]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/xfs/xfs_log_recover.c
a8039431b86f1a80d0b4d1d919ab5668fa394d75
[karo-tx-linux.git] / fs / xfs / xfs_log_recover.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_imap.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_log_priv.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_log_recover.h"
45 #include "xfs_extfree_item.h"
46 #include "xfs_trans_priv.h"
47 #include "xfs_quota.h"
48 #include "xfs_rw.h"
49 #include "xfs_utils.h"
50
51 STATIC int      xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
52 STATIC int      xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
53 STATIC void     xlog_recover_insert_item_backq(xlog_recover_item_t **q,
54                                                xlog_recover_item_t *item);
55 #if defined(DEBUG)
56 STATIC void     xlog_recover_check_summary(xlog_t *);
57 STATIC void     xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
58 #else
59 #define xlog_recover_check_summary(log)
60 #define xlog_recover_check_ail(mp, lip, gen)
61 #endif
62
63
64 /*
65  * Sector aligned buffer routines for buffer create/read/write/access
66  */
67
68 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs)   \
69         ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
70         ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
71 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno)   ((bno) & ~(log)->l_sectbb_mask)
72
73 xfs_buf_t *
74 xlog_get_bp(
75         xlog_t          *log,
76         int             num_bblks)
77 {
78         ASSERT(num_bblks > 0);
79
80         if (log->l_sectbb_log) {
81                 if (num_bblks > 1)
82                         num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
83                 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
84         }
85         return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
86 }
87
88 void
89 xlog_put_bp(
90         xfs_buf_t       *bp)
91 {
92         xfs_buf_free(bp);
93 }
94
95
96 /*
97  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
98  */
99 int
100 xlog_bread(
101         xlog_t          *log,
102         xfs_daddr_t     blk_no,
103         int             nbblks,
104         xfs_buf_t       *bp)
105 {
106         int             error;
107
108         if (log->l_sectbb_log) {
109                 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
110                 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
111         }
112
113         ASSERT(nbblks > 0);
114         ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
115         ASSERT(bp);
116
117         XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
118         XFS_BUF_READ(bp);
119         XFS_BUF_BUSY(bp);
120         XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
121         XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
122
123         xfsbdstrat(log->l_mp, bp);
124         error = xfs_iowait(bp);
125         if (error)
126                 xfs_ioerror_alert("xlog_bread", log->l_mp,
127                                   bp, XFS_BUF_ADDR(bp));
128         return error;
129 }
130
131 /*
132  * Write out the buffer at the given block for the given number of blocks.
133  * The buffer is kept locked across the write and is returned locked.
134  * This can only be used for synchronous log writes.
135  */
136 STATIC int
137 xlog_bwrite(
138         xlog_t          *log,
139         xfs_daddr_t     blk_no,
140         int             nbblks,
141         xfs_buf_t       *bp)
142 {
143         int             error;
144
145         if (log->l_sectbb_log) {
146                 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
147                 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
148         }
149
150         ASSERT(nbblks > 0);
151         ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
152
153         XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
154         XFS_BUF_ZEROFLAGS(bp);
155         XFS_BUF_BUSY(bp);
156         XFS_BUF_HOLD(bp);
157         XFS_BUF_PSEMA(bp, PRIBIO);
158         XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
159         XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
160
161         if ((error = xfs_bwrite(log->l_mp, bp)))
162                 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
163                                   bp, XFS_BUF_ADDR(bp));
164         return error;
165 }
166
167 STATIC xfs_caddr_t
168 xlog_align(
169         xlog_t          *log,
170         xfs_daddr_t     blk_no,
171         int             nbblks,
172         xfs_buf_t       *bp)
173 {
174         xfs_caddr_t     ptr;
175
176         if (!log->l_sectbb_log)
177                 return XFS_BUF_PTR(bp);
178
179         ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
180         ASSERT(XFS_BUF_SIZE(bp) >=
181                 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
182         return ptr;
183 }
184
185 #ifdef DEBUG
186 /*
187  * dump debug superblock and log record information
188  */
189 STATIC void
190 xlog_header_check_dump(
191         xfs_mount_t             *mp,
192         xlog_rec_header_t       *head)
193 {
194         int                     b;
195
196         cmn_err(CE_DEBUG, "%s:  SB : uuid = ", __func__);
197         for (b = 0; b < 16; b++)
198                 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
199         cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
200         cmn_err(CE_DEBUG, "    log : uuid = ");
201         for (b = 0; b < 16; b++)
202                 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
203         cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
204 }
205 #else
206 #define xlog_header_check_dump(mp, head)
207 #endif
208
209 /*
210  * check log record header for recovery
211  */
212 STATIC int
213 xlog_header_check_recover(
214         xfs_mount_t             *mp,
215         xlog_rec_header_t       *head)
216 {
217         ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
218
219         /*
220          * IRIX doesn't write the h_fmt field and leaves it zeroed
221          * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
222          * a dirty log created in IRIX.
223          */
224         if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
225                 xlog_warn(
226         "XFS: dirty log written in incompatible format - can't recover");
227                 xlog_header_check_dump(mp, head);
228                 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
229                                  XFS_ERRLEVEL_HIGH, mp);
230                 return XFS_ERROR(EFSCORRUPTED);
231         } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
232                 xlog_warn(
233         "XFS: dirty log entry has mismatched uuid - can't recover");
234                 xlog_header_check_dump(mp, head);
235                 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
236                                  XFS_ERRLEVEL_HIGH, mp);
237                 return XFS_ERROR(EFSCORRUPTED);
238         }
239         return 0;
240 }
241
242 /*
243  * read the head block of the log and check the header
244  */
245 STATIC int
246 xlog_header_check_mount(
247         xfs_mount_t             *mp,
248         xlog_rec_header_t       *head)
249 {
250         ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
251
252         if (uuid_is_nil(&head->h_fs_uuid)) {
253                 /*
254                  * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
255                  * h_fs_uuid is nil, we assume this log was last mounted
256                  * by IRIX and continue.
257                  */
258                 xlog_warn("XFS: nil uuid in log - IRIX style log");
259         } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
260                 xlog_warn("XFS: log has mismatched uuid - can't recover");
261                 xlog_header_check_dump(mp, head);
262                 XFS_ERROR_REPORT("xlog_header_check_mount",
263                                  XFS_ERRLEVEL_HIGH, mp);
264                 return XFS_ERROR(EFSCORRUPTED);
265         }
266         return 0;
267 }
268
269 STATIC void
270 xlog_recover_iodone(
271         struct xfs_buf  *bp)
272 {
273         xfs_mount_t     *mp;
274
275         ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
276
277         if (XFS_BUF_GETERROR(bp)) {
278                 /*
279                  * We're not going to bother about retrying
280                  * this during recovery. One strike!
281                  */
282                 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
283                 xfs_ioerror_alert("xlog_recover_iodone",
284                                   mp, bp, XFS_BUF_ADDR(bp));
285                 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
286         }
287         XFS_BUF_SET_FSPRIVATE(bp, NULL);
288         XFS_BUF_CLR_IODONE_FUNC(bp);
289         xfs_biodone(bp);
290 }
291
292 /*
293  * This routine finds (to an approximation) the first block in the physical
294  * log which contains the given cycle.  It uses a binary search algorithm.
295  * Note that the algorithm can not be perfect because the disk will not
296  * necessarily be perfect.
297  */
298 STATIC int
299 xlog_find_cycle_start(
300         xlog_t          *log,
301         xfs_buf_t       *bp,
302         xfs_daddr_t     first_blk,
303         xfs_daddr_t     *last_blk,
304         uint            cycle)
305 {
306         xfs_caddr_t     offset;
307         xfs_daddr_t     mid_blk;
308         uint            mid_cycle;
309         int             error;
310
311         mid_blk = BLK_AVG(first_blk, *last_blk);
312         while (mid_blk != first_blk && mid_blk != *last_blk) {
313                 if ((error = xlog_bread(log, mid_blk, 1, bp)))
314                         return error;
315                 offset = xlog_align(log, mid_blk, 1, bp);
316                 mid_cycle = xlog_get_cycle(offset);
317                 if (mid_cycle == cycle) {
318                         *last_blk = mid_blk;
319                         /* last_half_cycle == mid_cycle */
320                 } else {
321                         first_blk = mid_blk;
322                         /* first_half_cycle == mid_cycle */
323                 }
324                 mid_blk = BLK_AVG(first_blk, *last_blk);
325         }
326         ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
327                (mid_blk == *last_blk && mid_blk-1 == first_blk));
328
329         return 0;
330 }
331
332 /*
333  * Check that the range of blocks does not contain the cycle number
334  * given.  The scan needs to occur from front to back and the ptr into the
335  * region must be updated since a later routine will need to perform another
336  * test.  If the region is completely good, we end up returning the same
337  * last block number.
338  *
339  * Set blkno to -1 if we encounter no errors.  This is an invalid block number
340  * since we don't ever expect logs to get this large.
341  */
342 STATIC int
343 xlog_find_verify_cycle(
344         xlog_t          *log,
345         xfs_daddr_t     start_blk,
346         int             nbblks,
347         uint            stop_on_cycle_no,
348         xfs_daddr_t     *new_blk)
349 {
350         xfs_daddr_t     i, j;
351         uint            cycle;
352         xfs_buf_t       *bp;
353         xfs_daddr_t     bufblks;
354         xfs_caddr_t     buf = NULL;
355         int             error = 0;
356
357         bufblks = 1 << ffs(nbblks);
358
359         while (!(bp = xlog_get_bp(log, bufblks))) {
360                 /* can't get enough memory to do everything in one big buffer */
361                 bufblks >>= 1;
362                 if (bufblks <= log->l_sectbb_log)
363                         return ENOMEM;
364         }
365
366         for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
367                 int     bcount;
368
369                 bcount = min(bufblks, (start_blk + nbblks - i));
370
371                 if ((error = xlog_bread(log, i, bcount, bp)))
372                         goto out;
373
374                 buf = xlog_align(log, i, bcount, bp);
375                 for (j = 0; j < bcount; j++) {
376                         cycle = xlog_get_cycle(buf);
377                         if (cycle == stop_on_cycle_no) {
378                                 *new_blk = i+j;
379                                 goto out;
380                         }
381
382                         buf += BBSIZE;
383                 }
384         }
385
386         *new_blk = -1;
387
388 out:
389         xlog_put_bp(bp);
390         return error;
391 }
392
393 /*
394  * Potentially backup over partial log record write.
395  *
396  * In the typical case, last_blk is the number of the block directly after
397  * a good log record.  Therefore, we subtract one to get the block number
398  * of the last block in the given buffer.  extra_bblks contains the number
399  * of blocks we would have read on a previous read.  This happens when the
400  * last log record is split over the end of the physical log.
401  *
402  * extra_bblks is the number of blocks potentially verified on a previous
403  * call to this routine.
404  */
405 STATIC int
406 xlog_find_verify_log_record(
407         xlog_t                  *log,
408         xfs_daddr_t             start_blk,
409         xfs_daddr_t             *last_blk,
410         int                     extra_bblks)
411 {
412         xfs_daddr_t             i;
413         xfs_buf_t               *bp;
414         xfs_caddr_t             offset = NULL;
415         xlog_rec_header_t       *head = NULL;
416         int                     error = 0;
417         int                     smallmem = 0;
418         int                     num_blks = *last_blk - start_blk;
419         int                     xhdrs;
420
421         ASSERT(start_blk != 0 || *last_blk != start_blk);
422
423         if (!(bp = xlog_get_bp(log, num_blks))) {
424                 if (!(bp = xlog_get_bp(log, 1)))
425                         return ENOMEM;
426                 smallmem = 1;
427         } else {
428                 if ((error = xlog_bread(log, start_blk, num_blks, bp)))
429                         goto out;
430                 offset = xlog_align(log, start_blk, num_blks, bp);
431                 offset += ((num_blks - 1) << BBSHIFT);
432         }
433
434         for (i = (*last_blk) - 1; i >= 0; i--) {
435                 if (i < start_blk) {
436                         /* valid log record not found */
437                         xlog_warn(
438                 "XFS: Log inconsistent (didn't find previous header)");
439                         ASSERT(0);
440                         error = XFS_ERROR(EIO);
441                         goto out;
442                 }
443
444                 if (smallmem) {
445                         if ((error = xlog_bread(log, i, 1, bp)))
446                                 goto out;
447                         offset = xlog_align(log, i, 1, bp);
448                 }
449
450                 head = (xlog_rec_header_t *)offset;
451
452                 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
453                         break;
454
455                 if (!smallmem)
456                         offset -= BBSIZE;
457         }
458
459         /*
460          * We hit the beginning of the physical log & still no header.  Return
461          * to caller.  If caller can handle a return of -1, then this routine
462          * will be called again for the end of the physical log.
463          */
464         if (i == -1) {
465                 error = -1;
466                 goto out;
467         }
468
469         /*
470          * We have the final block of the good log (the first block
471          * of the log record _before_ the head. So we check the uuid.
472          */
473         if ((error = xlog_header_check_mount(log->l_mp, head)))
474                 goto out;
475
476         /*
477          * We may have found a log record header before we expected one.
478          * last_blk will be the 1st block # with a given cycle #.  We may end
479          * up reading an entire log record.  In this case, we don't want to
480          * reset last_blk.  Only when last_blk points in the middle of a log
481          * record do we update last_blk.
482          */
483         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
484                 uint    h_size = be32_to_cpu(head->h_size);
485
486                 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
487                 if (h_size % XLOG_HEADER_CYCLE_SIZE)
488                         xhdrs++;
489         } else {
490                 xhdrs = 1;
491         }
492
493         if (*last_blk - i + extra_bblks !=
494             BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
495                 *last_blk = i;
496
497 out:
498         xlog_put_bp(bp);
499         return error;
500 }
501
502 /*
503  * Head is defined to be the point of the log where the next log write
504  * write could go.  This means that incomplete LR writes at the end are
505  * eliminated when calculating the head.  We aren't guaranteed that previous
506  * LR have complete transactions.  We only know that a cycle number of
507  * current cycle number -1 won't be present in the log if we start writing
508  * from our current block number.
509  *
510  * last_blk contains the block number of the first block with a given
511  * cycle number.
512  *
513  * Return: zero if normal, non-zero if error.
514  */
515 STATIC int
516 xlog_find_head(
517         xlog_t          *log,
518         xfs_daddr_t     *return_head_blk)
519 {
520         xfs_buf_t       *bp;
521         xfs_caddr_t     offset;
522         xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
523         int             num_scan_bblks;
524         uint            first_half_cycle, last_half_cycle;
525         uint            stop_on_cycle;
526         int             error, log_bbnum = log->l_logBBsize;
527
528         /* Is the end of the log device zeroed? */
529         if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
530                 *return_head_blk = first_blk;
531
532                 /* Is the whole lot zeroed? */
533                 if (!first_blk) {
534                         /* Linux XFS shouldn't generate totally zeroed logs -
535                          * mkfs etc write a dummy unmount record to a fresh
536                          * log so we can store the uuid in there
537                          */
538                         xlog_warn("XFS: totally zeroed log");
539                 }
540
541                 return 0;
542         } else if (error) {
543                 xlog_warn("XFS: empty log check failed");
544                 return error;
545         }
546
547         first_blk = 0;                  /* get cycle # of 1st block */
548         bp = xlog_get_bp(log, 1);
549         if (!bp)
550                 return ENOMEM;
551         if ((error = xlog_bread(log, 0, 1, bp)))
552                 goto bp_err;
553         offset = xlog_align(log, 0, 1, bp);
554         first_half_cycle = xlog_get_cycle(offset);
555
556         last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
557         if ((error = xlog_bread(log, last_blk, 1, bp)))
558                 goto bp_err;
559         offset = xlog_align(log, last_blk, 1, bp);
560         last_half_cycle = xlog_get_cycle(offset);
561         ASSERT(last_half_cycle != 0);
562
563         /*
564          * If the 1st half cycle number is equal to the last half cycle number,
565          * then the entire log is stamped with the same cycle number.  In this
566          * case, head_blk can't be set to zero (which makes sense).  The below
567          * math doesn't work out properly with head_blk equal to zero.  Instead,
568          * we set it to log_bbnum which is an invalid block number, but this
569          * value makes the math correct.  If head_blk doesn't changed through
570          * all the tests below, *head_blk is set to zero at the very end rather
571          * than log_bbnum.  In a sense, log_bbnum and zero are the same block
572          * in a circular file.
573          */
574         if (first_half_cycle == last_half_cycle) {
575                 /*
576                  * In this case we believe that the entire log should have
577                  * cycle number last_half_cycle.  We need to scan backwards
578                  * from the end verifying that there are no holes still
579                  * containing last_half_cycle - 1.  If we find such a hole,
580                  * then the start of that hole will be the new head.  The
581                  * simple case looks like
582                  *        x | x ... | x - 1 | x
583                  * Another case that fits this picture would be
584                  *        x | x + 1 | x ... | x
585                  * In this case the head really is somewhere at the end of the
586                  * log, as one of the latest writes at the beginning was
587                  * incomplete.
