]> git.karo-electronics.de Git - karo-tx-linux.git/blob - include/linux/mm.h
mm: remain migratetype in freed page
[karo-tx-linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
46
47 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48
49 /* to align the pointer to the (next) page boundary */
50 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51
52 /*
53  * Linux kernel virtual memory manager primitives.
54  * The idea being to have a "virtual" mm in the same way
55  * we have a virtual fs - giving a cleaner interface to the
56  * mm details, and allowing different kinds of memory mappings
57  * (from shared memory to executable loading to arbitrary
58  * mmap() functions).
59  */
60
61 extern struct kmem_cache *vm_area_cachep;
62
63 #ifndef CONFIG_MMU
64 extern struct rb_root nommu_region_tree;
65 extern struct rw_semaphore nommu_region_sem;
66
67 extern unsigned int kobjsize(const void *objp);
68 #endif
69
70 /*
71  * vm_flags in vm_area_struct, see mm_types.h.
72  */
73 #define VM_NONE         0x00000000
74
75 #define VM_READ         0x00000001      /* currently active flags */
76 #define VM_WRITE        0x00000002
77 #define VM_EXEC         0x00000004
78 #define VM_SHARED       0x00000008
79
80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
81 #define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
82 #define VM_MAYWRITE     0x00000020
83 #define VM_MAYEXEC      0x00000040
84 #define VM_MAYSHARE     0x00000080
85
86 #define VM_GROWSDOWN    0x00000100      /* general info on the segment */
87 #define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
88 #define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
89
90 #define VM_LOCKED       0x00002000
91 #define VM_IO           0x00004000      /* Memory mapped I/O or similar */
92
93                                         /* Used by sys_madvise() */
94 #define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
95 #define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
96
97 #define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
98 #define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
99 #define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
100 #define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
101 #define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
102 #define VM_NONLINEAR    0x00800000      /* Is non-linear (remap_file_pages) */
103 #define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
104 #define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
105
106 #define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
107 #define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
108 #define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
109 #define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
110
111 #if defined(CONFIG_X86)
112 # define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
113 #elif defined(CONFIG_PPC)
114 # define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
115 #elif defined(CONFIG_PARISC)
116 # define VM_GROWSUP     VM_ARCH_1
117 #elif defined(CONFIG_IA64)
118 # define VM_GROWSUP     VM_ARCH_1
119 #elif !defined(CONFIG_MMU)
120 # define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
121 #endif
122
123 #ifndef VM_GROWSUP
124 # define VM_GROWSUP     VM_NONE
125 #endif
126
127 /* Bits set in the VMA until the stack is in its final location */
128 #define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
129
130 #ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
131 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
132 #endif
133
134 #ifdef CONFIG_STACK_GROWSUP
135 #define VM_STACK_FLAGS  (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
136 #else
137 #define VM_STACK_FLAGS  (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
138 #endif
139
140 #define VM_READHINTMASK                 (VM_SEQ_READ | VM_RAND_READ)
141 #define VM_ClearReadHint(v)             (v)->vm_flags &= ~VM_READHINTMASK
142 #define VM_NormalReadHint(v)            (!((v)->vm_flags & VM_READHINTMASK))
143 #define VM_SequentialReadHint(v)        ((v)->vm_flags & VM_SEQ_READ)
144 #define VM_RandomReadHint(v)            ((v)->vm_flags & VM_RAND_READ)
145
146 /*
147  * Special vmas that are non-mergable, non-mlock()able.
148  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
149  */
150 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
151
152 /*
153  * mapping from the currently active vm_flags protection bits (the
154  * low four bits) to a page protection mask..
155  */
156 extern pgprot_t protection_map[16];
157
158 #define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
159 #define FAULT_FLAG_NONLINEAR    0x02    /* Fault was via a nonlinear mapping */
160 #define FAULT_FLAG_MKWRITE      0x04    /* Fault was mkwrite of existing pte */
161 #define FAULT_FLAG_ALLOW_RETRY  0x08    /* Retry fault if blocking */
162 #define FAULT_FLAG_RETRY_NOWAIT 0x10    /* Don't drop mmap_sem and wait when retrying */
163 #define FAULT_FLAG_KILLABLE     0x20    /* The fault task is in SIGKILL killable region */
164
165 /*
166  * vm_fault is filled by the the pagefault handler and passed to the vma's
167  * ->fault function. The vma's ->fault is responsible for returning a bitmask
168  * of VM_FAULT_xxx flags that give details about how the fault was handled.
169  *
170  * pgoff should be used in favour of virtual_address, if possible. If pgoff
171  * is used, one may implement ->remap_pages to get nonlinear mapping support.
172  */
173 struct vm_fault {
174         unsigned int flags;             /* FAULT_FLAG_xxx flags */
175         pgoff_t pgoff;                  /* Logical page offset based on vma */
176         void __user *virtual_address;   /* Faulting virtual address */
177
178         struct page *page;              /* ->fault handlers should return a
179                                          * page here, unless VM_FAULT_NOPAGE
180                                          * is set (which is also implied by
181                                          * VM_FAULT_ERROR).
182                                          */
183 };
184
185 /*
186  * These are the virtual MM functions - opening of an area, closing and
187  * unmapping it (needed to keep files on disk up-to-date etc), pointer
188  * to the functions called when a no-page or a wp-page exception occurs. 
189  */
190 struct vm_operations_struct {
191         void (*open)(struct vm_area_struct * area);
192         void (*close)(struct vm_area_struct * area);
193         int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
194
195         /* notification that a previously read-only page is about to become
196          * writable, if an error is returned it will cause a SIGBUS */
197         int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
198
199         /* called by access_process_vm when get_user_pages() fails, typically
200          * for use by special VMAs that can switch between memory and hardware
201          */
202         int (*access)(struct vm_area_struct *vma, unsigned long addr,
203                       void *buf, int len, int write);
204 #ifdef CONFIG_NUMA
205         /*
206          * set_policy() op must add a reference to any non-NULL @new mempolicy
207          * to hold the policy upon return.  Caller should pass NULL @new to
208          * remove a policy and fall back to surrounding context--i.e. do not
209          * install a MPOL_DEFAULT policy, nor the task or system default
210          * mempolicy.
211          */
212         int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
213
214         /*
215          * get_policy() op must add reference [mpol_get()] to any policy at
216          * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
217          * in mm/mempolicy.c will do this automatically.
