]> git.karo-electronics.de Git - karo-tx-linux.git/blob - include/linux/perf_event.h
Merge remote-tracking branch 'arm-current/fixes'
[karo-tx-linux.git] / include / linux / perf_event.h
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20  * Kernel-internal data types and definitions:
21  */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29         int                             (*is_in_guest)(void);
30         int                             (*is_user_mode)(void);
31         unsigned long                   (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <asm/local.h>
56
57 struct perf_callchain_entry {
58         __u64                           nr;
59         __u64                           ip[PERF_MAX_STACK_DEPTH];
60 };
61
62 struct perf_raw_record {
63         u32                             size;
64         void                            *data;
65 };
66
67 /*
68  * branch stack layout:
69  *  nr: number of taken branches stored in entries[]
70  *
71  * Note that nr can vary from sample to sample
72  * branches (to, from) are stored from most recent
73  * to least recent, i.e., entries[0] contains the most
74  * recent branch.
75  */
76 struct perf_branch_stack {
77         __u64                           nr;
78         struct perf_branch_entry        entries[0];
79 };
80
81 struct perf_regs_user {
82         __u64           abi;
83         struct pt_regs  *regs;
84 };
85
86 struct task_struct;
87
88 /*
89  * extra PMU register associated with an event
90  */
91 struct hw_perf_event_extra {
92         u64             config; /* register value */
93         unsigned int    reg;    /* register address or index */
94         int             alloc;  /* extra register already allocated */
95         int             idx;    /* index in shared_regs->regs[] */
96 };
97
98 struct event_constraint;
99
100 /**
101  * struct hw_perf_event - performance event hardware details:
102  */
103 struct hw_perf_event {
104 #ifdef CONFIG_PERF_EVENTS
105         union {
106                 struct { /* hardware */
107                         u64             config;
108                         u64             last_tag;
109                         unsigned long   config_base;
110                         unsigned long   event_base;
111                         int             event_base_rdpmc;
112                         int             idx;
113                         int             last_cpu;
114                         int             flags;
115
116                         struct hw_perf_event_extra extra_reg;
117                         struct hw_perf_event_extra branch_reg;
118
119                         struct event_constraint *constraint;
120                 };
121                 struct { /* software */
122                         struct hrtimer  hrtimer;
123                 };
124                 struct { /* tracepoint */
125                         struct task_struct      *tp_target;
126                         /* for tp_event->class */
127                         struct list_head        tp_list;
128                 };
129 #ifdef CONFIG_HAVE_HW_BREAKPOINT
130                 struct { /* breakpoint */
131                         /*
132                          * Crufty hack to avoid the chicken and egg
133                          * problem hw_breakpoint has with context
134                          * creation and event initalization.
135                          */
136                         struct task_struct              *bp_target;
137                         struct arch_hw_breakpoint       info;
138                         struct list_head                bp_list;
139                 };
140 #endif
141         };
142         int                             state;
143         local64_t                       prev_count;
144         u64                             sample_period;
145         u64                             last_period;
146         local64_t                       period_left;
147         u64                             interrupts_seq;
148         u64                             interrupts;
149
150         u64                             freq_time_stamp;
151         u64                             freq_count_stamp;
152 #endif
153 };
154
155 /*
156  * hw_perf_event::state flags
157  */
158 #define PERF_HES_STOPPED        0x01 /* the counter is stopped */
159 #define PERF_HES_UPTODATE       0x02 /* event->count up-to-date */
160 #define PERF_HES_ARCH           0x04
161
162 struct perf_event;
163
164 /*
165  * Common implementation detail of pmu::{start,commit,cancel}_txn
166  */
167 #define PERF_EVENT_TXN 0x1
168
169 /**
170  * struct pmu - generic performance monitoring unit
171  */
172 struct pmu {
173         struct list_head                entry;
174
175         struct device                   *dev;
176         const struct attribute_group    **attr_groups;
177         const char                      *name;
178         int                             type;
179
180         int * __percpu                  pmu_disable_count;
181         struct perf_cpu_context * __percpu pmu_cpu_context;
182         int                             task_ctx_nr;
183         int                             hrtimer_interval_ms;
184
185         /*
186          * Fully disable/enable this PMU, can be used to protect from the PMI
187          * as well as for lazy/batch writing of the MSRs.
