]> git.karo-electronics.de Git - karo-tx-linux.git/blob - include/linux/kernel.h
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[karo-tx-linux.git] / include / linux / kernel.h
1 #ifndef _LINUX_KERNEL_H
2 #define _LINUX_KERNEL_H
3
4
5 #include <stdarg.h>
6 #include <linux/linkage.h>
7 #include <linux/stddef.h>
8 #include <linux/types.h>
9 #include <linux/compiler.h>
10 #include <linux/bitops.h>
11 #include <linux/log2.h>
12 #include <linux/typecheck.h>
13 #include <linux/printk.h>
14 #include <asm/byteorder.h>
15 #include <uapi/linux/kernel.h>
16
17 #define USHRT_MAX       ((u16)(~0U))
18 #define SHRT_MAX        ((s16)(USHRT_MAX>>1))
19 #define SHRT_MIN        ((s16)(-SHRT_MAX - 1))
20 #define INT_MAX         ((int)(~0U>>1))
21 #define INT_MIN         (-INT_MAX - 1)
22 #define UINT_MAX        (~0U)
23 #define LONG_MAX        ((long)(~0UL>>1))
24 #define LONG_MIN        (-LONG_MAX - 1)
25 #define ULONG_MAX       (~0UL)
26 #define LLONG_MAX       ((long long)(~0ULL>>1))
27 #define LLONG_MIN       (-LLONG_MAX - 1)
28 #define ULLONG_MAX      (~0ULL)
29 #define SIZE_MAX        (~(size_t)0)
30
31 #define U8_MAX          ((u8)~0U)
32 #define S8_MAX          ((s8)(U8_MAX>>1))
33 #define S8_MIN          ((s8)(-S8_MAX - 1))
34 #define U16_MAX         ((u16)~0U)
35 #define S16_MAX         ((s16)(U16_MAX>>1))
36 #define S16_MIN         ((s16)(-S16_MAX - 1))
37 #define U32_MAX         ((u32)~0U)
38 #define S32_MAX         ((s32)(U32_MAX>>1))
39 #define S32_MIN         ((s32)(-S32_MAX - 1))
40 #define U64_MAX         ((u64)~0ULL)
41 #define S64_MAX         ((s64)(U64_MAX>>1))
42 #define S64_MIN         ((s64)(-S64_MAX - 1))
43
44 #define STACK_MAGIC     0xdeadbeef
45
46 #define REPEAT_BYTE(x)  ((~0ul / 0xff) * (x))
47
48 /* @a is a power of 2 value */
49 #define ALIGN(x, a)             __ALIGN_KERNEL((x), (a))
50 #define __ALIGN_MASK(x, mask)   __ALIGN_KERNEL_MASK((x), (mask))
51 #define PTR_ALIGN(p, a)         ((typeof(p))ALIGN((unsigned long)(p), (a)))
52 #define IS_ALIGNED(x, a)                (((x) & ((typeof(x))(a) - 1)) == 0)
53
54 /* generic data direction definitions */
55 #define READ                    0
56 #define WRITE                   1
57
58 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
59
60 #define u64_to_user_ptr(x) (            \
61 {                                       \
62         typecheck(u64, x);              \
63         (void __user *)(uintptr_t)x;    \
64 }                                       \
65 )
66
67 /*
68  * This looks more complex than it should be. But we need to
69  * get the type for the ~ right in round_down (it needs to be
70  * as wide as the result!), and we want to evaluate the macro
71  * arguments just once each.
