]> git.karo-electronics.de Git - karo-tx-linux.git/blob - include/linux/memcontrol.h
mm: memcg: enable memcg OOM killer only for user faults
[karo-tx-linux.git] / include / linux / memcontrol.h
1 /* memcontrol.h - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26
27 struct mem_cgroup;
28 struct page_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32
33 /* Stats that can be updated by kernel. */
34 enum mem_cgroup_page_stat_item {
35         MEMCG_NR_FILE_MAPPED, /* # of pages charged as file rss */
36 };
37
38 struct mem_cgroup_reclaim_cookie {
39         struct zone *zone;
40         int priority;
41         unsigned int generation;
42 };
43
44 enum mem_cgroup_filter_t {
45         VISIT,          /* visit current node */
46         SKIP,           /* skip the current node and continue traversal */
47         SKIP_TREE,      /* skip the whole subtree and continue traversal */
48 };
49
50 /*
51  * mem_cgroup_filter_t predicate might instruct mem_cgroup_iter_cond how to
52  * iterate through the hierarchy tree. Each tree element is checked by the
53  * predicate before it is returned by the iterator. If a filter returns
54  * SKIP or SKIP_TREE then the iterator code continues traversal (with the
55  * next node down the hierarchy or the next node that doesn't belong under the
56  * memcg's subtree).
57  */
58 typedef enum mem_cgroup_filter_t
59 (*mem_cgroup_iter_filter)(struct mem_cgroup *memcg, struct mem_cgroup *root);
60
61 #ifdef CONFIG_MEMCG
62 /*
63  * All "charge" functions with gfp_mask should use GFP_KERNEL or
64  * (gfp_mask & GFP_RECLAIM_MASK). In current implementatin, memcg doesn't
65  * alloc memory but reclaims memory from all available zones. So, "where I want
66  * memory from" bits of gfp_mask has no meaning. So any bits of that field is
67  * available but adding a rule is better. charge functions' gfp_mask should
68  * be set to GFP_KERNEL or gfp_mask & GFP_RECLAIM_MASK for avoiding ambiguous
69  * codes.
70  * (Of course, if memcg does memory allocation in future, GFP_KERNEL is sane.)
71  */
72
73 extern int mem_cgroup_newpage_charge(struct page *page, struct mm_struct *mm,
74                                 gfp_t gfp_mask);
75 /* for swap handling */
76 extern int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
77                 struct page *page, gfp_t mask, struct mem_cgroup **memcgp);
78 extern void mem_cgroup_commit_charge_swapin(struct page *page,
79                                         struct mem_cgroup *memcg);
80 extern void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg);
81
82 extern int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
83                                         gfp_t gfp_mask);
84
85 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
86 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
87
88 /* For coalescing uncharge for reducing memcg' overhead*/
89 extern void mem_cgroup_uncharge_start(void);
90 extern void mem_cgroup_uncharge_end(void);
91
92 extern void mem_cgroup_uncharge_page(struct page *page);
93 extern void mem_cgroup_uncharge_cache_page(struct page *page);
94
95 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
96                                   struct mem_cgroup *memcg);
97 bool task_in_mem_cgroup(struct task_struct *task,
98                         const struct mem_cgroup *memcg);
99
100 extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page);
101 extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
102 extern struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm);
103
104 extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
105 extern struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css);
106
107 static inline
108 bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg)
109 {
110         struct mem_cgroup *task_memcg;
111         bool match;
112
113         rcu_read_lock();
114         task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
115         match = __mem_cgroup_same_or_subtree(memcg, task_memcg);
116         rcu_read_unlock();
117         return match;
118 }
119
120 extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg);
121
122 extern void
123 mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
124                              struct mem_cgroup **memcgp);
125 extern void mem_cgroup_end_migration(struct mem_cgroup *memcg,
126         struct page *oldpage, struct page *newpage, bool migration_ok);
127
128 struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root,
129                                    struct mem_cgroup *prev,
130                                    struct mem_cgroup_reclaim_cookie *reclaim,
131                                    mem_cgroup_iter_filter cond);
132
133 static inline struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
134                                    struct mem_cgroup *prev,
135                                    struct mem_cgroup_reclaim_cookie *reclaim)
136 {
137         return mem_cgroup_iter_cond(root, prev, reclaim, NULL);
138 }
139
140 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
141
142 /*
143  * For memory reclaim.
