1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
5 #ifndef __GENERATING_BOUNDS_H
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
36 #define PAGE_ALLOC_COSTLY_ORDER 3
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
60 #ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
66 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67 extern char * const migratetype_names[MIGRATE_TYPES];
70 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
73 # define is_migrate_cma(migratetype) false
74 # define is_migrate_cma_page(_page) false
77 #define for_each_migratetype_order(order, type) \
78 for (order = 0; order < MAX_ORDER; order++) \
79 for (type = 0; type < MIGRATE_TYPES; type++)
81 extern int page_group_by_mobility_disabled;
83 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
84 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
86 #define get_pageblock_migratetype(page) \
87 get_pfnblock_flags_mask(page, page_to_pfn(page), \
88 PB_migrate_end, MIGRATETYPE_MASK)
91 struct list_head free_list[MIGRATE_TYPES];
92 unsigned long nr_free;
98 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
99 * So add a wild amount of padding here to ensure that they fall into separate
100 * cachelines. There are very few zone structures in the machine, so space
101 * consumption is not a concern here.
103 #if defined(CONFIG_SMP)
104 struct zone_padding {
106 } ____cacheline_internodealigned_in_smp;
107 #define ZONE_PADDING(name) struct zone_padding name;
109 #define ZONE_PADDING(name)
112 enum zone_stat_item {
113 /* First 128 byte cacheline (assuming 64 bit words) */
115 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
116 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
118 NR_ZONE_INACTIVE_FILE,
121 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
122 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
124 NR_SLAB_UNRECLAIMABLE,
125 NR_PAGETABLE, /* used for pagetables */
126 NR_KERNEL_STACK_KB, /* measured in KiB */
127 /* Second 128 byte cacheline */
129 #if IS_ENABLED(CONFIG_ZSMALLOC)
130 NR_ZSPAGES, /* allocated in zsmalloc */
133 NUMA_HIT, /* allocated in intended node */
134 NUMA_MISS, /* allocated in non intended node */
135 NUMA_FOREIGN, /* was intended here, hit elsewhere */
136 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
137 NUMA_LOCAL, /* allocation from local node */
138 NUMA_OTHER, /* allocation from other node */
141 NR_VM_ZONE_STAT_ITEMS };
143 enum node_stat_item {
145 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
146 NR_ACTIVE_ANON, /* " " " " " */
147 NR_INACTIVE_FILE, /* " " " " " */
148 NR_ACTIVE_FILE, /* " " " " " */
149 NR_UNEVICTABLE, /* " " " " " */
150 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
151 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
152 NR_PAGES_SCANNED, /* pages scanned since last reclaim */
155 WORKINGSET_NODERECLAIM,
156 NR_ANON_MAPPED, /* Mapped anonymous pages */
157 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
158 only modified from process context */
162 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
163 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
167 NR_UNSTABLE_NFS, /* NFS unstable pages */
169 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
170 NR_DIRTIED, /* page dirtyings since bootup */
171 NR_WRITTEN, /* page writings since bootup */
172 NR_VM_NODE_STAT_ITEMS
176 * We do arithmetic on the LRU lists in various places in the code,
177 * so it is important to keep the active lists LRU_ACTIVE higher in
178 * the array than the corresponding inactive lists, and to keep
179 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
181 * This has to be kept in sync with the statistics in zone_stat_item
182 * above and the descriptions in vmstat_text in mm/vmstat.c
189 LRU_INACTIVE_ANON = LRU_BASE,
190 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
191 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
192 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
197 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
199 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
201 static inline int is_file_lru(enum lru_list lru)
203 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
206 static inline int is_active_lru(enum lru_list lru)
208 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
211 struct zone_reclaim_stat {
213 * The pageout code in vmscan.c keeps track of how many of the
214 * mem/swap backed and file backed pages are referenced.