72  */
73 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
74 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
75 #define round_down(x, y) ((x) & ~__round_mask(x, y))
76
77 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
78 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
79 #define DIV_ROUND_UP_ULL(ll,d) \
80         ({ unsigned long long _tmp = (ll)+(d)-1; do_div(_tmp, d); _tmp; })
81
82 #if BITS_PER_LONG == 32
83 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
84 #else
85 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
86 #endif
87
88 /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
89 #define roundup(x, y) (                                 \
90 {                                                       \
91         const typeof(y) __y = y;                        \
92         (((x) + (__y - 1)) / __y) * __y;                \
93 }                                                       \
94 )
95 #define rounddown(x, y) (                               \
96 {                                                       \
97         typeof(x) __x = (x);                            \
98         __x - (__x % (y));                              \
99 }                                                       \
100 )
101
102 /*
103  * Divide positive or negative dividend by positive or negative divisor
104  * and round to closest integer. Result is undefined for negative
105  * divisors if he dividend variable type is unsigned and for negative
106  * dividends if the divisor variable type is unsigned.
107  */
108 #define DIV_ROUND_CLOSEST(x, divisor)(                  \
109 {                                                       \
110         typeof(x) __x = x;                              \
111         typeof(divisor) __d = divisor;                  \
112         (((typeof(x))-1) > 0 ||                         \
113          ((typeof(divisor))-1) > 0 ||                   \
114          (((__x) > 0) == ((__d) > 0))) ?                \
115                 (((__x) + ((__d) / 2)) / (__d)) :       \
116                 (((__x) - ((__d) / 2)) / (__d));        \
117 }                                                       \
118 )
119 /*
120  * Same as above but for u64 dividends. divisor must be a 32-bit
121  * number.
122  */
123 #define DIV_ROUND_CLOSEST_ULL(x, divisor)(              \
124 {                                                       \
125         typeof(divisor) __d = divisor;                  \
126         unsigned long long _tmp = (x) + (__d) / 2;      \
127         do_div(_tmp, __d);                              \
128         _tmp;                                           \
129 }                                                       \
130 )
131
132 /*
133  * Multiplies an integer by a fraction, while avoiding unnecessary
134  * overflow or loss of precision.
135  */
136 #define mult_frac(x, numer, denom)(                     \
137 {                                                       \
138         typeof(x) quot = (x) / (denom);                 \
139         typeof(x) rem  = (x) % (denom);                 \
140         (quot * (numer)) + ((rem * (numer)) / (denom)); \
141 }                                                       \
142 )
143
144
145 #define _RET_IP_                (unsigned long)__builtin_return_address(0)
146 #define _THIS_IP_  ({ __label__ __here; __here: (unsigned long)&&__here; })
147
148 #ifdef CONFIG_LBDAF
149 # include <asm/div64.h>
150 # define sector_div(a, b) do_div(a, b)
151 #else
152 # define sector_div(n, b)( \
153 { \
154         int _res; \
155         _res = (n) % (b); \
156         (n) /= (b); \
157         _res; \
158 } \
159 )
160 #endif
161
162 /**
163  * upper_32_bits - return bits 32-63 of a number
164  * @n: the number we're accessing
165  *
166  * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
167  * the "right shift count >= width of type" warning when that quantity is
168  * 32-bits.
169  */
170 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
171
172 /**
173  * lower_32_bits - return bits 0-31 of a number
174  * @n: the number we're accessing
175  */
176 #define lower_32_bits(n) ((u32)(n))
177
178 struct completion;
179 struct pt_regs;
180 struct user;
181
182 #ifdef CONFIG_PREEMPT_VOLUNTARY
183 extern int _cond_resched(void);
184 # define might_resched() _cond_resched()
185 #else
186 # define might_resched() do { } while (0)
187 #endif
188
189 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
190   void ___might_sleep(const char *file, int line, int preempt_offset);
191   void __might_sleep(const char *file, int line, int preempt_offset);
192 /**
193  * might_sleep - annotation for functions that can sleep
194  *
195  * this macro will print a stack trace if it is executed in an atomic
196  * context (spinlock, irq-handler, ...).
197  *
198  * This is a useful debugging help to be able to catch problems early and not
199  * be bitten later when the calling function happens to sleep when it is not
200  * supposed to.