144  */
145 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec);
146 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
147 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list);
148 void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int);
149 extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
150                                         struct task_struct *p);
151 extern void mem_cgroup_replace_page_cache(struct page *oldpage,
152                                         struct page *newpage);
153
154 /**
155  * mem_cgroup_toggle_oom - toggle the memcg OOM killer for the current task
156  * @new: true to enable, false to disable
157  *
158  * Toggle whether a failed memcg charge should invoke the OOM killer
159  * or just return -ENOMEM.  Returns the previous toggle state.
160  */
161 static inline bool mem_cgroup_toggle_oom(bool new)
162 {
163         bool old;
164
165         old = current->memcg_oom.may_oom;
166         current->memcg_oom.may_oom = new;
167
168         return old;
169 }
170
171 static inline void mem_cgroup_enable_oom(void)
172 {
173         bool old = mem_cgroup_toggle_oom(true);
174
175         WARN_ON(old == true);
176 }
177
178 static inline void mem_cgroup_disable_oom(void)
179 {
180         bool old = mem_cgroup_toggle_oom(false);
181
182         WARN_ON(old == false);
183 }
184
185 #ifdef CONFIG_MEMCG_SWAP
186 extern int do_swap_account;
187 #endif
188
189 static inline bool mem_cgroup_disabled(void)
190 {
191         if (mem_cgroup_subsys.disabled)
192                 return true;
193         return false;
194 }
195
196 void __mem_cgroup_begin_update_page_stat(struct page *page, bool *locked,
197                                          unsigned long *flags);
198
199 extern atomic_t memcg_moving;
200
201 static inline void mem_cgroup_begin_update_page_stat(struct page *page,
202                                         bool *locked, unsigned long *flags)
203 {
204         if (mem_cgroup_disabled())
205                 return;
206         rcu_read_lock();
207         *locked = false;
208         if (atomic_read(&memcg_moving))
209                 __mem_cgroup_begin_update_page_stat(page, locked, flags);
210 }
211
212 void __mem_cgroup_end_update_page_stat(struct page *page,
213                                 unsigned long *flags);
214 static inline void mem_cgroup_end_update_page_stat(struct page *page,
215                                         bool *locked, unsigned long *flags)
216 {
217         if (mem_cgroup_disabled())
218                 return;
219         if (*locked)
220                 __mem_cgroup_end_update_page_stat(page, flags);
221         rcu_read_unlock();
222 }
223
224 void mem_cgroup_update_page_stat(struct page *page,
225                                  enum mem_cgroup_page_stat_item idx,
226                                  int val);
227
228 static inline void mem_cgroup_inc_page_stat(struct page *page,
229                                             enum mem_cgroup_page_stat_item idx)
230 {
231         mem_cgroup_update_page_stat(page, idx, 1);
232 }
233
234 static inline void mem_cgroup_dec_page_stat(struct page *page,
235                                             enum mem_cgroup_page_stat_item idx)
236 {
237         mem_cgroup_update_page_stat(page, idx, -1);
238 }
239
240 enum mem_cgroup_filter_t
241 mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
242                 struct mem_cgroup *root);
243
244 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx);
245 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
246                                              enum vm_event_item idx)
247 {
248         if (mem_cgroup_disabled())
249                 return;
250         __mem_cgroup_count_vm_event(mm, idx);
251 }
252 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
253 void mem_cgroup_split_huge_fixup(struct page *head);
254 #endif
255
256 #ifdef CONFIG_DEBUG_VM
257 bool mem_cgroup_bad_page_check(struct page *page);
258 void mem_cgroup_print_bad_page(struct page *page);
259 #endif
260 #else /* CONFIG_MEMCG */
261 struct mem_cgroup;
262
263 static inline int mem_cgroup_newpage_charge(struct page *page,
264                                         struct mm_struct *mm, gfp_t gfp_mask)
