]> git.karo-electronics.de Git - mv-sheeva.git/blob - include/linux/mmzone.h
mm: compaction: make isolate_lru_page() filter-aware
[mv-sheeva.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coelesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 #define MIGRATE_UNMOVABLE     0
39 #define MIGRATE_RECLAIMABLE   1
40 #define MIGRATE_MOVABLE       2
41 #define MIGRATE_PCPTYPES      3 /* the number of types on the pcp lists */
42 #define MIGRATE_RESERVE       3
43 #define MIGRATE_ISOLATE       4 /* can't allocate from here */
44 #define MIGRATE_TYPES         5
45
46 #define for_each_migratetype_order(order, type) \
47         for (order = 0; order < MAX_ORDER; order++) \
48                 for (type = 0; type < MIGRATE_TYPES; type++)
49
50 extern int page_group_by_mobility_disabled;
51
52 static inline int get_pageblock_migratetype(struct page *page)
53 {
54         return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55 }
56
57 struct free_area {
58         struct list_head        free_list[MIGRATE_TYPES];
59         unsigned long           nr_free;
60 };
61
62 struct pglist_data;
63
64 /*
65  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66  * So add a wild amount of padding here to ensure that they fall into separate
67  * cachelines.  There are very few zone structures in the machine, so space
68  * consumption is not a concern here.
69  */
70 #if defined(CONFIG_SMP)
71 struct zone_padding {
72         char x[0];
73 } ____cacheline_internodealigned_in_smp;
74 #define ZONE_PADDING(name)      struct zone_padding name;
75 #else
76 #define ZONE_PADDING(name)
77 #endif
78
79 enum zone_stat_item {
80         /* First 128 byte cacheline (assuming 64 bit words) */
81         NR_FREE_PAGES,
82         NR_LRU_BASE,
83         NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84         NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
85         NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
86         NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
87         NR_UNEVICTABLE,         /*  "     "     "   "       "         */
88         NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
89         NR_ANON_PAGES,  /* Mapped anonymous pages */
90         NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
91                            only modified from process context */
92         NR_FILE_PAGES,
93         NR_FILE_DIRTY,
94         NR_WRITEBACK,
95         NR_SLAB_RECLAIMABLE,
96         NR_SLAB_UNRECLAIMABLE,
97         NR_PAGETABLE,           /* used for pagetables */
98         NR_KERNEL_STACK,
99         /* Second 128 byte cacheline */
100         NR_UNSTABLE_NFS,        /* NFS unstable pages */
101         NR_BOUNCE,
102         NR_VMSCAN_WRITE,
103         NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
104         NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
105         NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
106         NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
107         NR_DIRTIED,             /* page dirtyings since bootup */
108         NR_WRITTEN,             /* page writings since bootup */
109 #ifdef CONFIG_NUMA
110         NUMA_HIT,               /* allocated in intended node */
111         NUMA_MISS,              /* allocated in non intended node */
112         NUMA_FOREIGN,           /* was intended here, hit elsewhere */
113         NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
114         NUMA_LOCAL,             /* allocation from local node */
115         NUMA_OTHER,             /* allocation from other node */
116 #endif
117         NR_ANON_TRANSPARENT_HUGEPAGES,
118         NR_VM_ZONE_STAT_ITEMS };
119
120 /*
121  * We do arithmetic on the LRU lists in various places in the code,
122  * so it is important to keep the active lists LRU_ACTIVE higher in
123  * the array than the corresponding inactive lists, and to keep
124  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
125  *
126  * This has to be kept in sync with the statistics in zone_stat_item
127  * above and the descriptions in vmstat_text in mm/vmstat.c
128  */
129 #define LRU_BASE 0
130 #define LRU_ACTIVE 1
131 #define LRU_FILE 2
132
133 enum lru_list {
134         LRU_INACTIVE_ANON = LRU_BASE,
135         LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
136         LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
137         LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
138         LRU_UNEVICTABLE,
139         NR_LRU_LISTS
140 };
141
142 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
143
144 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
145
146 static inline int is_file_lru(enum lru_list l)
147 {
148         return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
149 }
150
151 static inline int is_active_lru(enum lru_list l)
152 {
153         return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
154 }
155
156 static inline int is_unevictable_lru(enum lru_list l)
157 {
158         return (l == LRU_UNEVICTABLE);
159 }
160
161 /* Mask used at gathering information at once (see memcontrol.c) */
162 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
163 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
164 #define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
165 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
166
167 /* Isolate inactive pages */
168 #define ISOLATE_INACTIVE        ((__force isolate_mode_t)0x1)
