3 * Copyright (c) 2011, Microsoft Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
28 #include <linux/types.h>
31 * Framework version for util services.
33 #define UTIL_FW_MINOR 0
35 #define UTIL_WS2K8_FW_MAJOR 1
36 #define UTIL_WS2K8_FW_VERSION (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
38 #define UTIL_FW_MAJOR 3
39 #define UTIL_FW_VERSION (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
43 * Implementation of host controlled snapshot of the guest.
46 #define VSS_OP_REGISTER 128
55 * Following operations are only supported with IC version >= 5.0
57 VSS_OP_FREEZE, /* Freeze the file systems in the VM */
58 VSS_OP_THAW, /* Unfreeze the file systems */
60 VSS_OP_COUNT /* Number of operations, must be last */
65 * Header for all VSS messages.
70 } __attribute__((packed));
74 * Flag values for the hv_vss_check_feature. Linux supports only
77 #define VSS_HBU_NO_AUTO_RECOVERY 0x00000005
79 struct hv_vss_check_feature {
81 } __attribute__((packed));
83 struct hv_vss_check_dm_info {
85 } __attribute__((packed));
89 struct hv_vss_hdr vss_hdr;
93 struct hv_vss_check_feature vss_cf;
94 struct hv_vss_check_dm_info dm_info;
96 } __attribute__((packed));
99 * An implementation of HyperV key value pair (KVP) functionality for Linux.
102 * Copyright (C) 2010, Novell, Inc.
103 * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
108 * Maximum value size - used for both key names and value data, and includes
109 * any applicable NULL terminators.
111 * Note: This limit is somewhat arbitrary, but falls easily within what is
112 * supported for all native guests (back to Win 2000) and what is reasonable
113 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are
114 * limited to 255 character key names.
116 * MSDN recommends not storing data values larger than 2048 bytes in the
119 * Note: This value is used in defining the KVP exchange message - this value
120 * cannot be modified without affecting the message size and compatibility.
124 * bytes, including any null terminators
126 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048)
130 * Maximum key size - the registry limit for the length of an entry name
131 * is 256 characters, including the null terminator
134 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512)
137 * In Linux, we implement the KVP functionality in two components:
138 * 1) The kernel component which is packaged as part of the hv_utils driver
139 * is responsible for communicating with the host and responsible for
140 * implementing the host/guest protocol. 2) A user level daemon that is
141 * responsible for data gathering.
143 * Host/Guest Protocol: The host iterates over an index and expects the guest
144 * to assign a key name to the index and also return the value corresponding to
145 * the key. The host will have atmost one KVP transaction outstanding at any
146 * given point in time. The host side iteration stops when the guest returns
147 * an error. Microsoft has specified the following mapping of key names to
148 * host specified index:
151 * 0 FullyQualifiedDomainName
152 * 1 IntegrationServicesVersion
153 * 2 NetworkAddressIPv4
154 * 3 NetworkAddressIPv6
160 * 9 ProcessorArchitecture
162 * The Windows host expects the Key Name and Key Value to be encoded in utf16.
164 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
165 * data gathering functionality in a user mode daemon. The user level daemon
166 * is also responsible for binding the key name to the index as well. The
167 * kernel and user-level daemon communicate using a connector channel.
169 * The user mode component first registers with the
170 * the kernel component. Subsequently, the kernel component requests, data
171 * for the specified keys. In response to this message the user mode component
172 * fills in the value corresponding to the specified key. We overload the
173 * sequence field in the cn_msg header to define our KVP message types.
176 * The kernel component simply acts as a conduit for communication between the
177 * Windows host and the user-level daemon. The kernel component passes up the
178 * index received from the Host to the user-level daemon. If the index is
179 * valid (supported), the corresponding key as well as its
180 * value (both are strings) is returned. If the index is invalid
181 * (not supported), a NULL key string is returned.
186 * Registry value types.
194 * As we look at expanding the KVP functionality to include
195 * IP injection functionality, we need to maintain binary
196 * compatibility with older daemons.
198 * The KVP opcodes are defined by the host and it was unfortunate
199 * that I chose to treat the registration operation as part of the
200 * KVP operations defined by the host.
201 * Here is the level of compatibility
202 * (between the user level daemon and the kernel KVP driver) that we
205 * An older daemon will always be supported on a newer driver.
206 * A given user level daemon will require a minimal version of the
208 * If we cannot handle the version differences, we will fail gracefully
209 * (this can happen when we have a user level daemon that is more
210 * advanced than the KVP driver.
