2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_sysfs.h"
45 #include "xfs_rmap_btree.h"
46 #include "xfs_refcount_btree.h"
47 #include "xfs_reflink.h"
48 #include "xfs_extent_busy.h"
51 static DEFINE_MUTEX(xfs_uuid_table_mutex);
52 static int xfs_uuid_table_size;
53 static uuid_t *xfs_uuid_table;
56 xfs_uuid_table_free(void)
58 if (xfs_uuid_table_size == 0)
60 kmem_free(xfs_uuid_table);
61 xfs_uuid_table = NULL;
62 xfs_uuid_table_size = 0;
66 * See if the UUID is unique among mounted XFS filesystems.
67 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
73 uuid_t *uuid = &mp->m_sb.sb_uuid;
76 if (mp->m_flags & XFS_MOUNT_NOUUID)
79 if (uuid_is_nil(uuid)) {
80 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
84 mutex_lock(&xfs_uuid_table_mutex);
85 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
86 if (uuid_is_nil(&xfs_uuid_table[i])) {
90 if (uuid_equal(uuid, &xfs_uuid_table[i]))
95 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
96 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
98 hole = xfs_uuid_table_size++;
100 xfs_uuid_table[hole] = *uuid;
101 mutex_unlock(&xfs_uuid_table_mutex);
106 mutex_unlock(&xfs_uuid_table_mutex);
107 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
113 struct xfs_mount *mp)
115 uuid_t *uuid = &mp->m_sb.sb_uuid;
118 if (mp->m_flags & XFS_MOUNT_NOUUID)
121 mutex_lock(&xfs_uuid_table_mutex);
122 for (i = 0; i < xfs_uuid_table_size; i++) {
123 if (uuid_is_nil(&xfs_uuid_table[i]))
125 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
127 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
130 ASSERT(i < xfs_uuid_table_size);
131 mutex_unlock(&xfs_uuid_table_mutex);
137 struct rcu_head *head)
139 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
141 ASSERT(atomic_read(&pag->pag_ref) == 0);
146 * Free up the per-ag resources associated with the mount structure.
153 struct xfs_perag *pag;
155 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
156 spin_lock(&mp->m_perag_lock);
157 pag = radix_tree_delete(&mp->m_perag_tree, agno);
158 spin_unlock(&mp->m_perag_lock);
160 ASSERT(atomic_read(&pag->pag_ref) == 0);
161 xfs_buf_hash_destroy(pag);
162 call_rcu(&pag->rcu_head, __xfs_free_perag);
167 * Check size of device based on the (data/realtime) block count.
168 * Note: this check is used by the growfs code as well as mount.
171 xfs_sb_validate_fsb_count(
175 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
176 ASSERT(sbp->sb_blocklog >= BBSHIFT);
178 /* Limited by ULONG_MAX of page cache index */
179 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
185 xfs_initialize_perag(
187 xfs_agnumber_t agcount,
188 xfs_agnumber_t *maxagi)
190 xfs_agnumber_t index;
191 xfs_agnumber_t first_initialised = NULLAGNUMBER;
196 * Walk the current per-ag tree so we don't try to initialise AGs
197 * that already exist (growfs case). Allocate and insert all the
198 * AGs we don't find ready for initialisation.
200 for (index = 0; index < agcount; index++) {
201 pag = xfs_perag_get(mp, index);
207 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
209 goto out_unwind_new_pags;
210 pag->pag_agno = index;
212 spin_lock_init(&pag->pag_ici_lock);
213 mutex_init(&pag->pag_ici_reclaim_lock);
214 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
215 if (xfs_buf_hash_init(pag))
217 init_waitqueue_head(&pag->pagb_wait);
219 if (radix_tree_preload(GFP_NOFS))
220 goto out_hash_destroy;
222 spin_lock(&mp->m_perag_lock);
223 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
225 spin_unlock(&mp->m_perag_lock);
226 radix_tree_preload_end();
228 goto out_hash_destroy;
230 spin_unlock(&mp->m_perag_lock);
231 radix_tree_preload_end();
232 /* first new pag is fully initialized */
233 if (first_initialised == NULLAGNUMBER)
234 first_initialised = index;
237 index = xfs_set_inode_alloc(mp, agcount);
242 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
246 xfs_buf_hash_destroy(pag);
250 /* unwind any prior newly initialized pags */
251 for (index = first_initialised; index < agcount; index++) {
252 pag = radix_tree_delete(&mp->m_perag_tree, index);
255 xfs_buf_hash_destroy(pag);
264 * Does the initial read of the superblock.
