2 * Definitions for the 'struct sk_buff' memory handlers.
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_keys.h>
39 /* A. Checksumming of received packets by device.
43 * Device failed to checksum this packet e.g. due to lack of capabilities.
44 * The packet contains full (though not verified) checksum in packet but
45 * not in skb->csum. Thus, skb->csum is undefined in this case.
47 * CHECKSUM_UNNECESSARY:
49 * The hardware you're dealing with doesn't calculate the full checksum
50 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
51 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
52 * if their checksums are okay. skb->csum is still undefined in this case
53 * though. It is a bad option, but, unfortunately, nowadays most vendors do
54 * this. Apparently with the secret goal to sell you new devices, when you
55 * will add new protocol to your host, f.e. IPv6 8)
57 * CHECKSUM_UNNECESSARY is applicable to following protocols:
59 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
60 * zero UDP checksum for either IPv4 or IPv6, the networking stack
61 * may perform further validation in this case.
62 * GRE: only if the checksum is present in the header.
63 * SCTP: indicates the CRC in SCTP header has been validated.
65 * skb->csum_level indicates the number of consecutive checksums found in
66 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
67 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
68 * and a device is able to verify the checksums for UDP (possibly zero),
69 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
70 * two. If the device were only able to verify the UDP checksum and not
71 * GRE, either because it doesn't support GRE checksum of because GRE
72 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
73 * not considered in this case).
77 * This is the most generic way. The device supplied checksum of the _whole_
78 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
79 * hardware doesn't need to parse L3/L4 headers to implement this.
81 * Note: Even if device supports only some protocols, but is able to produce
82 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
86 * This is identical to the case for output below. This may occur on a packet
87 * received directly from another Linux OS, e.g., a virtualized Linux kernel
88 * on the same host. The packet can be treated in the same way as
89 * CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the
90 * checksum must be filled in by the OS or the hardware.
92 * B. Checksumming on output.
96 * The skb was already checksummed by the protocol, or a checksum is not
101 * The device is required to checksum the packet as seen by hard_start_xmit()
102 * from skb->csum_start up to the end, and to record/write the checksum at
103 * offset skb->csum_start + skb->csum_offset.
105 * The device must show its capabilities in dev->features, set up at device
106 * setup time, e.g. netdev_features.h:
108 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
109 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
110 * IPv4. Sigh. Vendors like this way for an unknown reason.
111 * Though, see comment above about CHECKSUM_UNNECESSARY. 8)
112 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
113 * NETIF_F_... - Well, you get the picture.
115 * CHECKSUM_UNNECESSARY:
117 * Normally, the device will do per protocol specific checksumming. Protocol
118 * implementations that do not want the NIC to perform the checksum
119 * calculation should use this flag in their outgoing skbs.
121 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
122 * offload. Correspondingly, the FCoE protocol driver
123 * stack should use CHECKSUM_UNNECESSARY.
125 * Any questions? No questions, good. --ANK
128 /* Don't change this without changing skb_csum_unnecessary! */
129 #define CHECKSUM_NONE 0
130 #define CHECKSUM_UNNECESSARY 1
131 #define CHECKSUM_COMPLETE 2
132 #define CHECKSUM_PARTIAL 3
134 /* Maximum value in skb->csum_level */
135 #define SKB_MAX_CSUM_LEVEL 3
137 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
138 #define SKB_WITH_OVERHEAD(X) \
139 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
140 #define SKB_MAX_ORDER(X, ORDER) \
141 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
142 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
143 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
145 /* return minimum truesize of one skb containing X bytes of data */
146 #define SKB_TRUESIZE(X) ((X) + \
147 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
148 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
152 struct pipe_inode_info;
156 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
157 struct nf_conntrack {
162 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
163 struct nf_bridge_info {
166 struct net_device *physindev;
167 struct net_device *physoutdev;
168 unsigned long data[32 / sizeof(unsigned long)];
172 struct sk_buff_head {
173 /* These two members must be first. */
174 struct sk_buff *next;
175 struct sk_buff *prev;
183 /* To allow 64K frame to be packed as single skb without frag_list we
184 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
185 * buffers which do not start on a page boundary.
187 * Since GRO uses frags we allocate at least 16 regardless of page
190 #if (65536/PAGE_SIZE + 1) < 16
191 #define MAX_SKB_FRAGS 16UL
193 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
196 typedef struct skb_frag_struct skb_frag_t;
198 struct skb_frag_struct {
202 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
211 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
216 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
221 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
226 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
231 #define HAVE_HW_TIME_STAMP
234 * struct skb_shared_hwtstamps - hardware time stamps
235 * @hwtstamp: hardware time stamp transformed into duration
236 * since arbitrary point in time
238 * Software time stamps generated by ktime_get_real() are stored in
241 * hwtstamps can only be compared against other hwtstamps from
244 * This structure is attached to packets as part of the
245 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
247 struct skb_shared_hwtstamps {
251 /* Definitions for tx_flags in struct skb_shared_info */
253 /* generate hardware time stamp */
254 SKBTX_HW_TSTAMP = 1 << 0,
256 /* generate software time stamp when queueing packet to NIC */
257 SKBTX_SW_TSTAMP = 1 << 1,
259 /* device driver is going to provide hardware time stamp */
260 SKBTX_IN_PROGRESS = 1 << 2,
262 /* device driver supports TX zero-copy buffers */
263 SKBTX_DEV_ZEROCOPY = 1 << 3,
265 /* generate wifi status information (where possible) */
266 SKBTX_WIFI_STATUS = 1 << 4,
268 /* This indicates at least one fragment might be overwritten
269 * (as in vmsplice(), sendfile() ...)
270 * If we need to compute a TX checksum, we'll need to copy
271 * all frags to avoid possible bad checksum
273 SKBTX_SHARED_FRAG = 1 << 5,
275 /* generate software time stamp when entering packet scheduling */
276 SKBTX_SCHED_TSTAMP = 1 << 6,
278 /* generate software timestamp on peer data acknowledgment */
279 SKBTX_ACK_TSTAMP = 1 << 7,
282 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
283 SKBTX_SCHED_TSTAMP | \
285 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
288 * The callback notifies userspace to release buffers when skb DMA is done in
289 * lower device, the skb last reference should be 0 when calling this.
290 * The zerocopy_success argument is true if zero copy transmit occurred,
291 * false on data copy or out of memory error caused by data copy attempt.
292 * The ctx field is used to track device context.
293 * The desc field is used to track userspace buffer index.
296 void (*callback)(struct ubuf_info *, bool zerocopy_success);
301 /* This data is invariant across clones and lives at
302 * the end of the header data, ie. at skb->end.
304 struct skb_shared_info {
305 unsigned char nr_frags;
307 unsigned short gso_size;
308 /* Warning: this field is not always filled in (UFO)! */
309 unsigned short gso_segs;
310 unsigned short gso_type;
311 struct sk_buff *frag_list;
312 struct skb_shared_hwtstamps hwtstamps;
317 * Warning : all fields before dataref are cleared in __alloc_skb()
321 /* Intermediate layers must ensure that destructor_arg
322 * remains valid until skb destructor */
323 void * destructor_arg;
325 /* must be last field, see pskb_expand_head() */
326 skb_frag_t frags[MAX_SKB_FRAGS];
329 /* We divide dataref into two halves. The higher 16 bits hold references
330 * to the payload part of skb->data. The lower 16 bits hold references to
331 * the entire skb->data. A clone of a headerless skb holds the length of
332 * the header in skb->hdr_len.
334 * All users must obey the rule that the skb->data reference count must be
335 * greater than or equal to the payload reference count.
337 * Holding a reference to the payload part means that the user does not
338 * care about modifications to the header part of skb->data.
340 #define SKB_DATAREF_SHIFT 16
341 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
345 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
346 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
347 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
351 SKB_GSO_TCPV4 = 1 << 0,
352 SKB_GSO_UDP = 1 << 1,
354 /* This indicates the skb is from an untrusted source. */
355 SKB_GSO_DODGY = 1 << 2,
357 /* This indicates the tcp segment has CWR set. */
358 SKB_GSO_TCP_ECN = 1 << 3,
360 SKB_GSO_TCPV6 = 1 << 4,
362 SKB_GSO_FCOE = 1 << 5,
364 SKB_GSO_GRE = 1 << 6,
366 SKB_GSO_GRE_CSUM = 1 << 7,
368 SKB_GSO_IPIP = 1 << 8,
370 SKB_GSO_SIT = 1 << 9,
372 SKB_GSO_UDP_TUNNEL = 1 << 10,
374 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
376 SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
379 #if BITS_PER_LONG > 32
380 #define NET_SKBUFF_DATA_USES_OFFSET 1
383 #ifdef NET_SKBUFF_DATA_USES_OFFSET
384 typedef unsigned int sk_buff_data_t;
386 typedef unsigned char *sk_buff_data_t;
390 * struct skb_mstamp - multi resolution time stamps
391 * @stamp_us: timestamp in us resolution
392 * @stamp_jiffies: timestamp in jiffies
405 * skb_mstamp_get - get current timestamp
406 * @cl: place to store timestamps
408 static inline void skb_mstamp_get(struct skb_mstamp *cl)
410 u64 val = local_clock();
412 do_div(val, NSEC_PER_USEC);
413 cl->stamp_us = (u32)val;
414 cl->stamp_jiffies = (u32)jiffies;
418 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
419 * @t1: pointer to newest sample
420 * @t0: pointer to oldest sample
422 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
423 const struct skb_mstamp *t0)
425 s32 delta_us = t1->stamp_us - t0->stamp_us;
426 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
428 /* If delta_us is negative, this might be because interval is too big,
429 * or local_clock() drift is too big : fallback using jiffies.