215 * The higher the rotated/scanned ratio, the more valuable
218 * The anon LRU stats live in [0], file LRU stats in [1]
220 unsigned long recent_rotated[2];
221 unsigned long recent_scanned[2];
225 struct list_head lists[NR_LRU_LISTS];
226 struct zone_reclaim_stat reclaim_stat;
227 /* Evictions & activations on the inactive file list */
228 atomic_long_t inactive_age;
230 struct pglist_data *pgdat;
234 /* Mask used at gathering information at once (see memcontrol.c) */
235 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
236 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
237 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
239 /* Isolate unmapped file */
240 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
241 /* Isolate for asynchronous migration */
242 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
243 /* Isolate unevictable pages */
244 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
246 /* LRU Isolation modes. */
247 typedef unsigned __bitwise isolate_mode_t;
249 enum zone_watermarks {
256 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
257 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
258 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
260 struct per_cpu_pages {
261 int count; /* number of pages in the list */
262 int high; /* high watermark, emptying needed */
263 int batch; /* chunk size for buddy add/remove */
265 /* Lists of pages, one per migrate type stored on the pcp-lists */
266 struct list_head lists[MIGRATE_PCPTYPES];
269 struct per_cpu_pageset {
270 struct per_cpu_pages pcp;
276 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
280 struct per_cpu_nodestat {
282 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
285 #endif /* !__GENERATING_BOUNDS.H */
288 #ifdef CONFIG_ZONE_DMA
290 * ZONE_DMA is used when there are devices that are not able
291 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
292 * carve out the portion of memory that is needed for these devices.
293 * The range is arch specific.
298 * ---------------------------
299 * parisc, ia64, sparc <4G
302 * alpha Unlimited or 0-16MB.
304 * i386, x86_64 and multiple other arches
309 #ifdef CONFIG_ZONE_DMA32
311 * x86_64 needs two ZONE_DMAs because it supports devices that are
312 * only able to do DMA to the lower 16M but also 32 bit devices that
313 * can only do DMA areas below 4G.
318 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
319 * performed on pages in ZONE_NORMAL if the DMA devices support
320 * transfers to all addressable memory.
323 #ifdef CONFIG_HIGHMEM
325 * A memory area that is only addressable by the kernel through
326 * mapping portions into its own address space. This is for example
327 * used by i386 to allow the kernel to address the memory beyond
328 * 900MB. The kernel will set up special mappings (page
329 * table entries on i386) for each page that the kernel needs to
335 #ifdef CONFIG_ZONE_DEVICE
342 #ifndef __GENERATING_BOUNDS_H
345 /* Read-mostly fields */
347 /* zone watermarks, access with *_wmark_pages(zone) macros */
348 unsigned long watermark[NR_WMARK];
350 unsigned long nr_reserved_highatomic;
353 * We don't know if the memory that we're going to allocate will be
354 * freeable or/and it will be released eventually, so to avoid totally
355 * wasting several GB of ram we must reserve some of the lower zone
356 * memory (otherwise we risk to run OOM on the lower zones despite
357 * there being tons of freeable ram on the higher zones). This array is
358 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
361 long lowmem_reserve[MAX_NR_ZONES];
366 struct pglist_data *zone_pgdat;
367 struct per_cpu_pageset __percpu *pageset;
369 #ifndef CONFIG_SPARSEMEM
371 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
372 * In SPARSEMEM, this map is stored in struct mem_section
374 unsigned long *pageblock_flags;
375 #endif /* CONFIG_SPARSEMEM */
377 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
378 unsigned long zone_start_pfn;
381 * spanned_pages is the total pages spanned by the zone, including
382 * holes, which is calculated as:
383 * spanned_pages = zone_end_pfn - zone_start_pfn;
385 * present_pages is physical pages existing within the zone, which
387 * present_pages = spanned_pages - absent_pages(pages in holes);
389 * managed_pages is present pages managed by the buddy system, which
390 * is calculated as (reserved_pages includes pages allocated by the
391 * bootmem allocator):
392 * managed_pages = present_pages - reserved_pages;
394 * So present_pages may be used by memory hotplug or memory power
395 * management logic to figure out unmanaged pages by checking
396 * (present_pages - managed_pages). And managed_pages should be used
397 * by page allocator and vm scanner to calculate all kinds of watermarks
402 * zone_start_pfn and spanned_pages are protected by span_seqlock.
