]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/xfs/xfs_log.c
ext4: add missing xattr hash update
[karo-tx-linux.git] / fs / xfs / xfs_log.c
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
37
38 kmem_zone_t     *xfs_log_ticket_zone;
39
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43         struct xlog             *log,
44         struct xlog_ticket      *ticket,
45         struct xlog_in_core     **iclog,
46         xfs_lsn_t               *commitlsnp);
47
48 STATIC struct xlog *
49 xlog_alloc_log(
50         struct xfs_mount        *mp,
51         struct xfs_buftarg      *log_target,
52         xfs_daddr_t             blk_offset,
53         int                     num_bblks);
54 STATIC int
55 xlog_space_left(
56         struct xlog             *log,
57         atomic64_t              *head);
58 STATIC int
59 xlog_sync(
60         struct xlog             *log,
61         struct xlog_in_core     *iclog);
62 STATIC void
63 xlog_dealloc_log(
64         struct xlog             *log);
65
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70         struct xlog             *log,
71         int                     aborted,
72         struct xlog_in_core     *iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75         struct xlog             *log,
76         int                     len,
77         struct xlog_in_core     **iclog,
78         struct xlog_ticket      *ticket,
79         int                     *continued_write,
80         int                     *logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83         struct xlog             *log,
84         struct xlog_in_core     *iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87         struct xlog             *log,
88         struct xlog_in_core     *iclog,
89         int                     eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92         struct xlog             *log,
93         struct xlog_in_core     *iclog);
94
95 STATIC void
96 xlog_grant_push_ail(
97         struct xlog             *log,
98         int                     need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101         struct xlog             *log,
102         struct xlog_ticket      *ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105         struct xlog             *log,
106         struct xlog_ticket      *ticket);
107
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111         struct xlog             *log,
112         void                    *ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115         struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118         struct xlog             *log,
119         struct xlog_in_core     *iclog,
120         int                     count,
121         bool                    syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124         struct xlog             *log,
125         struct xlog_in_core     *iclog,
126         xfs_lsn_t               tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133
134 STATIC int
135 xlog_iclogs_empty(
136         struct xlog             *log);
137
138 static void
139 xlog_grant_sub_space(
140         struct xlog             *log,
141         atomic64_t              *head,
142         int                     bytes)
143 {
144         int64_t head_val = atomic64_read(head);
145         int64_t new, old;
146
147         do {
148                 int     cycle, space;
149
150                 xlog_crack_grant_head_val(head_val, &cycle, &space);
151
152                 space -= bytes;
153                 if (space < 0) {
154                         space += log->l_logsize;
155                         cycle--;
156                 }
157
158                 old = head_val;
159                 new = xlog_assign_grant_head_val(cycle, space);
160                 head_val = atomic64_cmpxchg(head, old, new);
161         } while (head_val != old);
162 }
163
164 static void
165 xlog_grant_add_space(
166         struct xlog             *log,
167         atomic64_t              *head,
168         int                     bytes)
169 {
170         int64_t head_val = atomic64_read(head);
171         int64_t new, old;
172
173         do {
174                 int             tmp;
175                 int             cycle, space;
176
177                 xlog_crack_grant_head_val(head_val, &cycle, &space);
178
179                 tmp = log->l_logsize - space;
180                 if (tmp > bytes)
181                         space += bytes;
182                 else {
183                         space = bytes - tmp;
184                         cycle++;
185                 }
186
187                 old = head_val;
188                 new = xlog_assign_grant_head_val(cycle, space);
189                 head_val = atomic64_cmpxchg(head, old, new);
190         } while (head_val != old);
191 }
192
193 STATIC void
194 xlog_grant_head_init(
195         struct xlog_grant_head  *head)
196 {
197         xlog_assign_grant_head(&head->grant, 1, 0);
198         INIT_LIST_HEAD(&head->waiters);
199         spin_lock_init(&head->lock);
200 }
201
202 STATIC void
203 xlog_grant_head_wake_all(
204         struct xlog_grant_head  *head)
205 {
206         struct xlog_ticket      *tic;
207
208         spin_lock(&head->lock);
209         list_for_each_entry(tic, &head->waiters, t_queue)
210                 wake_up_process(tic->t_task);
211         spin_unlock(&head->lock);
212 }
213
214 static inline int
215 xlog_ticket_reservation(
216         struct xlog             *log,
217         struct xlog_grant_head  *head,
218         struct xlog_ticket      *tic)
219 {
220         if (head == &log->l_write_head) {
221                 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222                 return tic->t_unit_res;
223         } else {
224                 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225                         return tic->t_unit_res * tic->t_cnt;
226                 else
227                         return tic->t_unit_res;
228         }
229 }
230
231 STATIC bool
232 xlog_grant_head_wake(
233         struct xlog             *log,
234         struct xlog_grant_head  *head,
235         int                     *free_bytes)
236 {
237         struct xlog_ticket      *tic;
238         int                     need_bytes;
239
240         list_for_each_entry(tic, &head->waiters, t_queue) {
241                 need_bytes = xlog_ticket_reservation(log, head, tic);
242                 if (*free_bytes < need_bytes)
243                         return false;
244
245                 *free_bytes -= need_bytes;
246                 trace_xfs_log_grant_wake_up(log, tic);
247                 wake_up_process(tic->t_task);
248         }
249
250         return true;
251 }
252
253 STATIC int
254 xlog_grant_head_wait(
255         struct xlog             *log,
256         struct xlog_grant_head  *head,
257         struct xlog_ticket      *tic,
258         int                     need_bytes) __releases(&head->lock)
259                                             __acquires(&head->lock)
260 {
261         list_add_tail(&tic->t_queue, &head->waiters);
262
263         do {
264                 if (XLOG_FORCED_SHUTDOWN(log))
265                         goto shutdown;
266                 xlog_grant_push_ail(log, need_bytes);
267
268                 __set_current_state(TASK_UNINTERRUPTIBLE);
269                 spin_unlock(&head->lock);
270
271                 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
272
273                 trace_xfs_log_grant_sleep(log, tic);
274                 schedule();
275                 trace_xfs_log_grant_wake(log, tic);
276
277                 spin_lock(&head->lock);
278                 if (XLOG_FORCED_SHUTDOWN(log))
279                         goto shutdown;
280         } while (xlog_space_left(log, &head->grant) < need_bytes);
281
282         list_del_init(&tic->t_queue);
283         return 0;
284 shutdown:
285         list_del_init(&tic->t_queue);
286         return -EIO;
287 }
288
289 /*
290  * Atomically get the log space required for a log ticket.
291  *
292  * Once a ticket gets put onto head->waiters, it will only return after the
293  * needed reservation is satisfied.
294  *
295  * This function is structured so that it has a lock free fast path. This is
296  * necessary because every new transaction reservation will come through this
297  * path. Hence any lock will be globally hot if we take it unconditionally on
298  * every pass.
299  *
300  * As tickets are only ever moved on and off head->waiters under head->lock, we
301  * only need to take that lock if we are going to add the ticket to the queue
302  * and sleep. We can avoid taking the lock if the ticket was never added to
303  * head->waiters because the t_queue list head will be empty and we hold the
304  * only reference to it so it can safely be checked unlocked.
305  */
306 STATIC int
307 xlog_grant_head_check(
308         struct xlog             *log,
309         struct xlog_grant_head  *head,
310         struct xlog_ticket      *tic,
311         int                     *need_bytes)
312 {
313         int                     free_bytes;
314         int                     error = 0;
315
316         ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317
318         /*
319          * If there are other waiters on the queue then give them a chance at
320          * logspace before us.  Wake up the first waiters, if we do not wake
321          * up all the waiters then go to sleep waiting for more free space,
322          * otherwise try to get some space for this transaction.
323          */
324         *need_bytes = xlog_ticket_reservation(log, head, tic);
325         free_bytes = xlog_space_left(log, &head->grant);
326         if (!list_empty_careful(&head->waiters)) {
327                 spin_lock(&head->lock);
328                 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329                     free_bytes < *need_bytes) {
330                         error = xlog_grant_head_wait(log, head, tic,
331                                                      *need_bytes);
332                 }
333                 spin_unlock(&head->lock);
334         } else if (free_bytes < *need_bytes) {
335                 spin_lock(&head->lock);
336                 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337                 spin_unlock(&head->lock);
338         }
339
340         return error;
341 }
342
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346         tic->t_res_num = 0;
347         tic->t_res_arr_sum = 0;
348         tic->t_res_num_ophdrs = 0;
349 }
350
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354         if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355                 /* add to overflow and start again */
356                 tic->t_res_o_flow += tic->t_res_arr_sum;
357                 tic->t_res_num = 0;
358                 tic->t_res_arr_sum = 0;
359         }
360
361         tic->t_res_arr[tic->t_res_num].r_len = len;
362         tic->t_res_arr[tic->t_res_num].r_type = type;
363         tic->t_res_arr_sum += len;
364         tic->t_res_num++;
365 }
366
367 /*
368  * Replenish the byte reservation required by moving the grant write head.
369  */
370 int
371 xfs_log_regrant(
372         struct xfs_mount        *mp,
373         struct xlog_ticket      *tic)
374 {
375         struct xlog             *log = mp->m_log;
376         int                     need_bytes;
377         int                     error = 0;
378
379         if (XLOG_FORCED_SHUTDOWN(log))
380                 return -EIO;
381
382         XFS_STATS_INC(mp, xs_try_logspace);
383
384         /*
385          * This is a new transaction on the ticket, so we need to change the
386          * transaction ID so that the next transaction has a different TID in
387          * the log. Just add one to the existing tid so that we can see chains
388          * of rolling transactions in the log easily.
389          */
390         tic->t_tid++;
391
392         xlog_grant_push_ail(log, tic->t_unit_res);
393
394         tic->t_curr_res = tic->t_unit_res;
395         xlog_tic_reset_res(tic);
396
397         if (tic->t_cnt > 0)
398                 return 0;
399
400         trace_xfs_log_regrant(log, tic);
401
402         error = xlog_grant_head_check(log, &log->l_write_head, tic,
403                                       &need_bytes);
404         if (error)
405                 goto out_error;
406
407         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408         trace_xfs_log_regrant_exit(log, tic);
409         xlog_verify_grant_tail(log);
410         return 0;
411
412 out_error:
413         /*
414          * If we are failing, make sure the ticket doesn't have any current
415          * reservations.  We don't want to add this back when the ticket/
416          * transaction gets cancelled.
417          */
418         tic->t_curr_res = 0;
419         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420         return error;
421 }
422
423 /*
424  * Reserve log space and return a ticket corresponding the reservation.
425  *
426  * Each reservation is going to reserve extra space for a log record header.
427  * When writes happen to the on-disk log, we don't subtract the length of the
428  * log record header from any reservation.  By wasting space in each
429  * reservation, we prevent over allocation problems.
430  */
431 int
432 xfs_log_reserve(
433         struct xfs_mount        *mp,
434         int                     unit_bytes,
435         int                     cnt,
436         struct xlog_ticket      **ticp,
437         uint8_t                 client,
438         bool                    permanent)
439 {
440         struct xlog             *log = mp->m_log;
441         struct xlog_ticket      *tic;
442         int                     need_bytes;
443         int                     error = 0;
444
445         ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
446
447         if (XLOG_FORCED_SHUTDOWN(log))
448                 return -EIO;
449
450         XFS_STATS_INC(mp, xs_try_logspace);
451
452         ASSERT(*ticp == NULL);
453         tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
454                                 KM_SLEEP | KM_MAYFAIL);
455         if (!tic)
456                 return -ENOMEM;
457
458         *ticp = tic;
459
460         xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
461                                             : tic->t_unit_res);
462
463         trace_xfs_log_reserve(log, tic);
464
465         error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
466                                       &need_bytes);
467         if (error)
468                 goto out_error;
469
470         xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
471         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
472         trace_xfs_log_reserve_exit(log, tic);
473         xlog_verify_grant_tail(log);
474         return 0;
475
476 out_error:
477         /*
478          * If we are failing, make sure the ticket doesn't have any current
479          * reservations.  We don't want to add this back when the ticket/
480          * transaction gets cancelled.
481          */
482         tic->t_curr_res = 0;
483         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
484         return error;
485 }
486
487
488 /*
489  * NOTES:
490  *
491  *      1. currblock field gets updated at startup and after in-core logs
492  *              marked as with WANT_SYNC.
493  */
494
495 /*
496  * This routine is called when a user of a log manager ticket is done with
497  * the reservation.  If the ticket was ever used, then a commit record for
498  * the associated transaction is written out as a log operation header with
499  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
500  * a given ticket.  If the ticket was one with a permanent reservation, then
501  * a few operations are done differently.  Permanent reservation tickets by
502  * default don't release the reservation.  They just commit the current
503  * transaction with the belief that the reservation is still needed.  A flag
504  * must be passed in before permanent reservations are actually released.
505  * When these type of tickets are not released, they need to be set into
506  * the inited state again.  By doing this, a start record will be written
507  * out when the next write occurs.
508  */
509 xfs_lsn_t
510 xfs_log_done(
511         struct xfs_mount        *mp,
512         struct xlog_ticket      *ticket,
513         struct xlog_in_core     **iclog,
514         bool                    regrant)
515 {
516         struct xlog             *log = mp->m_log;
517         xfs_lsn_t               lsn = 0;
518
519         if (XLOG_FORCED_SHUTDOWN(log) ||
520             /*
521              * If nothing was ever written, don't write out commit record.
522              * If we get an error, just continue and give back the log ticket.
523              */
524             (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
525              (xlog_commit_record(log, ticket, iclog, &lsn)))) {
526                 lsn = (xfs_lsn_t) -1;
527                 regrant = false;
528         }
529
530
531         if (!regrant) {
532                 trace_xfs_log_done_nonperm(log, ticket);
533
534                 /*
535                  * Release ticket if not permanent reservation or a specific
536                  * request has been made to release a permanent reservation.
537                  */
538                 xlog_ungrant_log_space(log, ticket);
539         } else {
540                 trace_xfs_log_done_perm(log, ticket);
541
542                 xlog_regrant_reserve_log_space(log, ticket);
543                 /* If this ticket was a permanent reservation and we aren't
544                  * trying to release it, reset the inited flags; so next time
545                  * we write, a start record will be written out.
546                  */
547                 ticket->t_flags |= XLOG_TIC_INITED;
548         }
549
550         xfs_log_ticket_put(ticket);
551         return lsn;
552 }
553
554 /*
555  * Attaches a new iclog I/O completion callback routine during
556  * transaction commit.  If the log is in error state, a non-zero
557  * return code is handed back and the caller is responsible for
558  * executing the callback at an appropriate time.
559  */
560 int
561 xfs_log_notify(
562         struct xfs_mount        *mp,
563         struct xlog_in_core     *iclog,
564         xfs_log_callback_t      *cb)
565 {
566         int     abortflg;
567
568         spin_lock(&iclog->ic_callback_lock);
569         abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
570         if (!abortflg) {
571                 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
572                               (iclog->ic_state == XLOG_STATE_WANT_SYNC));
573                 cb->cb_next = NULL;
574                 *(iclog->ic_callback_tail) = cb;
575                 iclog->ic_callback_tail = &(cb->cb_next);
576         }
577         spin_unlock(&iclog->ic_callback_lock);
578         return abortflg;
579 }
580
581 int
582 xfs_log_release_iclog(
583         struct xfs_mount        *mp,
584         struct xlog_in_core     *iclog)
585 {
586         if (xlog_state_release_iclog(mp->m_log, iclog)) {
587                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
588                 return -EIO;
589         }
590
591         return 0;
592 }
593
594 /*
595  * Mount a log filesystem
596  *
597  * mp           - ubiquitous xfs mount point structure
598  * log_target   - buftarg of on-disk log device
599  * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
600  * num_bblocks  - Number of BBSIZE blocks in on-disk log
601  *
602  * Return error or zero.
603  */
604 int
605 xfs_log_mount(
606         xfs_mount_t     *mp,
607         xfs_buftarg_t   *log_target,
608         xfs_daddr_t     blk_offset,
609         int             num_bblks)
610 {
611         int             error = 0;
612         int             min_logfsbs;
613
614         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
615                 xfs_notice(mp, "Mounting V%d Filesystem",
616                            XFS_SB_VERSION_NUM(&mp->m_sb));
617         } else {
618                 xfs_notice(mp,
619 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
620                            XFS_SB_VERSION_NUM(&mp->m_sb));
621                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
622         }
623
624         mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
625         if (IS_ERR(mp->m_log)) {
626                 error = PTR_ERR(mp->m_log);
627                 goto out;
628         }
629
630         /*
631          * Validate the given log space and drop a critical message via syslog
632          * if the log size is too small that would lead to some unexpected
633          * situations in transaction log space reservation stage.
