]> git.karo-electronics.de Git - karo-tx-linux.git/blob - include/linux/perf_event.h
perf/x86/cqm: Fix CQM handling of grouping events into a cache_group
[karo-tx-linux.git] / include / linux / perf_event.h
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20  * Kernel-internal data types and definitions:
21  */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29         int                             (*is_in_guest)(void);
30         int                             (*is_user_mode)(void);
31         unsigned long                   (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58
59 struct perf_callchain_entry {
60         __u64                           nr;
61         __u64                           ip[PERF_MAX_STACK_DEPTH];
62 };
63
64 struct perf_raw_record {
65         u32                             size;
66         void                            *data;
67 };
68
69 /*
70  * branch stack layout:
71  *  nr: number of taken branches stored in entries[]
72  *
73  * Note that nr can vary from sample to sample
74  * branches (to, from) are stored from most recent
75  * to least recent, i.e., entries[0] contains the most
76  * recent branch.
77  */
78 struct perf_branch_stack {
79         __u64                           nr;
80         struct perf_branch_entry        entries[0];
81 };
82
83 struct task_struct;
84
85 /*
86  * extra PMU register associated with an event
87  */
88 struct hw_perf_event_extra {
89         u64             config; /* register value */
90         unsigned int    reg;    /* register address or index */
91         int             alloc;  /* extra register already allocated */
92         int             idx;    /* index in shared_regs->regs[] */
93 };
94
95 /**
96  * struct hw_perf_event - performance event hardware details:
97  */
98 struct hw_perf_event {
99 #ifdef CONFIG_PERF_EVENTS
100         union {
101                 struct { /* hardware */
102                         u64             config;
103                         u64             last_tag;
104                         unsigned long   config_base;
105                         unsigned long   event_base;
106                         int             event_base_rdpmc;
107                         int             idx;
108                         int             last_cpu;
109                         int             flags;
110
111                         struct hw_perf_event_extra extra_reg;
112                         struct hw_perf_event_extra branch_reg;
113                 };
114                 struct { /* software */
115                         struct hrtimer  hrtimer;
116                 };
117                 struct { /* tracepoint */
118                         /* for tp_event->class */
119                         struct list_head        tp_list;
120                 };
121                 struct { /* intel_cqm */
122                         int                     cqm_state;
123                         u32                     cqm_rmid;
124                         int                     is_group_event;
125                         struct list_head        cqm_events_entry;
126                         struct list_head        cqm_groups_entry;
127                         struct list_head        cqm_group_entry;
128                 };
129                 struct { /* itrace */
130                         int                     itrace_started;
131                 };
132 #ifdef CONFIG_HAVE_HW_BREAKPOINT
133                 struct { /* breakpoint */
134                         /*
135                          * Crufty hack to avoid the chicken and egg
136                          * problem hw_breakpoint has with context
137                          * creation and event initalization.
138                          */
139                         struct arch_hw_breakpoint       info;
140                         struct list_head                bp_list;
141                 };
142 #endif
143         };
144         /*
145          * If the event is a per task event, this will point to the task in
146          * question. See the comment in perf_event_alloc().
147          */
148         struct task_struct              *target;
149
150 /*
151  * hw_perf_event::state flags; used to track the PERF_EF_* state.
152  */
153 #define PERF_HES_STOPPED        0x01 /* the counter is stopped */
154 #define PERF_HES_UPTODATE       0x02 /* event->count up-to-date */
155 #define PERF_HES_ARCH           0x04
156
157         int                             state;
158
159         /*
160          * The last observed hardware counter value, updated with a
161          * local64_cmpxchg() such that pmu::read() can be called nested.
162          */
163         local64_t                       prev_count;
164
165         /*
166          * The period to start the next sample with.
167          */
168         u64                             sample_period;
169
170         /*
171          * The period we started this sample with.
172          */
173         u64                             last_period;
174
175         /*
176          * However much is left of the current period; note that this is
177          * a full 64bit value and allows for generation of periods longer
178          * than hardware might allow.
179          */
180         local64_t                       period_left;
181
182         /*
183          * State for throttling the event, see __perf_event_overflow() and
184          * perf_adjust_freq_unthr_context().
185          */
186         u64                             interrupts_seq;
187         u64                             interrupts;
188
189         /*
190          * State for freq target events, see __perf_event_overflow() and
191          * perf_adjust_freq_unthr_context().
