XB_CLEAR_OWNER(bp)     do { } while (0)
59 # define XB_GET_OWNER(bp)       do { } while (0)
60 #endif
61
62 #define xb_to_gfp(flags) \
63         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
64           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
65
66 #define xb_to_km(flags) \
67          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
68
69 #define xfs_buf_allocate(flags) \
70         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
71 #define xfs_buf_deallocate(bp) \
72         kmem_zone_free(xfs_buf_zone, (bp));
73
74 static inline int
75 xfs_buf_is_vmapped(
76         struct xfs_buf  *bp)
77 {
78         /*
79          * Return true if the buffer is vmapped.
80          *
81          * The XBF_MAPPED flag is set if the buffer should be mapped, but the
82          * code is clever enough to know it doesn't have to map a single page,
83          * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
84          */
85         return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
86 }
87
88 static inline int
89 xfs_buf_vmap_len(
90         struct xfs_buf  *bp)
91 {
92         return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
93 }
94
95 /*
96  * xfs_buf_lru_add - add a buffer to the LRU.
97  *
98  * The LRU takes a new reference to the buffer so that it will only be freed
99  * once the shrinker takes the buffer off the LRU.
100  */
101 STATIC void
102 xfs_buf_lru_add(
103         struct xfs_buf  *bp)
104 {
105         struct xfs_buftarg *btp = bp->b_target;
106
107         spin_lock(&btp->bt_lru_lock);
108         if (list_empty(&bp->b_lru)) {
109                 atomic_inc(&bp->b_hold);
110                 list_add_tail(&bp->b_lru, &btp->bt_lru);
111                 btp->bt_lru_nr++;
112         }
113         spin_unlock(&btp->bt_lru_lock);
114 }
115
116 /*
117  * xfs_buf_lru_del - remove a buffer from the LRU
118  *
119  * The unlocked check is safe here because it only occurs when there are not
120  * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
121  * to optimise the shrinker removing the buffer from the LRU and calling
122  * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
123  * bt_lru_lock.
124  */
125 STATIC void
126 xfs_buf_lru_del(
127         struct xfs_buf  *bp)
128 {
129         struct xfs_buftarg *btp = bp->b_target;
130
131         if (list_empty(&bp->b_lru))
132                 return;
133
134         spin_lock(&btp->bt_lru_lock);
135         if (!list_empty(&bp->b_lru)) {
136                 list_del_init(&bp->b_lru);
137                 btp->bt_lru_nr--;
138         }
139         spin_unlock(&btp->bt_lru_lock);
140 }
141
142 /*
143  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
144  * b_lru_ref count so that the buffer is freed immediately when the buffer
145  * reference count falls to zero. If the buffer is already on the LRU, we need
146  * to remove the reference that LRU holds on the buffer.
147  *
148  * This prevents build-up of stale buffers on the LRU.
149  */
150 void
151 xfs_buf_stale(
152         struct xfs_buf  *bp)
153 {
154         bp->b_flags |= XBF_STALE;
155         atomic_set(&(bp)->b_lru_ref, 0);
156         if (!list_empty(&bp->b_lru)) {
157                 struct xfs_buftarg *btp = bp->b_target;
158
159                 spin_lock(&btp->bt_lru_lock);
160                 if (!list_empty(&bp->b_lru)) {
161                         list_del_init(&bp->b_lru);
162                         btp->bt_lru_nr--;
163                         atomic_dec(&bp->b_hold);
164                 }
165                 spin_unlock(&btp->bt_lru_lock);
166         }
167         ASSERT(atomic_read(&bp->b_hold) >= 1);
168 }
169
170 STATIC void
171 _xfs_buf_initialize(
172         xfs_buf_t               *bp,
173         xfs_buftarg_t           *target,
174         xfs_off_t               range_base,
175         size_t                  range_length,
176         xfs_buf_flags_t         flags)
177 {
178         /*
179          * We don't want certain flags to appear in b_flags.
180          */
181         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
182
183         memset(bp, 0, sizeof(xfs_buf_t));
184         atomic_set(&bp->b_hold, 1);
185         atomic_set(&bp->b_lru_ref, 1);
186         init_completion(&bp->b_iowait);
187         INIT_LIST_HEAD(&bp->b_lru);
188         INIT_LIST_HEAD(&bp->b_list);
189         RB_CLEAR_NODE(&bp->b_rbnode);
190         sema_init(&bp->b_sema, 0); /* held, no waiters */
191         XB_SET_OWNER(bp);
192         bp->b_target = target;
193         bp->b_file_offset = range_base;
194         /*
195          * Set buffer_length and count_desired to the same value initially.
196          * I/O routines should use count_desired, which will be the same in
197          * most cases but may be reset (e.g. XFS recovery).
198          */
199         bp->b_buffer_length = bp->b_count_desired = range_length;
200         bp->b_flags = flags;
201         bp->b_bn = XFS_BUF_DADDR_NULL;
202         atomic_set(&bp->b_pin_count, 0);
203         init_waitqueue_head(&bp->b_waiters);
204
205         XFS_STATS_INC(xb_create);
206
207         trace_xfs_buf_init(bp, _RET_IP_);
208 }
209
210 /*
211  *      Allocate a page array capable of holding a specified number
212  *      of pages, and point the page buf at it.
213  */
214 STATIC int
215 _xfs_buf_get_pages(
216         xfs_buf_t               *bp,
217         int                     page_count,
218         xfs_buf_flags_t         flags)
219 {
220         /* Make sure that we have a page list */
221         if (bp->b_pages == NULL) {
222                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
223                 bp->b_page_count = page_count;
224                 if (page_count <= XB_PAGES) {
225                         bp->b_pages = bp->b_page_array;
226                 } else {
227                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
228                                         page_count, xb_to_km(flags));
229                         if (bp->b_pages == NULL)
230                                 return -ENOMEM;
231                 }
232                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
233         }
234         return 0;
235 }
236
237 /*
238  *      Frees b_pages if it was allocated.
239  */
240 STATIC void
241 _xfs_buf_free_pages(
242         xfs_buf_t       *bp)
243 {
244         if (bp->b_pages != bp->b_page_array) {
245                 kmem_free(bp->b_pages);
246                 bp->b_pages = NULL;
247         }
248 }
249
250 /*
251  *      Releases the specified buffer.
252  *
253  *      The modification state of any associated pages is left unchanged.
254  *      The buffer most not be on any hash - use xfs_buf_rele instead for
255  *      hashed and refcounted buffers
256  */
257 void
258 xfs_buf_free(
259         xfs_buf_t               *bp)
260 {
261         trace_xfs_buf_free(bp, _RET_IP_);
262
263         ASSERT(list_empty(&bp->b_lru));
264
265         if (bp->b_flags & _XBF_PAGES) {
266                 uint            i;
267
268                 if (xfs_buf_is_vmapped(bp))
269                         vm_unmap_ram(bp->b_addr - bp->b_offset,
270                                         bp->b_page_count);
271
272                 for (i = 0; i < bp->b_page_count; i++) {
273                         struct page     *page = bp->b_pages[i];
274
275                         __free_page(page);
276                 }
277         } else if (bp->b_flags & _XBF_KMEM)
278                 kmem_free(bp->b_addr);
279         _xfs_buf_free_pages(bp);
280         xfs_buf_deallocate(bp);
281 }
282
283 /*
284  * Allocates all the pages for buffer in question and builds it's page list.