634          *
635          * Note: we can't just reject the mount if the validation fails.  This
636          * would mean that people would have to downgrade their kernel just to
637          * remedy the situation as there is no way to grow the log (short of
638          * black magic surgery with xfs_db).
639          *
640          * We can, however, reject mounts for CRC format filesystems, as the
641          * mkfs binary being used to make the filesystem should never create a
642          * filesystem with a log that is too small.
643          */
644         min_logfsbs = xfs_log_calc_minimum_size(mp);
645
646         if (mp->m_sb.sb_logblocks < min_logfsbs) {
647                 xfs_warn(mp,
648                 "Log size %d blocks too small, minimum size is %d blocks",
649                          mp->m_sb.sb_logblocks, min_logfsbs);
650                 error = -EINVAL;
651         } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
652                 xfs_warn(mp,
653                 "Log size %d blocks too large, maximum size is %lld blocks",
654                          mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
655                 error = -EINVAL;
656         } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
657                 xfs_warn(mp,
658                 "log size %lld bytes too large, maximum size is %lld bytes",
659                          XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
660                          XFS_MAX_LOG_BYTES);
661                 error = -EINVAL;
662         }
663         if (error) {
664                 if (xfs_sb_version_hascrc(&mp->m_sb)) {
665                         xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
666                         ASSERT(0);
667                         goto out_free_log;
668                 }
669                 xfs_crit(mp, "Log size out of supported range.");
670                 xfs_crit(mp,
671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
672         }
673
674         /*
675          * Initialize the AIL now we have a log.
676          */
677         error = xfs_trans_ail_init(mp);
678         if (error) {
679                 xfs_warn(mp, "AIL initialisation failed: error %d", error);
680                 goto out_free_log;
681         }
682         mp->m_log->l_ailp = mp->m_ail;
683
684         /*
685          * skip log recovery on a norecovery mount.  pretend it all
686          * just worked.
687          */
688         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
689                 int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
690
691                 if (readonly)
692                         mp->m_flags &= ~XFS_MOUNT_RDONLY;
693
694                 error = xlog_recover(mp->m_log);
695
696                 if (readonly)
697                         mp->m_flags |= XFS_MOUNT_RDONLY;
698                 if (error) {
699                         xfs_warn(mp, "log mount/recovery failed: error %d",
700                                 error);
701                         xlog_recover_cancel(mp->m_log);
702                         goto out_destroy_ail;
703                 }
704         }
705
706         error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
707                                "log");
708         if (error)
709                 goto out_destroy_ail;
710
711         /* Normal transactions can now occur */
712         mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
713
714         /*
715          * Now the log has been fully initialised and we know were our
716          * space grant counters are, we can initialise the permanent ticket
717          * needed for delayed logging to work.
718          */
719         xlog_cil_init_post_recovery(mp->m_log);
720
721         return 0;
722
723 out_destroy_ail:
724         xfs_trans_ail_destroy(mp);
725 out_free_log:
726         xlog_dealloc_log(mp->m_log);
727 out:
728         return error;
729 }
730
731 /*
732  * Finish the recovery of the file system.  This is separate from the
733  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
734  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
735  * here.
736  *
737  * If we finish recovery successfully, start the background log work. If we are
738  * not doing recovery, then we have a RO filesystem and we don't need to start
739  * it.
740  */
741 int
742 xfs_log_mount_finish(
743         struct xfs_mount        *mp)
744 {
745         int     error = 0;
746
747         if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
748                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
749                 return 0;
750         }
751
752         error = xlog_recover_finish(mp->m_log);
753         if (!error)
754                 xfs_log_work_queue(mp);
755
756         return error;
757 }
758
759 /*
760  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
761  * the log.
762  */
763 int
764 xfs_log_mount_cancel(
765         struct xfs_mount        *mp)
766 {
767         int                     error;
768
769         error = xlog_recover_cancel(mp->m_log);
770         xfs_log_unmount(mp);
771
772         return error;
773 }
774
775 /*
776  * Final log writes as part of unmount.
777  *
778  * Mark the filesystem clean as unmount happens.  Note that during relocation
779  * this routine needs to be executed as part of source-bag while the
780  * deallocation must not be done until source-end.
781  */
782
783 /*
784  * Unmount record used to have a string "Unmount filesystem--" in the
785  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
786  * We just write the magic number now since that particular field isn't
787  * currently architecture converted and "Unmount" is a bit foo.
788  * As far as I know, there weren't any dependencies on the old behaviour.
789  */
790
791 static int
792 xfs_log_unmount_write(xfs_mount_t *mp)
793 {
794         struct xlog      *log = mp->m_log;
795         xlog_in_core_t   *iclog;
796 #ifdef DEBUG
797         xlog_in_core_t   *first_iclog;
798 #endif
799         xlog_ticket_t   *tic = NULL;
800         xfs_lsn_t        lsn;
801         int              error;
802
803         /*
804          * Don't write out unmount record on read-only mounts.
805          * Or, if we are doing a forced umount (typically because of IO errors).
806          */
807         if (mp->m_flags & XFS_MOUNT_RDONLY)
808                 return 0;
809
810         error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
811         ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
812
813 #ifdef DEBUG
814         first_iclog = iclog = log->l_iclog;
815         do {
816                 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
817                         ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
818                         ASSERT(iclog->ic_offset == 0);
819                 }
820                 iclog = iclog->ic_next;
821         } while (iclog != first_iclog);
822 #endif
823         if (! (XLOG_FORCED_SHUTDOWN(log))) {
824                 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
825                 if (!error) {
826                         /* the data section must be 32 bit size aligned */
827                         struct {
828                             uint16_t magic;
829                             uint16_t pad1;
830                             uint32_t pad2; /* may as well make it 64 bits */
831                         } magic = {
832                                 .magic = XLOG_UNMOUNT_TYPE,
833                         };
834                         struct xfs_log_iovec reg = {
835                                 .i_addr = &magic,
836                                 .i_len = sizeof(magic),
837                                 .i_type = XLOG_REG_TYPE_UNMOUNT,
838                         };
839                         struct xfs_log_vec vec = {
840                                 .lv_niovecs = 1,
841                                 .lv_iovecp = &reg,
842                         };
843
844                         /* remove inited flag, and account for space used */
845                         tic->t_flags = 0;
846                         tic->t_curr_res -= sizeof(magic);
847                         error = xlog_write(log, &vec, tic, &lsn,
848                                            NULL, XLOG_UNMOUNT_TRANS);
849                         /*
850                          * At this point, we're umounting anyway,
851                          * so there's no point in transitioning log state
852                          * to IOERROR. Just continue...
853                          */
854                 }
855
856                 if (error)
857                         xfs_alert(mp, "%s: unmount record failed", __func__);
858
859
860                 spin_lock(&log->l_icloglock);
861                 iclog = log->l_iclog;
862                 atomic_inc(&iclog->ic_refcnt);
863                 xlog_state_want_sync(log, iclog);
864                 spin_unlock(&log->l_icloglock);
865                 error = xlog_state_release_iclog(log, iclog);
866
867                 spin_lock(&log->l_icloglock);
868                 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
869                       iclog->ic_state == XLOG_STATE_DIRTY)) {
870                         if (!XLOG_FORCED_SHUTDOWN(log)) {
871                                 xlog_wait(&iclog->ic_force_wait,
872                                                         &log->l_icloglock);
873                         } else {
874                                 spin_unlock(&log->l_icloglock);
875                         }
876                 } else {
877                         spin_unlock(&log->l_icloglock);
878                 }
879                 if (tic) {
880                         trace_xfs_log_umount_write(log, tic);
881                         xlog_ungrant_log_space(log, tic);
882                         xfs_log_ticket_put(tic);
883                 }
884         } else {
885                 /*
886                  * We're already in forced_shutdown mode, couldn't
887                  * even attempt to write out the unmount transaction.
888                  *
889                  * Go through the motions of sync'ing and releasing
890                  * the iclog, even though no I/O will actually happen,
891                  * we need to wait for other log I/Os that may already
892                  * be in progress.  Do this as a separate section of
893                  * code so we'll know if we ever get stuck here that
894                  * we're in this odd situation of trying to unmount
895                  * a file system that went into forced_shutdown as
896                  * the result of an unmount..
897                  */
898                 spin_lock(&log->l_icloglock);
899                 iclog = log->l_iclog;
900                 atomic_inc(&iclog->ic_refcnt);
901
902                 xlog_state_want_sync(log, iclog);
903                 spin_unlock(&log->l_icloglock);
904                 error =  xlog_state_release_iclog(log, iclog);
905
906                 spin_lock(&log->l_icloglock);
907
908                 if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
909                         || iclog->ic_state == XLOG_STATE_DIRTY
910                         || iclog->ic_state == XLOG_STATE_IOERROR) ) {
911
912                                 xlog_wait(&iclog->ic_force_wait,
913                                                         &log->l_icloglock);
914                 } else {
915                         spin_unlock(&log->l_icloglock);
916                 }
917         }
918
919         return error;
920 }       /* xfs_log_unmount_write */
921
922 /*
923  * Empty the log for unmount/freeze.
924  *
925  * To do this, we first need to shut down the background log work so it is not
926  * trying to cover the log as we clean up. We then need to unpin all objects in
927  * the log so we can then flush them out. Once they have completed their IO and
928  * run the callbacks removing themselves from the AIL, we can write the unmount
929  * record.
930  */
931 void
932 xfs_log_quiesce(
933         struct xfs_mount        *mp)
934 {
935         cancel_delayed_work_sync(&mp->m_log->l_work);
936         xfs_log_force(mp, XFS_LOG_SYNC);
937
938         /*
939          * The superblock buffer is uncached and while xfs_ail_push_all_sync()
940          * will push it, xfs_wait_buftarg() will not wait for it. Further,
941          * xfs_buf_iowait() cannot be used because it was pushed with the
942          * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
943          * the IO to complete.
944          */
945         xfs_ail_push_all_sync(mp->m_ail);
946         xfs_wait_buftarg(mp->m_ddev_targp);
947         xfs_buf_lock(mp->m_sb_bp);
948         xfs_buf_unlock(mp->m_sb_bp);
949
950         xfs_log_unmount_write(mp);
951 }
952
953 /*
954  * Shut down and release the AIL and Log.
955  *
956  * During unmount, we need to ensure we flush all the dirty metadata objects
957  * from the AIL so that the log is empty before we write the unmount record to
958  * the log. Once this is done, we can tear down the AIL and the log.
959  */
960 void
961 xfs_log_unmount(
962         struct xfs_mount        *mp)
963 {
964         xfs_log_quiesce(mp);
965
966         xfs_trans_ail_destroy(mp);
967
968         xfs_sysfs_del(&mp->m_log->l_kobj);
969
970         xlog_dealloc_log(mp->m_log);
971 }
972
973 void
974 xfs_log_item_init(
975         struct xfs_mount        *mp,
976         struct xfs_log_item     *item,
977         int                     type,
978         const struct xfs_item_ops *ops)
979 {
980         item->li_mountp = mp;
981         item->li_ailp = mp->m_ail;
982         item->li_type = type;
983         item->li_ops = ops;
984         item->li_lv = NULL;
985
986         INIT_LIST_HEAD(&item->li_ail);
987         INIT_LIST_HEAD(&item->li_cil);
988 }
989
990 /*
991  * Wake up processes waiting for log space after we have moved the log tail.
992  */
993 void
994 xfs_log_space_wake(
995         struct xfs_mount        *mp)
996 {
997         struct xlog             *log = mp->m_log;
998         int                     free_bytes;
999
1000         if (XLOG_FORCED_SHUTDOWN(log))
1001                 return;
1002
1003         if (!list_empty_careful(&log->l_write_head.waiters)) {
1004                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1005
1006                 spin_lock(&log->l_write_head.lock);
1007                 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1008                 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1009                 spin_unlock(&log->l_write_head.lock);
1010         }
1011
1012         if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1013                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1014
1015                 spin_lock(&log->l_reserve_head.lock);
1016                 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1017                 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1018                 spin_unlock(&log->l_reserve_head.lock);
1019         }
1020 }
1021
1022 /*
1023  * Determine if we have a transaction that has gone to disk that needs to be
1024  * covered. To begin the transition to the idle state firstly the log needs to
1025  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1026  * we start attempting to cover the log.
1027  *
1028  * Only if we are then in a state where covering is needed, the caller is
1029  * informed that dummy transactions are required to move the log into the idle
1030  * state.
1031  *
1032  * If there are any items in the AIl or CIL, then we do not want to attempt to
1033  * cover the log as we may be in a situation where there isn't log space
1034  * available to run a dummy transaction and this can lead to deadlocks when the
1035  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1036  * there's no point in running a dummy transaction at this point because we
1037  * can't start trying to idle the log until both the CIL and AIL are empty.
1038  */
1039 static int
1040 xfs_log_need_covered(xfs_mount_t *mp)
1041 {
1042         struct xlog     *log = mp->m_log;
1043         int             needed = 0;
1044
1045         if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1046                 return 0;
1047
1048         if (!xlog_cil_empty(log))
1049                 return 0;
1050
1051         spin_lock(&log->l_icloglock);
1052         switch (log->l_covered_state) {
1053         case XLOG_STATE_COVER_DONE:
1054         case XLOG_STATE_COVER_DONE2:
1055         case XLOG_STATE_COVER_IDLE:
1056                 break;
1057         case XLOG_STATE_COVER_NEED:
1058         case XLOG_STATE_COVER_NEED2:
1059                 if (xfs_ail_min_lsn(log->l_ailp))
1060                         break;
1061                 if (!xlog_iclogs_empty(log))
1062                         break;
1063
1064                 needed = 1;
1065                 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1066                         log->l_covered_state = XLOG_STATE_COVER_DONE;
1067                 else
1068                         log->l_covered_state = XLOG_STATE_COVER_DONE2;
1069                 break;
1070         default:
1071                 needed = 1;
1072                 break;
1073         }
1074         spin_unlock(&log->l_icloglock);
1075         return needed;
1076 }
1077
1078 /*
1079  * We may be holding the log iclog lock upon entering this routine.
1080  */
1081 xfs_lsn_t
1082 xlog_assign_tail_lsn_locked(
1083         struct xfs_mount        *mp)
1084 {
1085         struct xlog             *log = mp->m_log;
1086         struct xfs_log_item     *lip;
1087         xfs_lsn_t               tail_lsn;
1088
1089         assert_spin_locked(&mp->m_ail->xa_lock);
1090
1091         /*
1092          * To make sure we always have a valid LSN for the log tail we keep
1093          * track of the last LSN which was committed in log->l_last_sync_lsn,
1094          * and use that when the AIL was empty.
1095          */
1096         lip = xfs_ail_min(mp->m_ail);
1097         if (lip)
1098                 tail_lsn = lip->li_lsn;
1099         else
1100                 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1101         trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1102         atomic64_set(&log->l_tail_lsn, tail_lsn);
1103         return tail_lsn;
1104 }
1105
1106 xfs_lsn_t
1107 xlog_assign_tail_lsn(
1108         struct xfs_mount        *mp)
1109 {
1110         xfs_lsn_t               tail_lsn;
1111
1112         spin_lock(&mp->m_ail->xa_lock);
1113         tail_lsn = xlog_assign_tail_lsn_locked(mp);
1114         spin_unlock(&mp->m_ail->xa_lock);
1115
1116         return tail_lsn;
1117 }
1118
1119 /*
1120  * Return the space in the log between the tail and the head.  The head
1121  * is passed in the cycle/bytes formal parms.  In the special case where
1122  * the reserve head has wrapped passed the tail, this calculation is no
1123  * longer valid.  In this case, just return 0 which means there is no space
1124  * in the log.  This works for all places where this function is called
1125  * with the reserve head.  Of course, if the write head were to ever
1126  * wrap the tail, we should blow up.  Rather than catch this case here,
1127  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1128  *
1129  * This code also handles the case where the reservation head is behind
1130  * the tail.  The details of this case are described below, but the end
1131  * result is that we return the size of the log as the amount of space left.
1132  */
1133 STATIC int
1134 xlog_space_left(
1135         struct xlog     *log,
1136         atomic64_t      *head)
1137 {
1138         int             free_bytes;
1139         int             tail_bytes;
1140         int             tail_cycle;
1141         int             head_cycle;
1142         int             head_bytes;
1143
1144         xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1145         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1146         tail_bytes = BBTOB(tail_bytes);
1147         if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1148                 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1149         else if (tail_cycle + 1 < head_cycle)
1150                 return 0;
1151         else if (tail_cycle < head_cycle) {
1152                 ASSERT(tail_cycle == (head_cycle - 1));
1153                 free_bytes = tail_bytes - head_bytes;
1154         } else {
1155                 /*
1156                  * The reservation head is behind the tail.
