]> git.karo-electronics.de Git - mv-sheeva.git/blob - include/net/mac80211.h
Merge branch 'for-linus/i2c-2638' of git://git.fluff.org/bjdooks/linux
[mv-sheeva.git] / include / net / mac80211.h
1 /*
2  * mac80211 <-> driver interface
3  *
4  * Copyright 2002-2005, Devicescape Software, Inc.
5  * Copyright 2006-2007  Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007-2010  Johannes Berg <johannes@sipsolutions.net>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #ifndef MAC80211_H
14 #define MAC80211_H
15
16 #include <linux/kernel.h>
17 #include <linux/if_ether.h>
18 #include <linux/skbuff.h>
19 #include <linux/wireless.h>
20 #include <linux/device.h>
21 #include <linux/ieee80211.h>
22 #include <net/cfg80211.h>
23
24 /**
25  * DOC: Introduction
26  *
27  * mac80211 is the Linux stack for 802.11 hardware that implements
28  * only partial functionality in hard- or firmware. This document
29  * defines the interface between mac80211 and low-level hardware
30  * drivers.
31  */
32
33 /**
34  * DOC: Calling mac80211 from interrupts
35  *
36  * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
37  * called in hardware interrupt context. The low-level driver must not call any
38  * other functions in hardware interrupt context. If there is a need for such
39  * call, the low-level driver should first ACK the interrupt and perform the
40  * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
41  * tasklet function.
42  *
43  * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
44  *       use the non-IRQ-safe functions!
45  */
46
47 /**
48  * DOC: Warning
49  *
50  * If you're reading this document and not the header file itself, it will
51  * be incomplete because not all documentation has been converted yet.
52  */
53
54 /**
55  * DOC: Frame format
56  *
57  * As a general rule, when frames are passed between mac80211 and the driver,
58  * they start with the IEEE 802.11 header and include the same octets that are
59  * sent over the air except for the FCS which should be calculated by the
60  * hardware.
61  *
62  * There are, however, various exceptions to this rule for advanced features:
63  *
64  * The first exception is for hardware encryption and decryption offload
65  * where the IV/ICV may or may not be generated in hardware.
66  *
67  * Secondly, when the hardware handles fragmentation, the frame handed to
68  * the driver from mac80211 is the MSDU, not the MPDU.
69  *
70  * Finally, for received frames, the driver is able to indicate that it has
71  * filled a radiotap header and put that in front of the frame; if it does
72  * not do so then mac80211 may add this under certain circumstances.
73  */
74
75 /**
76  * DOC: mac80211 workqueue
77  *
78  * mac80211 provides its own workqueue for drivers and internal mac80211 use.
79  * The workqueue is a single threaded workqueue and can only be accessed by
80  * helpers for sanity checking. Drivers must ensure all work added onto the
81  * mac80211 workqueue should be cancelled on the driver stop() callback.
82  *
83  * mac80211 will flushed the workqueue upon interface removal and during
84  * suspend.
85  *
86  * All work performed on the mac80211 workqueue must not acquire the RTNL lock.
87  *
88  */
89
90 /**
91  * enum ieee80211_max_queues - maximum number of queues
92  *
93  * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
94  */
95 enum ieee80211_max_queues {
96         IEEE80211_MAX_QUEUES =          4,
97 };
98
99 /**
100  * enum ieee80211_ac_numbers - AC numbers as used in mac80211
101  * @IEEE80211_AC_VO: voice
102  * @IEEE80211_AC_VI: video
103  * @IEEE80211_AC_BE: best effort
104  * @IEEE80211_AC_BK: background
105  */
106 enum ieee80211_ac_numbers {
107         IEEE80211_AC_VO         = 0,
108         IEEE80211_AC_VI         = 1,
109         IEEE80211_AC_BE         = 2,
110         IEEE80211_AC_BK         = 3,
111 };
112
113 /**
114  * struct ieee80211_tx_queue_params - transmit queue configuration
115  *
116  * The information provided in this structure is required for QoS
117  * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
118  *
119  * @aifs: arbitration interframe space [0..255]
120  * @cw_min: minimum contention window [a value of the form
121  *      2^n-1 in the range 1..32767]
122  * @cw_max: maximum contention window [like @cw_min]
123  * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
124  * @uapsd: is U-APSD mode enabled for the queue
125  */
126 struct ieee80211_tx_queue_params {
127         u16 txop;
128         u16 cw_min;
129         u16 cw_max;
130         u8 aifs;
131         bool uapsd;
132 };
133
134 struct ieee80211_low_level_stats {
135         unsigned int dot11ACKFailureCount;
136         unsigned int dot11RTSFailureCount;
137         unsigned int dot11FCSErrorCount;
138         unsigned int dot11RTSSuccessCount;
139 };
140
141 /**
142  * enum ieee80211_bss_change - BSS change notification flags
143  *
144  * These flags are used with the bss_info_changed() callback
145  * to indicate which BSS parameter changed.
146  *
147  * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
148  *      also implies a change in the AID.
149  * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
150  * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
151  * @BSS_CHANGED_ERP_SLOT: slot timing changed
152  * @BSS_CHANGED_HT: 802.11n parameters changed
153  * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
154  * @BSS_CHANGED_BEACON_INT: Beacon interval changed
155  * @BSS_CHANGED_BSSID: BSSID changed, for whatever
156  *      reason (IBSS and managed mode)
157  * @BSS_CHANGED_BEACON: Beacon data changed, retrieve
158  *      new beacon (beaconing modes)
159  * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be
160  *      enabled/disabled (beaconing modes)
161  * @BSS_CHANGED_CQM: Connection quality monitor config changed
162  * @BSS_CHANGED_IBSS: IBSS join status changed
163  * @BSS_CHANGED_ARP_FILTER: Hardware ARP filter address list or state changed.
164  * @BSS_CHANGED_QOS: QoS for this association was enabled/disabled. Note
165  *      that it is only ever disabled for station mode.
166  * @BSS_CHANGED_IDLE: Idle changed for this BSS/interface.
167  */
168 enum ieee80211_bss_change {
169         BSS_CHANGED_ASSOC               = 1<<0,
170         BSS_CHANGED_ERP_CTS_PROT        = 1<<1,
171         BSS_CHANGED_ERP_PREAMBLE        = 1<<2,
172         BSS_CHANGED_ERP_SLOT            = 1<<3,
173         BSS_CHANGED_HT                  = 1<<4,
174         BSS_CHANGED_BASIC_RATES         = 1<<5,
175         BSS_CHANGED_BEACON_INT          = 1<<6,
176         BSS_CHANGED_BSSID               = 1<<7,
177         BSS_CHANGED_BEACON              = 1<<8,
178         BSS_CHANGED_BEACON_ENABLED      = 1<<9,
179         BSS_CHANGED_CQM                 = 1<<10,
180         BSS_CHANGED_IBSS                = 1<<11,
181         BSS_CHANGED_ARP_FILTER          = 1<<12,
182         BSS_CHANGED_QOS                 = 1<<13,
183         BSS_CHANGED_IDLE                = 1<<14,
184
185         /* when adding here, make sure to change ieee80211_reconfig */
186 };
187
188 /*
189  * The maximum number of IPv4 addresses listed for ARP filtering. If the number
190  * of addresses for an interface increase beyond this value, hardware ARP
191  * filtering will be disabled.
192  */
193 #define IEEE80211_BSS_ARP_ADDR_LIST_LEN 4
194
195 /**
196  * struct ieee80211_bss_conf - holds the BSS's changing parameters
197  *
198  * This structure keeps information about a BSS (and an association
199  * to that BSS) that can change during the lifetime of the BSS.
200  *
201  * @assoc: association status
202  * @ibss_joined: indicates whether this station is part of an IBSS
203  *      or not
204  * @aid: association ID number, valid only when @assoc is true
205  * @use_cts_prot: use CTS protection
206  * @use_short_preamble: use 802.11b short preamble;
207  *      if the hardware cannot handle this it must set the
208  *      IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
209  * @use_short_slot: use short slot time (only relevant for ERP);
210  *      if the hardware cannot handle this it must set the
211  *      IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
212  * @dtim_period: num of beacons before the next DTIM, for beaconing,
213  *      valid in station mode only while @assoc is true and if also
214  *      requested by %IEEE80211_HW_NEED_DTIM_PERIOD (cf. also hw conf
215  *      @ps_dtim_period)
216  * @timestamp: beacon timestamp
217  * @beacon_int: beacon interval
218  * @assoc_capability: capabilities taken from assoc resp
219  * @basic_rates: bitmap of basic rates, each bit stands for an
220  *      index into the rate table configured by the driver in
221  *      the current band.
222  * @mcast_rate: per-band multicast rate index + 1 (0: disabled)
223  * @bssid: The BSSID for this BSS
224  * @enable_beacon: whether beaconing should be enabled or not
225  * @channel_type: Channel type for this BSS -- the hardware might be
226  *      configured for HT40+ while this BSS only uses no-HT, for
227  *      example.
228  * @ht_operation_mode: HT operation mode (like in &struct ieee80211_ht_info).
229  *      This field is only valid when the channel type is one of the HT types.
230  * @cqm_rssi_thold: Connection quality monitor RSSI threshold, a zero value
231  *      implies disabled
232  * @cqm_rssi_hyst: Connection quality monitor RSSI hysteresis
233  * @arp_addr_list: List of IPv4 addresses for hardware ARP filtering. The
234  *      may filter ARP queries targeted for other addresses than listed here.
235  *      The driver must allow ARP queries targeted for all address listed here
236  *      to pass through. An empty list implies no ARP queries need to pass.
237  * @arp_addr_cnt: Number of addresses currently on the list.
238  * @arp_filter_enabled: Enable ARP filtering - if enabled, the hardware may
239  *      filter ARP queries based on the @arp_addr_list, if disabled, the
240  *      hardware must not perform any ARP filtering. Note, that the filter will
241  *      be enabled also in promiscuous mode.