212 * We will use values used in this handshake for determining if we have
213 * workable user level daemon and the kernel driver. We begin by taking the
214 * registration opcode out of the KVP opcode namespace. We will however,
215 * maintain compatibility with the existing user-level daemon code.
219 * Daemon code not supporting IP injection (legacy daemon).
222 #define KVP_OP_REGISTER 4
225 * Daemon code supporting IP injection.
226 * The KVP opcode field is used to communicate the
227 * registration information; so define a namespace that
228 * will be distinct from the host defined KVP opcode.
231 #define KVP_OP_REGISTER1 100
233 enum hv_kvp_exchg_op {
240 KVP_OP_COUNT /* Number of operations, must be last. */
243 enum hv_kvp_exchg_pool {
244 KVP_POOL_EXTERNAL = 0,
247 KVP_POOL_AUTO_EXTERNAL,
248 KVP_POOL_AUTO_INTERNAL,
249 KVP_POOL_COUNT /* Number of pools, must be last. */
253 * Some Hyper-V status codes.
256 #define HV_S_OK 0x00000000
257 #define HV_E_FAIL 0x80004005
258 #define HV_S_CONT 0x80070103
259 #define HV_ERROR_NOT_SUPPORTED 0x80070032
260 #define HV_ERROR_MACHINE_LOCKED 0x800704F7
261 #define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F
262 #define HV_INVALIDARG 0x80070057
263 #define HV_GUID_NOTFOUND 0x80041002
265 #define ADDR_FAMILY_NONE 0x00
266 #define ADDR_FAMILY_IPV4 0x01
267 #define ADDR_FAMILY_IPV6 0x02
269 #define MAX_ADAPTER_ID_SIZE 128
270 #define MAX_IP_ADDR_SIZE 1024
271 #define MAX_GATEWAY_SIZE 512
274 struct hv_kvp_ipaddr_value {
275 __u16 adapter_id[MAX_ADAPTER_ID_SIZE];
278 __u16 ip_addr[MAX_IP_ADDR_SIZE];
279 __u16 sub_net[MAX_IP_ADDR_SIZE];
280 __u16 gate_way[MAX_GATEWAY_SIZE];
281 __u16 dns_addr[MAX_IP_ADDR_SIZE];
282 } __attribute__((packed));
289 } __attribute__((packed));
291 struct hv_kvp_exchg_msg_value {
295 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
297 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
301 } __attribute__((packed));
303 struct hv_kvp_msg_enumerate {
305 struct hv_kvp_exchg_msg_value data;
306 } __attribute__((packed));
308 struct hv_kvp_msg_get {
309 struct hv_kvp_exchg_msg_value data;
312 struct hv_kvp_msg_set {
313 struct hv_kvp_exchg_msg_value data;
316 struct hv_kvp_msg_delete {
318 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
321 struct hv_kvp_register {
322 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
327 struct hv_kvp_hdr kvp_hdr;
331 struct hv_kvp_msg_get kvp_get;
332 struct hv_kvp_msg_set kvp_set;
333 struct hv_kvp_msg_delete kvp_delete;
334 struct hv_kvp_msg_enumerate kvp_enum_data;
335 struct hv_kvp_ipaddr_value kvp_ip_val;
336 struct hv_kvp_register kvp_register;
338 } __attribute__((packed));
340 struct hv_kvp_ip_msg {
343 struct hv_kvp_ipaddr_value kvp_ip_val;
344 } __attribute__((packed));
347 #include <linux/scatterlist.h>
348 #include <linux/list.h>
349 #include <linux/uuid.h>
350 #include <linux/timer.h>
351 #include <linux/workqueue.h>
352 #include <linux/completion.h>
353 #include <linux/device.h>
354 #include <linux/mod_devicetable.h>
357 #define MAX_PAGE_BUFFER_COUNT 19
358 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
360 #pragma pack(push, 1)
362 /* Single-page buffer */
363 struct hv_page_buffer {
369 /* Multiple-page buffer */
370 struct hv_multipage_buffer {
371 /* Length and Offset determines the # of pfns in the array */
374 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
377 /* 0x18 includes the proprietary packet header */
378 #define MAX_PAGE_BUFFER_PACKET (0x18 + \
379 (sizeof(struct hv_page_buffer) * \
380 MAX_PAGE_BUFFER_COUNT))
381 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
382 sizeof(struct hv_multipage_buffer))
387 struct hv_ring_buffer {
388 /* Offset in bytes from the start of ring data below */
391 /* Offset in bytes from the start of ring data below */
397 * Win8 uses some of the reserved bits to implement
398 * interrupt driven flow management. On the send side
399 * we can request that the receiver interrupt the sender
400 * when the ring transitions from being full to being able
401 * to handle a message of size "pending_send_sz".