169 /* Isolate active pages */
170 #define ISOLATE_ACTIVE          ((__force isolate_mode_t)0x2)
171 /* Isolate clean file */
172 #define ISOLATE_CLEAN           ((__force isolate_mode_t)0x4)
173
174 /* LRU Isolation modes. */
175 typedef unsigned __bitwise__ isolate_mode_t;
176
177 enum zone_watermarks {
178         WMARK_MIN,
179         WMARK_LOW,
180         WMARK_HIGH,
181         NR_WMARK
182 };
183
184 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
185 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
186 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
187
188 struct per_cpu_pages {
189         int count;              /* number of pages in the list */
190         int high;               /* high watermark, emptying needed */
191         int batch;              /* chunk size for buddy add/remove */
192
193         /* Lists of pages, one per migrate type stored on the pcp-lists */
194         struct list_head lists[MIGRATE_PCPTYPES];
195 };
196
197 struct per_cpu_pageset {
198         struct per_cpu_pages pcp;
199 #ifdef CONFIG_NUMA
200         s8 expire;
201 #endif
202 #ifdef CONFIG_SMP
203         s8 stat_threshold;
204         s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
205 #endif
206 };
207
208 #endif /* !__GENERATING_BOUNDS.H */
209
210 enum zone_type {
211 #ifdef CONFIG_ZONE_DMA
212         /*
213          * ZONE_DMA is used when there are devices that are not able
214          * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
215          * carve out the portion of memory that is needed for these devices.
216          * The range is arch specific.
217          *
218          * Some examples
219          *
220          * Architecture         Limit
221          * ---------------------------
222          * parisc, ia64, sparc  <4G
223          * s390                 <2G
224          * arm                  Various
225          * alpha                Unlimited or 0-16MB.
226          *
227          * i386, x86_64 and multiple other arches
228          *                      <16M.
229          */
230         ZONE_DMA,
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233         /*
234          * x86_64 needs two ZONE_DMAs because it supports devices that are
235          * only able to do DMA to the lower 16M but also 32 bit devices that
236          * can only do DMA areas below 4G.
237          */
238         ZONE_DMA32,
239 #endif
240         /*
241          * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
242          * performed on pages in ZONE_NORMAL if the DMA devices support
243          * transfers to all addressable memory.
244          */
245         ZONE_NORMAL,
246 #ifdef CONFIG_HIGHMEM
247         /*
248          * A memory area that is only addressable by the kernel through
249          * mapping portions into its own address space. This is for example
250          * used by i386 to allow the kernel to address the memory beyond
251          * 900MB. The kernel will set up special mappings (page
252          * table entries on i386) for each page that the kernel needs to
253          * access.
254          */
255         ZONE_HIGHMEM,
256 #endif
257         ZONE_MOVABLE,
258         __MAX_NR_ZONES
259 };
260
261 #ifndef __GENERATING_BOUNDS_H
262
263 /*
264  * When a memory allocation must conform to specific limitations (such
265  * as being suitable for DMA) the caller will pass in hints to the
266  * allocator in the gfp_mask, in the zone modifier bits.  These bits
267  * are used to select a priority ordered list of memory zones which
268  * match the requested limits. See gfp_zone() in include/linux/gfp.h
269  */
270
271 #if MAX_NR_ZONES < 2
272 #define ZONES_SHIFT 0
273 #elif MAX_NR_ZONES <= 2
274 #define ZONES_SHIFT 1
275 #elif MAX_NR_ZONES <= 4
276 #define ZONES_SHIFT 2
277 #else
278 #error ZONES_SHIFT -- too many zones configured adjust calculation
279 #endif
280
281 struct zone_reclaim_stat {
282         /*
283          * The pageout code in vmscan.c keeps track of how many of the
284          * mem/swap backed and file backed pages are refeferenced.
285          * The higher the rotated/scanned ratio, the more valuable
286          * that cache is.
287          *
288          * The anon LRU stats live in [0], file LRU stats in [1]
289          */
290         unsigned long           recent_rotated[2];
291         unsigned long           recent_scanned[2];
292 };
293
294 struct zone {
295         /* Fields commonly accessed by the page allocator */
296
297         /* zone watermarks, access with *_wmark_pages(zone) macros */
298         unsigned long watermark[NR_WMARK];
299
300         /*
301          * When free pages are below this point, additional steps are taken
302          * when reading the number of free pages to avoid per-cpu counter
303          * drift allowing watermarks to be breached
304          */
305         unsigned long percpu_drift_mark;
306
307         /*
308          * We don't know if the memory that we're going to allocate will be freeable
309          * or/and it will be released eventually, so to avoid totally wasting several
310          * GB of ram we must reserve some of the lower zone memory (otherwise we risk
311          * to run OOM on the lower zones despite there's tons of freeable ram
312          * on the higher zones). This array is recalculated at runtime if the
313          * sysctl_lowmem_reserve_ratio sysctl changes.