242  * @qos: This is a QoS-enabled BSS.
243  * @idle: This interface is idle. There's also a global idle flag in the
244  *      hardware config which may be more appropriate depending on what
245  *      your driver/device needs to do.
246  */
247 struct ieee80211_bss_conf {
248         const u8 *bssid;
249         /* association related data */
250         bool assoc, ibss_joined;
251         u16 aid;
252         /* erp related data */
253         bool use_cts_prot;
254         bool use_short_preamble;
255         bool use_short_slot;
256         bool enable_beacon;
257         u8 dtim_period;
258         u16 beacon_int;
259         u16 assoc_capability;
260         u64 timestamp;
261         u32 basic_rates;
262         int mcast_rate[IEEE80211_NUM_BANDS];
263         u16 ht_operation_mode;
264         s32 cqm_rssi_thold;
265         u32 cqm_rssi_hyst;
266         enum nl80211_channel_type channel_type;
267         __be32 arp_addr_list[IEEE80211_BSS_ARP_ADDR_LIST_LEN];
268         u8 arp_addr_cnt;
269         bool arp_filter_enabled;
270         bool qos;
271         bool idle;
272 };
273
274 /**
275  * enum mac80211_tx_control_flags - flags to describe transmission information/status
276  *
277  * These flags are used with the @flags member of &ieee80211_tx_info.
278  *
279  * @IEEE80211_TX_CTL_REQ_TX_STATUS: require TX status callback for this frame.
280  * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
281  *      number to this frame, taking care of not overwriting the fragment
282  *      number and increasing the sequence number only when the
283  *      IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
284  *      assign sequence numbers to QoS-data frames but cannot do so correctly
285  *      for non-QoS-data and management frames because beacons need them from
286  *      that counter as well and mac80211 cannot guarantee proper sequencing.
287  *      If this flag is set, the driver should instruct the hardware to
288  *      assign a sequence number to the frame or assign one itself. Cf. IEEE
289  *      802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
290  *      beacons and always be clear for frames without a sequence number field.
291  * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
292  * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
293  *      station
294  * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
295  * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
296  * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
297  * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
298  * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
299  *      because the destination STA was in powersave mode. Note that to
300  *      avoid race conditions, the filter must be set by the hardware or
301  *      firmware upon receiving a frame that indicates that the station
302  *      went to sleep (must be done on device to filter frames already on
303  *      the queue) and may only be unset after mac80211 gives the OK for
304  *      that by setting the IEEE80211_TX_CTL_CLEAR_PS_FILT (see above),
305  *      since only then is it guaranteed that no more frames are in the
306  *      hardware queue.
307  * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
308  * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
309  *      is for the whole aggregation.
310  * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
311  *      so consider using block ack request (BAR).
312  * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
313  *      set by rate control algorithms to indicate probe rate, will
314  *      be cleared for fragmented frames (except on the last fragment)
315  * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
316  *      used to indicate that a pending frame requires TX processing before
317  *      it can be sent out.
318  * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211,
319  *      used to indicate that a frame was already retried due to PS
320  * @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211,
321  *      used to indicate frame should not be encrypted
322  * @IEEE80211_TX_CTL_PSPOLL_RESPONSE: (internal?)
323  *      This frame is a response to a PS-poll frame and should be sent
324  *      although the station is in powersave mode.
325  * @IEEE80211_TX_CTL_MORE_FRAMES: More frames will be passed to the
326  *      transmit function after the current frame, this can be used
327  *      by drivers to kick the DMA queue only if unset or when the
328  *      queue gets full.
329  * @IEEE80211_TX_INTFL_RETRANSMISSION: This frame is being retransmitted
330  *      after TX status because the destination was asleep, it must not
331  *      be modified again (no seqno assignment, crypto, etc.)
332  * @IEEE80211_TX_INTFL_HAS_RADIOTAP: This frame was injected and still
333  *      has a radiotap header at skb->data.
334  * @IEEE80211_TX_INTFL_NL80211_FRAME_TX: Frame was requested through nl80211
335  *      MLME command (internal to mac80211 to figure out whether to send TX
336  *      status to user space)
337  * @IEEE80211_TX_CTL_LDPC: tells the driver to use LDPC for this frame
338  * @IEEE80211_TX_CTL_STBC: Enables Space-Time Block Coding (STBC) for this
339  *      frame and selects the maximum number of streams that it can use.
340  *
341  * Note: If you have to add new flags to the enumeration, then don't
342  *       forget to update %IEEE80211_TX_TEMPORARY_FLAGS when necessary.
343  */
344 enum mac80211_tx_control_flags {
345         IEEE80211_TX_CTL_REQ_TX_STATUS          = BIT(0),
346         IEEE80211_TX_CTL_ASSIGN_SEQ             = BIT(1),
347         IEEE80211_TX_CTL_NO_ACK                 = BIT(2),
348         IEEE80211_TX_CTL_CLEAR_PS_FILT          = BIT(3),
349         IEEE80211_TX_CTL_FIRST_FRAGMENT         = BIT(4),
350         IEEE80211_TX_CTL_SEND_AFTER_DTIM        = BIT(5),
351         IEEE80211_TX_CTL_AMPDU                  = BIT(6),
352         IEEE80211_TX_CTL_INJECTED               = BIT(7),
353         IEEE80211_TX_STAT_TX_FILTERED           = BIT(8),
354         IEEE80211_TX_STAT_ACK                   = BIT(9),
355         IEEE80211_TX_STAT_AMPDU                 = BIT(10),
356         IEEE80211_TX_STAT_AMPDU_NO_BACK         = BIT(11),
357         IEEE80211_TX_CTL_RATE_CTRL_PROBE        = BIT(12),
358         IEEE80211_TX_INTFL_NEED_TXPROCESSING    = BIT(14),
359         IEEE80211_TX_INTFL_RETRIED              = BIT(15),
360         IEEE80211_TX_INTFL_DONT_ENCRYPT         = BIT(16),
361         IEEE80211_TX_CTL_PSPOLL_RESPONSE        = BIT(17),
362         IEEE80211_TX_CTL_MORE_FRAMES            = BIT(18),
363         IEEE80211_TX_INTFL_RETRANSMISSION       = BIT(19),
364         IEEE80211_TX_INTFL_HAS_RADIOTAP         = BIT(20),
365         IEEE80211_TX_INTFL_NL80211_FRAME_TX     = BIT(21),
366         IEEE80211_TX_CTL_LDPC                   = BIT(22),
367         IEEE80211_TX_CTL_STBC                   = BIT(23) | BIT(24),
368         IEEE80211_TX_CTL_TX_OFFCHAN             = BIT(25),
369 };
370
371 #define IEEE80211_TX_CTL_STBC_SHIFT             23
372
373 /*
374  * This definition is used as a mask to clear all temporary flags, which are
375  * set by the tx handlers for each transmission attempt by the mac80211 stack.
376  */
377 #define IEEE80211_TX_TEMPORARY_FLAGS (IEEE80211_TX_CTL_NO_ACK |               \
378         IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_CTL_FIRST_FRAGMENT |    \
379         IEEE80211_TX_CTL_SEND_AFTER_DTIM | IEEE80211_TX_CTL_AMPDU |           \
380         IEEE80211_TX_STAT_TX_FILTERED | IEEE80211_TX_STAT_ACK |               \
381         IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_STAT_AMPDU_NO_BACK |           \
382         IEEE80211_TX_CTL_RATE_CTRL_PROBE | IEEE80211_TX_CTL_PSPOLL_RESPONSE | \
383         IEEE80211_TX_CTL_MORE_FRAMES | IEEE80211_TX_CTL_LDPC |                \
384         IEEE80211_TX_CTL_STBC)
385
386 /**
387  * enum mac80211_rate_control_flags - per-rate flags set by the
388  *      Rate Control algorithm.
389  *
390  * These flags are set by the Rate control algorithm for each rate during tx,
391  * in the @flags member of struct ieee80211_tx_rate.
392  *
393  * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
394  * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
395  *      This is set if the current BSS requires ERP protection.
396  * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
397  * @IEEE80211_TX_RC_MCS: HT rate.
398  * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
399  *      Greenfield mode.
400  * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
401  * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
402  *      adjacent 20 MHz channels, if the current channel type is
403  *      NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
404  * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
405  */
406 enum mac80211_rate_control_flags {
407         IEEE80211_TX_RC_USE_RTS_CTS             = BIT(0),
408         IEEE80211_TX_RC_USE_CTS_PROTECT         = BIT(1),
409         IEEE80211_TX_RC_USE_SHORT_PREAMBLE      = BIT(2),
410
411         /* rate index is an MCS rate number instead of an index */
412         IEEE80211_TX_RC_MCS                     = BIT(3),
413         IEEE80211_TX_RC_GREEN_FIELD             = BIT(4),
414         IEEE80211_TX_RC_40_MHZ_WIDTH            = BIT(5),
415         IEEE80211_TX_RC_DUP_DATA                = BIT(6),
416         IEEE80211_TX_RC_SHORT_GI                = BIT(7),
417 };
418
419
420 /* there are 40 bytes if you don't need the rateset to be kept */
421 #define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
422
423 /* if you do need the rateset, then you have less space */
424 #define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
425
426 /* maximum number of rate stages */
427 #define IEEE80211_TX_MAX_RATES  5
428
429 /**
430  * struct ieee80211_tx_rate - rate selection/status
431  *
432  * @idx: rate index to attempt to send with
433  * @flags: rate control flags (&enum mac80211_rate_control_flags)
434  * @count: number of tries in this rate before going to the next rate
435  *
436  * A value of -1 for @idx indicates an invalid rate and, if used
437  * in an array of retry rates, that no more rates should be tried.
438  *
439  * When used for transmit status reporting, the driver should
440  * always report the rate along with the flags it used.