1157                  * In this case we just want to return the size of the
1158                  * log as the amount of space left.
1159                  */
1160                 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1161                 xfs_alert(log->l_mp,
1162                           "  tail_cycle = %d, tail_bytes = %d",
1163                           tail_cycle, tail_bytes);
1164                 xfs_alert(log->l_mp,
1165                           "  GH   cycle = %d, GH   bytes = %d",
1166                           head_cycle, head_bytes);
1167                 ASSERT(0);
1168                 free_bytes = log->l_logsize;
1169         }
1170         return free_bytes;
1171 }
1172
1173
1174 /*
1175  * Log function which is called when an io completes.
1176  *
1177  * The log manager needs its own routine, in order to control what
1178  * happens with the buffer after the write completes.
1179  */
1180 static void
1181 xlog_iodone(xfs_buf_t *bp)
1182 {
1183         struct xlog_in_core     *iclog = bp->b_fspriv;
1184         struct xlog             *l = iclog->ic_log;
1185         int                     aborted = 0;
1186
1187         /*
1188          * Race to shutdown the filesystem if we see an error or the iclog is in
1189          * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1190          * CRC errors into log recovery.
1191          */
1192         if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) ||
1193             iclog->ic_state & XLOG_STATE_IOABORT) {
1194                 if (iclog->ic_state & XLOG_STATE_IOABORT)
1195                         iclog->ic_state &= ~XLOG_STATE_IOABORT;
1196
1197                 xfs_buf_ioerror_alert(bp, __func__);
1198                 xfs_buf_stale(bp);
1199                 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1200                 /*
1201                  * This flag will be propagated to the trans-committed
1202                  * callback routines to let them know that the log-commit
1203                  * didn't succeed.
1204                  */
1205                 aborted = XFS_LI_ABORTED;
1206         } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1207                 aborted = XFS_LI_ABORTED;
1208         }
1209
1210         /* log I/O is always issued ASYNC */
1211         ASSERT(bp->b_flags & XBF_ASYNC);
1212         xlog_state_done_syncing(iclog, aborted);
1213
1214         /*
1215          * drop the buffer lock now that we are done. Nothing references
1216          * the buffer after this, so an unmount waiting on this lock can now
1217          * tear it down safely. As such, it is unsafe to reference the buffer
1218          * (bp) after the unlock as we could race with it being freed.
1219          */
1220         xfs_buf_unlock(bp);
1221 }
1222
1223 /*
1224  * Return size of each in-core log record buffer.
1225  *
1226  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1227  *
1228  * If the filesystem blocksize is too large, we may need to choose a
1229  * larger size since the directory code currently logs entire blocks.
1230  */
1231
1232 STATIC void
1233 xlog_get_iclog_buffer_size(
1234         struct xfs_mount        *mp,
1235         struct xlog             *log)
1236 {
1237         int size;
1238         int xhdrs;
1239
1240         if (mp->m_logbufs <= 0)
1241                 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1242         else
1243                 log->l_iclog_bufs = mp->m_logbufs;
1244
1245         /*
1246          * Buffer size passed in from mount system call.
1247          */
1248         if (mp->m_logbsize > 0) {
1249                 size = log->l_iclog_size = mp->m_logbsize;
1250                 log->l_iclog_size_log = 0;
1251                 while (size != 1) {
1252                         log->l_iclog_size_log++;
1253                         size >>= 1;
1254                 }
1255
1256                 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1257                         /* # headers = size / 32k
1258                          * one header holds cycles from 32k of data
1259                          */
1260
1261                         xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1262                         if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1263                                 xhdrs++;
1264                         log->l_iclog_hsize = xhdrs << BBSHIFT;
1265                         log->l_iclog_heads = xhdrs;
1266                 } else {
1267                         ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1268                         log->l_iclog_hsize = BBSIZE;
1269                         log->l_iclog_heads = 1;
1270                 }
1271                 goto done;
1272         }
1273
1274         /* All machines use 32kB buffers by default. */
1275         log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1276         log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1277
1278         /* the default log size is 16k or 32k which is one header sector */
1279         log->l_iclog_hsize = BBSIZE;
1280         log->l_iclog_heads = 1;
1281
1282 done:
1283         /* are we being asked to make the sizes selected above visible? */
1284         if (mp->m_logbufs == 0)
1285                 mp->m_logbufs = log->l_iclog_bufs;
1286         if (mp->m_logbsize == 0)
1287                 mp->m_logbsize = log->l_iclog_size;
1288 }       /* xlog_get_iclog_buffer_size */
1289
1290
1291 void
1292 xfs_log_work_queue(
1293         struct xfs_mount        *mp)
1294 {
1295         queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1296                                 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1297 }
1298
1299 /*
1300  * Every sync period we need to unpin all items in the AIL and push them to
1301  * disk. If there is nothing dirty, then we might need to cover the log to
1302  * indicate that the filesystem is idle.
1303  */
1304 static void
1305 xfs_log_worker(
1306         struct work_struct      *work)
1307 {
1308         struct xlog             *log = container_of(to_delayed_work(work),
1309                                                 struct xlog, l_work);
1310         struct xfs_mount        *mp = log->l_mp;
1311
1312         /* dgc: errors ignored - not fatal and nowhere to report them */
1313         if (xfs_log_need_covered(mp)) {
1314                 /*
1315                  * Dump a transaction into the log that contains no real change.
1316                  * This is needed to stamp the current tail LSN into the log
1317                  * during the covering operation.
1318                  *
1319                  * We cannot use an inode here for this - that will push dirty
1320                  * state back up into the VFS and then periodic inode flushing
1321                  * will prevent log covering from making progress. Hence we
1322                  * synchronously log the superblock instead to ensure the
1323                  * superblock is immediately unpinned and can be written back.
1324                  */
1325                 xfs_sync_sb(mp, true);
1326         } else
1327                 xfs_log_force(mp, 0);
1328
1329         /* start pushing all the metadata that is currently dirty */
1330         xfs_ail_push_all(mp->m_ail);
1331
1332         /* queue us up again */
1333         xfs_log_work_queue(mp);
1334 }
1335
1336 /*
1337  * This routine initializes some of the log structure for a given mount point.
1338  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1339  * some other stuff may be filled in too.
1340  */
1341 STATIC struct xlog *
1342 xlog_alloc_log(
1343         struct xfs_mount        *mp,
1344         struct xfs_buftarg      *log_target,
1345         xfs_daddr_t             blk_offset,
1346         int                     num_bblks)
1347 {
1348         struct xlog             *log;
1349         xlog_rec_header_t       *head;
1350         xlog_in_core_t          **iclogp;
1351         xlog_in_core_t          *iclog, *prev_iclog=NULL;
1352         xfs_buf_t               *bp;
1353         int                     i;
1354         int                     error = -ENOMEM;
1355         uint                    log2_size = 0;
1356
1357         log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1358         if (!log) {
1359                 xfs_warn(mp, "Log allocation failed: No memory!");
1360                 goto out;
1361         }
1362
1363         log->l_mp          = mp;
1364         log->l_targ        = log_target;
1365         log->l_logsize     = BBTOB(num_bblks);
1366         log->l_logBBstart  = blk_offset;
1367         log->l_logBBsize   = num_bblks;
1368         log->l_covered_state = XLOG_STATE_COVER_IDLE;
1369         log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1370         INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1371
1372         log->l_prev_block  = -1;
1373         /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1374         xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1375         xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1376         log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1377
1378         xlog_grant_head_init(&log->l_reserve_head);
1379         xlog_grant_head_init(&log->l_write_head);
1380
1381         error = -EFSCORRUPTED;
1382         if (xfs_sb_version_hassector(&mp->m_sb)) {
1383                 log2_size = mp->m_sb.sb_logsectlog;
1384                 if (log2_size < BBSHIFT) {
1385                         xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1386                                 log2_size, BBSHIFT);
1387                         goto out_free_log;
1388                 }
1389
1390                 log2_size -= BBSHIFT;
1391                 if (log2_size > mp->m_sectbb_log) {
1392                         xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1393                                 log2_size, mp->m_sectbb_log);
1394                         goto out_free_log;
1395                 }
1396
1397                 /* for larger sector sizes, must have v2 or external log */
1398                 if (log2_size && log->l_logBBstart > 0 &&
1399                             !xfs_sb_version_haslogv2(&mp->m_sb)) {
1400                         xfs_warn(mp,
1401                 "log sector size (0x%x) invalid for configuration.",
1402                                 log2_size);
1403                         goto out_free_log;
1404                 }
1405         }
1406         log->l_sectBBsize = 1 << log2_size;
1407
1408         xlog_get_iclog_buffer_size(mp, log);
1409
1410         /*
1411          * Use a NULL block for the extra log buffer used during splits so that
1412          * it will trigger errors if we ever try to do IO on it without first
1413          * having set it up properly.
1414          */
1415         error = -ENOMEM;
1416         bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1417                            BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1418         if (!bp)
1419                 goto out_free_log;
1420
1421         /*
1422          * The iclogbuf buffer locks are held over IO but we are not going to do
1423          * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1424          * when appropriately.
1425          */
1426         ASSERT(xfs_buf_islocked(bp));
1427         xfs_buf_unlock(bp);
1428
1429         /* use high priority wq for log I/O completion */
1430         bp->b_ioend_wq = mp->m_log_workqueue;
1431         bp->b_iodone = xlog_iodone;
1432         log->l_xbuf = bp;
1433
1434         spin_lock_init(&log->l_icloglock);
1435         init_waitqueue_head(&log->l_flush_wait);
1436
1437         iclogp = &log->l_iclog;
1438         /*
1439          * The amount of memory to allocate for the iclog structure is
1440          * rather funky due to the way the structure is defined.  It is
1441          * done this way so that we can use different sizes for machines
1442          * with different amounts of memory.  See the definition of
1443          * xlog_in_core_t in xfs_log_priv.h for details.
1444          */
1445         ASSERT(log->l_iclog_size >= 4096);
1446         for (i=0; i < log->l_iclog_bufs; i++) {
1447                 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1448                 if (!*iclogp)
1449                         goto out_free_iclog;
1450
1451                 iclog = *iclogp;
1452                 iclog->ic_prev = prev_iclog;
1453                 prev_iclog = iclog;
1454
1455                 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1456                                           BTOBB(log->l_iclog_size),
1457                                           XBF_NO_IOACCT);
1458                 if (!bp)
1459                         goto out_free_iclog;
1460
1461                 ASSERT(xfs_buf_islocked(bp));
1462                 xfs_buf_unlock(bp);
1463
1464                 /* use high priority wq for log I/O completion */
1465                 bp->b_ioend_wq = mp->m_log_workqueue;
1466                 bp->b_iodone = xlog_iodone;
1467                 iclog->ic_bp = bp;
1468                 iclog->ic_data = bp->b_addr;
1469 #ifdef DEBUG
1470                 log->l_iclog_bak[i] = &iclog->ic_header;
1471 #endif
1472                 head = &iclog->ic_header;
1473                 memset(head, 0, sizeof(xlog_rec_header_t));
1474                 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1475                 head->h_version = cpu_to_be32(
1476                         xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1477                 head->h_size = cpu_to_be32(log->l_iclog_size);
1478                 /* new fields */
1479                 head->h_fmt = cpu_to_be32(XLOG_FMT);
1480                 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1481
1482                 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1483                 iclog->ic_state = XLOG_STATE_ACTIVE;
1484                 iclog->ic_log = log;
1485                 atomic_set(&iclog->ic_refcnt, 0);
1486                 spin_lock_init(&iclog->ic_callback_lock);
1487                 iclog->ic_callback_tail = &(iclog->ic_callback);
1488                 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1489
1490                 init_waitqueue_head(&iclog->ic_force_wait);
1491                 init_waitqueue_head(&iclog->ic_write_wait);
1492
1493                 iclogp = &iclog->ic_next;
1494         }
1495         *iclogp = log->l_iclog;                 /* complete ring */
1496         log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1497
1498         error = xlog_cil_init(log);
1499         if (error)
1500                 goto out_free_iclog;
1501         return log;
1502
1503 out_free_iclog:
1504         for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1505                 prev_iclog = iclog->ic_next;
1506                 if (iclog->ic_bp)
1507                         xfs_buf_free(iclog->ic_bp);
1508                 kmem_free(iclog);
1509         }
1510         spinlock_destroy(&log->l_icloglock);
1511         xfs_buf_free(log->l_xbuf);
1512 out_free_log:
1513         kmem_free(log);
1514 out:
1515         return ERR_PTR(error);
1516 }       /* xlog_alloc_log */
1517
1518
1519 /*
1520  * Write out the commit record of a transaction associated with the given
1521  * ticket.  Return the lsn of the commit record.
1522  */
1523 STATIC int
1524 xlog_commit_record(
1525         struct xlog             *log,
1526         struct xlog_ticket      *ticket,
1527         struct xlog_in_core     **iclog,
1528         xfs_lsn_t               *commitlsnp)
1529 {
1530         struct xfs_mount *mp = log->l_mp;
1531         int     error;
1532         struct xfs_log_iovec reg = {
1533                 .i_addr = NULL,
1534                 .i_len = 0,
1535                 .i_type = XLOG_REG_TYPE_COMMIT,
1536         };
1537         struct xfs_log_vec vec = {
1538                 .lv_niovecs = 1,
1539                 .lv_iovecp = &reg,
1540         };
1541
1542         ASSERT_ALWAYS(iclog);
1543         error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1544                                         XLOG_COMMIT_TRANS);
1545         if (error)
1546                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1547         return error;
1548 }
1549
1550 /*
1551  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1552  * log space.  This code pushes on the lsn which would supposedly free up
1553  * the 25% which we want to leave free.  We may need to adopt a policy which
1554  * pushes on an lsn which is further along in the log once we reach the high
1555  * water mark.  In this manner, we would be creating a low water mark.
1556  */
1557 STATIC void
1558 xlog_grant_push_ail(
1559         struct xlog     *log,
1560         int             need_bytes)
1561 {
1562         xfs_lsn_t       threshold_lsn = 0;
1563         xfs_lsn_t       last_sync_lsn;
1564         int             free_blocks;
1565         int             free_bytes;
1566         int             threshold_block;
1567         int             threshold_cycle;
1568         int             free_threshold;
1569
1570         ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1571
1572         free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1573         free_blocks = BTOBBT(free_bytes);
1574
1575         /*
1576          * Set the threshold for the minimum number of free blocks in the
1577          * log to the maximum of what the caller needs, one quarter of the
1578          * log, and 256 blocks.
1579          */
1580         free_threshold = BTOBB(need_bytes);
1581         free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1582         free_threshold = MAX(free_threshold, 256);
1583         if (free_blocks >= free_threshold)
1584                 return;
1585
1586         xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1587                                                 &threshold_block);
1588         threshold_block += free_threshold;
1589         if (threshold_block >= log->l_logBBsize) {
1590                 threshold_block -= log->l_logBBsize;
1591                 threshold_cycle += 1;
1592         }
1593         threshold_lsn = xlog_assign_lsn(threshold_cycle,
1594                                         threshold_block);
1595         /*
1596          * Don't pass in an lsn greater than the lsn of the last
1597          * log record known to be on disk. Use a snapshot of the last sync lsn
1598          * so that it doesn't change between the compare and the set.
1599          */
1600         last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1601         if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1602                 threshold_lsn = last_sync_lsn;
1603
1604         /*
1605          * Get the transaction layer to kick the dirty buffers out to
1606          * disk asynchronously. No point in trying to do this if
1607          * the filesystem is shutting down.
1608          */
1609         if (!XLOG_FORCED_SHUTDOWN(log))
1610                 xfs_ail_push(log->l_ailp, threshold_lsn);
1611 }
1612
1613 /*
1614  * Stamp cycle number in every block
1615  */
1616 STATIC void
1617 xlog_pack_data(
1618         struct xlog             *log,
1619         struct xlog_in_core     *iclog,
1620         int                     roundoff)
1621 {
1622         int                     i, j, k;
1623         int                     size = iclog->ic_offset + roundoff;
1624         __be32                  cycle_lsn;
1625         char                    *dp;
1626
1627         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1628
1629         dp = iclog->ic_datap;
1630         for (i = 0; i < BTOBB(size); i++) {
1631                 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1632                         break;
1633                 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1634                 *(__be32 *)dp = cycle_lsn;
1635                 dp += BBSIZE;
1636         }
1637
1638         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1639                 xlog_in_core_2_t *xhdr = iclog->ic_data;
1640
1641                 for ( ; i < BTOBB(size); i++) {
1642                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1643                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1644                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1645                         *(__be32 *)dp = cycle_lsn;
1646                         dp += BBSIZE;
1647                 }
1648
1649                 for (i = 1; i < log->l_iclog_heads; i++)
1650                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1651         }
1652 }
1653
1654 /*
1655  * Calculate the checksum for a log buffer.