432 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
434 delta_us = jiffies_to_usecs(delta_jiffies);
441 * struct sk_buff - socket buffer
442 * @next: Next buffer in list
443 * @prev: Previous buffer in list
444 * @tstamp: Time we arrived/left
445 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
446 * @sk: Socket we are owned by
447 * @dev: Device we arrived on/are leaving by
448 * @cb: Control buffer. Free for use by every layer. Put private vars here
449 * @_skb_refdst: destination entry (with norefcount bit)
450 * @sp: the security path, used for xfrm
451 * @len: Length of actual data
452 * @data_len: Data length
453 * @mac_len: Length of link layer header
454 * @hdr_len: writable header length of cloned skb
455 * @csum: Checksum (must include start/offset pair)
456 * @csum_start: Offset from skb->head where checksumming should start
457 * @csum_offset: Offset from csum_start where checksum should be stored
458 * @priority: Packet queueing priority
459 * @ignore_df: allow local fragmentation
460 * @cloned: Head may be cloned (check refcnt to be sure)
461 * @ip_summed: Driver fed us an IP checksum
462 * @nohdr: Payload reference only, must not modify header
463 * @nfctinfo: Relationship of this skb to the connection
464 * @pkt_type: Packet class
465 * @fclone: skbuff clone status
466 * @ipvs_property: skbuff is owned by ipvs
467 * @peeked: this packet has been seen already, so stats have been
468 * done for it, don't do them again
469 * @nf_trace: netfilter packet trace flag
470 * @protocol: Packet protocol from driver
471 * @destructor: Destruct function
472 * @nfct: Associated connection, if any
473 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
474 * @skb_iif: ifindex of device we arrived on
475 * @tc_index: Traffic control index
476 * @tc_verd: traffic control verdict
477 * @hash: the packet hash
478 * @queue_mapping: Queue mapping for multiqueue devices
479 * @xmit_more: More SKBs are pending for this queue
480 * @ndisc_nodetype: router type (from link layer)
481 * @ooo_okay: allow the mapping of a socket to a queue to be changed
482 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
484 * @sw_hash: indicates hash was computed in software stack
485 * @wifi_acked_valid: wifi_acked was set
486 * @wifi_acked: whether frame was acked on wifi or not
487 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
488 * @napi_id: id of the NAPI struct this skb came from
489 * @secmark: security marking
490 * @mark: Generic packet mark
491 * @dropcount: total number of sk_receive_queue overflows
492 * @vlan_proto: vlan encapsulation protocol
493 * @vlan_tci: vlan tag control information
494 * @inner_protocol: Protocol (encapsulation)
495 * @inner_transport_header: Inner transport layer header (encapsulation)
496 * @inner_network_header: Network layer header (encapsulation)
497 * @inner_mac_header: Link layer header (encapsulation)
498 * @transport_header: Transport layer header
499 * @network_header: Network layer header
500 * @mac_header: Link layer header
501 * @tail: Tail pointer
503 * @head: Head of buffer
504 * @data: Data head pointer
505 * @truesize: Buffer size
506 * @users: User count - see {datagram,tcp}.c
512 /* These two members must be first. */
513 struct sk_buff *next;
514 struct sk_buff *prev;
518 struct skb_mstamp skb_mstamp;
521 struct rb_node rbnode; /* used in netem & tcp stack */
524 struct net_device *dev;
527 * This is the control buffer. It is free to use for every
528 * layer. Please put your private variables there. If you
529 * want to keep them across layers you have to do a skb_clone()
530 * first. This is owned by whoever has the skb queued ATM.
532 char cb[48] __aligned(8);
534 unsigned long _skb_refdst;
535 void (*destructor)(struct sk_buff *skb);
539 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
540 struct nf_conntrack *nfct;
542 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
543 struct nf_bridge_info *nf_bridge;
550 /* Following fields are _not_ copied in __copy_skb_header()
551 * Note that queue_mapping is here mostly to fill a hole.
553 kmemcheck_bitfield_begin(flags1);
562 kmemcheck_bitfield_end(flags1);
564 /* fields enclosed in headers_start/headers_end are copied
565 * using a single memcpy() in __copy_skb_header()
568 __u32 headers_start[0];
571 /* if you move pkt_type around you also must adapt those constants */
572 #ifdef __BIG_ENDIAN_BITFIELD
573 #define PKT_TYPE_MAX (7 << 5)
575 #define PKT_TYPE_MAX 7
577 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
579 __u8 __pkt_type_offset[0];
590 __u8 wifi_acked_valid:1;
594 /* Indicates the inner headers are valid in the skbuff. */
595 __u8 encapsulation:1;
596 __u8 encap_hdr_csum:1;
598 __u8 csum_complete_sw:1;
602 #ifdef CONFIG_IPV6_NDISC_NODETYPE
603 __u8 ndisc_nodetype:2;
605 __u8 ipvs_property:1;
606 __u8 inner_protocol_type:1;
607 __u8 remcsum_offload:1;
608 /* 3 or 5 bit hole */
610 #ifdef CONFIG_NET_SCHED
611 __u16 tc_index; /* traffic control index */
612 #ifdef CONFIG_NET_CLS_ACT
613 __u16 tc_verd; /* traffic control verdict */
629 #ifdef CONFIG_NET_RX_BUSY_POLL
630 unsigned int napi_id;
632 #ifdef CONFIG_NETWORK_SECMARK
638 __u32 reserved_tailroom;
642 __be16 inner_protocol;
646 __u16 inner_transport_header;
647 __u16 inner_network_header;
648 __u16 inner_mac_header;
651 __u16 transport_header;
652 __u16 network_header;
656 __u32 headers_end[0];
659 /* These elements must be at the end, see alloc_skb() for details. */
664 unsigned int truesize;
670 * Handling routines are only of interest to the kernel
672 #include <linux/slab.h>
675 #define SKB_ALLOC_FCLONE 0x01
676 #define SKB_ALLOC_RX 0x02
677 #define SKB_ALLOC_NAPI 0x04
679 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
680 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
682 return unlikely(skb->pfmemalloc);
686 * skb might have a dst pointer attached, refcounted or not.
687 * _skb_refdst low order bit is set if refcount was _not_ taken
689 #define SKB_DST_NOREF 1UL
690 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
693 * skb_dst - returns skb dst_entry
696 * Returns skb dst_entry, regardless of reference taken or not.
698 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
700 /* If refdst was not refcounted, check we still are in a
701 * rcu_read_lock section
703 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
704 !rcu_read_lock_held() &&
705 !rcu_read_lock_bh_held());
706 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
710 * skb_dst_set - sets skb dst
714 * Sets skb dst, assuming a reference was taken on dst and should
715 * be released by skb_dst_drop()
717 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
719 skb->_skb_refdst = (unsigned long)dst;
723 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
727 * Sets skb dst, assuming a reference was not taken on dst.
728 * If dst entry is cached, we do not take reference and dst_release
729 * will be avoided by refdst_drop. If dst entry is not cached, we take
730 * reference, so that last dst_release can destroy the dst immediately.
732 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
734 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
735 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
739 * skb_dst_is_noref - Test if skb dst isn't refcounted
742 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
744 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
747 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
749 return (struct rtable *)skb_dst(skb);
752 void kfree_skb(struct sk_buff *skb);
753 void kfree_skb_list(struct sk_buff *segs);
754 void skb_tx_error(struct sk_buff *skb);
755 void consume_skb(struct sk_buff *skb);
756 void __kfree_skb(struct sk_buff *skb);
757 extern struct kmem_cache *skbuff_head_cache;
759 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
760 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
761 bool *fragstolen, int *delta_truesize);
763 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
765 struct sk_buff *build_skb(void *data, unsigned int frag_size);
766 static inline struct sk_buff *alloc_skb(unsigned int size,
769 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
772 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
773 unsigned long data_len,
778 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
779 struct sk_buff_fclones {
788 * skb_fclone_busy - check if fclone is busy
791 * Returns true is skb is a fast clone, and its clone is not freed.
792 * Some drivers call skb_orphan() in their ndo_start_xmit(),
793 * so we also check that this didnt happen.