192          */
193         u64                             freq_time_stamp;
194         u64                             freq_count_stamp;
195 #endif
196 };
197
198 struct perf_event;
199
200 /*
201  * Common implementation detail of pmu::{start,commit,cancel}_txn
202  */
203 #define PERF_PMU_TXN_ADD  0x1           /* txn to add/schedule event on PMU */
204 #define PERF_PMU_TXN_READ 0x2           /* txn to read event group from PMU */
205
206 /**
207  * pmu::capabilities flags
208  */
209 #define PERF_PMU_CAP_NO_INTERRUPT               0x01
210 #define PERF_PMU_CAP_NO_NMI                     0x02
211 #define PERF_PMU_CAP_AUX_NO_SG                  0x04
212 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF           0x08
213 #define PERF_PMU_CAP_EXCLUSIVE                  0x10
214 #define PERF_PMU_CAP_ITRACE                     0x20
215
216 /**
217  * struct pmu - generic performance monitoring unit
218  */
219 struct pmu {
220         struct list_head                entry;
221
222         struct module                   *module;
223         struct device                   *dev;
224         const struct attribute_group    **attr_groups;
225         const char                      *name;
226         int                             type;
227
228         /*
229          * various common per-pmu feature flags
230          */
231         int                             capabilities;
232
233         int * __percpu                  pmu_disable_count;
234         struct perf_cpu_context * __percpu pmu_cpu_context;
235         atomic_t                        exclusive_cnt; /* < 0: cpu; > 0: tsk */
236         int                             task_ctx_nr;
237         int                             hrtimer_interval_ms;
238
239         /*
240          * Fully disable/enable this PMU, can be used to protect from the PMI
241          * as well as for lazy/batch writing of the MSRs.
242          */
243         void (*pmu_enable)              (struct pmu *pmu); /* optional */
244         void (*pmu_disable)             (struct pmu *pmu); /* optional */
245
246         /*
247          * Try and initialize the event for this PMU.
248          *
249          * Returns:
250          *  -ENOENT     -- @event is not for this PMU
251          *
252          *  -ENODEV     -- @event is for this PMU but PMU not present
253          *  -EBUSY      -- @event is for this PMU but PMU temporarily unavailable
254          *  -EINVAL     -- @event is for this PMU but @event is not valid
255          *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
256          *  -EACCESS    -- @event is for this PMU, @event is valid, but no privilidges
257          *
258          *  0           -- @event is for this PMU and valid
259          *
260          * Other error return values are allowed.
261          */
262         int (*event_init)               (struct perf_event *event);
263
264         /*
265          * Notification that the event was mapped or unmapped.  Called
266          * in the context of the mapping task.
267          */
268         void (*event_mapped)            (struct perf_event *event); /*optional*/
269         void (*event_unmapped)          (struct perf_event *event); /*optional*/
270
271         /*
272          * Flags for ->add()/->del()/ ->start()/->stop(). There are
273          * matching hw_perf_event::state flags.
274          */
275 #define PERF_EF_START   0x01            /* start the counter when adding    */
276 #define PERF_EF_RELOAD  0x02            /* reload the counter when starting */
277 #define PERF_EF_UPDATE  0x04            /* update the counter when stopping */
278
279         /*
280          * Adds/Removes a counter to/from the PMU, can be done inside a
281          * transaction, see the ->*_txn() methods.
282          *
283          * The add/del callbacks will reserve all hardware resources required
284          * to service the event, this includes any counter constraint
285          * scheduling etc.
286          *
287          * Called with IRQs disabled and the PMU disabled on the CPU the event
288          * is on.
289          *
290          * ->add() called without PERF_EF_START should result in the same state
291          *  as ->add() followed by ->stop().
292          *
293          * ->del() must always PERF_EF_UPDATE stop an event. If it calls
294          *  ->stop() that must deal with already being stopped without
295          *  PERF_EF_UPDATE.
296          */
297         int  (*add)                     (struct perf_event *event, int flags);
298         void (*del)                     (struct perf_event *event, int flags);
299
300         /*
301          * Starts/Stops a counter present on the PMU.
302          *
303          * The PMI handler should stop the counter when perf_event_overflow()
304          * returns !0. ->start() will be used to continue.
305          *
306          * Also used to change the sample period.
307          *
308          * Called with IRQs disabled and the PMU disabled on the CPU the event
309          * is on -- will be called from NMI context with the PMU generates
310          * NMIs.
311          *
312          * ->stop() with PERF_EF_UPDATE will read the counter and update
313          *  period/count values like ->read() would.
314          *
315          * ->start() with PERF_EF_RELOAD will reprogram the the counter
316          *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
317          */
318         void (*start)                   (struct perf_event *event, int flags);
319         void (*stop)                    (struct perf_event *event, int flags);
320
321         /*
322          * Updates the counter value of the event.
323          *
324          * For sampling capable PMUs this will also update the software period
325          * hw_perf_event::period_left field.
326          */
327         void (*read)                    (struct perf_event *event);
328
329         /*
330          * Group events scheduling is treated as a transaction, add
331          * group events as a whole and perform one schedulability test.
332          * If the test fails, roll back the whole group
333          *
334          * Start the transaction, after this ->add() doesn't need to
335          * do schedulability tests.
336          *
337          * Optional.
