]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/xfs/xfs_mount.c
f4daf1ec9931fee40f94ff81d0664bf67f3af518
[karo-tx-linux.git] / fs / xfs / xfs_mount.c
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46
47 STATIC void     xfs_mount_log_sbunit(xfs_mount_t *, __int64_t);
48 STATIC int      xfs_uuid_mount(xfs_mount_t *);
49 STATIC void     xfs_uuid_unmount(xfs_mount_t *mp);
50 STATIC void     xfs_unmountfs_wait(xfs_mount_t *);
51
52
53 #ifdef HAVE_PERCPU_SB
54 STATIC void     xfs_icsb_destroy_counters(xfs_mount_t *);
55 STATIC void     xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
56                                                 int, int);
57 STATIC void     xfs_icsb_sync_counters(xfs_mount_t *);
58 STATIC int      xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
59                                                 int64_t, int);
60 STATIC int      xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
61
62 #else
63
64 #define xfs_icsb_destroy_counters(mp)                   do { } while (0)
65 #define xfs_icsb_balance_counter(mp, a, b, c)           do { } while (0)
66 #define xfs_icsb_sync_counters(mp)                      do { } while (0)
67 #define xfs_icsb_modify_counters(mp, a, b, c)           do { } while (0)
68
69 #endif
70
71 static const struct {
72         short offset;
73         short type;     /* 0 = integer
74                          * 1 = binary / string (no translation)
75                          */
76 } xfs_sb_info[] = {
77     { offsetof(xfs_sb_t, sb_magicnum),   0 },
78     { offsetof(xfs_sb_t, sb_blocksize),  0 },
79     { offsetof(xfs_sb_t, sb_dblocks),    0 },
80     { offsetof(xfs_sb_t, sb_rblocks),    0 },
81     { offsetof(xfs_sb_t, sb_rextents),   0 },
82     { offsetof(xfs_sb_t, sb_uuid),       1 },
83     { offsetof(xfs_sb_t, sb_logstart),   0 },
84     { offsetof(xfs_sb_t, sb_rootino),    0 },
85     { offsetof(xfs_sb_t, sb_rbmino),     0 },
86     { offsetof(xfs_sb_t, sb_rsumino),    0 },
87     { offsetof(xfs_sb_t, sb_rextsize),   0 },
88     { offsetof(xfs_sb_t, sb_agblocks),   0 },
89     { offsetof(xfs_sb_t, sb_agcount),    0 },
90     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
91     { offsetof(xfs_sb_t, sb_logblocks),  0 },
92     { offsetof(xfs_sb_t, sb_versionnum), 0 },
93     { offsetof(xfs_sb_t, sb_sectsize),   0 },
94     { offsetof(xfs_sb_t, sb_inodesize),  0 },
95     { offsetof(xfs_sb_t, sb_inopblock),  0 },
96     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
97     { offsetof(xfs_sb_t, sb_blocklog),   0 },
98     { offsetof(xfs_sb_t, sb_sectlog),    0 },
99     { offsetof(xfs_sb_t, sb_inodelog),   0 },
100     { offsetof(xfs_sb_t, sb_inopblog),   0 },
101     { offsetof(xfs_sb_t, sb_agblklog),   0 },
102     { offsetof(xfs_sb_t, sb_rextslog),   0 },
103     { offsetof(xfs_sb_t, sb_inprogress), 0 },
104     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
105     { offsetof(xfs_sb_t, sb_icount),     0 },
106     { offsetof(xfs_sb_t, sb_ifree),      0 },
107     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
108     { offsetof(xfs_sb_t, sb_frextents),  0 },
109     { offsetof(xfs_sb_t, sb_uquotino),   0 },
110     { offsetof(xfs_sb_t, sb_gquotino),   0 },
111     { offsetof(xfs_sb_t, sb_qflags),     0 },
112     { offsetof(xfs_sb_t, sb_flags),      0 },
113     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
114     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
115     { offsetof(xfs_sb_t, sb_unit),       0 },
116     { offsetof(xfs_sb_t, sb_width),      0 },
117     { offsetof(xfs_sb_t, sb_dirblklog),  0 },
118     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
119     { offsetof(xfs_sb_t, sb_logsectsize),0 },
120     { offsetof(xfs_sb_t, sb_logsunit),   0 },
121     { offsetof(xfs_sb_t, sb_features2),  0 },
122     { sizeof(xfs_sb_t),                  0 }
123 };
124
125 /*
126  * Return a pointer to an initialized xfs_mount structure.
127  */
128 xfs_mount_t *
129 xfs_mount_init(void)
130 {
131         xfs_mount_t *mp;
132
133         mp = kmem_zalloc(sizeof(xfs_mount_t), KM_SLEEP);
134
135         if (xfs_icsb_init_counters(mp)) {
136                 mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB;
137         }
138
139         AIL_LOCKINIT(&mp->m_ail_lock, "xfs_ail");
140         spinlock_init(&mp->m_sb_lock, "xfs_sb");
141         mutex_init(&mp->m_ilock);
142         initnsema(&mp->m_growlock, 1, "xfs_grow");
143         /*
144          * Initialize the AIL.
145          */
146         xfs_trans_ail_init(mp);
147
148         atomic_set(&mp->m_active_trans, 0);
149
150         return mp;
151 }
152
153 /*
154  * Free up the resources associated with a mount structure.  Assume that
155  * the structure was initially zeroed, so we can tell which fields got
156  * initialized.
157  */
158 void
159 xfs_mount_free(
160         xfs_mount_t     *mp,
161         int             remove_bhv)
162 {
163         if (mp->m_ihash)
164                 xfs_ihash_free(mp);
165         if (mp->m_chash)
166                 xfs_chash_free(mp);
167
168         if (mp->m_perag) {
169                 int     agno;
170
171                 for (agno = 0; agno < mp->m_maxagi; agno++)
172                         if (mp->m_perag[agno].pagb_list)
173                                 kmem_free(mp->m_perag[agno].pagb_list,
174                                                 sizeof(xfs_perag_busy_t) *
175                                                         XFS_PAGB_NUM_SLOTS);
176                 kmem_free(mp->m_perag,
177                           sizeof(xfs_perag_t) * mp->m_sb.sb_agcount);
178         }
179
180         AIL_LOCK_DESTROY(&mp->m_ail_lock);
181         spinlock_destroy(&mp->m_sb_lock);
182         mutex_destroy(&mp->m_ilock);
183         freesema(&mp->m_growlock);
184         if (mp->m_quotainfo)
185                 XFS_QM_DONE(mp);
186
187         if (mp->m_fsname != NULL)
188                 kmem_free(mp->m_fsname, mp->m_fsname_len);
189         if (mp->m_rtname != NULL)
190                 kmem_free(mp->m_rtname, strlen(mp->m_rtname) + 1);
191         if (mp->m_logname != NULL)
192                 kmem_free(mp->m_logname, strlen(mp->m_logname) + 1);
193
194         if (remove_bhv) {
195                 struct bhv_vfs  *vfsp = XFS_MTOVFS(mp);
196
197                 bhv_remove_all_vfsops(vfsp, 0);
198                 VFS_REMOVEBHV(vfsp, &mp->m_bhv);
199         }
200
201         xfs_icsb_destroy_counters(mp);
202         kmem_free(mp, sizeof(xfs_mount_t));
203 }
204
205 /*
206  * Check size of device based on the (data/realtime) block count.
207  * Note: this check is used by the growfs code as well as mount.
208  */
209 int
210 xfs_sb_validate_fsb_count(
211         xfs_sb_t        *sbp,
212         __uint64_t      nblocks)
213 {
214         ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
215         ASSERT(sbp->sb_blocklog >= BBSHIFT);
216
217 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
218         if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
219                 return E2BIG;
220 #else                  /* Limited by UINT_MAX of sectors */
221         if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
222                 return E2BIG;
223 #endif
224         return 0;
225 }
226
227 /*
228  * Check the validity of the SB found.
229  */
230 STATIC int
231 xfs_mount_validate_sb(
232         xfs_mount_t     *mp,
233         xfs_sb_t        *sbp,
234         int             flags)
235 {
236         /*
237          * If the log device and data device have the
238          * same device number, the log is internal.
239          * Consequently, the sb_logstart should be non-zero.  If
240          * we have a zero sb_logstart in this case, we may be trying to mount
241          * a volume filesystem in a non-volume manner.
242          */
243         if (sbp->sb_magicnum != XFS_SB_MAGIC) {
244                 xfs_fs_mount_cmn_err(flags, "bad magic number");
245                 return XFS_ERROR(EWRONGFS);
246         }
247
248         if (!XFS_SB_GOOD_VERSION(sbp)) {
249                 xfs_fs_mount_cmn_err(flags, "bad version");
250                 return XFS_ERROR(EWRONGFS);
251         }
252
253         if (unlikely(
254             sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
255                 xfs_fs_mount_cmn_err(flags,
256                         "filesystem is marked as having an external log; "
257                         "specify logdev on the\nmount command line.");
258                 return XFS_ERROR(EINVAL);
259         }
260
261         if (unlikely(
262             sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
263                 xfs_fs_mount_cmn_err(flags,
264                         "filesystem is marked as having an internal log; "
265                         "do not specify logdev on\nthe mount command line.");
266                 return XFS_ERROR(EINVAL);
267         }
268
269         /*
270          * More sanity checking. These were stolen directly from
271          * xfs_repair.
272          */
273         if (unlikely(
274             sbp->sb_agcount <= 0                                        ||
275             sbp->sb_sectsize < XFS_MIN_SECTORSIZE                       ||
276             sbp->sb_sectsize > XFS_MAX_SECTORSIZE                       ||
277             sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG                    ||
278             sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG                    ||
279             sbp->sb_blocksize < XFS_MIN_BLOCKSIZE                       ||
280             sbp->sb_blocksize > XFS_MAX_BLOCKSIZE                       ||
281             sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG                    ||
282             sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG                    ||
283             sbp->sb_inodesize < XFS_DINODE_MIN_SIZE                     ||
284             sbp->sb_inodesize > XFS_DINODE_MAX_SIZE                     ||
285             sbp->sb_inodelog < XFS_DINODE_MIN_LOG                       ||
286             sbp->sb_inodelog > XFS_DINODE_MAX_LOG                       ||
287             (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)   ||
288             (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)  ||
289             (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)  ||
290             (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
291                 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
292                 return XFS_ERROR(EFSCORRUPTED);
293         }
294
295         /*
296          * Sanity check AG count, size fields against data size field
297          */
298         if (unlikely(
299             sbp->sb_dblocks == 0 ||
300             sbp->sb_dblocks >
301              (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
302             sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
303                               sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
304                 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
305                 return XFS_ERROR(EFSCORRUPTED);
306         }
307
308         if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
309             xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
310                 xfs_fs_mount_cmn_err(flags,
311                         "file system too large to be mounted on this system.");
312                 return XFS_ERROR(E2BIG);
313         }
314
315         if (unlikely(sbp->sb_inprogress)) {
316                 xfs_fs_mount_cmn_err(flags, "file system busy");
317                 return XFS_ERROR(EFSCORRUPTED);
318         }
319
320         /*
321          * Version 1 directory format has never worked on Linux.
