]> git.karo-electronics.de Git - karo-tx-linux.git/blob - include/linux/cpumask.h
[PATCH] Update cfq io scheduler to time sliced design
[karo-tx-linux.git] / include / linux / cpumask.h
1 #ifndef __LINUX_CPUMASK_H
2 #define __LINUX_CPUMASK_H
3
4 /*
5  * Cpumasks provide a bitmap suitable for representing the
6  * set of CPU's in a system, one bit position per CPU number.
7  *
8  * See detailed comments in the file linux/bitmap.h describing the
9  * data type on which these cpumasks are based.
10  *
11  * For details of cpumask_scnprintf() and cpumask_parse(),
12  * see bitmap_scnprintf() and bitmap_parse() in lib/bitmap.c.
13  * For details of cpulist_scnprintf() and cpulist_parse(), see
14  * bitmap_scnlistprintf() and bitmap_parselist(), also in bitmap.c.
15  *
16  * The available cpumask operations are:
17  *
18  * void cpu_set(cpu, mask)              turn on bit 'cpu' in mask
19  * void cpu_clear(cpu, mask)            turn off bit 'cpu' in mask
20  * void cpus_setall(mask)               set all bits
21  * void cpus_clear(mask)                clear all bits
22  * int cpu_isset(cpu, mask)             true iff bit 'cpu' set in mask
23  * int cpu_test_and_set(cpu, mask)      test and set bit 'cpu' in mask
24  *
25  * void cpus_and(dst, src1, src2)       dst = src1 & src2  [intersection]
26  * void cpus_or(dst, src1, src2)        dst = src1 | src2  [union]
27  * void cpus_xor(dst, src1, src2)       dst = src1 ^ src2
28  * void cpus_andnot(dst, src1, src2)    dst = src1 & ~src2
29  * void cpus_complement(dst, src)       dst = ~src
30  *
31  * int cpus_equal(mask1, mask2)         Does mask1 == mask2?
32  * int cpus_intersects(mask1, mask2)    Do mask1 and mask2 intersect?
33  * int cpus_subset(mask1, mask2)        Is mask1 a subset of mask2?
34  * int cpus_empty(mask)                 Is mask empty (no bits sets)?
35  * int cpus_full(mask)                  Is mask full (all bits sets)?
36  * int cpus_weight(mask)                Hamming weigh - number of set bits
37  *
38  * void cpus_shift_right(dst, src, n)   Shift right
39  * void cpus_shift_left(dst, src, n)    Shift left
40  *
41  * int first_cpu(mask)                  Number lowest set bit, or NR_CPUS
42  * int next_cpu(cpu, mask)              Next cpu past 'cpu', or NR_CPUS
43  *
44  * cpumask_t cpumask_of_cpu(cpu)        Return cpumask with bit 'cpu' set
45  * CPU_MASK_ALL                         Initializer - all bits set
46  * CPU_MASK_NONE                        Initializer - no bits set
47  * unsigned long *cpus_addr(mask)       Array of unsigned long's in mask
48  *
49  * int cpumask_scnprintf(buf, len, mask) Format cpumask for printing
50  * int cpumask_parse(ubuf, ulen, mask)  Parse ascii string as cpumask
51  * int cpulist_scnprintf(buf, len, mask) Format cpumask as list for printing
52  * int cpulist_parse(buf, map)          Parse ascii string as cpulist
53  *
54  * for_each_cpu_mask(cpu, mask)         for-loop cpu over mask
55  *
56  * int num_online_cpus()                Number of online CPUs
57  * int num_possible_cpus()              Number of all possible CPUs
58  * int num_present_cpus()               Number of present CPUs
59  *
60  * int cpu_online(cpu)                  Is some cpu online?
61  * int cpu_possible(cpu)                Is some cpu possible?
62  * int cpu_present(cpu)                 Is some cpu present (can schedule)?
63  *
64  * int any_online_cpu(mask)             First online cpu in mask
65  *
66  * for_each_cpu(cpu)                    for-loop cpu over cpu_possible_map
67  * for_each_online_cpu(cpu)             for-loop cpu over cpu_online_map
68  * for_each_present_cpu(cpu)            for-loop cpu over cpu_present_map
69  *
70  * Subtlety:
71  * 1) The 'type-checked' form of cpu_isset() causes gcc (3.3.2, anyway)
72  *    to generate slightly worse code.  Note for example the additional
73  *    40 lines of assembly code compiling the "for each possible cpu"
74  *    loops buried in the disk_stat_read() macros calls when compiling
75  *    drivers/block/genhd.c (arch i386, CONFIG_SMP=y).  So use a simple
76  *    one-line #define for cpu_isset(), instead of wrapping an inline
77  *    inside a macro, the way we do the other calls.