265 {
266         return 0;
267 }
268
269 static inline int mem_cgroup_cache_charge(struct page *page,
270                                         struct mm_struct *mm, gfp_t gfp_mask)
271 {
272         return 0;
273 }
274
275 static inline int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
276                 struct page *page, gfp_t gfp_mask, struct mem_cgroup **memcgp)
277 {
278         return 0;
279 }
280
281 static inline void mem_cgroup_commit_charge_swapin(struct page *page,
282                                           struct mem_cgroup *memcg)
283 {
284 }
285
286 static inline void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
287 {
288 }
289
290 static inline void mem_cgroup_uncharge_start(void)
291 {
292 }
293
294 static inline void mem_cgroup_uncharge_end(void)
295 {
296 }
297
298 static inline void mem_cgroup_uncharge_page(struct page *page)
299 {
300 }
301
302 static inline void mem_cgroup_uncharge_cache_page(struct page *page)
303 {
304 }
305
306 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
307                                                     struct mem_cgroup *memcg)
308 {
309         return &zone->lruvec;
310 }
311
312 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
313                                                     struct zone *zone)
314 {
315         return &zone->lruvec;
316 }
317
318 static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
319 {
320         return NULL;
321 }
322
323 static inline struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
324 {
325         return NULL;
326 }
327
328 static inline bool mm_match_cgroup(struct mm_struct *mm,
329                 struct mem_cgroup *memcg)
330 {
331         return true;
332 }
333
334 static inline bool task_in_mem_cgroup(struct task_struct *task,
335                                       const struct mem_cgroup *memcg)
336 {
337         return true;
338 }
339
340 static inline struct cgroup_subsys_state
341                 *mem_cgroup_css(struct mem_cgroup *memcg)
342 {
343         return NULL;
344 }
345
346 static inline void
347 mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
348                              struct mem_cgroup **memcgp)
349 {
350 }
351
352 static inline void mem_cgroup_end_migration(struct mem_cgroup *memcg,
353                 struct page *oldpage, struct page *newpage, bool migration_ok)
354 {
355 }
356 static inline struct mem_cgroup *
357 mem_cgroup_iter_cond(struct mem_cgroup *root,
358                 struct mem_cgroup *prev,
359                 struct mem_cgroup_reclaim_cookie *reclaim,
360                 mem_cgroup_iter_filter cond)
361 {
362         /* first call must return non-NULL, second return NULL */
363         return (struct mem_cgroup *)(unsigned long)!prev;
364 }
365
366 static inline struct mem_cgroup *
367 mem_cgroup_iter(struct mem_cgroup *root,
368                 struct mem_cgroup *prev,
369                 struct mem_cgroup_reclaim_cookie *reclaim)
370 {
371         return NULL;
372 }
373
374 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
375                                          struct mem_cgroup *prev)
376 {
377 }
378
379 static inline bool mem_cgroup_disabled(void)
380 {
381         return true;
382 }
383
384 static inline int
385 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
386 {
387         return 1;
388 }
389
390 static inline unsigned long
391 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
392 {
393         return 0;
394 }
395
396 static inline void
397 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
398                               int increment)
399 {
400 }
401
402 static inline void
403 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
404 {
405 }
406
407 static inline void mem_cgroup_begin_update_page_stat(struct page *page,
408                                         bool *locked, unsigned long *flags)
409 {
410 }
411
412 static inline void mem_cgroup_end_update_page_stat(struct page *page,
413                                         bool *locked, unsigned long *flags)
414 {
415 }
416
417 static inline bool mem_cgroup_toggle_oom(bool new)
418 {
419         return false;
420 }
421
422 static inline void mem_cgroup_enable_oom(void)
423 {
424 }
425