322          */
323         if (unlikely(!XFS_SB_VERSION_HASDIRV2(sbp))) {
324                 xfs_fs_mount_cmn_err(flags,
325                         "file system using version 1 directory format");
326                 return XFS_ERROR(ENOSYS);
327         }
328
329         /*
330          * Until this is fixed only page-sized or smaller data blocks work.
331          */
332         if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
333                 xfs_fs_mount_cmn_err(flags,
334                         "file system with blocksize %d bytes",
335                         sbp->sb_blocksize);
336                 xfs_fs_mount_cmn_err(flags,
337                         "only pagesize (%ld) or less will currently work.",
338                         PAGE_SIZE);
339                 return XFS_ERROR(ENOSYS);
340         }
341
342         return 0;
343 }
344
345 xfs_agnumber_t
346 xfs_initialize_perag(
347         bhv_vfs_t       *vfs,
348         xfs_mount_t     *mp,
349         xfs_agnumber_t  agcount)
350 {
351         xfs_agnumber_t  index, max_metadata;
352         xfs_perag_t     *pag;
353         xfs_agino_t     agino;
354         xfs_ino_t       ino;
355         xfs_sb_t        *sbp = &mp->m_sb;
356         xfs_ino_t       max_inum = XFS_MAXINUMBER_32;
357
358         /* Check to see if the filesystem can overflow 32 bit inodes */
359         agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
360         ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
361
362         /* Clear the mount flag if no inode can overflow 32 bits
363          * on this filesystem, or if specifically requested..
364          */
365         if ((vfs->vfs_flag & VFS_32BITINODES) && ino > max_inum) {
366                 mp->m_flags |= XFS_MOUNT_32BITINODES;
367         } else {
368                 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
369         }
370
371         /* If we can overflow then setup the ag headers accordingly */
372         if (mp->m_flags & XFS_MOUNT_32BITINODES) {
373                 /* Calculate how much should be reserved for inodes to
374                  * meet the max inode percentage.
375                  */
376                 if (mp->m_maxicount) {
377                         __uint64_t      icount;
378
379                         icount = sbp->sb_dblocks * sbp->sb_imax_pct;
380                         do_div(icount, 100);
381                         icount += sbp->sb_agblocks - 1;
382                         do_div(icount, sbp->sb_agblocks);
383                         max_metadata = icount;
384                 } else {
385                         max_metadata = agcount;
386                 }
387                 for (index = 0; index < agcount; index++) {
388                         ino = XFS_AGINO_TO_INO(mp, index, agino);
389                         if (ino > max_inum) {
390                                 index++;
391                                 break;
392                         }
393
394                         /* This ag is preferred for inodes */
395                         pag = &mp->m_perag[index];
396                         pag->pagi_inodeok = 1;
397                         if (index < max_metadata)
398                                 pag->pagf_metadata = 1;
399                 }
400         } else {
401                 /* Setup default behavior for smaller filesystems */
402                 for (index = 0; index < agcount; index++) {
403                         pag = &mp->m_perag[index];
404                         pag->pagi_inodeok = 1;
405                 }
406         }
407         return index;
408 }
409
410 void
411 xfs_sb_from_disk(
412         xfs_sb_t        *to,
413         xfs_dsb_t       *from)
414 {
415         to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
416         to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
417         to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
418         to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
419         to->sb_rextents = be64_to_cpu(from->sb_rextents);
420         memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
421         to->sb_logstart = be64_to_cpu(from->sb_logstart);
422         to->sb_rootino = be64_to_cpu(from->sb_rootino);
423         to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
424         to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
425         to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
426         to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
427         to->sb_agcount = be32_to_cpu(from->sb_agcount);
428         to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
429         to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
430         to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
431         to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
432         to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
433         to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
434         memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
435         to->sb_blocklog = from->sb_blocklog;
436         to->sb_sectlog = from->sb_sectlog;
437         to->sb_inodelog = from->sb_inodelog;
438         to->sb_inopblog = from->sb_inopblog;
439         to->sb_agblklog = from->sb_agblklog;
440         to->sb_rextslog = from->sb_rextslog;
441         to->sb_inprogress = from->sb_inprogress;
442         to->sb_imax_pct = from->sb_imax_pct;
443         to->sb_icount = be64_to_cpu(from->sb_icount);
444         to->sb_ifree = be64_to_cpu(from->sb_ifree);
445         to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
446         to->sb_frextents = be64_to_cpu(from->sb_frextents);
447         to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
448         to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
449         to->sb_qflags = be16_to_cpu(from->sb_qflags);
450         to->sb_flags = from->sb_flags;
451         to->sb_shared_vn = from->sb_shared_vn;
452         to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
453         to->sb_unit = be32_to_cpu(from->sb_unit);
454         to->sb_width = be32_to_cpu(from->sb_width);
455         to->sb_dirblklog = from->sb_dirblklog;
456         to->sb_logsectlog = from->sb_logsectlog;
457         to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
458         to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
459         to->sb_features2 = be32_to_cpu(from->sb_features2);
460 }
461
462 /*
463  * Copy in core superblock to ondisk one.
464  *
465  * The fields argument is mask of superblock fields to copy.
466  */
467 void
468 xfs_sb_to_disk(
469         xfs_dsb_t       *to,
470         xfs_sb_t        *from,
471         __int64_t       fields)
472 {
473         xfs_caddr_t     to_ptr = (xfs_caddr_t)to;
474         xfs_caddr_t     from_ptr = (xfs_caddr_t)from;
475         xfs_sb_field_t  f;
476         int             first;
477         int             size;
478
479         ASSERT(fields);
480         if (!fields)
481                 return;
482
483         while (fields) {
484                 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
485                 first = xfs_sb_info[f].offset;
486                 size = xfs_sb_info[f + 1].offset - first;
487
488                 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
489
490                 if (size == 1 || xfs_sb_info[f].type == 1) {
491                         memcpy(to_ptr + first, from_ptr + first, size);
492                 } else {
493                         switch (size) {
494                         case 2:
495                                 *(__be16 *)(to_ptr + first) =
496                                         cpu_to_be16(*(__u16 *)(from_ptr + first));
497                                 break;
498                         case 4:
499                                 *(__be32 *)(to_ptr + first) =
500                                         cpu_to_be32(*(__u32 *)(from_ptr + first));
501                                 break;
502                         case 8:
503                                 *(__be64 *)(to_ptr + first) =
504                                         cpu_to_be64(*(__u64 *)(from_ptr + first));
505                                 break;
506                         default:
507                                 ASSERT(0);
508                         }
509                 }
510
511                 fields &= ~(1LL << f);
512         }
513 }
514
515 /*
516  * xfs_readsb
517  *
518  * Does the initial read of the superblock.
519  */
520 int
521 xfs_readsb(xfs_mount_t *mp, int flags)
522 {
523         unsigned int    sector_size;
524         unsigned int    extra_flags;
525         xfs_buf_t       *bp;
526         int             error;
527
528         ASSERT(mp->m_sb_bp == NULL);
529         ASSERT(mp->m_ddev_targp != NULL);
530
531         /*
532          * Allocate a (locked) buffer to hold the superblock.
533          * This will be kept around at all times to optimize
534          * access to the superblock.
535          */
536         sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
537         extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
538
539         bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
540                                 BTOBB(sector_size), extra_flags);
541         if (!bp || XFS_BUF_ISERROR(bp)) {
542                 xfs_fs_mount_cmn_err(flags, "SB read failed");
543                 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
544                 goto fail;
545         }
546         ASSERT(XFS_BUF_ISBUSY(bp));
547         ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
548
549         /*
550          * Initialize the mount structure from the superblock.
551          * But first do some basic consistency checking.
552          */
553         xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
554
555         error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
556         if (error) {
557                 xfs_fs_mount_cmn_err(flags, "SB validate failed");
558                 goto fail;
559         }
560
561         /*
562          * We must be able to do sector-sized and sector-aligned IO.
563          */
564         if (sector_size > mp->m_sb.sb_sectsize) {
565                 xfs_fs_mount_cmn_err(flags,
566                         "device supports only %u byte sectors (not %u)",
567                         sector_size, mp->m_sb.sb_sectsize);
568                 error = ENOSYS;
569                 goto fail;
570         }
571
572         /*
573          * If device sector size is smaller than the superblock size,
574          * re-read the superblock so the buffer is correctly sized.
575          */
576         if (sector_size < mp->m_sb.sb_sectsize) {
577                 XFS_BUF_UNMANAGE(bp);
578                 xfs_buf_relse(bp);
579                 sector_size = mp->m_sb.sb_sectsize;
580                 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
581                                         BTOBB(sector_size), extra_flags);
582                 if (!bp || XFS_BUF_ISERROR(bp)) {
583                         xfs_fs_mount_cmn_err(flags, "SB re-read failed");
584                         error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
585                         goto fail;
586                 }
587                 ASSERT(XFS_BUF_ISBUSY(bp));
588                 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
589         }
590
591         /* Initialize per-cpu counters */
592         xfs_icsb_reinit_counters(mp);
593
594         mp->m_sb_bp = bp;
595         xfs_buf_relse(bp);
596         ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
597         return 0;
598
599  fail:
600         if (bp) {
601                 XFS_BUF_UNMANAGE(bp);
602                 xfs_buf_relse(bp);
603         }
604         return error;
605 }
606
607
608 /*
609  * xfs_mount_common
610  *
611  * Mount initialization code establishing various mount
612  * fields from the superblock associated with the given
613  * mount structure
614  */
615 STATIC void
616 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
617 {
618         int     i;
619
620         mp->m_agfrotor = mp->m_agirotor = 0;
621         spinlock_init(&mp->m_agirotor_lock, "m_agirotor_lock");
622         mp->m_maxagi = mp->m_sb.sb_agcount;
623         mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
624         mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
625         mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
626         mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
627         mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
628         mp->m_litino = sbp->sb_inodesize -
629                 ((uint)sizeof(xfs_dinode_core_t) + (uint)sizeof(xfs_agino_t));
630         mp->m_blockmask = sbp->sb_blocksize - 1;
631         mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
632         mp->m_blockwmask = mp->m_blockwsize - 1;
633         INIT_LIST_HEAD(&mp->m_del_inodes);
634
635         /*
636          * Setup for attributes, in case they get created.