314          */
315         unsigned long           lowmem_reserve[MAX_NR_ZONES];
316
317 #ifdef CONFIG_NUMA
318         int node;
319         /*
320          * zone reclaim becomes active if more unmapped pages exist.
321          */
322         unsigned long           min_unmapped_pages;
323         unsigned long           min_slab_pages;
324 #endif
325         struct per_cpu_pageset __percpu *pageset;
326         /*
327          * free areas of different sizes
328          */
329         spinlock_t              lock;
330         int                     all_unreclaimable; /* All pages pinned */
331 #ifdef CONFIG_MEMORY_HOTPLUG
332         /* see spanned/present_pages for more description */
333         seqlock_t               span_seqlock;
334 #endif
335         struct free_area        free_area[MAX_ORDER];
336
337 #ifndef CONFIG_SPARSEMEM
338         /*
339          * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
340          * In SPARSEMEM, this map is stored in struct mem_section
341          */
342         unsigned long           *pageblock_flags;
343 #endif /* CONFIG_SPARSEMEM */
344
345 #ifdef CONFIG_COMPACTION
346         /*
347          * On compaction failure, 1<<compact_defer_shift compactions
348          * are skipped before trying again. The number attempted since
349          * last failure is tracked with compact_considered.
350          */
351         unsigned int            compact_considered;
352         unsigned int            compact_defer_shift;
353 #endif
354
355         ZONE_PADDING(_pad1_)
356
357         /* Fields commonly accessed by the page reclaim scanner */
358         spinlock_t              lru_lock;       
359         struct zone_lru {
360                 struct list_head list;
361         } lru[NR_LRU_LISTS];
362
363         struct zone_reclaim_stat reclaim_stat;
364
365         unsigned long           pages_scanned;     /* since last reclaim */
366         unsigned long           flags;             /* zone flags, see below */
367
368         /* Zone statistics */
369         atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
370
371         /*
372          * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
373          * this zone's LRU.  Maintained by the pageout code.
374          */
375         unsigned int inactive_ratio;
376
377
378         ZONE_PADDING(_pad2_)
379         /* Rarely used or read-mostly fields */
380
381         /*
382          * wait_table           -- the array holding the hash table
383          * wait_table_hash_nr_entries   -- the size of the hash table array
384          * wait_table_bits      -- wait_table_size == (1 << wait_table_bits)
385          *
386          * The purpose of all these is to keep track of the people
387          * waiting for a page to become available and make them
388          * runnable again when possible. The trouble is that this
389          * consumes a lot of space, especially when so few things
390          * wait on pages at a given time. So instead of using
391          * per-page waitqueues, we use a waitqueue hash table.
392          *
393          * The bucket discipline is to sleep on the same queue when
394          * colliding and wake all in that wait queue when removing.
395          * When something wakes, it must check to be sure its page is
396          * truly available, a la thundering herd. The cost of a
397          * collision is great, but given the expected load of the
398          * table, they should be so rare as to be outweighed by the
399          * benefits from the saved space.
400          *
401          * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
402          * primary users of these fields, and in mm/page_alloc.c
403          * free_area_init_core() performs the initialization of them.
404          */
405         wait_queue_head_t       * wait_table;
406         unsigned long           wait_table_hash_nr_entries;
407         unsigned long           wait_table_bits;
408
409         /*
410          * Discontig memory support fields.
411          */
412         struct pglist_data      *zone_pgdat;
413         /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
414         unsigned long           zone_start_pfn;
415
416         /*
417          * zone_start_pfn, spanned_pages and present_pages are all
418          * protected by span_seqlock.  It is a seqlock because it has
419          * to be read outside of zone->lock, and it is done in the main
420          * allocator path.  But, it is written quite infrequently.
421          *
422          * The lock is declared along with zone->lock because it is
423          * frequently read in proximity to zone->lock.  It's good to
424          * give them a chance of being in the same cacheline.
