1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
7 #include <linux/mm_types.h>
10 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
11 extern int ptep_set_access_flags(struct vm_area_struct *vma,
12 unsigned long address, pte_t *ptep,
13 pte_t entry, int dirty);
16 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
17 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
18 unsigned long address, pmd_t *pmdp,
19 pmd_t entry, int dirty);
22 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
23 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
24 unsigned long address,
32 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
37 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
39 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
40 unsigned long address,
48 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
51 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
52 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
53 unsigned long address,
59 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
62 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
63 int ptep_clear_flush_young(struct vm_area_struct *vma,
64 unsigned long address, pte_t *ptep);
67 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
68 int pmdp_clear_flush_young(struct vm_area_struct *vma,
69 unsigned long address, pmd_t *pmdp);
72 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
73 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
74 unsigned long address,
78 pte_clear(mm, address, ptep);
83 #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
84 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
85 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
86 unsigned long address,
90 pmd_clear(mm, address, pmdp);
93 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
96 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
97 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
98 unsigned long address, pte_t *ptep,
102 pte = ptep_get_and_clear(mm, address, ptep);
108 * Some architectures may be able to avoid expensive synchronization
109 * primitives when modifications are made to PTE's which are already
110 * not present, or in the process of an address space destruction.
112 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
113 static inline void pte_clear_not_present_full(struct mm_struct *mm,
114 unsigned long address,
118 pte_clear(mm, address, ptep);
122 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
123 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
124 unsigned long address,
128 #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
129 extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
130 unsigned long address,
134 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
136 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
138 pte_t old_pte = *ptep;
139 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
143 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
144 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
145 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
146 unsigned long address, pmd_t *pmdp)
148 pmd_t old_pmd = *pmdp;
149 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
151 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
152 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
153 unsigned long address, pmd_t *pmdp)
157 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
160 #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
161 extern pmd_t pmdp_splitting_flush(struct vm_area_struct *vma,
162 unsigned long address,
166 #ifndef __HAVE_ARCH_PTE_SAME
167 static inline int pte_same(pte_t pte_a, pte_t pte_b)
169 return pte_val(pte_a) == pte_val(pte_b);
173 #ifndef __HAVE_ARCH_PMD_SAME
174 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
175 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
177 return pmd_val(pmd_a) == pmd_val(pmd_b);
179 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
180 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
185 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
188 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
189 #define page_test_and_clear_dirty(pfn, mapped) (0)
192 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
193 #define pte_maybe_dirty(pte) pte_dirty(pte)
195 #define pte_maybe_dirty(pte) (1)
198 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
199 #define page_test_and_clear_young(pfn) (0)
202 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
203 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
206 #ifndef __HAVE_ARCH_MOVE_PTE
207 #define move_pte(pte, prot, old_addr, new_addr) (pte)
210 #ifndef flush_tlb_fix_spurious_fault
211 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
214 #ifndef pgprot_noncached
215 #define pgprot_noncached(prot) (prot)
218 #ifndef pgprot_writecombine
219 #define pgprot_writecombine pgprot_noncached
223 * When walking page tables, get the address of the next boundary,
224 * or the end address of the range if that comes earlier. Although no
225 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
228 #define pgd_addr_end(addr, end) \
229 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
230 (__boundary - 1 < (end) - 1)? __boundary: (end); \
234 #define pud_addr_end(addr, end) \
235 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
236 (__boundary - 1 < (end) - 1)? __boundary: (end); \
241 #define pmd_addr_end(addr, end) \
242 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
243 (__boundary - 1 < (end) - 1)? __boundary: (end); \
248 * When walking page tables, we usually want to skip any p?d_none entries;
249 * and any p?d_bad entries - reporting the error before resetting to none.
250 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
252 void pgd_clear_bad(pgd_t *);
253 void pud_clear_bad(pud_t *);
254 void pmd_clear_bad(pmd_t *);
256 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
260 if (unlikely(pgd_bad(*pgd))) {
267 static inline int pud_none_or_clear_bad(pud_t *pud)
271 if (unlikely(pud_bad(*pud))) {
278 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
282 if (unlikely(pmd_bad(*pmd))) {
289 static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
294 * Get the current pte state, but zero it out to make it
295 * non-present, preventing the hardware from asynchronously
298 return ptep_get_and_clear(mm, addr, ptep);
301 static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
303 pte_t *ptep, pte_t pte)
306 * The pte is non-present, so there's no hardware state to
309 set_pte_at(mm, addr, ptep, pte);
312 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
314 * Start a pte protection read-modify-write transaction, which
315 * protects against asynchronous hardware modifications to the pte.
316 * The intention is not to prevent the hardware from making pte
317 * updates, but to prevent any updates it may make from being lost.
319 * This does not protect against other software modifications of the
320 * pte; the appropriate pte lock must be held over the transation.
322 * Note that this interface is intended to be batchable, meaning that
323 * ptep_modify_prot_commit may not actually update the pte, but merely
324 * queue the update to be done at some later time. The update must be
325 * actually committed before the pte lock is released, however.