268 struct xfs_mount *mp,
271 unsigned int sector_size;
273 struct xfs_sb *sbp = &mp->m_sb;
275 int loud = !(flags & XFS_MFSI_QUIET);
276 const struct xfs_buf_ops *buf_ops;
278 ASSERT(mp->m_sb_bp == NULL);
279 ASSERT(mp->m_ddev_targp != NULL);
282 * For the initial read, we must guess at the sector
283 * size based on the block device. It's enough to
284 * get the sb_sectsize out of the superblock and
285 * then reread with the proper length.
286 * We don't verify it yet, because it may not be complete.
288 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
292 * Allocate a (locked) buffer to hold the superblock. This will be kept
293 * around at all times to optimize access to the superblock. Therefore,
294 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
298 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
299 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
303 xfs_warn(mp, "SB validate failed with error %d.", error);
304 /* bad CRC means corrupted metadata */
305 if (error == -EFSBADCRC)
306 error = -EFSCORRUPTED;
311 * Initialize the mount structure from the superblock.
313 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
316 * If we haven't validated the superblock, do so now before we try
317 * to check the sector size and reread the superblock appropriately.
319 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
321 xfs_warn(mp, "Invalid superblock magic number");
327 * We must be able to do sector-sized and sector-aligned IO.
329 if (sector_size > sbp->sb_sectsize) {
331 xfs_warn(mp, "device supports %u byte sectors (not %u)",
332 sector_size, sbp->sb_sectsize);
337 if (buf_ops == NULL) {
339 * Re-read the superblock so the buffer is correctly sized,
340 * and properly verified.
343 sector_size = sbp->sb_sectsize;
344 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
348 xfs_reinit_percpu_counters(mp);
350 /* no need to be quiet anymore, so reset the buf ops */
351 bp->b_ops = &xfs_sb_buf_ops;
363 * Update alignment values based on mount options and sb values
366 xfs_update_alignment(xfs_mount_t *mp)
368 xfs_sb_t *sbp = &(mp->m_sb);
372 * If stripe unit and stripe width are not multiples
373 * of the fs blocksize turn off alignment.
375 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
376 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
378 "alignment check failed: sunit/swidth vs. blocksize(%d)",
383 * Convert the stripe unit and width to FSBs.
385 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
386 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
388 "alignment check failed: sunit/swidth vs. agsize(%d)",
391 } else if (mp->m_dalign) {
392 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
395 "alignment check failed: sunit(%d) less than bsize(%d)",
396 mp->m_dalign, sbp->sb_blocksize);
402 * Update superblock with new values
405 if (xfs_sb_version_hasdalign(sbp)) {
406 if (sbp->sb_unit != mp->m_dalign) {
407 sbp->sb_unit = mp->m_dalign;
408 mp->m_update_sb = true;
410 if (sbp->sb_width != mp->m_swidth) {
411 sbp->sb_width = mp->m_swidth;
412 mp->m_update_sb = true;
416 "cannot change alignment: superblock does not support data alignment");
419 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
420 xfs_sb_version_hasdalign(&mp->m_sb)) {
421 mp->m_dalign = sbp->sb_unit;
422 mp->m_swidth = sbp->sb_width;
429 * Set the maximum inode count for this filesystem
432 xfs_set_maxicount(xfs_mount_t *mp)
434 xfs_sb_t *sbp = &(mp->m_sb);
437 if (sbp->sb_imax_pct) {
439 * Make sure the maximum inode count is a multiple
440 * of the units we allocate inodes in.
442 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
444 do_div(icount, mp->m_ialloc_blks);
445 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
453 * Set the default minimum read and write sizes unless
454 * already specified in a mount option.
455 * We use smaller I/O sizes when the file system
456 * is being used for NFS service (wsync mount option).