403 * Add necessary state for this enhancement.
411 u32 feat_pending_send_sz:1;
416 /* Pad it to PAGE_SIZE so that data starts on page boundary */
420 * Ring data starts here + RingDataStartOffset
421 * !!! DO NOT place any fields below this !!!
426 struct hv_ring_buffer_info {
427 struct hv_ring_buffer *ring_buffer;
428 u32 ring_size; /* Include the shared header */
429 spinlock_t ring_lock;
431 u32 ring_datasize; /* < ring_size */
432 u32 ring_data_startoffset;
435 struct hv_ring_buffer_debug_info {
436 u32 current_interrupt_mask;
437 u32 current_read_index;
438 u32 current_write_index;
439 u32 bytes_avail_toread;
440 u32 bytes_avail_towrite;
446 * hv_get_ringbuffer_availbytes()
448 * Get number of bytes available to read and to write to
449 * for the specified ring buffer
452 hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi,
453 u32 *read, u32 *write)
455 u32 read_loc, write_loc, dsize;
457 smp_read_barrier_depends();
459 /* Capture the read/write indices before they changed */
460 read_loc = rbi->ring_buffer->read_index;
461 write_loc = rbi->ring_buffer->write_index;
462 dsize = rbi->ring_datasize;
464 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
465 read_loc - write_loc;
466 *read = dsize - *write;
470 * VMBUS version is 32 bit entity broken up into
471 * two 16 bit quantities: major_number. minor_number.
473 * 0 . 13 (Windows Server 2008)
478 #define VERSION_WS2008 ((0 << 16) | (13))
479 #define VERSION_WIN7 ((1 << 16) | (1))
480 #define VERSION_WIN8 ((2 << 16) | (4))
482 #define VERSION_INVAL -1
484 #define VERSION_CURRENT VERSION_WIN8
486 /* Make maximum size of pipe payload of 16K */
487 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
489 /* Define PipeMode values. */
490 #define VMBUS_PIPE_TYPE_BYTE 0x00000000
491 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
493 /* The size of the user defined data buffer for non-pipe offers. */
494 #define MAX_USER_DEFINED_BYTES 120
496 /* The size of the user defined data buffer for pipe offers. */
497 #define MAX_PIPE_USER_DEFINED_BYTES 116
500 * At the center of the Channel Management library is the Channel Offer. This
501 * struct contains the fundamental information about an offer.
503 struct vmbus_channel_offer {
508 * These two fields are not currently used.
514 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
517 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
519 unsigned char user_def[MAX_USER_DEFINED_BYTES];
524 * The following sructure is an integrated pipe protocol, which
525 * is implemented on top of standard user-defined data. Pipe
526 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
531 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
535 * The sub_channel_index is defined in win8.
537 u16 sub_channel_index;
542 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
543 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
544 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
545 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
546 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
547 #define VMBUS_CHANNEL_PARENT_OFFER 0x200
548 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
550 struct vmpacket_descriptor {
558 struct vmpacket_header {
559 u32 prev_pkt_start_offset;
560 struct vmpacket_descriptor descriptor;
563 struct vmtransfer_page_range {
568 struct vmtransfer_page_packet_header {
569 struct vmpacket_descriptor d;
574 struct vmtransfer_page_range ranges[1];
577 struct vmgpadl_packet_header {
578 struct vmpacket_descriptor d;
583 struct vmadd_remove_transfer_page_set {
584 struct vmpacket_descriptor d;
591 * This structure defines a range in guest physical space that can be made to
592 * look virtually contiguous.
601 * This is the format for an Establish Gpadl packet, which contains a handle by
602 * which this GPADL will be known and a set of GPA ranges associated with it.
603 * This can be converted to a MDL by the guest OS. If there are multiple GPA
604 * ranges, then the resulting MDL will be "chained," representing multiple VA
607 struct vmestablish_gpadl {
608 struct vmpacket_descriptor d;
611 struct gpa_range range[1];
615 * This is the format for a Teardown Gpadl packet, which indicates that the
616 * GPADL handle in the Establish Gpadl packet will never be referenced again.