403 * It is a seqlock because it has to be read outside of zone->lock,
404 * and it is done in the main allocator path. But, it is written
405 * quite infrequently.
407 * The span_seq lock is declared along with zone->lock because it is
408 * frequently read in proximity to zone->lock. It's good to
409 * give them a chance of being in the same cacheline.
411 * Write access to present_pages at runtime should be protected by
412 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
413 * present_pages should get_online_mems() to get a stable value.
415 * Read access to managed_pages should be safe because it's unsigned
416 * long. Write access to zone->managed_pages and totalram_pages are
417 * protected by managed_page_count_lock at runtime. Idealy only
418 * adjust_managed_page_count() should be used instead of directly
419 * touching zone->managed_pages and totalram_pages.
421 unsigned long managed_pages;
422 unsigned long spanned_pages;
423 unsigned long present_pages;
427 #ifdef CONFIG_MEMORY_ISOLATION
429 * Number of isolated pageblock. It is used to solve incorrect
430 * freepage counting problem due to racy retrieving migratetype
431 * of pageblock. Protected by zone->lock.
433 unsigned long nr_isolate_pageblock;
436 #ifdef CONFIG_MEMORY_HOTPLUG
437 /* see spanned/present_pages for more description */
438 seqlock_t span_seqlock;
443 /* Write-intensive fields used from the page allocator */
446 /* free areas of different sizes */
447 struct free_area free_area[MAX_ORDER];
449 /* zone flags, see below */
452 /* Primarily protects free_area */
455 /* Write-intensive fields used by compaction and vmstats. */
459 * When free pages are below this point, additional steps are taken
460 * when reading the number of free pages to avoid per-cpu counter
461 * drift allowing watermarks to be breached
463 unsigned long percpu_drift_mark;
465 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
466 /* pfn where compaction free scanner should start */
467 unsigned long compact_cached_free_pfn;
468 /* pfn where async and sync compaction migration scanner should start */
469 unsigned long compact_cached_migrate_pfn[2];
472 #ifdef CONFIG_COMPACTION
474 * On compaction failure, 1<<compact_defer_shift compactions
475 * are skipped before trying again. The number attempted since
476 * last failure is tracked with compact_considered.
478 unsigned int compact_considered;
479 unsigned int compact_defer_shift;
480 int compact_order_failed;
483 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
484 /* Set to true when the PG_migrate_skip bits should be cleared */
485 bool compact_blockskip_flush;
491 /* Zone statistics */
492 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
493 } ____cacheline_internodealigned_in_smp;
496 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
499 PGDAT_DIRTY, /* reclaim scanning has recently found
500 * many dirty file pages at the tail
503 PGDAT_WRITEBACK, /* reclaim scanning has recently found
504 * many pages under writeback
506 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
509 static inline unsigned long zone_end_pfn(const struct zone *zone)
511 return zone->zone_start_pfn + zone->spanned_pages;
514 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
516 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
519 static inline bool zone_is_initialized(struct zone *zone)
521 return zone->initialized;
524 static inline bool zone_is_empty(struct zone *zone)
526 return zone->spanned_pages == 0;
530 * The "priority" of VM scanning is how much of the queues we will scan in one
531 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
532 * queues ("queue_length >> 12") during an aging round.
534 #define DEF_PRIORITY 12
536 /* Maximum number of zones on a zonelist */
537 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
540 ZONELIST_FALLBACK, /* zonelist with fallback */
543 * The NUMA zonelists are doubled because we need zonelists that
544 * restrict the allocations to a single node for __GFP_THISNODE.
546 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
552 * This struct contains information about a zone in a zonelist. It is stored
553 * here to avoid dereferences into large structures and lookups of tables
556 struct zone *zone; /* Pointer to actual zone */
557 int zone_idx; /* zone_idx(zoneref->zone) */
561 * One allocation request operates on a zonelist. A zonelist
562 * is a list of zones, the first one is the 'goal' of the
563 * allocation, the other zones are fallback zones, in decreasing
566 * To speed the reading of the zonelist, the zonerefs contain the zone index
567 * of the entry being read. Helper functions to access information given
568 * a struct zoneref are
570 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
571 * zonelist_zone_idx() - Return the index of the zone for an entry
572 * zonelist_node_idx() - Return the index of the node for an entry
575 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
578 #ifndef CONFIG_DISCONTIGMEM
579 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
580 extern struct page *mem_map;
584 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
585 * (mostly NUMA machines?) to denote a higher-level memory zone than the
588 * On NUMA machines, each NUMA node would have a pg_data_t to describe
589 * it's memory layout.