795 static inline bool skb_fclone_busy(const struct sock *sk,
796 const struct sk_buff *skb)
798 const struct sk_buff_fclones *fclones;
800 fclones = container_of(skb, struct sk_buff_fclones, skb1);
802 return skb->fclone == SKB_FCLONE_ORIG &&
803 atomic_read(&fclones->fclone_ref) > 1 &&
804 fclones->skb2.sk == sk;
807 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
810 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
813 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
814 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
816 return __alloc_skb_head(priority, -1);
819 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
820 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
821 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
822 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
823 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
824 gfp_t gfp_mask, bool fclone);
825 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
828 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
831 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
832 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
833 unsigned int headroom);
834 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
835 int newtailroom, gfp_t priority);
836 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
837 int offset, int len);
838 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
840 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
841 int skb_pad(struct sk_buff *skb, int pad);
842 #define dev_kfree_skb(a) consume_skb(a)
844 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
845 int getfrag(void *from, char *to, int offset,
846 int len, int odd, struct sk_buff *skb),
847 void *from, int length);
849 struct skb_seq_state {
853 __u32 stepped_offset;
854 struct sk_buff *root_skb;
855 struct sk_buff *cur_skb;
859 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
860 unsigned int to, struct skb_seq_state *st);
861 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
862 struct skb_seq_state *st);
863 void skb_abort_seq_read(struct skb_seq_state *st);
865 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
866 unsigned int to, struct ts_config *config,
867 struct ts_state *state);
870 * Packet hash types specify the type of hash in skb_set_hash.
872 * Hash types refer to the protocol layer addresses which are used to
873 * construct a packet's hash. The hashes are used to differentiate or identify
874 * flows of the protocol layer for the hash type. Hash types are either
875 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
877 * Properties of hashes:
879 * 1) Two packets in different flows have different hash values
880 * 2) Two packets in the same flow should have the same hash value
882 * A hash at a higher layer is considered to be more specific. A driver should
883 * set the most specific hash possible.
885 * A driver cannot indicate a more specific hash than the layer at which a hash
886 * was computed. For instance an L3 hash cannot be set as an L4 hash.
888 * A driver may indicate a hash level which is less specific than the
889 * actual layer the hash was computed on. For instance, a hash computed
890 * at L4 may be considered an L3 hash. This should only be done if the
891 * driver can't unambiguously determine that the HW computed the hash at
892 * the higher layer. Note that the "should" in the second property above
895 enum pkt_hash_types {
896 PKT_HASH_TYPE_NONE, /* Undefined type */
897 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
898 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
899 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
903 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
905 skb->l4_hash = (type == PKT_HASH_TYPE_L4);
910 void __skb_get_hash(struct sk_buff *skb);
911 static inline __u32 skb_get_hash(struct sk_buff *skb)
913 if (!skb->l4_hash && !skb->sw_hash)
919 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
924 static inline void skb_clear_hash(struct sk_buff *skb)
931 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
937 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
939 to->hash = from->hash;
940 to->sw_hash = from->sw_hash;
941 to->l4_hash = from->l4_hash;
944 #ifdef NET_SKBUFF_DATA_USES_OFFSET
945 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
947 return skb->head + skb->end;
950 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
955 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
960 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
962 return skb->end - skb->head;
967 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
969 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
971 return &skb_shinfo(skb)->hwtstamps;
975 * skb_queue_empty - check if a queue is empty
978 * Returns true if the queue is empty, false otherwise.
980 static inline int skb_queue_empty(const struct sk_buff_head *list)
982 return list->next == (const struct sk_buff *) list;
986 * skb_queue_is_last - check if skb is the last entry in the queue
990 * Returns true if @skb is the last buffer on the list.
992 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
993 const struct sk_buff *skb)
995 return skb->next == (const struct sk_buff *) list;
999 * skb_queue_is_first - check if skb is the first entry in the queue
1003 * Returns true if @skb is the first buffer on the list.
1005 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1006 const struct sk_buff *skb)
1008 return skb->prev == (const struct sk_buff *) list;
1012 * skb_queue_next - return the next packet in the queue
1014 * @skb: current buffer
1016 * Return the next packet in @list after @skb. It is only valid to
1017 * call this if skb_queue_is_last() evaluates to false.
1019 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1020 const struct sk_buff *skb)
1022 /* This BUG_ON may seem severe, but if we just return then we
1023 * are going to dereference garbage.
1025 BUG_ON(skb_queue_is_last(list, skb));
1030 * skb_queue_prev - return the prev packet in the queue
1032 * @skb: current buffer
1034 * Return the prev packet in @list before @skb. It is only valid to
1035 * call this if skb_queue_is_first() evaluates to false.
1037 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1038 const struct sk_buff *skb)
1040 /* This BUG_ON may seem severe, but if we just return then we
1041 * are going to dereference garbage.
1043 BUG_ON(skb_queue_is_first(list, skb));
1048 * skb_get - reference buffer
1049 * @skb: buffer to reference
1051 * Makes another reference to a socket buffer and returns a pointer
1054 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1056 atomic_inc(&skb->users);
1061 * If users == 1, we are the only owner and are can avoid redundant
1066 * skb_cloned - is the buffer a clone
1067 * @skb: buffer to check
1069 * Returns true if the buffer was generated with skb_clone() and is
1070 * one of multiple shared copies of the buffer. Cloned buffers are
1071 * shared data so must not be written to under normal circumstances.
1073 static inline int skb_cloned(const struct sk_buff *skb)
1075 return skb->cloned &&
1076 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1079 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1081 might_sleep_if(pri & __GFP_WAIT);
1083 if (skb_cloned(skb))
1084 return pskb_expand_head(skb, 0, 0, pri);
1090 * skb_header_cloned - is the header a clone
1091 * @skb: buffer to check
1093 * Returns true if modifying the header part of the buffer requires
1094 * the data to be copied.
1096 static inline int skb_header_cloned(const struct sk_buff *skb)
1103 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1104 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1105 return dataref != 1;
1109 * skb_header_release - release reference to header
1110 * @skb: buffer to operate on
1112 * Drop a reference to the header part of the buffer. This is done
1113 * by acquiring a payload reference. You must not read from the header
1114 * part of skb->data after this.
1115 * Note : Check if you can use __skb_header_release() instead.
1117 static inline void skb_header_release(struct sk_buff *skb)
1121 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1125 * __skb_header_release - release reference to header
1126 * @skb: buffer to operate on
1128 * Variant of skb_header_release() assuming skb is private to caller.
1129 * We can avoid one atomic operation.
1131 static inline void __skb_header_release(struct sk_buff *skb)
1134 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1139 * skb_shared - is the buffer shared
1140 * @skb: buffer to check
1142 * Returns true if more than one person has a reference to this
1145 static inline int skb_shared(const struct sk_buff *skb)
1147 return atomic_read(&skb->users) != 1;
1151 * skb_share_check - check if buffer is shared and if so clone it
1152 * @skb: buffer to check
1153 * @pri: priority for memory allocation
1155 * If the buffer is shared the buffer is cloned and the old copy
1156 * drops a reference. A new clone with a single reference is returned.
1157 * If the buffer is not shared the original buffer is returned. When
1158 * being called from interrupt status or with spinlocks held pri must
1161 * NULL is returned on a memory allocation failure.
1163 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1165 might_sleep_if(pri & __GFP_WAIT);
1166 if (skb_shared(skb)) {
1167 struct sk_buff *nskb = skb_clone(skb, pri);
1179 * Copy shared buffers into a new sk_buff. We effectively do COW on
1180 * packets to handle cases where we have a local reader and forward
1181 * and a couple of other messy ones. The normal one is tcpdumping
1182 * a packet thats being forwarded.
1186 * skb_unshare - make a copy of a shared buffer
1187 * @skb: buffer to check
1188 * @pri: priority for memory allocation
1190 * If the socket buffer is a clone then this function creates a new
1191 * copy of the data, drops a reference count on the old copy and returns
1192 * the new copy with the reference count at 1. If the buffer is not a clone
1193 * the original buffer is returned. When called with a spinlock held or
1194 * from interrupt state @pri must be %GFP_ATOMIC
1196 * %NULL is returned on a memory allocation failure.
1198 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1201 might_sleep_if(pri & __GFP_WAIT);
1202 if (skb_cloned(skb)) {
1203 struct sk_buff *nskb = skb_copy(skb, pri);
1205 /* Free our shared copy */
1216 * skb_peek - peek at the head of an &sk_buff_head
1217 * @list_: list to peek at
1219 * Peek an &sk_buff. Unlike most other operations you _MUST_
1220 * be careful with this one. A peek leaves the buffer on the
1221 * list and someone else may run off with it. You must hold
1222 * the appropriate locks or have a private queue to do this.
1224 * Returns %NULL for an empty list or a pointer to the head element.
1225 * The reference count is not incremented and the reference is therefore
1226 * volatile. Use with caution.