1656  *
1657  * This is a little more complicated than it should be because the various
1658  * headers and the actual data are non-contiguous.
1659  */
1660 __le32
1661 xlog_cksum(
1662         struct xlog             *log,
1663         struct xlog_rec_header  *rhead,
1664         char                    *dp,
1665         int                     size)
1666 {
1667         uint32_t                crc;
1668
1669         /* first generate the crc for the record header ... */
1670         crc = xfs_start_cksum_update((char *)rhead,
1671                               sizeof(struct xlog_rec_header),
1672                               offsetof(struct xlog_rec_header, h_crc));
1673
1674         /* ... then for additional cycle data for v2 logs ... */
1675         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1676                 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1677                 int             i;
1678                 int             xheads;
1679
1680                 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1681                 if (size % XLOG_HEADER_CYCLE_SIZE)
1682                         xheads++;
1683
1684                 for (i = 1; i < xheads; i++) {
1685                         crc = crc32c(crc, &xhdr[i].hic_xheader,
1686                                      sizeof(struct xlog_rec_ext_header));
1687                 }
1688         }
1689
1690         /* ... and finally for the payload */
1691         crc = crc32c(crc, dp, size);
1692
1693         return xfs_end_cksum(crc);
1694 }
1695
1696 /*
1697  * The bdstrat callback function for log bufs. This gives us a central
1698  * place to trap bufs in case we get hit by a log I/O error and need to
1699  * shutdown. Actually, in practice, even when we didn't get a log error,
1700  * we transition the iclogs to IOERROR state *after* flushing all existing
1701  * iclogs to disk. This is because we don't want anymore new transactions to be
1702  * started or completed afterwards.
1703  *
1704  * We lock the iclogbufs here so that we can serialise against IO completion
1705  * during unmount. We might be processing a shutdown triggered during unmount,
1706  * and that can occur asynchronously to the unmount thread, and hence we need to
1707  * ensure that completes before tearing down the iclogbufs. Hence we need to
1708  * hold the buffer lock across the log IO to acheive that.
1709  */
1710 STATIC int
1711 xlog_bdstrat(
1712         struct xfs_buf          *bp)
1713 {
1714         struct xlog_in_core     *iclog = bp->b_fspriv;
1715
1716         xfs_buf_lock(bp);
1717         if (iclog->ic_state & XLOG_STATE_IOERROR) {
1718                 xfs_buf_ioerror(bp, -EIO);
1719                 xfs_buf_stale(bp);
1720                 xfs_buf_ioend(bp);
1721                 /*
1722                  * It would seem logical to return EIO here, but we rely on
1723                  * the log state machine to propagate I/O errors instead of
1724                  * doing it here. Similarly, IO completion will unlock the
1725                  * buffer, so we don't do it here.
1726                  */
1727                 return 0;
1728         }
1729
1730         xfs_buf_submit(bp);
1731         return 0;
1732 }
1733
1734 /*
1735  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1736  * fashion.  Previously, we should have moved the current iclog
1737  * ptr in the log to point to the next available iclog.  This allows further
1738  * write to continue while this code syncs out an iclog ready to go.
1739  * Before an in-core log can be written out, the data section must be scanned
1740  * to save away the 1st word of each BBSIZE block into the header.  We replace
1741  * it with the current cycle count.  Each BBSIZE block is tagged with the
1742  * cycle count because there in an implicit assumption that drives will
1743  * guarantee that entire 512 byte blocks get written at once.  In other words,
1744  * we can't have part of a 512 byte block written and part not written.  By
1745  * tagging each block, we will know which blocks are valid when recovering
1746  * after an unclean shutdown.
1747  *
1748  * This routine is single threaded on the iclog.  No other thread can be in
1749  * this routine with the same iclog.  Changing contents of iclog can there-
1750  * fore be done without grabbing the state machine lock.  Updating the global
1751  * log will require grabbing the lock though.
1752  *
1753  * The entire log manager uses a logical block numbering scheme.  Only
1754  * log_sync (and then only bwrite()) know about the fact that the log may
1755  * not start with block zero on a given device.  The log block start offset
1756  * is added immediately before calling bwrite().
1757  */
1758
1759 STATIC int
1760 xlog_sync(
1761         struct xlog             *log,
1762         struct xlog_in_core     *iclog)
1763 {
1764         xfs_buf_t       *bp;
1765         int             i;
1766         uint            count;          /* byte count of bwrite */
1767         uint            count_init;     /* initial count before roundup */
1768         int             roundoff;       /* roundoff to BB or stripe */
1769         int             split = 0;      /* split write into two regions */
1770         int             error;
1771         int             v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1772         int             size;
1773
1774         XFS_STATS_INC(log->l_mp, xs_log_writes);
1775         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1776
1777         /* Add for LR header */
1778         count_init = log->l_iclog_hsize + iclog->ic_offset;
1779
1780         /* Round out the log write size */
1781         if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1782                 /* we have a v2 stripe unit to use */
1783                 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1784         } else {
1785                 count = BBTOB(BTOBB(count_init));
1786         }
1787         roundoff = count - count_init;
1788         ASSERT(roundoff >= 0);
1789         ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1790                 roundoff < log->l_mp->m_sb.sb_logsunit)
1791                 || 
1792                 (log->l_mp->m_sb.sb_logsunit <= 1 && 
1793                  roundoff < BBTOB(1)));
1794
1795         /* move grant heads by roundoff in sync */
1796         xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1797         xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1798
1799         /* put cycle number in every block */
1800         xlog_pack_data(log, iclog, roundoff); 
1801
1802         /* real byte length */
1803         size = iclog->ic_offset;
1804         if (v2)
1805                 size += roundoff;
1806         iclog->ic_header.h_len = cpu_to_be32(size);
1807
1808         bp = iclog->ic_bp;
1809         XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1810
1811         XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1812
1813         /* Do we need to split this write into 2 parts? */
1814         if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1815                 char            *dptr;
1816
1817                 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1818                 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1819                 iclog->ic_bwritecnt = 2;
1820
1821                 /*
1822                  * Bump the cycle numbers at the start of each block in the
1823                  * part of the iclog that ends up in the buffer that gets
1824                  * written to the start of the log.
1825                  *
1826                  * Watch out for the header magic number case, though.
1827                  */
1828                 dptr = (char *)&iclog->ic_header + count;
1829                 for (i = 0; i < split; i += BBSIZE) {
1830                         uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1831                         if (++cycle == XLOG_HEADER_MAGIC_NUM)
1832                                 cycle++;
1833                         *(__be32 *)dptr = cpu_to_be32(cycle);
1834
1835                         dptr += BBSIZE;
1836                 }
1837         } else {
1838                 iclog->ic_bwritecnt = 1;
1839         }
1840
1841         /* calculcate the checksum */
1842         iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1843                                             iclog->ic_datap, size);
1844         /*
1845          * Intentionally corrupt the log record CRC based on the error injection
1846          * frequency, if defined. This facilitates testing log recovery in the
1847          * event of torn writes. Hence, set the IOABORT state to abort the log
1848          * write on I/O completion and shutdown the fs. The subsequent mount
1849          * detects the bad CRC and attempts to recover.
1850          */
1851         if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1852                 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1853                 iclog->ic_state |= XLOG_STATE_IOABORT;
1854                 xfs_warn(log->l_mp,
1855         "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1856                          be64_to_cpu(iclog->ic_header.h_lsn));
1857         }
1858
1859         bp->b_io_length = BTOBB(count);
1860         bp->b_fspriv = iclog;
1861         bp->b_flags &= ~XBF_FLUSH;
1862         bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1863
1864         /*
1865          * Flush the data device before flushing the log to make sure all meta
1866          * data written back from the AIL actually made it to disk before
1867          * stamping the new log tail LSN into the log buffer.  For an external
1868          * log we need to issue the flush explicitly, and unfortunately
1869          * synchronously here; for an internal log we can simply use the block
1870          * layer state machine for preflushes.
1871          */
1872         if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1873                 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1874         else
1875                 bp->b_flags |= XBF_FLUSH;
1876
1877         ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1878         ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1879
1880         xlog_verify_iclog(log, iclog, count, true);
1881
1882         /* account for log which doesn't start at block #0 */
1883         XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1884
1885         /*
1886          * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1887          * is shutting down.
1888          */
1889         error = xlog_bdstrat(bp);
1890         if (error) {
1891                 xfs_buf_ioerror_alert(bp, "xlog_sync");
1892                 return error;
1893         }
1894         if (split) {
1895                 bp = iclog->ic_log->l_xbuf;
1896                 XFS_BUF_SET_ADDR(bp, 0);             /* logical 0 */
1897                 xfs_buf_associate_memory(bp,
1898                                 (char *)&iclog->ic_header + count, split);
1899                 bp->b_fspriv = iclog;
1900                 bp->b_flags &= ~XBF_FLUSH;
1901                 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1902
1903                 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1904                 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1905
1906                 /* account for internal log which doesn't start at block #0 */
1907                 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1908                 error = xlog_bdstrat(bp);
1909                 if (error) {
1910                         xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1911                         return error;
1912                 }
1913         }
1914         return 0;
1915 }       /* xlog_sync */
1916
1917 /*
1918  * Deallocate a log structure
1919  */
1920 STATIC void
1921 xlog_dealloc_log(
1922         struct xlog     *log)
1923 {
1924         xlog_in_core_t  *iclog, *next_iclog;
1925         int             i;
1926
1927         xlog_cil_destroy(log);
1928
1929         /*
1930          * Cycle all the iclogbuf locks to make sure all log IO completion
1931          * is done before we tear down these buffers.
1932          */
1933         iclog = log->l_iclog;
1934         for (i = 0; i < log->l_iclog_bufs; i++) {
1935                 xfs_buf_lock(iclog->ic_bp);
1936                 xfs_buf_unlock(iclog->ic_bp);
1937                 iclog = iclog->ic_next;
1938         }
1939
1940         /*
1941          * Always need to ensure that the extra buffer does not point to memory
1942          * owned by another log buffer before we free it. Also, cycle the lock
1943          * first to ensure we've completed IO on it.
1944          */
1945         xfs_buf_lock(log->l_xbuf);
1946         xfs_buf_unlock(log->l_xbuf);
1947         xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1948         xfs_buf_free(log->l_xbuf);
1949
1950         iclog = log->l_iclog;
1951         for (i = 0; i < log->l_iclog_bufs; i++) {
1952                 xfs_buf_free(iclog->ic_bp);
1953                 next_iclog = iclog->ic_next;
1954                 kmem_free(iclog);
1955                 iclog = next_iclog;
1956         }
1957         spinlock_destroy(&log->l_icloglock);
1958
1959         log->l_mp->m_log = NULL;
1960         kmem_free(log);
1961 }       /* xlog_dealloc_log */
1962
1963 /*
1964  * Update counters atomically now that memcpy is done.
1965  */
1966 /* ARGSUSED */
1967 static inline void
1968 xlog_state_finish_copy(
1969         struct xlog             *log,
1970         struct xlog_in_core     *iclog,
1971         int                     record_cnt,
1972         int                     copy_bytes)
1973 {
1974         spin_lock(&log->l_icloglock);
1975
1976         be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1977         iclog->ic_offset += copy_bytes;
1978
1979         spin_unlock(&log->l_icloglock);
1980 }       /* xlog_state_finish_copy */
1981
1982
1983
1984
1985 /*
1986  * print out info relating to regions written which consume
1987  * the reservation
1988  */
1989 void
1990 xlog_print_tic_res(
1991         struct xfs_mount        *mp,
1992         struct xlog_ticket      *ticket)
1993 {
1994         uint i;
1995         uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1996
1997         /* match with XLOG_REG_TYPE_* in xfs_log.h */
1998 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
1999         static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2000             REG_TYPE_STR(BFORMAT, "bformat"),
2001             REG_TYPE_STR(BCHUNK, "bchunk"),
2002             REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2003             REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2004             REG_TYPE_STR(IFORMAT, "iformat"),
2005             REG_TYPE_STR(ICORE, "icore"),
2006             REG_TYPE_STR(IEXT, "iext"),
2007             REG_TYPE_STR(IBROOT, "ibroot"),
2008             REG_TYPE_STR(ILOCAL, "ilocal"),
2009             REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2010             REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2011             REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2012             REG_TYPE_STR(QFORMAT, "qformat"),
2013             REG_TYPE_STR(DQUOT, "dquot"),
2014             REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2015             REG_TYPE_STR(LRHEADER, "LR header"),
2016             REG_TYPE_STR(UNMOUNT, "unmount"),
2017             REG_TYPE_STR(COMMIT, "commit"),
2018             REG_TYPE_STR(TRANSHDR, "trans header"),
2019             REG_TYPE_STR(ICREATE, "inode create")
2020         };
2021 #undef REG_TYPE_STR
2022
2023         xfs_warn(mp, "ticket reservation summary:");
2024         xfs_warn(mp, "  unit res    = %d bytes",
2025                  ticket->t_unit_res);
2026         xfs_warn(mp, "  current res = %d bytes",
2027                  ticket->t_curr_res);
2028         xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2029                  ticket->t_res_arr_sum, ticket->t_res_o_flow);
2030         xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2031                  ticket->t_res_num_ophdrs, ophdr_spc);
2032         xfs_warn(mp, "  ophdr + reg = %u bytes",
2033                  ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2034         xfs_warn(mp, "  num regions = %u",
2035                  ticket->t_res_num);
2036
2037         for (i = 0; i < ticket->t_res_num; i++) {
2038                 uint r_type = ticket->t_res_arr[i].r_type;
2039                 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2040                             ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2041                             "bad-rtype" : res_type_str[r_type]),
2042                             ticket->t_res_arr[i].r_len);
2043         }
2044 }
2045
2046 /*
2047  * Print a summary of the transaction.
2048  */
2049 void
2050 xlog_print_trans(
2051         struct xfs_trans                *tp)
2052 {
2053         struct xfs_mount                *mp = tp->t_mountp;
2054         struct xfs_log_item_desc        *lidp;
2055
2056         /* dump core transaction and ticket info */
2057         xfs_warn(mp, "transaction summary:");
2058         xfs_warn(mp, "  flags   = 0x%x", tp->t_flags);
2059
2060         xlog_print_tic_res(mp, tp->t_ticket);
2061
2062         /* dump each log item */
2063         list_for_each_entry(lidp, &tp->t_items, lid_trans) {
2064                 struct xfs_log_item     *lip = lidp->lid_item;
2065                 struct xfs_log_vec      *lv = lip->li_lv;
2066                 struct xfs_log_iovec    *vec;
2067                 int                     i;
2068
2069                 xfs_warn(mp, "log item: ");
2070                 xfs_warn(mp, "  type    = 0x%x", lip->li_type);
2071                 xfs_warn(mp, "  flags   = 0x%x", lip->li_flags);
2072                 if (!lv)
2073                         continue;
2074                 xfs_warn(mp, "  niovecs = %d", lv->lv_niovecs);
2075                 xfs_warn(mp, "  size    = %d", lv->lv_size);
2076                 xfs_warn(mp, "  bytes   = %d", lv->lv_bytes);
2077                 xfs_warn(mp, "  buf len = %d", lv->lv_buf_len);
2078
2079                 /* dump each iovec for the log item */
2080                 vec = lv->lv_iovecp;
2081                 for (i = 0; i < lv->lv_niovecs; i++) {
2082                         int dumplen = min(vec->i_len, 32);
2083
2084                         xfs_warn(mp, "  iovec[%d]", i);
2085                         xfs_warn(mp, "    type  = 0x%x", vec->i_type);
2086                         xfs_warn(mp, "    len   = %d", vec->i_len);
2087                         xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2088                         xfs_hex_dump(vec->i_addr, dumplen);
2089
2090                         vec++;
2091                 }
2092         }
2093 }
2094
2095 /*
2096  * Calculate the potential space needed by the log vector.  Each region gets
2097  * its own xlog_op_header_t and may need to be double word aligned.