188          */
189         void (*pmu_enable)              (struct pmu *pmu); /* optional */
190         void (*pmu_disable)             (struct pmu *pmu); /* optional */
191
192         /*
193          * Try and initialize the event for this PMU.
194          * Should return -ENOENT when the @event doesn't match this PMU.
195          */
196         int (*event_init)               (struct perf_event *event);
197
198 #define PERF_EF_START   0x01            /* start the counter when adding    */
199 #define PERF_EF_RELOAD  0x02            /* reload the counter when starting */
200 #define PERF_EF_UPDATE  0x04            /* update the counter when stopping */
201
202         /*
203          * Adds/Removes a counter to/from the PMU, can be done inside
204          * a transaction, see the ->*_txn() methods.
205          */
206         int  (*add)                     (struct perf_event *event, int flags);
207         void (*del)                     (struct perf_event *event, int flags);
208
209         /*
210          * Starts/Stops a counter present on the PMU. The PMI handler
211          * should stop the counter when perf_event_overflow() returns
212          * !0. ->start() will be used to continue.
213          */
214         void (*start)                   (struct perf_event *event, int flags);
215         void (*stop)                    (struct perf_event *event, int flags);
216
217         /*
218          * Updates the counter value of the event.
219          */
220         void (*read)                    (struct perf_event *event);
221
222         /*
223          * Group events scheduling is treated as a transaction, add
224          * group events as a whole and perform one schedulability test.
225          * If the test fails, roll back the whole group
226          *
227          * Start the transaction, after this ->add() doesn't need to
228          * do schedulability tests.
229          */
230         void (*start_txn)               (struct pmu *pmu); /* optional */
231         /*
232          * If ->start_txn() disabled the ->add() schedulability test
233          * then ->commit_txn() is required to perform one. On success
234          * the transaction is closed. On error the transaction is kept
235          * open until ->cancel_txn() is called.
236          */
237         int  (*commit_txn)              (struct pmu *pmu); /* optional */
238         /*
239          * Will cancel the transaction, assumes ->del() is called
240          * for each successful ->add() during the transaction.
241          */
242         void (*cancel_txn)              (struct pmu *pmu); /* optional */
243
244         /*
245          * Will return the value for perf_event_mmap_page::index for this event,
246          * if no implementation is provided it will default to: event->hw.idx + 1.
247          */
248         int (*event_idx)                (struct perf_event *event); /*optional */
249
250         /*
251          * flush branch stack on context-switches (needed in cpu-wide mode)
252          */
253         void (*flush_branch_stack)      (void);
254 };
255
256 /**
257  * enum perf_event_active_state - the states of a event
258  */
259 enum perf_event_active_state {
260         PERF_EVENT_STATE_ERROR          = -2,
261         PERF_EVENT_STATE_OFF            = -1,
262         PERF_EVENT_STATE_INACTIVE       =  0,
263         PERF_EVENT_STATE_ACTIVE         =  1,
264 };
265
266 struct file;
267 struct perf_sample_data;
268
269 typedef void (*perf_overflow_handler_t)(struct perf_event *,
270                                         struct perf_sample_data *,
271                                         struct pt_regs *regs);
272
273 enum perf_group_flag {
274         PERF_GROUP_SOFTWARE             = 0x1,
275 };
276
277 #define SWEVENT_HLIST_BITS              8
278 #define SWEVENT_HLIST_SIZE              (1 << SWEVENT_HLIST_BITS)
279
280 struct swevent_hlist {
281         struct hlist_head               heads[SWEVENT_HLIST_SIZE];
282         struct rcu_head                 rcu_head;
283 };
284
285 #define PERF_ATTACH_CONTEXT     0x01
286 #define PERF_ATTACH_GROUP       0x02
287 #define PERF_ATTACH_TASK        0x04
288
289 struct perf_cgroup;
290 struct ring_buffer;
291
292 /**
293  * struct perf_event - performance event kernel representation:
294  */
295 struct perf_event {
296 #ifdef CONFIG_PERF_EVENTS
297         /*
298          * entry onto perf_event_context::event_list;
299          *   modifications require ctx->lock
300          *   RCU safe iterations.