618 struct vmteardown_gpadl {
619 struct vmpacket_descriptor d;
621 u32 reserved; /* for alignment to a 8-byte boundary */
625 * This is the format for a GPA-Direct packet, which contains a set of GPA
626 * ranges, in addition to commands and/or data.
628 struct vmdata_gpa_direct {
629 struct vmpacket_descriptor d;
632 struct gpa_range range[1];
635 /* This is the format for a Additional Data Packet. */
636 struct vmadditional_data {
637 struct vmpacket_descriptor d;
641 unsigned char data[1];
644 union vmpacket_largest_possible_header {
645 struct vmpacket_descriptor simple_hdr;
646 struct vmtransfer_page_packet_header xfer_page_hdr;
647 struct vmgpadl_packet_header gpadl_hdr;
648 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
649 struct vmestablish_gpadl establish_gpadl_hdr;
650 struct vmteardown_gpadl teardown_gpadl_hdr;
651 struct vmdata_gpa_direct data_gpa_direct_hdr;
654 #define VMPACKET_DATA_START_ADDRESS(__packet) \
655 (void *)(((unsigned char *)__packet) + \
656 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
658 #define VMPACKET_DATA_LENGTH(__packet) \
659 ((((struct vmpacket_descriptor)__packet)->len8 - \
660 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
662 #define VMPACKET_TRANSFER_MODE(__packet) \
663 (((struct IMPACT)__packet)->type)
665 enum vmbus_packet_type {
666 VM_PKT_INVALID = 0x0,
668 VM_PKT_ADD_XFER_PAGESET = 0x2,
669 VM_PKT_RM_XFER_PAGESET = 0x3,
670 VM_PKT_ESTABLISH_GPADL = 0x4,
671 VM_PKT_TEARDOWN_GPADL = 0x5,
672 VM_PKT_DATA_INBAND = 0x6,
673 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
674 VM_PKT_DATA_USING_GPADL = 0x8,
675 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
676 VM_PKT_CANCEL_REQUEST = 0xa,
678 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
679 VM_PKT_ADDITIONAL_DATA = 0xd
682 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
685 /* Version 1 messages */
686 enum vmbus_channel_message_type {
687 CHANNELMSG_INVALID = 0,
688 CHANNELMSG_OFFERCHANNEL = 1,
689 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
690 CHANNELMSG_REQUESTOFFERS = 3,
691 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
692 CHANNELMSG_OPENCHANNEL = 5,
693 CHANNELMSG_OPENCHANNEL_RESULT = 6,
694 CHANNELMSG_CLOSECHANNEL = 7,
695 CHANNELMSG_GPADL_HEADER = 8,
696 CHANNELMSG_GPADL_BODY = 9,
697 CHANNELMSG_GPADL_CREATED = 10,
698 CHANNELMSG_GPADL_TEARDOWN = 11,
699 CHANNELMSG_GPADL_TORNDOWN = 12,
700 CHANNELMSG_RELID_RELEASED = 13,
701 CHANNELMSG_INITIATE_CONTACT = 14,
702 CHANNELMSG_VERSION_RESPONSE = 15,
703 CHANNELMSG_UNLOAD = 16,
704 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
705 CHANNELMSG_VIEWRANGE_ADD = 17,
706 CHANNELMSG_VIEWRANGE_REMOVE = 18,
711 struct vmbus_channel_message_header {
712 enum vmbus_channel_message_type msgtype;
716 /* Query VMBus Version parameters */
717 struct vmbus_channel_query_vmbus_version {
718 struct vmbus_channel_message_header header;
722 /* VMBus Version Supported parameters */
723 struct vmbus_channel_version_supported {
724 struct vmbus_channel_message_header header;
725 u8 version_supported;
728 /* Offer Channel parameters */
729 struct vmbus_channel_offer_channel {
730 struct vmbus_channel_message_header header;
731 struct vmbus_channel_offer offer;
735 * win7 and beyond splits this field into a bit field.
737 u8 monitor_allocated:1;
740 * These are new fields added in win7 and later.
741 * Do not access these fields without checking the
742 * negotiated protocol.
744 * If "is_dedicated_interrupt" is set, we must not set the
745 * associated bit in the channel bitmap while sending the
746 * interrupt to the host.
748 * connection_id is to be used in signaling the host.