2098  */
2099 static int
2100 xlog_write_calc_vec_length(
2101         struct xlog_ticket      *ticket,
2102         struct xfs_log_vec      *log_vector)
2103 {
2104         struct xfs_log_vec      *lv;
2105         int                     headers = 0;
2106         int                     len = 0;
2107         int                     i;
2108
2109         /* acct for start rec of xact */
2110         if (ticket->t_flags & XLOG_TIC_INITED)
2111                 headers++;
2112
2113         for (lv = log_vector; lv; lv = lv->lv_next) {
2114                 /* we don't write ordered log vectors */
2115                 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2116                         continue;
2117
2118                 headers += lv->lv_niovecs;
2119
2120                 for (i = 0; i < lv->lv_niovecs; i++) {
2121                         struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2122
2123                         len += vecp->i_len;
2124                         xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2125                 }
2126         }
2127
2128         ticket->t_res_num_ophdrs += headers;
2129         len += headers * sizeof(struct xlog_op_header);
2130
2131         return len;
2132 }
2133
2134 /*
2135  * If first write for transaction, insert start record  We can't be trying to
2136  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2137  */
2138 static int
2139 xlog_write_start_rec(
2140         struct xlog_op_header   *ophdr,
2141         struct xlog_ticket      *ticket)
2142 {
2143         if (!(ticket->t_flags & XLOG_TIC_INITED))
2144                 return 0;
2145
2146         ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2147         ophdr->oh_clientid = ticket->t_clientid;
2148         ophdr->oh_len = 0;
2149         ophdr->oh_flags = XLOG_START_TRANS;
2150         ophdr->oh_res2 = 0;
2151
2152         ticket->t_flags &= ~XLOG_TIC_INITED;
2153
2154         return sizeof(struct xlog_op_header);
2155 }
2156
2157 static xlog_op_header_t *
2158 xlog_write_setup_ophdr(
2159         struct xlog             *log,
2160         struct xlog_op_header   *ophdr,
2161         struct xlog_ticket      *ticket,
2162         uint                    flags)
2163 {
2164         ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2165         ophdr->oh_clientid = ticket->t_clientid;
2166         ophdr->oh_res2 = 0;
2167
2168         /* are we copying a commit or unmount record? */
2169         ophdr->oh_flags = flags;
2170
2171         /*
2172          * We've seen logs corrupted with bad transaction client ids.  This
2173          * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2174          * and shut down the filesystem.
2175          */
2176         switch (ophdr->oh_clientid)  {
2177         case XFS_TRANSACTION:
2178         case XFS_VOLUME:
2179         case XFS_LOG:
2180                 break;
2181         default:
2182                 xfs_warn(log->l_mp,
2183                         "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2184                         ophdr->oh_clientid, ticket);
2185                 return NULL;
2186         }
2187
2188         return ophdr;
2189 }
2190
2191 /*
2192  * Set up the parameters of the region copy into the log. This has
2193  * to handle region write split across multiple log buffers - this
2194  * state is kept external to this function so that this code can
2195  * be written in an obvious, self documenting manner.
2196  */
2197 static int
2198 xlog_write_setup_copy(
2199         struct xlog_ticket      *ticket,
2200         struct xlog_op_header   *ophdr,
2201         int                     space_available,
2202         int                     space_required,
2203         int                     *copy_off,
2204         int                     *copy_len,
2205         int                     *last_was_partial_copy,
2206         int                     *bytes_consumed)
2207 {
2208         int                     still_to_copy;
2209
2210         still_to_copy = space_required - *bytes_consumed;
2211         *copy_off = *bytes_consumed;
2212
2213         if (still_to_copy <= space_available) {
2214                 /* write of region completes here */
2215                 *copy_len = still_to_copy;
2216                 ophdr->oh_len = cpu_to_be32(*copy_len);
2217                 if (*last_was_partial_copy)
2218                         ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2219                 *last_was_partial_copy = 0;
2220                 *bytes_consumed = 0;
2221                 return 0;
2222         }
2223
2224         /* partial write of region, needs extra log op header reservation */
2225         *copy_len = space_available;
2226         ophdr->oh_len = cpu_to_be32(*copy_len);
2227         ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2228         if (*last_was_partial_copy)
2229                 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2230         *bytes_consumed += *copy_len;
2231         (*last_was_partial_copy)++;
2232
2233         /* account for new log op header */
2234         ticket->t_curr_res -= sizeof(struct xlog_op_header);
2235         ticket->t_res_num_ophdrs++;
2236
2237         return sizeof(struct xlog_op_header);
2238 }
2239
2240 static int
2241 xlog_write_copy_finish(
2242         struct xlog             *log,
2243         struct xlog_in_core     *iclog,
2244         uint                    flags,
2245         int                     *record_cnt,
2246         int                     *data_cnt,
2247         int                     *partial_copy,
2248         int                     *partial_copy_len,
2249         int                     log_offset,
2250         struct xlog_in_core     **commit_iclog)
2251 {
2252         if (*partial_copy) {
2253                 /*
2254                  * This iclog has already been marked WANT_SYNC by
2255                  * xlog_state_get_iclog_space.
2256                  */
2257                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2258                 *record_cnt = 0;
2259                 *data_cnt = 0;
2260                 return xlog_state_release_iclog(log, iclog);
2261         }
2262
2263         *partial_copy = 0;
2264         *partial_copy_len = 0;
2265
2266         if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2267                 /* no more space in this iclog - push it. */
2268                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2269                 *record_cnt = 0;
2270                 *data_cnt = 0;
2271
2272                 spin_lock(&log->l_icloglock);
2273                 xlog_state_want_sync(log, iclog);
2274                 spin_unlock(&log->l_icloglock);
2275
2276                 if (!commit_iclog)
2277                         return xlog_state_release_iclog(log, iclog);
2278                 ASSERT(flags & XLOG_COMMIT_TRANS);
2279                 *commit_iclog = iclog;
2280         }
2281
2282         return 0;
2283 }
2284
2285 /*
2286  * Write some region out to in-core log
2287  *
2288  * This will be called when writing externally provided regions or when
2289  * writing out a commit record for a given transaction.
2290  *
2291  * General algorithm:
2292  *      1. Find total length of this write.  This may include adding to the
2293  *              lengths passed in.
2294  *      2. Check whether we violate the tickets reservation.
2295  *      3. While writing to this iclog
2296  *          A. Reserve as much space in this iclog as can get
2297  *          B. If this is first write, save away start lsn
2298  *          C. While writing this region:
2299  *              1. If first write of transaction, write start record
2300  *              2. Write log operation header (header per region)
2301  *              3. Find out if we can fit entire region into this iclog
2302  *              4. Potentially, verify destination memcpy ptr
2303  *              5. Memcpy (partial) region
2304  *              6. If partial copy, release iclog; otherwise, continue
2305  *                      copying more regions into current iclog
2306  *      4. Mark want sync bit (in simulation mode)
2307  *      5. Release iclog for potential flush to on-disk log.
2308  *
2309  * ERRORS:
2310  * 1.   Panic if reservation is overrun.  This should never happen since
2311  *      reservation amounts are generated internal to the filesystem.
2312  * NOTES:
2313  * 1. Tickets are single threaded data structures.
2314  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2315  *      syncing routine.  When a single log_write region needs to span
2316  *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2317  *      on all log operation writes which don't contain the end of the
2318  *      region.  The XLOG_END_TRANS bit is used for the in-core log
2319  *      operation which contains the end of the continued log_write region.
2320  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2321  *      we don't really know exactly how much space will be used.  As a result,
2322  *      we don't update ic_offset until the end when we know exactly how many
2323  *      bytes have been written out.
2324  */
2325 int
2326 xlog_write(
2327         struct xlog             *log,
2328         struct xfs_log_vec      *log_vector,
2329         struct xlog_ticket      *ticket,
2330         xfs_lsn_t               *start_lsn,
2331         struct xlog_in_core     **commit_iclog,
2332         uint                    flags)
2333 {
2334         struct xlog_in_core     *iclog = NULL;
2335         struct xfs_log_iovec    *vecp;
2336         struct xfs_log_vec      *lv;
2337         int                     len;
2338         int                     index;
2339         int                     partial_copy = 0;
2340         int                     partial_copy_len = 0;
2341         int                     contwr = 0;
2342         int                     record_cnt = 0;
2343         int                     data_cnt = 0;
2344         int                     error;
2345
2346         *start_lsn = 0;
2347
2348         len = xlog_write_calc_vec_length(ticket, log_vector);
2349
2350         /*
2351          * Region headers and bytes are already accounted for.
2352          * We only need to take into account start records and
2353          * split regions in this function.
2354          */
2355         if (ticket->t_flags & XLOG_TIC_INITED)
2356                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2357
2358         /*
2359          * Commit record headers need to be accounted for. These
2360          * come in as separate writes so are easy to detect.
2361          */
2362         if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2363                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2364
2365         if (ticket->t_curr_res < 0) {
2366                 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2367                      "ctx ticket reservation ran out. Need to up reservation");
2368                 xlog_print_tic_res(log->l_mp, ticket);
2369                 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2370         }
2371
2372         index = 0;
2373         lv = log_vector;
2374         vecp = lv->lv_iovecp;
2375         while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2376                 void            *ptr;
2377                 int             log_offset;
2378
2379                 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2380                                                    &contwr, &log_offset);
2381                 if (error)
2382                         return error;
2383
2384                 ASSERT(log_offset <= iclog->ic_size - 1);
2385                 ptr = iclog->ic_datap + log_offset;
2386
2387                 /* start_lsn is the first lsn written to. That's all we need. */
2388                 if (!*start_lsn)
2389                         *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2390
2391                 /*
2392                  * This loop writes out as many regions as can fit in the amount
2393                  * of space which was allocated by xlog_state_get_iclog_space().
2394                  */
2395                 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2396                         struct xfs_log_iovec    *reg;
2397                         struct xlog_op_header   *ophdr;
2398                         int                     start_rec_copy;
2399                         int                     copy_len;
2400                         int                     copy_off;
2401                         bool                    ordered = false;
2402
2403                         /* ordered log vectors have no regions to write */
2404                         if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2405                                 ASSERT(lv->lv_niovecs == 0);
2406                                 ordered = true;
2407                                 goto next_lv;
2408                         }
2409
2410                         reg = &vecp[index];
2411                         ASSERT(reg->i_len % sizeof(int32_t) == 0);
2412                         ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2413
2414                         start_rec_copy = xlog_write_start_rec(ptr, ticket);
2415                         if (start_rec_copy) {
2416                                 record_cnt++;
2417                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2418                                                    start_rec_copy);
2419                         }
2420
2421                         ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2422                         if (!ophdr)
2423                                 return -EIO;
2424
2425                         xlog_write_adv_cnt(&ptr, &len, &log_offset,
2426                                            sizeof(struct xlog_op_header));
2427
2428                         len += xlog_write_setup_copy(ticket, ophdr,
2429                                                      iclog->ic_size-log_offset,
2430                                                      reg->i_len,
2431                                                      &copy_off, &copy_len,
2432                                                      &partial_copy,
2433                                                      &partial_copy_len);
2434                         xlog_verify_dest_ptr(log, ptr);
2435
2436                         /*
2437                          * Copy region.
2438                          *
2439                          * Unmount records just log an opheader, so can have
2440                          * empty payloads with no data region to copy. Hence we
2441                          * only copy the payload if the vector says it has data
2442                          * to copy.
2443                          */
2444                         ASSERT(copy_len >= 0);
2445                         if (copy_len > 0) {
2446                                 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2447                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2448                                                    copy_len);
2449                         }
2450                         copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2451                         record_cnt++;
2452                         data_cnt += contwr ? copy_len : 0;
2453
2454                         error = xlog_write_copy_finish(log, iclog, flags,
2455                                                        &record_cnt, &data_cnt,
2456                                                        &partial_copy,
2457                                                        &partial_copy_len,
2458                                                        log_offset,
2459                                                        commit_iclog);
2460                         if (error)
2461                                 return error;
2462
2463                         /*
2464                          * if we had a partial copy, we need to get more iclog
2465                          * space but we don't want to increment the region
2466                          * index because there is still more is this region to
2467                          * write.
2468                          *
2469                          * If we completed writing this region, and we flushed
2470                          * the iclog (indicated by resetting of the record
2471                          * count), then we also need to get more log space. If
2472                          * this was the last record, though, we are done and
2473                          * can just return.
2474                          */
2475                         if (partial_copy)
2476                                 break;
2477
2478                         if (++index == lv->lv_niovecs) {
2479 next_lv:
2480                                 lv = lv->lv_next;
2481                                 index = 0;
2482                                 if (lv)
2483                                         vecp = lv->lv_iovecp;
2484                         }
2485                         if (record_cnt == 0 && ordered == false) {
2486                                 if (!lv)
2487                                         return 0;
2488                                 break;
2489                         }
2490                 }
2491         }
2492
2493         ASSERT(len == 0);
2494
2495         xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2496         if (!commit_iclog)
2497                 return xlog_state_release_iclog(log, iclog);
2498
2499         ASSERT(flags & XLOG_COMMIT_TRANS);
2500         *commit_iclog = iclog;
2501         return 0;
2502 }
2503
2504
2505 /*****************************************************************************
2506  *
2507  *              State Machine functions
2508  *
2509  *****************************************************************************
2510  */
2511
2512 /* Clean iclogs starting from the head.  This ordering must be
2513  * maintained, so an iclog doesn't become ACTIVE beyond one that
2514  * is SYNCING.  This is also required to maintain the notion that we use
2515  * a ordered wait queue to hold off would be writers to the log when every
2516  * iclog is trying to sync to disk.
2517  *
2518  * State Change: DIRTY -> ACTIVE
2519  */
2520 STATIC void
2521 xlog_state_clean_log(
2522         struct xlog *log)
2523 {
2524         xlog_in_core_t  *iclog;
2525         int changed = 0;
2526
2527         iclog = log->l_iclog;
2528         do {
2529                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2530                         iclog->ic_state = XLOG_STATE_ACTIVE;
2531                         iclog->ic_offset       = 0;
2532                         ASSERT(iclog->ic_callback == NULL);
2533                         /*
2534                          * If the number of ops in this iclog indicate it just
2535                          * contains the dummy transaction, we can
2536                          * change state into IDLE (the second time around).
2537                          * Otherwise we should change the state into
2538                          * NEED a dummy.
2539                          * We don't need to cover the dummy.
2540                          */
2541                         if (!changed &&
2542                            (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2543                                         XLOG_COVER_OPS)) {
2544                                 changed = 1;
2545                         } else {
2546                                 /*
2547                                  * We have two dirty iclogs so start over
2548                                  * This could also be num of ops indicates
2549                                  * this is not the dummy going out.
2550                                  */
2551                                 changed = 2;
2552                         }
2553                         iclog->ic_header.h_num_logops = 0;
2554                         memset(iclog->ic_header.h_cycle_data, 0,
2555                               sizeof(iclog->ic_header.h_cycle_data));
2556                         iclog->ic_header.h_lsn = 0;
2557                 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2558                         /* do nothing */;
2559                 else
2560                         break;  /* stop cleaning */
2561                 iclog = iclog->ic_next;
2562         } while (iclog != log->l_iclog);
2563
2564         /* log is locked when we are called */
2565         /*
2566          * Change state for the dummy log recording.
2567          * We usually go to NEED. But we go to NEED2 if the changed indicates
2568          * we are done writing the dummy record.
2569          * If we are done with the second dummy recored (DONE2), then
2570          * we go to IDLE.
2571          */
2572         if (changed) {
2573                 switch (log->l_covered_state) {
2574                 case XLOG_STATE_COVER_IDLE:
2575                 case XLOG_STATE_COVER_NEED:
2576                 case XLOG_STATE_COVER_NEED2:
2577                         log->l_covered_state = XLOG_STATE_COVER_NEED;
2578                         break;
2579
2580                 case XLOG_STATE_COVER_DONE:
2581                         if (changed == 1)
2582                                 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2583                         else
2584                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2585                         break;
2586
2587                 case XLOG_STATE_COVER_DONE2:
2588                         if (changed == 1)
2589                                 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2590                         else
2591                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2592                         break;
2593
2594                 default:
2595                         ASSERT(0);
2596                 }
2597         }
2598 }       /* xlog_state_clean_log */
2599
2600 STATIC xfs_lsn_t
2601 xlog_get_lowest_lsn(
2602         struct xlog     *log)
2603 {
2604         xlog_in_core_t  *lsn_log;
2605         xfs_lsn_t       lowest_lsn, lsn;
2606
2607         lsn_log = log->l_iclog;
2608         lowest_lsn = 0;
2609         do {
2610             if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2611                 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2612                 if ((lsn && !lowest_lsn) ||
2613                     (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2614                         lowest_lsn = lsn;
2615                 }
2616             }
2617             lsn_log = lsn_log->ic_next;
2618         } while (lsn_log != log->l_iclog);
2619         return lowest_lsn;
2620 }
2621
2622
2623 STATIC void
2624 xlog_state_do_callback(
2625         struct xlog             *log,
2626         int                     aborted,
2627         struct xlog_in_core     *ciclog)
2628 {
2629         xlog_in_core_t     *iclog;
2630         xlog_in_core_t     *first_iclog;        /* used to know when we've
2631                                                  * processed all iclogs once */
2632         xfs_log_callback_t *cb, *cb_next;
2633         int                flushcnt = 0;
2634         xfs_lsn_t          lowest_lsn;
2635         int                ioerrors;    /* counter: iclogs with errors */
2636         int                loopdidcallbacks; /* flag: inner loop did callbacks*/
2637         int                funcdidcallbacks; /* flag: function did callbacks */
2638         int                repeats;     /* for issuing console warnings if
2639                                          * looping too many times */
2640         int                wake = 0;
2641
2642         spin_lock(&log->l_icloglock);
2643         first_iclog = iclog = log->l_iclog;
2644         ioerrors = 0;
2645         funcdidcallbacks = 0;
2646         repeats = 0;
2647
2648         do {
2649                 /*
2650                  * Scan all iclogs starting with the one pointed to by the
2651                  * log.  Reset this starting point each time the log is
2652                  * unlocked (during callbacks).