201  */
202 # define might_sleep() \
203         do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
204 # define sched_annotate_sleep() (current->task_state_change = 0)
205 #else
206   static inline void ___might_sleep(const char *file, int line,
207                                    int preempt_offset) { }
208   static inline void __might_sleep(const char *file, int line,
209                                    int preempt_offset) { }
210 # define might_sleep() do { might_resched(); } while (0)
211 # define sched_annotate_sleep() do { } while (0)
212 #endif
213
214 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
215
216 /**
217  * abs - return absolute value of an argument
218  * @x: the value.  If it is unsigned type, it is converted to signed type first.
219  *     char is treated as if it was signed (regardless of whether it really is)
220  *     but the macro's return type is preserved as char.
221  *
222  * Return: an absolute value of x.
223  */
224 #define abs(x)  __abs_choose_expr(x, long long,                         \
225                 __abs_choose_expr(x, long,                              \
226                 __abs_choose_expr(x, int,                               \
227                 __abs_choose_expr(x, short,                             \
228                 __abs_choose_expr(x, char,                              \
229                 __builtin_choose_expr(                                  \
230                         __builtin_types_compatible_p(typeof(x), char),  \
231                         (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
232                         ((void)0)))))))
233
234 #define __abs_choose_expr(x, type, other) __builtin_choose_expr(        \
235         __builtin_types_compatible_p(typeof(x),   signed type) ||       \
236         __builtin_types_compatible_p(typeof(x), unsigned type),         \
237         ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
238
239 /**
240  * reciprocal_scale - "scale" a value into range [0, ep_ro)
241  * @val: value
242  * @ep_ro: right open interval endpoint
243  *
244  * Perform a "reciprocal multiplication" in order to "scale" a value into
245  * range [0, ep_ro), where the upper interval endpoint is right-open.
246  * This is useful, e.g. for accessing a index of an array containing
247  * ep_ro elements, for example. Think of it as sort of modulus, only that
248  * the result isn't that of modulo. ;) Note that if initial input is a
249  * small value, then result will return 0.
250  *
251  * Return: a result based on val in interval [0, ep_ro).
252  */
253 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
254 {
255         return (u32)(((u64) val * ep_ro) >> 32);
256 }
257
258 #if defined(CONFIG_MMU) && \
259         (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
260 #define might_fault() __might_fault(__FILE__, __LINE__)
261 void __might_fault(const char *file, int line);
262 #else
263 static inline void might_fault(void) { }
264 #endif
265
266 extern struct atomic_notifier_head panic_notifier_list;
267 extern long (*panic_blink)(int state);
268 __printf(1, 2)
269 void panic(const char *fmt, ...) __noreturn __cold;
270 void nmi_panic(struct pt_regs *regs, const char *msg);
271 extern void oops_enter(void);
272 extern void oops_exit(void);
273 void print_oops_end_marker(void);
274 extern int oops_may_print(void);
275 void do_exit(long error_code) __noreturn;
276 void complete_and_exit(struct completion *, long) __noreturn;
277
278 /* Internal, do not use. */
279 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
280 int __must_check _kstrtol(const char *s, unsigned int base, long *res);
281
282 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
283 int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
284
285 /**
286  * kstrtoul - convert a string to an unsigned long
287  * @s: The start of the string. The string must be null-terminated, and may also
288  *  include a single newline before its terminating null. The first character
289  *  may also be a plus sign, but not a minus sign.
290  * @base: The number base to use. The maximum supported base is 16. If base is
291  *  given as 0, then the base of the string is automatically detected with the
292  *  conventional semantics - If it begins with 0x the number will be parsed as a
293  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
294  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
295  * @res: Where to write the result of the conversion on success.
296  *
297  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
298  * Used as a replacement for the obsolete simple_strtoull. Return code must
299  * be checked.