301          */
302         struct list_head                event_entry;
303
304         /*
305          * XXX: group_entry and sibling_list should be mutually exclusive;
306          * either you're a sibling on a group, or you're the group leader.
307          * Rework the code to always use the same list element.
308          *
309          * Locked for modification by both ctx->mutex and ctx->lock; holding
310          * either sufficies for read.
311          */
312         struct list_head                group_entry;
313         struct list_head                sibling_list;
314
315         /*
316          * We need storage to track the entries in perf_pmu_migrate_context; we
317          * cannot use the event_entry because of RCU and we want to keep the
318          * group in tact which avoids us using the other two entries.
319          */
320         struct list_head                migrate_entry;
321
322         struct hlist_node               hlist_entry;
323         int                             nr_siblings;
324         int                             group_flags;
325         struct perf_event               *group_leader;
326         struct pmu                      *pmu;
327
328         enum perf_event_active_state    state;
329         unsigned int                    attach_state;
330         local64_t                       count;
331         atomic64_t                      child_count;
332
333         /*
334          * These are the total time in nanoseconds that the event
335          * has been enabled (i.e. eligible to run, and the task has
336          * been scheduled in, if this is a per-task event)
337          * and running (scheduled onto the CPU), respectively.
338          *
339          * They are computed from tstamp_enabled, tstamp_running and
340          * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
341          */
342         u64                             total_time_enabled;
343         u64                             total_time_running;
344
345         /*
346          * These are timestamps used for computing total_time_enabled
347          * and total_time_running when the event is in INACTIVE or
348          * ACTIVE state, measured in nanoseconds from an arbitrary point
349          * in time.
350          * tstamp_enabled: the notional time when the event was enabled
351          * tstamp_running: the notional time when the event was scheduled on
352          * tstamp_stopped: in INACTIVE state, the notional time when the
353          *      event was scheduled off.
354          */
355         u64                             tstamp_enabled;
356         u64                             tstamp_running;
357         u64                             tstamp_stopped;
358
359         /*
360          * timestamp shadows the actual context timing but it can
361          * be safely used in NMI interrupt context. It reflects the
362          * context time as it was when the event was last scheduled in.
363          *
364          * ctx_time already accounts for ctx->timestamp. Therefore to
365          * compute ctx_time for a sample, simply add perf_clock().
366          */
367         u64                             shadow_ctx_time;
368
369         struct perf_event_attr          attr;
370         u16                             header_size;
371         u16                             id_header_size;
372         u16                             read_size;
373         struct hw_perf_event            hw;
374
375         struct perf_event_context       *ctx;
376         atomic_long_t                   refcount;
377
378         /*
379          * These accumulate total time (in nanoseconds) that children
380          * events have been enabled and running, respectively.