2653                  *
2654                  * Keep looping through iclogs until one full pass is made
2655                  * without running any callbacks.
2656                  */
2657                 first_iclog = log->l_iclog;
2658                 iclog = log->l_iclog;
2659                 loopdidcallbacks = 0;
2660                 repeats++;
2661
2662                 do {
2663
2664                         /* skip all iclogs in the ACTIVE & DIRTY states */
2665                         if (iclog->ic_state &
2666                             (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2667                                 iclog = iclog->ic_next;
2668                                 continue;
2669                         }
2670
2671                         /*
2672                          * Between marking a filesystem SHUTDOWN and stopping
2673                          * the log, we do flush all iclogs to disk (if there
2674                          * wasn't a log I/O error). So, we do want things to
2675                          * go smoothly in case of just a SHUTDOWN  w/o a
2676                          * LOG_IO_ERROR.
2677                          */
2678                         if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2679                                 /*
2680                                  * Can only perform callbacks in order.  Since
2681                                  * this iclog is not in the DONE_SYNC/
2682                                  * DO_CALLBACK state, we skip the rest and
2683                                  * just try to clean up.  If we set our iclog
2684                                  * to DO_CALLBACK, we will not process it when
2685                                  * we retry since a previous iclog is in the
2686                                  * CALLBACK and the state cannot change since
2687                                  * we are holding the l_icloglock.
2688                                  */
2689                                 if (!(iclog->ic_state &
2690                                         (XLOG_STATE_DONE_SYNC |
2691                                                  XLOG_STATE_DO_CALLBACK))) {
2692                                         if (ciclog && (ciclog->ic_state ==
2693                                                         XLOG_STATE_DONE_SYNC)) {
2694                                                 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2695                                         }
2696                                         break;
2697                                 }
2698                                 /*
2699                                  * We now have an iclog that is in either the
2700                                  * DO_CALLBACK or DONE_SYNC states. The other
2701                                  * states (WANT_SYNC, SYNCING, or CALLBACK were
2702                                  * caught by the above if and are going to
2703                                  * clean (i.e. we aren't doing their callbacks)
2704                                  * see the above if.
2705                                  */
2706
2707                                 /*
2708                                  * We will do one more check here to see if we
2709                                  * have chased our tail around.
2710                                  */
2711
2712                                 lowest_lsn = xlog_get_lowest_lsn(log);
2713                                 if (lowest_lsn &&
2714                                     XFS_LSN_CMP(lowest_lsn,
2715                                                 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2716                                         iclog = iclog->ic_next;
2717                                         continue; /* Leave this iclog for
2718                                                    * another thread */
2719                                 }
2720
2721                                 iclog->ic_state = XLOG_STATE_CALLBACK;
2722
2723
2724                                 /*
2725                                  * Completion of a iclog IO does not imply that
2726                                  * a transaction has completed, as transactions
2727                                  * can be large enough to span many iclogs. We
2728                                  * cannot change the tail of the log half way
2729                                  * through a transaction as this may be the only
2730                                  * transaction in the log and moving th etail to
2731                                  * point to the middle of it will prevent
2732                                  * recovery from finding the start of the
2733                                  * transaction. Hence we should only update the
2734                                  * last_sync_lsn if this iclog contains
2735                                  * transaction completion callbacks on it.
2736                                  *
2737                                  * We have to do this before we drop the
2738                                  * icloglock to ensure we are the only one that
2739                                  * can update it.
2740                                  */
2741                                 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2742                                         be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2743                                 if (iclog->ic_callback)
2744                                         atomic64_set(&log->l_last_sync_lsn,
2745                                                 be64_to_cpu(iclog->ic_header.h_lsn));
2746
2747                         } else
2748                                 ioerrors++;
2749
2750                         spin_unlock(&log->l_icloglock);
2751
2752                         /*
2753                          * Keep processing entries in the callback list until
2754                          * we come around and it is empty.  We need to
2755                          * atomically see that the list is empty and change the
2756                          * state to DIRTY so that we don't miss any more
2757                          * callbacks being added.
2758                          */
2759                         spin_lock(&iclog->ic_callback_lock);
2760                         cb = iclog->ic_callback;
2761                         while (cb) {
2762                                 iclog->ic_callback_tail = &(iclog->ic_callback);
2763                                 iclog->ic_callback = NULL;
2764                                 spin_unlock(&iclog->ic_callback_lock);
2765
2766                                 /* perform callbacks in the order given */
2767                                 for (; cb; cb = cb_next) {
2768                                         cb_next = cb->cb_next;
2769                                         cb->cb_func(cb->cb_arg, aborted);
2770                                 }
2771                                 spin_lock(&iclog->ic_callback_lock);
2772                                 cb = iclog->ic_callback;
2773                         }
2774
2775                         loopdidcallbacks++;
2776                         funcdidcallbacks++;
2777
2778                         spin_lock(&log->l_icloglock);
2779                         ASSERT(iclog->ic_callback == NULL);
2780                         spin_unlock(&iclog->ic_callback_lock);
2781                         if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2782                                 iclog->ic_state = XLOG_STATE_DIRTY;
2783
2784                         /*
2785                          * Transition from DIRTY to ACTIVE if applicable.
2786                          * NOP if STATE_IOERROR.
2787                          */
2788                         xlog_state_clean_log(log);
2789
2790                         /* wake up threads waiting in xfs_log_force() */
2791                         wake_up_all(&iclog->ic_force_wait);
2792
2793                         iclog = iclog->ic_next;
2794                 } while (first_iclog != iclog);
2795
2796                 if (repeats > 5000) {
2797                         flushcnt += repeats;
2798                         repeats = 0;
2799                         xfs_warn(log->l_mp,
2800                                 "%s: possible infinite loop (%d iterations)",
2801                                 __func__, flushcnt);
2802                 }
2803         } while (!ioerrors && loopdidcallbacks);
2804
2805 #ifdef DEBUG
2806         /*
2807          * Make one last gasp attempt to see if iclogs are being left in limbo.
2808          * If the above loop finds an iclog earlier than the current iclog and
2809          * in one of the syncing states, the current iclog is put into
2810          * DO_CALLBACK and the callbacks are deferred to the completion of the
2811          * earlier iclog. Walk the iclogs in order and make sure that no iclog
2812          * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2813          * states.
2814          *
2815          * Note that SYNCING|IOABORT is a valid state so we cannot just check
2816          * for ic_state == SYNCING.
2817          */
2818         if (funcdidcallbacks) {
2819                 first_iclog = iclog = log->l_iclog;
2820                 do {
2821                         ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2822                         /*
2823                          * Terminate the loop if iclogs are found in states
2824                          * which will cause other threads to clean up iclogs.
2825                          *
2826                          * SYNCING - i/o completion will go through logs
2827                          * DONE_SYNC - interrupt thread should be waiting for
2828                          *              l_icloglock
2829                          * IOERROR - give up hope all ye who enter here
2830                          */
2831                         if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2832                             iclog->ic_state & XLOG_STATE_SYNCING ||
2833                             iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2834                             iclog->ic_state == XLOG_STATE_IOERROR )
2835                                 break;
2836                         iclog = iclog->ic_next;
2837                 } while (first_iclog != iclog);
2838         }
2839 #endif
2840
2841         if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2842                 wake = 1;
2843         spin_unlock(&log->l_icloglock);
2844
2845         if (wake)
2846                 wake_up_all(&log->l_flush_wait);
2847 }
2848
2849
2850 /*
2851  * Finish transitioning this iclog to the dirty state.
2852  *
2853  * Make sure that we completely execute this routine only when this is
2854  * the last call to the iclog.  There is a good chance that iclog flushes,
2855  * when we reach the end of the physical log, get turned into 2 separate
2856  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2857  * routine.  By using the reference count bwritecnt, we guarantee that only
2858  * the second completion goes through.
2859  *
2860  * Callbacks could take time, so they are done outside the scope of the
2861  * global state machine log lock.
2862  */
2863 STATIC void
2864 xlog_state_done_syncing(
2865         xlog_in_core_t  *iclog,
2866         int             aborted)
2867 {
2868         struct xlog        *log = iclog->ic_log;
2869
2870         spin_lock(&log->l_icloglock);
2871
2872         ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2873                iclog->ic_state == XLOG_STATE_IOERROR);
2874         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2875         ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2876
2877
2878         /*
2879          * If we got an error, either on the first buffer, or in the case of
2880          * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2881          * and none should ever be attempted to be written to disk
2882          * again.
2883          */
2884         if (iclog->ic_state != XLOG_STATE_IOERROR) {
2885                 if (--iclog->ic_bwritecnt == 1) {
2886                         spin_unlock(&log->l_icloglock);
2887                         return;
2888                 }
2889                 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2890         }
2891
2892         /*
2893          * Someone could be sleeping prior to writing out the next
2894          * iclog buffer, we wake them all, one will get to do the
2895          * I/O, the others get to wait for the result.
2896          */
2897         wake_up_all(&iclog->ic_write_wait);
2898         spin_unlock(&log->l_icloglock);
2899         xlog_state_do_callback(log, aborted, iclog);    /* also cleans log */
2900 }       /* xlog_state_done_syncing */
2901
2902
2903 /*
2904  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2905  * sleep.  We wait on the flush queue on the head iclog as that should be
2906  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2907  * we will wait here and all new writes will sleep until a sync completes.
2908  *
2909  * The in-core logs are used in a circular fashion. They are not used
2910  * out-of-order even when an iclog past the head is free.
2911  *
2912  * return:
2913  *      * log_offset where xlog_write() can start writing into the in-core
2914  *              log's data space.
2915  *      * in-core log pointer to which xlog_write() should write.
2916  *      * boolean indicating this is a continued write to an in-core log.
2917  *              If this is the last write, then the in-core log's offset field
2918  *              needs to be incremented, depending on the amount of data which
2919  *              is copied.
2920  */
2921 STATIC int
2922 xlog_state_get_iclog_space(
2923         struct xlog             *log,
2924         int                     len,
2925         struct xlog_in_core     **iclogp,
2926         struct xlog_ticket      *ticket,
2927         int                     *continued_write,
2928         int                     *logoffsetp)
2929 {
2930         int               log_offset;
2931         xlog_rec_header_t *head;
2932         xlog_in_core_t    *iclog;
2933         int               error;
2934
2935 restart:
2936         spin_lock(&log->l_icloglock);
2937         if (XLOG_FORCED_SHUTDOWN(log)) {
2938                 spin_unlock(&log->l_icloglock);
2939                 return -EIO;
2940         }
2941
2942         iclog = log->l_iclog;
2943         if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2944                 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2945
2946                 /* Wait for log writes to have flushed */
2947                 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2948                 goto restart;
2949         }
2950
2951         head = &iclog->ic_header;
2952
2953         atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
2954         log_offset = iclog->ic_offset;
2955
2956         /* On the 1st write to an iclog, figure out lsn.  This works
2957          * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2958          * committing to.  If the offset is set, that's how many blocks
2959          * must be written.
2960          */
2961         if (log_offset == 0) {
2962                 ticket->t_curr_res -= log->l_iclog_hsize;
2963                 xlog_tic_add_region(ticket,
2964                                     log->l_iclog_hsize,
2965                                     XLOG_REG_TYPE_LRHEADER);
2966                 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2967                 head->h_lsn = cpu_to_be64(
2968                         xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2969                 ASSERT(log->l_curr_block >= 0);
2970         }
2971
2972         /* If there is enough room to write everything, then do it.  Otherwise,
2973          * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2974          * bit is on, so this will get flushed out.  Don't update ic_offset
2975          * until you know exactly how many bytes get copied.  Therefore, wait
2976          * until later to update ic_offset.
2977          *
2978          * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2979          * can fit into remaining data section.
2980          */
2981         if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2982                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2983
2984                 /*
2985                  * If I'm the only one writing to this iclog, sync it to disk.
2986                  * We need to do an atomic compare and decrement here to avoid
2987                  * racing with concurrent atomic_dec_and_lock() calls in
2988                  * xlog_state_release_iclog() when there is more than one
2989                  * reference to the iclog.
2990                  */
2991                 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2992                         /* we are the only one */
2993                         spin_unlock(&log->l_icloglock);
2994                         error = xlog_state_release_iclog(log, iclog);
2995                         if (error)
2996                                 return error;
2997                 } else {
2998                         spin_unlock(&log->l_icloglock);
2999                 }
3000                 goto restart;
3001         }
3002
3003         /* Do we have enough room to write the full amount in the remainder
3004          * of this iclog?  Or must we continue a write on the next iclog and
3005          * mark this iclog as completely taken?  In the case where we switch
3006          * iclogs (to mark it taken), this particular iclog will release/sync
3007          * to disk in xlog_write().
3008          */
3009         if (len <= iclog->ic_size - iclog->ic_offset) {
3010                 *continued_write = 0;
3011                 iclog->ic_offset += len;
3012         } else {
3013                 *continued_write = 1;
3014                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3015         }
3016         *iclogp = iclog;
3017
3018         ASSERT(iclog->ic_offset <= iclog->ic_size);
3019         spin_unlock(&log->l_icloglock);
3020
3021         *logoffsetp = log_offset;
3022         return 0;
3023 }       /* xlog_state_get_iclog_space */
3024
3025 /* The first cnt-1 times through here we don't need to
3026  * move the grant write head because the permanent
3027  * reservation has reserved cnt times the unit amount.
3028  * Release part of current permanent unit reservation and
3029  * reset current reservation to be one units worth.  Also
3030  * move grant reservation head forward.
3031  */
3032 STATIC void
3033 xlog_regrant_reserve_log_space(
3034         struct xlog             *log,
3035         struct xlog_ticket      *ticket)
3036 {
3037         trace_xfs_log_regrant_reserve_enter(log, ticket);
3038
3039         if (ticket->t_cnt > 0)
3040                 ticket->t_cnt--;
3041
3042         xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3043                                         ticket->t_curr_res);
3044         xlog_grant_sub_space(log, &log->l_write_head.grant,
3045                                         ticket->t_curr_res);
3046         ticket->t_curr_res = ticket->t_unit_res;
3047         xlog_tic_reset_res(ticket);
3048
3049         trace_xfs_log_regrant_reserve_sub(log, ticket);
3050
3051         /* just return if we still have some of the pre-reserved space */
3052         if (ticket->t_cnt > 0)
3053                 return;
3054
3055         xlog_grant_add_space(log, &log->l_reserve_head.grant,
3056                                         ticket->t_unit_res);
3057
3058         trace_xfs_log_regrant_reserve_exit(log, ticket);
3059
3060         ticket->t_curr_res = ticket->t_unit_res;
3061         xlog_tic_reset_res(ticket);
3062 }       /* xlog_regrant_reserve_log_space */
3063
3064
3065 /*
3066  * Give back the space left from a reservation.
3067  *
3068  * All the information we need to make a correct determination of space left
3069  * is present.  For non-permanent reservations, things are quite easy.  The
3070  * count should have been decremented to zero.  We only need to deal with the
3071  * space remaining in the current reservation part of the ticket.  If the
3072  * ticket contains a permanent reservation, there may be left over space which
3073  * needs to be released.  A count of N means that N-1 refills of the current
3074  * reservation can be done before we need to ask for more space.  The first
3075  * one goes to fill up the first current reservation.  Once we run out of
3076  * space, the count will stay at zero and the only space remaining will be
3077  * in the current reservation field.