300 */
301 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
302 {
303         /*
304          * We want to shortcut function call, but
305          * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
306          */
307         if (sizeof(unsigned long) == sizeof(unsigned long long) &&
308             __alignof__(unsigned long) == __alignof__(unsigned long long))
309                 return kstrtoull(s, base, (unsigned long long *)res);
310         else
311                 return _kstrtoul(s, base, res);
312 }
313
314 /**
315  * kstrtol - convert a string to a long
316  * @s: The start of the string. The string must be null-terminated, and may also
317  *  include a single newline before its terminating null. The first character
318  *  may also be a plus sign or a minus sign.
319  * @base: The number base to use. The maximum supported base is 16. If base is
320  *  given as 0, then the base of the string is automatically detected with the
321  *  conventional semantics - If it begins with 0x the number will be parsed as a
322  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
323  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
324  * @res: Where to write the result of the conversion on success.
325  *
326  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
327  * Used as a replacement for the obsolete simple_strtoull. Return code must
328  * be checked.
329  */
330 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
331 {
332         /*
333          * We want to shortcut function call, but
334          * __builtin_types_compatible_p(long, long long) = 0.
335          */
336         if (sizeof(long) == sizeof(long long) &&
337             __alignof__(long) == __alignof__(long long))
338                 return kstrtoll(s, base, (long long *)res);
339         else
340                 return _kstrtol(s, base, res);
341 }
342
343 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
344 int __must_check kstrtoint(const char *s, unsigned int base, int *res);
345
346 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
347 {
348         return kstrtoull(s, base, res);
349 }
350
351 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
352 {
353         return kstrtoll(s, base, res);
354 }
355
356 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
357 {
358         return kstrtouint(s, base, res);
359 }
360
361 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
362 {
363         return kstrtoint(s, base, res);
364 }
365
366 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
367 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
368 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
369 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
370 int __must_check kstrtobool(const char *s, bool *res);
371
372 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
373 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
374 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
375 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
376 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
377 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
378 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
379 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
380 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
381 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
382 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
383
384 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
385 {
386         return kstrtoull_from_user(s, count, base, res);
387 }
388
389 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
390 {
391         return kstrtoll_from_user(s, count, base, res);
392 }
393
394 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
395 {
396         return kstrtouint_from_user(s, count, base, res);
397 }
398
399 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
400 {
401         return kstrtoint_from_user(s, count, base, res);
402 }
403
404 /* Obsolete, do not use.  Use kstrto<foo> instead */
405
406 extern unsigned long simple_strtoul(const char *,char **,unsigned int);
407 extern long simple_strtol(const char *,char **,unsigned int);
408 extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
409 extern long long simple_strtoll(const char *,char **,unsigned int);
410
411 extern int num_to_str(char *buf, int size, unsigned long long num);
412
413 /* lib/printf utilities */
414
415 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
416 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
417 extern __printf(3, 4)
418 int snprintf(char *buf, size_t size, const char *fmt, ...);
419 extern __printf(3, 0)
420 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
421 extern __printf(3, 4)
422 int scnprintf(char *buf, size_t size, const char *fmt, ...);
423 extern __printf(3, 0)
424 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
425 extern __printf(2, 3) __malloc
426 char *kasprintf(gfp_t gfp, const char *fmt, ...);
427 extern __printf(2, 0) __malloc
428 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
429 extern __printf(2, 0)
430 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
431
432 extern __scanf(2, 3)
433 int sscanf(const char *, const char *, ...);
434 extern __scanf(2, 0)
435 int vsscanf(const char *, const char *, va_list);
436
437 extern int get_option(char **str, int *pint);
438 extern char *get_options(const char *str, int nints, int *ints);
439 extern unsigned long long memparse(const char *ptr, char **retptr);
440 extern bool parse_option_str(const char *str, const char *option);
441
442 extern int core_kernel_text(unsigned long addr);
443 extern int core_kernel_data(unsigned long addr);
444 extern int __kernel_text_address(unsigned long addr);
445 extern int kernel_text_address(unsigned long addr);
446 extern int func_ptr_is_kernel_text(void *ptr);
447
448 unsigned long int_sqrt(unsigned long);
449
450 extern void bust_spinlocks(int yes);
451 extern int oops_in_progress;            /* If set, an oops, panic(), BUG() or die() is in progress */
452 extern int panic_timeout;
453 extern int panic_on_oops;
454 extern int panic_on_unrecovered_nmi;
455 extern int panic_on_io_nmi;
456 extern int panic_on_warn;
457 extern int sysctl_panic_on_rcu_stall;
458 extern int sysctl_panic_on_stackoverflow;
459
460 extern bool crash_kexec_post_notifiers;
461
462 /*
463  * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
464  * holds a CPU number which is executing panic() currently. A value of
465  * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
466  */
467 extern atomic_t panic_cpu;
468 #define PANIC_CPU_INVALID       -1
469
470 /*
471  * Only to be used by arch init code. If the user over-wrote the default
472  * CONFIG_PANIC_TIMEOUT, honor it.