1228 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1230 struct sk_buff *skb = list_->next;
1232 if (skb == (struct sk_buff *)list_)
1238 * skb_peek_next - peek skb following the given one from a queue
1239 * @skb: skb to start from
1240 * @list_: list to peek at
1242 * Returns %NULL when the end of the list is met or a pointer to the
1243 * next element. The reference count is not incremented and the
1244 * reference is therefore volatile. Use with caution.
1246 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1247 const struct sk_buff_head *list_)
1249 struct sk_buff *next = skb->next;
1251 if (next == (struct sk_buff *)list_)
1257 * skb_peek_tail - peek at the tail of an &sk_buff_head
1258 * @list_: list to peek at
1260 * Peek an &sk_buff. Unlike most other operations you _MUST_
1261 * be careful with this one. A peek leaves the buffer on the
1262 * list and someone else may run off with it. You must hold
1263 * the appropriate locks or have a private queue to do this.
1265 * Returns %NULL for an empty list or a pointer to the tail element.
1266 * The reference count is not incremented and the reference is therefore
1267 * volatile. Use with caution.
1269 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1271 struct sk_buff *skb = list_->prev;
1273 if (skb == (struct sk_buff *)list_)
1280 * skb_queue_len - get queue length
1281 * @list_: list to measure
1283 * Return the length of an &sk_buff queue.
1285 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1291 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1292 * @list: queue to initialize
1294 * This initializes only the list and queue length aspects of
1295 * an sk_buff_head object. This allows to initialize the list
1296 * aspects of an sk_buff_head without reinitializing things like
1297 * the spinlock. It can also be used for on-stack sk_buff_head
1298 * objects where the spinlock is known to not be used.
1300 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1302 list->prev = list->next = (struct sk_buff *)list;
1307 * This function creates a split out lock class for each invocation;
1308 * this is needed for now since a whole lot of users of the skb-queue
1309 * infrastructure in drivers have different locking usage (in hardirq)
1310 * than the networking core (in softirq only). In the long run either the
1311 * network layer or drivers should need annotation to consolidate the
1312 * main types of usage into 3 classes.
1314 static inline void skb_queue_head_init(struct sk_buff_head *list)
1316 spin_lock_init(&list->lock);
1317 __skb_queue_head_init(list);
1320 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1321 struct lock_class_key *class)
1323 skb_queue_head_init(list);
1324 lockdep_set_class(&list->lock, class);
1328 * Insert an sk_buff on a list.
1330 * The "__skb_xxxx()" functions are the non-atomic ones that
1331 * can only be called with interrupts disabled.
1333 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1334 struct sk_buff_head *list);
1335 static inline void __skb_insert(struct sk_buff *newsk,
1336 struct sk_buff *prev, struct sk_buff *next,
1337 struct sk_buff_head *list)
1341 next->prev = prev->next = newsk;
1345 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1346 struct sk_buff *prev,
1347 struct sk_buff *next)
1349 struct sk_buff *first = list->next;
1350 struct sk_buff *last = list->prev;
1360 * skb_queue_splice - join two skb lists, this is designed for stacks
1361 * @list: the new list to add
1362 * @head: the place to add it in the first list
1364 static inline void skb_queue_splice(const struct sk_buff_head *list,
1365 struct sk_buff_head *head)
1367 if (!skb_queue_empty(list)) {
1368 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1369 head->qlen += list->qlen;
1374 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1375 * @list: the new list to add
1376 * @head: the place to add it in the first list
1378 * The list at @list is reinitialised
1380 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1381 struct sk_buff_head *head)
1383 if (!skb_queue_empty(list)) {
1384 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1385 head->qlen += list->qlen;
1386 __skb_queue_head_init(list);
1391 * skb_queue_splice_tail - join two skb lists, each list being a queue
1392 * @list: the new list to add
1393 * @head: the place to add it in the first list
1395 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1396 struct sk_buff_head *head)
1398 if (!skb_queue_empty(list)) {
1399 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1400 head->qlen += list->qlen;
1405 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1406 * @list: the new list to add
1407 * @head: the place to add it in the first list
1409 * Each of the lists is a queue.
1410 * The list at @list is reinitialised
1412 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1413 struct sk_buff_head *head)
1415 if (!skb_queue_empty(list)) {
1416 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1417 head->qlen += list->qlen;
1418 __skb_queue_head_init(list);
1423 * __skb_queue_after - queue a buffer at the list head
1424 * @list: list to use
1425 * @prev: place after this buffer
1426 * @newsk: buffer to queue
1428 * Queue a buffer int the middle of a list. This function takes no locks
1429 * and you must therefore hold required locks before calling it.
1431 * A buffer cannot be placed on two lists at the same time.
1433 static inline void __skb_queue_after(struct sk_buff_head *list,
1434 struct sk_buff *prev,
1435 struct sk_buff *newsk)
1437 __skb_insert(newsk, prev, prev->next, list);
1440 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1441 struct sk_buff_head *list);
1443 static inline void __skb_queue_before(struct sk_buff_head *list,
1444 struct sk_buff *next,
1445 struct sk_buff *newsk)
1447 __skb_insert(newsk, next->prev, next, list);
1451 * __skb_queue_head - queue a buffer at the list head
1452 * @list: list to use
1453 * @newsk: buffer to queue
1455 * Queue a buffer at the start of a list. This function takes no locks
1456 * and you must therefore hold required locks before calling it.
1458 * A buffer cannot be placed on two lists at the same time.
1460 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1461 static inline void __skb_queue_head(struct sk_buff_head *list,
1462 struct sk_buff *newsk)
1464 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1468 * __skb_queue_tail - queue a buffer at the list tail
1469 * @list: list to use
1470 * @newsk: buffer to queue
1472 * Queue a buffer at the end of a list. This function takes no locks
1473 * and you must therefore hold required locks before calling it.
1475 * A buffer cannot be placed on two lists at the same time.
1477 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1478 static inline void __skb_queue_tail(struct sk_buff_head *list,
1479 struct sk_buff *newsk)
1481 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1485 * remove sk_buff from list. _Must_ be called atomically, and with
1488 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1489 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1491 struct sk_buff *next, *prev;
1496 skb->next = skb->prev = NULL;
1502 * __skb_dequeue - remove from the head of the queue
1503 * @list: list to dequeue from
1505 * Remove the head of the list. This function does not take any locks
1506 * so must be used with appropriate locks held only. The head item is
1507 * returned or %NULL if the list is empty.
1509 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1510 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1512 struct sk_buff *skb = skb_peek(list);
1514 __skb_unlink(skb, list);
1519 * __skb_dequeue_tail - remove from the tail of the queue
1520 * @list: list to dequeue from
1522 * Remove the tail of the list. This function does not take any locks
1523 * so must be used with appropriate locks held only. The tail item is
1524 * returned or %NULL if the list is empty.
1526 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1527 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1529 struct sk_buff *skb = skb_peek_tail(list);
1531 __skb_unlink(skb, list);
1536 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1538 return skb->data_len;
1541 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1543 return skb->len - skb->data_len;
1546 static inline int skb_pagelen(const struct sk_buff *skb)
1550 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1551 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1552 return len + skb_headlen(skb);
1556 * __skb_fill_page_desc - initialise a paged fragment in an skb
1557 * @skb: buffer containing fragment to be initialised
1558 * @i: paged fragment index to initialise
1559 * @page: the page to use for this fragment
1560 * @off: the offset to the data with @page
1561 * @size: the length of the data
1563 * Initialises the @i'th fragment of @skb to point to &size bytes at
1564 * offset @off within @page.
1566 * Does not take any additional reference on the fragment.
1568 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1569 struct page *page, int off, int size)
1571 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1574 * Propagate page->pfmemalloc to the skb if we can. The problem is
1575 * that not all callers have unique ownership of the page. If
1576 * pfmemalloc is set, we check the mapping as a mapping implies
1577 * page->index is set (index and pfmemalloc share space).
1578 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1579 * do not lose pfmemalloc information as the pages would not be
1580 * allocated using __GFP_MEMALLOC.
1582 frag->page.p = page;
1583 frag->page_offset = off;
1584 skb_frag_size_set(frag, size);
1586 page = compound_head(page);
1587 if (page->pfmemalloc && !page->mapping)
1588 skb->pfmemalloc = true;
1592 * skb_fill_page_desc - initialise a paged fragment in an skb
1593 * @skb: buffer containing fragment to be initialised
1594 * @i: paged fragment index to initialise
1595 * @page: the page to use for this fragment
1596 * @off: the offset to the data with @page
1597 * @size: the length of the data
1599 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1600 * @skb to point to @size bytes at offset @off within @page. In
1601 * addition updates @skb such that @i is the last fragment.
1603 * Does not take any additional reference on the fragment.