3078  */
3079 STATIC void
3080 xlog_ungrant_log_space(
3081         struct xlog             *log,
3082         struct xlog_ticket      *ticket)
3083 {
3084         int     bytes;
3085
3086         if (ticket->t_cnt > 0)
3087                 ticket->t_cnt--;
3088
3089         trace_xfs_log_ungrant_enter(log, ticket);
3090         trace_xfs_log_ungrant_sub(log, ticket);
3091
3092         /*
3093          * If this is a permanent reservation ticket, we may be able to free
3094          * up more space based on the remaining count.
3095          */
3096         bytes = ticket->t_curr_res;
3097         if (ticket->t_cnt > 0) {
3098                 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3099                 bytes += ticket->t_unit_res*ticket->t_cnt;
3100         }
3101
3102         xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3103         xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3104
3105         trace_xfs_log_ungrant_exit(log, ticket);
3106
3107         xfs_log_space_wake(log->l_mp);
3108 }
3109
3110 /*
3111  * Flush iclog to disk if this is the last reference to the given iclog and
3112  * the WANT_SYNC bit is set.
3113  *
3114  * When this function is entered, the iclog is not necessarily in the
3115  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3116  *
3117  *
3118  */
3119 STATIC int
3120 xlog_state_release_iclog(
3121         struct xlog             *log,
3122         struct xlog_in_core     *iclog)
3123 {
3124         int             sync = 0;       /* do we sync? */
3125
3126         if (iclog->ic_state & XLOG_STATE_IOERROR)
3127                 return -EIO;
3128
3129         ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3130         if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3131                 return 0;
3132
3133         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3134                 spin_unlock(&log->l_icloglock);
3135                 return -EIO;
3136         }
3137         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3138                iclog->ic_state == XLOG_STATE_WANT_SYNC);
3139
3140         if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3141                 /* update tail before writing to iclog */
3142                 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3143                 sync++;
3144                 iclog->ic_state = XLOG_STATE_SYNCING;
3145                 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3146                 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3147                 /* cycle incremented when incrementing curr_block */
3148         }
3149         spin_unlock(&log->l_icloglock);
3150
3151         /*
3152          * We let the log lock go, so it's possible that we hit a log I/O
3153          * error or some other SHUTDOWN condition that marks the iclog
3154          * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3155          * this iclog has consistent data, so we ignore IOERROR
3156          * flags after this point.
3157          */
3158         if (sync)
3159                 return xlog_sync(log, iclog);
3160         return 0;
3161 }       /* xlog_state_release_iclog */
3162
3163
3164 /*
3165  * This routine will mark the current iclog in the ring as WANT_SYNC
3166  * and move the current iclog pointer to the next iclog in the ring.
3167  * When this routine is called from xlog_state_get_iclog_space(), the
3168  * exact size of the iclog has not yet been determined.  All we know is
3169  * that every data block.  We have run out of space in this log record.
3170  */
3171 STATIC void
3172 xlog_state_switch_iclogs(
3173         struct xlog             *log,
3174         struct xlog_in_core     *iclog,
3175         int                     eventual_size)
3176 {
3177         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3178         if (!eventual_size)
3179                 eventual_size = iclog->ic_offset;
3180         iclog->ic_state = XLOG_STATE_WANT_SYNC;
3181         iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3182         log->l_prev_block = log->l_curr_block;
3183         log->l_prev_cycle = log->l_curr_cycle;
3184
3185         /* roll log?: ic_offset changed later */
3186         log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3187
3188         /* Round up to next log-sunit */
3189         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3190             log->l_mp->m_sb.sb_logsunit > 1) {
3191                 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3192                 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3193         }
3194
3195         if (log->l_curr_block >= log->l_logBBsize) {
3196                 /*
3197                  * Rewind the current block before the cycle is bumped to make
3198                  * sure that the combined LSN never transiently moves forward
3199                  * when the log wraps to the next cycle. This is to support the
3200                  * unlocked sample of these fields from xlog_valid_lsn(). Most
3201                  * other cases should acquire l_icloglock.
3202                  */
3203                 log->l_curr_block -= log->l_logBBsize;
3204                 ASSERT(log->l_curr_block >= 0);
3205                 smp_wmb();
3206                 log->l_curr_cycle++;
3207                 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3208                         log->l_curr_cycle++;
3209         }
3210         ASSERT(iclog == log->l_iclog);
3211         log->l_iclog = iclog->ic_next;
3212 }       /* xlog_state_switch_iclogs */
3213
3214 /*
3215  * Write out all data in the in-core log as of this exact moment in time.
3216  *
3217  * Data may be written to the in-core log during this call.  However,
3218  * we don't guarantee this data will be written out.  A change from past
3219  * implementation means this routine will *not* write out zero length LRs.
3220  *
3221  * Basically, we try and perform an intelligent scan of the in-core logs.
3222  * If we determine there is no flushable data, we just return.  There is no
3223  * flushable data if:
3224  *
3225  *      1. the current iclog is active and has no data; the previous iclog
3226  *              is in the active or dirty state.
3227  *      2. the current iclog is drity, and the previous iclog is in the
3228  *              active or dirty state.
3229  *
3230  * We may sleep if:
3231  *
3232  *      1. the current iclog is not in the active nor dirty state.
3233  *      2. the current iclog dirty, and the previous iclog is not in the
3234  *              active nor dirty state.
3235  *      3. the current iclog is active, and there is another thread writing
3236  *              to this particular iclog.
3237  *      4. a) the current iclog is active and has no other writers
3238  *         b) when we return from flushing out this iclog, it is still
3239  *              not in the active nor dirty state.
3240  */
3241 int
3242 _xfs_log_force(
3243         struct xfs_mount        *mp,
3244         uint                    flags,
3245         int                     *log_flushed)
3246 {
3247         struct xlog             *log = mp->m_log;
3248         struct xlog_in_core     *iclog;
3249         xfs_lsn_t               lsn;
3250
3251         XFS_STATS_INC(mp, xs_log_force);
3252
3253         xlog_cil_force(log);
3254
3255         spin_lock(&log->l_icloglock);
3256
3257         iclog = log->l_iclog;
3258         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3259                 spin_unlock(&log->l_icloglock);
3260                 return -EIO;
3261         }
3262
3263         /* If the head iclog is not active nor dirty, we just attach
3264          * ourselves to the head and go to sleep.
3265          */
3266         if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3267             iclog->ic_state == XLOG_STATE_DIRTY) {
3268                 /*
3269                  * If the head is dirty or (active and empty), then
3270                  * we need to look at the previous iclog.  If the previous
3271                  * iclog is active or dirty we are done.  There is nothing
3272                  * to sync out.  Otherwise, we attach ourselves to the
3273                  * previous iclog and go to sleep.
3274                  */
3275                 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3276                     (atomic_read(&iclog->ic_refcnt) == 0
3277                      && iclog->ic_offset == 0)) {
3278                         iclog = iclog->ic_prev;
3279                         if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3280                             iclog->ic_state == XLOG_STATE_DIRTY)
3281                                 goto no_sleep;
3282                         else
3283                                 goto maybe_sleep;
3284                 } else {
3285                         if (atomic_read(&iclog->ic_refcnt) == 0) {
3286                                 /* We are the only one with access to this
3287                                  * iclog.  Flush it out now.  There should
3288                                  * be a roundoff of zero to show that someone
3289                                  * has already taken care of the roundoff from
3290                                  * the previous sync.
3291                                  */
3292                                 atomic_inc(&iclog->ic_refcnt);
3293                                 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3294                                 xlog_state_switch_iclogs(log, iclog, 0);
3295                                 spin_unlock(&log->l_icloglock);
3296
3297                                 if (xlog_state_release_iclog(log, iclog))
3298                                         return -EIO;
3299
3300                                 if (log_flushed)
3301                                         *log_flushed = 1;
3302                                 spin_lock(&log->l_icloglock);
3303                                 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3304                                     iclog->ic_state != XLOG_STATE_DIRTY)
3305                                         goto maybe_sleep;
3306                                 else
3307                                         goto no_sleep;
3308                         } else {
3309                                 /* Someone else is writing to this iclog.
3310                                  * Use its call to flush out the data.  However,
3311                                  * the other thread may not force out this LR,
3312                                  * so we mark it WANT_SYNC.
3313                                  */
3314                                 xlog_state_switch_iclogs(log, iclog, 0);
3315                                 goto maybe_sleep;
3316                         }
3317                 }
3318         }
3319
3320         /* By the time we come around again, the iclog could've been filled
3321          * which would give it another lsn.  If we have a new lsn, just
3322          * return because the relevant data has been flushed.
3323          */
3324 maybe_sleep:
3325         if (flags & XFS_LOG_SYNC) {
3326                 /*
3327                  * We must check if we're shutting down here, before
3328                  * we wait, while we're holding the l_icloglock.
3329                  * Then we check again after waking up, in case our
3330                  * sleep was disturbed by a bad news.
3331                  */
3332                 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3333                         spin_unlock(&log->l_icloglock);
3334                         return -EIO;
3335                 }
3336                 XFS_STATS_INC(mp, xs_log_force_sleep);
3337                 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3338                 /*
3339                  * No need to grab the log lock here since we're
3340                  * only deciding whether or not to return EIO
3341                  * and the memory read should be atomic.
3342                  */
3343                 if (iclog->ic_state & XLOG_STATE_IOERROR)
3344                         return -EIO;
3345                 if (log_flushed)
3346                         *log_flushed = 1;
3347         } else {
3348
3349 no_sleep:
3350                 spin_unlock(&log->l_icloglock);
3351         }
3352         return 0;
3353 }
3354
3355 /*
3356  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3357  * about errors or whether the log was flushed or not. This is the normal
3358  * interface to use when trying to unpin items or move the log forward.
3359  */
3360 void
3361 xfs_log_force(
3362         xfs_mount_t     *mp,
3363         uint            flags)
3364 {
3365         trace_xfs_log_force(mp, 0, _RET_IP_);
3366         _xfs_log_force(mp, flags, NULL);
3367 }
3368
3369 /*
3370  * Force the in-core log to disk for a specific LSN.
3371  *
3372  * Find in-core log with lsn.
3373  *      If it is in the DIRTY state, just return.
3374  *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3375  *              state and go to sleep or return.
3376  *      If it is in any other state, go to sleep or return.
3377  *
3378  * Synchronous forces are implemented with a signal variable. All callers
3379  * to force a given lsn to disk will wait on a the sv attached to the
3380  * specific in-core log.  When given in-core log finally completes its
3381  * write to disk, that thread will wake up all threads waiting on the
3382  * sv.
3383  */
3384 int
3385 _xfs_log_force_lsn(
3386         struct xfs_mount        *mp,
3387         xfs_lsn_t               lsn,
3388         uint                    flags,
3389         int                     *log_flushed)
3390 {
3391         struct xlog             *log = mp->m_log;
3392         struct xlog_in_core     *iclog;
3393         int                     already_slept = 0;
3394
3395         ASSERT(lsn != 0);
3396
3397         XFS_STATS_INC(mp, xs_log_force);
3398
3399         lsn = xlog_cil_force_lsn(log, lsn);
3400         if (lsn == NULLCOMMITLSN)
3401                 return 0;
3402
3403 try_again:
3404         spin_lock(&log->l_icloglock);
3405         iclog = log->l_iclog;
3406         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3407                 spin_unlock(&log->l_icloglock);
3408                 return -EIO;
3409         }
3410
3411         do {
3412                 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3413                         iclog = iclog->ic_next;
3414                         continue;
3415                 }
3416
3417                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3418                         spin_unlock(&log->l_icloglock);
3419                         return 0;
3420                 }
3421
3422                 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3423                         /*
3424                          * We sleep here if we haven't already slept (e.g.
3425                          * this is the first time we've looked at the correct
3426                          * iclog buf) and the buffer before us is going to
3427                          * be sync'ed. The reason for this is that if we
3428                          * are doing sync transactions here, by waiting for
3429                          * the previous I/O to complete, we can allow a few
3430                          * more transactions into this iclog before we close
3431                          * it down.
3432                          *
3433                          * Otherwise, we mark the buffer WANT_SYNC, and bump
3434                          * up the refcnt so we can release the log (which
3435                          * drops the ref count).  The state switch keeps new
3436                          * transaction commits from using this buffer.  When
3437                          * the current commits finish writing into the buffer,
3438                          * the refcount will drop to zero and the buffer will
3439                          * go out then.
3440                          */
3441                         if (!already_slept &&
3442                             (iclog->ic_prev->ic_state &
3443                              (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3444                                 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3445
3446                                 XFS_STATS_INC(mp, xs_log_force_sleep);
3447
3448                                 xlog_wait(&iclog->ic_prev->ic_write_wait,
3449                                                         &log->l_icloglock);
3450                                 if (log_flushed)
3451                                         *log_flushed = 1;
3452                                 already_slept = 1;
3453                                 goto try_again;
3454                         }
3455                         atomic_inc(&iclog->ic_refcnt);
3456                         xlog_state_switch_iclogs(log, iclog, 0);
3457                         spin_unlock(&log->l_icloglock);
3458                         if (xlog_state_release_iclog(log, iclog))
3459                                 return -EIO;
3460                         if (log_flushed)
3461                                 *log_flushed = 1;
3462                         spin_lock(&log->l_icloglock);
3463                 }
3464
3465                 if ((flags & XFS_LOG_SYNC) && /* sleep */
3466                     !(iclog->ic_state &
3467                       (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3468                         /*
3469                          * Don't wait on completion if we know that we've
3470                          * gotten a log write error.
3471                          */
3472                         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3473                                 spin_unlock(&log->l_icloglock);
3474                                 return -EIO;
3475                         }
3476                         XFS_STATS_INC(mp, xs_log_force_sleep);
3477                         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3478                         /*
3479                          * No need to grab the log lock here since we're
3480                          * only deciding whether or not to return EIO
3481                          * and the memory read should be atomic.
3482                          */
3483                         if (iclog->ic_state & XLOG_STATE_IOERROR)
3484                                 return -EIO;
3485
3486                         if (log_flushed)
3487                                 *log_flushed = 1;
3488                 } else {                /* just return */
3489                         spin_unlock(&log->l_icloglock);
3490                 }
3491
3492                 return 0;
3493         } while (iclog != log->l_iclog);
3494
3495         spin_unlock(&log->l_icloglock);
3496         return 0;
3497 }
3498
3499 /*
3500  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3501  * about errors or whether the log was flushed or not. This is the normal
3502  * interface to use when trying to unpin items or move the log forward.
3503  */
3504 void
3505 xfs_log_force_lsn(
3506         xfs_mount_t     *mp,
3507         xfs_lsn_t       lsn,
3508         uint            flags)
3509 {
3510         trace_xfs_log_force(mp, lsn, _RET_IP_);
3511         _xfs_log_force_lsn(mp, lsn, flags, NULL);
3512 }
3513
3514 /*
3515  * Called when we want to mark the current iclog as being ready to sync to
3516  * disk.
3517  */
3518 STATIC void
3519 xlog_state_want_sync(
3520         struct xlog             *log,
3521         struct xlog_in_core     *iclog)
3522 {
3523         assert_spin_locked(&log->l_icloglock);
3524
3525         if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3526                 xlog_state_switch_iclogs(log, iclog, 0);
3527         } else {
3528                 ASSERT(iclog->ic_state &
3529                         (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3530         }
3531 }
3532
3533
3534 /*****************************************************************************
3535  *
3536  *              TICKET functions
3537  *
3538  *****************************************************************************
3539  */
3540
3541 /*
3542  * Free a used ticket when its refcount falls to zero.
3543  */
3544 void
3545 xfs_log_ticket_put(
3546         xlog_ticket_t   *ticket)
3547 {
3548         ASSERT(atomic_read(&ticket->t_ref) > 0);
3549         if (atomic_dec_and_test(&ticket->t_ref))
3550                 kmem_zone_free(xfs_log_ticket_zone, ticket);
3551 }
3552
3553 xlog_ticket_t *
3554 xfs_log_ticket_get(
3555         xlog_ticket_t   *ticket)
3556 {
3557         ASSERT(atomic_read(&ticket->t_ref) > 0);
3558         atomic_inc(&ticket->t_ref);
3559         return ticket;
3560 }
3561
3562 /*
3563  * Figure out the total log space unit (in bytes) that would be
3564  * required for a log ticket.
3565  */
3566 int
3567 xfs_log_calc_unit_res(
3568         struct xfs_mount        *mp,
3569         int                     unit_bytes)
3570 {
3571         struct xlog             *log = mp->m_log;
3572         int                     iclog_space;
3573         uint                    num_headers;
3574
3575         /*
3576          * Permanent reservations have up to 'cnt'-1 active log operations
3577          * in the log.  A unit in this case is the amount of space for one
3578          * of these log operations.  Normal reservations have a cnt of 1
3579          * and their unit amount is the total amount of space required.