78  */
79
80 #include <linux/kernel.h>
81 #include <linux/threads.h>
82 #include <linux/bitmap.h>
83 #include <asm/bug.h>
84
85 typedef struct { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
86 extern cpumask_t _unused_cpumask_arg_;
87
88 #define cpu_set(cpu, dst) __cpu_set((cpu), &(dst))
89 static inline void __cpu_set(int cpu, volatile cpumask_t *dstp)
90 {
91         set_bit(cpu, dstp->bits);
92 }
93
94 #define cpu_clear(cpu, dst) __cpu_clear((cpu), &(dst))
95 static inline void __cpu_clear(int cpu, volatile cpumask_t *dstp)
96 {
97         clear_bit(cpu, dstp->bits);
98 }
99
100 #define cpus_setall(dst) __cpus_setall(&(dst), NR_CPUS)
101 static inline void __cpus_setall(cpumask_t *dstp, int nbits)
102 {
103         bitmap_fill(dstp->bits, nbits);
104 }
105
106 #define cpus_clear(dst) __cpus_clear(&(dst), NR_CPUS)
107 static inline void __cpus_clear(cpumask_t *dstp, int nbits)
108 {
109         bitmap_zero(dstp->bits, nbits);
110 }
111
112 /* No static inline type checking - see Subtlety (1) above. */
113 #define cpu_isset(cpu, cpumask) test_bit((cpu), (cpumask).bits)
114
115 #define cpu_test_and_set(cpu, cpumask) __cpu_test_and_set((cpu), &(cpumask))
116 static inline int __cpu_test_and_set(int cpu, cpumask_t *addr)
117 {
118         return test_and_set_bit(cpu, addr->bits);
119 }
120
121 #define cpus_and(dst, src1, src2) __cpus_and(&(dst), &(src1), &(src2), NR_CPUS)
122 static inline void __cpus_and(cpumask_t *dstp, const cpumask_t *src1p,
123                                         const cpumask_t *src2p, int nbits)
124 {
125         bitmap_and(dstp->bits, src1p->bits, src2p->bits, nbits);
126 }
127
128 #define cpus_or(dst, src1, src2) __cpus_or(&(dst), &(src1), &(src2), NR_CPUS)
129 static inline void __cpus_or(cpumask_t *dstp, const cpumask_t *src1p,
130                                         const cpumask_t *src2p, int nbits)
131 {
132         bitmap_or(dstp->bits, src1p->bits, src2p->bits, nbits);
133 }
134
135 #define cpus_xor(dst, src1, src2) __cpus_xor(&(dst), &(src1), &(src2), NR_CPUS)
136 static inline void __cpus_xor(cpumask_t *dstp, const cpumask_t *src1p,
137                                         const cpumask_t *src2p, int nbits)
138 {
139         bitmap_xor(dstp->bits, src1p->bits, src2p->bits, nbits);
140 }
141
142 #define cpus_andnot(dst, src1, src2) \
143                                 __cpus_andnot(&(dst), &(src1), &(src2), NR_CPUS)
144 static inline void __cpus_andnot(cpumask_t *dstp, const cpumask_t *src1p,
145                                         const cpumask_t *src2p, int nbits)
146 {
147         bitmap_andnot(dstp->bits, src1p->bits, src2p->bits, nbits);
148 }
149
150 #define cpus_complement(dst, src) __cpus_complement(&(dst), &(src), NR_CPUS)
151 static inline void __cpus_complement(cpumask_t *dstp,
152                                         const cpumask_t *srcp, int nbits)
153 {
154         bitmap_complement(dstp->bits, srcp->bits, nbits);
155 }
156
157 #define cpus_equal(src1, src2) __cpus_equal(&(src1), &(src2), NR_CPUS)
158 static inline int __cpus_equal(const cpumask_t *src1p,
159                                         const cpumask_t *src2p, int nbits)
160 {
161         return bitmap_equal(src1p->bits, src2p->bits, nbits);
162 }
163
164 #define cpus_intersects(src1, src2) __cpus_intersects(&(src1), &(src2), NR_CPUS)
165 static inline int __cpus_intersects(const cpumask_t *src1p,
166                                         const cpumask_t *src2p, int nbits)
167 {
168         return bitmap_intersects(src1p->bits, src2p->bits, nbits);
169 }
170
171 #define cpus_subset(src1, src2) __cpus_subset(&(src1), &(src2), NR_CPUS)
172 static inline int __cpus_subset(const cpumask_t *src1p,
173                                         const cpumask_t *src2p, int nbits)
174 {
175         return bitmap_subset(src1p->bits, src2p->bits, nbits);
176 }
177
178 #define cpus_empty(src) __cpus_empty(&(src), NR_CPUS)
179 static inline int __cpus_empty(const cpumask_t *srcp, int nbits)
180 {
181         return bitmap_empty(srcp->bits, nbits);
182 }
183
184 #define cpus_full(cpumask) __cpus_full(&(cpumask), NR_CPUS)
185 static inline int __cpus_full(const cpumask_t *srcp, int nbits)
186 {
187         return bitmap_full(srcp->bits, nbits);
188 }
189
190 #define cpus_weight(cpumask) __cpus_weight(&(cpumask), NR_CPUS)
191 static inline int __cpus_weight(const cpumask_t *srcp, int nbits)
192 {
193         return bitmap_weight(srcp->bits, nbits);
194 }
195
196 #define cpus_shift_right(dst, src, n) \
197                         __cpus_shift_right(&(dst), &(src), (n), NR_CPUS)
198 static inline void __cpus_shift_right(cpumask_t *dstp,
199                                         const cpumask_t *srcp, int n, int nbits)
200 {