218          * get_policy() must NOT add a ref if the policy at (vma,addr) is not
219          * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
220          * If no [shared/vma] mempolicy exists at the addr, get_policy() op
221          * must return NULL--i.e., do not "fallback" to task or system default
222          * policy.
223          */
224         struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
225                                         unsigned long addr);
226         int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
227                 const nodemask_t *to, unsigned long flags);
228 #endif
229         /* called by sys_remap_file_pages() to populate non-linear mapping */
230         int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
231                            unsigned long size, pgoff_t pgoff);
232 };
233
234 struct mmu_gather;
235 struct inode;
236
237 #define page_private(page)              ((page)->private)
238 #define set_page_private(page, v)       ((page)->private = (v))
239
240 /* It's valid only if the page is free path or free_list */
241 static inline void set_freepage_migratetype(struct page *page, int migratetype)
242 {
243         page->index = migratetype;
244 }
245
246 /* It's valid only if the page is free path or free_list */
247 static inline int get_freepage_migratetype(struct page *page)
248 {
249         return page->index;
250 }
251
252 /*
253  * FIXME: take this include out, include page-flags.h in
254  * files which need it (119 of them)
255  */
256 #include <linux/page-flags.h>
257 #include <linux/huge_mm.h>
258
259 /*
260  * Methods to modify the page usage count.
261  *
262  * What counts for a page usage:
263  * - cache mapping   (page->mapping)
264  * - private data    (page->private)
265  * - page mapped in a task's page tables, each mapping
266  *   is counted separately
267  *
268  * Also, many kernel routines increase the page count before a critical
269  * routine so they can be sure the page doesn't go away from under them.
270  */
271
272 /*
273  * Drop a ref, return true if the refcount fell to zero (the page has no users)
274  */
275 static inline int put_page_testzero(struct page *page)
276 {
277         VM_BUG_ON(atomic_read(&page->_count) == 0);
278         return atomic_dec_and_test(&page->_count);
279 }
280
281 /*
282  * Try to grab a ref unless the page has a refcount of zero, return false if
283  * that is the case.
284  */
285 static inline int get_page_unless_zero(struct page *page)
286 {
287         return atomic_inc_not_zero(&page->_count);
288 }
289
290 extern int page_is_ram(unsigned long pfn);
291
292 /* Support for virtually mapped pages */
293 struct page *vmalloc_to_page(const void *addr);
294 unsigned long vmalloc_to_pfn(const void *addr);
295
296 /*
297  * Determine if an address is within the vmalloc range
298  *
299  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
300  * is no special casing required.
301  */
302 static inline int is_vmalloc_addr(const void *x)
303 {
304 #ifdef CONFIG_MMU
305         unsigned long addr = (unsigned long)x;
306
307         return addr >= VMALLOC_START && addr < VMALLOC_END;
308 #else
309         return 0;
310 #endif
311 }
312 #ifdef CONFIG_MMU
313 extern int is_vmalloc_or_module_addr(const void *x);
314 #else
315 static inline int is_vmalloc_or_module_addr(const void *x)
316 {
317         return 0;
318 }
319 #endif
320
321 static inline void compound_lock(struct page *page)
322 {
323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
324         VM_BUG_ON(PageSlab(page));
325         bit_spin_lock(PG_compound_lock, &page->flags);
326 #endif
327 }
328
329 static inline void compound_unlock(struct page *page)
330 {
331 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
332         VM_BUG_ON(PageSlab(page));
333         bit_spin_unlock(PG_compound_lock, &page->flags);
334 #endif
335 }
336
337 static inline unsigned long compound_lock_irqsave(struct page *page)
338 {
339         unsigned long uninitialized_var(flags);
340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
341         local_irq_save(flags);
342         compound_lock(page);
343 #endif
344         return flags;
345 }
346
347 static inline void compound_unlock_irqrestore(struct page *page,
348                                               unsigned long flags)
349 {
350 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
351         compound_unlock(page);
352         local_irq_restore(flags);
353 #endif
354 }
355
356 static inline struct page *compound_head(struct page *page)
357 {
358         if (unlikely(PageTail(page)))
359                 return page->first_page;
360         return page;
361 }
362
363 /*
364  * The atomic page->_mapcount, starts from -1: so that transitions
365  * both from it and to it can be tracked, using atomic_inc_and_test
366  * and atomic_add_negative(-1).
367  */
368 static inline void reset_page_mapcount(struct page *page)
369 {
370         atomic_set(&(page)->_mapcount, -1);
371 }
372
373 static inline int page_mapcount(struct page *page)
374 {
375         return atomic_read(&(page)->_mapcount) + 1;
376 }
377
378 static inline int page_count(struct page *page)
379 {
380         return atomic_read(&compound_head(page)->_count);
381 }
382
383 static inline void get_huge_page_tail(struct page *page)
384 {
385         /*
386          * __split_huge_page_refcount() cannot run
387          * from under us.
388          */
389         VM_BUG_ON(page_mapcount(page) < 0);
390         VM_BUG_ON(atomic_read(&page->_count) != 0);
391         atomic_inc(&page->_mapcount);
392 }
393
394 extern bool __get_page_tail(struct page *page);
395
396 static inline void get_page(struct page *page)
397 {
398         if (unlikely(PageTail(page)))
399                 if (likely(__get_page_tail(page)))
400                         return;
401         /*
402          * Getting a normal page or the head of a compound page
403          * requires to already have an elevated page->_count.
404          */
405         VM_BUG_ON(atomic_read(&page->_count) <= 0);
406         atomic_inc(&page->_count);
407 }
408
409 static inline struct page *virt_to_head_page(const void *x)
410 {
411         struct page *page = virt_to_page(x);
412         return compound_head(page);
413 }
414
415 /*
416  * Setup the page count before being freed into the page allocator for
417  * the first time (boot or memory hotplug)
418  */
419 static inline void init_page_count(struct page *page)
420 {
421         atomic_set(&page->_count, 1);
422 }
423
424 /*
425  * PageBuddy() indicate that the page is free and in the buddy system
426  * (see mm/page_alloc.c).
427  *
428  * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
429  * -2 so that an underflow of the page_mapcount() won't be mistaken
430  * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
431  * efficiently by most CPU architectures.