426 static inline void mem_cgroup_disable_oom(void)
427 {
428 }
429
430 static inline void mem_cgroup_inc_page_stat(struct page *page,
431                                             enum mem_cgroup_page_stat_item idx)
432 {
433 }
434
435 static inline void mem_cgroup_dec_page_stat(struct page *page,
436                                             enum mem_cgroup_page_stat_item idx)
437 {
438 }
439
440 static inline
441 enum mem_cgroup_filter_t
442 mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
443                 struct mem_cgroup *root)
444 {
445         return VISIT;
446 }
447
448 static inline void mem_cgroup_split_huge_fixup(struct page *head)
449 {
450 }
451
452 static inline
453 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
454 {
455 }
456 static inline void mem_cgroup_replace_page_cache(struct page *oldpage,
457                                 struct page *newpage)
458 {
459 }
460 #endif /* CONFIG_MEMCG */
461
462 #if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM)
463 static inline bool
464 mem_cgroup_bad_page_check(struct page *page)
465 {
466         return false;
467 }
468
469 static inline void
470 mem_cgroup_print_bad_page(struct page *page)
471 {
472 }
473 #endif
474
475 enum {
476         UNDER_LIMIT,
477         SOFT_LIMIT,
478         OVER_LIMIT,
479 };
480
481 struct sock;
482 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
483 void sock_update_memcg(struct sock *sk);
484 void sock_release_memcg(struct sock *sk);
485 #else
486 static inline void sock_update_memcg(struct sock *sk)
487 {
488 }
489 static inline void sock_release_memcg(struct sock *sk)
490 {
491 }
492 #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
493
494 #ifdef CONFIG_MEMCG_KMEM
495 extern struct static_key memcg_kmem_enabled_key;
496
497 extern int memcg_limited_groups_array_size;
498
499 /*
500  * Helper macro to loop through all memcg-specific caches. Callers must still
501  * check if the cache is valid (it is either valid or NULL).
502  * the slab_mutex must be held when looping through those caches
503  */
504 #define for_each_memcg_cache_index(_idx)        \
505         for ((_idx) = 0; (_idx) < memcg_limited_groups_array_size; (_idx)++)
506
507 static inline bool memcg_kmem_enabled(void)
508 {
509         return static_key_false(&memcg_kmem_enabled_key);
510 }
511
512 /*
513  * In general, we'll do everything in our power to not incur in any overhead
514  * for non-memcg users for the kmem functions. Not even a function call, if we
515  * can avoid it.
516  *
517  * Therefore, we'll inline all those functions so that in the best case, we'll
518  * see that kmemcg is off for everybody and proceed quickly.  If it is on,
519  * we'll still do most of the flag checking inline. We check a lot of
520  * conditions, but because they are pretty simple, they are expected to be
521  * fast.
522  */
523 bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
524                                         int order);
525 void __memcg_kmem_commit_charge(struct page *page,
526                                        struct mem_cgroup *memcg, int order);
527 void __memcg_kmem_uncharge_pages(struct page *page, int order);
528
529 int memcg_cache_id(struct mem_cgroup *memcg);
530 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
531                          struct kmem_cache *root_cache);
532 void memcg_release_cache(struct kmem_cache *cachep);
533 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep);
534
535 int memcg_update_cache_size(struct kmem_cache *s, int num_groups);
536 void memcg_update_array_size(int num_groups);
537
538 struct kmem_cache *
539 __memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp);
540
541 void mem_cgroup_destroy_cache(struct kmem_cache *cachep);
542 void kmem_cache_destroy_memcg_children(struct kmem_cache *s);
543
544 /**
545  * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
546  * @gfp: the gfp allocation flags.
547  * @memcg: a pointer to the memcg this was charged against.
548  * @order: allocation order.
549  *
550  * returns true if the memcg where the current task belongs can hold this
551  * allocation.
552  *
553  * We return true automatically if this allocation is not to be accounted to
554  * any memcg.