285  */
286 STATIC int
287 xfs_buf_allocate_memory(
288         xfs_buf_t               *bp,
289         uint                    flags)
290 {
291         size_t                  size = bp->b_count_desired;
292         size_t                  nbytes, offset;
293         gfp_t                   gfp_mask = xb_to_gfp(flags);
294         unsigned short          page_count, i;
295         xfs_off_t               end;
296         int                     error;
297
298         /*
299          * for buffers that are contained within a single page, just allocate
300          * the memory from the heap - there's no need for the complexity of
301          * page arrays to keep allocation down to order 0.
302          */
303         if (bp->b_buffer_length < PAGE_SIZE) {
304                 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
305                 if (!bp->b_addr) {
306                         /* low memory - use alloc_page loop instead */
307                         goto use_alloc_page;
308                 }
309
310                 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
311                                                                 PAGE_MASK) !=
312                     ((unsigned long)bp->b_addr & PAGE_MASK)) {
313                         /* b_addr spans two pages - use alloc_page instead */
314                         kmem_free(bp->b_addr);
315                         bp->b_addr = NULL;
316                         goto use_alloc_page;
317                 }
318                 bp->b_offset = offset_in_page(bp->b_addr);
319                 bp->b_pages = bp->b_page_array;
320                 bp->b_pages[0] = virt_to_page(bp->b_addr);
321                 bp->b_page_count = 1;
322                 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
323                 return 0;
324         }
325
326 use_alloc_page:
327         end = bp->b_file_offset + bp->b_buffer_length;
328         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
329         error = _xfs_buf_get_pages(bp, page_count, flags);
330         if (unlikely(error))
331                 return error;
332
333         offset = bp->b_offset;
334         bp->b_flags |= _XBF_PAGES;
335
336         for (i = 0; i < bp->b_page_count; i++) {
337                 struct page     *page;
338                 uint            retries = 0;
339 retry:
340                 page = alloc_page(gfp_mask);
341                 if (unlikely(page == NULL)) {
342                         if (flags & XBF_READ_AHEAD) {
343                                 bp->b_page_count = i;
344                                 error = ENOMEM;
345                                 goto out_free_pages;
346                         }
347
348                         /*
349                          * This could deadlock.
350                          *
351                          * But until all the XFS lowlevel code is revamped to
352                          * handle buffer allocation failures we can't do much.
353                          */
354                         if (!(++retries % 100))
355                                 xfs_err(NULL,
356                 "possible memory allocation deadlock in %s (mode:0x%x)",
357                                         __func__, gfp_mask);
358
359                         XFS_STATS_INC(xb_page_retries);
360                         congestion_wait(BLK_RW_ASYNC, HZ/50);
361                         goto retry;
362                 }
363
364                 XFS_STATS_INC(xb_page_found);
365
366                 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
367                 size -= nbytes;
368                 bp->b_pages[i] = page;
369                 offset = 0;
370         }
371         return 0;
372
373 out_free_pages:
374         for (i = 0; i < bp->b_page_count; i++)
375                 __free_page(bp->b_pages[i]);
376         return error;
377 }
378
379 /*
380  *      Map buffer into kernel address-space if necessary.
381  */
382 STATIC int
383 _xfs_buf_map_pages(
384         xfs_buf_t               *bp,
385         uint                    flags)
386 {
387         ASSERT(bp->b_flags & _XBF_PAGES);
388         if (bp->b_page_count == 1) {
389                 /* A single page buffer is always mappable */
390                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
391                 bp->b_flags |= XBF_MAPPED;
392         } else if (flags & XBF_MAPPED) {
393                 int retried = 0;
394
395                 do {
396                         bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
397                                                 -1, PAGE_KERNEL);
398                         if (bp->b_addr)
399                                 break;
400                         vm_unmap_aliases();
401                 } while (retried++ <= 1);
402
403                 if (!bp->b_addr)
404                         return -ENOMEM;
405                 bp->b_addr += bp->b_offset;
406                 bp->b_flags |= XBF_MAPPED;
407         }
408
409         return 0;
410 }
411
412 /*
413  *      Finding and Reading Buffers
414  */
415
416 /*
417  *      Look up, and creates if absent, a lockable buffer for
418  *      a given range of an inode.  The buffer is returned
419  *      locked.  If other overlapping buffers exist, they are
420  *      released before the new buffer is created and locked,
421  *      which may imply that this call will block until those buffers
422  *      are unlocked.  No I/O is implied by this call.
423  */
424 xfs_buf_t *
425 _xfs_buf_find(
426         xfs_buftarg_t           *btp,   /* block device target          */
427         xfs_off_t               ioff,   /* starting offset of range     */
428         size_t                  isize,  /* length of range              */
429         xfs_buf_flags_t         flags,
430         xfs_buf_t               *new_bp)
431 {
432         xfs_off_t               range_base;
433         size_t                  range_length;
434         struct xfs_perag        *pag;
435         struct rb_node          **rbp;
436         struct rb_node          *parent;
437         xfs_buf_t               *bp;
438
439         range_base = (ioff << BBSHIFT);
440         range_length = (isize << BBSHIFT);
441
442         /* Check for IOs smaller than the sector size / not sector aligned */
443         ASSERT(!(range_length < (1 << btp->bt_sshift)));
444         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
445
446         /* get tree root */
447         pag = xfs_perag_get(btp->bt_mount,
448                                 xfs_daddr_to_agno(btp->bt_mount, ioff));
449
450         /* walk tree */
451         spin_lock(&pag->pag_buf_lock);
452         rbp = &pag->pag_buf_tree.rb_node;
453         parent = NULL;
454         bp = NULL;
455         while (*rbp) {
456                 parent = *rbp;
457                 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
458
459                 if (range_base < bp->b_file_offset)
460                         rbp = &(*rbp)->rb_left;
461                 else if (range_base > bp->b_file_offset)
462                         rbp = &(*rbp)->rb_right;
463                 else {
464                         /*
465                          * found a block offset match. If the range doesn't
466                          * match, the only way this is allowed is if the buffer
467                          * in the cache is stale and the transaction that made
468                          * it stale has not yet committed. i.e. we are
469                          * reallocating a busy extent. Skip this buffer and
470                          * continue searching to the right for an exact match.
471                          */
472                         if (bp->b_buffer_length != range_length) {
473                                 ASSERT(bp->b_flags & XBF_STALE);
474                                 rbp = &(*rbp)->rb_right;
475                                 continue;
476                         }
477                         atomic_inc(&bp->b_hold);
478                         goto found;
479                 }
480         }
481
482         /* No match found */
483         if (new_bp) {
484                 _xfs_buf_initialize(new_bp, btp, range_base,
485                                 range_length, flags);
486                 rb_link_node(&new_bp->b_rbnode, parent, rbp);
487                 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
488                 /* the buffer keeps the perag reference until it is freed */
489                 new_bp->b_pag = pag;
490                 spin_unlock(&pag->pag_buf_lock);
491         } else {
492                 XFS_STATS_INC(xb_miss_locked);
493                 spin_unlock(&pag->pag_buf_lock);
494                 xfs_perag_put(pag);
495         }
496         return new_bp;
497
498 found:
499         spin_unlock(&pag->pag_buf_lock);
500         xfs_perag_put(pag);
501
502         if (!xfs_buf_trylock(bp)) {
503                 if (flags & XBF_TRYLOCK) {
504                         xfs_buf_rele(bp);
505                         XFS_STATS_INC(xb_busy_locked);
506                         return NULL;
507                 }
508                 xfs_buf_lock(bp);
509                 XFS_STATS_INC(xb_get_locked_waited);
510         }
511
512         /*
513          * if the buffer is stale, clear all the external state associated with
514          * it. We need to keep flags such as how we allocated the buffer memory
515          * intact here.