432  */
433 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
434
435 static inline int PageBuddy(struct page *page)
436 {
437         return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
438 }
439
440 static inline void __SetPageBuddy(struct page *page)
441 {
442         VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
443         atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
444 }
445
446 static inline void __ClearPageBuddy(struct page *page)
447 {
448         VM_BUG_ON(!PageBuddy(page));
449         atomic_set(&page->_mapcount, -1);
450 }
451
452 void put_page(struct page *page);
453 void put_pages_list(struct list_head *pages);
454
455 void split_page(struct page *page, unsigned int order);
456 int split_free_page(struct page *page);
457 int capture_free_page(struct page *page, int alloc_order, int migratetype);
458
459 /*
460  * Compound pages have a destructor function.  Provide a
461  * prototype for that function and accessor functions.
462  * These are _only_ valid on the head of a PG_compound page.
463  */
464 typedef void compound_page_dtor(struct page *);
465
466 static inline void set_compound_page_dtor(struct page *page,
467                                                 compound_page_dtor *dtor)
468 {
469         page[1].lru.next = (void *)dtor;
470 }
471
472 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
473 {
474         return (compound_page_dtor *)page[1].lru.next;
475 }
476
477 static inline int compound_order(struct page *page)
478 {
479         if (!PageHead(page))
480                 return 0;
481         return (unsigned long)page[1].lru.prev;
482 }
483
484 static inline int compound_trans_order(struct page *page)
485 {
486         int order;
487         unsigned long flags;
488
489         if (!PageHead(page))
490                 return 0;
491
492         flags = compound_lock_irqsave(page);
493         order = compound_order(page);
494         compound_unlock_irqrestore(page, flags);
495         return order;
496 }
497
498 static inline void set_compound_order(struct page *page, unsigned long order)
499 {
500         page[1].lru.prev = (void *)order;
501 }
502
503 #ifdef CONFIG_MMU
504 /*
505  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
506  * servicing faults for write access.  In the normal case, do always want
507  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
508  * that do not have writing enabled, when used by access_process_vm.
509  */
510 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
511 {
512         if (likely(vma->vm_flags & VM_WRITE))
513                 pte = pte_mkwrite(pte);
514         return pte;
515 }
516 #endif
517
518 /*
519  * Multiple processes may "see" the same page. E.g. for untouched
520  * mappings of /dev/null, all processes see the same page full of
521  * zeroes, and text pages of executables and shared libraries have
522  * only one copy in memory, at most, normally.
523  *
524  * For the non-reserved pages, page_count(page) denotes a reference count.
525  *   page_count() == 0 means the page is free. page->lru is then used for
526  *   freelist management in the buddy allocator.
527  *   page_count() > 0  means the page has been allocated.
528  *
529  * Pages are allocated by the slab allocator in order to provide memory
530  * to kmalloc and kmem_cache_alloc. In this case, the management of the
531  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
532  * unless a particular usage is carefully commented. (the responsibility of
533  * freeing the kmalloc memory is the caller's, of course).
534  *
535  * A page may be used by anyone else who does a __get_free_page().
536  * In this case, page_count still tracks the references, and should only
537  * be used through the normal accessor functions. The top bits of page->flags
538  * and page->virtual store page management information, but all other fields
539  * are unused and could be used privately, carefully. The management of this
540  * page is the responsibility of the one who allocated it, and those who have
541  * subsequently been given references to it.
542  *
543  * The other pages (we may call them "pagecache pages") are completely
544  * managed by the Linux memory manager: I/O, buffers, swapping etc.
545  * The following discussion applies only to them.
546  *
547  * A pagecache page contains an opaque `private' member, which belongs to the
548  * page's address_space. Usually, this is the address of a circular list of
549  * the page's disk buffers. PG_private must be set to tell the VM to call
550  * into the filesystem to release these pages.
551  *
552  * A page may belong to an inode's memory mapping. In this case, page->mapping
553  * is the pointer to the inode, and page->index is the file offset of the page,
554  * in units of PAGE_CACHE_SIZE.
555  *
556  * If pagecache pages are not associated with an inode, they are said to be
557  * anonymous pages. These may become associated with the swapcache, and in that
558  * case PG_swapcache is set, and page->private is an offset into the swapcache.
559  *
560  * In either case (swapcache or inode backed), the pagecache itself holds one
561  * reference to the page. Setting PG_private should also increment the
562  * refcount. The each user mapping also has a reference to the page.
563  *
564  * The pagecache pages are stored in a per-mapping radix tree, which is
565  * rooted at mapping->page_tree, and indexed by offset.
566  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
567  * lists, we instead now tag pages as dirty/writeback in the radix tree.
568  *
569  * All pagecache pages may be subject to I/O:
570  * - inode pages may need to be read from disk,
571  * - inode pages which have been modified and are MAP_SHARED may need
572  *   to be written back to the inode on disk,
573  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
574  *   modified may need to be swapped out to swap space and (later) to be read
575  *   back into memory.
576  */
577
578 /*
579  * The zone field is never updated after free_area_init_core()
580  * sets it, so none of the operations on it need to be atomic.
581  */
582
583
584 /*
585  * page->flags layout:
586  *
587  * There are three possibilities for how page->flags get
588  * laid out.  The first is for the normal case, without
589  * sparsemem.  The second is for sparsemem when there is
590  * plenty of space for node and section.  The last is when
591  * we have run out of space and have to fall back to an
592  * alternate (slower) way of determining the node.
593  *
594  * No sparsemem or sparsemem vmemmap: |       NODE     | ZONE | ... | FLAGS |
595  * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
596  * classic sparse no space for node:  | SECTION |     ZONE    | ... | FLAGS |
597  */
598 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
599 #define SECTIONS_WIDTH          SECTIONS_SHIFT
600 #else
601 #define SECTIONS_WIDTH          0
602 #endif
603
604 #define ZONES_WIDTH             ZONES_SHIFT
605
606 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
607 #define NODES_WIDTH             NODES_SHIFT
608 #else
609 #ifdef CONFIG_SPARSEMEM_VMEMMAP
610 #error "Vmemmap: No space for nodes field in page flags"
611 #endif
612 #define NODES_WIDTH             0
613 #endif
614
615 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
616 #define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
617 #define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
618 #define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
619
620 /*
621  * We are going to use the flags for the page to node mapping if its in
622  * there.  This includes the case where there is no node, so it is implicit.
623  */
624 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
625 #define NODE_NOT_IN_PAGE_FLAGS
626 #endif
627
628 /*
629  * Define the bit shifts to access each section.  For non-existent
630  * sections we define the shift as 0; that plus a 0 mask ensures
631  * the compiler will optimise away reference to them.