201         bitmap_shift_right(dstp->bits, srcp->bits, n, nbits);
202 }
203
204 #define cpus_shift_left(dst, src, n) \
205                         __cpus_shift_left(&(dst), &(src), (n), NR_CPUS)
206 static inline void __cpus_shift_left(cpumask_t *dstp,
207                                         const cpumask_t *srcp, int n, int nbits)
208 {
209         bitmap_shift_left(dstp->bits, srcp->bits, n, nbits);
210 }
211
212 #define first_cpu(src) __first_cpu(&(src), NR_CPUS)
213 static inline int __first_cpu(const cpumask_t *srcp, int nbits)
214 {
215         return min_t(int, nbits, find_first_bit(srcp->bits, nbits));
216 }
217
218 #define next_cpu(n, src) __next_cpu((n), &(src), NR_CPUS)
219 static inline int __next_cpu(int n, const cpumask_t *srcp, int nbits)
220 {
221         return min_t(int, nbits, find_next_bit(srcp->bits, nbits, n+1));
222 }
223
224 #define cpumask_of_cpu(cpu)                                             \
225 ({                                                                      \
226         typeof(_unused_cpumask_arg_) m;                                 \
227         if (sizeof(m) == sizeof(unsigned long)) {                       \
228                 m.bits[0] = 1UL<<(cpu);                                 \
229         } else {                                                        \
230                 cpus_clear(m);                                          \
231                 cpu_set((cpu), m);                                      \
232         }                                                               \
233         m;                                                              \
234 })
235
236 #define CPU_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(NR_CPUS)
237
238 #if NR_CPUS <= BITS_PER_LONG
239
240 #define CPU_MASK_ALL                                                    \
241 (cpumask_t) { {                                                         \
242         [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD                 \
243 } }
244
245 #else
246
247 #define CPU_MASK_ALL                                                    \
248 (cpumask_t) { {                                                         \
249         [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL,                        \
250         [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD                 \
251 } }
252
253 #endif
254
255 #define CPU_MASK_NONE                                                   \
256 (cpumask_t) { {                                                         \
257         [0 ... BITS_TO_LONGS(NR_CPUS)-1] =  0UL                         \
258 } }
259
260 #define CPU_MASK_CPU0                                                   \
261 (cpumask_t) { {                                                         \
262         [0] =  1UL                                                      \
263 } }
264
265 #define cpus_addr(src) ((src).bits)
266
267 #define cpumask_scnprintf(buf, len, src) \
268                         __cpumask_scnprintf((buf), (len), &(src), NR_CPUS)
269 static inline int __cpumask_scnprintf(char *buf, int len,
270                                         const cpumask_t *srcp, int nbits)
271 {
272         return bitmap_scnprintf(buf, len, srcp->bits, nbits);
273 }
274
275 #define cpumask_parse(ubuf, ulen, dst) \
276                         __cpumask_parse((ubuf), (ulen), &(dst), NR_CPUS)
277 static inline int __cpumask_parse(const char __user *buf, int len,
278                                         cpumask_t *dstp, int nbits)
279 {
280         return bitmap_parse(buf, len, dstp->bits, nbits);
281 }
282
283 #define cpulist_scnprintf(buf, len, src) \
284                         __cpulist_scnprintf((buf), (len), &(src), NR_CPUS)
285 static inline int __cpulist_scnprintf(char *buf, int len,
286                                         const cpumask_t *srcp, int nbits)
287 {
288         return bitmap_scnlistprintf(buf, len, srcp->bits, nbits);
289 }
290
291 #define cpulist_parse(buf, dst) __cpulist_parse((buf), &(dst), NR_CPUS)
292 static inline int __cpulist_parse(const char *buf, cpumask_t *dstp, int nbits)
293 {
294         return bitmap_parselist(buf, dstp->bits, nbits);
295 }
296
297 #if NR_CPUS > 1
298 #define for_each_cpu_mask(cpu, mask)            \
299         for ((cpu) = first_cpu(mask);           \
300                 (cpu) < NR_CPUS;                \
301                 (cpu) = next_cpu((cpu), (mask)))
302 #else /* NR_CPUS == 1 */
303 #define for_each_cpu_mask(cpu, mask) for ((cpu) = 0; (cpu) < 1; (cpu)++)
304 #endif /* NR_CPUS */
305
306 /*
307  * The following particular system cpumasks and operations manage
308  * possible, present and online cpus.  Each of them is a fixed size
309  * bitmap of size NR_CPUS.