1605 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1606 struct page *page, int off, int size)
1608 __skb_fill_page_desc(skb, i, page, off, size);
1609 skb_shinfo(skb)->nr_frags = i + 1;
1612 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1613 int size, unsigned int truesize);
1615 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1616 unsigned int truesize);
1618 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1619 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1620 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1622 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1623 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1625 return skb->head + skb->tail;
1628 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1630 skb->tail = skb->data - skb->head;
1633 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1635 skb_reset_tail_pointer(skb);
1636 skb->tail += offset;
1639 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1640 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1645 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1647 skb->tail = skb->data;
1650 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1652 skb->tail = skb->data + offset;
1655 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1658 * Add data to an sk_buff
1660 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1661 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1662 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1664 unsigned char *tmp = skb_tail_pointer(skb);
1665 SKB_LINEAR_ASSERT(skb);
1671 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1672 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1679 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1680 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1683 BUG_ON(skb->len < skb->data_len);
1684 return skb->data += len;
1687 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1689 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1692 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1694 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1696 if (len > skb_headlen(skb) &&
1697 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1700 return skb->data += len;
1703 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1705 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1708 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1710 if (likely(len <= skb_headlen(skb)))
1712 if (unlikely(len > skb->len))
1714 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1718 * skb_headroom - bytes at buffer head
1719 * @skb: buffer to check
1721 * Return the number of bytes of free space at the head of an &sk_buff.
1723 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1725 return skb->data - skb->head;
1729 * skb_tailroom - bytes at buffer end
1730 * @skb: buffer to check
1732 * Return the number of bytes of free space at the tail of an sk_buff
1734 static inline int skb_tailroom(const struct sk_buff *skb)
1736 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1740 * skb_availroom - bytes at buffer end
1741 * @skb: buffer to check
1743 * Return the number of bytes of free space at the tail of an sk_buff
1744 * allocated by sk_stream_alloc()
1746 static inline int skb_availroom(const struct sk_buff *skb)
1748 if (skb_is_nonlinear(skb))
1751 return skb->end - skb->tail - skb->reserved_tailroom;
1755 * skb_reserve - adjust headroom
1756 * @skb: buffer to alter
1757 * @len: bytes to move
1759 * Increase the headroom of an empty &sk_buff by reducing the tail
1760 * room. This is only allowed for an empty buffer.
1762 static inline void skb_reserve(struct sk_buff *skb, int len)
1768 #define ENCAP_TYPE_ETHER 0
1769 #define ENCAP_TYPE_IPPROTO 1
1771 static inline void skb_set_inner_protocol(struct sk_buff *skb,
1774 skb->inner_protocol = protocol;
1775 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1778 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1781 skb->inner_ipproto = ipproto;
1782 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
1785 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1787 skb->inner_mac_header = skb->mac_header;
1788 skb->inner_network_header = skb->network_header;
1789 skb->inner_transport_header = skb->transport_header;
1792 static inline void skb_reset_mac_len(struct sk_buff *skb)
1794 skb->mac_len = skb->network_header - skb->mac_header;
1797 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1800 return skb->head + skb->inner_transport_header;
1803 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1805 skb->inner_transport_header = skb->data - skb->head;
1808 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1811 skb_reset_inner_transport_header(skb);
1812 skb->inner_transport_header += offset;
1815 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1817 return skb->head + skb->inner_network_header;
1820 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1822 skb->inner_network_header = skb->data - skb->head;
1825 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1828 skb_reset_inner_network_header(skb);
1829 skb->inner_network_header += offset;
1832 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1834 return skb->head + skb->inner_mac_header;
1837 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1839 skb->inner_mac_header = skb->data - skb->head;
1842 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1845 skb_reset_inner_mac_header(skb);
1846 skb->inner_mac_header += offset;
1848 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1850 return skb->transport_header != (typeof(skb->transport_header))~0U;
1853 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1855 return skb->head + skb->transport_header;
1858 static inline void skb_reset_transport_header(struct sk_buff *skb)
1860 skb->transport_header = skb->data - skb->head;
1863 static inline void skb_set_transport_header(struct sk_buff *skb,
1866 skb_reset_transport_header(skb);
1867 skb->transport_header += offset;
1870 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1872 return skb->head + skb->network_header;
1875 static inline void skb_reset_network_header(struct sk_buff *skb)
1877 skb->network_header = skb->data - skb->head;
1880 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1882 skb_reset_network_header(skb);
1883 skb->network_header += offset;
1886 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1888 return skb->head + skb->mac_header;
1891 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1893 return skb->mac_header != (typeof(skb->mac_header))~0U;
1896 static inline void skb_reset_mac_header(struct sk_buff *skb)
1898 skb->mac_header = skb->data - skb->head;
1901 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1903 skb_reset_mac_header(skb);
1904 skb->mac_header += offset;
1907 static inline void skb_pop_mac_header(struct sk_buff *skb)
1909 skb->mac_header = skb->network_header;
1912 static inline void skb_probe_transport_header(struct sk_buff *skb,
1913 const int offset_hint)
1915 struct flow_keys keys;
1917 if (skb_transport_header_was_set(skb))
1919 else if (skb_flow_dissect(skb, &keys))
1920 skb_set_transport_header(skb, keys.thoff);
1922 skb_set_transport_header(skb, offset_hint);
1925 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1927 if (skb_mac_header_was_set(skb)) {
1928 const unsigned char *old_mac = skb_mac_header(skb);
1930 skb_set_mac_header(skb, -skb->mac_len);
1931 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1935 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1937 return skb->csum_start - skb_headroom(skb);
1940 static inline int skb_transport_offset(const struct sk_buff *skb)
1942 return skb_transport_header(skb) - skb->data;
1945 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1947 return skb->transport_header - skb->network_header;
1950 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1952 return skb->inner_transport_header - skb->inner_network_header;
1955 static inline int skb_network_offset(const struct sk_buff *skb)
1957 return skb_network_header(skb) - skb->data;
1960 static inline int skb_inner_network_offset(const struct sk_buff *skb)
1962 return skb_inner_network_header(skb) - skb->data;
1965 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1967 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1971 * CPUs often take a performance hit when accessing unaligned memory
1972 * locations. The actual performance hit varies, it can be small if the
1973 * hardware handles it or large if we have to take an exception and fix it
1976 * Since an ethernet header is 14 bytes network drivers often end up with
1977 * the IP header at an unaligned offset. The IP header can be aligned by
1978 * shifting the start of the packet by 2 bytes. Drivers should do this
1981 * skb_reserve(skb, NET_IP_ALIGN);
1983 * The downside to this alignment of the IP header is that the DMA is now
1984 * unaligned. On some architectures the cost of an unaligned DMA is high
1985 * and this cost outweighs the gains made by aligning the IP header.
1987 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1990 #ifndef NET_IP_ALIGN
1991 #define NET_IP_ALIGN 2
1995 * The networking layer reserves some headroom in skb data (via
1996 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1997 * the header has to grow. In the default case, if the header has to grow
1998 * 32 bytes or less we avoid the reallocation.
2000 * Unfortunately this headroom changes the DMA alignment of the resulting
2001 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2002 * on some architectures. An architecture can override this value,
2003 * perhaps setting it to a cacheline in size (since that will maintain
2004 * cacheline alignment of the DMA). It must be a power of 2.
2006 * Various parts of the networking layer expect at least 32 bytes of
2007 * headroom, you should not reduce this.
2009 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2010 * to reduce average number of cache lines per packet.
2011 * get_rps_cpus() for example only access one 64 bytes aligned block :
2012 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2015 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2018 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2020 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2022 if (unlikely(skb_is_nonlinear(skb))) {
2027 skb_set_tail_pointer(skb, len);
2030 void skb_trim(struct sk_buff *skb, unsigned int len);
2032 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2035 return ___pskb_trim(skb, len);
2036 __skb_trim(skb, len);
2040 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2042 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2046 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2047 * @skb: buffer to alter
2050 * This is identical to pskb_trim except that the caller knows that
2051 * the skb is not cloned so we should never get an error due to out-
2054 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2056 int err = pskb_trim(skb, len);
2061 * skb_orphan - orphan a buffer
2062 * @skb: buffer to orphan
2064 * If a buffer currently has an owner then we call the owner's
2065 * destructor function and make the @skb unowned. The buffer continues
2066 * to exist but is no longer charged to its former owner.
2068 static inline void skb_orphan(struct sk_buff *skb)
2070 if (skb->destructor) {
2071 skb->destructor(skb);
2072 skb->destructor = NULL;
2080 * skb_orphan_frags - orphan the frags contained in a buffer
2081 * @skb: buffer to orphan frags from
2082 * @gfp_mask: allocation mask for replacement pages
2084 * For each frag in the SKB which needs a destructor (i.e. has an
2085 * owner) create a copy of that frag and release the original
2086 * page by calling the destructor.
2088 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2090 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2092 return skb_copy_ubufs(skb, gfp_mask);
2096 * __skb_queue_purge - empty a list
2097 * @list: list to empty
2099 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2100 * the list and one reference dropped. This function does not take the
2101 * list lock and the caller must hold the relevant locks to use it.