381          */
382         atomic64_t                      child_total_time_enabled;
383         atomic64_t                      child_total_time_running;
384
385         /*
386          * Protect attach/detach and child_list:
387          */
388         struct mutex                    child_mutex;
389         struct list_head                child_list;
390         struct perf_event               *parent;
391
392         int                             oncpu;
393         int                             cpu;
394
395         struct list_head                owner_entry;
396         struct task_struct              *owner;
397
398         /* mmap bits */
399         struct mutex                    mmap_mutex;
400         atomic_t                        mmap_count;
401
402         struct ring_buffer              *rb;
403         struct list_head                rb_entry;
404
405         /* poll related */
406         wait_queue_head_t               waitq;
407         struct fasync_struct            *fasync;
408
409         /* delayed work for NMIs and such */
410         int                             pending_wakeup;
411         int                             pending_kill;
412         int                             pending_disable;
413         struct irq_work                 pending;
414
415         atomic_t                        event_limit;
416
417         void (*destroy)(struct perf_event *);
418         struct rcu_head                 rcu_head;
419
420         struct pid_namespace            *ns;
421         u64                             id;
422
423         perf_overflow_handler_t         overflow_handler;
424         void                            *overflow_handler_context;
425
426 #ifdef CONFIG_EVENT_TRACING
427         struct ftrace_event_call        *tp_event;
428         struct event_filter             *filter;
429 #ifdef CONFIG_FUNCTION_TRACER
430         struct ftrace_ops               ftrace_ops;
431 #endif
432 #endif
433
434 #ifdef CONFIG_CGROUP_PERF
435         struct perf_cgroup              *cgrp; /* cgroup event is attach to */
436         int                             cgrp_defer_enabled;
437 #endif
438
439 #endif /* CONFIG_PERF_EVENTS */
440 };
441
442 enum perf_event_context_type {
443         task_context,
444         cpu_context,
445 };
446
447 /**
448  * struct perf_event_context - event context structure
449  *
450  * Used as a container for task events and CPU events as well:
451  */
452 struct perf_event_context {
453         struct pmu                      *pmu;
454         enum perf_event_context_type    type;
455         /*
456          * Protect the states of the events in the list,
457          * nr_active, and the list:
458          */
459         raw_spinlock_t                  lock;
460         /*
461          * Protect the list of events.  Locking either mutex or lock
462          * is sufficient to ensure the list doesn't change; to change
463          * the list you need to lock both the mutex and the spinlock.
464          */
465         struct mutex                    mutex;
466
467         struct list_head                pinned_groups;
468         struct list_head                flexible_groups;
469         struct list_head                event_list;
470         int                             nr_events;
471         int                             nr_active;
472         int                             is_active;
473         int                             nr_stat;
474         int                             nr_freq;
475         int                             rotate_disable;
476         atomic_t                        refcount;
477         struct task_struct              *task;
478
479         /*
480          * Context clock, runs when context enabled.
481          */
482         u64                             time;
483         u64                             timestamp;
484
485         /*
486          * These fields let us detect when two contexts have both
487          * been cloned (inherited) from a common ancestor.
488          */
489         struct perf_event_context       *parent_ctx;
490         u64                             parent_gen;
491         u64                             generation;
492         int                             pin_count;
493         int                             nr_cgroups;      /* cgroup evts */
494         int                             nr_branch_stack; /* branch_stack evt */
495         struct rcu_head                 rcu_head;
496 };
497
498 /*
499  * Number of contexts where an event can trigger:
500  *      task, softirq, hardirq, nmi.