425          */
426         unsigned long           spanned_pages;  /* total size, including holes */
427         unsigned long           present_pages;  /* amount of memory (excluding holes) */
428
429         /*
430          * rarely used fields:
431          */
432         const char              *name;
433 } ____cacheline_internodealigned_in_smp;
434
435 typedef enum {
436         ZONE_RECLAIM_LOCKED,            /* prevents concurrent reclaim */
437         ZONE_OOM_LOCKED,                /* zone is in OOM killer zonelist */
438         ZONE_CONGESTED,                 /* zone has many dirty pages backed by
439                                          * a congested BDI
440                                          */
441 } zone_flags_t;
442
443 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
444 {
445         set_bit(flag, &zone->flags);
446 }
447
448 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
449 {
450         return test_and_set_bit(flag, &zone->flags);
451 }
452
453 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
454 {
455         clear_bit(flag, &zone->flags);
456 }
457
458 static inline int zone_is_reclaim_congested(const struct zone *zone)
459 {
460         return test_bit(ZONE_CONGESTED, &zone->flags);
461 }
462
463 static inline int zone_is_reclaim_locked(const struct zone *zone)
464 {
465         return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
466 }
467
468 static inline int zone_is_oom_locked(const struct zone *zone)
469 {
470         return test_bit(ZONE_OOM_LOCKED, &zone->flags);
471 }
472
473 /*
474  * The "priority" of VM scanning is how much of the queues we will scan in one
475  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
476  * queues ("queue_length >> 12") during an aging round.
477  */
478 #define DEF_PRIORITY 12
479
480 /* Maximum number of zones on a zonelist */
481 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
482
483 #ifdef CONFIG_NUMA
484
485 /*
486  * The NUMA zonelists are doubled because we need zonelists that restrict the
487  * allocations to a single node for GFP_THISNODE.
488  *
489  * [0]  : Zonelist with fallback
490  * [1]  : No fallback (GFP_THISNODE)
491  */
492 #define MAX_ZONELISTS 2
493
494
495 /*
496  * We cache key information from each zonelist for smaller cache
497  * footprint when scanning for free pages in get_page_from_freelist().
498  *
499  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
500  *    up short of free memory since the last time (last_fullzone_zap)
501  *    we zero'd fullzones.
502  * 2) The array z_to_n[] maps each zone in the zonelist to its node
503  *    id, so that we can efficiently evaluate whether that node is
504  *    set in the current tasks mems_allowed.
505  *
506  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
507  * indexed by a zones offset in the zonelist zones[] array.
508  *
509  * The get_page_from_freelist() routine does two scans.  During the
510  * first scan, we skip zones whose corresponding bit in 'fullzones'
511  * is set or whose corresponding node in current->mems_allowed (which
512  * comes from cpusets) is not set.  During the second scan, we bypass
513  * this zonelist_cache, to ensure we look methodically at each zone.
514  *
515  * Once per second, we zero out (zap) fullzones, forcing us to
516  * reconsider nodes that might have regained more free memory.
517  * The field last_full_zap is the time we last zapped fullzones.
518  *
519  * This mechanism reduces the amount of time we waste repeatedly
520  * reexaming zones for free memory when they just came up low on
521  * memory momentarilly ago.
522  *
523  * The zonelist_cache struct members logically belong in struct
524  * zonelist.  However, the mempolicy zonelists constructed for
525  * MPOL_BIND are intentionally variable length (and usually much
526  * shorter).  A general purpose mechanism for handling structs with
527  * multiple variable length members is more mechanism than we want
528  * here.  We resort to some special case hackery instead.
529  *
530  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
531  * part because they are shorter), so we put the fixed length stuff
532  * at the front of the zonelist struct, ending in a variable length
533  * zones[], as is needed by MPOL_BIND.
534  *
535  * Then we put the optional zonelist cache on the end of the zonelist
536  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
537  * the fixed length portion at the front of the struct.  This pointer
538  * both enables us to find the zonelist cache, and in the case of
539  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
540  * to know that the zonelist cache is not there.
541  *
542  * The end result is that struct zonelists come in two flavors:
543  *  1) The full, fixed length version, shown below, and
544  *  2) The custom zonelists for MPOL_BIND.
545  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
546  *
547  * Even though there may be multiple CPU cores on a node modifying
548  * fullzones or last_full_zap in the same zonelist_cache at the same
549  * time, we don't lock it.  This is just hint data - if it is wrong now
550  * and then, the allocator will still function, perhaps a bit slower.