2103 void skb_queue_purge(struct sk_buff_head *list);
2104 static inline void __skb_queue_purge(struct sk_buff_head *list)
2106 struct sk_buff *skb;
2107 while ((skb = __skb_dequeue(list)) != NULL)
2111 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
2112 #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
2113 #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
2115 void *netdev_alloc_frag(unsigned int fragsz);
2117 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2121 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2122 * @dev: network device to receive on
2123 * @length: length to allocate
2125 * Allocate a new &sk_buff and assign it a usage count of one. The
2126 * buffer has unspecified headroom built in. Users should allocate
2127 * the headroom they think they need without accounting for the
2128 * built in space. The built in space is used for optimisations.
2130 * %NULL is returned if there is no free memory. Although this function
2131 * allocates memory it can be called from an interrupt.
2133 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2134 unsigned int length)
2136 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2139 /* legacy helper around __netdev_alloc_skb() */
2140 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2143 return __netdev_alloc_skb(NULL, length, gfp_mask);
2146 /* legacy helper around netdev_alloc_skb() */
2147 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2149 return netdev_alloc_skb(NULL, length);
2153 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2154 unsigned int length, gfp_t gfp)
2156 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2158 if (NET_IP_ALIGN && skb)
2159 skb_reserve(skb, NET_IP_ALIGN);
2163 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2164 unsigned int length)
2166 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2169 void *napi_alloc_frag(unsigned int fragsz);
2170 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2171 unsigned int length, gfp_t gfp_mask);
2172 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2173 unsigned int length)
2175 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2179 * __dev_alloc_pages - allocate page for network Rx
2180 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2181 * @order: size of the allocation
2183 * Allocate a new page.
2185 * %NULL is returned if there is no free memory.
2187 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2190 /* This piece of code contains several assumptions.
2191 * 1. This is for device Rx, therefor a cold page is preferred.
2192 * 2. The expectation is the user wants a compound page.
2193 * 3. If requesting a order 0 page it will not be compound
2194 * due to the check to see if order has a value in prep_new_page
2195 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2196 * code in gfp_to_alloc_flags that should be enforcing this.
2198 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2200 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2203 static inline struct page *dev_alloc_pages(unsigned int order)
2205 return __dev_alloc_pages(GFP_ATOMIC, order);
2209 * __dev_alloc_page - allocate a page for network Rx
2210 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2212 * Allocate a new page.
2214 * %NULL is returned if there is no free memory.
2216 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2218 return __dev_alloc_pages(gfp_mask, 0);
2221 static inline struct page *dev_alloc_page(void)
2223 return __dev_alloc_page(GFP_ATOMIC);
2227 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2228 * @page: The page that was allocated from skb_alloc_page
2229 * @skb: The skb that may need pfmemalloc set
2231 static inline void skb_propagate_pfmemalloc(struct page *page,
2232 struct sk_buff *skb)
2234 if (page && page->pfmemalloc)
2235 skb->pfmemalloc = true;
2239 * skb_frag_page - retrieve the page referred to by a paged fragment
2240 * @frag: the paged fragment
2242 * Returns the &struct page associated with @frag.
2244 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2246 return frag->page.p;
2250 * __skb_frag_ref - take an addition reference on a paged fragment.
2251 * @frag: the paged fragment
2253 * Takes an additional reference on the paged fragment @frag.
2255 static inline void __skb_frag_ref(skb_frag_t *frag)
2257 get_page(skb_frag_page(frag));
2261 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2263 * @f: the fragment offset.
2265 * Takes an additional reference on the @f'th paged fragment of @skb.
2267 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2269 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2273 * __skb_frag_unref - release a reference on a paged fragment.
2274 * @frag: the paged fragment
2276 * Releases a reference on the paged fragment @frag.
2278 static inline void __skb_frag_unref(skb_frag_t *frag)
2280 put_page(skb_frag_page(frag));
2284 * skb_frag_unref - release a reference on a paged fragment of an skb.
2286 * @f: the fragment offset
2288 * Releases a reference on the @f'th paged fragment of @skb.
2290 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2292 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2296 * skb_frag_address - gets the address of the data contained in a paged fragment
2297 * @frag: the paged fragment buffer
2299 * Returns the address of the data within @frag. The page must already
2302 static inline void *skb_frag_address(const skb_frag_t *frag)
2304 return page_address(skb_frag_page(frag)) + frag->page_offset;
2308 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2309 * @frag: the paged fragment buffer
2311 * Returns the address of the data within @frag. Checks that the page
2312 * is mapped and returns %NULL otherwise.
2314 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2316 void *ptr = page_address(skb_frag_page(frag));
2320 return ptr + frag->page_offset;
2324 * __skb_frag_set_page - sets the page contained in a paged fragment
2325 * @frag: the paged fragment
2326 * @page: the page to set
2328 * Sets the fragment @frag to contain @page.
2330 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2332 frag->page.p = page;
2336 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2338 * @f: the fragment offset
2339 * @page: the page to set
2341 * Sets the @f'th fragment of @skb to contain @page.
2343 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2346 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2349 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2352 * skb_frag_dma_map - maps a paged fragment via the DMA API
2353 * @dev: the device to map the fragment to
2354 * @frag: the paged fragment to map
2355 * @offset: the offset within the fragment (starting at the
2356 * fragment's own offset)
2357 * @size: the number of bytes to map
2358 * @dir: the direction of the mapping (%PCI_DMA_*)
2360 * Maps the page associated with @frag to @device.
2362 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2363 const skb_frag_t *frag,
2364 size_t offset, size_t size,
2365 enum dma_data_direction dir)
2367 return dma_map_page(dev, skb_frag_page(frag),
2368 frag->page_offset + offset, size, dir);
2371 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2374 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2378 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2381 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2386 * skb_clone_writable - is the header of a clone writable
2387 * @skb: buffer to check
2388 * @len: length up to which to write
2390 * Returns true if modifying the header part of the cloned buffer
2391 * does not requires the data to be copied.
2393 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2395 return !skb_header_cloned(skb) &&
2396 skb_headroom(skb) + len <= skb->hdr_len;
2399 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2404 if (headroom > skb_headroom(skb))
2405 delta = headroom - skb_headroom(skb);
2407 if (delta || cloned)
2408 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2414 * skb_cow - copy header of skb when it is required
2415 * @skb: buffer to cow
2416 * @headroom: needed headroom
2418 * If the skb passed lacks sufficient headroom or its data part
2419 * is shared, data is reallocated. If reallocation fails, an error
2420 * is returned and original skb is not changed.
2422 * The result is skb with writable area skb->head...skb->tail
2423 * and at least @headroom of space at head.
2425 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2427 return __skb_cow(skb, headroom, skb_cloned(skb));
2431 * skb_cow_head - skb_cow but only making the head writable
2432 * @skb: buffer to cow
2433 * @headroom: needed headroom
2435 * This function is identical to skb_cow except that we replace the
2436 * skb_cloned check by skb_header_cloned. It should be used when
2437 * you only need to push on some header and do not need to modify
2440 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2442 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2446 * skb_padto - pad an skbuff up to a minimal size
2447 * @skb: buffer to pad
2448 * @len: minimal length
2450 * Pads up a buffer to ensure the trailing bytes exist and are
2451 * blanked. If the buffer already contains sufficient data it
2452 * is untouched. Otherwise it is extended. Returns zero on
2453 * success. The skb is freed on error.
2455 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2457 unsigned int size = skb->len;
2458 if (likely(size >= len))
2460 return skb_pad(skb, len - size);
2464 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2465 * @skb: buffer to pad
2466 * @len: minimal length
2468 * Pads up a buffer to ensure the trailing bytes exist and are
2469 * blanked. If the buffer already contains sufficient data it
2470 * is untouched. Otherwise it is extended. Returns zero on
2471 * success. The skb is freed on error.
2473 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2475 unsigned int size = skb->len;
2477 if (unlikely(size < len)) {
2479 if (skb_pad(skb, len))
2481 __skb_put(skb, len);
2486 static inline int skb_add_data(struct sk_buff *skb,
2487 char __user *from, int copy)
2489 const int off = skb->len;
2491 if (skb->ip_summed == CHECKSUM_NONE) {
2493 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
2496 skb->csum = csum_block_add(skb->csum, csum, off);
2499 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
2502 __skb_trim(skb, off);
2506 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2507 const struct page *page, int off)
2510 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2512 return page == skb_frag_page(frag) &&
2513 off == frag->page_offset + skb_frag_size(frag);
2518 static inline int __skb_linearize(struct sk_buff *skb)
2520 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2524 * skb_linearize - convert paged skb to linear one
2525 * @skb: buffer to linarize
2527 * If there is no free memory -ENOMEM is returned, otherwise zero
2528 * is returned and the old skb data released.
2530 static inline int skb_linearize(struct sk_buff *skb)
2532 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2536 * skb_has_shared_frag - can any frag be overwritten
2537 * @skb: buffer to test
2539 * Return true if the skb has at least one frag that might be modified
2540 * by an external entity (as in vmsplice()/sendfile())
2542 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2544 return skb_is_nonlinear(skb) &&
2545 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2549 * skb_linearize_cow - make sure skb is linear and writable
2550 * @skb: buffer to process
2552 * If there is no free memory -ENOMEM is returned, otherwise zero
2553 * is returned and the old skb data released.