588                  * One more case is
589                  *        x | x + 1 | x ... | x - 1 | x
590                  * This is really the combination of the above two cases, and
591                  * the head has to end up at the start of the x-1 hole at the
592                  * end of the log.
593                  *
594                  * In the 256k log case, we will read from the beginning to the
595                  * end of the log and search for cycle numbers equal to x-1.
596                  * We don't worry about the x+1 blocks that we encounter,
597                  * because we know that they cannot be the head since the log
598                  * started with x.
599                  */
600                 head_blk = log_bbnum;
601                 stop_on_cycle = last_half_cycle - 1;
602         } else {
603                 /*
604                  * In this case we want to find the first block with cycle
605                  * number matching last_half_cycle.  We expect the log to be
606                  * some variation on
607                  *        x + 1 ... | x ...
608                  * The first block with cycle number x (last_half_cycle) will
609                  * be where the new head belongs.  First we do a binary search
610                  * for the first occurrence of last_half_cycle.  The binary
611                  * search may not be totally accurate, so then we scan back
612                  * from there looking for occurrences of last_half_cycle before
613                  * us.  If that backwards scan wraps around the beginning of
614                  * the log, then we look for occurrences of last_half_cycle - 1
615                  * at the end of the log.  The cases we're looking for look
616                  * like
617                  *        x + 1 ... | x | x + 1 | x ...
618                  *                               ^ binary search stopped here
619                  * or
620                  *        x + 1 ... | x ... | x - 1 | x
621                  *        <---------> less than scan distance
622                  */
623                 stop_on_cycle = last_half_cycle;
624                 if ((error = xlog_find_cycle_start(log, bp, first_blk,
625                                                 &head_blk, last_half_cycle)))
626                         goto bp_err;
627         }
628
629         /*
630          * Now validate the answer.  Scan back some number of maximum possible
631          * blocks and make sure each one has the expected cycle number.  The
632          * maximum is determined by the total possible amount of buffering
633          * in the in-core log.  The following number can be made tighter if
634          * we actually look at the block size of the filesystem.
635          */
636         num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
637         if (head_blk >= num_scan_bblks) {
638                 /*
639                  * We are guaranteed that the entire check can be performed
640                  * in one buffer.
641                  */
642                 start_blk = head_blk - num_scan_bblks;
643                 if ((error = xlog_find_verify_cycle(log,
644                                                 start_blk, num_scan_bblks,
645                                                 stop_on_cycle, &new_blk)))
646                         goto bp_err;
647                 if (new_blk != -1)
648                         head_blk = new_blk;
649         } else {                /* need to read 2 parts of log */
650                 /*
651                  * We are going to scan backwards in the log in two parts.
652                  * First we scan the physical end of the log.  In this part
653                  * of the log, we are looking for blocks with cycle number
654                  * last_half_cycle - 1.
655                  * If we find one, then we know that the log starts there, as
656                  * we've found a hole that didn't get written in going around
657                  * the end of the physical log.  The simple case for this is
658                  *        x + 1 ... | x ... | x - 1 | x
659                  *        <---------> less than scan distance
660                  * If all of the blocks at the end of the log have cycle number
661                  * last_half_cycle, then we check the blocks at the start of
662                  * the log looking for occurrences of last_half_cycle.  If we
663                  * find one, then our current estimate for the location of the
664                  * first occurrence of last_half_cycle is wrong and we move
665                  * back to the hole we've found.  This case looks like
666                  *        x + 1 ... | x | x + 1 | x ...
667                  *                               ^ binary search stopped here
668                  * Another case we need to handle that only occurs in 256k
669                  * logs is
670                  *        x + 1 ... | x ... | x+1 | x ...
671                  *                   ^ binary search stops here
672                  * In a 256k log, the scan at the end of the log will see the
673                  * x + 1 blocks.  We need to skip past those since that is
674                  * certainly not the head of the log.  By searching for
675                  * last_half_cycle-1 we accomplish that.
676                  */
677                 start_blk = log_bbnum - num_scan_bblks + head_blk;
678                 ASSERT(head_blk <= INT_MAX &&
679                         (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
680                 if ((error = xlog_find_verify_cycle(log, start_blk,
681                                         num_scan_bblks - (int)head_blk,
682                                         (stop_on_cycle - 1), &new_blk)))
683                         goto bp_err;
684                 if (new_blk != -1) {
685                         head_blk = new_blk;
686                         goto bad_blk;
687                 }
688
689                 /*
690                  * Scan beginning of log now.  The last part of the physical
691                  * log is good.  This scan needs to verify that it doesn't find
692                  * the last_half_cycle.
693                  */
694                 start_blk = 0;
695                 ASSERT(head_blk <= INT_MAX);
696                 if ((error = xlog_find_verify_cycle(log,
697                                         start_blk, (int)head_blk,
698                                         stop_on_cycle, &new_blk)))
699                         goto bp_err;
700                 if (new_blk != -1)
701                         head_blk = new_blk;
702         }
703
704  bad_blk:
705         /*
706          * Now we need to make sure head_blk is not pointing to a block in
707          * the middle of a log record.
708          */
709         num_scan_bblks = XLOG_REC_SHIFT(log);
710         if (head_blk >= num_scan_bblks) {
711                 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
712
713                 /* start ptr at last block ptr before head_blk */
714                 if ((error = xlog_find_verify_log_record(log, start_blk,
715                                                         &head_blk, 0)) == -1) {
716                         error = XFS_ERROR(EIO);
717                         goto bp_err;
718                 } else if (error)
719                         goto bp_err;
720         } else {
721                 start_blk = 0;
722                 ASSERT(head_blk <= INT_MAX);
723                 if ((error = xlog_find_verify_log_record(log, start_blk,
724                                                         &head_blk, 0)) == -1) {
725                         /* We hit the beginning of the log during our search */
726                         start_blk = log_bbnum - num_scan_bblks + head_blk;
727                         new_blk = log_bbnum;
728                         ASSERT(start_blk <= INT_MAX &&
729                                 (xfs_daddr_t) log_bbnum-start_blk >= 0);
730                         ASSERT(head_blk <= INT_MAX);
731                         if ((error = xlog_find_verify_log_record(log,
732                                                         start_blk, &new_blk,
733                                                         (int)head_blk)) == -1) {
734                                 error = XFS_ERROR(EIO);
735                                 goto bp_err;
736                         } else if (error)
737                                 goto bp_err;
738                         if (new_blk != log_bbnum)
739                                 head_blk = new_blk;
740                 } else if (error)
741                         goto bp_err;
742         }
743
744         xlog_put_bp(bp);
745         if (head_blk == log_bbnum)
746                 *return_head_blk = 0;
747         else
748                 *return_head_blk = head_blk;
749         /*
750          * When returning here, we have a good block number.  Bad block
751          * means that during a previous crash, we didn't have a clean break
752          * from cycle number N to cycle number N-1.  In this case, we need
753          * to find the first block with cycle number N-1.
754          */
755         return 0;
756
757  bp_err:
758         xlog_put_bp(bp);
759
760         if (error)
761             xlog_warn("XFS: failed to find log head");
762         return error;
763 }
764
765 /*
766  * Find the sync block number or the tail of the log.
767  *
768  * This will be the block number of the last record to have its
769  * associated buffers synced to disk.  Every log record header has
770  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
771  * to get a sync block number.  The only concern is to figure out which
772  * log record header to believe.
773  *
774  * The following algorithm uses the log record header with the largest
775  * lsn.  The entire log record does not need to be valid.  We only care
776  * that the header is valid.
777  *
778  * We could speed up search by using current head_blk buffer, but it is not
779  * available.
780  */
781 int
782 xlog_find_tail(
783         xlog_t                  *log,
784         xfs_daddr_t             *head_blk,
785         xfs_daddr_t             *tail_blk)
786 {
787         xlog_rec_header_t       *rhead;
788         xlog_op_header_t        *op_head;
789         xfs_caddr_t             offset = NULL;
790         xfs_buf_t               *bp;
791         int                     error, i, found;
792         xfs_daddr_t             umount_data_blk;
793         xfs_daddr_t             after_umount_blk;
794         xfs_lsn_t               tail_lsn;
795         int                     hblks;
796
797         found = 0;
798
799         /*
800          * Find previous log record
801          */
802         if ((error = xlog_find_head(log, head_blk)))
803                 return error;
804
805         bp = xlog_get_bp(log, 1);
806         if (!bp)
807                 return ENOMEM;
808         if (*head_blk == 0) {                           /* special case */
809                 if ((error = xlog_bread(log, 0, 1, bp)))
810                         goto bread_err;
811                 offset = xlog_align(log, 0, 1, bp);
812                 if (xlog_get_cycle(offset) == 0) {
813                         *tail_blk = 0;
814                         /* leave all other log inited values alone */
815                         goto exit;
816                 }
817         }
818
819         /*
820          * Search backwards looking for log record header block
821          */
822         ASSERT(*head_blk < INT_MAX);
823         for (i = (int)(*head_blk) - 1; i >= 0; i--) {
824                 if ((error = xlog_bread(log, i, 1, bp)))
825                         goto bread_err;
826                 offset = xlog_align(log, i, 1, bp);
827                 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
828                         found = 1;
829                         break;
830                 }
831         }
832         /*
833          * If we haven't found the log record header block, start looking
834          * again from the end of the physical log.  XXXmiken: There should be
835          * a check here to make sure we didn't search more than N blocks in
836          * the previous code.
837          */
838         if (!found) {
839                 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
840                         if ((error = xlog_bread(log, i, 1, bp)))
841                                 goto bread_err;
842                         offset = xlog_align(log, i, 1, bp);
843                         if (XLOG_HEADER_MAGIC_NUM ==
844                             be32_to_cpu(*(__be32 *)offset)) {
845                                 found = 2;
846                                 break;
847                         }
848                 }
849         }
850         if (!found) {
851                 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
852                 ASSERT(0);
853                 return XFS_ERROR(EIO);
854         }
855
856         /* find blk_no of tail of log */
857         rhead = (xlog_rec_header_t *)offset;
858         *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
859
860         /*
861          * Reset log values according to the state of the log when we
862          * crashed.  In the case where head_blk == 0, we bump curr_cycle
863          * one because the next write starts a new cycle rather than
864          * continuing the cycle of the last good log record.  At this
865          * point we have guaranteed that all partial log records have been
866          * accounted for.  Therefore, we know that the last good log record
867          * written was complete and ended exactly on the end boundary
868          * of the physical log.
869          */
870         log->l_prev_block = i;
871         log->l_curr_block = (int)*head_blk;
872         log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
873         if (found == 2)
874                 log->l_curr_cycle++;
875         log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
876         log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
877         log->l_grant_reserve_cycle = log->l_curr_cycle;
878         log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
879         log->l_grant_write_cycle = log->l_curr_cycle;
880         log->l_grant_write_bytes = BBTOB(log->l_curr_block);
881
882         /*
883          * Look for unmount record.  If we find it, then we know there
884          * was a clean unmount.  Since 'i' could be the last block in
885          * the physical log, we convert to a log block before comparing
886          * to the head_blk.
887          *
888          * Save the current tail lsn to use to pass to
889          * xlog_clear_stale_blocks() below.  We won't want to clear the
890          * unmount record if there is one, so we pass the lsn of the
891          * unmount record rather than the block after it.
892          */
893         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
894                 int     h_size = be32_to_cpu(rhead->h_size);
895                 int     h_version = be32_to_cpu(rhead->h_version);
896
897                 if ((h_version & XLOG_VERSION_2) &&
898                     (h_size > XLOG_HEADER_CYCLE_SIZE)) {
899                         hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
900                         if (h_size % XLOG_HEADER_CYCLE_SIZE)
901                                 hblks++;
902                 } else {
903                         hblks = 1;
904                 }
905         } else {
906                 hblks = 1;
907         }
908         after_umount_blk = (i + hblks + (int)
909                 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
910         tail_lsn = log->l_tail_lsn;
911         if (*head_blk == after_umount_blk &&
912             be32_to_cpu(rhead->h_num_logops) == 1) {
913                 umount_data_blk = (i + hblks) % log->l_logBBsize;
914                 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
915                         goto bread_err;
916                 }
917                 offset = xlog_align(log, umount_data_blk, 1, bp);
918                 op_head = (xlog_op_header_t *)offset;
919                 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
920                         /*
921                          * Set tail and last sync so that newly written
922                          * log records will point recovery to after the
923                          * current unmount record.
924                          */
925                         log->l_tail_lsn =
926                                 xlog_assign_lsn(log->l_curr_cycle,
927                                                 after_umount_blk);
928                         log->l_last_sync_lsn =
929                                 xlog_assign_lsn(log->l_curr_cycle,
930                                                 after_umount_blk);
931                         *tail_blk = after_umount_blk;
932
933                         /*
934                          * Note that the unmount was clean. If the unmount
935                          * was not clean, we need to know this to rebuild the
936                          * superblock counters from the perag headers if we
937                          * have a filesystem using non-persistent counters.
938                          */
939                         log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
940                 }
941         }
942
943         /*
944          * Make sure that there are no blocks in front of the head
945          * with the same cycle number as the head.  This can happen
946          * because we allow multiple outstanding log writes concurrently,
947          * and the later writes might make it out before earlier ones.
948          *
949          * We use the lsn from before modifying it so that we'll never
950          * overwrite the unmount record after a clean unmount.
951          *
952          * Do this only if we are going to recover the filesystem
953          *
954          * NOTE: This used to say "if (!readonly)"
955          * However on Linux, we can & do recover a read-only filesystem.
956          * We only skip recovery if NORECOVERY is specified on mount,
957          * in which case we would not be here.
958          *
959          * But... if the -device- itself is readonly, just skip this.
960          * We can't recover this device anyway, so it won't matter.
961          */
962         if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
963                 error = xlog_clear_stale_blocks(log, tail_lsn);
964         }
965
966 bread_err:
967 exit:
968         xlog_put_bp(bp);
969
970         if (error)
971                 xlog_warn("XFS: failed to locate log tail");
972         return error;
973 }
974
975 /*
976  * Is the log zeroed at all?
977  *
978  * The last binary search should be changed to perform an X block read
979  * once X becomes small enough.  You can then search linearly through
980  * the X blocks.  This will cut down on the number of reads we need to do.
981  *
982  * If the log is partially zeroed, this routine will pass back the blkno
983  * of the first block with cycle number 0.  It won't have a complete LR
984  * preceding it.
985  *
986  * Return:
987  *      0  => the log is completely written to
988  *      -1 => use *blk_no as the first block of the log
989  *      >0 => error has occurred
990  */
991 STATIC int
992 xlog_find_zeroed(
993         xlog_t          *log,
994         xfs_daddr_t     *blk_no)
995 {
996         xfs_buf_t       *bp;
997         xfs_caddr_t     offset;
998         uint            first_cycle, last_cycle;
999         xfs_daddr_t     new_blk, last_blk, start_blk;
1000         xfs_daddr_t     num_scan_bblks;
1001         int             error, log_bbnum = log->l_logBBsize;
1002
1003         *blk_no = 0;
1004
1005         /* check totally zeroed log */
1006         bp = xlog_get_bp(log, 1);
1007         if (!bp)
1008                 return ENOMEM;
1009         if ((error = xlog_bread(log, 0, 1, bp)))
1010                 goto bp_err;
1011         offset = xlog_align(log, 0, 1, bp);
1012         first_cycle = xlog_get_cycle(offset);
1013         if (first_cycle == 0) {         /* completely zeroed log */
1014                 *blk_no = 0;
1015                 xlog_put_bp(bp);
1016                 return -1;
1017         }
1018
1019         /* check partially zeroed log */
1020         if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1021                 goto bp_err;
1022         offset = xlog_align(log, log_bbnum-1, 1, bp);
1023         last_cycle = xlog_get_cycle(offset);
1024         if (last_cycle != 0) {          /* log completely written to */
1025                 xlog_put_bp(bp);
1026                 return 0;
1027         } else if (first_cycle != 1) {
1028                 /*
1029                  * If the cycle of the last block is zero, the cycle of
1030                  * the first block must be 1. If it's not, maybe we're
1031                  * not looking at a log... Bail out.
1032                  */
1033                 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1034                 return XFS_ERROR(EINVAL);
1035         }
1036
1037         /* we have a partially zeroed log */
1038         last_blk = log_bbnum-1;
1039         if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1040                 goto bp_err;
1041
1042         /*
1043          * Validate the answer.  Because there is no way to guarantee that
1044          * the entire log is made up of log records which are the same size,
1045          * we scan over the defined maximum blocks.  At this point, the maximum
1046          * is not chosen to mean anything special.   XXXmiken
1047          */
1048         num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1049         ASSERT(num_scan_bblks <= INT_MAX);
1050
1051         if (last_blk < num_scan_bblks)
1052                 num_scan_bblks = last_blk;
1053         start_blk = last_blk - num_scan_bblks;
1054
1055         /*
1056          * We search for any instances of cycle number 0 that occur before
1057          * our current estimate of the head.  What we're trying to detect is
1058          *        1 ... | 0 | 1 | 0...