555  */
556 static inline bool
557 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
558 {
559         if (!memcg_kmem_enabled())
560                 return true;
561
562         /*
563          * __GFP_NOFAIL allocations will move on even if charging is not
564          * possible. Therefore we don't even try, and have this allocation
565          * unaccounted. We could in theory charge it with
566          * res_counter_charge_nofail, but we hope those allocations are rare,
567          * and won't be worth the trouble.
568          */
569         if (!(gfp & __GFP_KMEMCG) || (gfp & __GFP_NOFAIL))
570                 return true;
571         if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
572                 return true;
573
574         /* If the test is dying, just let it go. */
575         if (unlikely(fatal_signal_pending(current)))
576                 return true;
577
578         return __memcg_kmem_newpage_charge(gfp, memcg, order);
579 }
580
581 /**
582  * memcg_kmem_uncharge_pages: uncharge pages from memcg
583  * @page: pointer to struct page being freed
584  * @order: allocation order.
585  *
586  * there is no need to specify memcg here, since it is embedded in page_cgroup
587  */
588 static inline void
589 memcg_kmem_uncharge_pages(struct page *page, int order)
590 {
591         if (memcg_kmem_enabled())
592                 __memcg_kmem_uncharge_pages(page, order);
593 }
594
595 /**
596  * memcg_kmem_commit_charge: embeds correct memcg in a page
597  * @page: pointer to struct page recently allocated
598  * @memcg: the memcg structure we charged against
599  * @order: allocation order.
600  *
601  * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
602  * failure of the allocation. if @page is NULL, this function will revert the
603  * charges. Otherwise, it will commit the memcg given by @memcg to the
604  * corresponding page_cgroup.
605  */
606 static inline void
607 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
608 {
609         if (memcg_kmem_enabled() && memcg)
610                 __memcg_kmem_commit_charge(page, memcg, order);
611 }
612
613 /**
614  * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
615  * @cachep: the original global kmem cache
616  * @gfp: allocation flags.
617  *
618  * This function assumes that the task allocating, which determines the memcg
619  * in the page allocator, belongs to the same cgroup throughout the whole
620  * process.  Misacounting can happen if the task calls memcg_kmem_get_cache()
621  * while belonging to a cgroup, and later on changes. This is considered
622  * acceptable, and should only happen upon task migration.
623  *
624  * Before the cache is created by the memcg core, there is also a possible
625  * imbalance: the task belongs to a memcg, but the cache being allocated from
626  * is the global cache, since the child cache is not yet guaranteed to be
627  * ready. This case is also fine, since in this case the GFP_KMEMCG will not be
628  * passed and the page allocator will not attempt any cgroup accounting.
629  */
630 static __always_inline struct kmem_cache *
631 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
632 {
633         if (!memcg_kmem_enabled())
634                 return cachep;
635         if (gfp & __GFP_NOFAIL)
636                 return cachep;
637         if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
638                 return cachep;
639         if (unlikely(fatal_signal_pending(current)))
640                 return cachep;
641
642         return __memcg_kmem_get_cache(cachep, gfp);
643 }
644 #else
645 #define for_each_memcg_cache_index(_idx)        \
646         for (; NULL; )
647
648 static inline bool memcg_kmem_enabled(void)
649 {
650         return false;
651 }
652
653 static inline bool
654 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
655 {
656         return true;
657 }
658
659 static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
660 {
661 }
662
663 static inline void
664 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
665 {
666 }
667
668 static inline int memcg_cache_id(struct mem_cgroup *memcg)
669 {
670         return -1;
671 }
672
673 static inline int
674 memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
675                      struct kmem_cache *root_cache)
676 {
677         return 0;
678 }
679
680 static inline void memcg_release_cache(struct kmem_cache *cachep)
681 {
682 }
683
684 static inline void memcg_cache_list_add(struct mem_cgroup *memcg,
685                                         struct kmem_cache *s)
686 {
687 }
688
689 static inline struct kmem_cache *
690 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
691 {
692         return cachep;
693 }
694
695 static inline void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
696 {
697 }
698 #endif /* CONFIG_MEMCG_KMEM */
699 #endif /* _LINUX_MEMCONTROL_H */
700