2555 static inline int skb_linearize_cow(struct sk_buff *skb)
2557 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2558 __skb_linearize(skb) : 0;
2562 * skb_postpull_rcsum - update checksum for received skb after pull
2563 * @skb: buffer to update
2564 * @start: start of data before pull
2565 * @len: length of data pulled
2567 * After doing a pull on a received packet, you need to call this to
2568 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2569 * CHECKSUM_NONE so that it can be recomputed from scratch.
2572 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2573 const void *start, unsigned int len)
2575 if (skb->ip_summed == CHECKSUM_COMPLETE)
2576 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2579 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2582 * pskb_trim_rcsum - trim received skb and update checksum
2583 * @skb: buffer to trim
2586 * This is exactly the same as pskb_trim except that it ensures the
2587 * checksum of received packets are still valid after the operation.
2590 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2592 if (likely(len >= skb->len))
2594 if (skb->ip_summed == CHECKSUM_COMPLETE)
2595 skb->ip_summed = CHECKSUM_NONE;
2596 return __pskb_trim(skb, len);
2599 #define skb_queue_walk(queue, skb) \
2600 for (skb = (queue)->next; \
2601 skb != (struct sk_buff *)(queue); \
2604 #define skb_queue_walk_safe(queue, skb, tmp) \
2605 for (skb = (queue)->next, tmp = skb->next; \
2606 skb != (struct sk_buff *)(queue); \
2607 skb = tmp, tmp = skb->next)
2609 #define skb_queue_walk_from(queue, skb) \
2610 for (; skb != (struct sk_buff *)(queue); \
2613 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2614 for (tmp = skb->next; \
2615 skb != (struct sk_buff *)(queue); \
2616 skb = tmp, tmp = skb->next)
2618 #define skb_queue_reverse_walk(queue, skb) \
2619 for (skb = (queue)->prev; \
2620 skb != (struct sk_buff *)(queue); \
2623 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2624 for (skb = (queue)->prev, tmp = skb->prev; \
2625 skb != (struct sk_buff *)(queue); \
2626 skb = tmp, tmp = skb->prev)
2628 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2629 for (tmp = skb->prev; \
2630 skb != (struct sk_buff *)(queue); \
2631 skb = tmp, tmp = skb->prev)
2633 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2635 return skb_shinfo(skb)->frag_list != NULL;
2638 static inline void skb_frag_list_init(struct sk_buff *skb)
2640 skb_shinfo(skb)->frag_list = NULL;
2643 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2645 frag->next = skb_shinfo(skb)->frag_list;
2646 skb_shinfo(skb)->frag_list = frag;
2649 #define skb_walk_frags(skb, iter) \
2650 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2652 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2653 int *peeked, int *off, int *err);
2654 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2656 unsigned int datagram_poll(struct file *file, struct socket *sock,
2657 struct poll_table_struct *wait);
2658 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2659 struct iov_iter *to, int size);
2660 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2661 struct msghdr *msg, int size)
2663 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2665 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2666 struct msghdr *msg);
2667 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2668 struct iov_iter *from, int len);
2669 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2670 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2671 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2672 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2673 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2674 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2675 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2676 int len, __wsum csum);
2677 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
2678 struct pipe_inode_info *pipe, unsigned int len,
2679 unsigned int flags);
2680 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2681 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2682 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2684 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2685 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2686 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2687 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2688 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2689 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2690 int skb_ensure_writable(struct sk_buff *skb, int write_len);
2691 int skb_vlan_pop(struct sk_buff *skb);
2692 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2694 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2696 /* XXX: stripping const */
2697 return memcpy_fromiovec(data, (struct iovec *)msg->msg_iter.iov, len);
2700 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2702 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2705 struct skb_checksum_ops {
2706 __wsum (*update)(const void *mem, int len, __wsum wsum);
2707 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2710 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2711 __wsum csum, const struct skb_checksum_ops *ops);
2712 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2715 static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset,
2716 int len, void *data, int hlen, void *buffer)
2718 if (hlen - offset >= len)
2719 return data + offset;
2722 skb_copy_bits(skb, offset, buffer, len) < 0)
2728 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2729 int len, void *buffer)
2731 return __skb_header_pointer(skb, offset, len, skb->data,
2732 skb_headlen(skb), buffer);
2736 * skb_needs_linearize - check if we need to linearize a given skb
2737 * depending on the given device features.
2738 * @skb: socket buffer to check
2739 * @features: net device features
2741 * Returns true if either:
2742 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2743 * 2. skb is fragmented and the device does not support SG.
2745 static inline bool skb_needs_linearize(struct sk_buff *skb,
2746 netdev_features_t features)
2748 return skb_is_nonlinear(skb) &&
2749 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2750 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2753 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2755 const unsigned int len)
2757 memcpy(to, skb->data, len);
2760 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2761 const int offset, void *to,
2762 const unsigned int len)
2764 memcpy(to, skb->data + offset, len);
2767 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2769 const unsigned int len)
2771 memcpy(skb->data, from, len);
2774 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2777 const unsigned int len)
2779 memcpy(skb->data + offset, from, len);
2782 void skb_init(void);
2784 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2790 * skb_get_timestamp - get timestamp from a skb
2791 * @skb: skb to get stamp from
2792 * @stamp: pointer to struct timeval to store stamp in
2794 * Timestamps are stored in the skb as offsets to a base timestamp.
2795 * This function converts the offset back to a struct timeval and stores
2798 static inline void skb_get_timestamp(const struct sk_buff *skb,
2799 struct timeval *stamp)
2801 *stamp = ktime_to_timeval(skb->tstamp);
2804 static inline void skb_get_timestampns(const struct sk_buff *skb,
2805 struct timespec *stamp)
2807 *stamp = ktime_to_timespec(skb->tstamp);
2810 static inline void __net_timestamp(struct sk_buff *skb)
2812 skb->tstamp = ktime_get_real();
2815 static inline ktime_t net_timedelta(ktime_t t)
2817 return ktime_sub(ktime_get_real(), t);
2820 static inline ktime_t net_invalid_timestamp(void)
2822 return ktime_set(0, 0);
2825 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
2827 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2829 void skb_clone_tx_timestamp(struct sk_buff *skb);
2830 bool skb_defer_rx_timestamp(struct sk_buff *skb);
2832 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2834 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2838 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2843 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2846 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2848 * PHY drivers may accept clones of transmitted packets for
2849 * timestamping via their phy_driver.txtstamp method. These drivers
2850 * must call this function to return the skb back to the stack, with
2851 * or without a timestamp.
2853 * @skb: clone of the the original outgoing packet
2854 * @hwtstamps: hardware time stamps, may be NULL if not available
2857 void skb_complete_tx_timestamp(struct sk_buff *skb,
2858 struct skb_shared_hwtstamps *hwtstamps);
2860 void __skb_tstamp_tx(struct sk_buff *orig_skb,
2861 struct skb_shared_hwtstamps *hwtstamps,
2862 struct sock *sk, int tstype);
2865 * skb_tstamp_tx - queue clone of skb with send time stamps
2866 * @orig_skb: the original outgoing packet
2867 * @hwtstamps: hardware time stamps, may be NULL if not available
2869 * If the skb has a socket associated, then this function clones the
2870 * skb (thus sharing the actual data and optional structures), stores
2871 * the optional hardware time stamping information (if non NULL) or
2872 * generates a software time stamp (otherwise), then queues the clone
2873 * to the error queue of the socket. Errors are silently ignored.
2875 void skb_tstamp_tx(struct sk_buff *orig_skb,
2876 struct skb_shared_hwtstamps *hwtstamps);
2878 static inline void sw_tx_timestamp(struct sk_buff *skb)
2880 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2881 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2882 skb_tstamp_tx(skb, NULL);
2886 * skb_tx_timestamp() - Driver hook for transmit timestamping
2888 * Ethernet MAC Drivers should call this function in their hard_xmit()
2889 * function immediately before giving the sk_buff to the MAC hardware.
2891 * Specifically, one should make absolutely sure that this function is
2892 * called before TX completion of this packet can trigger. Otherwise
2893 * the packet could potentially already be freed.
2895 * @skb: A socket buffer.
2897 static inline void skb_tx_timestamp(struct sk_buff *skb)
2899 skb_clone_tx_timestamp(skb);
2900 sw_tx_timestamp(skb);
2904 * skb_complete_wifi_ack - deliver skb with wifi status
2906 * @skb: the original outgoing packet
2907 * @acked: ack status
2910 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2912 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2913 __sum16 __skb_checksum_complete(struct sk_buff *skb);
2915 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2917 return ((skb->ip_summed & CHECKSUM_UNNECESSARY) || skb->csum_valid);
2921 * skb_checksum_complete - Calculate checksum of an entire packet
2922 * @skb: packet to process
2924 * This function calculates the checksum over the entire packet plus
2925 * the value of skb->csum. The latter can be used to supply the
2926 * checksum of a pseudo header as used by TCP/UDP. It returns the
2929 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2930 * this function can be used to verify that checksum on received
2931 * packets. In that case the function should return zero if the
2932 * checksum is correct. In particular, this function will return zero
2933 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2934 * hardware has already verified the correctness of the checksum.