551  */
552
553
554 struct zonelist_cache {
555         unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];          /* zone->nid */
556         DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);      /* zone full? */
557         unsigned long last_full_zap;            /* when last zap'd (jiffies) */
558 };
559 #else
560 #define MAX_ZONELISTS 1
561 struct zonelist_cache;
562 #endif
563
564 /*
565  * This struct contains information about a zone in a zonelist. It is stored
566  * here to avoid dereferences into large structures and lookups of tables
567  */
568 struct zoneref {
569         struct zone *zone;      /* Pointer to actual zone */
570         int zone_idx;           /* zone_idx(zoneref->zone) */
571 };
572
573 /*
574  * One allocation request operates on a zonelist. A zonelist
575  * is a list of zones, the first one is the 'goal' of the
576  * allocation, the other zones are fallback zones, in decreasing
577  * priority.
578  *
579  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
580  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
581  * *
582  * To speed the reading of the zonelist, the zonerefs contain the zone index
583  * of the entry being read. Helper functions to access information given
584  * a struct zoneref are
585  *
586  * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
587  * zonelist_zone_idx()  - Return the index of the zone for an entry
588  * zonelist_node_idx()  - Return the index of the node for an entry
589  */
590 struct zonelist {
591         struct zonelist_cache *zlcache_ptr;                  // NULL or &zlcache
592         struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
593 #ifdef CONFIG_NUMA
594         struct zonelist_cache zlcache;                       // optional ...
595 #endif
596 };
597
598 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
599 struct node_active_region {
600         unsigned long start_pfn;
601         unsigned long end_pfn;
602         int nid;
603 };
604 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
605
606 #ifndef CONFIG_DISCONTIGMEM
607 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
608 extern struct page *mem_map;
609 #endif
610
611 /*
612  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
613  * (mostly NUMA machines?) to denote a higher-level memory zone than the
614  * zone denotes.
615  *
616  * On NUMA machines, each NUMA node would have a pg_data_t to describe
617  * it's memory layout.
618  *
619  * Memory statistics and page replacement data structures are maintained on a
620  * per-zone basis.
621  */
622 struct bootmem_data;
623 typedef struct pglist_data {
624         struct zone node_zones[MAX_NR_ZONES];
625         struct zonelist node_zonelists[MAX_ZONELISTS];
626         int nr_zones;
627 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
628         struct page *node_mem_map;
629 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
630         struct page_cgroup *node_page_cgroup;
631 #endif
632 #endif
633 #ifndef CONFIG_NO_BOOTMEM
634         struct bootmem_data *bdata;
635 #endif
636 #ifdef CONFIG_MEMORY_HOTPLUG
637         /*
638          * Must be held any time you expect node_start_pfn, node_present_pages
639          * or node_spanned_pages stay constant.  Holding this will also
640          * guarantee that any pfn_valid() stays that way.
641          *
642          * Nests above zone->lock and zone->size_seqlock.
643          */
644         spinlock_t node_size_lock;
645 #endif
646         unsigned long node_start_pfn;
647         unsigned long node_present_pages; /* total number of physical pages */
648         unsigned long node_spanned_pages; /* total size of physical page
649                                              range, including holes */
650         int node_id;
651         wait_queue_head_t kswapd_wait;
652         struct task_struct *kswapd;
653         int kswapd_max_order;
654         enum zone_type classzone_idx;
655 } pg_data_t;
656
657 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
658 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
659 #ifdef CONFIG_FLAT_NODE_MEM_MAP
660 #define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
661 #else
662 #define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
663 #endif
664 #define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
665
666 #define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
667
668 #define node_end_pfn(nid) ({\
669         pg_data_t *__pgdat = NODE_DATA(nid);\
670         __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
671 })
672
673 #include <linux/memory_hotplug.h>
674
675 extern struct mutex zonelists_mutex;
676 void build_all_zonelists(void *data);
677 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
678 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
679                 int classzone_idx, int alloc_flags);
680 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
681                 int classzone_idx, int alloc_flags);
682 enum memmap_context {
683         MEMMAP_EARLY,
684         MEMMAP_HOTPLUG,
685 };
686 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
687                                      unsigned long size,
688                                      enum memmap_context context);
689
690 #ifdef CONFIG_HAVE_MEMORY_PRESENT
691 void memory_present(int nid, unsigned long start, unsigned long end);
692 #else
693 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
694 #endif
695
696 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
697 int local_memory_node(int node_id);
698 #else
699 static inline int local_memory_node(int node_id) { return node_id; };
700 #endif
701
702 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
703 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
704 #endif
705
706 /*
707  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
708  */
709 #define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
710