338          */
339         void (*start_txn)               (struct pmu *pmu, unsigned int txn_flags);
340         /*
341          * If ->start_txn() disabled the ->add() schedulability test
342          * then ->commit_txn() is required to perform one. On success
343          * the transaction is closed. On error the transaction is kept
344          * open until ->cancel_txn() is called.
345          *
346          * Optional.
347          */
348         int  (*commit_txn)              (struct pmu *pmu);
349         /*
350          * Will cancel the transaction, assumes ->del() is called
351          * for each successful ->add() during the transaction.
352          *
353          * Optional.
354          */
355         void (*cancel_txn)              (struct pmu *pmu);
356
357         /*
358          * Will return the value for perf_event_mmap_page::index for this event,
359          * if no implementation is provided it will default to: event->hw.idx + 1.
360          */
361         int (*event_idx)                (struct perf_event *event); /*optional */
362
363         /*
364          * context-switches callback
365          */
366         void (*sched_task)              (struct perf_event_context *ctx,
367                                         bool sched_in);
368         /*
369          * PMU specific data size
370          */
371         size_t                          task_ctx_size;
372
373
374         /*
375          * Return the count value for a counter.
376          */
377         u64 (*count)                    (struct perf_event *event); /*optional*/
378
379         /*
380          * Set up pmu-private data structures for an AUX area
381          */
382         void *(*setup_aux)              (int cpu, void **pages,
383                                          int nr_pages, bool overwrite);
384                                         /* optional */
385
386         /*
387          * Free pmu-private AUX data structures
388          */
389         void (*free_aux)                (void *aux); /* optional */
390
391         /*
392          * Filter events for PMU-specific reasons.
393          */
394         int (*filter_match)             (struct perf_event *event); /* optional */
395 };
396
397 /**
398  * enum perf_event_active_state - the states of a event
399  */
400 enum perf_event_active_state {
401         PERF_EVENT_STATE_DEAD           = -4,
402         PERF_EVENT_STATE_EXIT           = -3,
403         PERF_EVENT_STATE_ERROR          = -2,
404         PERF_EVENT_STATE_OFF            = -1,
405         PERF_EVENT_STATE_INACTIVE       =  0,
406         PERF_EVENT_STATE_ACTIVE         =  1,
407 };
408
409 struct file;
410 struct perf_sample_data;
411
412 typedef void (*perf_overflow_handler_t)(struct perf_event *,
413                                         struct perf_sample_data *,
414                                         struct pt_regs *regs);
415
416 enum perf_group_flag {
417         PERF_GROUP_SOFTWARE             = 0x1,
418 };
419
420 #define SWEVENT_HLIST_BITS              8
421 #define SWEVENT_HLIST_SIZE              (1 << SWEVENT_HLIST_BITS)
422
423 struct swevent_hlist {
424         struct hlist_head               heads[SWEVENT_HLIST_SIZE];
425         struct rcu_head                 rcu_head;
426 };
427
428 #define PERF_ATTACH_CONTEXT     0x01
429 #define PERF_ATTACH_GROUP       0x02
430 #define PERF_ATTACH_TASK        0x04
431 #define PERF_ATTACH_TASK_DATA   0x08
432
433 struct perf_cgroup;
434 struct ring_buffer;
435
436 /**
437  * struct perf_event - performance event kernel representation:
438  */
439 struct perf_event {
440 #ifdef CONFIG_PERF_EVENTS
441         /*
442          * entry onto perf_event_context::event_list;
443          *   modifications require ctx->lock
444          *   RCU safe iterations.
445          */
446         struct list_head                event_entry;
447
448         /*
449          * XXX: group_entry and sibling_list should be mutually exclusive;
450          * either you're a sibling on a group, or you're the group leader.
451          * Rework the code to always use the same list element.
452          *
453          * Locked for modification by both ctx->mutex and ctx->lock; holding
454          * either sufficies for read.
455          */
456         struct list_head                group_entry;
457         struct list_head                sibling_list;
458
459         /*
460          * We need storage to track the entries in perf_pmu_migrate_context; we
461          * cannot use the event_entry because of RCU and we want to keep the
462          * group in tact which avoids us using the other two entries.
463          */
464         struct list_head                migrate_entry;
465
466         struct hlist_node               hlist_entry;
467         struct list_head                active_entry;
468         int                             nr_siblings;
469         int                             group_flags;
470         struct perf_event               *group_leader;
471         struct pmu                      *pmu;
472         void                            *pmu_private;
473
474         enum perf_event_active_state    state;
475         unsigned int                    attach_state;
476         local64_t                       count;
477         atomic64_t                      child_count;
478
479         /*
480          * These are the total time in nanoseconds that the event
481          * has been enabled (i.e. eligible to run, and the task has
482          * been scheduled in, if this is a per-task event)
483          * and running (scheduled onto the CPU), respectively.