591 * Memory statistics and page replacement data structures are maintained on a
595 typedef struct pglist_data {
596 struct zone node_zones[MAX_NR_ZONES];
597 struct zonelist node_zonelists[MAX_ZONELISTS];
599 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
600 struct page *node_mem_map;
601 #ifdef CONFIG_PAGE_EXTENSION
602 struct page_ext *node_page_ext;
605 #ifndef CONFIG_NO_BOOTMEM
606 struct bootmem_data *bdata;
608 #ifdef CONFIG_MEMORY_HOTPLUG
610 * Must be held any time you expect node_start_pfn, node_present_pages
611 * or node_spanned_pages stay constant. Holding this will also
612 * guarantee that any pfn_valid() stays that way.
614 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
615 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
617 * Nests above zone->lock and zone->span_seqlock
619 spinlock_t node_size_lock;
621 unsigned long node_start_pfn;
622 unsigned long node_present_pages; /* total number of physical pages */
623 unsigned long node_spanned_pages; /* total size of physical page
624 range, including holes */
626 wait_queue_head_t kswapd_wait;
627 wait_queue_head_t pfmemalloc_wait;
628 struct task_struct *kswapd; /* Protected by
629 mem_hotplug_begin/end() */
631 enum zone_type kswapd_classzone_idx;
633 #ifdef CONFIG_COMPACTION
634 int kcompactd_max_order;
635 enum zone_type kcompactd_classzone_idx;
636 wait_queue_head_t kcompactd_wait;
637 struct task_struct *kcompactd;
639 #ifdef CONFIG_NUMA_BALANCING
640 /* Lock serializing the migrate rate limiting window */
641 spinlock_t numabalancing_migrate_lock;
643 /* Rate limiting time interval */
644 unsigned long numabalancing_migrate_next_window;
646 /* Number of pages migrated during the rate limiting time interval */
647 unsigned long numabalancing_migrate_nr_pages;
650 * This is a per-node reserve of pages that are not available
651 * to userspace allocations.
653 unsigned long totalreserve_pages;
657 * zone reclaim becomes active if more unmapped pages exist.
659 unsigned long min_unmapped_pages;
660 unsigned long min_slab_pages;
661 #endif /* CONFIG_NUMA */
663 /* Write-intensive fields used by page reclaim */
667 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
669 * If memory initialisation on large machines is deferred then this
670 * is the first PFN that needs to be initialised.
672 unsigned long first_deferred_pfn;
673 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
675 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
676 spinlock_t split_queue_lock;
677 struct list_head split_queue;
678 unsigned long split_queue_len;
681 /* Fields commonly accessed by the page reclaim scanner */
682 struct lruvec lruvec;
685 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
686 * this node's LRU. Maintained by the pageout code.
688 unsigned int inactive_ratio;
694 /* Per-node vmstats */
695 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
696 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
699 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
700 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
701 #ifdef CONFIG_FLAT_NODE_MEM_MAP
702 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
704 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
706 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
708 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
709 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
710 static inline spinlock_t *zone_lru_lock(struct zone *zone)
712 return &zone->zone_pgdat->lru_lock;
715 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
717 return &pgdat->lruvec;
720 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
722 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
725 static inline bool pgdat_is_empty(pg_data_t *pgdat)
727 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
730 static inline int zone_id(const struct zone *zone)
732 struct pglist_data *pgdat = zone->zone_pgdat;
734 return zone - pgdat->node_zones;
737 #ifdef CONFIG_ZONE_DEVICE
738 static inline bool is_dev_zone(const struct zone *zone)
740 return zone_id(zone) == ZONE_DEVICE;
743 static inline bool is_dev_zone(const struct zone *zone)
749 #include <linux/memory_hotplug.h>
751 extern struct mutex zonelists_mutex;
752 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
753 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
754 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
755 int classzone_idx, unsigned int alloc_flags,
757 bool zone_watermark_ok(struct zone *z, unsigned int order,
758 unsigned long mark, int classzone_idx,
759 unsigned int alloc_flags);
760 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
761 unsigned long mark, int classzone_idx);
762 enum memmap_context {
766 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
769 extern void lruvec_init(struct lruvec *lruvec);
771 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
774 return lruvec->pgdat;
776 return container_of(lruvec, struct pglist_data, lruvec);
780 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
782 #ifdef CONFIG_HAVE_MEMORY_PRESENT
783 void memory_present(int nid, unsigned long start, unsigned long end);
785 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
788 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
789 int local_memory_node(int node_id);
791 static inline int local_memory_node(int node_id) { return node_id; };
794 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
795 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
799 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
801 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
804 * Returns true if a zone has pages managed by the buddy allocator.