459 xfs_set_rw_sizes(xfs_mount_t *mp)
461 xfs_sb_t *sbp = &(mp->m_sb);
462 int readio_log, writeio_log;
464 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
465 if (mp->m_flags & XFS_MOUNT_WSYNC) {
466 readio_log = XFS_WSYNC_READIO_LOG;
467 writeio_log = XFS_WSYNC_WRITEIO_LOG;
469 readio_log = XFS_READIO_LOG_LARGE;
470 writeio_log = XFS_WRITEIO_LOG_LARGE;
473 readio_log = mp->m_readio_log;
474 writeio_log = mp->m_writeio_log;
477 if (sbp->sb_blocklog > readio_log) {
478 mp->m_readio_log = sbp->sb_blocklog;
480 mp->m_readio_log = readio_log;
482 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
483 if (sbp->sb_blocklog > writeio_log) {
484 mp->m_writeio_log = sbp->sb_blocklog;
486 mp->m_writeio_log = writeio_log;
488 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
492 * precalculate the low space thresholds for dynamic speculative preallocation.
495 xfs_set_low_space_thresholds(
496 struct xfs_mount *mp)
500 for (i = 0; i < XFS_LOWSP_MAX; i++) {
501 __uint64_t space = mp->m_sb.sb_dblocks;
504 mp->m_low_space[i] = space * (i + 1);
510 * Set whether we're using inode alignment.
513 xfs_set_inoalignment(xfs_mount_t *mp)
515 if (xfs_sb_version_hasalign(&mp->m_sb) &&
516 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
517 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
519 mp->m_inoalign_mask = 0;
521 * If we are using stripe alignment, check whether
522 * the stripe unit is a multiple of the inode alignment
524 if (mp->m_dalign && mp->m_inoalign_mask &&
525 !(mp->m_dalign & mp->m_inoalign_mask))
526 mp->m_sinoalign = mp->m_dalign;
532 * Check that the data (and log if separate) is an ok size.
536 struct xfs_mount *mp)
542 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
543 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
544 xfs_warn(mp, "filesystem size mismatch detected");
547 error = xfs_buf_read_uncached(mp->m_ddev_targp,
548 d - XFS_FSS_TO_BB(mp, 1),
549 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
551 xfs_warn(mp, "last sector read failed");
556 if (mp->m_logdev_targp == mp->m_ddev_targp)
559 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
560 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
561 xfs_warn(mp, "log size mismatch detected");
564 error = xfs_buf_read_uncached(mp->m_logdev_targp,
565 d - XFS_FSB_TO_BB(mp, 1),
566 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
568 xfs_warn(mp, "log device read failed");
576 * Clear the quotaflags in memory and in the superblock.
579 xfs_mount_reset_sbqflags(
580 struct xfs_mount *mp)
584 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
585 if (mp->m_sb.sb_qflags == 0)
587 spin_lock(&mp->m_sb_lock);
588 mp->m_sb.sb_qflags = 0;
589 spin_unlock(&mp->m_sb_lock);
591 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
594 return xfs_sync_sb(mp, false);
598 xfs_default_resblks(xfs_mount_t *mp)
603 * We default to 5% or 8192 fsbs of space reserved, whichever is
604 * smaller. This is intended to cover concurrent allocation
605 * transactions when we initially hit enospc. These each require a 4
606 * block reservation. Hence by default we cover roughly 2000 concurrent
607 * allocation reservations.
609 resblks = mp->m_sb.sb_dblocks;
611 resblks = min_t(__uint64_t, resblks, 8192);
616 * This function does the following on an initial mount of a file system:
617 * - reads the superblock from disk and init the mount struct
618 * - if we're a 32-bit kernel, do a size check on the superblock
619 * so we don't mount terabyte filesystems
620 * - init mount struct realtime fields
621 * - allocate inode hash table for fs
622 * - init directory manager
623 * - perform recovery and init the log manager
627 struct xfs_mount *mp)
629 struct xfs_sb *sbp = &(mp->m_sb);
630 struct xfs_inode *rip;
636 xfs_sb_mount_common(mp, sbp);
639 * Check for a mismatched features2 values. Older kernels read & wrote
640 * into the wrong sb offset for sb_features2 on some platforms due to
641 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
642 * which made older superblock reading/writing routines swap it as a
645 * For backwards compatibility, we make both slots equal.
647 * If we detect a mismatched field, we OR the set bits into the existing
648 * features2 field in case it has already been modified; we don't want
649 * to lose any features. We then update the bad location with the ORed
650 * value so that older kernels will see any features2 flags. The
651 * superblock writeback code ensures the new sb_features2 is copied to
652 * sb_bad_features2 before it is logged or written to disk.