327 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
331 return __ptep_modify_prot_start(mm, addr, ptep);
335 * Commit an update to a pte, leaving any hardware-controlled bits in
336 * the PTE unmodified.
338 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
340 pte_t *ptep, pte_t pte)
342 __ptep_modify_prot_commit(mm, addr, ptep, pte);
344 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
345 #endif /* CONFIG_MMU */
348 * A facility to provide lazy MMU batching. This allows PTE updates and
349 * page invalidations to be delayed until a call to leave lazy MMU mode
350 * is issued. Some architectures may benefit from doing this, and it is
351 * beneficial for both shadow and direct mode hypervisors, which may batch
352 * the PTE updates which happen during this window. Note that using this
353 * interface requires that read hazards be removed from the code. A read
354 * hazard could result in the direct mode hypervisor case, since the actual
355 * write to the page tables may not yet have taken place, so reads though
356 * a raw PTE pointer after it has been modified are not guaranteed to be
357 * up to date. This mode can only be entered and left under the protection of
358 * the page table locks for all page tables which may be modified. In the UP
359 * case, this is required so that preemption is disabled, and in the SMP case,
360 * it must synchronize the delayed page table writes properly on other CPUs.
362 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
363 #define arch_enter_lazy_mmu_mode() do {} while (0)
364 #define arch_leave_lazy_mmu_mode() do {} while (0)
365 #define arch_flush_lazy_mmu_mode() do {} while (0)
369 * A facility to provide batching of the reload of page tables and
370 * other process state with the actual context switch code for
371 * paravirtualized guests. By convention, only one of the batched
372 * update (lazy) modes (CPU, MMU) should be active at any given time,
373 * entry should never be nested, and entry and exits should always be
374 * paired. This is for sanity of maintaining and reasoning about the
375 * kernel code. In this case, the exit (end of the context switch) is
376 * in architecture-specific code, and so doesn't need a generic
379 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
380 #define arch_start_context_switch(prev) do {} while (0)
383 #ifndef __HAVE_PFNMAP_TRACKING
385 * Interface that can be used by architecture code to keep track of
386 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
388 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
389 * for physical range indicated by pfn and size.
391 static inline int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
392 unsigned long pfn, unsigned long size)
398 * Interface that can be used by architecture code to keep track of
399 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
401 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
402 * copied through copy_page_range().
404 static inline int track_pfn_vma_copy(struct vm_area_struct *vma)
410 * Interface that can be used by architecture code to keep track of
411 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
413 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
414 * untrack can be called for a specific region indicated by pfn and size or
415 * can be for the entire vma (in which case size can be zero).
417 static inline void untrack_pfn_vma(struct vm_area_struct *vma,
418 unsigned long pfn, unsigned long size)
422 extern int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
423 unsigned long pfn, unsigned long size);
424 extern int track_pfn_vma_copy(struct vm_area_struct *vma);
425 extern void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
431 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
432 static inline int pmd_trans_huge(pmd_t pmd)
436 static inline int pmd_trans_splitting(pmd_t pmd)
440 #ifndef __HAVE_ARCH_PMD_WRITE
441 static inline int pmd_write(pmd_t pmd)
446 #endif /* __HAVE_ARCH_PMD_WRITE */
447 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
450 * This function is meant to be used by sites walking pagetables with
451 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
452 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
453 * into a null pmd and the transhuge page fault can convert a null pmd
454 * into an hugepmd or into a regular pmd (if the hugepage allocation
455 * fails). While holding the mmap_sem in read mode the pmd becomes
456 * stable and stops changing under us only if it's not null and not a
457 * transhuge pmd. When those races occurs and this function makes a
458 * difference vs the standard pmd_none_or_clear_bad, the result is
459 * undefined so behaving like if the pmd was none is safe (because it
460 * can return none anyway). The compiler level barrier() is critically
461 * important to compute the two checks atomically on the same pmdval.
463 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
465 /* depend on compiler for an atomic pmd read */
468 * The barrier will stabilize the pmdval in a register or on
469 * the stack so that it will stop changing under the code.
471 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
474 if (pmd_none(pmdval))
476 if (unlikely(pmd_bad(pmdval))) {
477 if (!pmd_trans_huge(pmdval))
485 * This is a noop if Transparent Hugepage Support is not built into
486 * the kernel. Otherwise it is equivalent to
487 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
488 * places that already verified the pmd is not none and they want to
489 * walk ptes while holding the mmap sem in read mode (write mode don't
490 * need this). If THP is not enabled, the pmd can't go away under the
491 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
492 * run a pmd_trans_unstable before walking the ptes after
493 * split_huge_page_pmd returns (because it may have run when the pmd
494 * become null, but then a page fault can map in a THP and not a
497 static inline int pmd_trans_unstable(pmd_t *pmd)
499 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
500 return pmd_none_or_trans_huge_or_clear_bad(pmd);
506 #endif /* CONFIG_MMU */
508 #endif /* !__ASSEMBLY__ */
510 #endif /* _ASM_GENERIC_PGTABLE_H */