441  *
442  * &struct ieee80211_tx_info contains an array of these structs
443  * in the control information, and it will be filled by the rate
444  * control algorithm according to what should be sent. For example,
445  * if this array contains, in the format { <idx>, <count> } the
446  * information
447  *    { 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 }
448  * then this means that the frame should be transmitted
449  * up to twice at rate 3, up to twice at rate 2, and up to four
450  * times at rate 1 if it doesn't get acknowledged. Say it gets
451  * acknowledged by the peer after the fifth attempt, the status
452  * information should then contain
453  *   { 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ...
454  * since it was transmitted twice at rate 3, twice at rate 2
455  * and once at rate 1 after which we received an acknowledgement.
456  */
457 struct ieee80211_tx_rate {
458         s8 idx;
459         u8 count;
460         u8 flags;
461 } __packed;
462
463 /**
464  * struct ieee80211_tx_info - skb transmit information
465  *
466  * This structure is placed in skb->cb for three uses:
467  *  (1) mac80211 TX control - mac80211 tells the driver what to do
468  *  (2) driver internal use (if applicable)
469  *  (3) TX status information - driver tells mac80211 what happened
470  *
471  * The TX control's sta pointer is only valid during the ->tx call,
472  * it may be NULL.
473  *
474  * @flags: transmit info flags, defined above
475  * @band: the band to transmit on (use for checking for races)
476  * @antenna_sel_tx: antenna to use, 0 for automatic diversity
477  * @pad: padding, ignore
478  * @control: union for control data
479  * @status: union for status data
480  * @driver_data: array of driver_data pointers
481  * @ampdu_ack_len: number of acked aggregated frames.
482  *      relevant only if IEEE80211_TX_STAT_AMPDU was set.
483  * @ampdu_len: number of aggregated frames.
484  *      relevant only if IEEE80211_TX_STAT_AMPDU was set.
485  * @ack_signal: signal strength of the ACK frame
486  */
487 struct ieee80211_tx_info {
488         /* common information */
489         u32 flags;
490         u8 band;
491
492         u8 antenna_sel_tx;
493
494         /* 2 byte hole */
495         u8 pad[2];
496
497         union {
498                 struct {
499                         union {
500                                 /* rate control */
501                                 struct {
502                                         struct ieee80211_tx_rate rates[
503                                                 IEEE80211_TX_MAX_RATES];
504                                         s8 rts_cts_rate_idx;
505                                 };
506                                 /* only needed before rate control */
507                                 unsigned long jiffies;
508                         };
509                         /* NB: vif can be NULL for injected frames */
510                         struct ieee80211_vif *vif;
511                         struct ieee80211_key_conf *hw_key;
512                         struct ieee80211_sta *sta;
513                 } control;
514                 struct {
515                         struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
516                         u8 ampdu_ack_len;
517                         int ack_signal;
518                         u8 ampdu_len;
519                         /* 15 bytes free */
520                 } status;
521                 struct {
522                         struct ieee80211_tx_rate driver_rates[
523                                 IEEE80211_TX_MAX_RATES];
524                         void *rate_driver_data[
525                                 IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
526                 };
527                 void *driver_data[
528                         IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
529         };
530 };
531
532 static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
533 {
534         return (struct ieee80211_tx_info *)skb->cb;
535 }
536
537 static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb)
538 {
539         return (struct ieee80211_rx_status *)skb->cb;
540 }
541
542 /**
543  * ieee80211_tx_info_clear_status - clear TX status
544  *
545  * @info: The &struct ieee80211_tx_info to be cleared.
546  *
547  * When the driver passes an skb back to mac80211, it must report
548  * a number of things in TX status. This function clears everything
549  * in the TX status but the rate control information (it does clear
550  * the count since you need to fill that in anyway).
551  *
552  * NOTE: You can only use this function if you do NOT use
553  *       info->driver_data! Use info->rate_driver_data
554  *       instead if you need only the less space that allows.
555  */
556 static inline void
557 ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
558 {
559         int i;
560
561         BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
562                      offsetof(struct ieee80211_tx_info, control.rates));
563         BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
564                      offsetof(struct ieee80211_tx_info, driver_rates));
565         BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
566         /* clear the rate counts */
567         for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
568                 info->status.rates[i].count = 0;
569
570         BUILD_BUG_ON(
571             offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
572         memset(&info->status.ampdu_ack_len, 0,
573                sizeof(struct ieee80211_tx_info) -
574                offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
575 }
576
577
578 /**
579  * enum mac80211_rx_flags - receive flags
580  *
581  * These flags are used with the @flag member of &struct ieee80211_rx_status.
582  * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
583  *      Use together with %RX_FLAG_MMIC_STRIPPED.
584  * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
585  * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
586  *      verification has been done by the hardware.
587  * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
588  *      If this flag is set, the stack cannot do any replay detection
589  *      hence the driver or hardware will have to do that.
590  * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
591  *      the frame.
592  * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
593  *      the frame.
594  * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
595  *      is valid. This is useful in monitor mode and necessary for beacon frames
596  *      to enable IBSS merging.
597  * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
598  * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
599  * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
600  * @RX_FLAG_SHORT_GI: Short guard interval was used
601  */
602 enum mac80211_rx_flags {
603         RX_FLAG_MMIC_ERROR      = 1<<0,
604         RX_FLAG_DECRYPTED       = 1<<1,
605         RX_FLAG_MMIC_STRIPPED   = 1<<3,
606         RX_FLAG_IV_STRIPPED     = 1<<4,
607         RX_FLAG_FAILED_FCS_CRC  = 1<<5,
608         RX_FLAG_FAILED_PLCP_CRC = 1<<6,
609         RX_FLAG_TSFT            = 1<<7,
610         RX_FLAG_SHORTPRE        = 1<<8,
611         RX_FLAG_HT              = 1<<9,
612         RX_FLAG_40MHZ           = 1<<10,
613         RX_FLAG_SHORT_GI        = 1<<11,
614 };
615
616 /**
617  * struct ieee80211_rx_status - receive status
618  *
619  * The low-level driver should provide this information (the subset
620  * supported by hardware) to the 802.11 code with each received
621  * frame, in the skb's control buffer (cb).
622  *
623  * @mactime: value in microseconds of the 64-bit Time Synchronization Function
624  *      (TSF) timer when the first data symbol (MPDU) arrived at the hardware.
625  * @band: the active band when this frame was received
626  * @freq: frequency the radio was tuned to when receiving this frame, in MHz
627  * @signal: signal strength when receiving this frame, either in dBm, in dB or
628  *      unspecified depending on the hardware capabilities flags
629  *      @IEEE80211_HW_SIGNAL_*
630  * @antenna: antenna used
631  * @rate_idx: index of data rate into band's supported rates or MCS index if
632  *      HT rates are use (RX_FLAG_HT)
633  * @flag: %RX_FLAG_*
634  * @rx_flags: internal RX flags for mac80211
635  */
636 struct ieee80211_rx_status {
637         u64 mactime;
638         enum ieee80211_band band;
639         int freq;
640         int signal;
641         int antenna;
642         int rate_idx;
643         int flag;
644         unsigned int rx_flags;
645 };
646
647 /**
648  * enum ieee80211_conf_flags - configuration flags
649  *
650  * Flags to define PHY configuration options
651  *
652  * @IEEE80211_CONF_MONITOR: there's a monitor interface present -- use this
653  *      to determine for example whether to calculate timestamps for packets
654  *      or not, do not use instead of filter flags!
655  * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only).
656  *      This is the power save mode defined by IEEE 802.11-2007 section 11.2,
657  *      meaning that the hardware still wakes up for beacons, is able to
658  *      transmit frames and receive the possible acknowledgment frames.
659  *      Not to be confused with hardware specific wakeup/sleep states,
660  *      driver is responsible for that. See the section "Powersave support"
661  *      for more.
662  * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set
663  *      the driver should be prepared to handle configuration requests but
664  *      may turn the device off as much as possible. Typically, this flag will
665  *      be set when an interface is set UP but not associated or scanning, but
666  *      it can also be unset in that case when monitor interfaces are active.
667  * @IEEE80211_CONF_OFFCHANNEL: The device is currently not on its main
668  *      operating channel.
669  */
670 enum ieee80211_conf_flags {
671         IEEE80211_CONF_MONITOR          = (1<<0),
672         IEEE80211_CONF_PS               = (1<<1),
673         IEEE80211_CONF_IDLE             = (1<<2),
674         IEEE80211_CONF_OFFCHANNEL       = (1<<3),
675 };
676
677
678 /**
679  * enum ieee80211_conf_changed - denotes which configuration changed
680  *
681  * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
682  * @IEEE80211_CONF_CHANGE_MONITOR: the monitor flag changed
683  * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
684  * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
685  * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
686  * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
687  * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed
688  * @IEEE80211_CONF_CHANGE_SMPS: Spatial multiplexing powersave mode changed
689  */
690 enum ieee80211_conf_changed {
691         IEEE80211_CONF_CHANGE_SMPS              = BIT(1),
692         IEEE80211_CONF_CHANGE_LISTEN_INTERVAL   = BIT(2),
693         IEEE80211_CONF_CHANGE_MONITOR           = BIT(3),
694         IEEE80211_CONF_CHANGE_PS                = BIT(4),
695         IEEE80211_CONF_CHANGE_POWER             = BIT(5),
696         IEEE80211_CONF_CHANGE_CHANNEL           = BIT(6),
697         IEEE80211_CONF_CHANGE_RETRY_LIMITS      = BIT(7),
698         IEEE80211_CONF_CHANGE_IDLE              = BIT(8),
699 };
700
701 /**
702  * enum ieee80211_smps_mode - spatial multiplexing power save mode
703  *
704  * @IEEE80211_SMPS_AUTOMATIC: automatic
705  * @IEEE80211_SMPS_OFF: off
706  * @IEEE80211_SMPS_STATIC: static
707  * @IEEE80211_SMPS_DYNAMIC: dynamic
708  * @IEEE80211_SMPS_NUM_MODES: internal, don't use
709  */
710 enum ieee80211_smps_mode {
711         IEEE80211_SMPS_AUTOMATIC,
712         IEEE80211_SMPS_OFF,
713         IEEE80211_SMPS_STATIC,
714         IEEE80211_SMPS_DYNAMIC,
715
716         /* keep last */
717         IEEE80211_SMPS_NUM_MODES,
718 };
719
720 /**
721  * struct ieee80211_conf - configuration of the device
722  *
723  * This struct indicates how the driver shall configure the hardware.