637          * This value is for inodes getting attributes for the first time,
638          * the per-inode value is for old attribute values.
639          */
640         ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048);
641         switch (sbp->sb_inodesize) {
642         case 256:
643                 mp->m_attroffset = XFS_LITINO(mp) -
644                                    XFS_BMDR_SPACE_CALC(MINABTPTRS);
645                 break;
646         case 512:
647         case 1024:
648         case 2048:
649                 mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS);
650                 break;
651         default:
652                 ASSERT(0);
653         }
654         ASSERT(mp->m_attroffset < XFS_LITINO(mp));
655
656         for (i = 0; i < 2; i++) {
657                 mp->m_alloc_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
658                         xfs_alloc, i == 0);
659                 mp->m_alloc_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
660                         xfs_alloc, i == 0);
661         }
662         for (i = 0; i < 2; i++) {
663                 mp->m_bmap_dmxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
664                         xfs_bmbt, i == 0);
665                 mp->m_bmap_dmnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
666                         xfs_bmbt, i == 0);
667         }
668         for (i = 0; i < 2; i++) {
669                 mp->m_inobt_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
670                         xfs_inobt, i == 0);
671                 mp->m_inobt_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
672                         xfs_inobt, i == 0);
673         }
674
675         mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
676         mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
677                                         sbp->sb_inopblock);
678         mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
679 }
680
681 /*
682  * xfs_initialize_perag_data
683  *
684  * Read in each per-ag structure so we can count up the number of
685  * allocated inodes, free inodes and used filesystem blocks as this
686  * information is no longer persistent in the superblock. Once we have
687  * this information, write it into the in-core superblock structure.
688  */
689 STATIC int
690 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
691 {
692         xfs_agnumber_t  index;
693         xfs_perag_t     *pag;
694         xfs_sb_t        *sbp = &mp->m_sb;
695         uint64_t        ifree = 0;
696         uint64_t        ialloc = 0;
697         uint64_t        bfree = 0;
698         uint64_t        bfreelst = 0;
699         uint64_t        btree = 0;
700         int             error;
701         int             s;
702
703         for (index = 0; index < agcount; index++) {
704                 /*
705                  * read the agf, then the agi. This gets us
706                  * all the inforamtion we need and populates the
707                  * per-ag structures for us.
708                  */
709                 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
710                 if (error)
711                         return error;
712
713                 error = xfs_ialloc_pagi_init(mp, NULL, index);
714                 if (error)
715                         return error;
716                 pag = &mp->m_perag[index];
717                 ifree += pag->pagi_freecount;
718                 ialloc += pag->pagi_count;
719                 bfree += pag->pagf_freeblks;
720                 bfreelst += pag->pagf_flcount;
721                 btree += pag->pagf_btreeblks;
722         }
723         /*
724          * Overwrite incore superblock counters with just-read data
725          */
726         s = XFS_SB_LOCK(mp);
727         sbp->sb_ifree = ifree;
728         sbp->sb_icount = ialloc;
729         sbp->sb_fdblocks = bfree + bfreelst + btree;
730         XFS_SB_UNLOCK(mp, s);
731
732         /* Fixup the per-cpu counters as well. */
733         xfs_icsb_reinit_counters(mp);
734
735         return 0;
736 }
737
738 /*
739  * xfs_mountfs
740  *
741  * This function does the following on an initial mount of a file system:
742  *      - reads the superblock from disk and init the mount struct
743  *      - if we're a 32-bit kernel, do a size check on the superblock
744  *              so we don't mount terabyte filesystems
745  *      - init mount struct realtime fields
746  *      - allocate inode hash table for fs
747  *      - init directory manager
748  *      - perform recovery and init the log manager
749  */
750 int
751 xfs_mountfs(
752         bhv_vfs_t       *vfsp,
753         xfs_mount_t     *mp,
754         int             mfsi_flags)
755 {
756         xfs_buf_t       *bp;
757         xfs_sb_t        *sbp = &(mp->m_sb);
758         xfs_inode_t     *rip;
759         bhv_vnode_t     *rvp = NULL;
760         int             readio_log, writeio_log;
761         xfs_daddr_t     d;
762         __uint64_t      resblks;
763         __int64_t       update_flags;
764         uint            quotamount, quotaflags;
765         int             agno;
766         int             uuid_mounted = 0;
767         int             error = 0;
768
769         if (mp->m_sb_bp == NULL) {
770                 if ((error = xfs_readsb(mp, mfsi_flags))) {
771                         return error;
772                 }
773         }
774         xfs_mount_common(mp, sbp);
775
776         /*
777          * Check if sb_agblocks is aligned at stripe boundary
778          * If sb_agblocks is NOT aligned turn off m_dalign since
779          * allocator alignment is within an ag, therefore ag has
780          * to be aligned at stripe boundary.
781          */
782         update_flags = 0LL;
783         if (mp->m_dalign && !(mfsi_flags & XFS_MFSI_SECOND)) {
784                 /*
785                  * If stripe unit and stripe width are not multiples
786                  * of the fs blocksize turn off alignment.
787                  */
788                 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
789                     (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
790                         if (mp->m_flags & XFS_MOUNT_RETERR) {
791                                 cmn_err(CE_WARN,
792                                         "XFS: alignment check 1 failed");
793                                 error = XFS_ERROR(EINVAL);
794                                 goto error1;
795                         }
796                         mp->m_dalign = mp->m_swidth = 0;
797                 } else {
798                         /*
799                          * Convert the stripe unit and width to FSBs.
800                          */
801                         mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
802                         if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
803                                 if (mp->m_flags & XFS_MOUNT_RETERR) {
804                                         error = XFS_ERROR(EINVAL);
805                                         goto error1;
806                                 }
807                                 xfs_fs_cmn_err(CE_WARN, mp,
808 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
809                                         mp->m_dalign, mp->m_swidth,
810                                         sbp->sb_agblocks);
811
812                                 mp->m_dalign = 0;
813                                 mp->m_swidth = 0;
814                         } else if (mp->m_dalign) {
815                                 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
816                         } else {
817                                 if (mp->m_flags & XFS_MOUNT_RETERR) {
818                                         xfs_fs_cmn_err(CE_WARN, mp,
819 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
820                                                 mp->m_dalign,
821                                                 mp->m_blockmask +1);
822                                         error = XFS_ERROR(EINVAL);
823                                         goto error1;
824                                 }
825                                 mp->m_swidth = 0;
826                         }
827                 }
828
829                 /*
830                  * Update superblock with new values
831                  * and log changes
832                  */
833                 if (XFS_SB_VERSION_HASDALIGN(sbp)) {
834                         if (sbp->sb_unit != mp->m_dalign) {
835                                 sbp->sb_unit = mp->m_dalign;
836                                 update_flags |= XFS_SB_UNIT;
837                         }
838                         if (sbp->sb_width != mp->m_swidth) {
839                                 sbp->sb_width = mp->m_swidth;
840                                 update_flags |= XFS_SB_WIDTH;
841                         }
842                 }
843         } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
844                     XFS_SB_VERSION_HASDALIGN(&mp->m_sb)) {
845                         mp->m_dalign = sbp->sb_unit;
846                         mp->m_swidth = sbp->sb_width;
847         }
848
849         xfs_alloc_compute_maxlevels(mp);
850         xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
851         xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
852         xfs_ialloc_compute_maxlevels(mp);
853
854         if (sbp->sb_imax_pct) {
855                 __uint64_t      icount;
856
857                 /* Make sure the maximum inode count is a multiple of the
858                  * units we allocate inodes in.
859                  */
860
861                 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
862                 do_div(icount, 100);
863                 do_div(icount, mp->m_ialloc_blks);
864                 mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
865                                    sbp->sb_inopblog;
866         } else
867                 mp->m_maxicount = 0;
868
869         mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
870
871         /*
872          * XFS uses the uuid from the superblock as the unique
873          * identifier for fsid.  We can not use the uuid from the volume
874          * since a single partition filesystem is identical to a single
875          * partition volume/filesystem.
876          */
877         if ((mfsi_flags & XFS_MFSI_SECOND) == 0 &&
878             (mp->m_flags & XFS_MOUNT_NOUUID) == 0) {
879                 __uint64_t      ret64;
880                 if (xfs_uuid_mount(mp)) {
881                         error = XFS_ERROR(EINVAL);
882                         goto error1;
883                 }
884                 uuid_mounted=1;
885                 ret64 = uuid_hash64(&sbp->sb_uuid);
886                 memcpy(&vfsp->vfs_fsid, &ret64, sizeof(ret64));
887         }
888
889         /*
890          * Set the default minimum read and write sizes unless
891          * already specified in a mount option.
892          * We use smaller I/O sizes when the file system
893          * is being used for NFS service (wsync mount option).
894          */
895         if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
896                 if (mp->m_flags & XFS_MOUNT_WSYNC) {
897                         readio_log = XFS_WSYNC_READIO_LOG;
898                         writeio_log = XFS_WSYNC_WRITEIO_LOG;
899                 } else {
900                         readio_log = XFS_READIO_LOG_LARGE;
901                         writeio_log = XFS_WRITEIO_LOG_LARGE;
902                 }
903         } else {
904                 readio_log = mp->m_readio_log;
905                 writeio_log = mp->m_writeio_log;
906         }
907
908         if (sbp->sb_blocklog > readio_log) {
909                 mp->m_readio_log = sbp->sb_blocklog;
910         } else {
911                 mp->m_readio_log = readio_log;
912         }
913         mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
914         if (sbp->sb_blocklog > writeio_log) {
915                 mp->m_writeio_log = sbp->sb_blocklog;
916         } else {
917                 mp->m_writeio_log = writeio_log;
918         }
919         mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
920
921         /*
922          * Set the inode cluster size.
923          * This may still be overridden by the file system
924          * block size if it is larger than the chosen cluster size.
925          */
926         mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
927
928         /*
929          * Set whether we're using inode alignment.