516          */
517         if (bp->b_flags & XBF_STALE) {
518                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
519                 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
520         }
521
522         trace_xfs_buf_find(bp, flags, _RET_IP_);
523         XFS_STATS_INC(xb_get_locked);
524         return bp;
525 }
526
527 /*
528  *      Assembles a buffer covering the specified range.
529  *      Storage in memory for all portions of the buffer will be allocated,
530  *      although backing storage may not be.
531  */
532 xfs_buf_t *
533 xfs_buf_get(
534         xfs_buftarg_t           *target,/* target for buffer            */
535         xfs_off_t               ioff,   /* starting offset of range     */
536         size_t                  isize,  /* length of range              */
537         xfs_buf_flags_t         flags)
538 {
539         xfs_buf_t               *bp, *new_bp;
540         int                     error = 0;
541
542         new_bp = xfs_buf_allocate(flags);
543         if (unlikely(!new_bp))
544                 return NULL;
545
546         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
547         if (bp == new_bp) {
548                 error = xfs_buf_allocate_memory(bp, flags);
549                 if (error)
550                         goto no_buffer;
551         } else {
552                 xfs_buf_deallocate(new_bp);
553                 if (unlikely(bp == NULL))
554                         return NULL;
555         }
556
557         if (!(bp->b_flags & XBF_MAPPED)) {
558                 error = _xfs_buf_map_pages(bp, flags);
559                 if (unlikely(error)) {
560                         xfs_warn(target->bt_mount,
561                                 "%s: failed to map pages\n", __func__);
562                         goto no_buffer;
563                 }
564         }
565
566         XFS_STATS_INC(xb_get);
567
568         /*
569          * Always fill in the block number now, the mapped cases can do
570          * their own overlay of this later.
571          */
572         bp->b_bn = ioff;
573         bp->b_count_desired = bp->b_buffer_length;
574
575         trace_xfs_buf_get(bp, flags, _RET_IP_);
576         return bp;
577
578  no_buffer:
579         if (flags & (XBF_LOCK | XBF_TRYLOCK))
580                 xfs_buf_unlock(bp);
581         xfs_buf_rele(bp);
582         return NULL;
583 }
584
585 STATIC int
586 _xfs_buf_read(
587         xfs_buf_t               *bp,
588         xfs_buf_flags_t         flags)
589 {
590         int                     status;
591
592         ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
593         ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
594
595         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
596                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
597         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
598                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
599
600         status = xfs_buf_iorequest(bp);
601         if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
602                 return status;
603         return xfs_buf_iowait(bp);
604 }
605
606 xfs_buf_t *
607 xfs_buf_read(
608         xfs_buftarg_t           *target,
609         xfs_off_t               ioff,
610         size_t                  isize,
611         xfs_buf_flags_t         flags)
612 {
613         xfs_buf_t               *bp;
614
615         flags |= XBF_READ;
616
617         bp = xfs_buf_get(target, ioff, isize, flags);
618         if (bp) {
619                 trace_xfs_buf_read(bp, flags, _RET_IP_);
620
621                 if (!XFS_BUF_ISDONE(bp)) {
622                         XFS_STATS_INC(xb_get_read);
623                         _xfs_buf_read(bp, flags);
624                 } else if (flags & XBF_ASYNC) {
625                         /*
626                          * Read ahead call which is already satisfied,
627                          * drop the buffer
628                          */
629                         goto no_buffer;
630                 } else {
631                         /* We do not want read in the flags */
632                         bp->b_flags &= ~XBF_READ;
633                 }
634         }
635
636         return bp;
637
638  no_buffer:
639         if (flags & (XBF_LOCK | XBF_TRYLOCK))
640                 xfs_buf_unlock(bp);
641         xfs_buf_rele(bp);
642         return NULL;
643 }
644
645 /*
646  *      If we are not low on memory then do the readahead in a deadlock
647  *      safe manner.
648  */
649 void
650 xfs_buf_readahead(
651         xfs_buftarg_t           *target,
652         xfs_off_t               ioff,
653         size_t                  isize)
654 {
655         if (bdi_read_congested(target->bt_bdi))
656                 return;
657
658         xfs_buf_read(target, ioff, isize,
659                      XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
660 }
661
662 /*
663  * Read an uncached buffer from disk. Allocates and returns a locked
664  * buffer containing the disk contents or nothing.
665  */
666 struct xfs_buf *
667 xfs_buf_read_uncached(
668         struct xfs_mount        *mp,
669         struct xfs_buftarg      *target,
670         xfs_daddr_t             daddr,
671         size_t                  length,
672         int                     flags)
673 {
674         xfs_buf_t               *bp;
675         int                     error;
676
677         bp = xfs_buf_get_uncached(target, length, flags);
678         if (!bp)
679                 return NULL;
680
681         /* set up the buffer for a read IO */
682         XFS_BUF_SET_ADDR(bp, daddr);
683         XFS_BUF_READ(bp);
684         XFS_BUF_BUSY(bp);
685
686         xfsbdstrat(mp, bp);
687         error = xfs_buf_iowait(bp);
688         if (error || bp->b_error) {
689                 xfs_buf_relse(bp);
690                 return NULL;
691         }
692         return bp;
693 }
694
695 xfs_buf_t *
696 xfs_buf_get_empty(
697         size_t                  len,
698         xfs_buftarg_t           *target)
699 {
700         xfs_buf_t               *bp;
701
702         bp = xfs_buf_allocate(0);
703         if (bp)
704                 _xfs_buf_initialize(bp, target, 0, len, 0);
705         return bp;
706 }
707
708 /*
709  * Return a buffer allocated as an empty buffer and associated to external
710  * memory via xfs_buf_associate_memory() back to it's empty state.