724  *
725  * @flags: configuration flags defined above
726  *
727  * @listen_interval: listen interval in units of beacon interval
728  * @max_sleep_period: the maximum number of beacon intervals to sleep for
729  *      before checking the beacon for a TIM bit (managed mode only); this
730  *      value will be only achievable between DTIM frames, the hardware
731  *      needs to check for the multicast traffic bit in DTIM beacons.
732  *      This variable is valid only when the CONF_PS flag is set.
733  * @ps_dtim_period: The DTIM period of the AP we're connected to, for use
734  *      in power saving. Power saving will not be enabled until a beacon
735  *      has been received and the DTIM period is known.
736  * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the
737  *      powersave documentation below. This variable is valid only when
738  *      the CONF_PS flag is set.
739  *
740  * @power_level: requested transmit power (in dBm)
741  *
742  * @channel: the channel to tune to
743  * @channel_type: the channel (HT) type
744  *
745  * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
746  *    (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
747  *    but actually means the number of transmissions not the number of retries
748  * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
749  *    frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
750  *    number of transmissions not the number of retries
751  *
752  * @smps_mode: spatial multiplexing powersave mode; note that
753  *      %IEEE80211_SMPS_STATIC is used when the device is not
754  *      configured for an HT channel
755  */
756 struct ieee80211_conf {
757         u32 flags;
758         int power_level, dynamic_ps_timeout;
759         int max_sleep_period;
760
761         u16 listen_interval;
762         u8 ps_dtim_period;
763
764         u8 long_frame_max_tx_count, short_frame_max_tx_count;
765
766         struct ieee80211_channel *channel;
767         enum nl80211_channel_type channel_type;
768         enum ieee80211_smps_mode smps_mode;
769 };
770
771 /**
772  * struct ieee80211_channel_switch - holds the channel switch data
773  *
774  * The information provided in this structure is required for channel switch
775  * operation.
776  *
777  * @timestamp: value in microseconds of the 64-bit Time Synchronization
778  *      Function (TSF) timer when the frame containing the channel switch
779  *      announcement was received. This is simply the rx.mactime parameter
780  *      the driver passed into mac80211.
781  * @block_tx: Indicates whether transmission must be blocked before the
782  *      scheduled channel switch, as indicated by the AP.
783  * @channel: the new channel to switch to
784  * @count: the number of TBTT's until the channel switch event
785  */
786 struct ieee80211_channel_switch {
787         u64 timestamp;
788         bool block_tx;
789         struct ieee80211_channel *channel;
790         u8 count;
791 };
792
793 /**
794  * struct ieee80211_vif - per-interface data
795  *
796  * Data in this structure is continually present for driver
797  * use during the life of a virtual interface.
798  *
799  * @type: type of this virtual interface
800  * @bss_conf: BSS configuration for this interface, either our own
801  *      or the BSS we're associated to
802  * @addr: address of this interface
803  * @p2p: indicates whether this AP or STA interface is a p2p
804  *      interface, i.e. a GO or p2p-sta respectively
805  * @drv_priv: data area for driver use, will always be aligned to
806  *      sizeof(void *).
807  */
808 struct ieee80211_vif {
809         enum nl80211_iftype type;
810         struct ieee80211_bss_conf bss_conf;
811         u8 addr[ETH_ALEN];
812         bool p2p;
813         /* must be last */
814         u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
815 };
816
817 static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
818 {
819 #ifdef CONFIG_MAC80211_MESH
820         return vif->type == NL80211_IFTYPE_MESH_POINT;
821 #endif
822         return false;
823 }
824
825 /**
826  * enum ieee80211_key_flags - key flags
827  *
828  * These flags are used for communication about keys between the driver
829  * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
830  *
831  * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
832  *      that the STA this key will be used with could be using QoS.
833  * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
834  *      driver to indicate that it requires IV generation for this
835  *      particular key.
836  * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
837  *      the driver for a TKIP key if it requires Michael MIC
838  *      generation in software.
839  * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
840  *      that the key is pairwise rather then a shared key.
841  * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
842  *      CCMP key if it requires CCMP encryption of management frames (MFP) to
843  *      be done in software.
844  */
845 enum ieee80211_key_flags {
846         IEEE80211_KEY_FLAG_WMM_STA      = 1<<0,
847         IEEE80211_KEY_FLAG_GENERATE_IV  = 1<<1,
848         IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
849         IEEE80211_KEY_FLAG_PAIRWISE     = 1<<3,
850         IEEE80211_KEY_FLAG_SW_MGMT      = 1<<4,
851 };
852
853 /**
854  * struct ieee80211_key_conf - key information
855  *
856  * This key information is given by mac80211 to the driver by
857  * the set_key() callback in &struct ieee80211_ops.
858  *
859  * @hw_key_idx: To be set by the driver, this is the key index the driver
860  *      wants to be given when a frame is transmitted and needs to be
861  *      encrypted in hardware.
862  * @cipher: The key's cipher suite selector.
863  * @flags: key flags, see &enum ieee80211_key_flags.
864  * @keyidx: the key index (0-3)
865  * @keylen: key material length
866  * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
867  *      data block:
868  *      - Temporal Encryption Key (128 bits)
869  *      - Temporal Authenticator Tx MIC Key (64 bits)
870  *      - Temporal Authenticator Rx MIC Key (64 bits)
871  * @icv_len: The ICV length for this key type
872  * @iv_len: The IV length for this key type
873  */
874 struct ieee80211_key_conf {
875         u32 cipher;
876         u8 icv_len;
877         u8 iv_len;
878         u8 hw_key_idx;
879         u8 flags;
880         s8 keyidx;
881         u8 keylen;
882         u8 key[0];
883 };
884
885 /**
886  * enum set_key_cmd - key command
887  *
888  * Used with the set_key() callback in &struct ieee80211_ops, this
889  * indicates whether a key is being removed or added.
890  *
891  * @SET_KEY: a key is set
892  * @DISABLE_KEY: a key must be disabled
893  */
894 enum set_key_cmd {
895         SET_KEY, DISABLE_KEY,
896 };
897
898 /**
899  * struct ieee80211_sta - station table entry
900  *
901  * A station table entry represents a station we are possibly
902  * communicating with. Since stations are RCU-managed in
903  * mac80211, any ieee80211_sta pointer you get access to must
904  * either be protected by rcu_read_lock() explicitly or implicitly,
905  * or you must take good care to not use such a pointer after a
906  * call to your sta_remove callback that removed it.
907  *
908  * @addr: MAC address
909  * @aid: AID we assigned to the station if we're an AP
910  * @supp_rates: Bitmap of supported rates (per band)
911  * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
912  * @drv_priv: data area for driver use, will always be aligned to
913  *      sizeof(void *), size is determined in hw information.
914  */
915 struct ieee80211_sta {
916         u32 supp_rates[IEEE80211_NUM_BANDS];
917         u8 addr[ETH_ALEN];
918         u16 aid;
919         struct ieee80211_sta_ht_cap ht_cap;
920
921         /* must be last */
922         u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
923 };
924
925 /**
926  * enum sta_notify_cmd - sta notify command
927  *
928  * Used with the sta_notify() callback in &struct ieee80211_ops, this
929  * indicates if an associated station made a power state transition.
930  *
931  * @STA_NOTIFY_SLEEP: a station is now sleeping
932  * @STA_NOTIFY_AWAKE: a sleeping station woke up
933  */
934 enum sta_notify_cmd {
935         STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
936 };
937
938 /**
939  * enum ieee80211_tkip_key_type - get tkip key
940  *
941  * Used by drivers which need to get a tkip key for skb. Some drivers need a
942  * phase 1 key, others need a phase 2 key. A single function allows the driver
943  * to get the key, this enum indicates what type of key is required.
944  *
945  * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
946  * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
947  */
948 enum ieee80211_tkip_key_type {
949         IEEE80211_TKIP_P1_KEY,
950         IEEE80211_TKIP_P2_KEY,
951 };
952
953 /**
954  * enum ieee80211_hw_flags - hardware flags
955  *
956  * These flags are used to indicate hardware capabilities to
957  * the stack. Generally, flags here should have their meaning
958  * done in a way that the simplest hardware doesn't need setting
959  * any particular flags. There are some exceptions to this rule,
960  * however, so you are advised to review these flags carefully.
961  *
962  * @IEEE80211_HW_HAS_RATE_CONTROL:
963  *      The hardware or firmware includes rate control, and cannot be
964  *      controlled by the stack. As such, no rate control algorithm
965  *      should be instantiated, and the TX rate reported to userspace
966  *      will be taken from the TX status instead of the rate control
967  *      algorithm.
968  *      Note that this requires that the driver implement a number of
969  *      callbacks so it has the correct information, it needs to have
970  *      the @set_rts_threshold callback and must look at the BSS config
971  *      @use_cts_prot for G/N protection, @use_short_slot for slot
972  *      timing in 2.4 GHz and @use_short_preamble for preambles for
973  *      CCK frames.
974  *
975  * @IEEE80211_HW_RX_INCLUDES_FCS:
976  *      Indicates that received frames passed to the stack include
977  *      the FCS at the end.
978  *
979  * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
980  *      Some wireless LAN chipsets buffer broadcast/multicast frames
981  *      for power saving stations in the hardware/firmware and others
982  *      rely on the host system for such buffering. This option is used
983  *      to configure the IEEE 802.11 upper layer to buffer broadcast and
984  *      multicast frames when there are power saving stations so that
985  *      the driver can fetch them with ieee80211_get_buffered_bc().