930          */
931         if (XFS_SB_VERSION_HASALIGN(&mp->m_sb) &&
932             mp->m_sb.sb_inoalignmt >=
933             XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
934                 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
935         else
936                 mp->m_inoalign_mask = 0;
937         /*
938          * If we are using stripe alignment, check whether
939          * the stripe unit is a multiple of the inode alignment
940          */
941         if (mp->m_dalign && mp->m_inoalign_mask &&
942             !(mp->m_dalign & mp->m_inoalign_mask))
943                 mp->m_sinoalign = mp->m_dalign;
944         else
945                 mp->m_sinoalign = 0;
946         /*
947          * Check that the data (and log if separate) are an ok size.
948          */
949         d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
950         if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
951                 cmn_err(CE_WARN, "XFS: size check 1 failed");
952                 error = XFS_ERROR(E2BIG);
953                 goto error1;
954         }
955         error = xfs_read_buf(mp, mp->m_ddev_targp,
956                              d - XFS_FSS_TO_BB(mp, 1),
957                              XFS_FSS_TO_BB(mp, 1), 0, &bp);
958         if (!error) {
959                 xfs_buf_relse(bp);
960         } else {
961                 cmn_err(CE_WARN, "XFS: size check 2 failed");
962                 if (error == ENOSPC) {
963                         error = XFS_ERROR(E2BIG);
964                 }
965                 goto error1;
966         }
967
968         if (((mfsi_flags & XFS_MFSI_CLIENT) == 0) &&
969             mp->m_logdev_targp != mp->m_ddev_targp) {
970                 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
971                 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
972                         cmn_err(CE_WARN, "XFS: size check 3 failed");
973                         error = XFS_ERROR(E2BIG);
974                         goto error1;
975                 }
976                 error = xfs_read_buf(mp, mp->m_logdev_targp,
977                                      d - XFS_FSB_TO_BB(mp, 1),
978                                      XFS_FSB_TO_BB(mp, 1), 0, &bp);
979                 if (!error) {
980                         xfs_buf_relse(bp);
981                 } else {
982                         cmn_err(CE_WARN, "XFS: size check 3 failed");
983                         if (error == ENOSPC) {
984                                 error = XFS_ERROR(E2BIG);
985                         }
986                         goto error1;
987                 }
988         }
989
990         /*
991          * Initialize realtime fields in the mount structure
992          */
993         if ((error = xfs_rtmount_init(mp))) {
994                 cmn_err(CE_WARN, "XFS: RT mount failed");
995                 goto error1;
996         }
997
998         /*
999          * For client case we are done now
1000          */
1001         if (mfsi_flags & XFS_MFSI_CLIENT) {
1002                 return 0;
1003         }
1004
1005         /*
1006          *  Copies the low order bits of the timestamp and the randomly
1007          *  set "sequence" number out of a UUID.
1008          */
1009         uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1010
1011         /*
1012          *  The vfs structure needs to have a file system independent
1013          *  way of checking for the invariant file system ID.  Since it
1014          *  can't look at mount structures it has a pointer to the data
1015          *  in the mount structure.
1016          *
1017          *  File systems that don't support user level file handles (i.e.
1018          *  all of them except for XFS) will leave vfs_altfsid as NULL.
1019          */
1020         vfsp->vfs_altfsid = (xfs_fsid_t *)mp->m_fixedfsid;
1021         mp->m_dmevmask = 0;     /* not persistent; set after each mount */
1022
1023         xfs_dir_mount(mp);
1024
1025         /*
1026          * Initialize the attribute manager's entries.
1027          */
1028         mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1029
1030         /*
1031          * Initialize the precomputed transaction reservations values.
1032          */
1033         xfs_trans_init(mp);
1034
1035         /*
1036          * Allocate and initialize the inode hash table for this
1037          * file system.
1038          */
1039         xfs_ihash_init(mp);
1040         xfs_chash_init(mp);
1041
1042         /*
1043          * Allocate and initialize the per-ag data.
1044          */
1045         init_rwsem(&mp->m_peraglock);
1046         mp->m_perag =
1047                 kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), KM_SLEEP);
1048
1049         mp->m_maxagi = xfs_initialize_perag(vfsp, mp, sbp->sb_agcount);
1050
1051         /*
1052          * log's mount-time initialization. Perform 1st part recovery if needed
1053          */
1054         if (likely(sbp->sb_logblocks > 0)) {    /* check for volume case */
1055                 error = xfs_log_mount(mp, mp->m_logdev_targp,
1056                                       XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1057                                       XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1058                 if (error) {
1059                         cmn_err(CE_WARN, "XFS: log mount failed");
1060                         goto error2;
1061                 }
1062         } else {        /* No log has been defined */
1063                 cmn_err(CE_WARN, "XFS: no log defined");
1064                 XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp);
1065                 error = XFS_ERROR(EFSCORRUPTED);
1066                 goto error2;
1067         }
1068
1069         /*
1070          * Now the log is mounted, we know if it was an unclean shutdown or
1071          * not. If it was, with the first phase of recovery has completed, we
1072          * have consistent AG blocks on disk. We have not recovered EFIs yet,
1073          * but they are recovered transactionally in the second recovery phase
1074          * later.
1075          *
1076          * Hence we can safely re-initialise incore superblock counters from
1077          * the per-ag data. These may not be correct if the filesystem was not
1078          * cleanly unmounted, so we need to wait for recovery to finish before
1079          * doing this.
1080          *
1081          * If the filesystem was cleanly unmounted, then we can trust the
1082          * values in the superblock to be correct and we don't need to do
1083          * anything here.
1084          *
1085          * If we are currently making the filesystem, the initialisation will
1086          * fail as the perag data is in an undefined state.
1087          */
1088
1089         if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1090             !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1091              !mp->m_sb.sb_inprogress) {
1092                 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1093                 if (error) {
1094                         goto error2;
1095                 }
1096         }
1097         /*
1098          * Get and sanity-check the root inode.
1099          * Save the pointer to it in the mount structure.
1100          */
1101         error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1102         if (error) {
1103                 cmn_err(CE_WARN, "XFS: failed to read root inode");
1104                 goto error3;
1105         }
1106
1107         ASSERT(rip != NULL);
1108         rvp = XFS_ITOV(rip);
1109
1110         if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1111                 cmn_err(CE_WARN, "XFS: corrupted root inode");
1112                 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1113                         XFS_BUFTARG_NAME(mp->m_ddev_targp),
1114                         (unsigned long long)rip->i_ino);
1115                 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1116                 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1117                                  mp);
1118                 error = XFS_ERROR(EFSCORRUPTED);
1119                 goto error4;
1120         }
1121         mp->m_rootip = rip;     /* save it */
1122
1123         xfs_iunlock(rip, XFS_ILOCK_EXCL);
1124
1125         /*
1126          * Initialize realtime inode pointers in the mount structure
1127          */
1128         if ((error = xfs_rtmount_inodes(mp))) {
1129                 /*
1130                  * Free up the root inode.
1131                  */
1132                 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1133                 goto error4;
1134         }
1135
1136         /*
1137          * If fs is not mounted readonly, then update the superblock
1138          * unit and width changes.
1139          */
1140         if (update_flags && !(vfsp->vfs_flag & VFS_RDONLY))
1141                 xfs_mount_log_sbunit(mp, update_flags);
1142
1143         /*
1144          * Initialise the XFS quota management subsystem for this mount
1145          */
1146         if ((error = XFS_QM_INIT(mp, &quotamount, &quotaflags)))
1147                 goto error4;
1148
1149         /*
1150          * Finish recovering the file system.  This part needed to be
1151          * delayed until after the root and real-time bitmap inodes
1152          * were consistently read in.
1153          */
1154         error = xfs_log_mount_finish(mp, mfsi_flags);
1155         if (error) {
1156                 cmn_err(CE_WARN, "XFS: log mount finish failed");
1157                 goto error4;
1158         }
1159
1160         /*
1161          * Complete the quota initialisation, post-log-replay component.
1162          */
1163         if ((error = XFS_QM_MOUNT(mp, quotamount, quotaflags, mfsi_flags)))
1164                 goto error4;
1165
1166         /*
1167          * Now we are mounted, reserve a small amount of unused space for
1168          * privileged transactions. This is needed so that transaction
1169          * space required for critical operations can dip into this pool
1170          * when at ENOSPC. This is needed for operations like create with
1171          * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1172          * are not allowed to use this reserved space.
1173          *
1174          * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1175          * This may drive us straight to ENOSPC on mount, but that implies
1176          * we were already there on the last unmount.
1177          */
1178         resblks = mp->m_sb.sb_dblocks;
1179         do_div(resblks, 20);
1180         resblks = min_t(__uint64_t, resblks, 1024);
1181         xfs_reserve_blocks(mp, &resblks, NULL);
1182
1183         return 0;
1184
1185  error4:
1186         /*
1187          * Free up the root inode.
1188          */
1189         VN_RELE(rvp);
1190  error3:
1191         xfs_log_unmount_dealloc(mp);
1192  error2:
1193         xfs_ihash_free(mp);
1194         xfs_chash_free(mp);
1195         for (agno = 0; agno < sbp->sb_agcount; agno++)
1196                 if (mp->m_perag[agno].pagb_list)
1197                         kmem_free(mp->m_perag[agno].pagb_list,
1198                           sizeof(xfs_perag_busy_t) * XFS_PAGB_NUM_SLOTS);
1199         kmem_free(mp->m_perag, sbp->sb_agcount * sizeof(xfs_perag_t));
1200         mp->m_perag = NULL;
1201         /* FALLTHROUGH */
1202  error1:
1203         if (uuid_mounted)
1204                 xfs_uuid_unmount(mp);
1205         xfs_freesb(mp);
1206         return error;
1207 }
1208
1209 /*
1210  * xfs_unmountfs
1211  *
1212  * This flushes out the inodes,dquots and the superblock, unmounts the
1213  * log and makes sure that incore structures are freed.
1214  */
1215 int
1216 xfs_unmountfs(xfs_mount_t *mp, struct cred *cr)
1217 {
1218         struct bhv_vfs  *vfsp = XFS_MTOVFS(mp);
1219 #if defined(DEBUG) || defined(INDUCE_IO_ERROR)
1220         int64_t         fsid;
1221 #endif
1222         __uint64_t      resblks;
1223
1224         /*
1225          * We can potentially deadlock here if we have an inode cluster
1226          * that has been freed has it's buffer still pinned in memory because
1227          * the transaction is still sitting in a iclog. The stale inodes
1228          * on that buffer will have their flush locks held until the
1229          * transaction hits the disk and the callbacks run. the inode
1230          * flush takes the flush lock unconditionally and with nothing to
1231          * push out the iclog we will never get that unlocked. hence we
1232          * need to force the log first.