711  */
712 void
713 xfs_buf_set_empty(
714         struct xfs_buf          *bp,
715         size_t                  len)
716 {
717         if (bp->b_pages)
718                 _xfs_buf_free_pages(bp);
719
720         bp->b_pages = NULL;
721         bp->b_page_count = 0;
722         bp->b_addr = NULL;
723         bp->b_file_offset = 0;
724         bp->b_buffer_length = bp->b_count_desired = len;
725         bp->b_bn = XFS_BUF_DADDR_NULL;
726         bp->b_flags &= ~XBF_MAPPED;
727 }
728
729 static inline struct page *
730 mem_to_page(
731         void                    *addr)
732 {
733         if ((!is_vmalloc_addr(addr))) {
734                 return virt_to_page(addr);
735         } else {
736                 return vmalloc_to_page(addr);
737         }
738 }
739
740 int
741 xfs_buf_associate_memory(
742         xfs_buf_t               *bp,
743         void                    *mem,
744         size_t                  len)
745 {
746         int                     rval;
747         int                     i = 0;
748         unsigned long           pageaddr;
749         unsigned long           offset;
750         size_t                  buflen;
751         int                     page_count;
752
753         pageaddr = (unsigned long)mem & PAGE_MASK;
754         offset = (unsigned long)mem - pageaddr;
755         buflen = PAGE_ALIGN(len + offset);
756         page_count = buflen >> PAGE_SHIFT;
757
758         /* Free any previous set of page pointers */
759         if (bp->b_pages)
760                 _xfs_buf_free_pages(bp);
761
762         bp->b_pages = NULL;
763         bp->b_addr = mem;
764
765         rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
766         if (rval)
767                 return rval;
768
769         bp->b_offset = offset;
770
771         for (i = 0; i < bp->b_page_count; i++) {
772                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
773                 pageaddr += PAGE_SIZE;
774         }
775
776         bp->b_count_desired = len;
777         bp->b_buffer_length = buflen;
778         bp->b_flags |= XBF_MAPPED;
779
780         return 0;
781 }
782
783 xfs_buf_t *
784 xfs_buf_get_uncached(
785         struct xfs_buftarg      *target,
786         size_t                  len,
787         int                     flags)
788 {
789         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
790         int                     error, i;
791         xfs_buf_t               *bp;
792
793         bp = xfs_buf_allocate(0);
794         if (unlikely(bp == NULL))
795                 goto fail;
796         _xfs_buf_initialize(bp, target, 0, len, 0);
797
798         error = _xfs_buf_get_pages(bp, page_count, 0);
799         if (error)
800                 goto fail_free_buf;
801
802         for (i = 0; i < page_count; i++) {
803                 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
804                 if (!bp->b_pages[i])
805                         goto fail_free_mem;
806         }
807         bp->b_flags |= _XBF_PAGES;
808
809         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
810         if (unlikely(error)) {
811                 xfs_warn(target->bt_mount,
812                         "%s: failed to map pages\n", __func__);
813                 goto fail_free_mem;
814         }
815
816         trace_xfs_buf_get_uncached(bp, _RET_IP_);
817         return bp;
818
819  fail_free_mem:
820         while (--i >= 0)
821                 __free_page(bp->b_pages[i]);
822         _xfs_buf_free_pages(bp);
823  fail_free_buf:
824         xfs_buf_deallocate(bp);
825  fail:
826         return NULL;
827 }
828
829 /*
830  *      Increment reference count on buffer, to hold the buffer concurrently
831  *      with another thread which may release (free) the buffer asynchronously.
832  *      Must hold the buffer already to call this function.
833  */
834 void
835 xfs_buf_hold(
836         xfs_buf_t               *bp)
837 {
838         trace_xfs_buf_hold(bp, _RET_IP_);
839         atomic_inc(&bp->b_hold);
840 }
841
842 /*
843  *      Releases a hold on the specified buffer.  If the
844  *      the hold count is 1, calls xfs_buf_free.
845  */
846 void
847 xfs_buf_rele(
848         xfs_buf_t               *bp)
849 {
850         struct xfs_perag        *pag = bp->b_pag;
851
852         trace_xfs_buf_rele(bp, _RET_IP_);
853
854         if (!pag) {
855                 ASSERT(list_empty(&bp->b_lru));
856                 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
857                 if (atomic_dec_and_test(&bp->b_hold))
858                         xfs_buf_free(bp);
859                 return;
860         }
861
862         ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
863
864         ASSERT(atomic_read(&bp->b_hold) > 0);
865         if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
866                 if (!(bp->b_flags & XBF_STALE) &&
867                            atomic_read(&bp->b_lru_ref)) {
868                         xfs_buf_lru_add(bp);
869                         spin_unlock(&pag->pag_buf_lock);
870                 } else {
871                         xfs_buf_lru_del(bp);
872                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
873                         rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
874                         spin_unlock(&pag->pag_buf_lock);
875                         xfs_perag_put(pag);
876                         xfs_buf_free(bp);
877                 }
878         }
879 }
880
881
882 /*
883  *      Lock a buffer object, if it is not already locked.
884  *
885  *      If we come across a stale, pinned, locked buffer, we know that we are
886  *      being asked to lock a buffer that has been reallocated. Because it is
887  *      pinned, we know that the log has not been pushed to disk and hence it
888  *      will still be locked.  Rather than continuing to have trylock attempts
889  *      fail until someone else pushes the log, push it ourselves before
890  *      returning.  This means that the xfsaild will not get stuck trying
891  *      to push on stale inode buffers.
892  */
893 int
894 xfs_buf_trylock(
895         struct xfs_buf          *bp)
896 {
897         int                     locked;
898
899         locked = down_trylock(&bp->b_sema) == 0;
900         if (locked)
901                 XB_SET_OWNER(bp);
902         else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
903                 xfs_log_force(bp->b_target->bt_mount, 0);
904
905         trace_xfs_buf_trylock(bp, _RET_IP_);
906         return locked;
907 }
908
909 /*
910  *      Lock a buffer object.
911  *
912  *      If we come across a stale, pinned, locked buffer, we know that we
913  *      are being asked to lock a buffer that has been reallocated. Because
914  *      it is pinned, we know that the log has not been pushed to disk and
915  *      hence it will still be locked. Rather than sleeping until someone
916  *      else pushes the log, push it ourselves before trying to get the lock.
917  */
918 void
919 xfs_buf_lock(
920         struct xfs_buf          *bp)
921 {
922         trace_xfs_buf_lock(bp, _RET_IP_);
923
924         if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
925                 xfs_log_force(bp->b_target->bt_mount, 0);
926         down(&bp->b_sema);
927         XB_SET_OWNER(bp);
928
929         trace_xfs_buf_lock_done(bp, _RET_IP_);
930 }
931
932 /*
933  *      Releases the lock on the buffer object.
934  *      If the buffer is marked delwri but is not queued, do so before we
935  *      unlock the buffer as we need to set flags correctly.  We also need to
936  *      take a reference for the delwri queue because the unlocker is going to
937  *      drop their's and they don't know we just queued it.