473  */
474 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
475 {
476         if (panic_timeout == arch_default_timeout)
477                 panic_timeout = timeout;
478 }
479 extern const char *print_tainted(void);
480 enum lockdep_ok {
481         LOCKDEP_STILL_OK,
482         LOCKDEP_NOW_UNRELIABLE
483 };
484 extern void add_taint(unsigned flag, enum lockdep_ok);
485 extern int test_taint(unsigned flag);
486 extern unsigned long get_taint(void);
487 extern int root_mountflags;
488
489 extern bool early_boot_irqs_disabled;
490
491 /* Values used for system_state */
492 extern enum system_states {
493         SYSTEM_BOOTING,
494         SYSTEM_RUNNING,
495         SYSTEM_HALT,
496         SYSTEM_POWER_OFF,
497         SYSTEM_RESTART,
498 } system_state;
499
500 #define TAINT_PROPRIETARY_MODULE        0
501 #define TAINT_FORCED_MODULE             1
502 #define TAINT_CPU_OUT_OF_SPEC           2
503 #define TAINT_FORCED_RMMOD              3
504 #define TAINT_MACHINE_CHECK             4
505 #define TAINT_BAD_PAGE                  5
506 #define TAINT_USER                      6
507 #define TAINT_DIE                       7
508 #define TAINT_OVERRIDDEN_ACPI_TABLE     8
509 #define TAINT_WARN                      9
510 #define TAINT_CRAP                      10
511 #define TAINT_FIRMWARE_WORKAROUND       11
512 #define TAINT_OOT_MODULE                12
513 #define TAINT_UNSIGNED_MODULE           13
514 #define TAINT_SOFTLOCKUP                14
515 #define TAINT_LIVEPATCH                 15
516 #define TAINT_FLAGS_COUNT               16
517
518 struct taint_flag {
519         char c_true;    /* character printed when tainted */
520         char c_false;   /* character printed when not tainted */
521         bool module;    /* also show as a per-module taint flag */
522 };
523
524 extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
525
526 extern const char hex_asc[];
527 #define hex_asc_lo(x)   hex_asc[((x) & 0x0f)]
528 #define hex_asc_hi(x)   hex_asc[((x) & 0xf0) >> 4]
529
530 static inline char *hex_byte_pack(char *buf, u8 byte)
531 {
532         *buf++ = hex_asc_hi(byte);
533         *buf++ = hex_asc_lo(byte);
534         return buf;
535 }
536
537 extern const char hex_asc_upper[];
538 #define hex_asc_upper_lo(x)     hex_asc_upper[((x) & 0x0f)]
539 #define hex_asc_upper_hi(x)     hex_asc_upper[((x) & 0xf0) >> 4]
540
541 static inline char *hex_byte_pack_upper(char *buf, u8 byte)
542 {
543         *buf++ = hex_asc_upper_hi(byte);
544         *buf++ = hex_asc_upper_lo(byte);
545         return buf;
546 }
547
548 extern int hex_to_bin(char ch);
549 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
550 extern char *bin2hex(char *dst, const void *src, size_t count);
551
552 bool mac_pton(const char *s, u8 *mac);
553
554 /*
555  * General tracing related utility functions - trace_printk(),
556  * tracing_on/tracing_off and tracing_start()/tracing_stop
557  *
558  * Use tracing_on/tracing_off when you want to quickly turn on or off
559  * tracing. It simply enables or disables the recording of the trace events.