1233          */
1234         xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1235         xfs_iflush_all(mp);
1236
1237         XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING);
1238
1239         /*
1240          * Flush out the log synchronously so that we know for sure
1241          * that nothing is pinned.  This is important because bflush()
1242          * will skip pinned buffers.
1243          */
1244         xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1245
1246         xfs_binval(mp->m_ddev_targp);
1247         if (mp->m_rtdev_targp) {
1248                 xfs_binval(mp->m_rtdev_targp);
1249         }
1250
1251         /*
1252          * Unreserve any blocks we have so that when we unmount we don't account
1253          * the reserved free space as used. This is really only necessary for
1254          * lazy superblock counting because it trusts the incore superblock
1255          * counters to be aboslutely correct on clean unmount.
1256          *
1257          * We don't bother correcting this elsewhere for lazy superblock
1258          * counting because on mount of an unclean filesystem we reconstruct the
1259          * correct counter value and this is irrelevant.
1260          *
1261          * For non-lazy counter filesystems, this doesn't matter at all because
1262          * we only every apply deltas to the superblock and hence the incore
1263          * value does not matter....
1264          */
1265         resblks = 0;
1266         xfs_reserve_blocks(mp, &resblks, NULL);
1267
1268         xfs_log_sbcount(mp, 1);
1269         xfs_unmountfs_writesb(mp);
1270         xfs_unmountfs_wait(mp);                 /* wait for async bufs */
1271         xfs_log_unmount(mp);                    /* Done! No more fs ops. */
1272
1273         xfs_freesb(mp);
1274
1275         /*
1276          * All inodes from this mount point should be freed.
1277          */
1278         ASSERT(mp->m_inodes == NULL);
1279
1280         xfs_unmountfs_close(mp, cr);
1281         if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0)
1282                 xfs_uuid_unmount(mp);
1283
1284 #if defined(DEBUG) || defined(INDUCE_IO_ERROR)
1285         /*
1286          * clear all error tags on this filesystem
1287          */
1288         memcpy(&fsid, &vfsp->vfs_fsid, sizeof(int64_t));
1289         xfs_errortag_clearall_umount(fsid, mp->m_fsname, 0);
1290 #endif
1291         XFS_IODONE(vfsp);
1292         xfs_mount_free(mp, 1);
1293         return 0;
1294 }
1295
1296 void
1297 xfs_unmountfs_close(xfs_mount_t *mp, struct cred *cr)
1298 {
1299         if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1300                 xfs_free_buftarg(mp->m_logdev_targp, 1);
1301         if (mp->m_rtdev_targp)
1302                 xfs_free_buftarg(mp->m_rtdev_targp, 1);
1303         xfs_free_buftarg(mp->m_ddev_targp, 0);
1304 }
1305
1306 STATIC void
1307 xfs_unmountfs_wait(xfs_mount_t *mp)
1308 {
1309         if (mp->m_logdev_targp != mp->m_ddev_targp)
1310                 xfs_wait_buftarg(mp->m_logdev_targp);
1311         if (mp->m_rtdev_targp)
1312                 xfs_wait_buftarg(mp->m_rtdev_targp);
1313         xfs_wait_buftarg(mp->m_ddev_targp);
1314 }
1315
1316 int
1317 xfs_fs_writable(xfs_mount_t *mp)
1318 {
1319         bhv_vfs_t       *vfsp = XFS_MTOVFS(mp);
1320
1321         return !(vfs_test_for_freeze(vfsp) || XFS_FORCED_SHUTDOWN(mp) ||
1322                 (vfsp->vfs_flag & VFS_RDONLY));
1323 }
1324
1325 /*
1326  * xfs_log_sbcount
1327  *
1328  * Called either periodically to keep the on disk superblock values
1329  * roughly up to date or from unmount to make sure the values are
1330  * correct on a clean unmount.
1331  *
1332  * Note this code can be called during the process of freezing, so
1333  * we may need to use the transaction allocator which does not not
1334  * block when the transaction subsystem is in its frozen state.
1335  */
1336 int
1337 xfs_log_sbcount(
1338         xfs_mount_t     *mp,
1339         uint            sync)
1340 {
1341         xfs_trans_t     *tp;
1342         int             error;
1343
1344         if (!xfs_fs_writable(mp))
1345                 return 0;
1346
1347         xfs_icsb_sync_counters(mp);
1348
1349         /*
1350          * we don't need to do this if we are updating the superblock
1351          * counters on every modification.
1352          */
1353         if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1354                 return 0;
1355
1356         tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT);
1357         error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1358                                         XFS_DEFAULT_LOG_COUNT);
1359         if (error) {
1360                 xfs_trans_cancel(tp, 0);
1361                 return error;
1362         }
1363
1364         xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1365         if (sync)
1366                 xfs_trans_set_sync(tp);
1367         xfs_trans_commit(tp, 0);
1368
1369         return 0;
1370 }
1371
1372 STATIC void
1373 xfs_mark_shared_ro(
1374         xfs_mount_t     *mp,
1375         xfs_buf_t       *bp)
1376 {
1377         xfs_dsb_t       *sb = XFS_BUF_TO_SBP(bp);
1378         __uint16_t      version;
1379
1380         if (!(sb->sb_flags & XFS_SBF_READONLY))
1381                 sb->sb_flags |= XFS_SBF_READONLY;
1382
1383         version = be16_to_cpu(sb->sb_versionnum);
1384         if ((version & XFS_SB_VERSION_NUMBITS) != XFS_SB_VERSION_4 ||
1385             !(version & XFS_SB_VERSION_SHAREDBIT))
1386                 version |= XFS_SB_VERSION_SHAREDBIT;
1387         sb->sb_versionnum = cpu_to_be16(version);
1388 }
1389
1390 int
1391 xfs_unmountfs_writesb(xfs_mount_t *mp)
1392 {
1393         xfs_buf_t       *sbp;
1394         int             error = 0;
1395
1396         /*
1397          * skip superblock write if fs is read-only, or
1398          * if we are doing a forced umount.
1399          */
1400         if (!(XFS_MTOVFS(mp)->vfs_flag & VFS_RDONLY ||
1401                 XFS_FORCED_SHUTDOWN(mp))) {
1402
1403                 sbp = xfs_getsb(mp, 0);
1404
1405                 /*
1406                  * mark shared-readonly if desired
1407                  */
1408                 if (mp->m_mk_sharedro)
1409                         xfs_mark_shared_ro(mp, sbp);
1410
1411                 XFS_BUF_UNDONE(sbp);
1412                 XFS_BUF_UNREAD(sbp);
1413                 XFS_BUF_UNDELAYWRITE(sbp);
1414                 XFS_BUF_WRITE(sbp);
1415                 XFS_BUF_UNASYNC(sbp);
1416                 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1417                 xfsbdstrat(mp, sbp);
1418                 /* Nevermind errors we might get here. */
1419                 error = xfs_iowait(sbp);
1420                 if (error)
1421                         xfs_ioerror_alert("xfs_unmountfs_writesb",
1422                                           mp, sbp, XFS_BUF_ADDR(sbp));
1423                 if (error && mp->m_mk_sharedro)
1424                         xfs_fs_cmn_err(CE_ALERT, mp, "Superblock write error detected while unmounting.  Filesystem may not be marked shared readonly");
1425                 xfs_buf_relse(sbp);
1426         }
1427         return error;
1428 }
1429
1430 /*
1431  * xfs_mod_sb() can be used to copy arbitrary changes to the
1432  * in-core superblock into the superblock buffer to be logged.
1433  * It does not provide the higher level of locking that is
1434  * needed to protect the in-core superblock from concurrent
1435  * access.
1436  */
1437 void
1438 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1439 {
1440         xfs_buf_t       *bp;
1441         int             first;
1442         int             last;
1443         xfs_mount_t     *mp;
1444         xfs_sb_field_t  f;
1445
1446         ASSERT(fields);
1447         if (!fields)
1448                 return;
1449         mp = tp->t_mountp;
1450         bp = xfs_trans_getsb(tp, mp, 0);
1451         first = sizeof(xfs_sb_t);
1452         last = 0;
1453
1454         /* translate/copy */
1455
1456         xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1457
1458         /* find modified range */
1459
1460         f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1461         ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1462         first = xfs_sb_info[f].offset;
1463
1464         f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1465         ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1466         last = xfs_sb_info[f + 1].offset - 1;
1467
1468         xfs_trans_log_buf(tp, bp, first, last);
1469 }
1470
1471
1472 /*
1473  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1474  * a delta to a specified field in the in-core superblock.  Simply
1475  * switch on the field indicated and apply the delta to that field.
1476  * Fields are not allowed to dip below zero, so if the delta would
1477  * do this do not apply it and return EINVAL.
1478  *
1479  * The SB_LOCK must be held when this routine is called.
1480  */
1481 int
1482 xfs_mod_incore_sb_unlocked(
1483         xfs_mount_t     *mp,
1484         xfs_sb_field_t  field,
1485         int64_t         delta,
1486         int             rsvd)
1487 {
1488         int             scounter;       /* short counter for 32 bit fields */
1489         long long       lcounter;       /* long counter for 64 bit fields */
1490         long long       res_used, rem;
1491
1492         /*
1493          * With the in-core superblock spin lock held, switch
1494          * on the indicated field.  Apply the delta to the
1495          * proper field.  If the fields value would dip below
1496          * 0, then do not apply the delta and return EINVAL.
1497          */
1498         switch (field) {
1499         case XFS_SBS_ICOUNT:
1500                 lcounter = (long long)mp->m_sb.sb_icount;
1501                 lcounter += delta;
1502                 if (lcounter < 0) {
1503                         ASSERT(0);
1504                         return XFS_ERROR(EINVAL);
1505                 }
1506                 mp->m_sb.sb_icount = lcounter;
1507                 return 0;
1508         case XFS_SBS_IFREE:
1509                 lcounter = (long long)mp->m_sb.sb_ifree;
1510                 lcounter += delta;
1511                 if (lcounter < 0) {
1512                         ASSERT(0);
1513                         return XFS_ERROR(EINVAL);
1514                 }
1515                 mp->m_sb.sb_ifree = lcounter;
1516                 return 0;
1517         case XFS_SBS_FDBLOCKS:
1518                 lcounter = (long long)
1519                         mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1520                 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1521
1522                 if (delta > 0) {                /* Putting blocks back */
1523                         if (res_used > delta) {
1524                                 mp->m_resblks_avail += delta;
1525                         } else {
1526                                 rem = delta - res_used;
1527                                 mp->m_resblks_avail = mp->m_resblks;
1528                                 lcounter += rem;
1529                         }
1530                 } else {                                /* Taking blocks away */
1531
1532                         lcounter += delta;
1533
1534                 /*
1535                  * If were out of blocks, use any available reserved blocks if
1536                  * were allowed to.