986  *
987  * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
988  *      Hardware is not capable of short slot operation on the 2.4 GHz band.
989  *
990  * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
991  *      Hardware is not capable of receiving frames with short preamble on
992  *      the 2.4 GHz band.
993  *
994  * @IEEE80211_HW_SIGNAL_UNSPEC:
995  *      Hardware can provide signal values but we don't know its units. We
996  *      expect values between 0 and @max_signal.
997  *      If possible please provide dB or dBm instead.
998  *
999  * @IEEE80211_HW_SIGNAL_DBM:
1000  *      Hardware gives signal values in dBm, decibel difference from
1001  *      one milliwatt. This is the preferred method since it is standardized
1002  *      between different devices. @max_signal does not need to be set.
1003  *
1004  * @IEEE80211_HW_SPECTRUM_MGMT:
1005  *      Hardware supports spectrum management defined in 802.11h
1006  *      Measurement, Channel Switch, Quieting, TPC
1007  *
1008  * @IEEE80211_HW_AMPDU_AGGREGATION:
1009  *      Hardware supports 11n A-MPDU aggregation.
1010  *
1011  * @IEEE80211_HW_SUPPORTS_PS:
1012  *      Hardware has power save support (i.e. can go to sleep).
1013  *
1014  * @IEEE80211_HW_PS_NULLFUNC_STACK:
1015  *      Hardware requires nullfunc frame handling in stack, implies
1016  *      stack support for dynamic PS.
1017  *
1018  * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
1019  *      Hardware has support for dynamic PS.
1020  *
1021  * @IEEE80211_HW_MFP_CAPABLE:
1022  *      Hardware supports management frame protection (MFP, IEEE 802.11w).
1023  *
1024  * @IEEE80211_HW_BEACON_FILTER:
1025  *      Hardware supports dropping of irrelevant beacon frames to
1026  *      avoid waking up cpu.
1027  *
1028  * @IEEE80211_HW_SUPPORTS_STATIC_SMPS:
1029  *      Hardware supports static spatial multiplexing powersave,
1030  *      ie. can turn off all but one chain even on HT connections
1031  *      that should be using more chains.
1032  *
1033  * @IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS:
1034  *      Hardware supports dynamic spatial multiplexing powersave,
1035  *      ie. can turn off all but one chain and then wake the rest
1036  *      up as required after, for example, rts/cts handshake.
1037  *
1038  * @IEEE80211_HW_SUPPORTS_UAPSD:
1039  *      Hardware supports Unscheduled Automatic Power Save Delivery
1040  *      (U-APSD) in managed mode. The mode is configured with
1041  *      conf_tx() operation.
1042  *
1043  * @IEEE80211_HW_REPORTS_TX_ACK_STATUS:
1044  *      Hardware can provide ack status reports of Tx frames to
1045  *      the stack.
1046  *
1047  * @IEEE80211_HW_CONNECTION_MONITOR:
1048  *      The hardware performs its own connection monitoring, including
1049  *      periodic keep-alives to the AP and probing the AP on beacon loss.
1050  *      When this flag is set, signaling beacon-loss will cause an immediate
1051  *      change to disassociated state.
1052  *
1053  * @IEEE80211_HW_SUPPORTS_CQM_RSSI:
1054  *      Hardware can do connection quality monitoring - i.e. it can monitor
1055  *      connection quality related parameters, such as the RSSI level and
1056  *      provide notifications if configured trigger levels are reached.
1057  *
1058  * @IEEE80211_HW_NEED_DTIM_PERIOD:
1059  *      This device needs to know the DTIM period for the BSS before
1060  *      associating.
1061  *
1062  * @IEEE80211_HW_SUPPORTS_PER_STA_GTK: The device's crypto engine supports
1063  *      per-station GTKs as used by IBSS RSN or during fast transition. If
1064  *      the device doesn't support per-station GTKs, but can be asked not
1065  *      to decrypt group addressed frames, then IBSS RSN support is still
1066  *      possible but software crypto will be used. Advertise the wiphy flag
1067  *      only in that case.
1068  */
1069 enum ieee80211_hw_flags {
1070         IEEE80211_HW_HAS_RATE_CONTROL                   = 1<<0,
1071         IEEE80211_HW_RX_INCLUDES_FCS                    = 1<<1,
1072         IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING        = 1<<2,
1073         IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE          = 1<<3,
1074         IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE      = 1<<4,
1075         IEEE80211_HW_SIGNAL_UNSPEC                      = 1<<5,
1076         IEEE80211_HW_SIGNAL_DBM                         = 1<<6,
1077         IEEE80211_HW_NEED_DTIM_PERIOD                   = 1<<7,
1078         IEEE80211_HW_SPECTRUM_MGMT                      = 1<<8,
1079         IEEE80211_HW_AMPDU_AGGREGATION                  = 1<<9,
1080         IEEE80211_HW_SUPPORTS_PS                        = 1<<10,
1081         IEEE80211_HW_PS_NULLFUNC_STACK                  = 1<<11,
1082         IEEE80211_HW_SUPPORTS_DYNAMIC_PS                = 1<<12,
1083         IEEE80211_HW_MFP_CAPABLE                        = 1<<13,
1084         IEEE80211_HW_BEACON_FILTER                      = 1<<14,
1085         IEEE80211_HW_SUPPORTS_STATIC_SMPS               = 1<<15,
1086         IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS              = 1<<16,
1087         IEEE80211_HW_SUPPORTS_UAPSD                     = 1<<17,
1088         IEEE80211_HW_REPORTS_TX_ACK_STATUS              = 1<<18,
1089         IEEE80211_HW_CONNECTION_MONITOR                 = 1<<19,
1090         IEEE80211_HW_SUPPORTS_CQM_RSSI                  = 1<<20,
1091         IEEE80211_HW_SUPPORTS_PER_STA_GTK               = 1<<21,
1092 };
1093
1094 /**
1095  * struct ieee80211_hw - hardware information and state
1096  *
1097  * This structure contains the configuration and hardware
1098  * information for an 802.11 PHY.
1099  *
1100  * @wiphy: This points to the &struct wiphy allocated for this
1101  *      802.11 PHY. You must fill in the @perm_addr and @dev
1102  *      members of this structure using SET_IEEE80211_DEV()
1103  *      and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
1104  *      bands (with channels, bitrates) are registered here.
1105  *
1106  * @conf: &struct ieee80211_conf, device configuration, don't use.
1107  *
1108  * @priv: pointer to private area that was allocated for driver use
1109  *      along with this structure.
1110  *
1111  * @flags: hardware flags, see &enum ieee80211_hw_flags.
1112  *
1113  * @extra_tx_headroom: headroom to reserve in each transmit skb
1114  *      for use by the driver (e.g. for transmit headers.)
1115  *
1116  * @channel_change_time: time (in microseconds) it takes to change channels.
1117  *
1118  * @max_signal: Maximum value for signal (rssi) in RX information, used
1119  *     only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
1120  *
1121  * @max_listen_interval: max listen interval in units of beacon interval
1122  *     that HW supports
1123  *
1124  * @queues: number of available hardware transmit queues for
1125  *      data packets. WMM/QoS requires at least four, these
1126  *      queues need to have configurable access parameters.
1127  *
1128  * @rate_control_algorithm: rate control algorithm for this hardware.
1129  *      If unset (NULL), the default algorithm will be used. Must be
1130  *      set before calling ieee80211_register_hw().
1131  *
1132  * @vif_data_size: size (in bytes) of the drv_priv data area
1133  *      within &struct ieee80211_vif.
1134  * @sta_data_size: size (in bytes) of the drv_priv data area
1135  *      within &struct ieee80211_sta.
1136  *
1137  * @max_rates: maximum number of alternate rate retry stages the hw
1138  *      can handle.
1139  * @max_report_rates: maximum number of alternate rate retry stages
1140  *      the hw can report back.
1141  * @max_rate_tries: maximum number of tries for each stage
1142  *
1143  * @napi_weight: weight used for NAPI polling.  You must specify an
1144  *      appropriate value here if a napi_poll operation is provided
1145  *      by your driver.
1146  */
1147 struct ieee80211_hw {
1148         struct ieee80211_conf conf;
1149         struct wiphy *wiphy;
1150         const char *rate_control_algorithm;
1151         void *priv;
1152         u32 flags;
1153         unsigned int extra_tx_headroom;
1154         int channel_change_time;
1155         int vif_data_size;
1156         int sta_data_size;
1157         int napi_weight;
1158         u16 queues;
1159         u16 max_listen_interval;
1160         s8 max_signal;
1161         u8 max_rates;
1162         u8 max_report_rates;
1163         u8 max_rate_tries;
1164 };
1165
1166 /**
1167  * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
1168  *
1169  * @wiphy: the &struct wiphy which we want to query
1170  *
1171  * mac80211 drivers can use this to get to their respective
1172  * &struct ieee80211_hw. Drivers wishing to get to their own private
1173  * structure can then access it via hw->priv. Note that mac802111 drivers should
1174  * not use wiphy_priv() to try to get their private driver structure as this
1175  * is already used internally by mac80211.
1176  */
1177 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
1178
1179 /**
1180  * SET_IEEE80211_DEV - set device for 802.11 hardware
1181  *
1182  * @hw: the &struct ieee80211_hw to set the device for
1183  * @dev: the &struct device of this 802.11 device
1184  */
1185 static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
1186 {
1187         set_wiphy_dev(hw->wiphy, dev);
1188 }
1189
1190 /**
1191  * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
1192  *
1193  * @hw: the &struct ieee80211_hw to set the MAC address for
1194  * @addr: the address to set
1195  */
1196 static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
1197 {
1198         memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
1199 }
1200
1201 static inline struct ieee80211_rate *
1202 ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
1203                       const struct ieee80211_tx_info *c)
1204 {
1205         if (WARN_ON(c->control.rates[0].idx < 0))
1206                 return NULL;
1207         return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1208 }
1209
1210 static inline struct ieee80211_rate *
1211 ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1212                            const struct ieee80211_tx_info *c)
1213 {
1214         if (c->control.rts_cts_rate_idx < 0)
1215                 return NULL;
1216         return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1217 }
1218
1219 static inline struct ieee80211_rate *
1220 ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1221                              const struct ieee80211_tx_info *c, int idx)
1222 {
1223         if (c->control.rates[idx + 1].idx < 0)
1224                 return NULL;
1225         return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1226 }
1227
1228 /**
1229  * DOC: Hardware crypto acceleration
1230  *
1231  * mac80211 is capable of taking advantage of many hardware
1232  * acceleration designs for encryption and decryption operations.