632  */
633 #define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
634 #define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
635 #define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
636
637 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
638 #ifdef NODE_NOT_IN_PAGE_FLAGS
639 #define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
640 #define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
641                                                 SECTIONS_PGOFF : ZONES_PGOFF)
642 #else
643 #define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
644 #define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
645                                                 NODES_PGOFF : ZONES_PGOFF)
646 #endif
647
648 #define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
649
650 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
651 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
652 #endif
653
654 #define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
655 #define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
656 #define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
657 #define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
658
659 static inline enum zone_type page_zonenum(const struct page *page)
660 {
661         return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
662 }
663
664 /*
665  * The identification function is only used by the buddy allocator for
666  * determining if two pages could be buddies. We are not really
667  * identifying a zone since we could be using a the section number
668  * id if we have not node id available in page flags.
669  * We guarantee only that it will return the same value for two
670  * combinable pages in a zone.
671  */
672 static inline int page_zone_id(struct page *page)
673 {
674         return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
675 }
676
677 static inline int zone_to_nid(struct zone *zone)
678 {
679 #ifdef CONFIG_NUMA
680         return zone->node;
681 #else
682         return 0;
683 #endif
684 }
685
686 #ifdef NODE_NOT_IN_PAGE_FLAGS
687 extern int page_to_nid(const struct page *page);
688 #else
689 static inline int page_to_nid(const struct page *page)
690 {
691         return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
692 }
693 #endif
694
695 static inline struct zone *page_zone(const struct page *page)
696 {
697         return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
698 }
699
700 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
701 static inline void set_page_section(struct page *page, unsigned long section)
702 {
703         page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
704         page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
705 }
706
707 static inline unsigned long page_to_section(const struct page *page)
708 {
709         return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
710 }
711 #endif
712
713 static inline void set_page_zone(struct page *page, enum zone_type zone)
714 {
715         page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
716         page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
717 }
718
719 static inline void set_page_node(struct page *page, unsigned long node)
720 {
721         page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
722         page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
723 }
724
725 static inline void set_page_links(struct page *page, enum zone_type zone,
726         unsigned long node, unsigned long pfn)
727 {
728         set_page_zone(page, zone);
729         set_page_node(page, node);
730 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
731         set_page_section(page, pfn_to_section_nr(pfn));
732 #endif
733 }
734
735 /*
736  * Some inline functions in vmstat.h depend on page_zone()
737  */
738 #include <linux/vmstat.h>
739
740 static __always_inline void *lowmem_page_address(const struct page *page)
741 {
742         return __va(PFN_PHYS(page_to_pfn(page)));
743 }
744
745 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
746 #define HASHED_PAGE_VIRTUAL
747 #endif
748
749 #if defined(WANT_PAGE_VIRTUAL)
750 #define page_address(page) ((page)->virtual)
751 #define set_page_address(page, address)                 \
752         do {                                            \
753                 (page)->virtual = (address);            \
754         } while(0)
755 #define page_address_init()  do { } while(0)
756 #endif
757
758 #if defined(HASHED_PAGE_VIRTUAL)
759 void *page_address(const struct page *page);
760 void set_page_address(struct page *page, void *virtual);
761 void page_address_init(void);
762 #endif
763
764 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
765 #define page_address(page) lowmem_page_address(page)
766 #define set_page_address(page, address)  do { } while(0)
767 #define page_address_init()  do { } while(0)
768 #endif
769
770 /*
771  * On an anonymous page mapped into a user virtual memory area,
772  * page->mapping points to its anon_vma, not to a struct address_space;
773  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
774  *
775  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
776  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
777  * and then page->mapping points, not to an anon_vma, but to a private
778  * structure which KSM associates with that merged page.  See ksm.h.
779  *
780  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
781  *
782  * Please note that, confusingly, "page_mapping" refers to the inode
783  * address_space which maps the page from disk; whereas "page_mapped"
784  * refers to user virtual address space into which the page is mapped.
785  */
786 #define PAGE_MAPPING_ANON       1
787 #define PAGE_MAPPING_KSM        2
788 #define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
789
790 extern struct address_space swapper_space;
791 static inline struct address_space *page_mapping(struct page *page)
792 {
793         struct address_space *mapping = page->mapping;
794
795         VM_BUG_ON(PageSlab(page));
796         if (unlikely(PageSwapCache(page)))
797                 mapping = &swapper_space;
798         else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
799                 mapping = NULL;
800         return mapping;
801 }
802
803 /* Neutral page->mapping pointer to address_space or anon_vma or other */
804 static inline void *page_rmapping(struct page *page)
805 {
806         return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
807 }
808
809 extern struct address_space *__page_file_mapping(struct page *);
810
811 static inline
812 struct address_space *page_file_mapping(struct page *page)
813 {
814         if (unlikely(PageSwapCache(page)))
815                 return __page_file_mapping(page);
816
817         return page->mapping;
818 }
819
820 static inline int PageAnon(struct page *page)
821 {
822         return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
823 }
824
825 /*
826  * Return the pagecache index of the passed page.  Regular pagecache pages
827  * use ->index whereas swapcache pages use ->private
828  */
829 static inline pgoff_t page_index(struct page *page)
830 {
831         if (unlikely(PageSwapCache(page)))
832                 return page_private(page);
833         return page->index;
834 }
835
836 extern pgoff_t __page_file_index(struct page *page);
837
838 /*
839  * Return the file index of the page. Regular pagecache pages use ->index
840  * whereas swapcache pages use swp_offset(->private)
841  */
842 static inline pgoff_t page_file_index(struct page *page)
843 {
844         if (unlikely(PageSwapCache(page)))
845                 return __page_file_index(page);
846
847         return page->index;
848 }
849
850 /*
851  * Return true if this page is mapped into pagetables.
852  */
853 static inline int page_mapped(struct page *page)
854 {
855         return atomic_read(&(page)->_mapcount) >= 0;
856 }
857
858 /*
859  * Different kinds of faults, as returned by handle_mm_fault().
860  * Used to decide whether a process gets delivered SIGBUS or
861  * just gets major/minor fault counters bumped up.
862  */
863
864 #define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */
865
866 #define VM_FAULT_OOM    0x0001
867 #define VM_FAULT_SIGBUS 0x0002
868 #define VM_FAULT_MAJOR  0x0004
869 #define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
870 #define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
871 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
872
873 #define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
874 #define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
875 #define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
876
877 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
878
879 #define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
880                          VM_FAULT_HWPOISON_LARGE)
881
882 /* Encode hstate index for a hwpoisoned large page */
883 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
884 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
885
886 /*
887  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
888  */
889 extern void pagefault_out_of_memory(void);
890
891 #define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
892
893 /*
894  * Flags passed to show_mem() and show_free_areas() to suppress output in
895  * various contexts.