711 static inline int populated_zone(struct zone *zone)
712 {
713         return (!!zone->present_pages);
714 }
715
716 extern int movable_zone;
717
718 static inline int zone_movable_is_highmem(void)
719 {
720 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
721         return movable_zone == ZONE_HIGHMEM;
722 #else
723         return 0;
724 #endif
725 }
726
727 static inline int is_highmem_idx(enum zone_type idx)
728 {
729 #ifdef CONFIG_HIGHMEM
730         return (idx == ZONE_HIGHMEM ||
731                 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
732 #else
733         return 0;
734 #endif
735 }
736
737 static inline int is_normal_idx(enum zone_type idx)
738 {
739         return (idx == ZONE_NORMAL);
740 }
741
742 /**
743  * is_highmem - helper function to quickly check if a struct zone is a 
744  *              highmem zone or not.  This is an attempt to keep references
745  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
746  * @zone - pointer to struct zone variable
747  */
748 static inline int is_highmem(struct zone *zone)
749 {
750 #ifdef CONFIG_HIGHMEM
751         int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
752         return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
753                (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
754                 zone_movable_is_highmem());
755 #else
756         return 0;
757 #endif
758 }
759
760 static inline int is_normal(struct zone *zone)
761 {
762         return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
763 }
764
765 static inline int is_dma32(struct zone *zone)
766 {
767 #ifdef CONFIG_ZONE_DMA32
768         return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
769 #else
770         return 0;
771 #endif
772 }
773
774 static inline int is_dma(struct zone *zone)
775 {
776 #ifdef CONFIG_ZONE_DMA
777         return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
778 #else
779         return 0;
780 #endif
781 }
782
783 /* These two functions are used to setup the per zone pages min values */
784 struct ctl_table;
785 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
786                                         void __user *, size_t *, loff_t *);
787 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
788 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
789                                         void __user *, size_t *, loff_t *);
790 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
791                                         void __user *, size_t *, loff_t *);
792 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
793                         void __user *, size_t *, loff_t *);
794 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
795                         void __user *, size_t *, loff_t *);
796
797 extern int numa_zonelist_order_handler(struct ctl_table *, int,
798                         void __user *, size_t *, loff_t *);
799 extern char numa_zonelist_order[];
800 #define NUMA_ZONELIST_ORDER_LEN 16      /* string buffer size */
801
802 #ifndef CONFIG_NEED_MULTIPLE_NODES
803
804 extern struct pglist_data contig_page_data;
805 #define NODE_DATA(nid)          (&contig_page_data)
806 #define NODE_MEM_MAP(nid)       mem_map
807
808 #else /* CONFIG_NEED_MULTIPLE_NODES */
809
810 #include <asm/mmzone.h>
811
812 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
813
814 extern struct pglist_data *first_online_pgdat(void);
815 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
816 extern struct zone *next_zone(struct zone *zone);
817
818 /**
819  * for_each_online_pgdat - helper macro to iterate over all online nodes
820  * @pgdat - pointer to a pg_data_t variable
821  */
822 #define for_each_online_pgdat(pgdat)                    \
823         for (pgdat = first_online_pgdat();              \
824              pgdat;                                     \
825              pgdat = next_online_pgdat(pgdat))
826 /**
827  * for_each_zone - helper macro to iterate over all memory zones
828  * @zone - pointer to struct zone variable
829  *
830  * The user only needs to declare the zone variable, for_each_zone
831  * fills it in.
832  */
833 #define for_each_zone(zone)                             \
834         for (zone = (first_online_pgdat())->node_zones; \
835              zone;                                      \
836              zone = next_zone(zone))
837
838 #define for_each_populated_zone(zone)                   \
839         for (zone = (first_online_pgdat())->node_zones; \
840              zone;                                      \
841              zone = next_zone(zone))                    \
842                 if (!populated_zone(zone))              \
843                         ; /* do nothing */              \
844                 else
845
846 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
847 {
848         return zoneref->zone;
849 }
850
851 static inline int zonelist_zone_idx(struct zoneref *zoneref)
852 {
853         return zoneref->zone_idx;
854 }
855
856 static inline int zonelist_node_idx(struct zoneref *zoneref)
857 {
858 #ifdef CONFIG_NUMA
859         /* zone_to_nid not available in this context */
860         return zoneref->zone->node;
861 #else
862         return 0;
863 #endif /* CONFIG_NUMA */
864 }
865
866 /**
867  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
868  * @z - The cursor used as a starting point for the search
869  * @highest_zoneidx - The zone index of the highest zone to return
870  * @nodes - An optional nodemask to filter the zonelist with
871  * @zone - The first suitable zone found is returned via this parameter
872  *
873  * This function returns the next zone at or below a given zone index that is
874  * within the allowed nodemask using a cursor as the starting point for the
875  * search. The zoneref returned is a cursor that represents the current zone
876  * being examined. It should be advanced by one before calling
877  * next_zones_zonelist again.