1233  *
1234  * The set_key() callback in the &struct ieee80211_ops for a given
1235  * device is called to enable hardware acceleration of encryption and
1236  * decryption. The callback takes a @sta parameter that will be NULL
1237  * for default keys or keys used for transmission only, or point to
1238  * the station information for the peer for individual keys.
1239  * Multiple transmission keys with the same key index may be used when
1240  * VLANs are configured for an access point.
1241  *
1242  * When transmitting, the TX control data will use the @hw_key_idx
1243  * selected by the driver by modifying the &struct ieee80211_key_conf
1244  * pointed to by the @key parameter to the set_key() function.
1245  *
1246  * The set_key() call for the %SET_KEY command should return 0 if
1247  * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1248  * added; if you return 0 then hw_key_idx must be assigned to the
1249  * hardware key index, you are free to use the full u8 range.
1250  *
1251  * When the cmd is %DISABLE_KEY then it must succeed.
1252  *
1253  * Note that it is permissible to not decrypt a frame even if a key
1254  * for it has been uploaded to hardware, the stack will not make any
1255  * decision based on whether a key has been uploaded or not but rather
1256  * based on the receive flags.
1257  *
1258  * The &struct ieee80211_key_conf structure pointed to by the @key
1259  * parameter is guaranteed to be valid until another call to set_key()
1260  * removes it, but it can only be used as a cookie to differentiate
1261  * keys.
1262  *
1263  * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1264  * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1265  * handler.
1266  * The update_tkip_key() call updates the driver with the new phase 1 key.
1267  * This happens everytime the iv16 wraps around (every 65536 packets). The
1268  * set_key() call will happen only once for each key (unless the AP did
1269  * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1270  * provided by update_tkip_key only. The trigger that makes mac80211 call this
1271  * handler is software decryption with wrap around of iv16.
1272  */
1273
1274 /**
1275  * DOC: Powersave support
1276  *
1277  * mac80211 has support for various powersave implementations.
1278  *
1279  * First, it can support hardware that handles all powersaving by itself,
1280  * such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS hardware
1281  * flag. In that case, it will be told about the desired powersave mode
1282  * with the %IEEE80211_CONF_PS flag depending on the association status.
1283  * The hardware must take care of sending nullfunc frames when necessary,
1284  * i.e. when entering and leaving powersave mode. The hardware is required
1285  * to look at the AID in beacons and signal to the AP that it woke up when
1286  * it finds traffic directed to it.
1287  *
1288  * %IEEE80211_CONF_PS flag enabled means that the powersave mode defined in
1289  * IEEE 802.11-2007 section 11.2 is enabled. This is not to be confused
1290  * with hardware wakeup and sleep states. Driver is responsible for waking
1291  * up the hardware before issuing commands to the hardware and putting it
1292  * back to sleep at appropriate times.
1293  *
1294  * When PS is enabled, hardware needs to wakeup for beacons and receive the
1295  * buffered multicast/broadcast frames after the beacon. Also it must be
1296  * possible to send frames and receive the acknowledment frame.
1297  *
1298  * Other hardware designs cannot send nullfunc frames by themselves and also
1299  * need software support for parsing the TIM bitmap. This is also supported
1300  * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1301  * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1302  * required to pass up beacons. The hardware is still required to handle
1303  * waking up for multicast traffic; if it cannot the driver must handle that
1304  * as best as it can, mac80211 is too slow to do that.
1305  *
1306  * Dynamic powersave is an extension to normal powersave in which the
1307  * hardware stays awake for a user-specified period of time after sending a
1308  * frame so that reply frames need not be buffered and therefore delayed to
1309  * the next wakeup. It's compromise of getting good enough latency when
1310  * there's data traffic and still saving significantly power in idle
1311  * periods.
1312  *
1313  * Dynamic powersave is simply supported by mac80211 enabling and disabling
1314  * PS based on traffic. Driver needs to only set %IEEE80211_HW_SUPPORTS_PS
1315  * flag and mac80211 will handle everything automatically. Additionally,
1316  * hardware having support for the dynamic PS feature may set the
1317  * %IEEE80211_HW_SUPPORTS_DYNAMIC_PS flag to indicate that it can support
1318  * dynamic PS mode itself. The driver needs to look at the
1319  * @dynamic_ps_timeout hardware configuration value and use it that value
1320  * whenever %IEEE80211_CONF_PS is set. In this case mac80211 will disable
1321  * dynamic PS feature in stack and will just keep %IEEE80211_CONF_PS
1322  * enabled whenever user has enabled powersave.
1323  *
1324  * Some hardware need to toggle a single shared antenna between WLAN and
1325  * Bluetooth to facilitate co-existence. These types of hardware set
1326  * limitations on the use of host controlled dynamic powersave whenever there
1327  * is simultaneous WLAN and Bluetooth traffic. For these types of hardware, the
1328  * driver may request temporarily going into full power save, in order to
1329  * enable toggling the antenna between BT and WLAN. If the driver requests
1330  * disabling dynamic powersave, the @dynamic_ps_timeout value will be
1331  * temporarily set to zero until the driver re-enables dynamic powersave.
1332  *
1333  * Driver informs U-APSD client support by enabling
1334  * %IEEE80211_HW_SUPPORTS_UAPSD flag. The mode is configured through the
1335  * uapsd paramater in conf_tx() operation. Hardware needs to send the QoS
1336  * Nullfunc frames and stay awake until the service period has ended. To
1337  * utilize U-APSD, dynamic powersave is disabled for voip AC and all frames
1338  * from that AC are transmitted with powersave enabled.
1339  *
1340  * Note: U-APSD client mode is not yet supported with
1341  * %IEEE80211_HW_PS_NULLFUNC_STACK.
1342  */
1343
1344 /**
1345  * DOC: Beacon filter support
1346  *
1347  * Some hardware have beacon filter support to reduce host cpu wakeups
1348  * which will reduce system power consumption. It usuallly works so that
1349  * the firmware creates a checksum of the beacon but omits all constantly
1350  * changing elements (TSF, TIM etc). Whenever the checksum changes the
1351  * beacon is forwarded to the host, otherwise it will be just dropped. That
1352  * way the host will only receive beacons where some relevant information
1353  * (for example ERP protection or WMM settings) have changed.
1354  *
1355  * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER
1356  * hardware capability. The driver needs to enable beacon filter support
1357  * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
1358  * power save is enabled, the stack will not check for beacon loss and the
1359  * driver needs to notify about loss of beacons with ieee80211_beacon_loss().
1360  *
1361  * The time (or number of beacons missed) until the firmware notifies the
1362  * driver of a beacon loss event (which in turn causes the driver to call
1363  * ieee80211_beacon_loss()) should be configurable and will be controlled
1364  * by mac80211 and the roaming algorithm in the future.
1365  *
1366  * Since there may be constantly changing information elements that nothing
1367  * in the software stack cares about, we will, in the future, have mac80211
1368  * tell the driver which information elements are interesting in the sense
1369  * that we want to see changes in them. This will include
1370  *  - a list of information element IDs
1371  *  - a list of OUIs for the vendor information element
1372  *
1373  * Ideally, the hardware would filter out any beacons without changes in the
1374  * requested elements, but if it cannot support that it may, at the expense
1375  * of some efficiency, filter out only a subset. For example, if the device
1376  * doesn't support checking for OUIs it should pass up all changes in all
1377  * vendor information elements.
1378  *
1379  * Note that change, for the sake of simplification, also includes information
1380  * elements appearing or disappearing from the beacon.
1381  *
1382  * Some hardware supports an "ignore list" instead, just make sure nothing
1383  * that was requested is on the ignore list, and include commonly changing
1384  * information element IDs in the ignore list, for example 11 (BSS load) and
1385  * the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
1386  * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
1387  * it could also include some currently unused IDs.
1388  *
1389  *
1390  * In addition to these capabilities, hardware should support notifying the
1391  * host of changes in the beacon RSSI. This is relevant to implement roaming
1392  * when no traffic is flowing (when traffic is flowing we see the RSSI of
1393  * the received data packets). This can consist in notifying the host when
1394  * the RSSI changes significantly or when it drops below or rises above
1395  * configurable thresholds. In the future these thresholds will also be
1396  * configured by mac80211 (which gets them from userspace) to implement
1397  * them as the roaming algorithm requires.
1398  *
1399  * If the hardware cannot implement this, the driver should ask it to
1400  * periodically pass beacon frames to the host so that software can do the
1401  * signal strength threshold checking.
1402  */
1403
1404 /**
1405  * DOC: Spatial multiplexing power save
1406  *
1407  * SMPS (Spatial multiplexing power save) is a mechanism to conserve
1408  * power in an 802.11n implementation. For details on the mechanism
1409  * and rationale, please refer to 802.11 (as amended by 802.11n-2009)
1410  * "11.2.3 SM power save".
1411  *
1412  * The mac80211 implementation is capable of sending action frames
1413  * to update the AP about the station's SMPS mode, and will instruct
1414  * the driver to enter the specific mode. It will also announce the
1415  * requested SMPS mode during the association handshake. Hardware
1416  * support for this feature is required, and can be indicated by
1417  * hardware flags.
1418  *
1419  * The default mode will be "automatic", which nl80211/cfg80211
1420  * defines to be dynamic SMPS in (regular) powersave, and SMPS
1421  * turned off otherwise.