484          *
485          * They are computed from tstamp_enabled, tstamp_running and
486          * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
487          */
488         u64                             total_time_enabled;
489         u64                             total_time_running;
490
491         /*
492          * These are timestamps used for computing total_time_enabled
493          * and total_time_running when the event is in INACTIVE or
494          * ACTIVE state, measured in nanoseconds from an arbitrary point
495          * in time.
496          * tstamp_enabled: the notional time when the event was enabled
497          * tstamp_running: the notional time when the event was scheduled on
498          * tstamp_stopped: in INACTIVE state, the notional time when the
499          *      event was scheduled off.
500          */
501         u64                             tstamp_enabled;
502         u64                             tstamp_running;
503         u64                             tstamp_stopped;
504
505         /*
506          * timestamp shadows the actual context timing but it can
507          * be safely used in NMI interrupt context. It reflects the
508          * context time as it was when the event was last scheduled in.
509          *
510          * ctx_time already accounts for ctx->timestamp. Therefore to
511          * compute ctx_time for a sample, simply add perf_clock().
512          */
513         u64                             shadow_ctx_time;
514
515         struct perf_event_attr          attr;
516         u16                             header_size;
517         u16                             id_header_size;
518         u16                             read_size;
519         struct hw_perf_event            hw;
520
521         struct perf_event_context       *ctx;
522         atomic_long_t                   refcount;
523
524         /*
525          * These accumulate total time (in nanoseconds) that children
526          * events have been enabled and running, respectively.
527          */
528         atomic64_t                      child_total_time_enabled;
529         atomic64_t                      child_total_time_running;
530
531         /*
532          * Protect attach/detach and child_list:
533          */
534         struct mutex                    child_mutex;
535         struct list_head                child_list;
536         struct perf_event               *parent;
537
538         int                             oncpu;
539         int                             cpu;
540
541         struct list_head                owner_entry;
542         struct task_struct              *owner;
543
544         /* mmap bits */
545         struct mutex                    mmap_mutex;
546         atomic_t                        mmap_count;
547
548         struct ring_buffer              *rb;
549         struct list_head                rb_entry;
550         unsigned long                   rcu_batches;
551         int                             rcu_pending;
552
553         /* poll related */
554         wait_queue_head_t               waitq;
555         struct fasync_struct            *fasync;
556
557         /* delayed work for NMIs and such */
558         int                             pending_wakeup;
559         int                             pending_kill;
560         int                             pending_disable;
561         struct irq_work                 pending;
562
563         atomic_t                        event_limit;
564
565         void (*destroy)(struct perf_event *);
566         struct rcu_head                 rcu_head;
567
568         struct pid_namespace            *ns;
569         u64                             id;
570
571         u64                             (*clock)(void);
572         perf_overflow_handler_t         overflow_handler;
573         void                            *overflow_handler_context;
574
575 #ifdef CONFIG_EVENT_TRACING
576         struct trace_event_call         *tp_event;
577         struct event_filter             *filter;
578 #ifdef CONFIG_FUNCTION_TRACER
579         struct ftrace_ops               ftrace_ops;
580 #endif
581 #endif
582
583 #ifdef CONFIG_CGROUP_PERF
584         struct perf_cgroup              *cgrp; /* cgroup event is attach to */
585         int                             cgrp_defer_enabled;
586 #endif
587
588 #endif /* CONFIG_PERF_EVENTS */
589 };
590
591 /**
592  * struct perf_event_context - event context structure
593  *
594  * Used as a container for task events and CPU events as well:
595  */
596 struct perf_event_context {
597         struct pmu                      *pmu;
598         /*
599          * Protect the states of the events in the list,
600          * nr_active, and the list:
601          */
602         raw_spinlock_t                  lock;
603         /*
604          * Protect the list of events.  Locking either mutex or lock
605          * is sufficient to ensure the list doesn't change; to change
606          * the list you need to lock both the mutex and the spinlock.
607          */
608         struct mutex                    mutex;
609
610         struct list_head                active_ctx_list;
611         struct list_head                pinned_groups;
612         struct list_head                flexible_groups;
613         struct list_head                event_list;
614         int                             nr_events;
615         int                             nr_active;
616         int                             is_active;
617         int                             nr_stat;
618         int                             nr_freq;
619         int                             rotate_disable;
620         atomic_t                        refcount;
621         struct task_struct              *task;
622
623         /*
624          * Context clock, runs when context enabled.
625          */
626         u64                             time;
627         u64                             timestamp;
628
629         /*
630          * These fields let us detect when two contexts have both
631          * been cloned (inherited) from a common ancestor.
632          */
633         struct perf_event_context       *parent_ctx;
634         u64                             parent_gen;
635         u64                             generation;
636         int                             pin_count;
637         int                             nr_cgroups;      /* cgroup evts */
638         void                            *task_ctx_data; /* pmu specific data */
639         struct rcu_head                 rcu_head;
640 };
641
642 /*
643  * Number of contexts where an event can trigger:
644  *      task, softirq, hardirq, nmi.