654 if (xfs_sb_has_mismatched_features2(sbp)) {
655 xfs_warn(mp, "correcting sb_features alignment problem");
656 sbp->sb_features2 |= sbp->sb_bad_features2;
657 mp->m_update_sb = true;
660 * Re-check for ATTR2 in case it was found in bad_features2
663 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
664 !(mp->m_flags & XFS_MOUNT_NOATTR2))
665 mp->m_flags |= XFS_MOUNT_ATTR2;
668 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
669 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
670 xfs_sb_version_removeattr2(&mp->m_sb);
671 mp->m_update_sb = true;
673 /* update sb_versionnum for the clearing of the morebits */
674 if (!sbp->sb_features2)
675 mp->m_update_sb = true;
678 /* always use v2 inodes by default now */
679 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
680 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
681 mp->m_update_sb = true;
685 * Check if sb_agblocks is aligned at stripe boundary
686 * If sb_agblocks is NOT aligned turn off m_dalign since
687 * allocator alignment is within an ag, therefore ag has
688 * to be aligned at stripe boundary.
690 error = xfs_update_alignment(mp);
694 xfs_alloc_compute_maxlevels(mp);
695 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
696 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
697 xfs_ialloc_compute_maxlevels(mp);
698 xfs_rmapbt_compute_maxlevels(mp);
699 xfs_refcountbt_compute_maxlevels(mp);
701 xfs_set_maxicount(mp);
703 /* enable fail_at_unmount as default */
704 mp->m_fail_unmount = 1;
706 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
710 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
711 &mp->m_kobj, "stats");
713 goto out_remove_sysfs;
715 error = xfs_error_sysfs_init(mp);
720 error = xfs_uuid_mount(mp);
722 goto out_remove_error_sysfs;
725 * Set the minimum read and write sizes
727 xfs_set_rw_sizes(mp);
729 /* set the low space thresholds for dynamic preallocation */
730 xfs_set_low_space_thresholds(mp);
733 * Set the inode cluster size.
734 * This may still be overridden by the file system
735 * block size if it is larger than the chosen cluster size.
737 * For v5 filesystems, scale the cluster size with the inode size to
738 * keep a constant ratio of inode per cluster buffer, but only if mkfs
739 * has set the inode alignment value appropriately for larger cluster
742 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
743 if (xfs_sb_version_hascrc(&mp->m_sb)) {
744 int new_size = mp->m_inode_cluster_size;
746 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
747 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
748 mp->m_inode_cluster_size = new_size;
752 * If enabled, sparse inode chunk alignment is expected to match the
753 * cluster size. Full inode chunk alignment must match the chunk size,
754 * but that is checked on sb read verification...
756 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
757 mp->m_sb.sb_spino_align !=
758 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
760 "Sparse inode block alignment (%u) must match cluster size (%llu).",
761 mp->m_sb.sb_spino_align,
762 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
764 goto out_remove_uuid;
768 * Set inode alignment fields
770 xfs_set_inoalignment(mp);
773 * Check that the data (and log if separate) is an ok size.
775 error = xfs_check_sizes(mp);
777 goto out_remove_uuid;
780 * Initialize realtime fields in the mount structure
782 error = xfs_rtmount_init(mp);
784 xfs_warn(mp, "RT mount failed");
785 goto out_remove_uuid;
789 * Copies the low order bits of the timestamp and the randomly
790 * set "sequence" number out of a UUID.
792 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
794 mp->m_dmevmask = 0; /* not persistent; set after each mount */
796 error = xfs_da_mount(mp);
798 xfs_warn(mp, "Failed dir/attr init: %d", error);
799 goto out_remove_uuid;
803 * Initialize the precomputed transaction reservations values.
808 * Allocate and initialize the per-ag data.
810 spin_lock_init(&mp->m_perag_lock);
811 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
812 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
814 xfs_warn(mp, "Failed per-ag init: %d", error);
818 if (!sbp->sb_logblocks) {
819 xfs_warn(mp, "no log defined");
820 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
821 error = -EFSCORRUPTED;
826 * Log's mount-time initialization. The first part of recovery can place
827 * some items on the AIL, to be handled when recovery is finished or
830 error = xfs_log_mount(mp, mp->m_logdev_targp,
831 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
832 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
834 xfs_warn(mp, "log mount failed");
839 * Now the log is mounted, we know if it was an unclean shutdown or
840 * not. If it was, with the first phase of recovery has completed, we
841 * have consistent AG blocks on disk. We have not recovered EFIs yet,
842 * but they are recovered transactionally in the second recovery phase
845 * Hence we can safely re-initialise incore superblock counters from
846 * the per-ag data. These may not be correct if the filesystem was not
847 * cleanly unmounted, so we need to wait for recovery to finish before
850 * If the filesystem was cleanly unmounted, then we can trust the
851 * values in the superblock to be correct and we don't need to do
854 * If we are currently making the filesystem, the initialisation will
855 * fail as the perag data is in an undefined state.