310  *
311  *  #ifdef CONFIG_HOTPLUG_CPU
312  *     cpu_possible_map - all NR_CPUS bits set
313  *     cpu_present_map  - has bit 'cpu' set iff cpu is populated
314  *     cpu_online_map   - has bit 'cpu' set iff cpu available to scheduler
315  *  #else
316  *     cpu_possible_map - has bit 'cpu' set iff cpu is populated
317  *     cpu_present_map  - copy of cpu_possible_map
318  *     cpu_online_map   - has bit 'cpu' set iff cpu available to scheduler
319  *  #endif
320  *
321  *  In either case, NR_CPUS is fixed at compile time, as the static
322  *  size of these bitmaps.  The cpu_possible_map is fixed at boot
323  *  time, as the set of CPU id's that it is possible might ever
324  *  be plugged in at anytime during the life of that system boot.
325  *  The cpu_present_map is dynamic(*), representing which CPUs
326  *  are currently plugged in.  And cpu_online_map is the dynamic
327  *  subset of cpu_present_map, indicating those CPUs available
328  *  for scheduling.
329  *
330  *  If HOTPLUG is enabled, then cpu_possible_map is forced to have
331  *  all NR_CPUS bits set, otherwise it is just the set of CPUs that
332  *  ACPI reports present at boot.
333  *
334  *  If HOTPLUG is enabled, then cpu_present_map varies dynamically,
335  *  depending on what ACPI reports as currently plugged in, otherwise
336  *  cpu_present_map is just a copy of cpu_possible_map.
337  *
338  *  (*) Well, cpu_present_map is dynamic in the hotplug case.  If not
339  *      hotplug, it's a copy of cpu_possible_map, hence fixed at boot.
340  *
341  * Subtleties:
342  * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
343  *    assumption that their single CPU is online.  The UP
344  *    cpu_{online,possible,present}_maps are placebos.  Changing them
345  *    will have no useful affect on the following num_*_cpus()
346  *    and cpu_*() macros in the UP case.  This ugliness is a UP
347  *    optimization - don't waste any instructions or memory references
348  *    asking if you're online or how many CPUs there are if there is
349  *    only one CPU.
350  * 2) Most SMP arch's #define some of these maps to be some
351  *    other map specific to that arch.  Therefore, the following
352  *    must be #define macros, not inlines.  To see why, examine
353  *    the assembly code produced by the following.  Note that
354  *    set1() writes phys_x_map, but set2() writes x_map:
355  *        int x_map, phys_x_map;
356  *        #define set1(a) x_map = a
357  *        inline void set2(int a) { x_map = a; }
358  *        #define x_map phys_x_map
359  *        main(){ set1(3); set2(5); }
360  */
361
362 extern cpumask_t cpu_possible_map;
363 extern cpumask_t cpu_online_map;
364 extern cpumask_t cpu_present_map;
365
366 #if NR_CPUS > 1
367 #define num_online_cpus()       cpus_weight(cpu_online_map)
368 #define num_possible_cpus()     cpus_weight(cpu_possible_map)
369 #define num_present_cpus()      cpus_weight(cpu_present_map)
370 #define cpu_online(cpu)         cpu_isset((cpu), cpu_online_map)
371 #define cpu_possible(cpu)       cpu_isset((cpu), cpu_possible_map)
372 #define cpu_present(cpu)        cpu_isset((cpu), cpu_present_map)
373 #else
374 #define num_online_cpus()       1
375 #define num_possible_cpus()     1
376 #define num_present_cpus()      1
377 #define cpu_online(cpu)         ((cpu) == 0)
378 #define cpu_possible(cpu)       ((cpu) == 0)
379 #define cpu_present(cpu)        ((cpu) == 0)
380 #endif
381
382 #define any_online_cpu(mask)                    \
383 ({                                              \
384         int cpu;                                \
385         for_each_cpu_mask(cpu, (mask))          \
386                 if (cpu_online(cpu))            \
387                         break;                  \
388         cpu;                                    \
389 })
390
391 #define for_each_cpu(cpu)         for_each_cpu_mask((cpu), cpu_possible_map)
392 #define for_each_online_cpu(cpu)  for_each_cpu_mask((cpu), cpu_online_map)
393 #define for_each_present_cpu(cpu) for_each_cpu_mask((cpu), cpu_present_map)
394
395 #endif /* __LINUX_CPUMASK_H */