1059          *                       ^ binary search ends here
1060          */
1061         if ((error = xlog_find_verify_cycle(log, start_blk,
1062                                          (int)num_scan_bblks, 0, &new_blk)))
1063                 goto bp_err;
1064         if (new_blk != -1)
1065                 last_blk = new_blk;
1066
1067         /*
1068          * Potentially backup over partial log record write.  We don't need
1069          * to search the end of the log because we know it is zero.
1070          */
1071         if ((error = xlog_find_verify_log_record(log, start_blk,
1072                                 &last_blk, 0)) == -1) {
1073             error = XFS_ERROR(EIO);
1074             goto bp_err;
1075         } else if (error)
1076             goto bp_err;
1077
1078         *blk_no = last_blk;
1079 bp_err:
1080         xlog_put_bp(bp);
1081         if (error)
1082                 return error;
1083         return -1;
1084 }
1085
1086 /*
1087  * These are simple subroutines used by xlog_clear_stale_blocks() below
1088  * to initialize a buffer full of empty log record headers and write
1089  * them into the log.
1090  */
1091 STATIC void
1092 xlog_add_record(
1093         xlog_t                  *log,
1094         xfs_caddr_t             buf,
1095         int                     cycle,
1096         int                     block,
1097         int                     tail_cycle,
1098         int                     tail_block)
1099 {
1100         xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;
1101
1102         memset(buf, 0, BBSIZE);
1103         recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1104         recp->h_cycle = cpu_to_be32(cycle);
1105         recp->h_version = cpu_to_be32(
1106                         xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1107         recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1108         recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1109         recp->h_fmt = cpu_to_be32(XLOG_FMT);
1110         memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1111 }
1112
1113 STATIC int
1114 xlog_write_log_records(
1115         xlog_t          *log,
1116         int             cycle,
1117         int             start_block,
1118         int             blocks,
1119         int             tail_cycle,
1120         int             tail_block)
1121 {
1122         xfs_caddr_t     offset;
1123         xfs_buf_t       *bp;
1124         int             balign, ealign;
1125         int             sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1126         int             end_block = start_block + blocks;
1127         int             bufblks;
1128         int             error = 0;
1129         int             i, j = 0;
1130
1131         bufblks = 1 << ffs(blocks);
1132         while (!(bp = xlog_get_bp(log, bufblks))) {
1133                 bufblks >>= 1;
1134                 if (bufblks <= log->l_sectbb_log)
1135                         return ENOMEM;
1136         }
1137
1138         /* We may need to do a read at the start to fill in part of
1139          * the buffer in the starting sector not covered by the first
1140          * write below.
1141          */
1142         balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1143         if (balign != start_block) {
1144                 if ((error = xlog_bread(log, start_block, 1, bp))) {
1145                         xlog_put_bp(bp);
1146                         return error;
1147                 }
1148                 j = start_block - balign;
1149         }
1150
1151         for (i = start_block; i < end_block; i += bufblks) {
1152                 int             bcount, endcount;
1153
1154                 bcount = min(bufblks, end_block - start_block);
1155                 endcount = bcount - j;
1156
1157                 /* We may need to do a read at the end to fill in part of
1158                  * the buffer in the final sector not covered by the write.
1159                  * If this is the same sector as the above read, skip it.
1160                  */
1161                 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1162                 if (j == 0 && (start_block + endcount > ealign)) {
1163                         offset = XFS_BUF_PTR(bp);
1164                         balign = BBTOB(ealign - start_block);
1165                         XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
1166                         if ((error = xlog_bread(log, ealign, sectbb, bp)))
1167                                 break;
1168                         XFS_BUF_SET_PTR(bp, offset, bufblks);
1169                 }
1170
1171                 offset = xlog_align(log, start_block, endcount, bp);
1172                 for (; j < endcount; j++) {
1173                         xlog_add_record(log, offset, cycle, i+j,
1174                                         tail_cycle, tail_block);
1175                         offset += BBSIZE;
1176                 }
1177                 error = xlog_bwrite(log, start_block, endcount, bp);
1178                 if (error)
1179                         break;
1180                 start_block += endcount;
1181                 j = 0;
1182         }
1183         xlog_put_bp(bp);
1184         return error;
1185 }
1186
1187 /*
1188  * This routine is called to blow away any incomplete log writes out
1189  * in front of the log head.  We do this so that we won't become confused
1190  * if we come up, write only a little bit more, and then crash again.
1191  * If we leave the partial log records out there, this situation could
1192  * cause us to think those partial writes are valid blocks since they
1193  * have the current cycle number.  We get rid of them by overwriting them
1194  * with empty log records with the old cycle number rather than the
1195  * current one.
1196  *
1197  * The tail lsn is passed in rather than taken from
1198  * the log so that we will not write over the unmount record after a
1199  * clean unmount in a 512 block log.  Doing so would leave the log without
1200  * any valid log records in it until a new one was written.  If we crashed
1201  * during that time we would not be able to recover.
1202  */
1203 STATIC int
1204 xlog_clear_stale_blocks(
1205         xlog_t          *log,
1206         xfs_lsn_t       tail_lsn)
1207 {
1208         int             tail_cycle, head_cycle;
1209         int             tail_block, head_block;
1210         int             tail_distance, max_distance;
1211         int             distance;
1212         int             error;
1213
1214         tail_cycle = CYCLE_LSN(tail_lsn);
1215         tail_block = BLOCK_LSN(tail_lsn);
1216         head_cycle = log->l_curr_cycle;
1217         head_block = log->l_curr_block;
1218
1219         /*
1220          * Figure out the distance between the new head of the log
1221          * and the tail.  We want to write over any blocks beyond the
1222          * head that we may have written just before the crash, but
1223          * we don't want to overwrite the tail of the log.
1224          */
1225         if (head_cycle == tail_cycle) {
1226                 /*
1227                  * The tail is behind the head in the physical log,
1228                  * so the distance from the head to the tail is the
1229                  * distance from the head to the end of the log plus
1230                  * the distance from the beginning of the log to the
1231                  * tail.
1232                  */
1233                 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1234                         XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1235                                          XFS_ERRLEVEL_LOW, log->l_mp);
1236                         return XFS_ERROR(EFSCORRUPTED);
1237                 }
1238                 tail_distance = tail_block + (log->l_logBBsize - head_block);
1239         } else {
1240                 /*
1241                  * The head is behind the tail in the physical log,
1242                  * so the distance from the head to the tail is just
1243                  * the tail block minus the head block.
1244                  */
1245                 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1246                         XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1247                                          XFS_ERRLEVEL_LOW, log->l_mp);
1248                         return XFS_ERROR(EFSCORRUPTED);
1249                 }
1250                 tail_distance = tail_block - head_block;
1251         }
1252
1253         /*
1254          * If the head is right up against the tail, we can't clear
1255          * anything.
1256          */
1257         if (tail_distance <= 0) {
1258                 ASSERT(tail_distance == 0);
1259                 return 0;
1260         }
1261
1262         max_distance = XLOG_TOTAL_REC_SHIFT(log);
1263         /*
1264          * Take the smaller of the maximum amount of outstanding I/O
1265          * we could have and the distance to the tail to clear out.
1266          * We take the smaller so that we don't overwrite the tail and
1267          * we don't waste all day writing from the head to the tail
1268          * for no reason.
1269          */
1270         max_distance = MIN(max_distance, tail_distance);
1271
1272         if ((head_block + max_distance) <= log->l_logBBsize) {
1273                 /*
1274                  * We can stomp all the blocks we need to without
1275                  * wrapping around the end of the log.  Just do it
1276                  * in a single write.  Use the cycle number of the
1277                  * current cycle minus one so that the log will look like:
1278                  *     n ... | n - 1 ...
1279                  */
1280                 error = xlog_write_log_records(log, (head_cycle - 1),
1281                                 head_block, max_distance, tail_cycle,
1282                                 tail_block);
1283                 if (error)
1284                         return error;
1285         } else {
1286                 /*
1287                  * We need to wrap around the end of the physical log in
1288                  * order to clear all the blocks.  Do it in two separate
1289                  * I/Os.  The first write should be from the head to the
1290                  * end of the physical log, and it should use the current
1291                  * cycle number minus one just like above.
1292                  */
1293                 distance = log->l_logBBsize - head_block;
1294                 error = xlog_write_log_records(log, (head_cycle - 1),
1295                                 head_block, distance, tail_cycle,
1296                                 tail_block);
1297
1298                 if (error)
1299                         return error;
1300
1301                 /*
1302                  * Now write the blocks at the start of the physical log.
1303                  * This writes the remainder of the blocks we want to clear.
1304                  * It uses the current cycle number since we're now on the
1305                  * same cycle as the head so that we get:
1306                  *    n ... n ... | n - 1 ...
1307                  *    ^^^^^ blocks we're writing
1308                  */
1309                 distance = max_distance - (log->l_logBBsize - head_block);
1310                 error = xlog_write_log_records(log, head_cycle, 0, distance,
1311                                 tail_cycle, tail_block);
1312                 if (error)
1313                         return error;
1314         }
1315
1316         return 0;
1317 }
1318
1319 /******************************************************************************
1320  *
1321  *              Log recover routines
1322  *
1323  ******************************************************************************
1324  */
1325
1326 STATIC xlog_recover_t *
1327 xlog_recover_find_tid(
1328         xlog_recover_t          *q,
1329         xlog_tid_t              tid)
1330 {
1331         xlog_recover_t          *p = q;
1332
1333         while (p != NULL) {
1334                 if (p->r_log_tid == tid)
1335                     break;
1336                 p = p->r_next;
1337         }
1338         return p;
1339 }
1340
1341 STATIC void
1342 xlog_recover_put_hashq(
1343         xlog_recover_t          **q,
1344         xlog_recover_t          *trans)
1345 {
1346         trans->r_next = *q;
1347         *q = trans;
1348 }
1349
1350 STATIC void
1351 xlog_recover_add_item(
1352         xlog_recover_item_t     **itemq)
1353 {
1354         xlog_recover_item_t     *item;
1355
1356         item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1357         xlog_recover_insert_item_backq(itemq, item);
1358 }
1359
1360 STATIC int
1361 xlog_recover_add_to_cont_trans(
1362         xlog_recover_t          *trans,
1363         xfs_caddr_t             dp,
1364         int                     len)
1365 {
1366         xlog_recover_item_t     *item;
1367         xfs_caddr_t             ptr, old_ptr;
1368         int                     old_len;
1369
1370         item = trans->r_itemq;
1371         if (item == NULL) {
1372                 /* finish copying rest of trans header */
1373                 xlog_recover_add_item(&trans->r_itemq);
1374                 ptr = (xfs_caddr_t) &trans->r_theader +
1375                                 sizeof(xfs_trans_header_t) - len;
1376                 memcpy(ptr, dp, len); /* d, s, l */
1377                 return 0;
1378         }
1379         item = item->ri_prev;
1380
1381         old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1382         old_len = item->ri_buf[item->ri_cnt-1].i_len;
1383
1384         ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1385         memcpy(&ptr[old_len], dp, len); /* d, s, l */
1386         item->ri_buf[item->ri_cnt-1].i_len += len;
1387         item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1388         return 0;
1389 }
1390
1391 /*
1392  * The next region to add is the start of a new region.  It could be
1393  * a whole region or it could be the first part of a new region.  Because
1394  * of this, the assumption here is that the type and size fields of all
1395  * format structures fit into the first 32 bits of the structure.
1396  *
1397  * This works because all regions must be 32 bit aligned.  Therefore, we
1398  * either have both fields or we have neither field.  In the case we have
1399  * neither field, the data part of the region is zero length.  We only have
1400  * a log_op_header and can throw away the header since a new one will appear
1401  * later.  If we have at least 4 bytes, then we can determine how many regions
1402  * will appear in the current log item.
1403  */
1404 STATIC int
1405 xlog_recover_add_to_trans(
1406         xlog_recover_t          *trans,
1407         xfs_caddr_t             dp,
1408         int                     len)
1409 {
1410         xfs_inode_log_format_t  *in_f;                  /* any will do */
1411         xlog_recover_item_t     *item;
1412         xfs_caddr_t             ptr;
1413
1414         if (!len)
1415                 return 0;
1416         item = trans->r_itemq;
1417         if (item == NULL) {
1418                 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
1419                 if (len == sizeof(xfs_trans_header_t))
1420                         xlog_recover_add_item(&trans->r_itemq);
1421                 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1422                 return 0;
1423         }
1424
1425         ptr = kmem_alloc(len, KM_SLEEP);
1426         memcpy(ptr, dp, len);
1427         in_f = (xfs_inode_log_format_t *)ptr;
1428
1429         if (item->ri_prev->ri_total != 0 &&
1430              item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1431                 xlog_recover_add_item(&trans->r_itemq);
1432         }
1433         item = trans->r_itemq;
1434         item = item->ri_prev;
1435
1436         if (item->ri_total == 0) {              /* first region to be added */
1437                 item->ri_total  = in_f->ilf_size;
1438                 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1439                 item->ri_buf = kmem_zalloc((item->ri_total *
1440                                             sizeof(xfs_log_iovec_t)), KM_SLEEP);
1441         }
1442         ASSERT(item->ri_total > item->ri_cnt);
1443         /* Description region is ri_buf[0] */
1444         item->ri_buf[item->ri_cnt].i_addr = ptr;
1445         item->ri_buf[item->ri_cnt].i_len  = len;
1446         item->ri_cnt++;
1447         return 0;
1448 }
1449
1450 STATIC void
1451 xlog_recover_new_tid(
1452         xlog_recover_t          **q,
1453         xlog_tid_t              tid,
1454         xfs_lsn_t               lsn)
1455 {
1456         xlog_recover_t          *trans;
1457
1458         trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1459         trans->r_log_tid   = tid;
1460         trans->r_lsn       = lsn;
1461         xlog_recover_put_hashq(q, trans);
1462 }
1463
1464 STATIC int
1465 xlog_recover_unlink_tid(
1466         xlog_recover_t          **q,
1467         xlog_recover_t          *trans)
1468 {
1469         xlog_recover_t          *tp;
1470         int                     found = 0;
1471
1472         ASSERT(trans != NULL);
1473         if (trans == *q) {
1474                 *q = (*q)->r_next;
1475         } else {
1476                 tp = *q;
1477                 while (tp) {
1478                         if (tp->r_next == trans) {
1479                                 found = 1;
1480                                 break;
1481                         }
1482                         tp = tp->r_next;
1483                 }
1484                 if (!found) {
1485                         xlog_warn(
1486                              "XFS: xlog_recover_unlink_tid: trans not found");
1487                         ASSERT(0);
1488                         return XFS_ERROR(EIO);
1489                 }
1490                 tp->r_next = tp->r_next->r_next;
1491         }
1492         return 0;
1493 }
1494
1495 STATIC void
1496 xlog_recover_insert_item_backq(
1497         xlog_recover_item_t     **q,
1498         xlog_recover_item_t     *item)
1499 {
1500         if (*q == NULL) {
1501                 item->ri_prev = item->ri_next = item;
1502                 *q = item;
1503         } else {
1504                 item->ri_next           = *q;
1505                 item->ri_prev           = (*q)->ri_prev;
1506                 (*q)->ri_prev           = item;
1507                 item->ri_prev->ri_next  = item;
1508         }
1509 }
1510
1511 STATIC void
1512 xlog_recover_insert_item_frontq(
1513         xlog_recover_item_t     **q,
1514         xlog_recover_item_t     *item)
1515 {
1516         xlog_recover_insert_item_backq(q, item);
1517         *q = item;
1518 }
1519
1520 STATIC int
1521 xlog_recover_reorder_trans(
1522         xlog_recover_t          *trans)
1523 {
1524         xlog_recover_item_t     *first_item, *itemq, *itemq_next;
1525         xfs_buf_log_format_t    *buf_f;
1526         ushort                  flags = 0;
1527
1528         first_item = itemq = trans->r_itemq;
1529         trans->r_itemq = NULL;
1530         do {
1531                 itemq_next = itemq->ri_next;
1532                 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1533
1534                 switch (ITEM_TYPE(itemq)) {
1535                 case XFS_LI_BUF:
1536                         flags = buf_f->blf_flags;
1537                         if (!(flags & XFS_BLI_CANCEL)) {
1538                                 xlog_recover_insert_item_frontq(&trans->r_itemq,
1539                                                                 itemq);
1540                                 break;
1541                         }
1542                 case XFS_LI_INODE:
1543                 case XFS_LI_DQUOT:
1544                 case XFS_LI_QUOTAOFF:
1545                 case XFS_LI_EFD:
1546                 case XFS_LI_EFI:
1547                         xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1548                         break;
1549                 default:
1550                         xlog_warn(
1551         "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1552                         ASSERT(0);
1553                         return XFS_ERROR(EIO);
1554                 }
1555                 itemq = itemq_next;
1556         } while (first_item != itemq);
1557         return 0;
1558 }
1559
1560 /*
1561  * Build up the table of buf cancel records so that we don't replay
1562  * cancelled data in the second pass.  For buffer records that are
1563  * not cancel records, there is nothing to do here so we just return.