750 u16 is_dedicated_interrupt:1;
755 /* Rescind Offer parameters */
756 struct vmbus_channel_rescind_offer {
757 struct vmbus_channel_message_header header;
762 * Request Offer -- no parameters, SynIC message contains the partition ID
763 * Set Snoop -- no parameters, SynIC message contains the partition ID
764 * Clear Snoop -- no parameters, SynIC message contains the partition ID
765 * All Offers Delivered -- no parameters, SynIC message contains the partition
767 * Flush Client -- no parameters, SynIC message contains the partition ID
770 /* Open Channel parameters */
771 struct vmbus_channel_open_channel {
772 struct vmbus_channel_message_header header;
774 /* Identifies the specific VMBus channel that is being opened. */
777 /* ID making a particular open request at a channel offer unique. */
780 /* GPADL for the channel's ring buffer. */
781 u32 ringbuffer_gpadlhandle;
784 * Starting with win8, this field will be used to specify
785 * the target virtual processor on which to deliver the interrupt for
786 * the host to guest communication.
787 * Prior to win8, incoming channel interrupts would only
788 * be delivered on cpu 0. Setting this value to 0 would
789 * preserve the earlier behavior.
794 * The upstream ring buffer begins at offset zero in the memory
795 * described by RingBufferGpadlHandle. The downstream ring buffer
796 * follows it at this offset (in pages).
798 u32 downstream_ringbuffer_pageoffset;
800 /* User-specific data to be passed along to the server endpoint. */
801 unsigned char userdata[MAX_USER_DEFINED_BYTES];
804 /* Open Channel Result parameters */
805 struct vmbus_channel_open_result {
806 struct vmbus_channel_message_header header;
812 /* Close channel parameters; */
813 struct vmbus_channel_close_channel {
814 struct vmbus_channel_message_header header;
818 /* Channel Message GPADL */
819 #define GPADL_TYPE_RING_BUFFER 1
820 #define GPADL_TYPE_SERVER_SAVE_AREA 2
821 #define GPADL_TYPE_TRANSACTION 8
824 * The number of PFNs in a GPADL message is defined by the number of
825 * pages that would be spanned by ByteCount and ByteOffset. If the
826 * implied number of PFNs won't fit in this packet, there will be a
827 * follow-up packet that contains more.
829 struct vmbus_channel_gpadl_header {
830 struct vmbus_channel_message_header header;
835 struct gpa_range range[0];
838 /* This is the followup packet that contains more PFNs. */
839 struct vmbus_channel_gpadl_body {
840 struct vmbus_channel_message_header header;
846 struct vmbus_channel_gpadl_created {
847 struct vmbus_channel_message_header header;
853 struct vmbus_channel_gpadl_teardown {
854 struct vmbus_channel_message_header header;
859 struct vmbus_channel_gpadl_torndown {
860 struct vmbus_channel_message_header header;
864 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
865 struct vmbus_channel_view_range_add {
866 struct vmbus_channel_message_header header;
867 PHYSICAL_ADDRESS viewrange_base;
868 u64 viewrange_length;
872 struct vmbus_channel_view_range_remove {
873 struct vmbus_channel_message_header header;
874 PHYSICAL_ADDRESS viewrange_base;
879 struct vmbus_channel_relid_released {
880 struct vmbus_channel_message_header header;
884 struct vmbus_channel_initiate_contact {
885 struct vmbus_channel_message_header header;
886 u32 vmbus_version_requested;
893 struct vmbus_channel_version_response {
894 struct vmbus_channel_message_header header;
895 u8 version_supported;
898 enum vmbus_channel_state {
900 CHANNEL_OPENING_STATE,
902 CHANNEL_OPENED_STATE,
905 struct vmbus_channel_debug_info {
907 enum vmbus_channel_state state;
908 uuid_le interfacetype;
909 uuid_le interface_instance;
911 u32 servermonitor_pending;
912 u32 servermonitor_latency;
913 u32 servermonitor_connectionid;
914 u32 clientmonitor_pending;
915 u32 clientmonitor_latency;
916 u32 clientmonitor_connectionid;
918 struct hv_ring_buffer_debug_info inbound;
919 struct hv_ring_buffer_debug_info outbound;
923 * Represents each channel msg on the vmbus connection This is a
924 * variable-size data structure depending on the msg type itself
926 struct vmbus_channel_msginfo {
927 /* Bookkeeping stuff */
928 struct list_head msglistentry;
930 /* So far, this is only used to handle gpadl body message */
931 struct list_head submsglist;
933 /* Synchronize the request/response if needed */
934 struct completion waitevent;
936 struct vmbus_channel_version_supported version_supported;
937 struct vmbus_channel_open_result open_result;
938 struct vmbus_channel_gpadl_torndown gpadl_torndown;
939 struct vmbus_channel_gpadl_created gpadl_created;
940 struct vmbus_channel_version_response version_response;
945 * The channel message that goes out on the "wire".