805 * All the reclaim decisions have to use this function rather than
806 * populated_zone(). If the whole zone is reserved then we can easily
807 * end up with populated_zone() && !managed_zone().
809 static inline bool managed_zone(struct zone *zone)
811 return zone->managed_pages;
814 /* Returns true if a zone has memory */
815 static inline bool populated_zone(struct zone *zone)
817 return zone->present_pages;
820 extern int movable_zone;
822 #ifdef CONFIG_HIGHMEM
823 static inline int zone_movable_is_highmem(void)
825 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
826 return movable_zone == ZONE_HIGHMEM;
828 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
833 static inline int is_highmem_idx(enum zone_type idx)
835 #ifdef CONFIG_HIGHMEM
836 return (idx == ZONE_HIGHMEM ||
837 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
844 * is_highmem - helper function to quickly check if a struct zone is a
845 * highmem zone or not. This is an attempt to keep references
846 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
847 * @zone - pointer to struct zone variable
849 static inline int is_highmem(struct zone *zone)
851 #ifdef CONFIG_HIGHMEM
852 return is_highmem_idx(zone_idx(zone));
858 /* These two functions are used to setup the per zone pages min values */
860 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
861 void __user *, size_t *, loff_t *);
862 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
863 void __user *, size_t *, loff_t *);
864 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
865 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
866 void __user *, size_t *, loff_t *);
867 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
868 void __user *, size_t *, loff_t *);
869 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
870 void __user *, size_t *, loff_t *);
871 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
872 void __user *, size_t *, loff_t *);
874 extern int numa_zonelist_order_handler(struct ctl_table *, int,
875 void __user *, size_t *, loff_t *);
876 extern char numa_zonelist_order[];
877 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
879 #ifndef CONFIG_NEED_MULTIPLE_NODES
881 extern struct pglist_data contig_page_data;
882 #define NODE_DATA(nid) (&contig_page_data)
883 #define NODE_MEM_MAP(nid) mem_map
885 #else /* CONFIG_NEED_MULTIPLE_NODES */
887 #include <asm/mmzone.h>
889 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
891 extern struct pglist_data *first_online_pgdat(void);
892 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
893 extern struct zone *next_zone(struct zone *zone);
896 * for_each_online_pgdat - helper macro to iterate over all online nodes
897 * @pgdat - pointer to a pg_data_t variable
899 #define for_each_online_pgdat(pgdat) \
900 for (pgdat = first_online_pgdat(); \
902 pgdat = next_online_pgdat(pgdat))
904 * for_each_zone - helper macro to iterate over all memory zones
905 * @zone - pointer to struct zone variable
907 * The user only needs to declare the zone variable, for_each_zone
910 #define for_each_zone(zone) \
911 for (zone = (first_online_pgdat())->node_zones; \
913 zone = next_zone(zone))
915 #define for_each_populated_zone(zone) \
916 for (zone = (first_online_pgdat())->node_zones; \
918 zone = next_zone(zone)) \
919 if (!populated_zone(zone)) \
923 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
925 return zoneref->zone;
928 static inline int zonelist_zone_idx(struct zoneref *zoneref)
930 return zoneref->zone_idx;
933 static inline int zonelist_node_idx(struct zoneref *zoneref)
936 /* zone_to_nid not available in this context */
937 return zoneref->zone->node;
940 #endif /* CONFIG_NUMA */
943 struct zoneref *__next_zones_zonelist(struct zoneref *z,
944 enum zone_type highest_zoneidx,
948 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
949 * @z - The cursor used as a starting point for the search
950 * @highest_zoneidx - The zone index of the highest zone to return
951 * @nodes - An optional nodemask to filter the zonelist with
953 * This function returns the next zone at or below a given zone index that is
954 * within the allowed nodemask using a cursor as the starting point for the
955 * search. The zoneref returned is a cursor that represents the current zone
956 * being examined. It should be advanced by one before calling
957 * next_zones_zonelist again.