1422  *
1423  * To support this feature, the driver must set the appropriate
1424  * hardware support flags, and handle the SMPS flag to the config()
1425  * operation. It will then with this mechanism be instructed to
1426  * enter the requested SMPS mode while associated to an HT AP.
1427  */
1428
1429 /**
1430  * DOC: Frame filtering
1431  *
1432  * mac80211 requires to see many management frames for proper
1433  * operation, and users may want to see many more frames when
1434  * in monitor mode. However, for best CPU usage and power consumption,
1435  * having as few frames as possible percolate through the stack is
1436  * desirable. Hence, the hardware should filter as much as possible.
1437  *
1438  * To achieve this, mac80211 uses filter flags (see below) to tell
1439  * the driver's configure_filter() function which frames should be
1440  * passed to mac80211 and which should be filtered out.
1441  *
1442  * Before configure_filter() is invoked, the prepare_multicast()
1443  * callback is invoked with the parameters @mc_count and @mc_list
1444  * for the combined multicast address list of all virtual interfaces.
1445  * It's use is optional, and it returns a u64 that is passed to
1446  * configure_filter(). Additionally, configure_filter() has the
1447  * arguments @changed_flags telling which flags were changed and
1448  * @total_flags with the new flag states.
1449  *
1450  * If your device has no multicast address filters your driver will
1451  * need to check both the %FIF_ALLMULTI flag and the @mc_count
1452  * parameter to see whether multicast frames should be accepted
1453  * or dropped.
1454  *
1455  * All unsupported flags in @total_flags must be cleared.
1456  * Hardware does not support a flag if it is incapable of _passing_
1457  * the frame to the stack. Otherwise the driver must ignore
1458  * the flag, but not clear it.
1459  * You must _only_ clear the flag (announce no support for the
1460  * flag to mac80211) if you are not able to pass the packet type
1461  * to the stack (so the hardware always filters it).
1462  * So for example, you should clear @FIF_CONTROL, if your hardware
1463  * always filters control frames. If your hardware always passes
1464  * control frames to the kernel and is incapable of filtering them,
1465  * you do _not_ clear the @FIF_CONTROL flag.
1466  * This rule applies to all other FIF flags as well.
1467  */
1468
1469 /**
1470  * enum ieee80211_filter_flags - hardware filter flags
1471  *
1472  * These flags determine what the filter in hardware should be
1473  * programmed to let through and what should not be passed to the
1474  * stack. It is always safe to pass more frames than requested,
1475  * but this has negative impact on power consumption.
1476  *
1477  * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1478  *      think of the BSS as your network segment and then this corresponds
1479  *      to the regular ethernet device promiscuous mode.
1480  *
1481  * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1482  *      by the user or if the hardware is not capable of filtering by
1483  *      multicast address.
1484  *
1485  * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1486  *      %RX_FLAG_FAILED_FCS_CRC for them)
1487  *
1488  * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1489  *      the %RX_FLAG_FAILED_PLCP_CRC for them
1490  *
1491  * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1492  *      to the hardware that it should not filter beacons or probe responses
1493  *      by BSSID. Filtering them can greatly reduce the amount of processing
1494  *      mac80211 needs to do and the amount of CPU wakeups, so you should
1495  *      honour this flag if possible.
1496  *
1497  * @FIF_CONTROL: pass control frames (except for PS Poll), if PROMISC_IN_BSS
1498  *      is not set then only those addressed to this station.
1499  *
1500  * @FIF_OTHER_BSS: pass frames destined to other BSSes
1501  *
1502  * @FIF_PSPOLL: pass PS Poll frames, if PROMISC_IN_BSS is not set then only
1503  *      those addressed to this station.
1504  *
1505  * @FIF_PROBE_REQ: pass probe request frames
1506  */
1507 enum ieee80211_filter_flags {
1508         FIF_PROMISC_IN_BSS      = 1<<0,
1509         FIF_ALLMULTI            = 1<<1,
1510         FIF_FCSFAIL             = 1<<2,
1511         FIF_PLCPFAIL            = 1<<3,
1512         FIF_BCN_PRBRESP_PROMISC = 1<<4,
1513         FIF_CONTROL             = 1<<5,
1514         FIF_OTHER_BSS           = 1<<6,
1515         FIF_PSPOLL              = 1<<7,
1516         FIF_PROBE_REQ           = 1<<8,
1517 };
1518
1519 /**
1520  * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1521  *
1522  * These flags are used with the ampdu_action() callback in
1523  * &struct ieee80211_ops to indicate which action is needed.
1524  *
1525  * Note that drivers MUST be able to deal with a TX aggregation
1526  * session being stopped even before they OK'ed starting it by
1527  * calling ieee80211_start_tx_ba_cb_irqsafe, because the peer
1528  * might receive the addBA frame and send a delBA right away!
1529  *
1530  * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1531  * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1532  * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1533  * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1534  * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
1535  */
1536 enum ieee80211_ampdu_mlme_action {
1537         IEEE80211_AMPDU_RX_START,
1538         IEEE80211_AMPDU_RX_STOP,
1539         IEEE80211_AMPDU_TX_START,
1540         IEEE80211_AMPDU_TX_STOP,
1541         IEEE80211_AMPDU_TX_OPERATIONAL,
1542 };
1543
1544 /**
1545  * struct ieee80211_ops - callbacks from mac80211 to the driver
1546  *
1547  * This structure contains various callbacks that the driver may
1548  * handle or, in some cases, must handle, for example to configure
1549  * the hardware to a new channel or to transmit a frame.
1550  *
1551  * @tx: Handler that 802.11 module calls for each transmitted frame.
1552  *      skb contains the buffer starting from the IEEE 802.11 header.
1553  *      The low-level driver should send the frame out based on
1554  *      configuration in the TX control data. This handler should,
1555  *      preferably, never fail and stop queues appropriately, more
1556  *      importantly, however, it must never fail for A-MPDU-queues.
1557  *      This function should return NETDEV_TX_OK except in very
1558  *      limited cases.
1559  *      Must be implemented and atomic.
1560  *
1561  * @start: Called before the first netdevice attached to the hardware
1562  *      is enabled. This should turn on the hardware and must turn on
1563  *      frame reception (for possibly enabled monitor interfaces.)
1564  *      Returns negative error codes, these may be seen in userspace,
1565  *      or zero.
1566  *      When the device is started it should not have a MAC address
1567  *      to avoid acknowledging frames before a non-monitor device
1568  *      is added.
1569  *      Must be implemented and can sleep.
1570  *
1571  * @stop: Called after last netdevice attached to the hardware
1572  *      is disabled. This should turn off the hardware (at least
1573  *      it must turn off frame reception.)
1574  *      May be called right after add_interface if that rejects
1575  *      an interface. If you added any work onto the mac80211 workqueue
1576  *      you should ensure to cancel it on this callback.
1577  *      Must be implemented and can sleep.
1578  *
1579  * @add_interface: Called when a netdevice attached to the hardware is
1580  *      enabled. Because it is not called for monitor mode devices, @start
1581  *      and @stop must be implemented.
1582  *      The driver should perform any initialization it needs before
1583  *      the device can be enabled. The initial configuration for the
1584  *      interface is given in the conf parameter.
1585  *      The callback may refuse to add an interface by returning a
1586  *      negative error code (which will be seen in userspace.)
1587  *      Must be implemented and can sleep.
1588  *
1589  * @change_interface: Called when a netdevice changes type. This callback
1590  *      is optional, but only if it is supported can interface types be
1591  *      switched while the interface is UP. The callback may sleep.
1592  *      Note that while an interface is being switched, it will not be
1593  *      found by the interface iteration callbacks.
1594  *
1595  * @remove_interface: Notifies a driver that an interface is going down.
1596  *      The @stop callback is called after this if it is the last interface
1597  *      and no monitor interfaces are present.
1598  *      When all interfaces are removed, the MAC address in the hardware
1599  *      must be cleared so the device no longer acknowledges packets,
1600  *      the mac_addr member of the conf structure is, however, set to the
1601  *      MAC address of the device going away.
1602  *      Hence, this callback must be implemented. It can sleep.
1603  *
1604  * @config: Handler for configuration requests. IEEE 802.11 code calls this
1605  *      function to change hardware configuration, e.g., channel.
1606  *      This function should never fail but returns a negative error code
1607  *      if it does. The callback can sleep.
1608  *
1609  * @bss_info_changed: Handler for configuration requests related to BSS
1610  *      parameters that may vary during BSS's lifespan, and may affect low
1611  *      level driver (e.g. assoc/disassoc status, erp parameters).
1612  *      This function should not be used if no BSS has been set, unless
1613  *      for association indication. The @changed parameter indicates which
1614  *      of the bss parameters has changed when a call is made. The callback
1615  *      can sleep.
1616  *
1617  * @prepare_multicast: Prepare for multicast filter configuration.
1618  *      This callback is optional, and its return value is passed
1619  *      to configure_filter(). This callback must be atomic.
1620  *
1621  * @configure_filter: Configure the device's RX filter.
1622  *      See the section "Frame filtering" for more information.
1623  *      This callback must be implemented and can sleep.
1624  *
1625  * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1626  *      must be set or cleared for a given STA. Must be atomic.
1627  *
1628  * @set_key: See the section "Hardware crypto acceleration"
1629  *      This callback is only called between add_interface and
1630  *      remove_interface calls, i.e. while the given virtual interface
1631  *      is enabled.
1632  *      Returns a negative error code if the key can't be added.
1633  *      The callback can sleep.
1634  *
1635  * @update_tkip_key: See the section "Hardware crypto acceleration"
1636  *      This callback will be called in the context of Rx. Called for drivers
1637  *      which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1638  *      The callback must be atomic.
1639  *
1640  * @hw_scan: Ask the hardware to service the scan request, no need to start
1641  *      the scan state machine in stack. The scan must honour the channel
1642  *      configuration done by the regulatory agent in the wiphy's
1643  *      registered bands. The hardware (or the driver) needs to make sure
1644  *      that power save is disabled.