1564  *
1565  * If we get a cancel record which is already in the table, this indicates
1566  * that the buffer was cancelled multiple times.  In order to ensure
1567  * that during pass 2 we keep the record in the table until we reach its
1568  * last occurrence in the log, we keep a reference count in the cancel
1569  * record in the table to tell us how many times we expect to see this
1570  * record during the second pass.
1571  */
1572 STATIC void
1573 xlog_recover_do_buffer_pass1(
1574         xlog_t                  *log,
1575         xfs_buf_log_format_t    *buf_f)
1576 {
1577         xfs_buf_cancel_t        *bcp;
1578         xfs_buf_cancel_t        *nextp;
1579         xfs_buf_cancel_t        *prevp;
1580         xfs_buf_cancel_t        **bucket;
1581         xfs_daddr_t             blkno = 0;
1582         uint                    len = 0;
1583         ushort                  flags = 0;
1584
1585         switch (buf_f->blf_type) {
1586         case XFS_LI_BUF:
1587                 blkno = buf_f->blf_blkno;
1588                 len = buf_f->blf_len;
1589                 flags = buf_f->blf_flags;
1590                 break;
1591         }
1592
1593         /*
1594          * If this isn't a cancel buffer item, then just return.
1595          */
1596         if (!(flags & XFS_BLI_CANCEL))
1597                 return;
1598
1599         /*
1600          * Insert an xfs_buf_cancel record into the hash table of
1601          * them.  If there is already an identical record, bump
1602          * its reference count.
1603          */
1604         bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1605                                           XLOG_BC_TABLE_SIZE];
1606         /*
1607          * If the hash bucket is empty then just insert a new record into
1608          * the bucket.
1609          */
1610         if (*bucket == NULL) {
1611                 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1612                                                      KM_SLEEP);
1613                 bcp->bc_blkno = blkno;
1614                 bcp->bc_len = len;
1615                 bcp->bc_refcount = 1;
1616                 bcp->bc_next = NULL;
1617                 *bucket = bcp;
1618                 return;
1619         }
1620
1621         /*
1622          * The hash bucket is not empty, so search for duplicates of our
1623          * record.  If we find one them just bump its refcount.  If not
1624          * then add us at the end of the list.
1625          */
1626         prevp = NULL;
1627         nextp = *bucket;
1628         while (nextp != NULL) {
1629                 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1630                         nextp->bc_refcount++;
1631                         return;
1632                 }
1633                 prevp = nextp;
1634                 nextp = nextp->bc_next;
1635         }
1636         ASSERT(prevp != NULL);
1637         bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1638                                              KM_SLEEP);
1639         bcp->bc_blkno = blkno;
1640         bcp->bc_len = len;
1641         bcp->bc_refcount = 1;
1642         bcp->bc_next = NULL;
1643         prevp->bc_next = bcp;
1644 }
1645
1646 /*
1647  * Check to see whether the buffer being recovered has a corresponding
1648  * entry in the buffer cancel record table.  If it does then return 1
1649  * so that it will be cancelled, otherwise return 0.  If the buffer is
1650  * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1651  * the refcount on the entry in the table and remove it from the table
1652  * if this is the last reference.
1653  *
1654  * We remove the cancel record from the table when we encounter its
1655  * last occurrence in the log so that if the same buffer is re-used
1656  * again after its last cancellation we actually replay the changes
1657  * made at that point.
1658  */
1659 STATIC int
1660 xlog_check_buffer_cancelled(
1661         xlog_t                  *log,
1662         xfs_daddr_t             blkno,
1663         uint                    len,
1664         ushort                  flags)
1665 {
1666         xfs_buf_cancel_t        *bcp;
1667         xfs_buf_cancel_t        *prevp;
1668         xfs_buf_cancel_t        **bucket;
1669
1670         if (log->l_buf_cancel_table == NULL) {
1671                 /*
1672                  * There is nothing in the table built in pass one,
1673                  * so this buffer must not be cancelled.
1674                  */
1675                 ASSERT(!(flags & XFS_BLI_CANCEL));
1676                 return 0;
1677         }
1678
1679         bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1680                                           XLOG_BC_TABLE_SIZE];
1681         bcp = *bucket;
1682         if (bcp == NULL) {
1683                 /*
1684                  * There is no corresponding entry in the table built
1685                  * in pass one, so this buffer has not been cancelled.
1686                  */
1687                 ASSERT(!(flags & XFS_BLI_CANCEL));
1688                 return 0;
1689         }
1690
1691         /*
1692          * Search for an entry in the buffer cancel table that
1693          * matches our buffer.
1694          */
1695         prevp = NULL;
1696         while (bcp != NULL) {
1697                 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1698                         /*
1699                          * We've go a match, so return 1 so that the
1700                          * recovery of this buffer is cancelled.
1701                          * If this buffer is actually a buffer cancel
1702                          * log item, then decrement the refcount on the
1703                          * one in the table and remove it if this is the
1704                          * last reference.
1705                          */
1706                         if (flags & XFS_BLI_CANCEL) {
1707                                 bcp->bc_refcount--;
1708                                 if (bcp->bc_refcount == 0) {
1709                                         if (prevp == NULL) {
1710                                                 *bucket = bcp->bc_next;
1711                                         } else {
1712                                                 prevp->bc_next = bcp->bc_next;
1713                                         }
1714                                         kmem_free(bcp,
1715                                                   sizeof(xfs_buf_cancel_t));
1716                                 }
1717                         }
1718                         return 1;
1719                 }
1720                 prevp = bcp;
1721                 bcp = bcp->bc_next;
1722         }
1723         /*
1724          * We didn't find a corresponding entry in the table, so
1725          * return 0 so that the buffer is NOT cancelled.
1726          */
1727         ASSERT(!(flags & XFS_BLI_CANCEL));
1728         return 0;
1729 }
1730
1731 STATIC int
1732 xlog_recover_do_buffer_pass2(
1733         xlog_t                  *log,
1734         xfs_buf_log_format_t    *buf_f)
1735 {
1736         xfs_daddr_t             blkno = 0;
1737         ushort                  flags = 0;
1738         uint                    len = 0;
1739
1740         switch (buf_f->blf_type) {
1741         case XFS_LI_BUF:
1742                 blkno = buf_f->blf_blkno;
1743                 flags = buf_f->blf_flags;
1744                 len = buf_f->blf_len;
1745                 break;
1746         }
1747
1748         return xlog_check_buffer_cancelled(log, blkno, len, flags);
1749 }
1750
1751 /*
1752  * Perform recovery for a buffer full of inodes.  In these buffers,
1753  * the only data which should be recovered is that which corresponds
1754  * to the di_next_unlinked pointers in the on disk inode structures.
1755  * The rest of the data for the inodes is always logged through the
1756  * inodes themselves rather than the inode buffer and is recovered
1757  * in xlog_recover_do_inode_trans().
1758  *
1759  * The only time when buffers full of inodes are fully recovered is
1760  * when the buffer is full of newly allocated inodes.  In this case
1761  * the buffer will not be marked as an inode buffer and so will be
1762  * sent to xlog_recover_do_reg_buffer() below during recovery.
1763  */
1764 STATIC int
1765 xlog_recover_do_inode_buffer(
1766         xfs_mount_t             *mp,
1767         xlog_recover_item_t     *item,
1768         xfs_buf_t               *bp,
1769         xfs_buf_log_format_t    *buf_f)
1770 {
1771         int                     i;
1772         int                     item_index;
1773         int                     bit;
1774         int                     nbits;
1775         int                     reg_buf_offset;
1776         int                     reg_buf_bytes;
1777         int                     next_unlinked_offset;
1778         int                     inodes_per_buf;
1779         xfs_agino_t             *logged_nextp;
1780         xfs_agino_t             *buffer_nextp;
1781         unsigned int            *data_map = NULL;
1782         unsigned int            map_size = 0;
1783
1784         switch (buf_f->blf_type) {
1785         case XFS_LI_BUF:
1786                 data_map = buf_f->blf_data_map;
1787                 map_size = buf_f->blf_map_size;
1788                 break;
1789         }
1790         /*
1791          * Set the variables corresponding to the current region to
1792          * 0 so that we'll initialize them on the first pass through
1793          * the loop.
1794          */
1795         reg_buf_offset = 0;
1796         reg_buf_bytes = 0;
1797         bit = 0;
1798         nbits = 0;
1799         item_index = 0;
1800         inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1801         for (i = 0; i < inodes_per_buf; i++) {
1802                 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1803                         offsetof(xfs_dinode_t, di_next_unlinked);
1804
1805                 while (next_unlinked_offset >=
1806                        (reg_buf_offset + reg_buf_bytes)) {
1807                         /*
1808                          * The next di_next_unlinked field is beyond
1809                          * the current logged region.  Find the next
1810                          * logged region that contains or is beyond
1811                          * the current di_next_unlinked field.
1812                          */
1813                         bit += nbits;
1814                         bit = xfs_next_bit(data_map, map_size, bit);
1815
1816                         /*
1817                          * If there are no more logged regions in the
1818                          * buffer, then we're done.
1819                          */
1820                         if (bit == -1) {
1821                                 return 0;
1822                         }
1823
1824                         nbits = xfs_contig_bits(data_map, map_size,
1825                                                          bit);
1826                         ASSERT(nbits > 0);
1827                         reg_buf_offset = bit << XFS_BLI_SHIFT;
1828                         reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1829                         item_index++;
1830                 }
1831
1832                 /*
1833                  * If the current logged region starts after the current
1834                  * di_next_unlinked field, then move on to the next
1835                  * di_next_unlinked field.
1836                  */
1837                 if (next_unlinked_offset < reg_buf_offset) {
1838                         continue;
1839                 }
1840
1841                 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1842                 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1843                 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1844
1845                 /*
1846                  * The current logged region contains a copy of the
1847                  * current di_next_unlinked field.  Extract its value
1848                  * and copy it to the buffer copy.
1849                  */
1850                 logged_nextp = (xfs_agino_t *)
1851                                ((char *)(item->ri_buf[item_index].i_addr) +
1852                                 (next_unlinked_offset - reg_buf_offset));
1853                 if (unlikely(*logged_nextp == 0)) {
1854                         xfs_fs_cmn_err(CE_ALERT, mp,
1855                                 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
1856                                 item, bp);
1857                         XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1858                                          XFS_ERRLEVEL_LOW, mp);
1859                         return XFS_ERROR(EFSCORRUPTED);
1860                 }
1861
1862                 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1863                                               next_unlinked_offset);
1864                 *buffer_nextp = *logged_nextp;
1865         }
1866
1867         return 0;
1868 }
1869
1870 /*
1871  * Perform a 'normal' buffer recovery.  Each logged region of the
1872  * buffer should be copied over the corresponding region in the
1873  * given buffer.  The bitmap in the buf log format structure indicates
1874  * where to place the logged data.
1875  */
1876 /*ARGSUSED*/
1877 STATIC void
1878 xlog_recover_do_reg_buffer(
1879         xlog_recover_item_t     *item,
1880         xfs_buf_t               *bp,
1881         xfs_buf_log_format_t    *buf_f)
1882 {
1883         int                     i;
1884         int                     bit;
1885         int                     nbits;
1886         unsigned int            *data_map = NULL;
1887         unsigned int            map_size = 0;
1888         int                     error;
1889
1890         switch (buf_f->blf_type) {
1891         case XFS_LI_BUF:
1892                 data_map = buf_f->blf_data_map;
1893                 map_size = buf_f->blf_map_size;
1894                 break;
1895         }
1896         bit = 0;
1897         i = 1;  /* 0 is the buf format structure */
1898         while (1) {
1899                 bit = xfs_next_bit(data_map, map_size, bit);
1900                 if (bit == -1)
1901                         break;
1902                 nbits = xfs_contig_bits(data_map, map_size, bit);
1903                 ASSERT(nbits > 0);
1904                 ASSERT(item->ri_buf[i].i_addr != NULL);
1905                 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1906                 ASSERT(XFS_BUF_COUNT(bp) >=
1907                        ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1908
1909                 /*
1910                  * Do a sanity check if this is a dquot buffer. Just checking
1911                  * the first dquot in the buffer should do. XXXThis is
1912                  * probably a good thing to do for other buf types also.
1913                  */
1914                 error = 0;
1915                 if (buf_f->blf_flags &
1916                    (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1917                         error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1918                                                item->ri_buf[i].i_addr,
1919                                                -1, 0, XFS_QMOPT_DOWARN,
1920                                                "dquot_buf_recover");
1921                 }
1922                 if (!error)
1923                         memcpy(xfs_buf_offset(bp,
1924                                 (uint)bit << XFS_BLI_SHIFT),    /* dest */
1925                                 item->ri_buf[i].i_addr,         /* source */
1926                                 nbits<<XFS_BLI_SHIFT);          /* length */
1927                 i++;
1928                 bit += nbits;
1929         }
1930
1931         /* Shouldn't be any more regions */
1932         ASSERT(i == item->ri_total);
1933 }
1934
1935 /*
1936  * Do some primitive error checking on ondisk dquot data structures.
1937  */
1938 int
1939 xfs_qm_dqcheck(
1940         xfs_disk_dquot_t *ddq,
1941         xfs_dqid_t       id,
1942         uint             type,    /* used only when IO_dorepair is true */
1943         uint             flags,
1944         char             *str)
1945 {
1946         xfs_dqblk_t      *d = (xfs_dqblk_t *)ddq;
1947         int             errs = 0;
1948
1949         /*
1950          * We can encounter an uninitialized dquot buffer for 2 reasons:
1951          * 1. If we crash while deleting the quotainode(s), and those blks got
1952          *    used for user data. This is because we take the path of regular
1953          *    file deletion; however, the size field of quotainodes is never
1954          *    updated, so all the tricks that we play in itruncate_finish
1955          *    don't quite matter.
1956          *
1957          * 2. We don't play the quota buffers when there's a quotaoff logitem.
1958          *    But the allocation will be replayed so we'll end up with an
1959          *    uninitialized quota block.
1960          *
1961          * This is all fine; things are still consistent, and we haven't lost
1962          * any quota information. Just don't complain about bad dquot blks.
1963          */
1964         if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1965                 if (flags & XFS_QMOPT_DOWARN)
1966                         cmn_err(CE_ALERT,
1967                         "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1968                         str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1969                 errs++;
1970         }
1971         if (ddq->d_version != XFS_DQUOT_VERSION) {
1972                 if (flags & XFS_QMOPT_DOWARN)
1973                         cmn_err(CE_ALERT,
1974                         "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1975                         str, id, ddq->d_version, XFS_DQUOT_VERSION);
1976                 errs++;
1977         }
1978
1979         if (ddq->d_flags != XFS_DQ_USER &&
1980             ddq->d_flags != XFS_DQ_PROJ &&
1981             ddq->d_flags != XFS_DQ_GROUP) {
1982                 if (flags & XFS_QMOPT_DOWARN)
1983                         cmn_err(CE_ALERT,
1984                         "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1985                         str, id, ddq->d_flags);
1986                 errs++;
1987         }
1988
1989         if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1990                 if (flags & XFS_QMOPT_DOWARN)
1991                         cmn_err(CE_ALERT,
1992                         "%s : ondisk-dquot 0x%p, ID mismatch: "
1993                         "0x%x expected, found id 0x%x",
1994                         str, ddq, id, be32_to_cpu(ddq->d_id));
1995                 errs++;
1996         }
1997
1998         if (!errs && ddq->d_id) {
1999                 if (ddq->d_blk_softlimit &&
2000                     be64_to_cpu(ddq->d_bcount) >=
2001                                 be64_to_cpu(ddq->d_blk_softlimit)) {
2002                         if (!ddq->d_btimer) {
2003                                 if (flags & XFS_QMOPT_DOWARN)
2004                                         cmn_err(CE_ALERT,
2005                                         "%s : Dquot ID 0x%x (0x%p) "
2006                                         "BLK TIMER NOT STARTED",
2007                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2008                                 errs++;
2009                         }
2010                 }
2011                 if (ddq->d_ino_softlimit &&
2012                     be64_to_cpu(ddq->d_icount) >=
2013                                 be64_to_cpu(ddq->d_ino_softlimit)) {
2014                         if (!ddq->d_itimer) {
2015                                 if (flags & XFS_QMOPT_DOWARN)
2016                                         cmn_err(CE_ALERT,
2017                                         "%s : Dquot ID 0x%x (0x%p) "
2018                                         "INODE TIMER NOT STARTED",
2019                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2020                                 errs++;
2021                         }
2022                 }
2023                 if (ddq->d_rtb_softlimit &&
2024                     be64_to_cpu(ddq->d_rtbcount) >=
2025                                 be64_to_cpu(ddq->d_rtb_softlimit)) {
2026                         if (!ddq->d_rtbtimer) {
2027                                 if (flags & XFS_QMOPT_DOWARN)
2028                                         cmn_err(CE_ALERT,
2029                                         "%s : Dquot ID 0x%x (0x%p) "
2030                                         "RTBLK TIMER NOT STARTED",
2031                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2032                                 errs++;
2033                         }
2034                 }
2035         }
2036
2037         if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2038                 return errs;
2039
2040         if (flags & XFS_QMOPT_DOWARN)
2041                 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2042
2043         /*
2044          * Typically, a repair is only requested by quotacheck.