645  */
646 #define PERF_NR_CONTEXTS        4
647
648 /**
649  * struct perf_event_cpu_context - per cpu event context structure
650  */
651 struct perf_cpu_context {
652         struct perf_event_context       ctx;
653         struct perf_event_context       *task_ctx;
654         int                             active_oncpu;
655         int                             exclusive;
656
657         raw_spinlock_t                  hrtimer_lock;
658         struct hrtimer                  hrtimer;
659         ktime_t                         hrtimer_interval;
660         unsigned int                    hrtimer_active;
661
662         struct pmu                      *unique_pmu;
663         struct perf_cgroup              *cgrp;
664 };
665
666 struct perf_output_handle {
667         struct perf_event               *event;
668         struct ring_buffer              *rb;
669         unsigned long                   wakeup;
670         unsigned long                   size;
671         union {
672                 void                    *addr;
673                 unsigned long           head;
674         };
675         int                             page;
676 };
677
678 #ifdef CONFIG_CGROUP_PERF
679
680 /*
681  * perf_cgroup_info keeps track of time_enabled for a cgroup.
682  * This is a per-cpu dynamically allocated data structure.
683  */
684 struct perf_cgroup_info {
685         u64                             time;
686         u64                             timestamp;
687 };
688
689 struct perf_cgroup {
690         struct cgroup_subsys_state      css;
691         struct perf_cgroup_info __percpu *info;
692 };
693
694 /*
695  * Must ensure cgroup is pinned (css_get) before calling
696  * this function. In other words, we cannot call this function
697  * if there is no cgroup event for the current CPU context.
698  */
699 static inline struct perf_cgroup *
700 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
701 {
702         return container_of(task_css_check(task, perf_event_cgrp_id,
703                                            ctx ? lockdep_is_held(&ctx->lock)
704                                                : true),
705                             struct perf_cgroup, css);
706 }
707 #endif /* CONFIG_CGROUP_PERF */
708
709 #ifdef CONFIG_PERF_EVENTS
710
711 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
712                                    struct perf_event *event);
713 extern void perf_aux_output_end(struct perf_output_handle *handle,
714                                 unsigned long size, bool truncated);
715 extern int perf_aux_output_skip(struct perf_output_handle *handle,
716                                 unsigned long size);
717 extern void *perf_get_aux(struct perf_output_handle *handle);
718
719 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
720 extern void perf_pmu_unregister(struct pmu *pmu);
721
722 extern int perf_num_counters(void);
723 extern const char *perf_pmu_name(void);
724 extern void __perf_event_task_sched_in(struct task_struct *prev,
725                                        struct task_struct *task);
726 extern void __perf_event_task_sched_out(struct task_struct *prev,
727                                         struct task_struct *next);
728 extern int perf_event_init_task(struct task_struct *child);
729 extern void perf_event_exit_task(struct task_struct *child);
730 extern void perf_event_free_task(struct task_struct *task);
731 extern void perf_event_delayed_put(struct task_struct *task);
732 extern struct file *perf_event_get(unsigned int fd);
733 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
734 extern void perf_event_print_debug(void);
735 extern void perf_pmu_disable(struct pmu *pmu);
736 extern void perf_pmu_enable(struct pmu *pmu);
737 extern void perf_sched_cb_dec(struct pmu *pmu);
738 extern void perf_sched_cb_inc(struct pmu *pmu);
739 extern int perf_event_task_disable(void);
740 extern int perf_event_task_enable(void);
741 extern int perf_event_refresh(struct perf_event *event, int refresh);
742 extern void perf_event_update_userpage(struct perf_event *event);
743 extern int perf_event_release_kernel(struct perf_event *event);
744 extern struct perf_event *
745 perf_event_create_kernel_counter(struct perf_event_attr *attr,
746                                 int cpu,
747                                 struct task_struct *task,
748                                 perf_overflow_handler_t callback,
749                                 void *context);
750 extern void perf_pmu_migrate_context(struct pmu *pmu,
751                                 int src_cpu, int dst_cpu);
752 extern u64 perf_event_read_local(struct perf_event *event);
753 extern u64 perf_event_read_value(struct perf_event *event,
754                                  u64 *enabled, u64 *running);
755
756
757 struct perf_sample_data {
758         /*
759          * Fields set by perf_sample_data_init(), group so as to
760          * minimize the cachelines touched.
761          */
762         u64                             addr;
763         struct perf_raw_record          *raw;
764         struct perf_branch_stack        *br_stack;
765         u64                             period;
766         u64                             weight;
767         u64                             txn;
768         union  perf_mem_data_src        data_src;
769
770         /*
771          * The other fields, optionally {set,used} by
772          * perf_{prepare,output}_sample().