501  */
502 #define PERF_NR_CONTEXTS        4
503
504 /**
505  * struct perf_event_cpu_context - per cpu event context structure
506  */
507 struct perf_cpu_context {
508         struct perf_event_context       ctx;
509         struct perf_event_context       *task_ctx;
510         int                             active_oncpu;
511         int                             exclusive;
512         struct hrtimer                  hrtimer;
513         ktime_t                         hrtimer_interval;
514         struct list_head                rotation_list;
515         struct pmu                      *unique_pmu;
516         struct perf_cgroup              *cgrp;
517 };
518
519 struct perf_output_handle {
520         struct perf_event               *event;
521         struct ring_buffer              *rb;
522         unsigned long                   wakeup;
523         unsigned long                   size;
524         void                            *addr;
525         int                             page;
526 };
527
528 #ifdef CONFIG_PERF_EVENTS
529
530 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
531 extern void perf_pmu_unregister(struct pmu *pmu);
532
533 extern int perf_num_counters(void);
534 extern const char *perf_pmu_name(void);
535 extern void __perf_event_task_sched_in(struct task_struct *prev,
536                                        struct task_struct *task);
537 extern void __perf_event_task_sched_out(struct task_struct *prev,
538                                         struct task_struct *next);
539 extern int perf_event_init_task(struct task_struct *child);
540 extern void perf_event_exit_task(struct task_struct *child);
541 extern void perf_event_free_task(struct task_struct *task);
542 extern void perf_event_delayed_put(struct task_struct *task);
543 extern void perf_event_print_debug(void);
544 extern void perf_pmu_disable(struct pmu *pmu);
545 extern void perf_pmu_enable(struct pmu *pmu);
546 extern int perf_event_task_disable(void);
547 extern int perf_event_task_enable(void);
548 extern int perf_event_refresh(struct perf_event *event, int refresh);
549 extern void perf_event_update_userpage(struct perf_event *event);
550 extern int perf_event_release_kernel(struct perf_event *event);
551 extern struct perf_event *
552 perf_event_create_kernel_counter(struct perf_event_attr *attr,
553                                 int cpu,
554                                 struct task_struct *task,
555                                 perf_overflow_handler_t callback,
556                                 void *context);
557 extern void perf_pmu_migrate_context(struct pmu *pmu,
558                                 int src_cpu, int dst_cpu);
559 extern u64 perf_event_read_value(struct perf_event *event,
560                                  u64 *enabled, u64 *running);
561
562
563 struct perf_sample_data {
564         u64                             type;
565
566         u64                             ip;
567         struct {
568                 u32     pid;
569                 u32     tid;
570         }                               tid_entry;
571         u64                             time;
572         u64                             addr;
573         u64                             id;
574         u64                             stream_id;
575         struct {
576                 u32     cpu;
577                 u32     reserved;
578         }                               cpu_entry;
579         u64                             period;
580         union  perf_mem_data_src        data_src;
581         struct perf_callchain_entry     *callchain;
582         struct perf_raw_record          *raw;
583         struct perf_branch_stack        *br_stack;
584         struct perf_regs_user           regs_user;
585         u64                             stack_user_size;
586         u64                             weight;
587 };
588
589 static inline void perf_sample_data_init(struct perf_sample_data *data,
590                                          u64 addr, u64 period)
591 {
592         /* remaining struct members initialized in perf_prepare_sample() */
593         data->addr = addr;
594         data->raw  = NULL;
595         data->br_stack = NULL;
596         data->period = period;
597         data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE;
598         data->regs_user.regs = NULL;
599         data->stack_user_size = 0;
600         data->weight = 0;
601         data->data_src.val = 0;
602 }
603
604 extern void perf_output_sample(struct perf_output_handle *handle,
605                                struct perf_event_header *header,
606                                struct perf_sample_data *data,
607                                struct perf_event *event);
608 extern void perf_prepare_sample(struct perf_event_header *header,
609                                 struct perf_sample_data *data,
610                                 struct perf_event *event,
611                                 struct pt_regs *regs);
612
613 extern int perf_event_overflow(struct perf_event *event,
614                                  struct perf_sample_data *data,
615                                  struct pt_regs *regs);
616
617 static inline bool is_sampling_event(struct perf_event *event)
618 {
619         return event->attr.sample_period != 0;
620 }
621
622 /*
623  * Return 1 for a software event, 0 for a hardware event
624  */