1537                  */
1538
1539                         if (lcounter < 0) {
1540                                 if (rsvd) {
1541                                         lcounter = (long long)mp->m_resblks_avail + delta;
1542                                         if (lcounter < 0) {
1543                                                 return XFS_ERROR(ENOSPC);
1544                                         }
1545                                         mp->m_resblks_avail = lcounter;
1546                                         return 0;
1547                                 } else {        /* not reserved */
1548                                         return XFS_ERROR(ENOSPC);
1549                                 }
1550                         }
1551                 }
1552
1553                 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1554                 return 0;
1555         case XFS_SBS_FREXTENTS:
1556                 lcounter = (long long)mp->m_sb.sb_frextents;
1557                 lcounter += delta;
1558                 if (lcounter < 0) {
1559                         return XFS_ERROR(ENOSPC);
1560                 }
1561                 mp->m_sb.sb_frextents = lcounter;
1562                 return 0;
1563         case XFS_SBS_DBLOCKS:
1564                 lcounter = (long long)mp->m_sb.sb_dblocks;
1565                 lcounter += delta;
1566                 if (lcounter < 0) {
1567                         ASSERT(0);
1568                         return XFS_ERROR(EINVAL);
1569                 }
1570                 mp->m_sb.sb_dblocks = lcounter;
1571                 return 0;
1572         case XFS_SBS_AGCOUNT:
1573                 scounter = mp->m_sb.sb_agcount;
1574                 scounter += delta;
1575                 if (scounter < 0) {
1576                         ASSERT(0);
1577                         return XFS_ERROR(EINVAL);
1578                 }
1579                 mp->m_sb.sb_agcount = scounter;
1580                 return 0;
1581         case XFS_SBS_IMAX_PCT:
1582                 scounter = mp->m_sb.sb_imax_pct;
1583                 scounter += delta;
1584                 if (scounter < 0) {
1585                         ASSERT(0);
1586                         return XFS_ERROR(EINVAL);
1587                 }
1588                 mp->m_sb.sb_imax_pct = scounter;
1589                 return 0;
1590         case XFS_SBS_REXTSIZE:
1591                 scounter = mp->m_sb.sb_rextsize;
1592                 scounter += delta;
1593                 if (scounter < 0) {
1594                         ASSERT(0);
1595                         return XFS_ERROR(EINVAL);
1596                 }
1597                 mp->m_sb.sb_rextsize = scounter;
1598                 return 0;
1599         case XFS_SBS_RBMBLOCKS:
1600                 scounter = mp->m_sb.sb_rbmblocks;
1601                 scounter += delta;
1602                 if (scounter < 0) {
1603                         ASSERT(0);
1604                         return XFS_ERROR(EINVAL);
1605                 }
1606                 mp->m_sb.sb_rbmblocks = scounter;
1607                 return 0;
1608         case XFS_SBS_RBLOCKS:
1609                 lcounter = (long long)mp->m_sb.sb_rblocks;
1610                 lcounter += delta;
1611                 if (lcounter < 0) {
1612                         ASSERT(0);
1613                         return XFS_ERROR(EINVAL);
1614                 }
1615                 mp->m_sb.sb_rblocks = lcounter;
1616                 return 0;
1617         case XFS_SBS_REXTENTS:
1618                 lcounter = (long long)mp->m_sb.sb_rextents;
1619                 lcounter += delta;
1620                 if (lcounter < 0) {
1621                         ASSERT(0);
1622                         return XFS_ERROR(EINVAL);
1623                 }
1624                 mp->m_sb.sb_rextents = lcounter;
1625                 return 0;
1626         case XFS_SBS_REXTSLOG:
1627                 scounter = mp->m_sb.sb_rextslog;
1628                 scounter += delta;
1629                 if (scounter < 0) {
1630                         ASSERT(0);
1631                         return XFS_ERROR(EINVAL);
1632                 }
1633                 mp->m_sb.sb_rextslog = scounter;
1634                 return 0;
1635         default:
1636                 ASSERT(0);
1637                 return XFS_ERROR(EINVAL);
1638         }
1639 }
1640
1641 /*
1642  * xfs_mod_incore_sb() is used to change a field in the in-core
1643  * superblock structure by the specified delta.  This modification
1644  * is protected by the SB_LOCK.  Just use the xfs_mod_incore_sb_unlocked()
1645  * routine to do the work.
1646  */
1647 int
1648 xfs_mod_incore_sb(
1649         xfs_mount_t     *mp,
1650         xfs_sb_field_t  field,
1651         int64_t         delta,
1652         int             rsvd)
1653 {
1654         unsigned long   s;
1655         int     status;
1656
1657         /* check for per-cpu counters */
1658         switch (field) {
1659 #ifdef HAVE_PERCPU_SB
1660         case XFS_SBS_ICOUNT:
1661         case XFS_SBS_IFREE:
1662         case XFS_SBS_FDBLOCKS:
1663                 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1664                         status = xfs_icsb_modify_counters(mp, field,
1665                                                         delta, rsvd);
1666                         break;
1667                 }
1668                 /* FALLTHROUGH */
1669 #endif
1670         default:
1671                 s = XFS_SB_LOCK(mp);
1672                 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1673                 XFS_SB_UNLOCK(mp, s);
1674                 break;
1675         }
1676
1677         return status;
1678 }
1679
1680 /*
1681  * xfs_mod_incore_sb_batch() is used to change more than one field
1682  * in the in-core superblock structure at a time.  This modification
1683  * is protected by a lock internal to this module.  The fields and
1684  * changes to those fields are specified in the array of xfs_mod_sb
1685  * structures passed in.
1686  *
1687  * Either all of the specified deltas will be applied or none of
1688  * them will.  If any modified field dips below 0, then all modifications
1689  * will be backed out and EINVAL will be returned.
1690  */
1691 int
1692 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1693 {
1694         unsigned long   s;
1695         int             status=0;
1696         xfs_mod_sb_t    *msbp;
1697
1698         /*
1699          * Loop through the array of mod structures and apply each
1700          * individually.  If any fail, then back out all those
1701          * which have already been applied.  Do all of this within
1702          * the scope of the SB_LOCK so that all of the changes will
1703          * be atomic.
1704          */
1705         s = XFS_SB_LOCK(mp);
1706         msbp = &msb[0];
1707         for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1708                 /*
1709                  * Apply the delta at index n.  If it fails, break
1710                  * from the loop so we'll fall into the undo loop
1711                  * below.
1712                  */
1713                 switch (msbp->msb_field) {
1714 #ifdef HAVE_PERCPU_SB
1715                 case XFS_SBS_ICOUNT:
1716                 case XFS_SBS_IFREE:
1717                 case XFS_SBS_FDBLOCKS:
1718                         if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1719                                 XFS_SB_UNLOCK(mp, s);
1720                                 status = xfs_icsb_modify_counters(mp,
1721                                                         msbp->msb_field,
1722                                                         msbp->msb_delta, rsvd);
1723                                 s = XFS_SB_LOCK(mp);
1724                                 break;
1725                         }
1726                         /* FALLTHROUGH */
1727 #endif
1728                 default:
1729                         status = xfs_mod_incore_sb_unlocked(mp,
1730                                                 msbp->msb_field,
1731                                                 msbp->msb_delta, rsvd);
1732                         break;
1733                 }
1734
1735                 if (status != 0) {
1736                         break;
1737                 }
1738         }
1739
1740         /*
1741          * If we didn't complete the loop above, then back out
1742          * any changes made to the superblock.  If you add code
1743          * between the loop above and here, make sure that you
1744          * preserve the value of status. Loop back until
1745          * we step below the beginning of the array.  Make sure
1746          * we don't touch anything back there.
1747          */
1748         if (status != 0) {
1749                 msbp--;
1750                 while (msbp >= msb) {
1751                         switch (msbp->msb_field) {
1752 #ifdef HAVE_PERCPU_SB
1753                         case XFS_SBS_ICOUNT:
1754                         case XFS_SBS_IFREE:
1755                         case XFS_SBS_FDBLOCKS:
1756                                 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1757                                         XFS_SB_UNLOCK(mp, s);
1758                                         status = xfs_icsb_modify_counters(mp,
1759                                                         msbp->msb_field,
1760                                                         -(msbp->msb_delta),
1761                                                         rsvd);
1762                                         s = XFS_SB_LOCK(mp);
1763                                         break;
1764                                 }
1765                                 /* FALLTHROUGH */
1766 #endif
1767                         default:
1768                                 status = xfs_mod_incore_sb_unlocked(mp,
1769                                                         msbp->msb_field,
1770                                                         -(msbp->msb_delta),
1771                                                         rsvd);
1772                                 break;
1773                         }
1774                         ASSERT(status == 0);
1775                         msbp--;
1776                 }
1777         }
1778         XFS_SB_UNLOCK(mp, s);
1779         return status;
1780 }
1781
1782 /*
1783  * xfs_getsb() is called to obtain the buffer for the superblock.
1784  * The buffer is returned locked and read in from disk.
1785  * The buffer should be released with a call to xfs_brelse().
1786  *
1787  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1788  * the superblock buffer if it can be locked without sleeping.
1789  * If it can't then we'll return NULL.
1790  */
1791 xfs_buf_t *
1792 xfs_getsb(
1793         xfs_mount_t     *mp,
1794         int             flags)
1795 {
1796         xfs_buf_t       *bp;
1797
1798         ASSERT(mp->m_sb_bp != NULL);
1799         bp = mp->m_sb_bp;
1800         if (flags & XFS_BUF_TRYLOCK) {
1801                 if (!XFS_BUF_CPSEMA(bp)) {
1802                         return NULL;
1803                 }
1804         } else {
1805                 XFS_BUF_PSEMA(bp, PRIBIO);
1806         }
1807         XFS_BUF_HOLD(bp);
1808         ASSERT(XFS_BUF_ISDONE(bp));
1809         return bp;
1810 }
1811
1812 /*
1813  * Used to free the superblock along various error paths.
1814  */
1815 void
1816 xfs_freesb(
1817         xfs_mount_t     *mp)
1818 {
1819         xfs_buf_t       *bp;
1820
1821         /*
1822          * Use xfs_getsb() so that the buffer will be locked
1823          * when we call xfs_buf_relse().