946 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
948 unsigned char msg[0];
951 struct vmbus_close_msg {
952 struct vmbus_channel_msginfo info;
953 struct vmbus_channel_close_channel msg;
956 /* Define connection identifier type. */
957 union hv_connection_id {
965 /* Definition of the hv_signal_event hypercall input structure. */
966 struct hv_input_signal_event {
967 union hv_connection_id connectionid;
972 struct hv_input_signal_event_buffer {
974 struct hv_input_signal_event event;
977 struct vmbus_channel {
978 struct list_head listentry;
980 struct hv_device *device_obj;
982 struct work_struct work;
984 enum vmbus_channel_state state;
986 struct vmbus_channel_offer_channel offermsg;
988 * These are based on the OfferMsg.MonitorId.
989 * Save it here for easy access.
994 u32 ringbuffer_gpadlhandle;
996 /* Allocated memory for ring buffer */
997 void *ringbuffer_pages;
998 u32 ringbuffer_pagecount;
999 struct hv_ring_buffer_info outbound; /* send to parent */
1000 struct hv_ring_buffer_info inbound; /* receive from parent */
1001 spinlock_t inbound_lock;
1002 struct workqueue_struct *controlwq;
1004 struct vmbus_close_msg close_msg;
1006 /* Channel callback are invoked in this workqueue context */
1007 /* HANDLE dataWorkQueue; */
1009 void (*onchannel_callback)(void *context);
1010 void *channel_callback_context;
1013 * A channel can be marked for efficient (batched)
1015 * If batched_reading is set to "true", we read until the
1016 * channel is empty and hold off interrupts from the host
1017 * during the entire read process.
1018 * If batched_reading is set to "false", the client is not
1019 * going to perform batched reading.
1021 * By default we will enable batched reading; specific
1022 * drivers that don't want this behavior can turn it off.
1025 bool batched_reading;
1027 bool is_dedicated_interrupt;
1028 struct hv_input_signal_event_buffer sig_buf;
1029 struct hv_input_signal_event *sig_event;
1032 * Starting with win8, this field will be used to specify
1033 * the target virtual processor on which to deliver the interrupt for
1034 * the host to guest communication.
1035 * Prior to win8, incoming channel interrupts would only
1036 * be delivered on cpu 0. Setting this value to 0 would
1037 * preserve the earlier behavior.
1041 * Support for sub-channels. For high performance devices,
1042 * it will be useful to have multiple sub-channels to support
1043 * a scalable communication infrastructure with the host.
1044 * The support for sub-channels is implemented as an extention
1045 * to the current infrastructure.
1046 * The initial offer is considered the primary channel and this
1047 * offer message will indicate if the host supports sub-channels.
1048 * The guest is free to ask for sub-channels to be offerred and can
1049 * open these sub-channels as a normal "primary" channel. However,
1050 * all sub-channels will have the same type and instance guids as the
1051 * primary channel. Requests sent on a given channel will result in a
1052 * response on the same channel.
1056 * Sub-channel creation callback. This callback will be called in
1057 * process context when a sub-channel offer is received from the host.
1058 * The guest can open the sub-channel in the context of this callback.
1060 void (*sc_creation_callback)(struct vmbus_channel *new_sc);
1064 * All Sub-channels of a primary channel are linked here.
1066 struct list_head sc_list;
1068 * The primary channel this sub-channel belongs to.
1069 * This will be NULL for the primary channel.
1071 struct vmbus_channel *primary_channel;
1074 static inline void set_channel_read_state(struct vmbus_channel *c, bool state)
1076 c->batched_reading = state;
1079 void vmbus_onmessage(void *context);
1081 int vmbus_request_offers(void);
1084 * APIs for managing sub-channels.
1087 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1088 void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1091 * Retrieve the (sub) channel on which to send an outgoing request.
1092 * When a primary channel has multiple sub-channels, we choose a
1093 * channel whose VCPU binding is closest to the VCPU on which
1094 * this call is being made.