938  */
939 void
940 xfs_buf_unlock(
941         struct xfs_buf          *bp)
942 {
943         if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
944                 atomic_inc(&bp->b_hold);
945                 bp->b_flags |= XBF_ASYNC;
946                 xfs_buf_delwri_queue(bp, 0);
947         }
948
949         XB_CLEAR_OWNER(bp);
950         up(&bp->b_sema);
951
952         trace_xfs_buf_unlock(bp, _RET_IP_);
953 }
954
955 STATIC void
956 xfs_buf_wait_unpin(
957         xfs_buf_t               *bp)
958 {
959         DECLARE_WAITQUEUE       (wait, current);
960
961         if (atomic_read(&bp->b_pin_count) == 0)
962                 return;
963
964         add_wait_queue(&bp->b_waiters, &wait);
965         for (;;) {
966                 set_current_state(TASK_UNINTERRUPTIBLE);
967                 if (atomic_read(&bp->b_pin_count) == 0)
968                         break;
969                 io_schedule();
970         }
971         remove_wait_queue(&bp->b_waiters, &wait);
972         set_current_state(TASK_RUNNING);
973 }
974
975 /*
976  *      Buffer Utility Routines
977  */
978
979 STATIC void
980 xfs_buf_iodone_work(
981         struct work_struct      *work)
982 {
983         xfs_buf_t               *bp =
984                 container_of(work, xfs_buf_t, b_iodone_work);
985
986         if (bp->b_iodone)
987                 (*(bp->b_iodone))(bp);
988         else if (bp->b_flags & XBF_ASYNC)
989                 xfs_buf_relse(bp);
990 }
991
992 void
993 xfs_buf_ioend(
994         xfs_buf_t               *bp,
995         int                     schedule)
996 {
997         trace_xfs_buf_iodone(bp, _RET_IP_);
998
999         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1000         if (bp->b_error == 0)
1001                 bp->b_flags |= XBF_DONE;
1002
1003         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1004                 if (schedule) {
1005                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1006                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1007                 } else {
1008                         xfs_buf_iodone_work(&bp->b_iodone_work);
1009                 }
1010         } else {
1011                 complete(&bp->b_iowait);
1012         }
1013 }
1014
1015 void
1016 xfs_buf_ioerror(
1017         xfs_buf_t               *bp,
1018         int                     error)
1019 {
1020         ASSERT(error >= 0 && error <= 0xffff);
1021         bp->b_error = (unsigned short)error;
1022         trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1023 }
1024
1025 int
1026 xfs_bwrite(
1027         struct xfs_mount        *mp,
1028         struct xfs_buf          *bp)
1029 {
1030         int                     error;
1031
1032         bp->b_flags |= XBF_WRITE;
1033         bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1034
1035         xfs_buf_delwri_dequeue(bp);
1036         xfs_bdstrat_cb(bp);
1037
1038         error = xfs_buf_iowait(bp);
1039         if (error)
1040                 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1041         xfs_buf_relse(bp);
1042         return error;
1043 }
1044
1045 void
1046 xfs_bdwrite(
1047         void                    *mp,
1048         struct xfs_buf          *bp)
1049 {
1050         trace_xfs_buf_bdwrite(bp, _RET_IP_);
1051
1052         bp->b_flags &= ~XBF_READ;
1053         bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1054
1055         xfs_buf_delwri_queue(bp, 1);
1056 }
1057
1058 /*
1059  * Called when we want to stop a buffer from getting written or read.
1060  * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1061  * so that the proper iodone callbacks get called.
1062  */
1063 STATIC int
1064 xfs_bioerror(
1065         xfs_buf_t *bp)
1066 {
1067 #ifdef XFSERRORDEBUG
1068         ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1069 #endif
1070
1071         /*
1072          * No need to wait until the buffer is unpinned, we aren't flushing it.
1073          */
1074         XFS_BUF_ERROR(bp, EIO);
1075
1076         /*
1077          * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1078          */
1079         XFS_BUF_UNREAD(bp);
1080         XFS_BUF_UNDELAYWRITE(bp);
1081         XFS_BUF_UNDONE(bp);
1082         XFS_BUF_STALE(bp);
1083
1084         xfs_buf_ioend(bp, 0);
1085
1086         return EIO;
1087 }
1088
1089 /*
1090  * Same as xfs_bioerror, except that we are releasing the buffer
1091  * here ourselves, and avoiding the xfs_buf_ioend call.
1092  * This is meant for userdata errors; metadata bufs come with
1093  * iodone functions attached, so that we can track down errors.
1094  */
1095 STATIC int
1096 xfs_bioerror_relse(
1097         struct xfs_buf  *bp)
1098 {
1099         int64_t         fl = XFS_BUF_BFLAGS(bp);
1100         /*
1101          * No need to wait until the buffer is unpinned.
1102          * We aren't flushing it.
1103          *
1104          * chunkhold expects B_DONE to be set, whether
1105          * we actually finish the I/O or not. We don't want to
1106          * change that interface.
1107          */
1108         XFS_BUF_UNREAD(bp);
1109         XFS_BUF_UNDELAYWRITE(bp);
1110         XFS_BUF_DONE(bp);
1111         XFS_BUF_STALE(bp);
1112         XFS_BUF_CLR_IODONE_FUNC(bp);
1113         if (!(fl & XBF_ASYNC)) {
1114                 /*
1115                  * Mark b_error and B_ERROR _both_.
1116                  * Lot's of chunkcache code assumes that.
1117                  * There's no reason to mark error for
1118                  * ASYNC buffers.
1119                  */
1120                 XFS_BUF_ERROR(bp, EIO);
1121                 XFS_BUF_FINISH_IOWAIT(bp);
1122         } else {
1123                 xfs_buf_relse(bp);
1124         }
1125
1126         return EIO;
1127 }
1128
1129
1130 /*
1131  * All xfs metadata buffers except log state machine buffers
1132  * get this attached as their b_bdstrat callback function.
1133  * This is so that we can catch a buffer
1134  * after prematurely unpinning it to forcibly shutdown the filesystem.
1135  */
1136 int
1137 xfs_bdstrat_cb(
1138         struct xfs_buf  *bp)
1139 {
1140         if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1141                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1142                 /*
1143                  * Metadata write that didn't get logged but
1144                  * written delayed anyway. These aren't associated
1145                  * with a transaction, and can be ignored.
1146                  */
1147                 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1148                         return xfs_bioerror_relse(bp);
1149                 else
1150                         return xfs_bioerror(bp);
1151         }
1152
1153         xfs_buf_iorequest(bp);
1154         return 0;
1155 }
1156
1157 /*
1158  * Wrapper around bdstrat so that we can stop data from going to disk in case
1159  * we are shutting down the filesystem.  Typically user data goes thru this
1160  * path; one of the exceptions is the superblock.