896  */
897 #define SHOW_MEM_FILTER_NODES   (0x0001u)       /* filter disallowed nodes */
898
899 extern void show_free_areas(unsigned int flags);
900 extern bool skip_free_areas_node(unsigned int flags, int nid);
901
902 int shmem_zero_setup(struct vm_area_struct *);
903
904 extern int can_do_mlock(void);
905 extern int user_shm_lock(size_t, struct user_struct *);
906 extern void user_shm_unlock(size_t, struct user_struct *);
907
908 /*
909  * Parameter block passed down to zap_pte_range in exceptional cases.
910  */
911 struct zap_details {
912         struct vm_area_struct *nonlinear_vma;   /* Check page->index if set */
913         struct address_space *check_mapping;    /* Check page->mapping if set */
914         pgoff_t first_index;                    /* Lowest page->index to unmap */
915         pgoff_t last_index;                     /* Highest page->index to unmap */
916 };
917
918 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
919                 pte_t pte);
920
921 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
922                 unsigned long size);
923 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
924                 unsigned long size, struct zap_details *);
925 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
926                 unsigned long start, unsigned long end);
927
928 /**
929  * mm_walk - callbacks for walk_page_range
930  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
931  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
932  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
933  *             this handler is required to be able to handle
934  *             pmd_trans_huge() pmds.  They may simply choose to
935  *             split_huge_page() instead of handling it explicitly.
936  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
937  * @pte_hole: if set, called for each hole at all levels
938  * @hugetlb_entry: if set, called for each hugetlb entry
939  *                 *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
940  *                            is used.
941  *
942  * (see walk_page_range for more details)
943  */
944 struct mm_walk {
945         int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
946         int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
947         int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
948         int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
949         int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
950         int (*hugetlb_entry)(pte_t *, unsigned long,
951                              unsigned long, unsigned long, struct mm_walk *);
952         struct mm_struct *mm;
953         void *private;
954 };
955
956 int walk_page_range(unsigned long addr, unsigned long end,
957                 struct mm_walk *walk);
958 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
959                 unsigned long end, unsigned long floor, unsigned long ceiling);
960 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
961                         struct vm_area_struct *vma);
962 void unmap_mapping_range(struct address_space *mapping,
963                 loff_t const holebegin, loff_t const holelen, int even_cows);
964 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
965         unsigned long *pfn);
966 int follow_phys(struct vm_area_struct *vma, unsigned long address,
967                 unsigned int flags, unsigned long *prot, resource_size_t *phys);
968 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
969                         void *buf, int len, int write);
970
971 static inline void unmap_shared_mapping_range(struct address_space *mapping,
972                 loff_t const holebegin, loff_t const holelen)
973 {
974         unmap_mapping_range(mapping, holebegin, holelen, 0);
975 }
976
977 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
978 extern void truncate_setsize(struct inode *inode, loff_t newsize);
979 extern int vmtruncate(struct inode *inode, loff_t offset);
980 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
981 int truncate_inode_page(struct address_space *mapping, struct page *page);
982 int generic_error_remove_page(struct address_space *mapping, struct page *page);
983 int invalidate_inode_page(struct page *page);
984
985 #ifdef CONFIG_MMU
986 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
987                         unsigned long address, unsigned int flags);
988 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
989                             unsigned long address, unsigned int fault_flags);
990 #else
991 static inline int handle_mm_fault(struct mm_struct *mm,
992                         struct vm_area_struct *vma, unsigned long address,
993                         unsigned int flags)
994 {
995         /* should never happen if there's no MMU */
996         BUG();
997         return VM_FAULT_SIGBUS;
998 }
999 static inline int fixup_user_fault(struct task_struct *tsk,
1000                 struct mm_struct *mm, unsigned long address,
1001                 unsigned int fault_flags)
1002 {
1003         /* should never happen if there's no MMU */
1004         BUG();
1005         return -EFAULT;
1006 }
1007 #endif
1008
1009 extern int make_pages_present(unsigned long addr, unsigned long end);
1010 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1011 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1012                 void *buf, int len, int write);
1013
1014 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1015                      unsigned long start, int len, unsigned int foll_flags,
1016                      struct page **pages, struct vm_area_struct **vmas,
1017                      int *nonblocking);
1018 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1019                         unsigned long start, int nr_pages, int write, int force,
1020                         struct page **pages, struct vm_area_struct **vmas);
1021 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1022                         struct page **pages);
1023 struct kvec;
1024 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1025                         struct page **pages);
1026 int get_kernel_page(unsigned long start, int write, struct page **pages);
1027 struct page *get_dump_page(unsigned long addr);
1028
1029 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1030 extern void do_invalidatepage(struct page *page, unsigned long offset);
1031
1032 int __set_page_dirty_nobuffers(struct page *page);
1033 int __set_page_dirty_no_writeback(struct page *page);
1034 int redirty_page_for_writepage(struct writeback_control *wbc,
1035                                 struct page *page);
1036 void account_page_dirtied(struct page *page, struct address_space *mapping);
1037 void account_page_writeback(struct page *page);
1038 int set_page_dirty(struct page *page);
1039 int set_page_dirty_lock(struct page *page);
1040 int clear_page_dirty_for_io(struct page *page);
1041
1042 /* Is the vma a continuation of the stack vma above it? */
1043 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1044 {
1045         return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1046 }
1047
1048 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1049                                              unsigned long addr)
1050 {
1051         return (vma->vm_flags & VM_GROWSDOWN) &&
1052                 (vma->vm_start == addr) &&
1053                 !vma_growsdown(vma->vm_prev, addr);
1054 }
1055
1056 /* Is the vma a continuation of the stack vma below it? */
1057 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1058 {
1059         return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1060 }
1061
1062 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1063                                            unsigned long addr)
1064 {
1065         return (vma->vm_flags & VM_GROWSUP) &&
1066                 (vma->vm_end == addr) &&
1067                 !vma_growsup(vma->vm_next, addr);
1068 }
1069
1070 extern pid_t
1071 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1072
1073 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1074                 unsigned long old_addr, struct vm_area_struct *new_vma,
1075                 unsigned long new_addr, unsigned long len,
1076                 bool need_rmap_locks);
1077 extern unsigned long do_mremap(unsigned long addr,
1078                                unsigned long old_len, unsigned long new_len,
1079                                unsigned long flags, unsigned long new_addr);
1080 extern int mprotect_fixup(struct vm_area_struct *vma,
1081                           struct vm_area_struct **pprev, unsigned long start,
1082                           unsigned long end, unsigned long newflags);
1083
1084 /*
1085  * doesn't attempt to fault and will return short.