773          */
774         u64                             type;
775         u64                             ip;
776         struct {
777                 u32     pid;
778                 u32     tid;
779         }                               tid_entry;
780         u64                             time;
781         u64                             id;
782         u64                             stream_id;
783         struct {
784                 u32     cpu;
785                 u32     reserved;
786         }                               cpu_entry;
787         struct perf_callchain_entry     *callchain;
788
789         /*
790          * regs_user may point to task_pt_regs or to regs_user_copy, depending
791          * on arch details.
792          */
793         struct perf_regs                regs_user;
794         struct pt_regs                  regs_user_copy;
795
796         struct perf_regs                regs_intr;
797         u64                             stack_user_size;
798 } ____cacheline_aligned;
799
800 /* default value for data source */
801 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
802                     PERF_MEM_S(LVL, NA)   |\
803                     PERF_MEM_S(SNOOP, NA) |\
804                     PERF_MEM_S(LOCK, NA)  |\
805                     PERF_MEM_S(TLB, NA))
806
807 static inline void perf_sample_data_init(struct perf_sample_data *data,
808                                          u64 addr, u64 period)
809 {
810         /* remaining struct members initialized in perf_prepare_sample() */
811         data->addr = addr;
812         data->raw  = NULL;
813         data->br_stack = NULL;
814         data->period = period;
815         data->weight = 0;
816         data->data_src.val = PERF_MEM_NA;
817         data->txn = 0;
818 }
819
820 extern void perf_output_sample(struct perf_output_handle *handle,
821                                struct perf_event_header *header,
822                                struct perf_sample_data *data,
823                                struct perf_event *event);
824 extern void perf_prepare_sample(struct perf_event_header *header,
825                                 struct perf_sample_data *data,
826                                 struct perf_event *event,
827                                 struct pt_regs *regs);
828
829 extern int perf_event_overflow(struct perf_event *event,
830                                  struct perf_sample_data *data,
831                                  struct pt_regs *regs);
832
833 extern void perf_event_output(struct perf_event *event,
834                                 struct perf_sample_data *data,
835                                 struct pt_regs *regs);
836
837 extern void
838 perf_event_header__init_id(struct perf_event_header *header,
839                            struct perf_sample_data *data,
840                            struct perf_event *event);
841 extern void
842 perf_event__output_id_sample(struct perf_event *event,
843                              struct perf_output_handle *handle,
844                              struct perf_sample_data *sample);
845
846 extern void
847 perf_log_lost_samples(struct perf_event *event, u64 lost);
848
849 static inline bool is_sampling_event(struct perf_event *event)
850 {
851         return event->attr.sample_period != 0;
852 }
853
854 /*
855  * Return 1 for a software event, 0 for a hardware event
856  */
857 static inline int is_software_event(struct perf_event *event)
858 {
859         return event->pmu->task_ctx_nr == perf_sw_context;
860 }
861
862 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
863
864 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
865 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
866
867 #ifndef perf_arch_fetch_caller_regs
868 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
869 #endif
870
871 /*
872  * Take a snapshot of the regs. Skip ip and frame pointer to
873  * the nth caller. We only need a few of the regs:
874  * - ip for PERF_SAMPLE_IP
875  * - cs for user_mode() tests
876  * - bp for callchains
877  * - eflags, for future purposes, just in case
878  */
879 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
880 {
881         memset(regs, 0, sizeof(*regs));
882
883         perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
884 }
885
886 static __always_inline void
887 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
888 {
889         if (static_key_false(&perf_swevent_enabled[event_id]))
890                 __perf_sw_event(event_id, nr, regs, addr);
891 }
892
893 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
894
895 /*
896  * 'Special' version for the scheduler, it hard assumes no recursion,
897  * which is guaranteed by us not actually scheduling inside other swevents
898  * because those disable preemption.