1161  */
1162 void
1163 xfsbdstrat(
1164         struct xfs_mount        *mp,
1165         struct xfs_buf          *bp)
1166 {
1167         if (XFS_FORCED_SHUTDOWN(mp)) {
1168                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1169                 xfs_bioerror_relse(bp);
1170                 return;
1171         }
1172
1173         xfs_buf_iorequest(bp);
1174 }
1175
1176 STATIC void
1177 _xfs_buf_ioend(
1178         xfs_buf_t               *bp,
1179         int                     schedule)
1180 {
1181         if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1182                 xfs_buf_ioend(bp, schedule);
1183 }
1184
1185 STATIC void
1186 xfs_buf_bio_end_io(
1187         struct bio              *bio,
1188         int                     error)
1189 {
1190         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1191
1192         xfs_buf_ioerror(bp, -error);
1193
1194         if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1195                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1196
1197         _xfs_buf_ioend(bp, 1);
1198         bio_put(bio);
1199 }
1200
1201 STATIC void
1202 _xfs_buf_ioapply(
1203         xfs_buf_t               *bp)
1204 {
1205         int                     rw, map_i, total_nr_pages, nr_pages;
1206         struct bio              *bio;
1207         int                     offset = bp->b_offset;
1208         int                     size = bp->b_count_desired;
1209         sector_t                sector = bp->b_bn;
1210
1211         total_nr_pages = bp->b_page_count;
1212         map_i = 0;
1213
1214         if (bp->b_flags & XBF_ORDERED) {
1215                 ASSERT(!(bp->b_flags & XBF_READ));
1216                 rw = WRITE_FLUSH_FUA;
1217         } else if (bp->b_flags & XBF_LOG_BUFFER) {
1218                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1219                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1220                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1221         } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1222                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1223                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1224                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1225         } else {
1226                 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1227                      (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1228         }
1229
1230
1231 next_chunk:
1232         atomic_inc(&bp->b_io_remaining);
1233         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1234         if (nr_pages > total_nr_pages)
1235                 nr_pages = total_nr_pages;
1236
1237         bio = bio_alloc(GFP_NOIO, nr_pages);
1238         bio->bi_bdev = bp->b_target->bt_bdev;
1239         bio->bi_sector = sector;
1240         bio->bi_end_io = xfs_buf_bio_end_io;
1241         bio->bi_private = bp;
1242
1243
1244         for (; size && nr_pages; nr_pages--, map_i++) {
1245                 int     rbytes, nbytes = PAGE_SIZE - offset;
1246
1247                 if (nbytes > size)
1248                         nbytes = size;
1249
1250                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1251                 if (rbytes < nbytes)
1252                         break;
1253
1254                 offset = 0;
1255                 sector += nbytes >> BBSHIFT;
1256                 size -= nbytes;
1257                 total_nr_pages--;
1258         }
1259
1260         if (likely(bio->bi_size)) {
1261                 if (xfs_buf_is_vmapped(bp)) {
1262                         flush_kernel_vmap_range(bp->b_addr,
1263                                                 xfs_buf_vmap_len(bp));
1264                 }
1265                 submit_bio(rw, bio);
1266                 if (size)
1267                         goto next_chunk;
1268         } else {
1269                 xfs_buf_ioerror(bp, EIO);
1270                 bio_put(bio);
1271         }
1272 }
1273
1274 int
1275 xfs_buf_iorequest(
1276         xfs_buf_t               *bp)
1277 {
1278         trace_xfs_buf_iorequest(bp, _RET_IP_);
1279
1280         if (bp->b_flags & XBF_DELWRI) {
1281                 xfs_buf_delwri_queue(bp, 1);
1282                 return 0;
1283         }
1284
1285         if (bp->b_flags & XBF_WRITE) {
1286                 xfs_buf_wait_unpin(bp);
1287         }
1288
1289         xfs_buf_hold(bp);
1290
1291         /* Set the count to 1 initially, this will stop an I/O
1292          * completion callout which happens before we have started
1293          * all the I/O from calling xfs_buf_ioend too early.
1294          */
1295         atomic_set(&bp->b_io_remaining, 1);
1296         _xfs_buf_ioapply(bp);
1297         _xfs_buf_ioend(bp, 0);
1298
1299         xfs_buf_rele(bp);
1300         return 0;
1301 }
1302
1303 /*
1304  *      Waits for I/O to complete on the buffer supplied.
1305  *      It returns immediately if no I/O is pending.
1306  *      It returns the I/O error code, if any, or 0 if there was no error.
1307  */
1308 int
1309 xfs_buf_iowait(
1310         xfs_buf_t               *bp)
1311 {
1312         trace_xfs_buf_iowait(bp, _RET_IP_);
1313
1314         wait_for_completion(&bp->b_iowait);
1315
1316         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1317         return bp->b_error;
1318 }
1319
1320 xfs_caddr_t
1321 xfs_buf_offset(
1322         xfs_buf_t               *bp,
1323         size_t                  offset)
1324 {
1325         struct page             *page;
1326
1327         if (bp->b_flags & XBF_MAPPED)
1328                 return XFS_BUF_PTR(bp) + offset;
1329
1330         offset += bp->b_offset;
1331         page = bp->b_pages[offset >> PAGE_SHIFT];
1332         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1333 }
1334
1335 /*
1336  *      Move data into or out of a buffer.
1337  */
1338 void
1339 xfs_buf_iomove(
1340         xfs_buf_t               *bp,    /* buffer to process            */
1341         size_t                  boff,   /* starting buffer offset       */
1342         size_t                  bsize,  /* length to copy               */
1343         void                    *data,  /* data address                 */
1344         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1345 {
1346         size_t                  bend, cpoff, csize;
1347         struct page             *page;
1348
1349         bend = boff + bsize;
1350         while (boff < bend) {
1351                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1352                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1353                 csize = min_t(size_t,
1354                               PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1355
1356                 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1357
1358                 switch (mode) {
1359                 case XBRW_ZERO:
1360                         memset(page_address(page) + cpoff, 0, csize);
1361                         break;
1362                 case XBRW_READ:
1363                         memcpy(data, page_address(page) + cpoff, csize);
1364                         break;
1365                 case XBRW_WRITE:
1366                         memcpy(page_address(page) + cpoff, data, csize);
1367                 }
1368
1369                 boff += csize;
1370                 data += csize;
1371         }
1372 }
1373
1374 /*
1375  *      Handling of buffer targets (buftargs).
1376  */
1377
1378 /*
1379  * Wait for any bufs with callbacks that have been submitted but have not yet
1380  * returned. These buffers will have an elevated hold count, so wait on those
1381  * while freeing all the buffers only held by the LRU.
1382  */
1383 void
1384 xfs_wait_buftarg(
1385         struct xfs_buftarg      *btp)
1386 {
1387         struct xfs_buf          *bp;
1388
1389 restart:
1390         spin_lock(&btp->bt_lru_lock);
1391         while (!list_empty(&btp->bt_lru)) {
1392                 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1393                 if (atomic_read(&bp->b_hold) > 1) {
1394                         spin_unlock(&btp->bt_lru_lock);
1395                         delay(100);
1396                         goto restart;
1397                 }
1398                 /*
1399                  * clear the LRU reference count so the bufer doesn't get
1400                  * ignored in xfs_buf_rele().
1401                  */
1402                 atomic_set(&bp->b_lru_ref, 0);
1403                 spin_unlock(&btp->bt_lru_lock);
1404                 xfs_buf_rele(bp);
1405                 spin_lock(&btp->bt_lru_lock);
1406         }
1407         spin_unlock(&btp->bt_lru_lock);
1408 }
1409
1410 int
1411 xfs_buftarg_shrink(
1412         struct shrinker         *shrink,
1413         struct shrink_control   *sc)
1414 {
1415         struct xfs_buftarg      *btp = container_of(shrink,
1416                                         struct xfs_buftarg, bt_shrinker);
1417         struct xfs_buf          *bp;
1418         int nr_to_scan = sc->nr_to_scan;
1419         LIST_HEAD(dispose);
1420
1421         if (!nr_to_scan)
1422                 return btp->bt_lru_nr;
1423
1424         spin_lock(&btp->bt_lru_lock);
1425         while (!list_empty(&btp->bt_lru)) {
1426                 if (nr_to_scan-- <= 0)
1427                         break;
1428
1429                 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1430
1431                 /*
1432                  * Decrement the b_lru_ref count unless the value is already
1433                  * zero. If the value is already zero, we need to reclaim the
1434                  * buffer, otherwise it gets another trip through the LRU.