1086  */
1087 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1088                           struct page **pages);
1089 /*
1090  * per-process(per-mm_struct) statistics.
1091  */
1092 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1093 {
1094         long val = atomic_long_read(&mm->rss_stat.count[member]);
1095
1096 #ifdef SPLIT_RSS_COUNTING
1097         /*
1098          * counter is updated in asynchronous manner and may go to minus.
1099          * But it's never be expected number for users.
1100          */
1101         if (val < 0)
1102                 val = 0;
1103 #endif
1104         return (unsigned long)val;
1105 }
1106
1107 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1108 {
1109         atomic_long_add(value, &mm->rss_stat.count[member]);
1110 }
1111
1112 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1113 {
1114         atomic_long_inc(&mm->rss_stat.count[member]);
1115 }
1116
1117 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1118 {
1119         atomic_long_dec(&mm->rss_stat.count[member]);
1120 }
1121
1122 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1123 {
1124         return get_mm_counter(mm, MM_FILEPAGES) +
1125                 get_mm_counter(mm, MM_ANONPAGES);
1126 }
1127
1128 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1129 {
1130         return max(mm->hiwater_rss, get_mm_rss(mm));
1131 }
1132
1133 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1134 {
1135         return max(mm->hiwater_vm, mm->total_vm);
1136 }
1137
1138 static inline void update_hiwater_rss(struct mm_struct *mm)
1139 {
1140         unsigned long _rss = get_mm_rss(mm);
1141
1142         if ((mm)->hiwater_rss < _rss)
1143                 (mm)->hiwater_rss = _rss;
1144 }
1145
1146 static inline void update_hiwater_vm(struct mm_struct *mm)
1147 {
1148         if (mm->hiwater_vm < mm->total_vm)
1149                 mm->hiwater_vm = mm->total_vm;
1150 }
1151
1152 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1153                                          struct mm_struct *mm)
1154 {
1155         unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1156
1157         if (*maxrss < hiwater_rss)
1158                 *maxrss = hiwater_rss;
1159 }
1160
1161 #if defined(SPLIT_RSS_COUNTING)
1162 void sync_mm_rss(struct mm_struct *mm);
1163 #else
1164 static inline void sync_mm_rss(struct mm_struct *mm)
1165 {
1166 }
1167 #endif
1168
1169 int vma_wants_writenotify(struct vm_area_struct *vma);
1170
1171 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1172                                spinlock_t **ptl);
1173 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1174                                     spinlock_t **ptl)
1175 {
1176         pte_t *ptep;
1177         __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1178         return ptep;
1179 }
1180
1181 #ifdef __PAGETABLE_PUD_FOLDED
1182 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1183                                                 unsigned long address)
1184 {
1185         return 0;
1186 }
1187 #else
1188 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1189 #endif
1190
1191 #ifdef __PAGETABLE_PMD_FOLDED
1192 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1193                                                 unsigned long address)
1194 {
1195         return 0;
1196 }
1197 #else
1198 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1199 #endif
1200
1201 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1202                 pmd_t *pmd, unsigned long address);
1203 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1204
1205 /*
1206  * The following ifdef needed to get the 4level-fixup.h header to work.
1207  * Remove it when 4level-fixup.h has been removed.
1208  */
1209 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1210 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1211 {
1212         return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1213                 NULL: pud_offset(pgd, address);
1214 }
1215
1216 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1217 {
1218         return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1219                 NULL: pmd_offset(pud, address);
1220 }
1221 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1222
1223 #if USE_SPLIT_PTLOCKS
1224 /*
1225  * We tuck a spinlock to guard each pagetable page into its struct page,
1226  * at page->private, with BUILD_BUG_ON to make sure that this will not
1227  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1228  * When freeing, reset page->mapping so free_pages_check won't complain.
1229  */
1230 #define __pte_lockptr(page)     &((page)->ptl)
1231 #define pte_lock_init(_page)    do {                                    \
1232         spin_lock_init(__pte_lockptr(_page));                           \
1233 } while (0)
1234 #define pte_lock_deinit(page)   ((page)->mapping = NULL)
1235 #define pte_lockptr(mm, pmd)    ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1236 #else   /* !USE_SPLIT_PTLOCKS */
1237 /*
1238  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1239  */
1240 #define pte_lock_init(page)     do {} while (0)
1241 #define pte_lock_deinit(page)   do {} while (0)
1242 #define pte_lockptr(mm, pmd)    ({(void)(pmd); &(mm)->page_table_lock;})
1243 #endif /* USE_SPLIT_PTLOCKS */
1244
1245 static inline void pgtable_page_ctor(struct page *page)
1246 {
1247         pte_lock_init(page);
1248         inc_zone_page_state(page, NR_PAGETABLE);
1249 }
1250
1251 static inline void pgtable_page_dtor(struct page *page)
1252 {
1253         pte_lock_deinit(page);
1254         dec_zone_page_state(page, NR_PAGETABLE);
1255 }
1256
1257 #define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1258 ({                                                      \
1259         spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1260         pte_t *__pte = pte_offset_map(pmd, address);    \
1261         *(ptlp) = __ptl;                                \
1262         spin_lock(__ptl);                               \
1263         __pte;                                          \
1264 })
1265
1266 #define pte_unmap_unlock(pte, ptl)      do {            \
1267         spin_unlock(ptl);                               \
1268         pte_unmap(pte);                                 \
1269 } while (0)
1270
1271 #define pte_alloc_map(mm, vma, pmd, address)                            \
1272         ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,    \
1273                                                         pmd, address))? \
1274          NULL: pte_offset_map(pmd, address))
1275
1276 #define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1277         ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,   \
1278                                                         pmd, address))? \
1279                 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1280
1281 #define pte_alloc_kernel(pmd, address)                  \
1282         ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1283                 NULL: pte_offset_kernel(pmd, address))
1284
1285 extern void free_area_init(unsigned long * zones_size);
1286 extern void free_area_init_node(int nid, unsigned long * zones_size,
1287                 unsigned long zone_start_pfn, unsigned long *zholes_size);
1288 extern void free_initmem(void);
1289
1290 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1291 /*
1292  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1293  * zones, allocate the backing mem_map and account for memory holes in a more
1294  * architecture independent manner. This is a substitute for creating the
1295  * zone_sizes[] and zholes_size[] arrays and passing them to
1296  * free_area_init_node()
1297  *
1298  * An architecture is expected to register range of page frames backed by
1299  * physical memory with memblock_add[_node]() before calling
1300  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1301  * usage, an architecture is expected to do something like
1302  *
1303  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1304  *                                                       max_highmem_pfn};
1305  * for_each_valid_physical_page_range()
1306  *      memblock_add_node(base, size, nid)
1307  * free_area_init_nodes(max_zone_pfns);
1308  *
1309  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1310  * registered physical page range.  Similarly
1311  * sparse_memory_present_with_active_regions() calls memory_present() for
1312  * each range when SPARSEMEM is enabled.