959 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
960 enum zone_type highest_zoneidx,
963 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
965 return __next_zones_zonelist(z, highest_zoneidx, nodes);
969 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
970 * @zonelist - The zonelist to search for a suitable zone
971 * @highest_zoneidx - The zone index of the highest zone to return
972 * @nodes - An optional nodemask to filter the zonelist with
973 * @return - Zoneref pointer for the first suitable zone found (see below)
975 * This function returns the first zone at or below a given zone index that is
976 * within the allowed nodemask. The zoneref returned is a cursor that can be
977 * used to iterate the zonelist with next_zones_zonelist by advancing it by
978 * one before calling.
980 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
981 * never NULL). This may happen either genuinely, or due to concurrent nodemask
982 * update due to cpuset modification.
984 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
985 enum zone_type highest_zoneidx,
988 return next_zones_zonelist(zonelist->_zonerefs,
989 highest_zoneidx, nodes);
993 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
994 * @zone - The current zone in the iterator
995 * @z - The current pointer within zonelist->zones being iterated
996 * @zlist - The zonelist being iterated
997 * @highidx - The zone index of the highest zone to return
998 * @nodemask - Nodemask allowed by the allocator
1000 * This iterator iterates though all zones at or below a given zone index and
1001 * within a given nodemask
1003 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1004 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1006 z = next_zones_zonelist(++z, highidx, nodemask), \
1007 zone = zonelist_zone(z))
1009 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1010 for (zone = z->zone; \
1012 z = next_zones_zonelist(++z, highidx, nodemask), \
1013 zone = zonelist_zone(z))
1017 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1018 * @zone - The current zone in the iterator
1019 * @z - The current pointer within zonelist->zones being iterated
1020 * @zlist - The zonelist being iterated
1021 * @highidx - The zone index of the highest zone to return
1023 * This iterator iterates though all zones at or below a given zone index.
1025 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1026 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1028 #ifdef CONFIG_SPARSEMEM
1029 #include <asm/sparsemem.h>
1032 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1033 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1034 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1040 #ifdef CONFIG_FLATMEM
1041 #define pfn_to_nid(pfn) (0)
1044 #ifdef CONFIG_SPARSEMEM
1047 * SECTION_SHIFT #bits space required to store a section #
1049 * PA_SECTION_SHIFT physical address to/from section number
1050 * PFN_SECTION_SHIFT pfn to/from section number
1052 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1053 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1055 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1057 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1058 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1060 #define SECTION_BLOCKFLAGS_BITS \
1061 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1063 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1064 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1067 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1068 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1070 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1071 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1075 struct mem_section {
1077 * This is, logically, a pointer to an array of struct
1078 * pages. However, it is stored with some other magic.
1079 * (see sparse.c::sparse_init_one_section())
1081 * Additionally during early boot we encode node id of
1082 * the location of the section here to guide allocation.
1083 * (see sparse.c::memory_present())
1085 * Making it a UL at least makes someone do a cast
1086 * before using it wrong.
1088 unsigned long section_mem_map;
1090 /* See declaration of similar field in struct zone */
1091 unsigned long *pageblock_flags;
1092 #ifdef CONFIG_PAGE_EXTENSION
1094 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1095 * section. (see page_ext.h about this.)
1097 struct page_ext *page_ext;
1101 * WARNING: mem_section must be a power-of-2 in size for the
1102 * calculation and use of SECTION_ROOT_MASK to make sense.