1096 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
1099 * Check if sub-channels have already been offerred. This API will be useful
1100 * when the driver is unloaded after establishing sub-channels. In this case,
1101 * when the driver is re-loaded, the driver would have to check if the
1102 * subchannels have already been established before attempting to request
1103 * the creation of sub-channels.
1104 * This function returns TRUE to indicate that subchannels have already been
1106 * This function should be invoked after setting the callback function for
1107 * sub-channel creation.
1109 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
1111 /* The format must be the same as struct vmdata_gpa_direct */
1112 struct vmbus_channel_packet_page_buffer {
1120 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1123 /* The format must be the same as struct vmdata_gpa_direct */
1124 struct vmbus_channel_packet_multipage_buffer {
1131 u32 rangecount; /* Always 1 in this case */
1132 struct hv_multipage_buffer range;
1136 extern int vmbus_open(struct vmbus_channel *channel,
1137 u32 send_ringbuffersize,
1138 u32 recv_ringbuffersize,
1141 void(*onchannel_callback)(void *context),
1144 extern void vmbus_close(struct vmbus_channel *channel);
1146 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1150 enum vmbus_packet_type type,
1153 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1154 struct hv_page_buffer pagebuffers[],
1160 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
1161 struct hv_multipage_buffer *mpb,
1166 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1171 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1174 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1177 u32 *buffer_actual_len,
1180 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1183 u32 *buffer_actual_len,
1187 extern void vmbus_get_debug_info(struct vmbus_channel *channel,
1188 struct vmbus_channel_debug_info *debug);
1190 extern void vmbus_ontimer(unsigned long data);
1192 struct hv_dev_port_info {
1196 u32 bytes_avail_toread;
1197 u32 bytes_avail_towrite;
1200 /* Base driver object */
1204 /* the device type supported by this driver */
1206 const struct hv_vmbus_device_id *id_table;
1208 struct device_driver driver;
1210 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1211 int (*remove)(struct hv_device *);
1212 void (*shutdown)(struct hv_device *);
1216 /* Base device object */
1218 /* the device type id of this device */
1221 /* the device instance id of this device */
1222 uuid_le dev_instance;
1224 struct device device;
1226 struct vmbus_channel *channel;
1230 static inline struct hv_device *device_to_hv_device(struct device *d)
1232 return container_of(d, struct hv_device, device);
1235 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1237 return container_of(d, struct hv_driver, driver);
1240 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1242 dev_set_drvdata(&dev->device, data);
1245 static inline void *hv_get_drvdata(struct hv_device *dev)
1247 return dev_get_drvdata(&dev->device);
1250 /* Vmbus interface */
1251 #define vmbus_driver_register(driver) \
1252 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1253 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1254 struct module *owner,
1255 const char *mod_name);
1256 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1259 * VMBUS_DEVICE - macro used to describe a specific hyperv vmbus device
1261 * This macro is used to create a struct hv_vmbus_device_id that matches a
1264 #define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7, \
1265 g8, g9, ga, gb, gc, gd, ge, gf) \
1266 .guid = { g0, g1, g2, g3, g4, g5, g6, g7, \
1267 g8, g9, ga, gb, gc, gd, ge, gf },
1270 * GUID definitions of various offer types - services offered to the guest.