1435                  */
1436                 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1437                         list_move_tail(&bp->b_lru, &btp->bt_lru);
1438                         continue;
1439                 }
1440
1441                 /*
1442                  * remove the buffer from the LRU now to avoid needing another
1443                  * lock round trip inside xfs_buf_rele().
1444                  */
1445                 list_move(&bp->b_lru, &dispose);
1446                 btp->bt_lru_nr--;
1447         }
1448         spin_unlock(&btp->bt_lru_lock);
1449
1450         while (!list_empty(&dispose)) {
1451                 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1452                 list_del_init(&bp->b_lru);
1453                 xfs_buf_rele(bp);
1454         }
1455
1456         return btp->bt_lru_nr;
1457 }
1458
1459 void
1460 xfs_free_buftarg(
1461         struct xfs_mount        *mp,
1462         struct xfs_buftarg      *btp)
1463 {
1464         unregister_shrinker(&btp->bt_shrinker);
1465
1466         xfs_flush_buftarg(btp, 1);
1467         if (mp->m_flags & XFS_MOUNT_BARRIER)
1468                 xfs_blkdev_issue_flush(btp);
1469
1470         kthread_stop(btp->bt_task);
1471         kmem_free(btp);
1472 }
1473
1474 STATIC int
1475 xfs_setsize_buftarg_flags(
1476         xfs_buftarg_t           *btp,
1477         unsigned int            blocksize,
1478         unsigned int            sectorsize,
1479         int                     verbose)
1480 {
1481         btp->bt_bsize = blocksize;
1482         btp->bt_sshift = ffs(sectorsize) - 1;
1483         btp->bt_smask = sectorsize - 1;
1484
1485         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1486                 xfs_warn(btp->bt_mount,
1487                         "Cannot set_blocksize to %u on device %s\n",
1488                         sectorsize, XFS_BUFTARG_NAME(btp));
1489                 return EINVAL;
1490         }
1491
1492         return 0;
1493 }
1494
1495 /*
1496  *      When allocating the initial buffer target we have not yet
1497  *      read in the superblock, so don't know what sized sectors
1498  *      are being used is at this early stage.  Play safe.
1499  */
1500 STATIC int
1501 xfs_setsize_buftarg_early(
1502         xfs_buftarg_t           *btp,
1503         struct block_device     *bdev)
1504 {
1505         return xfs_setsize_buftarg_flags(btp,
1506                         PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1507 }
1508
1509 int
1510 xfs_setsize_buftarg(
1511         xfs_buftarg_t           *btp,
1512         unsigned int            blocksize,
1513         unsigned int            sectorsize)
1514 {
1515         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1516 }
1517
1518 STATIC int
1519 xfs_alloc_delwrite_queue(
1520         xfs_buftarg_t           *btp,
1521         const char              *fsname)
1522 {
1523         INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1524         spin_lock_init(&btp->bt_delwrite_lock);
1525         btp->bt_flags = 0;
1526         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1527         if (IS_ERR(btp->bt_task))
1528                 return PTR_ERR(btp->bt_task);
1529         return 0;
1530 }
1531
1532 xfs_buftarg_t *
1533 xfs_alloc_buftarg(
1534         struct xfs_mount        *mp,
1535         struct block_device     *bdev,
1536         int                     external,
1537         const char              *fsname)
1538 {
1539         xfs_buftarg_t           *btp;
1540
1541         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1542
1543         btp->bt_mount = mp;
1544         btp->bt_dev =  bdev->bd_dev;
1545         btp->bt_bdev = bdev;
1546         btp->bt_bdi = blk_get_backing_dev_info(bdev);
1547         if (!btp->bt_bdi)
1548                 goto error;
1549
1550         INIT_LIST_HEAD(&btp->bt_lru);
1551         spin_lock_init(&btp->bt_lru_lock);
1552         if (xfs_setsize_buftarg_early(btp, bdev))
1553                 goto error;
1554         if (xfs_alloc_delwrite_queue(btp, fsname))
1555                 goto error;
1556         btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1557         btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1558         register_shrinker(&btp->bt_shrinker);
1559         return btp;
1560
1561 error:
1562         kmem_free(btp);
1563         return NULL;
1564 }
1565
1566
1567 /*
1568  *      Delayed write buffer handling
1569  */
1570 STATIC void
1571 xfs_buf_delwri_queue(
1572         xfs_buf_t               *bp,
1573         int                     unlock)
1574 {
1575         struct list_head        *dwq = &bp->b_target->bt_delwrite_queue;
1576         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1577
1578         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1579
1580         ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1581
1582         spin_lock(dwlk);
1583         /* If already in the queue, dequeue and place at tail */
1584         if (!list_empty(&bp->b_list)) {
1585                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1586                 if (unlock)
1587                         atomic_dec(&bp->b_hold);
1588                 list_del(&bp->b_list);
1589         }
1590
1591         if (list_empty(dwq)) {
1592                 /* start xfsbufd as it is about to have something to do */
1593                 wake_up_process(bp->b_target->bt_task);
1594         }
1595
1596         bp->b_flags |= _XBF_DELWRI_Q;
1597         list_add_tail(&bp->b_list, dwq);
1598         bp->b_queuetime = jiffies;
1599         spin_unlock(dwlk);
1600
1601         if (unlock)
1602                 xfs_buf_unlock(bp);
1603 }
1604
1605 void
1606 xfs_buf_delwri_dequeue(
1607         xfs_buf_t               *bp)
1608 {
1609         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1610         int                     dequeued = 0;
1611
1612         spin_lock(dwlk);
1613         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1614                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1615                 list_del_init(&bp->b_list);
1616                 dequeued = 1;
1617         }
1618         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1619         spin_unlock(dwlk);
1620
1621         if (dequeued)
1622                 xfs_buf_rele(bp);
1623
1624         trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1625 }
1626
1627 /*
1628  * If a delwri buffer needs to be pushed before it has aged out, then promote
1629  * it to the head of the delwri queue so that it will be flushed on the next
1630  * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1631  * than the age currently needed to flush the buffer. Hence the next time the
1632  * xfsbufd sees it is guaranteed to be considered old enough to flush.
1633  */
1634 void
1635 xfs_buf_delwri_promote(
1636         struct xfs_buf  *bp)
1637 {
1638         struct xfs_buftarg *btp = bp->b_target;
1639         long            age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1640
1641         ASSERT(bp->b_flags & XBF_DELWRI);
1642         ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1643
1644         /*
1645          * Check the buffer age before locking the delayed write queue as we
1646          * don't need to promote buffers that are already past the flush age.
1647          */
1648         if (bp->b_queuetime < jiffies - age)
1649                 return;
1650         bp->b_queuetime = jiffies - age;
1651         spin_lock(&btp->bt_delwrite_lock);
1652         list_move(&bp->b_list, &btp->bt_delwrite_queue);
1653         spin_unlock(&btp->bt_delwrite_lock);
1654 }
1655
1656 STATIC void
1657 xfs_buf_runall_queues(
1658         struct workqueue_struct *queue)
1659 {
1660         flush_workqueue(queue);
1661 }
1662
1663 /*
1664  * Move as many buffers as specified to the supplied list
1665  * idicating if we skipped any buffers to prevent deadlocks.