3580          *
3581          * The following lines of code account for non-transaction data
3582          * which occupy space in the on-disk log.
3583          *
3584          * Normal form of a transaction is:
3585          * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3586          * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3587          *
3588          * We need to account for all the leadup data and trailer data
3589          * around the transaction data.
3590          * And then we need to account for the worst case in terms of using
3591          * more space.
3592          * The worst case will happen if:
3593          * - the placement of the transaction happens to be such that the
3594          *   roundoff is at its maximum
3595          * - the transaction data is synced before the commit record is synced
3596          *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3597          *   Therefore the commit record is in its own Log Record.
3598          *   This can happen as the commit record is called with its
3599          *   own region to xlog_write().
3600          *   This then means that in the worst case, roundoff can happen for
3601          *   the commit-rec as well.
3602          *   The commit-rec is smaller than padding in this scenario and so it is
3603          *   not added separately.
3604          */
3605
3606         /* for trans header */
3607         unit_bytes += sizeof(xlog_op_header_t);
3608         unit_bytes += sizeof(xfs_trans_header_t);
3609
3610         /* for start-rec */
3611         unit_bytes += sizeof(xlog_op_header_t);
3612
3613         /*
3614          * for LR headers - the space for data in an iclog is the size minus
3615          * the space used for the headers. If we use the iclog size, then we
3616          * undercalculate the number of headers required.
3617          *
3618          * Furthermore - the addition of op headers for split-recs might
3619          * increase the space required enough to require more log and op
3620          * headers, so take that into account too.
3621          *
3622          * IMPORTANT: This reservation makes the assumption that if this
3623          * transaction is the first in an iclog and hence has the LR headers
3624          * accounted to it, then the remaining space in the iclog is
3625          * exclusively for this transaction.  i.e. if the transaction is larger
3626          * than the iclog, it will be the only thing in that iclog.
3627          * Fundamentally, this means we must pass the entire log vector to
3628          * xlog_write to guarantee this.
3629          */
3630         iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3631         num_headers = howmany(unit_bytes, iclog_space);
3632
3633         /* for split-recs - ophdrs added when data split over LRs */
3634         unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3635
3636         /* add extra header reservations if we overrun */
3637         while (!num_headers ||
3638                howmany(unit_bytes, iclog_space) > num_headers) {
3639                 unit_bytes += sizeof(xlog_op_header_t);
3640                 num_headers++;
3641         }
3642         unit_bytes += log->l_iclog_hsize * num_headers;
3643
3644         /* for commit-rec LR header - note: padding will subsume the ophdr */
3645         unit_bytes += log->l_iclog_hsize;
3646
3647         /* for roundoff padding for transaction data and one for commit record */
3648         if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3649                 /* log su roundoff */
3650                 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3651         } else {
3652                 /* BB roundoff */
3653                 unit_bytes += 2 * BBSIZE;
3654         }
3655
3656         return unit_bytes;
3657 }
3658
3659 /*
3660  * Allocate and initialise a new log ticket.
3661  */
3662 struct xlog_ticket *
3663 xlog_ticket_alloc(
3664         struct xlog             *log,
3665         int                     unit_bytes,
3666         int                     cnt,
3667         char                    client,
3668         bool                    permanent,
3669         xfs_km_flags_t          alloc_flags)
3670 {
3671         struct xlog_ticket      *tic;
3672         int                     unit_res;
3673
3674         tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3675         if (!tic)
3676                 return NULL;
3677
3678         unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3679
3680         atomic_set(&tic->t_ref, 1);
3681         tic->t_task             = current;
3682         INIT_LIST_HEAD(&tic->t_queue);
3683         tic->t_unit_res         = unit_res;
3684         tic->t_curr_res         = unit_res;
3685         tic->t_cnt              = cnt;
3686         tic->t_ocnt             = cnt;
3687         tic->t_tid              = prandom_u32();
3688         tic->t_clientid         = client;
3689         tic->t_flags            = XLOG_TIC_INITED;
3690         if (permanent)
3691                 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3692
3693         xlog_tic_reset_res(tic);
3694
3695         return tic;
3696 }
3697
3698
3699 /******************************************************************************
3700  *
3701  *              Log debug routines
3702  *
3703  ******************************************************************************
3704  */
3705 #if defined(DEBUG)
3706 /*
3707  * Make sure that the destination ptr is within the valid data region of
3708  * one of the iclogs.  This uses backup pointers stored in a different
3709  * part of the log in case we trash the log structure.
3710  */
3711 void
3712 xlog_verify_dest_ptr(
3713         struct xlog     *log,
3714         void            *ptr)
3715 {
3716         int i;
3717         int good_ptr = 0;
3718
3719         for (i = 0; i < log->l_iclog_bufs; i++) {
3720                 if (ptr >= log->l_iclog_bak[i] &&
3721                     ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3722                         good_ptr++;
3723         }
3724
3725         if (!good_ptr)
3726                 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3727 }
3728
3729 /*
3730  * Check to make sure the grant write head didn't just over lap the tail.  If
3731  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3732  * the cycles differ by exactly one and check the byte count.
3733  *
3734  * This check is run unlocked, so can give false positives. Rather than assert
3735  * on failures, use a warn-once flag and a panic tag to allow the admin to
3736  * determine if they want to panic the machine when such an error occurs. For
3737  * debug kernels this will have the same effect as using an assert but, unlinke
3738  * an assert, it can be turned off at runtime.
3739  */
3740 STATIC void
3741 xlog_verify_grant_tail(
3742         struct xlog     *log)
3743 {
3744         int             tail_cycle, tail_blocks;
3745         int             cycle, space;
3746
3747         xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3748         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3749         if (tail_cycle != cycle) {
3750                 if (cycle - 1 != tail_cycle &&
3751                     !(log->l_flags & XLOG_TAIL_WARN)) {
3752                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3753                                 "%s: cycle - 1 != tail_cycle", __func__);
3754                         log->l_flags |= XLOG_TAIL_WARN;
3755                 }
3756
3757                 if (space > BBTOB(tail_blocks) &&
3758                     !(log->l_flags & XLOG_TAIL_WARN)) {
3759                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3760                                 "%s: space > BBTOB(tail_blocks)", __func__);
3761                         log->l_flags |= XLOG_TAIL_WARN;
3762                 }
3763         }
3764 }
3765
3766 /* check if it will fit */
3767 STATIC void
3768 xlog_verify_tail_lsn(
3769         struct xlog             *log,
3770         struct xlog_in_core     *iclog,
3771         xfs_lsn_t               tail_lsn)
3772 {
3773     int blocks;
3774
3775     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3776         blocks =
3777             log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3778         if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3779                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3780     } else {
3781         ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3782
3783         if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3784                 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3785
3786         blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3787         if (blocks < BTOBB(iclog->ic_offset) + 1)
3788                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3789     }
3790 }       /* xlog_verify_tail_lsn */
3791
3792 /*
3793  * Perform a number of checks on the iclog before writing to disk.
3794  *
3795  * 1. Make sure the iclogs are still circular
3796  * 2. Make sure we have a good magic number
3797  * 3. Make sure we don't have magic numbers in the data
3798  * 4. Check fields of each log operation header for:
3799  *      A. Valid client identifier
3800  *      B. tid ptr value falls in valid ptr space (user space code)
3801  *      C. Length in log record header is correct according to the
3802  *              individual operation headers within record.
3803  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3804  *      log, check the preceding blocks of the physical log to make sure all
3805  *      the cycle numbers agree with the current cycle number.
3806  */
3807 STATIC void
3808 xlog_verify_iclog(
3809         struct xlog             *log,
3810         struct xlog_in_core     *iclog,
3811         int                     count,
3812         bool                    syncing)
3813 {
3814         xlog_op_header_t        *ophead;
3815         xlog_in_core_t          *icptr;
3816         xlog_in_core_2_t        *xhdr;
3817         void                    *base_ptr, *ptr, *p;
3818         ptrdiff_t               field_offset;
3819         uint8_t                 clientid;
3820         int                     len, i, j, k, op_len;
3821         int                     idx;
3822
3823         /* check validity of iclog pointers */
3824         spin_lock(&log->l_icloglock);
3825         icptr = log->l_iclog;
3826         for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3827                 ASSERT(icptr);
3828
3829         if (icptr != log->l_iclog)
3830                 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3831         spin_unlock(&log->l_icloglock);
3832
3833         /* check log magic numbers */
3834         if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3835                 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3836
3837         base_ptr = ptr = &iclog->ic_header;
3838         p = &iclog->ic_header;
3839         for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3840                 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3841                         xfs_emerg(log->l_mp, "%s: unexpected magic num",
3842                                 __func__);
3843         }
3844
3845         /* check fields */
3846         len = be32_to_cpu(iclog->ic_header.h_num_logops);
3847         base_ptr = ptr = iclog->ic_datap;
3848         ophead = ptr;
3849         xhdr = iclog->ic_data;
3850         for (i = 0; i < len; i++) {
3851                 ophead = ptr;
3852
3853                 /* clientid is only 1 byte */
3854                 p = &ophead->oh_clientid;
3855                 field_offset = p - base_ptr;
3856                 if (!syncing || (field_offset & 0x1ff)) {
3857                         clientid = ophead->oh_clientid;
3858                 } else {
3859                         idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3860                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3861                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3862                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3863                                 clientid = xlog_get_client_id(
3864                                         xhdr[j].hic_xheader.xh_cycle_data[k]);
3865                         } else {
3866                                 clientid = xlog_get_client_id(
3867                                         iclog->ic_header.h_cycle_data[idx]);
3868                         }
3869                 }
3870                 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3871                         xfs_warn(log->l_mp,
3872                                 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3873                                 __func__, clientid, ophead,
3874                                 (unsigned long)field_offset);
3875
3876                 /* check length */
3877                 p = &ophead->oh_len;
3878                 field_offset = p - base_ptr;
3879                 if (!syncing || (field_offset & 0x1ff)) {
3880                         op_len = be32_to_cpu(ophead->oh_len);
3881                 } else {
3882                         idx = BTOBBT((uintptr_t)&ophead->oh_len -
3883                                     (uintptr_t)iclog->ic_datap);
3884                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3885                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3886                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3887                                 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3888                         } else {
3889                                 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3890                         }
3891                 }
3892                 ptr += sizeof(xlog_op_header_t) + op_len;
3893         }
3894 }       /* xlog_verify_iclog */
3895 #endif
3896
3897 /*
3898  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3899  */
3900 STATIC int
3901 xlog_state_ioerror(
3902         struct xlog     *log)
3903 {
3904         xlog_in_core_t  *iclog, *ic;
3905
3906         iclog = log->l_iclog;
3907         if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3908                 /*
3909                  * Mark all the incore logs IOERROR.
3910                  * From now on, no log flushes will result.
3911                  */
3912                 ic = iclog;
3913                 do {
3914                         ic->ic_state = XLOG_STATE_IOERROR;
3915                         ic = ic->ic_next;
3916                 } while (ic != iclog);
3917                 return 0;
3918         }
3919         /*
3920          * Return non-zero, if state transition has already happened.
3921          */
3922         return 1;
3923 }
3924
3925 /*
3926  * This is called from xfs_force_shutdown, when we're forcibly
3927  * shutting down the filesystem, typically because of an IO error.
3928  * Our main objectives here are to make sure that:
3929  *      a. if !logerror, flush the logs to disk. Anything modified
3930  *         after this is ignored.
3931  *      b. the filesystem gets marked 'SHUTDOWN' for all interested
3932  *         parties to find out, 'atomically'.
3933  *      c. those who're sleeping on log reservations, pinned objects and
3934  *          other resources get woken up, and be told the bad news.
3935  *      d. nothing new gets queued up after (b) and (c) are done.
3936  *
3937  * Note: for the !logerror case we need to flush the regions held in memory out
3938  * to disk first. This needs to be done before the log is marked as shutdown,
3939  * otherwise the iclog writes will fail.
3940  */
3941 int
3942 xfs_log_force_umount(
3943         struct xfs_mount        *mp,
3944         int                     logerror)
3945 {
3946         struct xlog     *log;
3947         int             retval;
3948
3949         log = mp->m_log;
3950
3951         /*
3952          * If this happens during log recovery, don't worry about
3953          * locking; the log isn't open for business yet.
3954          */
3955         if (!log ||
3956             log->l_flags & XLOG_ACTIVE_RECOVERY) {
3957                 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3958                 if (mp->m_sb_bp)
3959                         mp->m_sb_bp->b_flags |= XBF_DONE;
3960                 return 0;
3961         }
3962
3963         /*
3964          * Somebody could've already done the hard work for us.
3965          * No need to get locks for this.
3966          */
3967         if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3968                 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3969                 return 1;
3970         }
3971
3972         /*
3973          * Flush all the completed transactions to disk before marking the log
3974          * being shut down. We need to do it in this order to ensure that
3975          * completed operations are safely on disk before we shut down, and that
3976          * we don't have to issue any buffer IO after the shutdown flags are set
3977          * to guarantee this.
3978          */
3979         if (!logerror)
3980                 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3981
3982         /*
3983          * mark the filesystem and the as in a shutdown state and wake
3984          * everybody up to tell them the bad news.
3985          */
3986         spin_lock(&log->l_icloglock);
3987         mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3988         if (mp->m_sb_bp)
3989                 mp->m_sb_bp->b_flags |= XBF_DONE;
3990
3991         /*
3992          * Mark the log and the iclogs with IO error flags to prevent any
3993          * further log IO from being issued or completed.
3994          */
3995         log->l_flags |= XLOG_IO_ERROR;
3996         retval = xlog_state_ioerror(log);
3997         spin_unlock(&log->l_icloglock);
3998
3999         /*
4000          * We don't want anybody waiting for log reservations after this. That
4001          * means we have to wake up everybody queued up on reserveq as well as
4002          * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
4003          * we don't enqueue anything once the SHUTDOWN flag is set, and this
4004          * action is protected by the grant locks.
4005          */
4006         xlog_grant_head_wake_all(&log->l_reserve_head);
4007         xlog_grant_head_wake_all(&log->l_write_head);
4008
4009         /*
4010          * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4011          * as if the log writes were completed. The abort handling in the log
4012          * item committed callback functions will do this again under lock to
4013          * avoid races.
4014          */
4015         wake_up_all(&log->l_cilp->xc_commit_wait);
4016         xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4017
4018 #ifdef XFSERRORDEBUG
4019         {
4020                 xlog_in_core_t  *iclog;
4021
4022                 spin_lock(&log->l_icloglock);
4023                 iclog = log->l_iclog;
4024                 do {
4025                         ASSERT(iclog->ic_callback == 0);
4026                         iclog = iclog->ic_next;
4027                 } while (iclog != log->l_iclog);
4028                 spin_unlock(&log->l_icloglock);
4029         }
4030 #endif
4031         /* return non-zero if log IOERROR transition had already happened */
4032         return retval;
4033 }
4034
4035 STATIC int
4036 xlog_iclogs_empty(
4037         struct xlog     *log)
4038 {
4039         xlog_in_core_t  *iclog;
4040
4041         iclog = log->l_iclog;
4042         do {
4043                 /* endianness does not matter here, zero is zero in
4044                  * any language.
4045                  */
4046                 if (iclog->ic_header.h_num_logops)
4047                         return 0;
4048                 iclog = iclog->ic_next;
4049         } while (iclog != log->l_iclog);
4050         return 1;
4051 }
4052
4053 /*
4054  * Verify that an LSN stamped into a piece of metadata is valid. This is
4055  * intended for use in read verifiers on v5 superblocks.
4056  */
4057 bool
4058 xfs_log_check_lsn(
4059         struct xfs_mount        *mp,
4060         xfs_lsn_t               lsn)
4061 {
4062         struct xlog             *log = mp->m_log;
4063         bool                    valid;
4064
4065         /*
4066          * norecovery mode skips mount-time log processing and unconditionally
4067          * resets the in-core LSN. We can't validate in this mode, but
4068          * modifications are not allowed anyways so just return true.
4069          */
4070         if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4071                 return true;
4072
4073         /*
4074          * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4075          * handled by recovery and thus safe to ignore here.
4076          */
4077         if (lsn == NULLCOMMITLSN)
4078                 return true;
4079
4080         valid = xlog_valid_lsn(mp->m_log, lsn);
4081
4082         /* warn the user about what's gone wrong before verifier failure */
4083         if (!valid) {
4084                 spin_lock(&log->l_icloglock);
4085                 xfs_warn(mp,
4086 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4087 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4088                          CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4089                          log->l_curr_cycle, log->l_curr_block);
4090                 spin_unlock(&log->l_icloglock);
4091         }
4092
4093         return valid;
4094 }