2045          */
2046         ASSERT(id != -1);
2047         ASSERT(flags & XFS_QMOPT_DQREPAIR);
2048         memset(d, 0, sizeof(xfs_dqblk_t));
2049
2050         d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2051         d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2052         d->dd_diskdq.d_flags = type;
2053         d->dd_diskdq.d_id = cpu_to_be32(id);
2054
2055         return errs;
2056 }
2057
2058 /*
2059  * Perform a dquot buffer recovery.
2060  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2061  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2062  * Else, treat it as a regular buffer and do recovery.
2063  */
2064 STATIC void
2065 xlog_recover_do_dquot_buffer(
2066         xfs_mount_t             *mp,
2067         xlog_t                  *log,
2068         xlog_recover_item_t     *item,
2069         xfs_buf_t               *bp,
2070         xfs_buf_log_format_t    *buf_f)
2071 {
2072         uint                    type;
2073
2074         /*
2075          * Filesystems are required to send in quota flags at mount time.
2076          */
2077         if (mp->m_qflags == 0) {
2078                 return;
2079         }
2080
2081         type = 0;
2082         if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2083                 type |= XFS_DQ_USER;
2084         if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2085                 type |= XFS_DQ_PROJ;
2086         if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2087                 type |= XFS_DQ_GROUP;
2088         /*
2089          * This type of quotas was turned off, so ignore this buffer
2090          */
2091         if (log->l_quotaoffs_flag & type)
2092                 return;
2093
2094         xlog_recover_do_reg_buffer(item, bp, buf_f);
2095 }
2096
2097 /*
2098  * This routine replays a modification made to a buffer at runtime.
2099  * There are actually two types of buffer, regular and inode, which
2100  * are handled differently.  Inode buffers are handled differently
2101  * in that we only recover a specific set of data from them, namely
2102  * the inode di_next_unlinked fields.  This is because all other inode
2103  * data is actually logged via inode records and any data we replay
2104  * here which overlaps that may be stale.
2105  *
2106  * When meta-data buffers are freed at run time we log a buffer item
2107  * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2108  * of the buffer in the log should not be replayed at recovery time.
2109  * This is so that if the blocks covered by the buffer are reused for
2110  * file data before we crash we don't end up replaying old, freed
2111  * meta-data into a user's file.
2112  *
2113  * To handle the cancellation of buffer log items, we make two passes
2114  * over the log during recovery.  During the first we build a table of
2115  * those buffers which have been cancelled, and during the second we
2116  * only replay those buffers which do not have corresponding cancel
2117  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2118  * for more details on the implementation of the table of cancel records.
2119  */
2120 STATIC int
2121 xlog_recover_do_buffer_trans(
2122         xlog_t                  *log,
2123         xlog_recover_item_t     *item,
2124         int                     pass)
2125 {
2126         xfs_buf_log_format_t    *buf_f;
2127         xfs_mount_t             *mp;
2128         xfs_buf_t               *bp;
2129         int                     error;
2130         int                     cancel;
2131         xfs_daddr_t             blkno;
2132         int                     len;
2133         ushort                  flags;
2134
2135         buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2136
2137         if (pass == XLOG_RECOVER_PASS1) {
2138                 /*
2139                  * In this pass we're only looking for buf items
2140                  * with the XFS_BLI_CANCEL bit set.
2141                  */
2142                 xlog_recover_do_buffer_pass1(log, buf_f);
2143                 return 0;
2144         } else {
2145                 /*
2146                  * In this pass we want to recover all the buffers
2147                  * which have not been cancelled and are not
2148                  * cancellation buffers themselves.  The routine
2149                  * we call here will tell us whether or not to
2150                  * continue with the replay of this buffer.
2151                  */
2152                 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2153                 if (cancel) {
2154                         return 0;
2155                 }
2156         }
2157         switch (buf_f->blf_type) {
2158         case XFS_LI_BUF:
2159                 blkno = buf_f->blf_blkno;
2160                 len = buf_f->blf_len;
2161                 flags = buf_f->blf_flags;
2162                 break;
2163         default:
2164                 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2165                         "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2166                         buf_f->blf_type, log->l_mp->m_logname ?
2167                         log->l_mp->m_logname : "internal");
2168                 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2169                                  XFS_ERRLEVEL_LOW, log->l_mp);
2170                 return XFS_ERROR(EFSCORRUPTED);
2171         }
2172
2173         mp = log->l_mp;
2174         if (flags & XFS_BLI_INODE_BUF) {
2175                 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2176                                                                 XFS_BUF_LOCK);
2177         } else {
2178                 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2179         }
2180         if (XFS_BUF_ISERROR(bp)) {
2181                 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2182                                   bp, blkno);
2183                 error = XFS_BUF_GETERROR(bp);
2184                 xfs_buf_relse(bp);
2185                 return error;
2186         }
2187
2188         error = 0;
2189         if (flags & XFS_BLI_INODE_BUF) {
2190                 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2191         } else if (flags &
2192                   (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2193                 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2194         } else {
2195                 xlog_recover_do_reg_buffer(item, bp, buf_f);
2196         }
2197         if (error)
2198                 return XFS_ERROR(error);
2199
2200         /*
2201          * Perform delayed write on the buffer.  Asynchronous writes will be
2202          * slower when taking into account all the buffers to be flushed.
2203          *
2204          * Also make sure that only inode buffers with good sizes stay in
2205          * the buffer cache.  The kernel moves inodes in buffers of 1 block
2206          * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2207          * buffers in the log can be a different size if the log was generated
2208          * by an older kernel using unclustered inode buffers or a newer kernel
2209          * running with a different inode cluster size.  Regardless, if the
2210          * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2211          * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2212          * the buffer out of the buffer cache so that the buffer won't
2213          * overlap with future reads of those inodes.
2214          */
2215         if (XFS_DINODE_MAGIC ==
2216             be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2217             (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2218                         (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2219                 XFS_BUF_STALE(bp);
2220                 error = xfs_bwrite(mp, bp);
2221         } else {
2222                 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2223                        XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2224                 XFS_BUF_SET_FSPRIVATE(bp, mp);
2225                 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2226                 xfs_bdwrite(mp, bp);
2227         }
2228
2229         return (error);
2230 }
2231
2232 STATIC int
2233 xlog_recover_do_inode_trans(
2234         xlog_t                  *log,
2235         xlog_recover_item_t     *item,
2236         int                     pass)
2237 {
2238         xfs_inode_log_format_t  *in_f;
2239         xfs_mount_t             *mp;
2240         xfs_buf_t               *bp;
2241         xfs_imap_t              imap;
2242         xfs_dinode_t            *dip;
2243         xfs_ino_t               ino;
2244         int                     len;
2245         xfs_caddr_t             src;
2246         xfs_caddr_t             dest;
2247         int                     error;
2248         int                     attr_index;
2249         uint                    fields;
2250         xfs_icdinode_t          *dicp;
2251         int                     need_free = 0;
2252
2253         if (pass == XLOG_RECOVER_PASS1) {
2254                 return 0;
2255         }
2256
2257         if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2258                 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2259         } else {
2260                 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2261                         sizeof(xfs_inode_log_format_t), KM_SLEEP);
2262                 need_free = 1;
2263                 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2264                 if (error)
2265                         goto error;
2266         }
2267         ino = in_f->ilf_ino;
2268         mp = log->l_mp;
2269         if (ITEM_TYPE(item) == XFS_LI_INODE) {
2270                 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2271                 imap.im_len = in_f->ilf_len;
2272                 imap.im_boffset = in_f->ilf_boffset;
2273         } else {
2274                 /*
2275                  * It's an old inode format record.  We don't know where
2276                  * its cluster is located on disk, and we can't allow
2277                  * xfs_imap() to figure it out because the inode btrees
2278                  * are not ready to be used.  Therefore do not pass the
2279                  * XFS_IMAP_LOOKUP flag to xfs_imap().  This will give
2280                  * us only the single block in which the inode lives
2281                  * rather than its cluster, so we must make sure to
2282                  * invalidate the buffer when we write it out below.
2283                  */
2284                 imap.im_blkno = 0;
2285                 error = xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2286                 if (error)
2287                         goto error;
2288         }
2289
2290         /*
2291          * Inode buffers can be freed, look out for it,
2292          * and do not replay the inode.
2293          */
2294         if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
2295                 error = 0;
2296                 goto error;
2297         }
2298
2299         bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2300                                                                 XFS_BUF_LOCK);
2301         if (XFS_BUF_ISERROR(bp)) {
2302                 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2303                                   bp, imap.im_blkno);
2304                 error = XFS_BUF_GETERROR(bp);
2305                 xfs_buf_relse(bp);
2306                 goto error;
2307         }
2308         error = 0;
2309         ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2310         dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2311
2312         /*
2313          * Make sure the place we're flushing out to really looks
2314          * like an inode!
2315          */
2316         if (unlikely(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC)) {
2317                 xfs_buf_relse(bp);
2318                 xfs_fs_cmn_err(CE_ALERT, mp,
2319                         "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2320                         dip, bp, ino);
2321                 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2322                                  XFS_ERRLEVEL_LOW, mp);
2323                 error = EFSCORRUPTED;
2324                 goto error;
2325         }
2326         dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
2327         if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2328                 xfs_buf_relse(bp);
2329                 xfs_fs_cmn_err(CE_ALERT, mp,
2330                         "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2331                         item, ino);
2332                 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2333                                  XFS_ERRLEVEL_LOW, mp);
2334                 error = EFSCORRUPTED;
2335                 goto error;
2336         }
2337
2338         /* Skip replay when the on disk inode is newer than the log one */
2339         if (dicp->di_flushiter < be16_to_cpu(dip->di_core.di_flushiter)) {
2340                 /*
2341                  * Deal with the wrap case, DI_MAX_FLUSH is less
2342                  * than smaller numbers
2343                  */
2344                 if (be16_to_cpu(dip->di_core.di_flushiter) == DI_MAX_FLUSH &&
2345                     dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2346                         /* do nothing */
2347                 } else {
2348                         xfs_buf_relse(bp);
2349                         error = 0;
2350                         goto error;
2351                 }
2352         }
2353         /* Take the opportunity to reset the flush iteration count */
2354         dicp->di_flushiter = 0;
2355
2356         if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2357                 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2358                     (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2359                         XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2360                                          XFS_ERRLEVEL_LOW, mp, dicp);
2361                         xfs_buf_relse(bp);
2362                         xfs_fs_cmn_err(CE_ALERT, mp,
2363                                 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2364                                 item, dip, bp, ino);
2365                         error = EFSCORRUPTED;
2366                         goto error;
2367                 }
2368         } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2369                 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2370                     (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2371                     (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2372                         XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2373                                              XFS_ERRLEVEL_LOW, mp, dicp);
2374                         xfs_buf_relse(bp);
2375                         xfs_fs_cmn_err(CE_ALERT, mp,
2376                                 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2377                                 item, dip, bp, ino);
2378                         error = EFSCORRUPTED;
2379                         goto error;
2380                 }
2381         }
2382         if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2383                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2384                                      XFS_ERRLEVEL_LOW, mp, dicp);
2385                 xfs_buf_relse(bp);
2386                 xfs_fs_cmn_err(CE_ALERT, mp,
2387                         "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2388                         item, dip, bp, ino,
2389                         dicp->di_nextents + dicp->di_anextents,
2390                         dicp->di_nblocks);
2391                 error = EFSCORRUPTED;
2392                 goto error;
2393         }
2394         if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2395                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2396                                      XFS_ERRLEVEL_LOW, mp, dicp);
2397                 xfs_buf_relse(bp);
2398                 xfs_fs_cmn_err(CE_ALERT, mp,
2399                         "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2400                         item, dip, bp, ino, dicp->di_forkoff);
2401                 error = EFSCORRUPTED;
2402                 goto error;
2403         }
2404         if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2405                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2406                                      XFS_ERRLEVEL_LOW, mp, dicp);
2407                 xfs_buf_relse(bp);
2408                 xfs_fs_cmn_err(CE_ALERT, mp,
2409                         "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2410                         item->ri_buf[1].i_len, item);
2411                 error = EFSCORRUPTED;
2412                 goto error;
2413         }
2414
2415         /* The core is in in-core format */
2416         xfs_dinode_to_disk(&dip->di_core,
2417                 (xfs_icdinode_t *)item->ri_buf[1].i_addr);
2418
2419         /* the rest is in on-disk format */
2420         if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2421                 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2422                         item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2423                         item->ri_buf[1].i_len  - sizeof(xfs_dinode_core_t));
2424         }
2425
2426         fields = in_f->ilf_fields;
2427         switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2428         case XFS_ILOG_DEV:
2429                 dip->di_u.di_dev = cpu_to_be32(in_f->ilf_u.ilfu_rdev);
2430                 break;
2431         case XFS_ILOG_UUID:
2432                 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2433                 break;
2434         }
2435
2436         if (in_f->ilf_size == 2)
2437                 goto write_inode_buffer;
2438         len = item->ri_buf[2].i_len;
2439         src = item->ri_buf[2].i_addr;
2440         ASSERT(in_f->ilf_size <= 4);
2441         ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2442         ASSERT(!(fields & XFS_ILOG_DFORK) ||
2443                (len == in_f->ilf_dsize));
2444
2445         switch (fields & XFS_ILOG_DFORK) {
2446         case XFS_ILOG_DDATA:
2447         case XFS_ILOG_DEXT:
2448                 memcpy(&dip->di_u, src, len);
2449                 break;
2450
2451         case XFS_ILOG_DBROOT:
2452                 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2453                                  &(dip->di_u.di_bmbt),
2454                                  XFS_DFORK_DSIZE(dip, mp));
2455                 break;
2456
2457         default:
2458                 /*
2459                  * There are no data fork flags set.
2460                  */
2461                 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2462                 break;
2463         }
2464
2465         /*
2466          * If we logged any attribute data, recover it.  There may or
2467          * may not have been any other non-core data logged in this
2468          * transaction.
2469          */
2470         if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2471                 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2472                         attr_index = 3;
2473                 } else {
2474                         attr_index = 2;
2475                 }
2476                 len = item->ri_buf[attr_index].i_len;
2477                 src = item->ri_buf[attr_index].i_addr;
2478                 ASSERT(len == in_f->ilf_asize);
2479
2480                 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2481                 case XFS_ILOG_ADATA:
2482                 case XFS_ILOG_AEXT:
2483                         dest = XFS_DFORK_APTR(dip);
2484                         ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2485                         memcpy(dest, src, len);
2486                         break;
2487
2488                 case XFS_ILOG_ABROOT:
2489                         dest = XFS_DFORK_APTR(dip);
2490                         xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2491                                          (xfs_bmdr_block_t*)dest,
2492                                          XFS_DFORK_ASIZE(dip, mp));
2493                         break;
2494
2495                 default:
2496                         xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2497                         ASSERT(0);
2498                         xfs_buf_relse(bp);
2499                         error = EIO;
2500                         goto error;
2501                 }
2502         }
2503
2504 write_inode_buffer:
2505         if (ITEM_TYPE(item) == XFS_LI_INODE) {
2506                 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2507                        XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2508                 XFS_BUF_SET_FSPRIVATE(bp, mp);
2509                 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2510                 xfs_bdwrite(mp, bp);
2511         } else {
2512                 XFS_BUF_STALE(bp);
2513                 error = xfs_bwrite(mp, bp);
2514         }
2515
2516 error:
2517         if (need_free)
2518                 kmem_free(in_f, sizeof(*in_f));
2519         return XFS_ERROR(error);
2520 }
2521
2522 /*
2523  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2524  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2525  * of that type.
2526  */
2527 STATIC int
2528 xlog_recover_do_quotaoff_trans(
2529         xlog_t                  *log,
2530         xlog_recover_item_t     *item,
2531         int                     pass)
2532 {
2533         xfs_qoff_logformat_t    *qoff_f;
2534
2535         if (pass == XLOG_RECOVER_PASS2) {
2536                 return (0);
2537         }
2538
2539         qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2540         ASSERT(qoff_f);
2541
2542         /*
2543          * The logitem format's flag tells us if this was user quotaoff,
2544          * group/project quotaoff or both.
2545          */
2546         if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2547                 log->l_quotaoffs_flag |= XFS_DQ_USER;
2548         if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2549                 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2550         if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2551                 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2552
2553         return (0);
2554 }
2555
2556 /*
2557  * Recover a dquot record
2558  */
2559 STATIC int
2560 xlog_recover_do_dquot_trans(
2561         xlog_t                  *log,
2562         xlog_recover_item_t     *item,
2563         int                     pass)
2564 {
2565         xfs_mount_t             *mp;
2566         xfs_buf_t               *bp;
2567         struct xfs_disk_dquot   *ddq, *recddq;
2568         int                     error;
2569         xfs_dq_logformat_t      *dq_f;
2570         uint                    type;
2571
2572         if (pass == XLOG_RECOVER_PASS1) {
2573                 return 0;
2574         }
2575         mp = log->l_mp;
2576
2577         /*
2578          * Filesystems are required to send in quota flags at mount time.