1824          */
1825         bp = xfs_getsb(mp, 0);
1826         XFS_BUF_UNMANAGE(bp);
1827         xfs_buf_relse(bp);
1828         mp->m_sb_bp = NULL;
1829 }
1830
1831 /*
1832  * See if the UUID is unique among mounted XFS filesystems.
1833  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
1834  */
1835 STATIC int
1836 xfs_uuid_mount(
1837         xfs_mount_t     *mp)
1838 {
1839         if (uuid_is_nil(&mp->m_sb.sb_uuid)) {
1840                 cmn_err(CE_WARN,
1841                         "XFS: Filesystem %s has nil UUID - can't mount",
1842                         mp->m_fsname);
1843                 return -1;
1844         }
1845         if (!uuid_table_insert(&mp->m_sb.sb_uuid)) {
1846                 cmn_err(CE_WARN,
1847                         "XFS: Filesystem %s has duplicate UUID - can't mount",
1848                         mp->m_fsname);
1849                 return -1;
1850         }
1851         return 0;
1852 }
1853
1854 /*
1855  * Remove filesystem from the UUID table.
1856  */
1857 STATIC void
1858 xfs_uuid_unmount(
1859         xfs_mount_t     *mp)
1860 {
1861         uuid_table_remove(&mp->m_sb.sb_uuid);
1862 }
1863
1864 /*
1865  * Used to log changes to the superblock unit and width fields which could
1866  * be altered by the mount options. Only the first superblock is updated.
1867  */
1868 STATIC void
1869 xfs_mount_log_sbunit(
1870         xfs_mount_t     *mp,
1871         __int64_t       fields)
1872 {
1873         xfs_trans_t     *tp;
1874
1875         ASSERT(fields & (XFS_SB_UNIT|XFS_SB_WIDTH|XFS_SB_UUID));
1876
1877         tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1878         if (xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1879                                 XFS_DEFAULT_LOG_COUNT)) {
1880                 xfs_trans_cancel(tp, 0);
1881                 return;
1882         }
1883         xfs_mod_sb(tp, fields);
1884         xfs_trans_commit(tp, 0);
1885 }
1886
1887
1888 #ifdef HAVE_PERCPU_SB
1889 /*
1890  * Per-cpu incore superblock counters
1891  *
1892  * Simple concept, difficult implementation
1893  *
1894  * Basically, replace the incore superblock counters with a distributed per cpu
1895  * counter for contended fields (e.g.  free block count).
1896  *
1897  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1898  * hence needs to be accurately read when we are running low on space. Hence
1899  * there is a method to enable and disable the per-cpu counters based on how
1900  * much "stuff" is available in them.
1901  *
1902  * Basically, a counter is enabled if there is enough free resource to justify
1903  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1904  * ENOSPC), then we disable the counters to synchronise all callers and
1905  * re-distribute the available resources.
1906  *
1907  * If, once we redistributed the available resources, we still get a failure,
1908  * we disable the per-cpu counter and go through the slow path.
1909  *
1910  * The slow path is the current xfs_mod_incore_sb() function.  This means that
1911  * when we disable a per-cpu counter, we need to drain it's resources back to
1912  * the global superblock. We do this after disabling the counter to prevent
1913  * more threads from queueing up on the counter.
1914  *
1915  * Essentially, this means that we still need a lock in the fast path to enable
1916  * synchronisation between the global counters and the per-cpu counters. This
1917  * is not a problem because the lock will be local to a CPU almost all the time
1918  * and have little contention except when we get to ENOSPC conditions.
1919  *
1920  * Basically, this lock becomes a barrier that enables us to lock out the fast
1921  * path while we do things like enabling and disabling counters and
1922  * synchronising the counters.
1923  *
1924  * Locking rules:
1925  *
1926  *      1. XFS_SB_LOCK() before picking up per-cpu locks
1927  *      2. per-cpu locks always picked up via for_each_online_cpu() order
1928  *      3. accurate counter sync requires XFS_SB_LOCK + per cpu locks
1929  *      4. modifying per-cpu counters requires holding per-cpu lock
1930  *      5. modifying global counters requires holding XFS_SB_LOCK
1931  *      6. enabling or disabling a counter requires holding the XFS_SB_LOCK
1932  *         and _none_ of the per-cpu locks.
1933  *
1934  * Disabled counters are only ever re-enabled by a balance operation
1935  * that results in more free resources per CPU than a given threshold.
1936  * To ensure counters don't remain disabled, they are rebalanced when
1937  * the global resource goes above a higher threshold (i.e. some hysteresis
1938  * is present to prevent thrashing).
1939  */
1940
1941 #ifdef CONFIG_HOTPLUG_CPU
1942 /*
1943  * hot-plug CPU notifier support.
1944  *
1945  * We need a notifier per filesystem as we need to be able to identify
1946  * the filesystem to balance the counters out. This is achieved by
1947  * having a notifier block embedded in the xfs_mount_t and doing pointer
1948  * magic to get the mount pointer from the notifier block address.
1949  */
1950 STATIC int
1951 xfs_icsb_cpu_notify(
1952         struct notifier_block *nfb,
1953         unsigned long action,
1954         void *hcpu)
1955 {
1956         xfs_icsb_cnts_t *cntp;
1957         xfs_mount_t     *mp;
1958         int             s;
1959
1960         mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1961         cntp = (xfs_icsb_cnts_t *)
1962                         per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1963         switch (action) {
1964         case CPU_UP_PREPARE:
1965         case CPU_UP_PREPARE_FROZEN:
1966                 /* Easy Case - initialize the area and locks, and
1967                  * then rebalance when online does everything else for us. */
1968                 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1969                 break;
1970         case CPU_ONLINE:
1971         case CPU_ONLINE_FROZEN:
1972                 xfs_icsb_lock(mp);
1973                 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0);
1974                 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0);
1975                 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0);
1976                 xfs_icsb_unlock(mp);
1977                 break;
1978         case CPU_DEAD:
1979         case CPU_DEAD_FROZEN:
1980                 /* Disable all the counters, then fold the dead cpu's
1981                  * count into the total on the global superblock and
1982                  * re-enable the counters. */
1983                 xfs_icsb_lock(mp);
1984                 s = XFS_SB_LOCK(mp);
1985                 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1986                 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1987                 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1988
1989                 mp->m_sb.sb_icount += cntp->icsb_icount;
1990                 mp->m_sb.sb_ifree += cntp->icsb_ifree;
1991                 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1992
1993                 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1994
1995                 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT,
1996                                          XFS_ICSB_SB_LOCKED, 0);
1997                 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE,
1998                                          XFS_ICSB_SB_LOCKED, 0);
1999                 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS,
2000                                          XFS_ICSB_SB_LOCKED, 0);
2001                 XFS_SB_UNLOCK(mp, s);
2002                 xfs_icsb_unlock(mp);
2003                 break;
2004         }
2005
2006         return NOTIFY_OK;
2007 }
2008 #endif /* CONFIG_HOTPLUG_CPU */
2009
2010 int
2011 xfs_icsb_init_counters(
2012         xfs_mount_t     *mp)
2013 {
2014         xfs_icsb_cnts_t *cntp;
2015         int             i;
2016
2017         mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2018         if (mp->m_sb_cnts == NULL)
2019                 return -ENOMEM;
2020
2021 #ifdef CONFIG_HOTPLUG_CPU
2022         mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2023         mp->m_icsb_notifier.priority = 0;
2024         register_hotcpu_notifier(&mp->m_icsb_notifier);
2025 #endif /* CONFIG_HOTPLUG_CPU */
2026
2027         for_each_online_cpu(i) {
2028                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2029                 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2030         }
2031
2032         mutex_init(&mp->m_icsb_mutex);
2033
2034         /*
2035          * start with all counters disabled so that the
2036          * initial balance kicks us off correctly
2037          */
2038         mp->m_icsb_counters = -1;
2039         return 0;
2040 }
2041
2042 void
2043 xfs_icsb_reinit_counters(
2044         xfs_mount_t     *mp)
2045 {
2046         xfs_icsb_lock(mp);
2047         /*
2048          * start with all counters disabled so that the
2049          * initial balance kicks us off correctly
2050          */
2051         mp->m_icsb_counters = -1;
2052         xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0);
2053         xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0);
2054         xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0);
2055         xfs_icsb_unlock(mp);
2056 }
2057
2058 STATIC void
2059 xfs_icsb_destroy_counters(
2060         xfs_mount_t     *mp)
2061 {
2062         if (mp->m_sb_cnts) {
2063                 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2064                 free_percpu(mp->m_sb_cnts);
2065         }
2066         mutex_destroy(&mp->m_icsb_mutex);
2067 }
2068
2069 STATIC_INLINE void
2070 xfs_icsb_lock_cntr(
2071         xfs_icsb_cnts_t *icsbp)
2072 {
2073         while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2074                 ndelay(1000);
2075         }
2076 }
2077
2078 STATIC_INLINE void
2079 xfs_icsb_unlock_cntr(
2080         xfs_icsb_cnts_t *icsbp)
2081 {
2082         clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2083 }
2084
2085
2086 STATIC_INLINE void
2087 xfs_icsb_lock_all_counters(
2088         xfs_mount_t     *mp)
2089 {
2090         xfs_icsb_cnts_t *cntp;
2091         int             i;
2092
2093         for_each_online_cpu(i) {
2094                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2095                 xfs_icsb_lock_cntr(cntp);
2096         }
2097 }
2098
2099 STATIC_INLINE void
2100 xfs_icsb_unlock_all_counters(
2101         xfs_mount_t     *mp)
2102 {
2103         xfs_icsb_cnts_t *cntp;
2104         int             i;
2105
2106         for_each_online_cpu(i) {
2107                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2108                 xfs_icsb_unlock_cntr(cntp);
2109         }
2110 }
2111
2112 STATIC void
2113 xfs_icsb_count(
2114         xfs_mount_t     *mp,
2115         xfs_icsb_cnts_t *cnt,
2116         int             flags)
2117 {
2118         xfs_icsb_cnts_t *cntp;
2119         int             i;
2120
2121         memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2122
2123         if (!(flags & XFS_ICSB_LAZY_COUNT))
2124                 xfs_icsb_lock_all_counters(mp);
2125
2126         for_each_online_cpu(i) {
2127                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2128                 cnt->icsb_icount += cntp->icsb_icount;
2129                 cnt->icsb_ifree += cntp->icsb_ifree;
2130                 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2131         }
2132
2133         if (!(flags & XFS_ICSB_LAZY_COUNT))
2134                 xfs_icsb_unlock_all_counters(mp);
2135 }
2136
2137 STATIC int
2138 xfs_icsb_counter_disabled(
2139         xfs_mount_t     *mp,
2140         xfs_sb_field_t  field)
2141 {
2142         ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2143         return test_bit(field, &mp->m_icsb_counters);
2144 }
2145
2146 STATIC int
2147 xfs_icsb_disable_counter(
2148         xfs_mount_t     *mp,
2149         xfs_sb_field_t  field)
2150 {
2151         xfs_icsb_cnts_t cnt;
2152
2153         ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2154
2155         /*
2156          * If we are already disabled, then there is nothing to do
2157          * here. We check before locking all the counters to avoid
2158          * the expensive lock operation when being called in the
2159          * slow path and the counter is already disabled. This is
2160          * safe because the only time we set or clear this state is under
2161          * the m_icsb_mutex.