899  */
900 static __always_inline void
901 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
902 {
903         if (static_key_false(&perf_swevent_enabled[event_id])) {
904                 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
905
906                 perf_fetch_caller_regs(regs);
907                 ___perf_sw_event(event_id, nr, regs, addr);
908         }
909 }
910
911 extern struct static_key_false perf_sched_events;
912
913 static __always_inline bool
914 perf_sw_migrate_enabled(void)
915 {
916         if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
917                 return true;
918         return false;
919 }
920
921 static inline void perf_event_task_migrate(struct task_struct *task)
922 {
923         if (perf_sw_migrate_enabled())
924                 task->sched_migrated = 1;
925 }
926
927 static inline void perf_event_task_sched_in(struct task_struct *prev,
928                                             struct task_struct *task)
929 {
930         if (static_branch_unlikely(&perf_sched_events))
931                 __perf_event_task_sched_in(prev, task);
932
933         if (perf_sw_migrate_enabled() && task->sched_migrated) {
934                 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
935
936                 perf_fetch_caller_regs(regs);
937                 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
938                 task->sched_migrated = 0;
939         }
940 }
941
942 static inline void perf_event_task_sched_out(struct task_struct *prev,
943                                              struct task_struct *next)
944 {
945         perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
946
947         if (static_branch_unlikely(&perf_sched_events))
948                 __perf_event_task_sched_out(prev, next);
949 }
950
951 static inline u64 __perf_event_count(struct perf_event *event)
952 {
953         return local64_read(&event->count) + atomic64_read(&event->child_count);
954 }
955
956 extern void perf_event_mmap(struct vm_area_struct *vma);
957 extern struct perf_guest_info_callbacks *perf_guest_cbs;
958 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
959 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
960
961 extern void perf_event_exec(void);
962 extern void perf_event_comm(struct task_struct *tsk, bool exec);
963 extern void perf_event_fork(struct task_struct *tsk);
964
965 /* Callchains */
966 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
967
968 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
969 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
970
971 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
972 {
973         if (entry->nr < PERF_MAX_STACK_DEPTH)
974                 entry->ip[entry->nr++] = ip;
975 }
976
977 extern int sysctl_perf_event_paranoid;
978 extern int sysctl_perf_event_mlock;
979 extern int sysctl_perf_event_sample_rate;
980 extern int sysctl_perf_cpu_time_max_percent;
981
982 extern void perf_sample_event_took(u64 sample_len_ns);
983
984 extern int perf_proc_update_handler(struct ctl_table *table, int write,
985                 void __user *buffer, size_t *lenp,
986                 loff_t *ppos);
987 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
988                 void __user *buffer, size_t *lenp,
989                 loff_t *ppos);
990
991
992 static inline bool perf_paranoid_tracepoint_raw(void)
993 {
994         return sysctl_perf_event_paranoid > -1;
995 }
996
997 static inline bool perf_paranoid_cpu(void)
998 {
999         return sysctl_perf_event_paranoid > 0;
1000 }
1001
1002 static inline bool perf_paranoid_kernel(void)
1003 {
1004         return sysctl_perf_event_paranoid > 1;
1005 }
1006
1007 extern void perf_event_init(void);
1008 extern void perf_tp_event(u64 addr, u64 count, void *record,
1009                           int entry_size, struct pt_regs *regs,
1010                           struct hlist_head *head, int rctx,
1011                           struct task_struct *task);
1012 extern void perf_bp_event(struct perf_event *event, void *data);
1013
1014 #ifndef perf_misc_flags
1015 # define perf_misc_flags(regs) \
1016                 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1017 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1018 #endif
1019
1020 static inline bool has_branch_stack(struct perf_event *event)
1021 {
1022         return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1023 }
1024
1025 static inline bool needs_branch_stack(struct perf_event *event)
1026 {
1027         return event->attr.branch_sample_type != 0;
1028 }
1029
1030 static inline bool has_aux(struct perf_event *event)
1031 {
1032         return event->pmu->setup_aux;
1033 }
1034
1035 extern int perf_output_begin(struct perf_output_handle *handle,
1036                              struct perf_event *event, unsigned int size);
1037 extern void perf_output_end(struct perf_output_handle *handle);
1038 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1039                              const void *buf, unsigned int len);
1040 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1041                                      unsigned int len);
1042 extern int perf_swevent_get_recursion_context(void);
1043 extern void perf_swevent_put_recursion_context(int rctx);
1044 extern u64 perf_swevent_set_period(struct perf_event *event);
1045 extern void perf_event_enable(struct perf_event *event);
1046 extern void perf_event_disable(struct perf_event *event);
1047 extern void perf_event_disable_local(struct perf_event *event);
1048 extern void perf_event_task_tick(void);
1049 #else /* !CONFIG_PERF_EVENTS: */
1050 static inline void *
1051 perf_aux_output_begin(struct perf_output_handle *handle,
1052                       struct perf_event *event)                         { return NULL; }
1053 static inline void
1054 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
1055                     bool truncated)                                     { }
1056 static inline int
1057 perf_aux_output_skip(struct perf_output_handle *handle,
1058                      unsigned long size)                                { return -EINVAL; }
1059 static inline void *
1060 perf_get_aux(struct perf_output_handle *handle)                         { return NULL; }
1061 static inline void
1062 perf_event_task_migrate(struct task_struct *task)                       { }
1063 static inline void
1064 perf_event_task_sched_in(struct task_struct *prev,
1065                          struct task_struct *task)                      { }
1066 static inline void
1067 perf_event_task_sched_out(struct task_struct *prev,
1068                           struct task_struct *next)                     { }
1069 static inline int perf_event_init_task(struct task_struct *child)       { return 0; }
1070 static inline void perf_event_exit_task(struct task_struct *child)      { }