560  * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
561  * file, which gives a means for the kernel and userspace to interact.
562  * Place a tracing_off() in the kernel where you want tracing to end.
563  * From user space, examine the trace, and then echo 1 > tracing_on
564  * to continue tracing.
565  *
566  * tracing_stop/tracing_start has slightly more overhead. It is used
567  * by things like suspend to ram where disabling the recording of the
568  * trace is not enough, but tracing must actually stop because things
569  * like calling smp_processor_id() may crash the system.
570  *
571  * Most likely, you want to use tracing_on/tracing_off.
572  */
573
574 enum ftrace_dump_mode {
575         DUMP_NONE,
576         DUMP_ALL,
577         DUMP_ORIG,
578 };
579
580 #ifdef CONFIG_TRACING
581 void tracing_on(void);
582 void tracing_off(void);
583 int tracing_is_on(void);
584 void tracing_snapshot(void);
585 void tracing_snapshot_alloc(void);
586
587 extern void tracing_start(void);
588 extern void tracing_stop(void);
589
590 static inline __printf(1, 2)
591 void ____trace_printk_check_format(const char *fmt, ...)
592 {
593 }
594 #define __trace_printk_check_format(fmt, args...)                       \
595 do {                                                                    \
596         if (0)                                                          \
597                 ____trace_printk_check_format(fmt, ##args);             \
598 } while (0)
599
600 /**
601  * trace_printk - printf formatting in the ftrace buffer
602  * @fmt: the printf format for printing
603  *
604  * Note: __trace_printk is an internal function for trace_printk and
605  *       the @ip is passed in via the trace_printk macro.
606  *
607  * This function allows a kernel developer to debug fast path sections
608  * that printk is not appropriate for. By scattering in various
609  * printk like tracing in the code, a developer can quickly see
610  * where problems are occurring.
611  *
612  * This is intended as a debugging tool for the developer only.
613  * Please refrain from leaving trace_printks scattered around in
614  * your code. (Extra memory is used for special buffers that are
615  * allocated when trace_printk() is used)
616  *
617  * A little optization trick is done here. If there's only one
618  * argument, there's no need to scan the string for printf formats.
619  * The trace_puts() will suffice. But how can we take advantage of
620  * using trace_puts() when trace_printk() has only one argument?
621  * By stringifying the args and checking the size we can tell
622  * whether or not there are args. __stringify((__VA_ARGS__)) will
623  * turn into "()\0" with a size of 3 when there are no args, anything
624  * else will be bigger. All we need to do is define a string to this,
625  * and then take its size and compare to 3. If it's bigger, use
626  * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
627  * let gcc optimize the rest.
628  */
629
630 #define trace_printk(fmt, ...)                          \
631 do {                                                    \
632         char _______STR[] = __stringify((__VA_ARGS__)); \
633         if (sizeof(_______STR) > 3)                     \
634                 do_trace_printk(fmt, ##__VA_ARGS__);    \
635         else                                            \
636                 trace_puts(fmt);                        \
637 } while (0)
638
639 #define do_trace_printk(fmt, args...)                                   \
640 do {                                                                    \
641         static const char *trace_printk_fmt __used                      \
642                 __attribute__((section("__trace_printk_fmt"))) =        \
643                 __builtin_constant_p(fmt) ? fmt : NULL;                 \
644                                                                         \
645         __trace_printk_check_format(fmt, ##args);                       \
646                                                                         \
647         if (__builtin_constant_p(fmt))                                  \
648                 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args);   \
649         else                                                            \
650                 __trace_printk(_THIS_IP_, fmt, ##args);                 \
651 } while (0)
652
653 extern __printf(2, 3)
654 int __trace_bprintk(unsigned long ip, const char *fmt, ...);
655
656 extern __printf(2, 3)
657 int __trace_printk(unsigned long ip, const char *fmt, ...);
658
659 /**
660  * trace_puts - write a string into the ftrace buffer
661  * @str: the string to record
662  *
663  * Note: __trace_bputs is an internal function for trace_puts and
664  *       the @ip is passed in via the trace_puts macro.