1666  */
1667 STATIC int
1668 xfs_buf_delwri_split(
1669         xfs_buftarg_t   *target,
1670         struct list_head *list,
1671         unsigned long   age)
1672 {
1673         xfs_buf_t       *bp, *n;
1674         struct list_head *dwq = &target->bt_delwrite_queue;
1675         spinlock_t      *dwlk = &target->bt_delwrite_lock;
1676         int             skipped = 0;
1677         int             force;
1678
1679         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1680         INIT_LIST_HEAD(list);
1681         spin_lock(dwlk);
1682         list_for_each_entry_safe(bp, n, dwq, b_list) {
1683                 ASSERT(bp->b_flags & XBF_DELWRI);
1684
1685                 if (!XFS_BUF_ISPINNED(bp) && xfs_buf_trylock(bp)) {
1686                         if (!force &&
1687                             time_before(jiffies, bp->b_queuetime + age)) {
1688                                 xfs_buf_unlock(bp);
1689                                 break;
1690                         }
1691
1692                         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1693                                          _XBF_RUN_QUEUES);
1694                         bp->b_flags |= XBF_WRITE;
1695                         list_move_tail(&bp->b_list, list);
1696                         trace_xfs_buf_delwri_split(bp, _RET_IP_);
1697                 } else
1698                         skipped++;
1699         }
1700         spin_unlock(dwlk);
1701
1702         return skipped;
1703
1704 }
1705
1706 /*
1707  * Compare function is more complex than it needs to be because
1708  * the return value is only 32 bits and we are doing comparisons
1709  * on 64 bit values
1710  */
1711 static int
1712 xfs_buf_cmp(
1713         void            *priv,
1714         struct list_head *a,
1715         struct list_head *b)
1716 {
1717         struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1718         struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1719         xfs_daddr_t             diff;
1720
1721         diff = ap->b_bn - bp->b_bn;
1722         if (diff < 0)
1723                 return -1;
1724         if (diff > 0)
1725                 return 1;
1726         return 0;
1727 }
1728
1729 void
1730 xfs_buf_delwri_sort(
1731         xfs_buftarg_t   *target,
1732         struct list_head *list)
1733 {
1734         list_sort(NULL, list, xfs_buf_cmp);
1735 }
1736
1737 STATIC int
1738 xfsbufd(
1739         void            *data)
1740 {
1741         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1742
1743         current->flags |= PF_MEMALLOC;
1744
1745         set_freezable();
1746
1747         do {
1748                 long    age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1749                 long    tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1750                 struct list_head tmp;
1751                 struct blk_plug plug;
1752
1753                 if (unlikely(freezing(current))) {
1754                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1755                         refrigerator();
1756                 } else {
1757                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1758                 }
1759
1760                 /* sleep for a long time if there is nothing to do. */
1761                 if (list_empty(&target->bt_delwrite_queue))
1762                         tout = MAX_SCHEDULE_TIMEOUT;
1763                 schedule_timeout_interruptible(tout);
1764
1765                 xfs_buf_delwri_split(target, &tmp, age);
1766                 list_sort(NULL, &tmp, xfs_buf_cmp);
1767
1768                 blk_start_plug(&plug);
1769                 while (!list_empty(&tmp)) {
1770                         struct xfs_buf *bp;
1771                         bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1772                         list_del_init(&bp->b_list);
1773                         xfs_bdstrat_cb(bp);
1774                 }
1775                 blk_finish_plug(&plug);
1776         } while (!kthread_should_stop());
1777
1778         return 0;
1779 }
1780
1781 /*
1782  *      Go through all incore buffers, and release buffers if they belong to
1783  *      the given device. This is used in filesystem error handling to
1784  *      preserve the consistency of its metadata.
1785  */
1786 int
1787 xfs_flush_buftarg(
1788         xfs_buftarg_t   *target,
1789         int             wait)
1790 {
1791         xfs_buf_t       *bp;
1792         int             pincount = 0;
1793         LIST_HEAD(tmp_list);
1794         LIST_HEAD(wait_list);
1795         struct blk_plug plug;
1796
1797         xfs_buf_runall_queues(xfsconvertd_workqueue);
1798         xfs_buf_runall_queues(xfsdatad_workqueue);
1799         xfs_buf_runall_queues(xfslogd_workqueue);
1800
1801         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1802         pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1803
1804         /*
1805          * Dropped the delayed write list lock, now walk the temporary list.
1806          * All I/O is issued async and then if we need to wait for completion
1807          * we do that after issuing all the IO.
1808          */
1809         list_sort(NULL, &tmp_list, xfs_buf_cmp);
1810
1811         blk_start_plug(&plug);
1812         while (!list_empty(&tmp_list)) {
1813                 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1814                 ASSERT(target == bp->b_target);
1815                 list_del_init(&bp->b_list);
1816                 if (wait) {
1817                         bp->b_flags &= ~XBF_ASYNC;
1818                         list_add(&bp->b_list, &wait_list);
1819                 }
1820                 xfs_bdstrat_cb(bp);
1821         }
1822         blk_finish_plug(&plug);
1823
1824         if (wait) {
1825                 /* Wait for IO to complete. */
1826                 while (!list_empty(&wait_list)) {
1827                         bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1828
1829                         list_del_init(&bp->b_list);
1830                         xfs_buf_iowait(bp);
1831                         xfs_buf_relse(bp);
1832                 }
1833         }
1834
1835         return pincount;
1836 }
1837
1838 int __init
1839 xfs_buf_init(void)
1840 {
1841         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1842                                                 KM_ZONE_HWALIGN, NULL);
1843         if (!xfs_buf_zone)
1844                 goto out;
1845
1846         xfslogd_workqueue = alloc_workqueue("xfslogd",
1847                                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1848         if (!xfslogd_workqueue)
1849                 goto out_free_buf_zone;
1850
1851         xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
1852         if (!xfsdatad_workqueue)
1853                 goto out_destroy_xfslogd_workqueue;
1854
1855         xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
1856                                                 WQ_MEM_RECLAIM, 1);
1857         if (!xfsconvertd_workqueue)
1858                 goto out_destroy_xfsdatad_workqueue;
1859
1860         return 0;
1861
1862  out_destroy_xfsdatad_workqueue:
1863         destroy_workqueue(xfsdatad_workqueue);
1864  out_destroy_xfslogd_workqueue:
1865         destroy_workqueue(xfslogd_workqueue);
1866  out_free_buf_zone:
1867         kmem_zone_destroy(xfs_buf_zone);
1868  out:
1869         return -ENOMEM;
1870 }
1871
1872 void
1873 xfs_buf_terminate(void)
1874 {
1875         destroy_workqueue(xfsconvertd_workqueue);
1876         destroy_workqueue(xfsdatad_workqueue);
1877         destroy_workqueue(xfslogd_workqueue);
1878         kmem_zone_destroy(xfs_buf_zone);
1879 }
1880
1881 #ifdef CONFIG_KDB_MODULES
1882 struct list_head *
1883 xfs_get_buftarg_list(void)
1884 {
1885         return &xfs_buftarg_list;
1886 }
1887 #endif