2162          */
2163         if (xfs_icsb_counter_disabled(mp, field))
2164                 return 0;
2165
2166         xfs_icsb_lock_all_counters(mp);
2167         if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2168                 /* drain back to superblock */
2169
2170                 xfs_icsb_count(mp, &cnt, XFS_ICSB_SB_LOCKED|XFS_ICSB_LAZY_COUNT);
2171                 switch(field) {
2172                 case XFS_SBS_ICOUNT:
2173                         mp->m_sb.sb_icount = cnt.icsb_icount;
2174                         break;
2175                 case XFS_SBS_IFREE:
2176                         mp->m_sb.sb_ifree = cnt.icsb_ifree;
2177                         break;
2178                 case XFS_SBS_FDBLOCKS:
2179                         mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2180                         break;
2181                 default:
2182                         BUG();
2183                 }
2184         }
2185
2186         xfs_icsb_unlock_all_counters(mp);
2187
2188         return 0;
2189 }
2190
2191 STATIC void
2192 xfs_icsb_enable_counter(
2193         xfs_mount_t     *mp,
2194         xfs_sb_field_t  field,
2195         uint64_t        count,
2196         uint64_t        resid)
2197 {
2198         xfs_icsb_cnts_t *cntp;
2199         int             i;
2200
2201         ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2202
2203         xfs_icsb_lock_all_counters(mp);
2204         for_each_online_cpu(i) {
2205                 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2206                 switch (field) {
2207                 case XFS_SBS_ICOUNT:
2208                         cntp->icsb_icount = count + resid;
2209                         break;
2210                 case XFS_SBS_IFREE:
2211                         cntp->icsb_ifree = count + resid;
2212                         break;
2213                 case XFS_SBS_FDBLOCKS:
2214                         cntp->icsb_fdblocks = count + resid;
2215                         break;
2216                 default:
2217                         BUG();
2218                         break;
2219                 }
2220                 resid = 0;
2221         }
2222         clear_bit(field, &mp->m_icsb_counters);
2223         xfs_icsb_unlock_all_counters(mp);
2224 }
2225
2226 void
2227 xfs_icsb_sync_counters_flags(
2228         xfs_mount_t     *mp,
2229         int             flags)
2230 {
2231         xfs_icsb_cnts_t cnt;
2232         int             s;
2233
2234         /* Pass 1: lock all counters */
2235         if ((flags & XFS_ICSB_SB_LOCKED) == 0)
2236                 s = XFS_SB_LOCK(mp);
2237
2238         xfs_icsb_count(mp, &cnt, flags);
2239
2240         /* Step 3: update mp->m_sb fields */
2241         if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2242                 mp->m_sb.sb_icount = cnt.icsb_icount;
2243         if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2244                 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2245         if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2246                 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2247
2248         if ((flags & XFS_ICSB_SB_LOCKED) == 0)
2249                 XFS_SB_UNLOCK(mp, s);
2250 }
2251
2252 /*
2253  * Accurate update of per-cpu counters to incore superblock
2254  */
2255 STATIC void
2256 xfs_icsb_sync_counters(
2257         xfs_mount_t     *mp)
2258 {
2259         xfs_icsb_sync_counters_flags(mp, 0);
2260 }
2261
2262 /*
2263  * Balance and enable/disable counters as necessary.
2264  *
2265  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2266  * chosen to be the same number as single on disk allocation chunk per CPU, and
2267  * free blocks is something far enough zero that we aren't going thrash when we
2268  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2269  * prevent looping endlessly when xfs_alloc_space asks for more than will
2270  * be distributed to a single CPU but each CPU has enough blocks to be
2271  * reenabled.
2272  *
2273  * Note that we can be called when counters are already disabled.
2274  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2275  * prevent locking every per-cpu counter needlessly.
2276  */
2277
2278 #define XFS_ICSB_INO_CNTR_REENABLE      (uint64_t)64
2279 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2280                 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2281 STATIC void
2282 xfs_icsb_balance_counter(
2283         xfs_mount_t     *mp,
2284         xfs_sb_field_t  field,
2285         int             flags,
2286         int             min_per_cpu)
2287 {
2288         uint64_t        count, resid;
2289         int             weight = num_online_cpus();
2290         int             s;
2291         uint64_t        min = (uint64_t)min_per_cpu;
2292
2293         if (!(flags & XFS_ICSB_SB_LOCKED))
2294                 s = XFS_SB_LOCK(mp);
2295
2296         /* disable counter and sync counter */
2297         xfs_icsb_disable_counter(mp, field);
2298
2299         /* update counters  - first CPU gets residual*/
2300         switch (field) {
2301         case XFS_SBS_ICOUNT:
2302                 count = mp->m_sb.sb_icount;
2303                 resid = do_div(count, weight);
2304                 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2305                         goto out;
2306                 break;
2307         case XFS_SBS_IFREE:
2308                 count = mp->m_sb.sb_ifree;
2309                 resid = do_div(count, weight);
2310                 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2311                         goto out;
2312                 break;
2313         case XFS_SBS_FDBLOCKS:
2314                 count = mp->m_sb.sb_fdblocks;
2315                 resid = do_div(count, weight);
2316                 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2317                         goto out;
2318                 break;
2319         default:
2320                 BUG();
2321                 count = resid = 0;      /* quiet, gcc */
2322                 break;
2323         }
2324
2325         xfs_icsb_enable_counter(mp, field, count, resid);
2326 out:
2327         if (!(flags & XFS_ICSB_SB_LOCKED))
2328                 XFS_SB_UNLOCK(mp, s);
2329 }
2330
2331 int
2332 xfs_icsb_modify_counters(
2333         xfs_mount_t     *mp,
2334         xfs_sb_field_t  field,
2335         int64_t         delta,
2336         int             rsvd)
2337 {
2338         xfs_icsb_cnts_t *icsbp;
2339         long long       lcounter;       /* long counter for 64 bit fields */
2340         int             cpu, ret = 0, s;
2341
2342         might_sleep();
2343 again:
2344         cpu = get_cpu();
2345         icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu);
2346
2347         /*
2348          * if the counter is disabled, go to slow path
2349          */
2350         if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2351                 goto slow_path;
2352         xfs_icsb_lock_cntr(icsbp);
2353         if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2354                 xfs_icsb_unlock_cntr(icsbp);
2355                 goto slow_path;
2356         }
2357
2358         switch (field) {
2359         case XFS_SBS_ICOUNT:
2360                 lcounter = icsbp->icsb_icount;
2361                 lcounter += delta;
2362                 if (unlikely(lcounter < 0))
2363                         goto balance_counter;
2364                 icsbp->icsb_icount = lcounter;
2365                 break;
2366
2367         case XFS_SBS_IFREE:
2368                 lcounter = icsbp->icsb_ifree;
2369                 lcounter += delta;
2370                 if (unlikely(lcounter < 0))
2371                         goto balance_counter;
2372                 icsbp->icsb_ifree = lcounter;
2373                 break;
2374
2375         case XFS_SBS_FDBLOCKS:
2376                 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2377
2378                 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2379                 lcounter += delta;
2380                 if (unlikely(lcounter < 0))
2381                         goto balance_counter;
2382                 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2383                 break;
2384         default:
2385                 BUG();
2386                 break;
2387         }
2388         xfs_icsb_unlock_cntr(icsbp);
2389         put_cpu();
2390         return 0;
2391
2392 slow_path:
2393         put_cpu();
2394
2395         /*
2396          * serialise with a mutex so we don't burn lots of cpu on
2397          * the superblock lock. We still need to hold the superblock
2398          * lock, however, when we modify the global structures.
2399          */
2400         xfs_icsb_lock(mp);
2401
2402         /*
2403          * Now running atomically.
2404          *
2405          * If the counter is enabled, someone has beaten us to rebalancing.
2406          * Drop the lock and try again in the fast path....
2407          */
2408         if (!(xfs_icsb_counter_disabled(mp, field))) {
2409                 xfs_icsb_unlock(mp);
2410                 goto again;
2411         }
2412
2413         /*
2414          * The counter is currently disabled. Because we are
2415          * running atomically here, we know a rebalance cannot
2416          * be in progress. Hence we can go straight to operating
2417          * on the global superblock. We do not call xfs_mod_incore_sb()
2418          * here even though we need to get the SB_LOCK. Doing so
2419          * will cause us to re-enter this function and deadlock.
2420          * Hence we get the SB_LOCK ourselves and then call
2421          * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2422          * directly on the global counters.
2423          */
2424         s = XFS_SB_LOCK(mp);
2425         ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2426         XFS_SB_UNLOCK(mp, s);
2427
2428         /*
2429          * Now that we've modified the global superblock, we
2430          * may be able to re-enable the distributed counters
2431          * (e.g. lots of space just got freed). After that
2432          * we are done.
2433          */
2434         if (ret != ENOSPC)
2435                 xfs_icsb_balance_counter(mp, field, 0, 0);
2436         xfs_icsb_unlock(mp);
2437         return ret;
2438
2439 balance_counter:
2440         xfs_icsb_unlock_cntr(icsbp);
2441         put_cpu();
2442
2443         /*
2444          * We may have multiple threads here if multiple per-cpu
2445          * counters run dry at the same time. This will mean we can
2446          * do more balances than strictly necessary but it is not
2447          * the common slowpath case.
2448          */
2449         xfs_icsb_lock(mp);
2450
2451         /*
2452          * running atomically.
2453          *
2454          * This will leave the counter in the correct state for future
2455          * accesses. After the rebalance, we simply try again and our retry
2456          * will either succeed through the fast path or slow path without
2457          * another balance operation being required.
2458          */
2459         xfs_icsb_balance_counter(mp, field, 0, delta);
2460         xfs_icsb_unlock(mp);
2461         goto again;
2462 }
2463
2464 #endif