878  */
879 struct zoneref *next_zones_zonelist(struct zoneref *z,
880                                         enum zone_type highest_zoneidx,
881                                         nodemask_t *nodes,
882                                         struct zone **zone);
883
884 /**
885  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
886  * @zonelist - The zonelist to search for a suitable zone
887  * @highest_zoneidx - The zone index of the highest zone to return
888  * @nodes - An optional nodemask to filter the zonelist with
889  * @zone - The first suitable zone found is returned via this parameter
890  *
891  * This function returns the first zone at or below a given zone index that is
892  * within the allowed nodemask. The zoneref returned is a cursor that can be
893  * used to iterate the zonelist with next_zones_zonelist by advancing it by
894  * one before calling.
895  */
896 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
897                                         enum zone_type highest_zoneidx,
898                                         nodemask_t *nodes,
899                                         struct zone **zone)
900 {
901         return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
902                                                                 zone);
903 }
904
905 /**
906  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
907  * @zone - The current zone in the iterator
908  * @z - The current pointer within zonelist->zones being iterated
909  * @zlist - The zonelist being iterated
910  * @highidx - The zone index of the highest zone to return
911  * @nodemask - Nodemask allowed by the allocator
912  *
913  * This iterator iterates though all zones at or below a given zone index and
914  * within a given nodemask
915  */
916 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
917         for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
918                 zone;                                                   \
919                 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
920
921 /**
922  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
923  * @zone - The current zone in the iterator
924  * @z - The current pointer within zonelist->zones being iterated
925  * @zlist - The zonelist being iterated
926  * @highidx - The zone index of the highest zone to return
927  *
928  * This iterator iterates though all zones at or below a given zone index.
929  */
930 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
931         for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
932
933 #ifdef CONFIG_SPARSEMEM
934 #include <asm/sparsemem.h>
935 #endif
936
937 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
938         !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
939 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
940 {
941         return 0;
942 }
943 #endif
944
945 #ifdef CONFIG_FLATMEM
946 #define pfn_to_nid(pfn)         (0)
947 #endif
948
949 #ifdef CONFIG_SPARSEMEM
950
951 /*
952  * SECTION_SHIFT                #bits space required to store a section #
953  *
954  * PA_SECTION_SHIFT             physical address to/from section number
955  * PFN_SECTION_SHIFT            pfn to/from section number
956  */
957 #define SECTIONS_SHIFT          (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
958
959 #define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
960 #define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
961
962 #define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
963
964 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
965 #define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
966
967 #define SECTION_BLOCKFLAGS_BITS \
968         ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
969
970 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
971 #error Allocator MAX_ORDER exceeds SECTION_SIZE
972 #endif
973
974 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
975 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
976
977 #define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
978 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
979
980 struct page;
981 struct page_cgroup;
982 struct mem_section {
983         /*
984          * This is, logically, a pointer to an array of struct
985          * pages.  However, it is stored with some other magic.
986          * (see sparse.c::sparse_init_one_section())
987          *
988          * Additionally during early boot we encode node id of
989          * the location of the section here to guide allocation.
990          * (see sparse.c::memory_present())
991          *
992          * Making it a UL at least makes someone do a cast
993          * before using it wrong.
994          */
995         unsigned long section_mem_map;
996
997         /* See declaration of similar field in struct zone */
998         unsigned long *pageblock_flags;
999 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1000         /*
1001          * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1002          * section. (see memcontrol.h/page_cgroup.h about this.)
1003          */
1004         struct page_cgroup *page_cgroup;
1005         unsigned long pad;
1006 #endif
1007 };
1008
1009 #ifdef CONFIG_SPARSEMEM_EXTREME
1010 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1011 #else
1012 #define SECTIONS_PER_ROOT       1
1013 #endif
1014
1015 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1016 #define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1017 #define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
1018
1019 #ifdef CONFIG_SPARSEMEM_EXTREME
1020 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1021 #else
1022 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1023 #endif
1024
1025 static inline struct mem_section *__nr_to_section(unsigned long nr)
1026 {
1027         if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1028                 return NULL;
1029         return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1030 }
1031 extern int __section_nr(struct mem_section* ms);
1032 extern unsigned long usemap_size(void);
1033
1034 /*
1035  * We use the lower bits of the mem_map pointer to store
1036  * a little bit of information.  There should be at least
1037  * 3 bits here due to 32-bit alignment.