665  *
666  * This is similar to trace_printk() but is made for those really fast
667  * paths that a developer wants the least amount of "Heisenbug" affects,
668  * where the processing of the print format is still too much.
669  *
670  * This function allows a kernel developer to debug fast path sections
671  * that printk is not appropriate for. By scattering in various
672  * printk like tracing in the code, a developer can quickly see
673  * where problems are occurring.
674  *
675  * This is intended as a debugging tool for the developer only.
676  * Please refrain from leaving trace_puts scattered around in
677  * your code. (Extra memory is used for special buffers that are
678  * allocated when trace_puts() is used)
679  *
680  * Returns: 0 if nothing was written, positive # if string was.
681  *  (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
682  */
683
684 #define trace_puts(str) ({                                              \
685         static const char *trace_printk_fmt __used                      \
686                 __attribute__((section("__trace_printk_fmt"))) =        \
687                 __builtin_constant_p(str) ? str : NULL;                 \
688                                                                         \
689         if (__builtin_constant_p(str))                                  \
690                 __trace_bputs(_THIS_IP_, trace_printk_fmt);             \
691         else                                                            \
692                 __trace_puts(_THIS_IP_, str, strlen(str));              \
693 })
694 extern int __trace_bputs(unsigned long ip, const char *str);
695 extern int __trace_puts(unsigned long ip, const char *str, int size);
696
697 extern void trace_dump_stack(int skip);
698
699 /*
700  * The double __builtin_constant_p is because gcc will give us an error
701  * if we try to allocate the static variable to fmt if it is not a
702  * constant. Even with the outer if statement.
703  */
704 #define ftrace_vprintk(fmt, vargs)                                      \
705 do {                                                                    \
706         if (__builtin_constant_p(fmt)) {                                \
707                 static const char *trace_printk_fmt __used              \
708                   __attribute__((section("__trace_printk_fmt"))) =      \
709                         __builtin_constant_p(fmt) ? fmt : NULL;         \
710                                                                         \
711                 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs);  \
712         } else                                                          \
713                 __ftrace_vprintk(_THIS_IP_, fmt, vargs);                \
714 } while (0)
715
716 extern __printf(2, 0) int
717 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
718
719 extern __printf(2, 0) int
720 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
721
722 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
723 #else
724 static inline void tracing_start(void) { }
725 static inline void tracing_stop(void) { }
726 static inline void trace_dump_stack(int skip) { }
727
728 static inline void tracing_on(void) { }
729 static inline void tracing_off(void) { }
730 static inline int tracing_is_on(void) { return 0; }
731 static inline void tracing_snapshot(void) { }
732 static inline void tracing_snapshot_alloc(void) { }
733
734 static inline __printf(1, 2)
735 int trace_printk(const char *fmt, ...)
736 {
737         return 0;
738 }
739 static __printf(1, 0) inline int
740 ftrace_vprintk(const char *fmt, va_list ap)
741 {
742         return 0;
743 }
744 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
745 #endif /* CONFIG_TRACING */
746
747 /*
748  * min()/max()/clamp() macros that also do
749  * strict type-checking.. See the
750  * "unnecessary" pointer comparison.