1313  *
1314  * See mm/page_alloc.c for more information on each function exposed by
1315  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1316  */
1317 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1318 unsigned long node_map_pfn_alignment(void);
1319 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1320                                                 unsigned long end_pfn);
1321 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1322                                                 unsigned long end_pfn);
1323 extern void get_pfn_range_for_nid(unsigned int nid,
1324                         unsigned long *start_pfn, unsigned long *end_pfn);
1325 extern unsigned long find_min_pfn_with_active_regions(void);
1326 extern void free_bootmem_with_active_regions(int nid,
1327                                                 unsigned long max_low_pfn);
1328 extern void sparse_memory_present_with_active_regions(int nid);
1329
1330 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1331
1332 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1333     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1334 static inline int __early_pfn_to_nid(unsigned long pfn)
1335 {
1336         return 0;
1337 }
1338 #else
1339 /* please see mm/page_alloc.c */
1340 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1341 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1342 /* there is a per-arch backend function. */
1343 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1344 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1345 #endif
1346
1347 extern void set_dma_reserve(unsigned long new_dma_reserve);
1348 extern void memmap_init_zone(unsigned long, int, unsigned long,
1349                                 unsigned long, enum memmap_context);
1350 extern void setup_per_zone_wmarks(void);
1351 extern int __meminit init_per_zone_wmark_min(void);
1352 extern void mem_init(void);
1353 extern void __init mmap_init(void);
1354 extern void show_mem(unsigned int flags);
1355 extern void si_meminfo(struct sysinfo * val);
1356 extern void si_meminfo_node(struct sysinfo *val, int nid);
1357 extern int after_bootmem;
1358
1359 extern __printf(3, 4)
1360 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1361
1362 extern void setup_per_cpu_pageset(void);
1363
1364 extern void zone_pcp_update(struct zone *zone);
1365 extern void zone_pcp_reset(struct zone *zone);
1366
1367 /* nommu.c */
1368 extern atomic_long_t mmap_pages_allocated;
1369 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1370
1371 /* interval_tree.c */
1372 void vma_interval_tree_insert(struct vm_area_struct *node,
1373                               struct rb_root *root);
1374 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1375                                     struct vm_area_struct *prev,
1376                                     struct rb_root *root);
1377 void vma_interval_tree_remove(struct vm_area_struct *node,
1378                               struct rb_root *root);
1379 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1380                                 unsigned long start, unsigned long last);
1381 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1382                                 unsigned long start, unsigned long last);
1383
1384 #define vma_interval_tree_foreach(vma, root, start, last)               \
1385         for (vma = vma_interval_tree_iter_first(root, start, last);     \
1386              vma; vma = vma_interval_tree_iter_next(vma, start, last))
1387
1388 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1389                                         struct list_head *list)
1390 {
1391         list_add_tail(&vma->shared.nonlinear, list);
1392 }
1393
1394 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1395                                    struct rb_root *root);
1396 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1397                                    struct rb_root *root);
1398 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1399         struct rb_root *root, unsigned long start, unsigned long last);
1400 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1401         struct anon_vma_chain *node, unsigned long start, unsigned long last);
1402 #ifdef CONFIG_DEBUG_VM_RB
1403 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1404 #endif
1405
1406 #define anon_vma_interval_tree_foreach(avc, root, start, last)           \
1407         for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1408              avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1409
1410 /* mmap.c */
1411 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1412 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1413         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1414 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1415         struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1416         unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1417         struct mempolicy *);
1418 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1419 extern int split_vma(struct mm_struct *,
1420         struct vm_area_struct *, unsigned long addr, int new_below);
1421 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1422 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1423         struct rb_node **, struct rb_node *);
1424 extern void unlink_file_vma(struct vm_area_struct *);
1425 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1426         unsigned long addr, unsigned long len, pgoff_t pgoff,
1427         bool *need_rmap_locks);
1428 extern void exit_mmap(struct mm_struct *);
1429
1430 extern int mm_take_all_locks(struct mm_struct *mm);
1431 extern void mm_drop_all_locks(struct mm_struct *mm);
1432
1433 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1434 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1435
1436 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1437 extern int install_special_mapping(struct mm_struct *mm,
1438                                    unsigned long addr, unsigned long len,
1439                                    unsigned long flags, struct page **pages);
1440
1441 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1442
1443 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1444         unsigned long len, unsigned long flags,
1445         vm_flags_t vm_flags, unsigned long pgoff);
1446 extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
1447         unsigned long, unsigned long,
1448         unsigned long, unsigned long);
1449 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1450
1451 /* These take the mm semaphore themselves */
1452 extern unsigned long vm_brk(unsigned long, unsigned long);
1453 extern int vm_munmap(unsigned long, size_t);
1454 extern unsigned long vm_mmap(struct file *, unsigned long,
1455         unsigned long, unsigned long,
1456         unsigned long, unsigned long);
1457
1458 /* truncate.c */
1459 extern void truncate_inode_pages(struct address_space *, loff_t);
1460 extern void truncate_inode_pages_range(struct address_space *,
1461                                        loff_t lstart, loff_t lend);
1462
1463 /* generic vm_area_ops exported for stackable file systems */
1464 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1465 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1466
1467 /* mm/page-writeback.c */
1468 int write_one_page(struct page *page, int wait);
1469 void task_dirty_inc(struct task_struct *tsk);
1470
1471 /* readahead.c */
1472 #define VM_MAX_READAHEAD        128     /* kbytes */
1473 #define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
1474
1475 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1476                         pgoff_t offset, unsigned long nr_to_read);
1477
1478 void page_cache_sync_readahead(struct address_space *mapping,
1479                                struct file_ra_state *ra,
1480                                struct file *filp,
1481                                pgoff_t offset,
1482                                unsigned long size);
1483
1484 void page_cache_async_readahead(struct address_space *mapping,
1485                                 struct file_ra_state *ra,
1486                                 struct file *filp,
1487                                 struct page *pg,