2579          */
2580         if (mp->m_qflags == 0)
2581                 return (0);
2582
2583         recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2584         ASSERT(recddq);
2585         /*
2586          * This type of quotas was turned off, so ignore this record.
2587          */
2588         type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2589         ASSERT(type);
2590         if (log->l_quotaoffs_flag & type)
2591                 return (0);
2592
2593         /*
2594          * At this point we know that quota was _not_ turned off.
2595          * Since the mount flags are not indicating to us otherwise, this
2596          * must mean that quota is on, and the dquot needs to be replayed.
2597          * Remember that we may not have fully recovered the superblock yet,
2598          * so we can't do the usual trick of looking at the SB quota bits.
2599          *
2600          * The other possibility, of course, is that the quota subsystem was
2601          * removed since the last mount - ENOSYS.
2602          */
2603         dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2604         ASSERT(dq_f);
2605         if ((error = xfs_qm_dqcheck(recddq,
2606                            dq_f->qlf_id,
2607                            0, XFS_QMOPT_DOWARN,
2608                            "xlog_recover_do_dquot_trans (log copy)"))) {
2609                 return XFS_ERROR(EIO);
2610         }
2611         ASSERT(dq_f->qlf_len == 1);
2612
2613         error = xfs_read_buf(mp, mp->m_ddev_targp,
2614                              dq_f->qlf_blkno,
2615                              XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2616                              0, &bp);
2617         if (error) {
2618                 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2619                                   bp, dq_f->qlf_blkno);
2620                 return error;
2621         }
2622         ASSERT(bp);
2623         ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2624
2625         /*
2626          * At least the magic num portion should be on disk because this
2627          * was among a chunk of dquots created earlier, and we did some
2628          * minimal initialization then.
2629          */
2630         if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2631                            "xlog_recover_do_dquot_trans")) {
2632                 xfs_buf_relse(bp);
2633                 return XFS_ERROR(EIO);
2634         }
2635
2636         memcpy(ddq, recddq, item->ri_buf[1].i_len);
2637
2638         ASSERT(dq_f->qlf_size == 2);
2639         ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2640                XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2641         XFS_BUF_SET_FSPRIVATE(bp, mp);
2642         XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2643         xfs_bdwrite(mp, bp);
2644
2645         return (0);
2646 }
2647
2648 /*
2649  * This routine is called to create an in-core extent free intent
2650  * item from the efi format structure which was logged on disk.
2651  * It allocates an in-core efi, copies the extents from the format
2652  * structure into it, and adds the efi to the AIL with the given
2653  * LSN.
2654  */
2655 STATIC int
2656 xlog_recover_do_efi_trans(
2657         xlog_t                  *log,
2658         xlog_recover_item_t     *item,
2659         xfs_lsn_t               lsn,
2660         int                     pass)
2661 {
2662         int                     error;
2663         xfs_mount_t             *mp;
2664         xfs_efi_log_item_t      *efip;
2665         xfs_efi_log_format_t    *efi_formatp;
2666
2667         if (pass == XLOG_RECOVER_PASS1) {
2668                 return 0;
2669         }
2670
2671         efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2672
2673         mp = log->l_mp;
2674         efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2675         if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2676                                          &(efip->efi_format)))) {
2677                 xfs_efi_item_free(efip);
2678                 return error;
2679         }
2680         efip->efi_next_extent = efi_formatp->efi_nextents;
2681         efip->efi_flags |= XFS_EFI_COMMITTED;
2682
2683         spin_lock(&mp->m_ail_lock);
2684         /*
2685          * xfs_trans_update_ail() drops the AIL lock.
2686          */
2687         xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn);
2688         return 0;
2689 }
2690
2691
2692 /*
2693  * This routine is called when an efd format structure is found in
2694  * a committed transaction in the log.  It's purpose is to cancel
2695  * the corresponding efi if it was still in the log.  To do this
2696  * it searches the AIL for the efi with an id equal to that in the
2697  * efd format structure.  If we find it, we remove the efi from the
2698  * AIL and free it.
2699  */
2700 STATIC void
2701 xlog_recover_do_efd_trans(
2702         xlog_t                  *log,
2703         xlog_recover_item_t     *item,
2704         int                     pass)
2705 {
2706         xfs_mount_t             *mp;
2707         xfs_efd_log_format_t    *efd_formatp;
2708         xfs_efi_log_item_t      *efip = NULL;
2709         xfs_log_item_t          *lip;
2710         int                     gen;
2711         __uint64_t              efi_id;
2712
2713         if (pass == XLOG_RECOVER_PASS1) {
2714                 return;
2715         }
2716
2717         efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2718         ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2719                 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2720                (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2721                 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2722         efi_id = efd_formatp->efd_efi_id;
2723
2724         /*
2725          * Search for the efi with the id in the efd format structure
2726          * in the AIL.
2727          */
2728         mp = log->l_mp;
2729         spin_lock(&mp->m_ail_lock);
2730         lip = xfs_trans_first_ail(mp, &gen);
2731         while (lip != NULL) {
2732                 if (lip->li_type == XFS_LI_EFI) {
2733                         efip = (xfs_efi_log_item_t *)lip;
2734                         if (efip->efi_format.efi_id == efi_id) {
2735                                 /*
2736                                  * xfs_trans_delete_ail() drops the
2737                                  * AIL lock.
2738                                  */
2739                                 xfs_trans_delete_ail(mp, lip);
2740                                 xfs_efi_item_free(efip);
2741                                 return;
2742                         }
2743                 }
2744                 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
2745         }
2746         spin_unlock(&mp->m_ail_lock);
2747 }
2748
2749 /*
2750  * Perform the transaction
2751  *
2752  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2753  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2754  */
2755 STATIC int
2756 xlog_recover_do_trans(
2757         xlog_t                  *log,
2758         xlog_recover_t          *trans,
2759         int                     pass)
2760 {
2761         int                     error = 0;
2762         xlog_recover_item_t     *item, *first_item;
2763
2764         if ((error = xlog_recover_reorder_trans(trans)))
2765                 return error;
2766         first_item = item = trans->r_itemq;
2767         do {
2768                 /*
2769                  * we don't need to worry about the block number being
2770                  * truncated in > 1 TB buffers because in user-land,
2771                  * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2772                  * the blknos will get through the user-mode buffer
2773                  * cache properly.  The only bad case is o32 kernels
2774                  * where xfs_daddr_t is 32-bits but mount will warn us
2775                  * off a > 1 TB filesystem before we get here.
2776                  */
2777                 if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
2778                         if  ((error = xlog_recover_do_buffer_trans(log, item,
2779                                                                  pass)))
2780                                 break;
2781                 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
2782                         if ((error = xlog_recover_do_inode_trans(log, item,
2783                                                                 pass)))
2784                                 break;
2785                 } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2786                         if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2787                                                   pass)))
2788                                 break;
2789                 } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2790                         xlog_recover_do_efd_trans(log, item, pass);
2791                 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2792                         if ((error = xlog_recover_do_dquot_trans(log, item,
2793                                                                    pass)))
2794                                         break;
2795                 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2796                         if ((error = xlog_recover_do_quotaoff_trans(log, item,
2797                                                                    pass)))
2798                                         break;
2799                 } else {
2800                         xlog_warn("XFS: xlog_recover_do_trans");
2801                         ASSERT(0);
2802                         error = XFS_ERROR(EIO);
2803                         break;
2804                 }
2805                 item = item->ri_next;
2806         } while (first_item != item);
2807
2808         return error;
2809 }
2810
2811 /*
2812  * Free up any resources allocated by the transaction
2813  *
2814  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2815  */
2816 STATIC void
2817 xlog_recover_free_trans(
2818         xlog_recover_t          *trans)
2819 {
2820         xlog_recover_item_t     *first_item, *item, *free_item;
2821         int                     i;
2822
2823         item = first_item = trans->r_itemq;
2824         do {
2825                 free_item = item;
2826                 item = item->ri_next;
2827                  /* Free the regions in the item. */
2828                 for (i = 0; i < free_item->ri_cnt; i++) {
2829                         kmem_free(free_item->ri_buf[i].i_addr,
2830                                   free_item->ri_buf[i].i_len);
2831                 }
2832                 /* Free the item itself */
2833                 kmem_free(free_item->ri_buf,
2834                           (free_item->ri_total * sizeof(xfs_log_iovec_t)));
2835                 kmem_free(free_item, sizeof(xlog_recover_item_t));
2836         } while (first_item != item);
2837         /* Free the transaction recover structure */
2838         kmem_free(trans, sizeof(xlog_recover_t));
2839 }
2840
2841 STATIC int
2842 xlog_recover_commit_trans(
2843         xlog_t                  *log,
2844         xlog_recover_t          **q,
2845         xlog_recover_t          *trans,
2846         int                     pass)
2847 {
2848         int                     error;
2849
2850         if ((error = xlog_recover_unlink_tid(q, trans)))
2851                 return error;
2852         if ((error = xlog_recover_do_trans(log, trans, pass)))
2853                 return error;
2854         xlog_recover_free_trans(trans);                 /* no error */
2855         return 0;
2856 }
2857
2858 STATIC int
2859 xlog_recover_unmount_trans(
2860         xlog_recover_t          *trans)
2861 {
2862         /* Do nothing now */
2863         xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2864         return 0;
2865 }
2866
2867 /*
2868  * There are two valid states of the r_state field.  0 indicates that the
2869  * transaction structure is in a normal state.  We have either seen the
2870  * start of the transaction or the last operation we added was not a partial
2871  * operation.  If the last operation we added to the transaction was a
2872  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2873  *
2874  * NOTE: skip LRs with 0 data length.
2875  */
2876 STATIC int
2877 xlog_recover_process_data(
2878         xlog_t                  *log,
2879         xlog_recover_t          *rhash[],
2880         xlog_rec_header_t       *rhead,
2881         xfs_caddr_t             dp,
2882         int                     pass)
2883 {
2884         xfs_caddr_t             lp;
2885         int                     num_logops;
2886         xlog_op_header_t        *ohead;
2887         xlog_recover_t          *trans;
2888         xlog_tid_t              tid;
2889         int                     error;
2890         unsigned long           hash;
2891         uint                    flags;
2892
2893         lp = dp + be32_to_cpu(rhead->h_len);
2894         num_logops = be32_to_cpu(rhead->h_num_logops);
2895
2896         /* check the log format matches our own - else we can't recover */
2897         if (xlog_header_check_recover(log->l_mp, rhead))
2898                 return (XFS_ERROR(EIO));
2899
2900         while ((dp < lp) && num_logops) {
2901                 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2902                 ohead = (xlog_op_header_t *)dp;
2903                 dp += sizeof(xlog_op_header_t);
2904                 if (ohead->oh_clientid != XFS_TRANSACTION &&
2905                     ohead->oh_clientid != XFS_LOG) {
2906                         xlog_warn(
2907                 "XFS: xlog_recover_process_data: bad clientid");
2908                         ASSERT(0);
2909                         return (XFS_ERROR(EIO));
2910                 }
2911                 tid = be32_to_cpu(ohead->oh_tid);
2912                 hash = XLOG_RHASH(tid);
2913                 trans = xlog_recover_find_tid(rhash[hash], tid);
2914                 if (trans == NULL) {               /* not found; add new tid */
2915                         if (ohead->oh_flags & XLOG_START_TRANS)
2916                                 xlog_recover_new_tid(&rhash[hash], tid,
2917                                         be64_to_cpu(rhead->h_lsn));
2918                 } else {
2919                         if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2920                                 xlog_warn(
2921                         "XFS: xlog_recover_process_data: bad length");
2922                                 WARN_ON(1);
2923                                 return (XFS_ERROR(EIO));
2924                         }
2925                         flags = ohead->oh_flags & ~XLOG_END_TRANS;
2926                         if (flags & XLOG_WAS_CONT_TRANS)
2927                                 flags &= ~XLOG_CONTINUE_TRANS;
2928                         switch (flags) {
2929                         case XLOG_COMMIT_TRANS:
2930                                 error = xlog_recover_commit_trans(log,
2931                                                 &rhash[hash], trans, pass);
2932                                 break;
2933                         case XLOG_UNMOUNT_TRANS:
2934                                 error = xlog_recover_unmount_trans(trans);
2935                                 break;
2936                         case XLOG_WAS_CONT_TRANS:
2937                                 error = xlog_recover_add_to_cont_trans(trans,
2938                                                 dp, be32_to_cpu(ohead->oh_len));
2939                                 break;
2940                         case XLOG_START_TRANS:
2941                                 xlog_warn(
2942                         "XFS: xlog_recover_process_data: bad transaction");
2943                                 ASSERT(0);
2944                                 error = XFS_ERROR(EIO);
2945                                 break;
2946                         case 0:
2947                         case XLOG_CONTINUE_TRANS:
2948                                 error = xlog_recover_add_to_trans(trans,
2949                                                 dp, be32_to_cpu(ohead->oh_len));
2950                                 break;
2951                         default:
2952                                 xlog_warn(
2953                         "XFS: xlog_recover_process_data: bad flag");
2954                                 ASSERT(0);
2955                                 error = XFS_ERROR(EIO);
2956                                 break;
2957                         }
2958                         if (error)
2959                                 return error;
2960                 }
2961                 dp += be32_to_cpu(ohead->oh_len);
2962                 num_logops--;
2963         }
2964         return 0;
2965 }
2966
2967 /*
2968  * Process an extent free intent item that was recovered from
2969  * the log.  We need to free the extents that it describes.
2970  */
2971 STATIC int
2972 xlog_recover_process_efi(
2973         xfs_mount_t             *mp,
2974         xfs_efi_log_item_t      *efip)
2975 {
2976         xfs_efd_log_item_t      *efdp;
2977         xfs_trans_t             *tp;
2978         int                     i;
2979         int                     error = 0;
2980         xfs_extent_t            *extp;
2981         xfs_fsblock_t           startblock_fsb;
2982
2983         ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
2984
2985         /*
2986          * First check the validity of the extents described by the
2987          * EFI.  If any are bad, then assume that all are bad and
2988          * just toss the EFI.
2989          */
2990         for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2991                 extp = &(efip->efi_format.efi_extents[i]);
2992                 startblock_fsb = XFS_BB_TO_FSB(mp,
2993                                    XFS_FSB_TO_DADDR(mp, extp->ext_start));
2994                 if ((startblock_fsb == 0) ||
2995                     (extp->ext_len == 0) ||
2996                     (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2997                     (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2998                         /*
2999                          * This will pull the EFI from the AIL and
3000                          * free the memory associated with it.
3001                          */
3002                         xfs_efi_release(efip, efip->efi_format.efi_nextents);
3003                         return XFS_ERROR(EIO);
3004                 }
3005         }
3006
3007         tp = xfs_trans_alloc(mp, 0);
3008         error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3009         if (error)
3010                 goto abort_error;
3011         efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3012
3013         for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3014                 extp = &(efip->efi_format.efi_extents[i]);
3015                 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3016                 if (error)
3017                         goto abort_error;
3018                 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3019                                          extp->ext_len);
3020         }
3021
3022         efip->efi_flags |= XFS_EFI_RECOVERED;
3023         error = xfs_trans_commit(tp, 0);
3024         return error;
3025
3026 abort_error:
3027         xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3028         return error;
3029 }
3030
3031 /*
3032  * Verify that once we've encountered something other than an EFI
3033  * in the AIL that there are no more EFIs in the AIL.
3034  */
3035 #if defined(DEBUG)
3036 STATIC void
3037 xlog_recover_check_ail(
3038         xfs_mount_t             *mp,
3039         xfs_log_item_t          *lip,
3040         int                     gen)
3041 {
3042         int                     orig_gen = gen;
3043
3044         do {
3045                 ASSERT(lip->li_type != XFS_LI_EFI);
3046                 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3047                 /*
3048                  * The check will be bogus if we restart from the
3049                  * beginning of the AIL, so ASSERT that we don't.
3050                  * We never should since we're holding the AIL lock
3051                  * the entire time.
3052                  */
3053                 ASSERT(gen == orig_gen);
3054         } while (lip != NULL);
3055 }
3056 #endif  /* DEBUG */
3057
3058 /*
3059  * When this is called, all of the EFIs which did not have
3060  * corresponding EFDs should be in the AIL.  What we do now
3061  * is free the extents associated with each one.
3062  *
3063  * Since we process the EFIs in normal transactions, they
3064  * will be removed at some point after the commit.  This prevents
3065  * us from just walking down the list processing each one.
3066  * We'll use a flag in the EFI to skip those that we've already
3067  * processed and use the AIL iteration mechanism's generation
3068  * count to try to speed this up at least a bit.
3069  *
3070  * When we start, we know that the EFIs are the only things in
3071  * the AIL.  As we process them, however, other items are added
3072  * to the AIL.  Since everything added to the AIL must come after
3073  * everything already in the AIL, we stop processing as soon as
3074  * we see something other than an EFI in the AIL.