625 static inline int is_software_event(struct perf_event *event)
626 {
627         return event->pmu->task_ctx_nr == perf_sw_context;
628 }
629
630 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
631
632 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
633
634 #ifndef perf_arch_fetch_caller_regs
635 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
636 #endif
637
638 /*
639  * Take a snapshot of the regs. Skip ip and frame pointer to
640  * the nth caller. We only need a few of the regs:
641  * - ip for PERF_SAMPLE_IP
642  * - cs for user_mode() tests
643  * - bp for callchains
644  * - eflags, for future purposes, just in case
645  */
646 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
647 {
648         memset(regs, 0, sizeof(*regs));
649
650         perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
651 }
652
653 static __always_inline void
654 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
655 {
656         struct pt_regs hot_regs;
657
658         if (static_key_false(&perf_swevent_enabled[event_id])) {
659                 if (!regs) {
660                         perf_fetch_caller_regs(&hot_regs);
661                         regs = &hot_regs;
662                 }
663                 __perf_sw_event(event_id, nr, regs, addr);
664         }
665 }
666
667 extern struct static_key_deferred perf_sched_events;
668
669 static inline void perf_event_task_sched_in(struct task_struct *prev,
670                                             struct task_struct *task)
671 {
672         if (static_key_false(&perf_sched_events.key))
673                 __perf_event_task_sched_in(prev, task);
674 }
675
676 static inline void perf_event_task_sched_out(struct task_struct *prev,
677                                              struct task_struct *next)
678 {
679         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
680
681         if (static_key_false(&perf_sched_events.key))
682                 __perf_event_task_sched_out(prev, next);
683 }
684
685 extern void perf_event_mmap(struct vm_area_struct *vma);
686 extern struct perf_guest_info_callbacks *perf_guest_cbs;
687 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
688 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
689
690 extern void perf_event_comm(struct task_struct *tsk);
691 extern void perf_event_fork(struct task_struct *tsk);
692
693 /* Callchains */
694 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
695
696 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
697 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
698
699 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
700 {
701         if (entry->nr < PERF_MAX_STACK_DEPTH)
702                 entry->ip[entry->nr++] = ip;
703 }
704
705 extern int sysctl_perf_event_paranoid;
706 extern int sysctl_perf_event_mlock;
707 extern int sysctl_perf_event_sample_rate;
708 extern int sysctl_perf_cpu_time_max_percent;
709
710 extern void perf_sample_event_took(u64 sample_len_ns);
711
712 extern int perf_proc_update_handler(struct ctl_table *table, int write,
713                 void __user *buffer, size_t *lenp,
714                 loff_t *ppos);
715 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
716                 void __user *buffer, size_t *lenp,
717                 loff_t *ppos);
718
719
720 static inline bool perf_paranoid_tracepoint_raw(void)
721 {
722         return sysctl_perf_event_paranoid > -1;
723 }
724
725 static inline bool perf_paranoid_cpu(void)
726 {
727         return sysctl_perf_event_paranoid > 0;
728 }
729
730 static inline bool perf_paranoid_kernel(void)
731 {
732         return sysctl_perf_event_paranoid > 1;
733 }
734
735 extern void perf_event_init(void);
736 extern void perf_tp_event(u64 addr, u64 count, void *record,
737                           int entry_size, struct pt_regs *regs,
738                           struct hlist_head *head, int rctx,
739                           struct task_struct *task);
740 extern void perf_bp_event(struct perf_event *event, void *data);
741
742 #ifndef perf_misc_flags
743 # define perf_misc_flags(regs) \
744                 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
745 # define perf_instruction_pointer(regs) instruction_pointer(regs)
746 #endif
747
748 static inline bool has_branch_stack(struct perf_event *event)
749 {
750         return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
751 }
752
753 extern int perf_output_begin(struct perf_output_handle *handle,
754                              struct perf_event *event, unsigned int size);
755 extern void perf_output_end(struct perf_output_handle *handle);
756 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
757                              const void *buf, unsigned int len);
758 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
759                                      unsigned int len);
760 extern int perf_swevent_get_recursion_context(void);
761 extern void perf_swevent_put_recursion_context(int rctx);
762 extern u64 perf_swevent_set_period(struct perf_event *event);
763 extern void perf_event_enable(struct perf_event *event);
764 extern void perf_event_disable(struct perf_event *event);
765 extern int __perf_event_disable(void *info);
766 extern void perf_event_task_tick(void);
767 #else
768 static inline void
769 perf_event_task_sched_in(struct task_struct *prev,
770                          struct task_struct *task)                      { }
771 static inline void