1071 static inline void perf_event_free_task(struct task_struct *task)       { }
1072 static inline void perf_event_delayed_put(struct task_struct *task)     { }
1073 static inline struct file *perf_event_get(unsigned int fd)      { return ERR_PTR(-EINVAL); }
1074 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1075 {
1076         return ERR_PTR(-EINVAL);
1077 }
1078 static inline u64 perf_event_read_local(struct perf_event *event)       { return -EINVAL; }
1079 static inline void perf_event_print_debug(void)                         { }
1080 static inline int perf_event_task_disable(void)                         { return -EINVAL; }
1081 static inline int perf_event_task_enable(void)                          { return -EINVAL; }
1082 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1083 {
1084         return -EINVAL;
1085 }
1086
1087 static inline void
1088 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)     { }
1089 static inline void
1090 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)                     { }
1091 static inline void
1092 perf_bp_event(struct perf_event *event, void *data)                     { }
1093
1094 static inline int perf_register_guest_info_callbacks
1095 (struct perf_guest_info_callbacks *callbacks)                           { return 0; }
1096 static inline int perf_unregister_guest_info_callbacks
1097 (struct perf_guest_info_callbacks *callbacks)                           { return 0; }
1098
1099 static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
1100 static inline void perf_event_exec(void)                                { }
1101 static inline void perf_event_comm(struct task_struct *tsk, bool exec)  { }
1102 static inline void perf_event_fork(struct task_struct *tsk)             { }
1103 static inline void perf_event_init(void)                                { }
1104 static inline int  perf_swevent_get_recursion_context(void)             { return -1; }
1105 static inline void perf_swevent_put_recursion_context(int rctx)         { }
1106 static inline u64 perf_swevent_set_period(struct perf_event *event)     { return 0; }
1107 static inline void perf_event_enable(struct perf_event *event)          { }
1108 static inline void perf_event_disable(struct perf_event *event)         { }
1109 static inline int __perf_event_disable(void *info)                      { return -1; }
1110 static inline void perf_event_task_tick(void)                           { }
1111 static inline int perf_event_release_kernel(struct perf_event *event)   { return 0; }
1112 #endif
1113
1114 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1115 extern void perf_restore_debug_store(void);
1116 #else
1117 static inline void perf_restore_debug_store(void)                       { }
1118 #endif
1119
1120 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1121
1122 /*
1123  * This has to have a higher priority than migration_notifier in sched/core.c.
1124  */
1125 #define perf_cpu_notifier(fn)                                           \
1126 do {                                                                    \
1127         static struct notifier_block fn##_nb =                          \
1128                 { .notifier_call = fn, .priority = CPU_PRI_PERF };      \
1129         unsigned long cpu = smp_processor_id();                         \
1130         unsigned long flags;                                            \
1131                                                                         \
1132         cpu_notifier_register_begin();                                  \
1133         fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,                     \
1134                 (void *)(unsigned long)cpu);                            \
1135         local_irq_save(flags);                                          \
1136         fn(&fn##_nb, (unsigned long)CPU_STARTING,                       \
1137                 (void *)(unsigned long)cpu);                            \
1138         local_irq_restore(flags);                                       \
1139         fn(&fn##_nb, (unsigned long)CPU_ONLINE,                         \
1140                 (void *)(unsigned long)cpu);                            \
1141         __register_cpu_notifier(&fn##_nb);                              \
1142         cpu_notifier_register_done();                                   \
1143 } while (0)
1144
1145 /*
1146  * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
1147  * callback for already online CPUs.
1148  */
1149 #define __perf_cpu_notifier(fn)                                         \
1150 do {                                                                    \
1151         static struct notifier_block fn##_nb =                          \
1152                 { .notifier_call = fn, .priority = CPU_PRI_PERF };      \
1153                                                                         \
1154         __register_cpu_notifier(&fn##_nb);                              \
1155 } while (0)
1156
1157 struct perf_pmu_events_attr {
1158         struct device_attribute attr;
1159         u64 id;
1160         const char *event_str;
1161 };
1162
1163 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1164                               char *page);
1165
1166 #define PMU_EVENT_ATTR(_name, _var, _id, _show)                         \
1167 static struct perf_pmu_events_attr _var = {                             \
1168         .attr = __ATTR(_name, 0444, _show, NULL),                       \
1169         .id   =  _id,                                                   \
1170 };
1171
1172 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)                            \
1173 static struct perf_pmu_events_attr _var = {                                 \
1174         .attr           = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1175         .id             = 0,                                                \
1176         .event_str      = _str,                                             \
1177 };
1178
1179 #define PMU_FORMAT_ATTR(_name, _format)                                 \
1180 static ssize_t                                                          \
1181 _name##_show(struct device *dev,                                        \
1182                                struct device_attribute *attr,           \
1183                                char *page)                              \
1184 {                                                                       \
1185         BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);                     \
1186         return sprintf(page, _format "\n");                             \
1187 }                                                                       \
1188                                                                         \
1189 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1190
1191 #endif /* _LINUX_PERF_EVENT_H */