2936 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2938 return skb_csum_unnecessary(skb) ?
2939 0 : __skb_checksum_complete(skb);
2942 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
2944 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2945 if (skb->csum_level == 0)
2946 skb->ip_summed = CHECKSUM_NONE;
2952 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
2954 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2955 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
2957 } else if (skb->ip_summed == CHECKSUM_NONE) {
2958 skb->ip_summed = CHECKSUM_UNNECESSARY;
2959 skb->csum_level = 0;
2963 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
2965 /* Mark current checksum as bad (typically called from GRO
2966 * path). In the case that ip_summed is CHECKSUM_NONE
2967 * this must be the first checksum encountered in the packet.
2968 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
2969 * checksum after the last one validated. For UDP, a zero
2970 * checksum can not be marked as bad.
2973 if (skb->ip_summed == CHECKSUM_NONE ||
2974 skb->ip_summed == CHECKSUM_UNNECESSARY)
2978 /* Check if we need to perform checksum complete validation.
2980 * Returns true if checksum complete is needed, false otherwise
2981 * (either checksum is unnecessary or zero checksum is allowed).
2983 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
2987 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
2988 skb->csum_valid = 1;
2989 __skb_decr_checksum_unnecessary(skb);
2996 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
2999 #define CHECKSUM_BREAK 76
3001 /* Validate (init) checksum based on checksum complete.
3004 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3005 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3006 * checksum is stored in skb->csum for use in __skb_checksum_complete
3007 * non-zero: value of invalid checksum
3010 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3014 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3015 if (!csum_fold(csum_add(psum, skb->csum))) {
3016 skb->csum_valid = 1;
3019 } else if (skb->csum_bad) {
3020 /* ip_summed == CHECKSUM_NONE in this case */
3026 if (complete || skb->len <= CHECKSUM_BREAK) {
3029 csum = __skb_checksum_complete(skb);
3030 skb->csum_valid = !csum;
3037 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3042 /* Perform checksum validate (init). Note that this is a macro since we only
3043 * want to calculate the pseudo header which is an input function if necessary.
3044 * First we try to validate without any computation (checksum unnecessary) and
3045 * then calculate based on checksum complete calling the function to compute
3049 * 0: checksum is validated or try to in skb_checksum_complete
3050 * non-zero: value of invalid checksum
3052 #define __skb_checksum_validate(skb, proto, complete, \
3053 zero_okay, check, compute_pseudo) \
3055 __sum16 __ret = 0; \
3056 skb->csum_valid = 0; \
3057 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3058 __ret = __skb_checksum_validate_complete(skb, \
3059 complete, compute_pseudo(skb, proto)); \
3063 #define skb_checksum_init(skb, proto, compute_pseudo) \
3064 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3066 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3067 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3069 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3070 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3072 #define skb_checksum_validate_zero_check(skb, proto, check, \
3074 __skb_checksum_validate_(skb, proto, true, true, check, compute_pseudo)
3076 #define skb_checksum_simple_validate(skb) \
3077 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3079 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3081 return (skb->ip_summed == CHECKSUM_NONE &&
3082 skb->csum_valid && !skb->csum_bad);
3085 static inline void __skb_checksum_convert(struct sk_buff *skb,
3086 __sum16 check, __wsum pseudo)
3088 skb->csum = ~pseudo;
3089 skb->ip_summed = CHECKSUM_COMPLETE;
3092 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3094 if (__skb_checksum_convert_check(skb)) \
3095 __skb_checksum_convert(skb, check, \
3096 compute_pseudo(skb, proto)); \
3099 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3100 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3101 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3103 if (nfct && atomic_dec_and_test(&nfct->use))
3104 nf_conntrack_destroy(nfct);
3106 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3109 atomic_inc(&nfct->use);
3112 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3113 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3115 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3118 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3121 atomic_inc(&nf_bridge->use);
3123 #endif /* CONFIG_BRIDGE_NETFILTER */
3124 static inline void nf_reset(struct sk_buff *skb)
3126 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3127 nf_conntrack_put(skb->nfct);
3130 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3131 nf_bridge_put(skb->nf_bridge);
3132 skb->nf_bridge = NULL;
3136 static inline void nf_reset_trace(struct sk_buff *skb)
3138 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3143 /* Note: This doesn't put any conntrack and bridge info in dst. */
3144 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3147 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3148 dst->nfct = src->nfct;
3149 nf_conntrack_get(src->nfct);
3151 dst->nfctinfo = src->nfctinfo;
3153 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3154 dst->nf_bridge = src->nf_bridge;
3155 nf_bridge_get(src->nf_bridge);
3157 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3159 dst->nf_trace = src->nf_trace;
3163 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3165 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3166 nf_conntrack_put(dst->nfct);
3168 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3169 nf_bridge_put(dst->nf_bridge);
3171 __nf_copy(dst, src, true);
3174 #ifdef CONFIG_NETWORK_SECMARK
3175 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3177 to->secmark = from->secmark;
3180 static inline void skb_init_secmark(struct sk_buff *skb)
3185 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3188 static inline void skb_init_secmark(struct sk_buff *skb)
3192 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3194 return !skb->destructor &&
3195 #if IS_ENABLED(CONFIG_XFRM)
3198 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3201 !skb->_skb_refdst &&
3202 !skb_has_frag_list(skb);
3205 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3207 skb->queue_mapping = queue_mapping;
3210 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3212 return skb->queue_mapping;
3215 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3217 to->queue_mapping = from->queue_mapping;
3220 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3222 skb->queue_mapping = rx_queue + 1;
3225 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3227 return skb->queue_mapping - 1;
3230 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3232 return skb->queue_mapping != 0;
3235 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3236 unsigned int num_tx_queues);
3238 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3247 /* Keeps track of mac header offset relative to skb->head.
3248 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3249 * For non-tunnel skb it points to skb_mac_header() and for
3250 * tunnel skb it points to outer mac header.
3251 * Keeps track of level of encapsulation of network headers.
3258 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
3260 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3262 return (skb_mac_header(inner_skb) - inner_skb->head) -
3263 SKB_GSO_CB(inner_skb)->mac_offset;
3266 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3268 int new_headroom, headroom;
3271 headroom = skb_headroom(skb);
3272 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3276 new_headroom = skb_headroom(skb);
3277 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3281 /* Compute the checksum for a gso segment. First compute the checksum value
3282 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3283 * then add in skb->csum (checksum from csum_start to end of packet).
3284 * skb->csum and csum_start are then updated to reflect the checksum of the
3285 * resultant packet starting from the transport header-- the resultant checksum
3286 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3289 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3291 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3292 skb_transport_offset(skb);
3295 csum = csum_fold(csum_partial(skb_transport_header(skb),
3298 SKB_GSO_CB(skb)->csum_start -= plen;
3303 static inline bool skb_is_gso(const struct sk_buff *skb)
3305 return skb_shinfo(skb)->gso_size;
3308 /* Note: Should be called only if skb_is_gso(skb) is true */
3309 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3311 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3314 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3316 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3318 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3319 * wanted then gso_type will be set. */
3320 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3322 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3323 unlikely(shinfo->gso_type == 0)) {
3324 __skb_warn_lro_forwarding(skb);
3330 static inline void skb_forward_csum(struct sk_buff *skb)
3332 /* Unfortunately we don't support this one. Any brave souls? */
3333 if (skb->ip_summed == CHECKSUM_COMPLETE)
3334 skb->ip_summed = CHECKSUM_NONE;
3338 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3339 * @skb: skb to check
3341 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3342 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3343 * use this helper, to document places where we make this assertion.
3345 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3348 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3352 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3354 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3356 u32 skb_get_poff(const struct sk_buff *skb);
3357 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
3358 const struct flow_keys *keys, int hlen);
3361 * skb_head_is_locked - Determine if the skb->head is locked down
3362 * @skb: skb to check
3364 * The head on skbs build around a head frag can be removed if they are
3365 * not cloned. This function returns true if the skb head is locked down
3366 * due to either being allocated via kmalloc, or by being a clone with
3367 * multiple references to the head.
3369 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3371 return !skb->head_frag || skb_cloned(skb);
3375 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3379 * skb_gso_network_seglen is used to determine the real size of the
3380 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3382 * The MAC/L2 header is not accounted for.
3384 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3386 unsigned int hdr_len = skb_transport_header(skb) -
3387 skb_network_header(skb);
3388 return hdr_len + skb_gso_transport_seglen(skb);
3390 #endif /* __KERNEL__ */
3391 #endif /* _LINUX_SKBUFF_H */