1038  */
1039 #define SECTION_MARKED_PRESENT  (1UL<<0)
1040 #define SECTION_HAS_MEM_MAP     (1UL<<1)
1041 #define SECTION_MAP_LAST_BIT    (1UL<<2)
1042 #define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
1043 #define SECTION_NID_SHIFT       2
1044
1045 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1046 {
1047         unsigned long map = section->section_mem_map;
1048         map &= SECTION_MAP_MASK;
1049         return (struct page *)map;
1050 }
1051
1052 static inline int present_section(struct mem_section *section)
1053 {
1054         return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1055 }
1056
1057 static inline int present_section_nr(unsigned long nr)
1058 {
1059         return present_section(__nr_to_section(nr));
1060 }
1061
1062 static inline int valid_section(struct mem_section *section)
1063 {
1064         return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1065 }
1066
1067 static inline int valid_section_nr(unsigned long nr)
1068 {
1069         return valid_section(__nr_to_section(nr));
1070 }
1071
1072 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1073 {
1074         return __nr_to_section(pfn_to_section_nr(pfn));
1075 }
1076
1077 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1078 static inline int pfn_valid(unsigned long pfn)
1079 {
1080         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1081                 return 0;
1082         return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1083 }
1084 #endif
1085
1086 static inline int pfn_present(unsigned long pfn)
1087 {
1088         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1089                 return 0;
1090         return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1091 }
1092
1093 /*
1094  * These are _only_ used during initialisation, therefore they
1095  * can use __initdata ...  They could have names to indicate
1096  * this restriction.
1097  */
1098 #ifdef CONFIG_NUMA
1099 #define pfn_to_nid(pfn)                                                 \
1100 ({                                                                      \
1101         unsigned long __pfn_to_nid_pfn = (pfn);                         \
1102         page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1103 })
1104 #else
1105 #define pfn_to_nid(pfn)         (0)
1106 #endif
1107
1108 #define early_pfn_valid(pfn)    pfn_valid(pfn)
1109 void sparse_init(void);
1110 #else
1111 #define sparse_init()   do {} while (0)
1112 #define sparse_index_init(_sec, _nid)  do {} while (0)
1113 #endif /* CONFIG_SPARSEMEM */
1114
1115 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1116 bool early_pfn_in_nid(unsigned long pfn, int nid);
1117 #else
1118 #define early_pfn_in_nid(pfn, nid)      (1)
1119 #endif
1120
1121 #ifndef early_pfn_valid
1122 #define early_pfn_valid(pfn)    (1)
1123 #endif
1124
1125 void memory_present(int nid, unsigned long start, unsigned long end);
1126 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1127
1128 /*
1129  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1130  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1131  * pfn_valid_within() should be used in this case; we optimise this away
1132  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1133  */
1134 #ifdef CONFIG_HOLES_IN_ZONE
1135 #define pfn_valid_within(pfn) pfn_valid(pfn)
1136 #else
1137 #define pfn_valid_within(pfn) (1)
1138 #endif
1139
1140 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1141 /*
1142  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1143  * associated with it or not. In FLATMEM, it is expected that holes always
1144  * have valid memmap as long as there is valid PFNs either side of the hole.
1145  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1146  * entire section.
1147  *
1148  * However, an ARM, and maybe other embedded architectures in the future
1149  * free memmap backing holes to save memory on the assumption the memmap is
1150  * never used. The page_zone linkages are then broken even though pfn_valid()
1151  * returns true. A walker of the full memmap must then do this additional
1152  * check to ensure the memmap they are looking at is sane by making sure
1153  * the zone and PFN linkages are still valid. This is expensive, but walkers
1154  * of the full memmap are extremely rare.
1155  */
1156 int memmap_valid_within(unsigned long pfn,
1157                                         struct page *page, struct zone *zone);
1158 #else
1159 static inline int memmap_valid_within(unsigned long pfn,
1160                                         struct page *page, struct zone *zone)
1161 {
1162         return 1;
1163 }
1164 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1165
1166 #endif /* !__GENERATING_BOUNDS.H */
1167 #endif /* !__ASSEMBLY__ */
1168 #endif /* _LINUX_MMZONE_H */