772 perf_event_task_sched_out(struct task_struct *prev,
773                           struct task_struct *next)                     { }
774 static inline int perf_event_init_task(struct task_struct *child)       { return 0; }
775 static inline void perf_event_exit_task(struct task_struct *child)      { }
776 static inline void perf_event_free_task(struct task_struct *task)       { }
777 static inline void perf_event_delayed_put(struct task_struct *task)     { }
778 static inline void perf_event_print_debug(void)                         { }
779 static inline int perf_event_task_disable(void)                         { return -EINVAL; }
780 static inline int perf_event_task_enable(void)                          { return -EINVAL; }
781 static inline int perf_event_refresh(struct perf_event *event, int refresh)
782 {
783         return -EINVAL;
784 }
785
786 static inline void
787 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)     { }
788 static inline void
789 perf_bp_event(struct perf_event *event, void *data)                     { }
790
791 static inline int perf_register_guest_info_callbacks
792 (struct perf_guest_info_callbacks *callbacks)                           { return 0; }
793 static inline int perf_unregister_guest_info_callbacks
794 (struct perf_guest_info_callbacks *callbacks)                           { return 0; }
795
796 static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
797 static inline void perf_event_comm(struct task_struct *tsk)             { }
798 static inline void perf_event_fork(struct task_struct *tsk)             { }
799 static inline void perf_event_init(void)                                { }
800 static inline int  perf_swevent_get_recursion_context(void)             { return -1; }
801 static inline void perf_swevent_put_recursion_context(int rctx)         { }
802 static inline u64 perf_swevent_set_period(struct perf_event *event)     { return 0; }
803 static inline void perf_event_enable(struct perf_event *event)          { }
804 static inline void perf_event_disable(struct perf_event *event)         { }
805 static inline int __perf_event_disable(void *info)                      { return -1; }
806 static inline void perf_event_task_tick(void)                           { }
807 #endif
808
809 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
810 extern bool perf_event_can_stop_tick(void);
811 #else
812 static inline bool perf_event_can_stop_tick(void)                       { return true; }
813 #endif
814
815 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
816 extern void perf_restore_debug_store(void);
817 #else
818 static inline void perf_restore_debug_store(void)                       { }
819 #endif
820
821 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
822
823 /*
824  * This has to have a higher priority than migration_notifier in sched/core.c.
825  */
826 #define perf_cpu_notifier(fn)                                           \
827 do {                                                                    \
828         static struct notifier_block fn##_nb =                          \
829                 { .notifier_call = fn, .priority = CPU_PRI_PERF };      \
830         unsigned long cpu = smp_processor_id();                         \
831         unsigned long flags;                                            \
832         fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,                     \
833                 (void *)(unsigned long)cpu);                            \
834         local_irq_save(flags);                                          \
835         fn(&fn##_nb, (unsigned long)CPU_STARTING,                       \
836                 (void *)(unsigned long)cpu);                            \
837         local_irq_restore(flags);                                       \
838         fn(&fn##_nb, (unsigned long)CPU_ONLINE,                         \
839                 (void *)(unsigned long)cpu);                            \
840         register_cpu_notifier(&fn##_nb);                                \
841 } while (0)
842
843
844 struct perf_pmu_events_attr {
845         struct device_attribute attr;
846         u64 id;
847         const char *event_str;
848 };
849
850 #define PMU_EVENT_ATTR(_name, _var, _id, _show)                         \
851 static struct perf_pmu_events_attr _var = {                             \
852         .attr = __ATTR(_name, 0444, _show, NULL),                       \
853         .id   =  _id,                                                   \
854 };
855
856 #define PMU_FORMAT_ATTR(_name, _format)                                 \
857 static ssize_t                                                          \
858 _name##_show(struct device *dev,                                        \
859                                struct device_attribute *attr,           \
860                                char *page)                              \
861 {                                                                       \
862         BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);                     \
863         return sprintf(page, _format "\n");                             \
864 }                                                                       \
865                                                                         \
866 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
867
868 #endif /* _LINUX_PERF_EVENT_H */