751  */
752 #define __min(t1, t2, min1, min2, x, y) ({              \
753         t1 min1 = (x);                                  \
754         t2 min2 = (y);                                  \
755         (void) (&min1 == &min2);                        \
756         min1 < min2 ? min1 : min2; })
757 #define min(x, y)                                       \
758         __min(typeof(x), typeof(y),                     \
759               __UNIQUE_ID(min1_), __UNIQUE_ID(min2_),   \
760               x, y)
761
762 #define __max(t1, t2, max1, max2, x, y) ({              \
763         t1 max1 = (x);                                  \
764         t2 max2 = (y);                                  \
765         (void) (&max1 == &max2);                        \
766         max1 > max2 ? max1 : max2; })
767 #define max(x, y)                                       \
768         __max(typeof(x), typeof(y),                     \
769               __UNIQUE_ID(max1_), __UNIQUE_ID(max2_),   \
770               x, y)
771
772 #define min3(x, y, z) min((typeof(x))min(x, y), z)
773 #define max3(x, y, z) max((typeof(x))max(x, y), z)
774
775 /**
776  * min_not_zero - return the minimum that is _not_ zero, unless both are zero
777  * @x: value1
778  * @y: value2
779  */
780 #define min_not_zero(x, y) ({                   \
781         typeof(x) __x = (x);                    \
782         typeof(y) __y = (y);                    \
783         __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
784
785 /**
786  * clamp - return a value clamped to a given range with strict typechecking
787  * @val: current value
788  * @lo: lowest allowable value
789  * @hi: highest allowable value
790  *
791  * This macro does strict typechecking of lo/hi to make sure they are of the
792  * same type as val.  See the unnecessary pointer comparisons.
793  */
794 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
795
796 /*
797  * ..and if you can't take the strict
798  * types, you can specify one yourself.
799  *
800  * Or not use min/max/clamp at all, of course.
801  */
802 #define min_t(type, x, y)                               \
803         __min(type, type,                               \
804               __UNIQUE_ID(min1_), __UNIQUE_ID(min2_),   \
805               x, y)
806
807 #define max_t(type, x, y)                               \
808         __max(type, type,                               \
809               __UNIQUE_ID(min1_), __UNIQUE_ID(min2_),   \
810               x, y)
811
812 /**
813  * clamp_t - return a value clamped to a given range using a given type
814  * @type: the type of variable to use
815  * @val: current value
816  * @lo: minimum allowable value
817  * @hi: maximum allowable value
818  *
819  * This macro does no typechecking and uses temporary variables of type
820  * 'type' to make all the comparisons.
821  */
822 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
823
824 /**
825  * clamp_val - return a value clamped to a given range using val's type
826  * @val: current value
827  * @lo: minimum allowable value
828  * @hi: maximum allowable value
829  *
830  * This macro does no typechecking and uses temporary variables of whatever
831  * type the input argument 'val' is.  This is useful when val is an unsigned
832  * type and min and max are literals that will otherwise be assigned a signed
833  * integer type.
834  */
835 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
836
837
838 /*
839  * swap - swap value of @a and @b
840  */
841 #define swap(a, b) \
842         do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
843
844 /**
845  * container_of - cast a member of a structure out to the containing structure
846  * @ptr:        the pointer to the member.
847  * @type:       the type of the container struct this is embedded in.
848  * @member:     the name of the member within the struct.
849  *
850  */
851 #define container_of(ptr, type, member) ({                      \
852         const typeof( ((type *)0)->member ) *__mptr = (ptr);    \
853         (type *)( (char *)__mptr - offsetof(type,member) );})
854
855 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
856 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
857 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
858 #endif
859
860 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
861 #define VERIFY_OCTAL_PERMISSIONS(perms)                                         \
862         (BUILD_BUG_ON_ZERO((perms) < 0) +                                       \
863          BUILD_BUG_ON_ZERO((perms) > 0777) +                                    \
864          /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */                \
865          BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) +       \
866          BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) +              \
867          /* USER_WRITABLE >= GROUP_WRITABLE */                                  \
868          BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) +       \
869          /* OTHER_WRITABLE?  Generally considered a bad idea. */                \
870          BUILD_BUG_ON_ZERO((perms) & 2) +                                       \
871          (perms))
872 #endif