1275 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1277 #define HV_NIC_GUID \
1279 0x63, 0x51, 0x61, 0xf8, 0x3e, 0xdf, 0xc5, 0x46, \
1280 0x91, 0x3f, 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e \
1285 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1287 #define HV_IDE_GUID \
1289 0x32, 0x26, 0x41, 0x32, 0xcb, 0x86, 0xa2, 0x44, \
1290 0x9b, 0x5c, 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5 \
1295 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1297 #define HV_SCSI_GUID \
1299 0xd9, 0x63, 0x61, 0xba, 0xa1, 0x04, 0x29, 0x4d, \
1300 0xb6, 0x05, 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f \
1305 * {0e0b6031-5213-4934-818b-38d90ced39db}
1307 #define HV_SHUTDOWN_GUID \
1309 0x31, 0x60, 0x0b, 0x0e, 0x13, 0x52, 0x34, 0x49, \
1310 0x81, 0x8b, 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb \
1315 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1317 #define HV_TS_GUID \
1319 0x30, 0xe6, 0x27, 0x95, 0xae, 0xd0, 0x7b, 0x49, \
1320 0xad, 0xce, 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf \
1325 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1327 #define HV_HEART_BEAT_GUID \
1329 0x39, 0x4f, 0x16, 0x57, 0x15, 0x91, 0x78, 0x4e, \
1330 0xab, 0x55, 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d \
1335 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1337 #define HV_KVP_GUID \
1339 0xe7, 0xf4, 0xa0, 0xa9, 0x45, 0x5a, 0x96, 0x4d, \
1340 0xb8, 0x27, 0x8a, 0x84, 0x1e, 0x8c, 0x3, 0xe6 \
1344 * Dynamic memory GUID
1345 * {525074dc-8985-46e2-8057-a307dc18a502}
1347 #define HV_DM_GUID \
1349 0xdc, 0x74, 0x50, 0X52, 0x85, 0x89, 0xe2, 0x46, \
1350 0x80, 0x57, 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02 \
1355 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1357 #define HV_MOUSE_GUID \
1359 0x9e, 0xb6, 0xa8, 0xcf, 0x4a, 0x5b, 0xc0, 0x4c, \
1360 0xb9, 0x8b, 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a \
1364 * VSS (Backup/Restore) GUID
1366 #define HV_VSS_GUID \
1368 0x29, 0x2e, 0xfa, 0x35, 0x23, 0xea, 0x36, 0x42, \
1369 0x96, 0xae, 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40 \
1372 * Synthetic Video GUID
1373 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1375 #define HV_SYNTHVID_GUID \
1377 0x02, 0x78, 0x0a, 0xda, 0x77, 0xe3, 0xac, 0x4a, \
1378 0x8e, 0x77, 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8 \
1383 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1385 #define HV_SYNTHFC_GUID \
1387 0x4A, 0xCC, 0x9B, 0x2F, 0x69, 0x00, 0xF3, 0x4A, \
1388 0xB7, 0x6B, 0x6F, 0xD0, 0xBE, 0x52, 0x8C, 0xDA \
1392 * Common header for Hyper-V ICs
1395 #define ICMSGTYPE_NEGOTIATE 0
1396 #define ICMSGTYPE_HEARTBEAT 1
1397 #define ICMSGTYPE_KVPEXCHANGE 2
1398 #define ICMSGTYPE_SHUTDOWN 3
1399 #define ICMSGTYPE_TIMESYNC 4
1400 #define ICMSGTYPE_VSS 5
1402 #define ICMSGHDRFLAG_TRANSACTION 1
1403 #define ICMSGHDRFLAG_REQUEST 2
1404 #define ICMSGHDRFLAG_RESPONSE 4
1408 * While we want to handle util services as regular devices,
1409 * there is only one instance of each of these services; so
1410 * we statically allocate the service specific state.
1413 struct hv_util_service {
1415 void (*util_cb)(void *);
1416 int (*util_init)(struct hv_util_service *);
1417 void (*util_deinit)(void);
1420 struct vmbuspipe_hdr {
1431 struct ic_version icverframe;
1433 struct ic_version icvermsg;
1436 u8 ictransaction_id;
1441 struct icmsg_negotiate {
1445 struct ic_version icversion_data[1]; /* any size array */
1448 struct shutdown_msg_data {
1450 u32 timeout_seconds;
1452 u8 display_message[2048];
1455 struct heartbeat_msg_data {
1460 /* Time Sync IC defs */
1461 #define ICTIMESYNCFLAG_PROBE 0
1462 #define ICTIMESYNCFLAG_SYNC 1
1463 #define ICTIMESYNCFLAG_SAMPLE 2
1466 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1468 #define WLTIMEDELTA 116444736000000000LL
1471 struct ictimesync_data {
1478 struct hyperv_service_callback {
1482 struct vmbus_channel *channel;
1483 void (*callback) (void *context);
1486 #define MAX_SRV_VER 0x7ffffff
1487 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *,
1488 struct icmsg_negotiate *, u8 *, int,
1491 int hv_kvp_init(struct hv_util_service *);
1492 void hv_kvp_deinit(void);
1493 void hv_kvp_onchannelcallback(void *);
1495 int hv_vss_init(struct hv_util_service *);
1496 void hv_vss_deinit(void);
1497 void hv_vss_onchannelcallback(void *);
1500 * Negotiated version with the Host.
1503 extern __u32 vmbus_proto_version;
1505 #endif /* __KERNEL__ */
1506 #endif /* _HYPERV_H */