3075  */
3076 STATIC int
3077 xlog_recover_process_efis(
3078         xlog_t                  *log)
3079 {
3080         xfs_log_item_t          *lip;
3081         xfs_efi_log_item_t      *efip;
3082         int                     gen;
3083         xfs_mount_t             *mp;
3084         int                     error = 0;
3085
3086         mp = log->l_mp;
3087         spin_lock(&mp->m_ail_lock);
3088
3089         lip = xfs_trans_first_ail(mp, &gen);
3090         while (lip != NULL) {
3091                 /*
3092                  * We're done when we see something other than an EFI.
3093                  */
3094                 if (lip->li_type != XFS_LI_EFI) {
3095                         xlog_recover_check_ail(mp, lip, gen);
3096                         break;
3097                 }
3098
3099                 /*
3100                  * Skip EFIs that we've already processed.
3101                  */
3102                 efip = (xfs_efi_log_item_t *)lip;
3103                 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3104                         lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3105                         continue;
3106                 }
3107
3108                 spin_unlock(&mp->m_ail_lock);
3109                 error = xlog_recover_process_efi(mp, efip);
3110                 if (error)
3111                         return error;
3112                 spin_lock(&mp->m_ail_lock);
3113                 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3114         }
3115         spin_unlock(&mp->m_ail_lock);
3116         return error;
3117 }
3118
3119 /*
3120  * This routine performs a transaction to null out a bad inode pointer
3121  * in an agi unlinked inode hash bucket.
3122  */
3123 STATIC void
3124 xlog_recover_clear_agi_bucket(
3125         xfs_mount_t     *mp,
3126         xfs_agnumber_t  agno,
3127         int             bucket)
3128 {
3129         xfs_trans_t     *tp;
3130         xfs_agi_t       *agi;
3131         xfs_buf_t       *agibp;
3132         int             offset;
3133         int             error;
3134
3135         tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3136         error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3137         if (!error)
3138                 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3139                                    XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3140                                    XFS_FSS_TO_BB(mp, 1), 0, &agibp);
3141         if (error)
3142                 goto out_abort;
3143
3144         error = EINVAL;
3145         agi = XFS_BUF_TO_AGI(agibp);
3146         if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC)
3147                 goto out_abort;
3148
3149         agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3150         offset = offsetof(xfs_agi_t, agi_unlinked) +
3151                  (sizeof(xfs_agino_t) * bucket);
3152         xfs_trans_log_buf(tp, agibp, offset,
3153                           (offset + sizeof(xfs_agino_t) - 1));
3154
3155         error = xfs_trans_commit(tp, 0);
3156         if (error)
3157                 goto out_error;
3158         return;
3159
3160 out_abort:
3161         xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3162 out_error:
3163         xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3164                         "failed to clear agi %d. Continuing.", agno);
3165         return;
3166 }
3167
3168 /*
3169  * xlog_iunlink_recover
3170  *
3171  * This is called during recovery to process any inodes which
3172  * we unlinked but not freed when the system crashed.  These
3173  * inodes will be on the lists in the AGI blocks.  What we do
3174  * here is scan all the AGIs and fully truncate and free any
3175  * inodes found on the lists.  Each inode is removed from the
3176  * lists when it has been fully truncated and is freed.  The
3177  * freeing of the inode and its removal from the list must be
3178  * atomic.
3179  */
3180 void
3181 xlog_recover_process_iunlinks(
3182         xlog_t          *log)
3183 {
3184         xfs_mount_t     *mp;
3185         xfs_agnumber_t  agno;
3186         xfs_agi_t       *agi;
3187         xfs_buf_t       *agibp;
3188         xfs_buf_t       *ibp;
3189         xfs_dinode_t    *dip;
3190         xfs_inode_t     *ip;
3191         xfs_agino_t     agino;
3192         xfs_ino_t       ino;
3193         int             bucket;
3194         int             error;
3195         uint            mp_dmevmask;
3196
3197         mp = log->l_mp;
3198
3199         /*
3200          * Prevent any DMAPI event from being sent while in this function.
3201          */
3202         mp_dmevmask = mp->m_dmevmask;
3203         mp->m_dmevmask = 0;
3204
3205         for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3206                 /*
3207                  * Find the agi for this ag.
3208                  */
3209                 agibp = xfs_buf_read(mp->m_ddev_targp,
3210                                 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3211                                 XFS_FSS_TO_BB(mp, 1), 0);
3212                 if (XFS_BUF_ISERROR(agibp)) {
3213                         xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3214                                 log->l_mp, agibp,
3215                                 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3216                 }
3217                 agi = XFS_BUF_TO_AGI(agibp);
3218                 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
3219
3220                 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3221
3222                         agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3223                         while (agino != NULLAGINO) {
3224
3225                                 /*
3226                                  * Release the agi buffer so that it can
3227                                  * be acquired in the normal course of the
3228                                  * transaction to truncate and free the inode.
3229                                  */
3230                                 xfs_buf_relse(agibp);
3231
3232                                 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3233                                 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3234                                 ASSERT(error || (ip != NULL));
3235
3236                                 if (!error) {
3237                                         /*
3238                                          * Get the on disk inode to find the
3239                                          * next inode in the bucket.
3240                                          */
3241                                         error = xfs_itobp(mp, NULL, ip, &dip,
3242                                                         &ibp, 0, 0,
3243                                                         XFS_BUF_LOCK);
3244                                         ASSERT(error || (dip != NULL));
3245                                 }
3246
3247                                 if (!error) {
3248                                         ASSERT(ip->i_d.di_nlink == 0);
3249
3250                                         /* setup for the next pass */
3251                                         agino = be32_to_cpu(
3252                                                         dip->di_next_unlinked);
3253                                         xfs_buf_relse(ibp);
3254                                         /*
3255                                          * Prevent any DMAPI event from
3256                                          * being sent when the
3257                                          * reference on the inode is
3258                                          * dropped.
3259                                          */
3260                                         ip->i_d.di_dmevmask = 0;
3261
3262                                         /*
3263                                          * If this is a new inode, handle
3264                                          * it specially.  Otherwise,
3265                                          * just drop our reference to the
3266                                          * inode.  If there are no
3267                                          * other references, this will
3268                                          * send the inode to
3269                                          * xfs_inactive() which will
3270                                          * truncate the file and free
3271                                          * the inode.
3272                                          */
3273                                         if (ip->i_d.di_mode == 0)
3274                                                 xfs_iput_new(ip, 0);
3275                                         else
3276                                                 IRELE(ip);
3277                                 } else {
3278                                         /*
3279                                          * We can't read in the inode
3280                                          * this bucket points to, or
3281                                          * this inode is messed up.  Just
3282                                          * ditch this bucket of inodes.  We
3283                                          * will lose some inodes and space,
3284                                          * but at least we won't hang.  Call
3285                                          * xlog_recover_clear_agi_bucket()
3286                                          * to perform a transaction to clear
3287                                          * the inode pointer in the bucket.
3288                                          */
3289                                         xlog_recover_clear_agi_bucket(mp, agno,
3290                                                         bucket);
3291
3292                                         agino = NULLAGINO;
3293                                 }
3294
3295                                 /*
3296                                  * Reacquire the agibuffer and continue around
3297                                  * the loop.
3298                                  */
3299                                 agibp = xfs_buf_read(mp->m_ddev_targp,
3300                                                 XFS_AG_DADDR(mp, agno,
3301                                                         XFS_AGI_DADDR(mp)),
3302                                                 XFS_FSS_TO_BB(mp, 1), 0);
3303                                 if (XFS_BUF_ISERROR(agibp)) {
3304                                         xfs_ioerror_alert(
3305                                 "xlog_recover_process_iunlinks(#2)",
3306                                                 log->l_mp, agibp,
3307                                                 XFS_AG_DADDR(mp, agno,
3308                                                         XFS_AGI_DADDR(mp)));
3309                                 }
3310                                 agi = XFS_BUF_TO_AGI(agibp);
3311                                 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
3312                                         agi->agi_magicnum));
3313                         }
3314                 }
3315
3316                 /*
3317                  * Release the buffer for the current agi so we can
3318                  * go on to the next one.
3319                  */
3320                 xfs_buf_relse(agibp);
3321         }
3322
3323         mp->m_dmevmask = mp_dmevmask;
3324 }
3325
3326
3327 #ifdef DEBUG
3328 STATIC void
3329 xlog_pack_data_checksum(
3330         xlog_t          *log,
3331         xlog_in_core_t  *iclog,
3332         int             size)
3333 {
3334         int             i;
3335         __be32          *up;
3336         uint            chksum = 0;
3337
3338         up = (__be32 *)iclog->ic_datap;
3339         /* divide length by 4 to get # words */
3340         for (i = 0; i < (size >> 2); i++) {
3341                 chksum ^= be32_to_cpu(*up);
3342                 up++;
3343         }
3344         iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3345 }
3346 #else
3347 #define xlog_pack_data_checksum(log, iclog, size)
3348 #endif
3349
3350 /*
3351  * Stamp cycle number in every block
3352  */
3353 void
3354 xlog_pack_data(
3355         xlog_t                  *log,
3356         xlog_in_core_t          *iclog,
3357         int                     roundoff)
3358 {
3359         int                     i, j, k;
3360         int                     size = iclog->ic_offset + roundoff;
3361         __be32                  cycle_lsn;
3362         xfs_caddr_t             dp;
3363         xlog_in_core_2_t        *xhdr;
3364
3365         xlog_pack_data_checksum(log, iclog, size);
3366
3367         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3368
3369         dp = iclog->ic_datap;
3370         for (i = 0; i < BTOBB(size) &&
3371                 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3372                 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3373                 *(__be32 *)dp = cycle_lsn;
3374                 dp += BBSIZE;
3375         }
3376
3377         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3378                 xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3379                 for ( ; i < BTOBB(size); i++) {
3380                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3381                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3382                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3383                         *(__be32 *)dp = cycle_lsn;
3384                         dp += BBSIZE;
3385                 }
3386
3387                 for (i = 1; i < log->l_iclog_heads; i++) {
3388                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3389                 }
3390         }
3391 }
3392
3393 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3394 STATIC void
3395 xlog_unpack_data_checksum(
3396         xlog_rec_header_t       *rhead,
3397         xfs_caddr_t             dp,
3398         xlog_t                  *log)
3399 {
3400         __be32                  *up = (__be32 *)dp;
3401         uint                    chksum = 0;
3402         int                     i;
3403
3404         /* divide length by 4 to get # words */
3405         for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3406                 chksum ^= be32_to_cpu(*up);
3407                 up++;
3408         }
3409         if (chksum != be32_to_cpu(rhead->h_chksum)) {
3410             if (rhead->h_chksum ||
3411                 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3412                     cmn_err(CE_DEBUG,
3413                         "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3414                             be32_to_cpu(rhead->h_chksum), chksum);
3415                     cmn_err(CE_DEBUG,
3416 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3417                     if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3418                             cmn_err(CE_DEBUG,
3419                                 "XFS: LogR this is a LogV2 filesystem\n");
3420                     }
3421                     log->l_flags |= XLOG_CHKSUM_MISMATCH;
3422             }
3423         }
3424 }
3425 #else
3426 #define xlog_unpack_data_checksum(rhead, dp, log)
3427 #endif
3428
3429 STATIC void
3430 xlog_unpack_data(
3431         xlog_rec_header_t       *rhead,
3432         xfs_caddr_t             dp,
3433         xlog_t                  *log)
3434 {
3435         int                     i, j, k;
3436         xlog_in_core_2_t        *xhdr;
3437
3438         for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3439                   i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3440                 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3441                 dp += BBSIZE;
3442         }
3443
3444         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3445                 xhdr = (xlog_in_core_2_t *)rhead;
3446                 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3447                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3448                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3449                         *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3450                         dp += BBSIZE;
3451                 }
3452         }
3453
3454         xlog_unpack_data_checksum(rhead, dp, log);
3455 }
3456
3457 STATIC int
3458 xlog_valid_rec_header(
3459         xlog_t                  *log,
3460         xlog_rec_header_t       *rhead,
3461         xfs_daddr_t             blkno)
3462 {
3463         int                     hlen;
3464
3465         if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3466                 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3467                                 XFS_ERRLEVEL_LOW, log->l_mp);
3468                 return XFS_ERROR(EFSCORRUPTED);
3469         }
3470         if (unlikely(
3471             (!rhead->h_version ||
3472             (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3473                 xlog_warn("XFS: %s: unrecognised log version (%d).",
3474                         __func__, be32_to_cpu(rhead->h_version));
3475                 return XFS_ERROR(EIO);
3476         }
3477
3478         /* LR body must have data or it wouldn't have been written */
3479         hlen = be32_to_cpu(rhead->h_len);
3480         if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3481                 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3482                                 XFS_ERRLEVEL_LOW, log->l_mp);
3483                 return XFS_ERROR(EFSCORRUPTED);
3484         }
3485         if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3486                 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3487                                 XFS_ERRLEVEL_LOW, log->l_mp);
3488                 return XFS_ERROR(EFSCORRUPTED);
3489         }
3490         return 0;
3491 }
3492
3493 /*
3494  * Read the log from tail to head and process the log records found.
3495  * Handle the two cases where the tail and head are in the same cycle
3496  * and where the active portion of the log wraps around the end of
3497  * the physical log separately.  The pass parameter is passed through
3498  * to the routines called to process the data and is not looked at
3499  * here.
3500  */
3501 STATIC int
3502 xlog_do_recovery_pass(
3503         xlog_t                  *log,
3504         xfs_daddr_t             head_blk,
3505         xfs_daddr_t             tail_blk,
3506         int                     pass)
3507 {
3508         xlog_rec_header_t       *rhead;
3509         xfs_daddr_t             blk_no;
3510         xfs_caddr_t             bufaddr, offset;
3511         xfs_buf_t               *hbp, *dbp;
3512         int                     error = 0, h_size;
3513         int                     bblks, split_bblks;
3514         int                     hblks, split_hblks, wrapped_hblks;
3515         xlog_recover_t          *rhash[XLOG_RHASH_SIZE];
3516
3517         ASSERT(head_blk != tail_blk);
3518
3519         /*
3520          * Read the header of the tail block and get the iclog buffer size from
3521          * h_size.  Use this to tell how many sectors make up the log header.
3522          */
3523         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3524                 /*
3525                  * When using variable length iclogs, read first sector of
3526                  * iclog header and extract the header size from it.  Get a
3527                  * new hbp that is the correct size.
3528                  */
3529                 hbp = xlog_get_bp(log, 1);
3530                 if (!hbp)
3531                         return ENOMEM;
3532                 if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3533                         goto bread_err1;
3534                 offset = xlog_align(log, tail_blk, 1, hbp);
3535                 rhead = (xlog_rec_header_t *)offset;
3536                 error = xlog_valid_rec_header(log, rhead, tail_blk);
3537                 if (error)
3538                         goto bread_err1;
3539                 h_size = be32_to_cpu(rhead->h_size);
3540                 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3541                     (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3542                         hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3543                         if (h_size % XLOG_HEADER_CYCLE_SIZE)
3544                                 hblks++;
3545                         xlog_put_bp(hbp);
3546                         hbp = xlog_get_bp(log, hblks);
3547                 } else {
3548                         hblks = 1;
3549                 }
3550         } else {
3551                 ASSERT(log->l_sectbb_log == 0);
3552                 hblks = 1;
3553                 hbp = xlog_get_bp(log, 1);
3554                 h_size = XLOG_BIG_RECORD_BSIZE;
3555         }
3556
3557         if (!hbp)
3558                 return ENOMEM;
3559         dbp = xlog_get_bp(log, BTOBB(h_size));
3560         if (!dbp) {
3561                 xlog_put_bp(hbp);
3562                 return ENOMEM;
3563         }
3564
3565         memset(rhash, 0, sizeof(rhash));
3566         if (tail_blk <= head_blk) {
3567                 for (blk_no = tail_blk; blk_no < head_blk; ) {
3568                         if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3569                                 goto bread_err2;
3570                         offset = xlog_align(log, blk_no, hblks, hbp);
3571                         rhead = (xlog_rec_header_t *)offset;
3572                         error = xlog_valid_rec_header(log, rhead, blk_no);
3573                         if (error)
3574                                 goto bread_err2;
3575
3576                         /* blocks in data section */
3577                         bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3578                         error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3579                         if (error)
3580                                 goto bread_err2;
3581                         offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3582                         xlog_unpack_data(rhead, offset, log);
3583                         if ((error = xlog_recover_process_data(log,
3584                                                 rhash, rhead, offset, pass)))
3585                                 goto bread_err2;
3586                         blk_no += bblks + hblks;
3587                 }
3588         } else {
3589                 /*
3590                  * Perform recovery around the end of the physical log.
3591                  * When the head is not on the same cycle number as the tail,
3592                  * we can't do a sequential recovery as above.