857 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
858 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
859 !mp->m_sb.sb_inprogress) {
860 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
862 goto out_log_dealloc;
866 * Get and sanity-check the root inode.
867 * Save the pointer to it in the mount structure.
869 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
871 xfs_warn(mp, "failed to read root inode");
872 goto out_log_dealloc;
877 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
878 xfs_warn(mp, "corrupted root inode %llu: not a directory",
879 (unsigned long long)rip->i_ino);
880 xfs_iunlock(rip, XFS_ILOCK_EXCL);
881 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
883 error = -EFSCORRUPTED;
886 mp->m_rootip = rip; /* save it */
888 xfs_iunlock(rip, XFS_ILOCK_EXCL);
891 * Initialize realtime inode pointers in the mount structure
893 error = xfs_rtmount_inodes(mp);
896 * Free up the root inode.
898 xfs_warn(mp, "failed to read RT inodes");
903 * If this is a read-only mount defer the superblock updates until
904 * the next remount into writeable mode. Otherwise we would never
905 * perform the update e.g. for the root filesystem.
907 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
908 error = xfs_sync_sb(mp, false);
910 xfs_warn(mp, "failed to write sb changes");
916 * Initialise the XFS quota management subsystem for this mount
918 if (XFS_IS_QUOTA_RUNNING(mp)) {
919 error = xfs_qm_newmount(mp, "amount, "aflags);
923 ASSERT(!XFS_IS_QUOTA_ON(mp));
926 * If a file system had quotas running earlier, but decided to
927 * mount without -o uquota/pquota/gquota options, revoke the
928 * quotachecked license.
930 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
931 xfs_notice(mp, "resetting quota flags");
932 error = xfs_mount_reset_sbqflags(mp);
939 * During the second phase of log recovery, we need iget and
940 * iput to behave like they do for an active filesystem.
941 * xfs_fs_drop_inode needs to be able to prevent the deletion
942 * of inodes before we're done replaying log items on those
945 mp->m_super->s_flags |= MS_ACTIVE;
948 * Finish recovering the file system. This part needed to be delayed
949 * until after the root and real-time bitmap inodes were consistently
952 error = xfs_log_mount_finish(mp);
954 xfs_warn(mp, "log mount finish failed");
959 * Now the log is fully replayed, we can transition to full read-only
960 * mode for read-only mounts. This will sync all the metadata and clean
961 * the log so that the recovery we just performed does not have to be
962 * replayed again on the next mount.
964 * We use the same quiesce mechanism as the rw->ro remount, as they are
965 * semantically identical operations.
967 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
969 xfs_quiesce_attr(mp);
973 * Complete the quota initialisation, post-log-replay component.
976 ASSERT(mp->m_qflags == 0);
977 mp->m_qflags = quotaflags;
979 xfs_qm_mount_quotas(mp);
983 * Now we are mounted, reserve a small amount of unused space for
984 * privileged transactions. This is needed so that transaction
985 * space required for critical operations can dip into this pool
986 * when at ENOSPC. This is needed for operations like create with
987 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
988 * are not allowed to use this reserved space.
990 * This may drive us straight to ENOSPC on mount, but that implies
991 * we were already there on the last unmount. Warn if this occurs.