1106 #ifdef CONFIG_SPARSEMEM_EXTREME
1107 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1109 #define SECTIONS_PER_ROOT 1
1112 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1113 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1114 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1116 #ifdef CONFIG_SPARSEMEM_EXTREME
1117 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1119 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1122 static inline struct mem_section *__nr_to_section(unsigned long nr)
1124 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1126 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1128 extern int __section_nr(struct mem_section* ms);
1129 extern unsigned long usemap_size(void);
1132 * We use the lower bits of the mem_map pointer to store
1133 * a little bit of information. There should be at least
1134 * 3 bits here due to 32-bit alignment.
1136 #define SECTION_MARKED_PRESENT (1UL<<0)
1137 #define SECTION_HAS_MEM_MAP (1UL<<1)
1138 #define SECTION_MAP_LAST_BIT (1UL<<2)
1139 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1140 #define SECTION_NID_SHIFT 2
1142 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1144 unsigned long map = section->section_mem_map;
1145 map &= SECTION_MAP_MASK;
1146 return (struct page *)map;
1149 static inline int present_section(struct mem_section *section)
1151 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1154 static inline int present_section_nr(unsigned long nr)
1156 return present_section(__nr_to_section(nr));
1159 static inline int valid_section(struct mem_section *section)
1161 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1164 static inline int valid_section_nr(unsigned long nr)
1166 return valid_section(__nr_to_section(nr));
1169 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1171 return __nr_to_section(pfn_to_section_nr(pfn));
1174 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1175 static inline int pfn_valid(unsigned long pfn)
1177 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1179 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1183 static inline int pfn_present(unsigned long pfn)
1185 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1187 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1191 * These are _only_ used during initialisation, therefore they
1192 * can use __initdata ... They could have names to indicate
1196 #define pfn_to_nid(pfn) \
1198 unsigned long __pfn_to_nid_pfn = (pfn); \
1199 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1202 #define pfn_to_nid(pfn) (0)
1205 #define early_pfn_valid(pfn) pfn_valid(pfn)
1206 void sparse_init(void);
1208 #define sparse_init() do {} while (0)
1209 #define sparse_index_init(_sec, _nid) do {} while (0)
1210 #endif /* CONFIG_SPARSEMEM */
1213 * During memory init memblocks map pfns to nids. The search is expensive and
1214 * this caches recent lookups. The implementation of __early_pfn_to_nid
1215 * may treat start/end as pfns or sections.
1217 struct mminit_pfnnid_cache {
1218 unsigned long last_start;
1219 unsigned long last_end;
1223 #ifndef early_pfn_valid
1224 #define early_pfn_valid(pfn) (1)
1227 void memory_present(int nid, unsigned long start, unsigned long end);
1228 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1231 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1232 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1233 * pfn_valid_within() should be used in this case; we optimise this away
1234 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1236 #ifdef CONFIG_HOLES_IN_ZONE
1237 #define pfn_valid_within(pfn) pfn_valid(pfn)
1239 #define pfn_valid_within(pfn) (1)
1242 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1244 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1245 * associated with it or not. In FLATMEM, it is expected that holes always
1246 * have valid memmap as long as there is valid PFNs either side of the hole.
1247 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1250 * However, an ARM, and maybe other embedded architectures in the future
1251 * free memmap backing holes to save memory on the assumption the memmap is
1252 * never used. The page_zone linkages are then broken even though pfn_valid()
1253 * returns true. A walker of the full memmap must then do this additional
1254 * check to ensure the memmap they are looking at is sane by making sure
1255 * the zone and PFN linkages are still valid. This is expensive, but walkers
1256 * of the full memmap are extremely rare.
1258 bool memmap_valid_within(unsigned long pfn,
1259 struct page *page, struct zone *zone);
1261 static inline bool memmap_valid_within(unsigned long pfn,
1262 struct page *page, struct zone *zone)
1266 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1268 #endif /* !__GENERATING_BOUNDS.H */
1269 #endif /* !__ASSEMBLY__ */
1270 #endif /* _LINUX_MMZONE_H */