3593                  */
3594                 blk_no = tail_blk;
3595                 while (blk_no < log->l_logBBsize) {
3596                         /*
3597                          * Check for header wrapping around physical end-of-log
3598                          */
3599                         offset = NULL;
3600                         split_hblks = 0;
3601                         wrapped_hblks = 0;
3602                         if (blk_no + hblks <= log->l_logBBsize) {
3603                                 /* Read header in one read */
3604                                 error = xlog_bread(log, blk_no, hblks, hbp);
3605                                 if (error)
3606                                         goto bread_err2;
3607                                 offset = xlog_align(log, blk_no, hblks, hbp);
3608                         } else {
3609                                 /* This LR is split across physical log end */
3610                                 if (blk_no != log->l_logBBsize) {
3611                                         /* some data before physical log end */
3612                                         ASSERT(blk_no <= INT_MAX);
3613                                         split_hblks = log->l_logBBsize - (int)blk_no;
3614                                         ASSERT(split_hblks > 0);
3615                                         if ((error = xlog_bread(log, blk_no,
3616                                                         split_hblks, hbp)))
3617                                                 goto bread_err2;
3618                                         offset = xlog_align(log, blk_no,
3619                                                         split_hblks, hbp);
3620                                 }
3621                                 /*
3622                                  * Note: this black magic still works with
3623                                  * large sector sizes (non-512) only because:
3624                                  * - we increased the buffer size originally
3625                                  *   by 1 sector giving us enough extra space
3626                                  *   for the second read;
3627                                  * - the log start is guaranteed to be sector
3628                                  *   aligned;
3629                                  * - we read the log end (LR header start)
3630                                  *   _first_, then the log start (LR header end)
3631                                  *   - order is important.
3632                                  */
3633                                 bufaddr = XFS_BUF_PTR(hbp);
3634                                 XFS_BUF_SET_PTR(hbp,
3635                                                 bufaddr + BBTOB(split_hblks),
3636                                                 BBTOB(hblks - split_hblks));
3637                                 wrapped_hblks = hblks - split_hblks;
3638                                 error = xlog_bread(log, 0, wrapped_hblks, hbp);
3639                                 if (error)
3640                                         goto bread_err2;
3641                                 XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
3642                                 if (!offset)
3643                                         offset = xlog_align(log, 0,
3644                                                         wrapped_hblks, hbp);
3645                         }
3646                         rhead = (xlog_rec_header_t *)offset;
3647                         error = xlog_valid_rec_header(log, rhead,
3648                                                 split_hblks ? blk_no : 0);
3649                         if (error)
3650                                 goto bread_err2;
3651
3652                         bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3653                         blk_no += hblks;
3654
3655                         /* Read in data for log record */
3656                         if (blk_no + bblks <= log->l_logBBsize) {
3657                                 error = xlog_bread(log, blk_no, bblks, dbp);
3658                                 if (error)
3659                                         goto bread_err2;
3660                                 offset = xlog_align(log, blk_no, bblks, dbp);
3661                         } else {
3662                                 /* This log record is split across the
3663                                  * physical end of log */
3664                                 offset = NULL;
3665                                 split_bblks = 0;
3666                                 if (blk_no != log->l_logBBsize) {
3667                                         /* some data is before the physical
3668                                          * end of log */
3669                                         ASSERT(!wrapped_hblks);
3670                                         ASSERT(blk_no <= INT_MAX);
3671                                         split_bblks =
3672                                                 log->l_logBBsize - (int)blk_no;
3673                                         ASSERT(split_bblks > 0);
3674                                         if ((error = xlog_bread(log, blk_no,
3675                                                         split_bblks, dbp)))
3676                                                 goto bread_err2;
3677                                         offset = xlog_align(log, blk_no,
3678                                                         split_bblks, dbp);
3679                                 }
3680                                 /*
3681                                  * Note: this black magic still works with
3682                                  * large sector sizes (non-512) only because:
3683                                  * - we increased the buffer size originally
3684                                  *   by 1 sector giving us enough extra space
3685                                  *   for the second read;
3686                                  * - the log start is guaranteed to be sector
3687                                  *   aligned;
3688                                  * - we read the log end (LR header start)
3689                                  *   _first_, then the log start (LR header end)
3690                                  *   - order is important.
3691                                  */
3692                                 bufaddr = XFS_BUF_PTR(dbp);
3693                                 XFS_BUF_SET_PTR(dbp,
3694                                                 bufaddr + BBTOB(split_bblks),
3695                                                 BBTOB(bblks - split_bblks));
3696                                 if ((error = xlog_bread(log, wrapped_hblks,
3697                                                 bblks - split_bblks, dbp)))
3698                                         goto bread_err2;
3699                                 XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
3700                                 if (!offset)
3701                                         offset = xlog_align(log, wrapped_hblks,
3702                                                 bblks - split_bblks, dbp);
3703                         }
3704                         xlog_unpack_data(rhead, offset, log);
3705                         if ((error = xlog_recover_process_data(log, rhash,
3706                                                         rhead, offset, pass)))
3707                                 goto bread_err2;
3708                         blk_no += bblks;
3709                 }
3710
3711                 ASSERT(blk_no >= log->l_logBBsize);
3712                 blk_no -= log->l_logBBsize;
3713
3714                 /* read first part of physical log */
3715                 while (blk_no < head_blk) {
3716                         if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3717                                 goto bread_err2;
3718                         offset = xlog_align(log, blk_no, hblks, hbp);
3719                         rhead = (xlog_rec_header_t *)offset;
3720                         error = xlog_valid_rec_header(log, rhead, blk_no);
3721                         if (error)
3722                                 goto bread_err2;
3723                         bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3724                         if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3725                                 goto bread_err2;
3726                         offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3727                         xlog_unpack_data(rhead, offset, log);
3728                         if ((error = xlog_recover_process_data(log, rhash,
3729                                                         rhead, offset, pass)))
3730                                 goto bread_err2;
3731                         blk_no += bblks + hblks;
3732                 }
3733         }
3734
3735  bread_err2:
3736         xlog_put_bp(dbp);
3737  bread_err1:
3738         xlog_put_bp(hbp);
3739         return error;
3740 }
3741
3742 /*
3743  * Do the recovery of the log.  We actually do this in two phases.
3744  * The two passes are necessary in order to implement the function
3745  * of cancelling a record written into the log.  The first pass
3746  * determines those things which have been cancelled, and the
3747  * second pass replays log items normally except for those which
3748  * have been cancelled.  The handling of the replay and cancellations
3749  * takes place in the log item type specific routines.
3750  *
3751  * The table of items which have cancel records in the log is allocated
3752  * and freed at this level, since only here do we know when all of
3753  * the log recovery has been completed.
3754  */
3755 STATIC int
3756 xlog_do_log_recovery(
3757         xlog_t          *log,
3758         xfs_daddr_t     head_blk,
3759         xfs_daddr_t     tail_blk)
3760 {
3761         int             error;
3762
3763         ASSERT(head_blk != tail_blk);
3764
3765         /*
3766          * First do a pass to find all of the cancelled buf log items.
3767          * Store them in the buf_cancel_table for use in the second pass.
3768          */
3769         log->l_buf_cancel_table =
3770                 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3771                                                  sizeof(xfs_buf_cancel_t*),
3772                                                  KM_SLEEP);
3773         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3774                                       XLOG_RECOVER_PASS1);
3775         if (error != 0) {
3776                 kmem_free(log->l_buf_cancel_table,
3777                           XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3778                 log->l_buf_cancel_table = NULL;
3779                 return error;
3780         }
3781         /*
3782          * Then do a second pass to actually recover the items in the log.
3783          * When it is complete free the table of buf cancel items.
3784          */
3785         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3786                                       XLOG_RECOVER_PASS2);
3787 #ifdef DEBUG
3788         if (!error) {
3789                 int     i;
3790
3791                 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3792                         ASSERT(log->l_buf_cancel_table[i] == NULL);
3793         }
3794 #endif  /* DEBUG */
3795
3796         kmem_free(log->l_buf_cancel_table,
3797                   XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3798         log->l_buf_cancel_table = NULL;
3799
3800         return error;
3801 }
3802
3803 /*
3804  * Do the actual recovery
3805  */
3806 STATIC int
3807 xlog_do_recover(
3808         xlog_t          *log,
3809         xfs_daddr_t     head_blk,
3810         xfs_daddr_t     tail_blk)
3811 {
3812         int             error;
3813         xfs_buf_t       *bp;
3814         xfs_sb_t        *sbp;
3815
3816         /*
3817          * First replay the images in the log.
3818          */
3819         error = xlog_do_log_recovery(log, head_blk, tail_blk);
3820         if (error) {
3821                 return error;
3822         }
3823
3824         XFS_bflush(log->l_mp->m_ddev_targp);
3825
3826         /*
3827          * If IO errors happened during recovery, bail out.
3828          */
3829         if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3830                 return (EIO);
3831         }
3832
3833         /*
3834          * We now update the tail_lsn since much of the recovery has completed
3835          * and there may be space available to use.  If there were no extent
3836          * or iunlinks, we can free up the entire log and set the tail_lsn to
3837          * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3838          * lsn of the last known good LR on disk.  If there are extent frees
3839          * or iunlinks they will have some entries in the AIL; so we look at
3840          * the AIL to determine how to set the tail_lsn.
3841          */
3842         xlog_assign_tail_lsn(log->l_mp);
3843
3844         /*
3845          * Now that we've finished replaying all buffer and inode
3846          * updates, re-read in the superblock.
3847          */
3848         bp = xfs_getsb(log->l_mp, 0);
3849         XFS_BUF_UNDONE(bp);
3850         ASSERT(!(XFS_BUF_ISWRITE(bp)));
3851         ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3852         XFS_BUF_READ(bp);
3853         XFS_BUF_UNASYNC(bp);
3854         xfsbdstrat(log->l_mp, bp);
3855         error = xfs_iowait(bp);
3856         if (error) {
3857                 xfs_ioerror_alert("xlog_do_recover",
3858                                   log->l_mp, bp, XFS_BUF_ADDR(bp));
3859                 ASSERT(0);
3860                 xfs_buf_relse(bp);
3861                 return error;
3862         }
3863
3864         /* Convert superblock from on-disk format */
3865         sbp = &log->l_mp->m_sb;
3866         xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3867         ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3868         ASSERT(xfs_sb_good_version(sbp));
3869         xfs_buf_relse(bp);
3870
3871         /* We've re-read the superblock so re-initialize per-cpu counters */
3872         xfs_icsb_reinit_counters(log->l_mp);
3873
3874         xlog_recover_check_summary(log);
3875
3876         /* Normal transactions can now occur */
3877         log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3878         return 0;
3879 }
3880
3881 /*
3882  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3883  *
3884  * Return error or zero.
3885  */
3886 int
3887 xlog_recover(
3888         xlog_t          *log)
3889 {
3890         xfs_daddr_t     head_blk, tail_blk;
3891         int             error;
3892
3893         /* find the tail of the log */
3894         if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3895                 return error;
3896
3897         if (tail_blk != head_blk) {
3898                 /* There used to be a comment here:
3899                  *
3900                  * disallow recovery on read-only mounts.  note -- mount
3901                  * checks for ENOSPC and turns it into an intelligent
3902                  * error message.
3903                  * ...but this is no longer true.  Now, unless you specify
3904                  * NORECOVERY (in which case this function would never be
3905                  * called), we just go ahead and recover.  We do this all
3906                  * under the vfs layer, so we can get away with it unless
3907                  * the device itself is read-only, in which case we fail.
3908                  */
3909                 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3910                         return error;
3911                 }
3912
3913                 cmn_err(CE_NOTE,
3914                         "Starting XFS recovery on filesystem: %s (logdev: %s)",
3915                         log->l_mp->m_fsname, log->l_mp->m_logname ?
3916                         log->l_mp->m_logname : "internal");
3917
3918                 error = xlog_do_recover(log, head_blk, tail_blk);
3919                 log->l_flags |= XLOG_RECOVERY_NEEDED;
3920         }
3921         return error;
3922 }
3923
3924 /*
3925  * In the first part of recovery we replay inodes and buffers and build
3926  * up the list of extent free items which need to be processed.  Here
3927  * we process the extent free items and clean up the on disk unlinked
3928  * inode lists.  This is separated from the first part of recovery so
3929  * that the root and real-time bitmap inodes can be read in from disk in
3930  * between the two stages.  This is necessary so that we can free space
3931  * in the real-time portion of the file system.
3932  */
3933 int
3934 xlog_recover_finish(
3935         xlog_t          *log,
3936         int             mfsi_flags)
3937 {
3938         /*
3939          * Now we're ready to do the transactions needed for the
3940          * rest of recovery.  Start with completing all the extent
3941          * free intent records and then process the unlinked inode
3942          * lists.  At this point, we essentially run in normal mode
3943          * except that we're still performing recovery actions
3944          * rather than accepting new requests.
3945          */
3946         if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3947                 int     error;
3948                 error = xlog_recover_process_efis(log);
3949                 if (error) {
3950                         cmn_err(CE_ALERT,
3951                                 "Failed to recover EFIs on filesystem: %s",
3952                                 log->l_mp->m_fsname);
3953                         return error;
3954                 }
3955                 /*
3956                  * Sync the log to get all the EFIs out of the AIL.
3957                  * This isn't absolutely necessary, but it helps in
3958                  * case the unlink transactions would have problems
3959                  * pushing the EFIs out of the way.
3960                  */
3961                 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3962                               (XFS_LOG_FORCE | XFS_LOG_SYNC));
3963
3964                 if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
3965                         xlog_recover_process_iunlinks(log);
3966                 }
3967
3968                 xlog_recover_check_summary(log);
3969
3970                 cmn_err(CE_NOTE,
3971                         "Ending XFS recovery on filesystem: %s (logdev: %s)",
3972                         log->l_mp->m_fsname, log->l_mp->m_logname ?
3973                         log->l_mp->m_logname : "internal");
3974                 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3975         } else {
3976                 cmn_err(CE_DEBUG,
3977                         "!Ending clean XFS mount for filesystem: %s\n",
3978                         log->l_mp->m_fsname);
3979         }
3980         return 0;
3981 }
3982
3983
3984 #if defined(DEBUG)
3985 /*
3986  * Read all of the agf and agi counters and check that they
3987  * are consistent with the superblock counters.
3988  */
3989 void
3990 xlog_recover_check_summary(
3991         xlog_t          *log)
3992 {
3993         xfs_mount_t     *mp;
3994         xfs_agf_t       *agfp;
3995         xfs_agi_t       *agip;
3996         xfs_buf_t       *agfbp;
3997         xfs_buf_t       *agibp;
3998         xfs_daddr_t     agfdaddr;
3999         xfs_daddr_t     agidaddr;
4000         xfs_buf_t       *sbbp;
4001 #ifdef XFS_LOUD_RECOVERY
4002         xfs_sb_t        *sbp;
4003 #endif
4004         xfs_agnumber_t  agno;
4005         __uint64_t      freeblks;
4006         __uint64_t      itotal;
4007         __uint64_t      ifree;
4008
4009         mp = log->l_mp;
4010
4011         freeblks = 0LL;
4012         itotal = 0LL;
4013         ifree = 0LL;
4014         for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4015                 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
4016                 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
4017                                 XFS_FSS_TO_BB(mp, 1), 0);
4018                 if (XFS_BUF_ISERROR(agfbp)) {
4019                         xfs_ioerror_alert("xlog_recover_check_summary(agf)",
4020                                                 mp, agfbp, agfdaddr);
4021                 }
4022                 agfp = XFS_BUF_TO_AGF(agfbp);
4023                 ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
4024                 ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
4025                 ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
4026
4027                 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4028                             be32_to_cpu(agfp->agf_flcount);
4029                 xfs_buf_relse(agfbp);
4030
4031                 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4032                 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4033                                 XFS_FSS_TO_BB(mp, 1), 0);
4034                 if (XFS_BUF_ISERROR(agibp)) {
4035                         xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4036                                           mp, agibp, agidaddr);
4037                 }
4038                 agip = XFS_BUF_TO_AGI(agibp);
4039                 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
4040                 ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
4041                 ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
4042
4043                 itotal += be32_to_cpu(agip->agi_count);
4044                 ifree += be32_to_cpu(agip->agi_freecount);
4045                 xfs_buf_relse(agibp);
4046         }
4047
4048         sbbp = xfs_getsb(mp, 0);
4049 #ifdef XFS_LOUD_RECOVERY
4050         sbp = &mp->m_sb;
4051         xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
4052         cmn_err(CE_NOTE,
4053                 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4054                 sbp->sb_icount, itotal);
4055         cmn_err(CE_NOTE,
4056                 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4057                 sbp->sb_ifree, ifree);
4058         cmn_err(CE_NOTE,
4059                 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4060                 sbp->sb_fdblocks, freeblks);
4061 #if 0
4062         /*
4063          * This is turned off until I account for the allocation
4064          * btree blocks which live in free space.
4065          */
4066         ASSERT(sbp->sb_icount == itotal);
4067         ASSERT(sbp->sb_ifree == ifree);
4068         ASSERT(sbp->sb_fdblocks == freeblks);
4069 #endif
4070 #endif
4071         xfs_buf_relse(sbbp);
4072 }
4073 #endif /* DEBUG */