993 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
994 resblks = xfs_default_resblks(mp);
995 error = xfs_reserve_blocks(mp, &resblks, NULL);
998 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1000 /* Recover any CoW blocks that never got remapped. */
1001 error = xfs_reflink_recover_cow(mp);
1004 "Error %d recovering leftover CoW allocations.", error);
1005 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1009 /* Reserve AG blocks for future btree expansion. */
1010 error = xfs_fs_reserve_ag_blocks(mp);
1011 if (error && error != -ENOSPC)
1018 xfs_fs_unreserve_ag_blocks(mp);
1020 xfs_qm_unmount_quotas(mp);
1022 mp->m_super->s_flags &= ~MS_ACTIVE;
1023 xfs_rtunmount_inodes(mp);
1026 cancel_delayed_work_sync(&mp->m_reclaim_work);
1027 xfs_reclaim_inodes(mp, SYNC_WAIT);
1029 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1030 xfs_log_mount_cancel(mp);
1032 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1033 xfs_wait_buftarg(mp->m_logdev_targp);
1034 xfs_wait_buftarg(mp->m_ddev_targp);
1040 xfs_uuid_unmount(mp);
1041 out_remove_error_sysfs:
1042 xfs_error_sysfs_del(mp);
1044 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1046 xfs_sysfs_del(&mp->m_kobj);
1052 * This flushes out the inodes,dquots and the superblock, unmounts the
1053 * log and makes sure that incore structures are freed.
1057 struct xfs_mount *mp)
1062 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1063 cancel_delayed_work_sync(&mp->m_cowblocks_work);
1065 xfs_fs_unreserve_ag_blocks(mp);
1066 xfs_qm_unmount_quotas(mp);
1067 xfs_rtunmount_inodes(mp);
1068 IRELE(mp->m_rootip);
1071 * We can potentially deadlock here if we have an inode cluster
1072 * that has been freed has its buffer still pinned in memory because
1073 * the transaction is still sitting in a iclog. The stale inodes
1074 * on that buffer will have their flush locks held until the
1075 * transaction hits the disk and the callbacks run. the inode
1076 * flush takes the flush lock unconditionally and with nothing to
1077 * push out the iclog we will never get that unlocked. hence we
1078 * need to force the log first.
1080 xfs_log_force(mp, XFS_LOG_SYNC);
1083 * Wait for all busy extents to be freed, including completion of
1084 * any discard operation.
1086 xfs_extent_busy_wait_all(mp);
1087 flush_workqueue(xfs_discard_wq);
1090 * We now need to tell the world we are unmounting. This will allow
1091 * us to detect that the filesystem is going away and we should error
1092 * out anything that we have been retrying in the background. This will
1093 * prevent neverending retries in AIL pushing from hanging the unmount.
1095 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1098 * Flush all pending changes from the AIL.
1100 xfs_ail_push_all_sync(mp->m_ail);
1103 * And reclaim all inodes. At this point there should be no dirty
1104 * inodes and none should be pinned or locked, but use synchronous
1105 * reclaim just to be sure. We can stop background inode reclaim
1106 * here as well if it is still running.
1108 cancel_delayed_work_sync(&mp->m_reclaim_work);
1109 xfs_reclaim_inodes(mp, SYNC_WAIT);
1114 * Unreserve any blocks we have so that when we unmount we don't account
1115 * the reserved free space as used. This is really only necessary for
1116 * lazy superblock counting because it trusts the incore superblock
1117 * counters to be absolutely correct on clean unmount.
1119 * We don't bother correcting this elsewhere for lazy superblock
1120 * counting because on mount of an unclean filesystem we reconstruct the
1121 * correct counter value and this is irrelevant.
1123 * For non-lazy counter filesystems, this doesn't matter at all because
1124 * we only every apply deltas to the superblock and hence the incore
1125 * value does not matter....
1128 error = xfs_reserve_blocks(mp, &resblks, NULL);
1130 xfs_warn(mp, "Unable to free reserved block pool. "
1131 "Freespace may not be correct on next mount.");
1133 error = xfs_log_sbcount(mp);
1135 xfs_warn(mp, "Unable to update superblock counters. "
1136 "Freespace may not be correct on next mount.");
1139 xfs_log_unmount(mp);
1141 xfs_uuid_unmount(mp);
1144 xfs_errortag_clearall(mp, 0);
1148 xfs_error_sysfs_del(mp);
1149 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1150 xfs_sysfs_del(&mp->m_kobj);
1154 * Determine whether modifications can proceed. The caller specifies the minimum
1155 * freeze level for which modifications should not be allowed. This allows
1156 * certain operations to proceed while the freeze sequence is in progress, if
1161 struct xfs_mount *mp,
1164 ASSERT(level > SB_UNFROZEN);
1165 if ((mp->m_super->s_writers.frozen >= level) ||
1166 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1175 * Sync the superblock counters to disk.
1177 * Note this code can be called during the process of freezing, so we use the
1178 * transaction allocator that does not block when the transaction subsystem is
1179 * in its frozen state.