1488                                 pgoff_t offset,
1489                                 unsigned long size);
1490
1491 unsigned long max_sane_readahead(unsigned long nr);
1492 unsigned long ra_submit(struct file_ra_state *ra,
1493                         struct address_space *mapping,
1494                         struct file *filp);
1495
1496 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1497 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1498
1499 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1500 extern int expand_downwards(struct vm_area_struct *vma,
1501                 unsigned long address);
1502 #if VM_GROWSUP
1503 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1504 #else
1505   #define expand_upwards(vma, address) do { } while (0)
1506 #endif
1507
1508 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1509 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1510 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1511                                              struct vm_area_struct **pprev);
1512
1513 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1514    NULL if none.  Assume start_addr < end_addr. */
1515 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1516 {
1517         struct vm_area_struct * vma = find_vma(mm,start_addr);
1518
1519         if (vma && end_addr <= vma->vm_start)
1520                 vma = NULL;
1521         return vma;
1522 }
1523
1524 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1525 {
1526         return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1527 }
1528
1529 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1530 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1531                                 unsigned long vm_start, unsigned long vm_end)
1532 {
1533         struct vm_area_struct *vma = find_vma(mm, vm_start);
1534
1535         if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1536                 vma = NULL;
1537
1538         return vma;
1539 }
1540
1541 #ifdef CONFIG_MMU
1542 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1543 #else
1544 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1545 {
1546         return __pgprot(0);
1547 }
1548 #endif
1549
1550 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1551 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1552                         unsigned long pfn, unsigned long size, pgprot_t);
1553 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1554 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1555                         unsigned long pfn);
1556 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1557                         unsigned long pfn);
1558
1559 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1560                         unsigned int foll_flags);
1561 #define FOLL_WRITE      0x01    /* check pte is writable */
1562 #define FOLL_TOUCH      0x02    /* mark page accessed */
1563 #define FOLL_GET        0x04    /* do get_page on page */
1564 #define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
1565 #define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
1566 #define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
1567                                  * and return without waiting upon it */
1568 #define FOLL_MLOCK      0x40    /* mark page as mlocked */
1569 #define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
1570 #define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
1571
1572 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1573                         void *data);
1574 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1575                                unsigned long size, pte_fn_t fn, void *data);
1576
1577 #ifdef CONFIG_PROC_FS
1578 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1579 #else
1580 static inline void vm_stat_account(struct mm_struct *mm,
1581                         unsigned long flags, struct file *file, long pages)
1582 {
1583         mm->total_vm += pages;
1584 }
1585 #endif /* CONFIG_PROC_FS */
1586
1587 #ifdef CONFIG_DEBUG_PAGEALLOC
1588 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1589 #ifdef CONFIG_HIBERNATION
1590 extern bool kernel_page_present(struct page *page);
1591 #endif /* CONFIG_HIBERNATION */
1592 #else
1593 static inline void
1594 kernel_map_pages(struct page *page, int numpages, int enable) {}
1595 #ifdef CONFIG_HIBERNATION
1596 static inline bool kernel_page_present(struct page *page) { return true; }
1597 #endif /* CONFIG_HIBERNATION */
1598 #endif
1599
1600 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1601 #ifdef  __HAVE_ARCH_GATE_AREA
1602 int in_gate_area_no_mm(unsigned long addr);
1603 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1604 #else
1605 int in_gate_area_no_mm(unsigned long addr);
1606 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1607 #endif  /* __HAVE_ARCH_GATE_AREA */
1608
1609 int drop_caches_sysctl_handler(struct ctl_table *, int,
1610                                         void __user *, size_t *, loff_t *);
1611 unsigned long shrink_slab(struct shrink_control *shrink,
1612                           unsigned long nr_pages_scanned,
1613                           unsigned long lru_pages);
1614
1615 #ifndef CONFIG_MMU
1616 #define randomize_va_space 0
1617 #else
1618 extern int randomize_va_space;
1619 #endif
1620
1621 const char * arch_vma_name(struct vm_area_struct *vma);
1622 void print_vma_addr(char *prefix, unsigned long rip);
1623
1624 void sparse_mem_maps_populate_node(struct page **map_map,
1625                                    unsigned long pnum_begin,
1626                                    unsigned long pnum_end,
1627                                    unsigned long map_count,
1628                                    int nodeid);
1629
1630 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1631 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1632 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1633 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1634 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1635 void *vmemmap_alloc_block(unsigned long size, int node);
1636 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1637 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1638 int vmemmap_populate_basepages(struct page *start_page,
1639                                                 unsigned long pages, int node);
1640 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1641 void vmemmap_populate_print_last(void);
1642
1643
1644 enum mf_flags {
1645         MF_COUNT_INCREASED = 1 << 0,
1646         MF_ACTION_REQUIRED = 1 << 1,
1647         MF_MUST_KILL = 1 << 2,
1648 };
1649 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1650 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1651 extern int unpoison_memory(unsigned long pfn);
1652 extern int sysctl_memory_failure_early_kill;
1653 extern int sysctl_memory_failure_recovery;
1654 extern void shake_page(struct page *p, int access);
1655 extern atomic_long_t mce_bad_pages;
1656 extern int soft_offline_page(struct page *page, int flags);
1657
1658 extern void dump_page(struct page *page);
1659
1660 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1661 extern void clear_huge_page(struct page *page,
1662                             unsigned long addr,
1663                             unsigned int pages_per_huge_page);
1664 extern void copy_user_huge_page(struct page *dst, struct page *src,
1665                                 unsigned long addr, struct vm_area_struct *vma,
1666                                 unsigned int pages_per_huge_page);
1667 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1668
1669 #ifdef CONFIG_DEBUG_PAGEALLOC
1670 extern unsigned int _debug_guardpage_minorder;
1671
1672 static inline unsigned int debug_guardpage_minorder(void)
1673 {
1674         return _debug_guardpage_minorder;
1675 }
1676
1677 static inline bool page_is_guard(struct page *page)
1678 {
1679         return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1680 }
1681 #else
1682 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1683 static inline bool page_is_guard(struct page *page) { return false; }
1684 #endif /* CONFIG_DEBUG_PAGEALLOC */
1685
1686 #endif /* __KERNEL__ */
1687 #endif /* _LINUX_MM_H */