1182 xfs_log_sbcount(xfs_mount_t *mp)
1184 /* allow this to proceed during the freeze sequence... */
1185 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1189 * we don't need to do this if we are updating the superblock
1190 * counters on every modification.
1192 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1195 return xfs_sync_sb(mp, true);
1199 * Deltas for the inode count are +/-64, hence we use a large batch size
1200 * of 128 so we don't need to take the counter lock on every update.
1202 #define XFS_ICOUNT_BATCH 128
1205 struct xfs_mount *mp,
1208 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1209 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1211 percpu_counter_add(&mp->m_icount, -delta);
1219 struct xfs_mount *mp,
1222 percpu_counter_add(&mp->m_ifree, delta);
1223 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1225 percpu_counter_add(&mp->m_ifree, -delta);
1232 * Deltas for the block count can vary from 1 to very large, but lock contention
1233 * only occurs on frequent small block count updates such as in the delayed
1234 * allocation path for buffered writes (page a time updates). Hence we set
1235 * a large batch count (1024) to minimise global counter updates except when
1236 * we get near to ENOSPC and we have to be very accurate with our updates.
1238 #define XFS_FDBLOCKS_BATCH 1024
1241 struct xfs_mount *mp,
1251 * If the reserve pool is depleted, put blocks back into it
1252 * first. Most of the time the pool is full.
1254 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1255 percpu_counter_add(&mp->m_fdblocks, delta);
1259 spin_lock(&mp->m_sb_lock);
1260 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1262 if (res_used > delta) {
1263 mp->m_resblks_avail += delta;
1266 mp->m_resblks_avail = mp->m_resblks;
1267 percpu_counter_add(&mp->m_fdblocks, delta);
1269 spin_unlock(&mp->m_sb_lock);
1274 * Taking blocks away, need to be more accurate the closer we
1277 * If the counter has a value of less than 2 * max batch size,
1278 * then make everything serialise as we are real close to
1281 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1282 XFS_FDBLOCKS_BATCH) < 0)
1285 batch = XFS_FDBLOCKS_BATCH;
1287 __percpu_counter_add(&mp->m_fdblocks, delta, batch);
1288 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1289 XFS_FDBLOCKS_BATCH) >= 0) {
1295 * lock up the sb for dipping into reserves before releasing the space
1296 * that took us to ENOSPC.
1298 spin_lock(&mp->m_sb_lock);
1299 percpu_counter_add(&mp->m_fdblocks, -delta);
1301 goto fdblocks_enospc;
1303 lcounter = (long long)mp->m_resblks_avail + delta;
1304 if (lcounter >= 0) {
1305 mp->m_resblks_avail = lcounter;
1306 spin_unlock(&mp->m_sb_lock);
1309 printk_once(KERN_WARNING
1310 "Filesystem \"%s\": reserve blocks depleted! "
1311 "Consider increasing reserve pool size.",
1314 spin_unlock(&mp->m_sb_lock);
1320 struct xfs_mount *mp,
1326 spin_lock(&mp->m_sb_lock);
1327 lcounter = mp->m_sb.sb_frextents + delta;
1331 mp->m_sb.sb_frextents = lcounter;
1332 spin_unlock(&mp->m_sb_lock);
1337 * xfs_getsb() is called to obtain the buffer for the superblock.
1338 * The buffer is returned locked and read in from disk.
1339 * The buffer should be released with a call to xfs_brelse().
1341 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1342 * the superblock buffer if it can be locked without sleeping.
1343 * If it can't then we'll return NULL.
1347 struct xfs_mount *mp,
1350 struct xfs_buf *bp = mp->m_sb_bp;
1352 if (!xfs_buf_trylock(bp)) {
1353 if (flags & XBF_TRYLOCK)
1359 ASSERT(bp->b_flags & XBF_DONE);
1364 * Used to free the superblock along various error paths.
1368 struct xfs_mount *mp)
1370 struct xfs_buf *bp = mp->m_sb_bp;
1378 * If the underlying (data/log/rt) device is readonly, there are some
1379 * operations that cannot proceed.
1382 xfs_dev_is_read_only(
1383 struct xfs_mount *mp,
1386 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1387 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1388 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1389 xfs_notice(mp, "%s required on read-only device.", message);
1390 xfs_notice(mp, "write access unavailable, cannot proceed.");