1645  *      The @req ie/ie_len members are rewritten by mac80211 to contain the
1646  *      entire IEs after the SSID, so that drivers need not look at these
1647  *      at all but just send them after the SSID -- mac80211 includes the
1648  *      (extended) supported rates and HT information (where applicable).
1649  *      When the scan finishes, ieee80211_scan_completed() must be called;
1650  *      note that it also must be called when the scan cannot finish due to
1651  *      any error unless this callback returned a negative error code.
1652  *      The callback can sleep.
1653  *
1654  * @sw_scan_start: Notifier function that is called just before a software scan
1655  *      is started. Can be NULL, if the driver doesn't need this notification.
1656  *      The callback can sleep.
1657  *
1658  * @sw_scan_complete: Notifier function that is called just after a
1659  *      software scan finished. Can be NULL, if the driver doesn't need
1660  *      this notification.
1661  *      The callback can sleep.
1662  *
1663  * @get_stats: Return low-level statistics.
1664  *      Returns zero if statistics are available.
1665  *      The callback can sleep.
1666  *
1667  * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1668  *      callback should be provided to read the TKIP transmit IVs (both IV32
1669  *      and IV16) for the given key from hardware.
1670  *      The callback must be atomic.
1671  *
1672  * @set_frag_threshold: Configuration of fragmentation threshold. Assign this
1673  *      if the device does fragmentation by itself; if this callback is
1674  *      implemented then the stack will not do fragmentation.
1675  *      The callback can sleep.
1676  *
1677  * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1678  *      The callback can sleep.
1679  *
1680  * @sta_add: Notifies low level driver about addition of an associated station,
1681  *      AP, IBSS/WDS/mesh peer etc. This callback can sleep.
1682  *
1683  * @sta_remove: Notifies low level driver about removal of an associated
1684  *      station, AP, IBSS/WDS/mesh peer etc. This callback can sleep.
1685  *
1686  * @sta_notify: Notifies low level driver about power state transition of an
1687  *      associated station, AP,  IBSS/WDS/mesh peer etc. Must be atomic.
1688  *
1689  * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1690  *      bursting) for a hardware TX queue.
1691  *      Returns a negative error code on failure.
1692  *      The callback can sleep.
1693  *
1694  * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1695  *      this is only used for IBSS mode BSSID merging and debugging. Is not a
1696  *      required function.
1697  *      The callback can sleep.
1698  *
1699  * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
1700  *      Currently, this is only used for IBSS mode debugging. Is not a
1701  *      required function.
1702  *      The callback can sleep.
1703  *
1704  * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1705  *      with other STAs in the IBSS. This is only used in IBSS mode. This
1706  *      function is optional if the firmware/hardware takes full care of
1707  *      TSF synchronization.
1708  *      The callback can sleep.
1709  *
1710  * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1711  *      This is needed only for IBSS mode and the result of this function is
1712  *      used to determine whether to reply to Probe Requests.
1713  *      Returns non-zero if this device sent the last beacon.
1714  *      The callback can sleep.
1715  *
1716  * @ampdu_action: Perform a certain A-MPDU action
1717  *      The RA/TID combination determines the destination and TID we want
1718  *      the ampdu action to be performed for. The action is defined through
1719  *      ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1720  *      is the first frame we expect to perform the action on. Notice
1721  *      that TX/RX_STOP can pass NULL for this parameter.
1722  *      Returns a negative error code on failure.
1723  *      The callback can sleep.
1724  *
1725  * @get_survey: Return per-channel survey information
1726  *
1727  * @rfkill_poll: Poll rfkill hardware state. If you need this, you also
1728  *      need to set wiphy->rfkill_poll to %true before registration,
1729  *      and need to call wiphy_rfkill_set_hw_state() in the callback.
1730  *      The callback can sleep.
1731  *
1732  * @set_coverage_class: Set slot time for given coverage class as specified
1733  *      in IEEE 802.11-2007 section 17.3.8.6 and modify ACK timeout
1734  *      accordingly. This callback is not required and may sleep.
1735  *
1736  * @testmode_cmd: Implement a cfg80211 test mode command.
1737  *      The callback can sleep.
1738  *
1739  * @flush: Flush all pending frames from the hardware queue, making sure
1740  *      that the hardware queues are empty. If the parameter @drop is set
1741  *      to %true, pending frames may be dropped. The callback can sleep.
1742  *
1743  * @channel_switch: Drivers that need (or want) to offload the channel
1744  *      switch operation for CSAs received from the AP may implement this
1745  *      callback. They must then call ieee80211_chswitch_done() to indicate
1746  *      completion of the channel switch.
1747  *
1748  * @napi_poll: Poll Rx queue for incoming data frames.
1749  *
1750  * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device.
1751  *      Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may
1752  *      reject TX/RX mask combinations they cannot support by returning -EINVAL
1753  *      (also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX).
1754  *
1755  * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant).
1756  */
1757 struct ieee80211_ops {
1758         int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1759         int (*start)(struct ieee80211_hw *hw);
1760         void (*stop)(struct ieee80211_hw *hw);
1761         int (*add_interface)(struct ieee80211_hw *hw,
1762                              struct ieee80211_vif *vif);
1763         int (*change_interface)(struct ieee80211_hw *hw,
1764                                 struct ieee80211_vif *vif,
1765                                 enum nl80211_iftype new_type, bool p2p);
1766         void (*remove_interface)(struct ieee80211_hw *hw,
1767                                  struct ieee80211_vif *vif);
1768         int (*config)(struct ieee80211_hw *hw, u32 changed);
1769         void (*bss_info_changed)(struct ieee80211_hw *hw,
1770                                  struct ieee80211_vif *vif,
1771                                  struct ieee80211_bss_conf *info,
1772                                  u32 changed);
1773         u64 (*prepare_multicast)(struct ieee80211_hw *hw,
1774                                  struct netdev_hw_addr_list *mc_list);
1775         void (*configure_filter)(struct ieee80211_hw *hw,
1776                                  unsigned int changed_flags,
1777                                  unsigned int *total_flags,
1778                                  u64 multicast);
1779         int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1780                        bool set);
1781         int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1782                        struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1783                        struct ieee80211_key_conf *key);
1784         void (*update_tkip_key)(struct ieee80211_hw *hw,
1785                                 struct ieee80211_vif *vif,
1786                                 struct ieee80211_key_conf *conf,
1787                                 struct ieee80211_sta *sta,
1788                                 u32 iv32, u16 *phase1key);
1789         int (*hw_scan)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1790                        struct cfg80211_scan_request *req);
1791         void (*sw_scan_start)(struct ieee80211_hw *hw);
1792         void (*sw_scan_complete)(struct ieee80211_hw *hw);
1793         int (*get_stats)(struct ieee80211_hw *hw,
1794                          struct ieee80211_low_level_stats *stats);
1795         void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1796                              u32 *iv32, u16 *iv16);
1797         int (*set_frag_threshold)(struct ieee80211_hw *hw, u32 value);
1798         int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1799         int (*sta_add)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1800                        struct ieee80211_sta *sta);
1801         int (*sta_remove)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1802                           struct ieee80211_sta *sta);
1803         void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1804                         enum sta_notify_cmd, struct ieee80211_sta *sta);
1805         int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1806                        const struct ieee80211_tx_queue_params *params);
1807         u64 (*get_tsf)(struct ieee80211_hw *hw);
1808         void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
1809         void (*reset_tsf)(struct ieee80211_hw *hw);
1810         int (*tx_last_beacon)(struct ieee80211_hw *hw);
1811         int (*ampdu_action)(struct ieee80211_hw *hw,
1812                             struct ieee80211_vif *vif,
1813                             enum ieee80211_ampdu_mlme_action action,
1814                             struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1815         int (*get_survey)(struct ieee80211_hw *hw, int idx,
1816                 struct survey_info *survey);
1817         void (*rfkill_poll)(struct ieee80211_hw *hw);
1818         void (*set_coverage_class)(struct ieee80211_hw *hw, u8 coverage_class);
1819 #ifdef CONFIG_NL80211_TESTMODE
1820         int (*testmode_cmd)(struct ieee80211_hw *hw, void *data, int len);
1821 #endif
1822         void (*flush)(struct ieee80211_hw *hw, bool drop);
1823         void (*channel_switch)(struct ieee80211_hw *hw,
1824                                struct ieee80211_channel_switch *ch_switch);
1825         int (*napi_poll)(struct ieee80211_hw *hw, int budget);
1826         int (*set_antenna)(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
1827         int (*get_antenna)(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
1828
1829         int (*remain_on_channel)(struct ieee80211_hw *hw,
1830                                  struct ieee80211_channel *chan,
1831                                  enum nl80211_channel_type channel_type,
1832                                  int duration);
1833         int (*cancel_remain_on_channel)(struct ieee80211_hw *hw);
1834 };
1835
1836 /**
1837  * ieee80211_alloc_hw -  Allocate a new hardware device
1838  *
1839  * This must be called once for each hardware device. The returned pointer
1840  * must be used to refer to this device when calling other functions.
1841  * mac80211 allocates a private data area for the driver pointed to by
1842  * @priv in &struct ieee80211_hw, the size of this area is given as
1843  * @priv_data_len.
1844  *
1845  * @priv_data_len: length of private data
1846  * @ops: callbacks for this device
1847  */
1848 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1849                                         const struct ieee80211_ops *ops);
1850
1851 /**
1852  * ieee80211_register_hw - Register hardware device
1853  *
1854  * You must call this function before any other functions in
1855  * mac80211. Note that before a hardware can be registered, you
1856  * need to fill the contained wiphy's information.
1857  *
1858  * @hw: the device to register as returned by ieee80211_alloc_hw()
1859  */
1860 int ieee80211_register_hw(struct ieee80211_hw *hw);
1861
1862 /**
1863  * struct ieee80211_tpt_blink - throughput blink description
1864  * @throughput: throughput in Kbit/sec
1865  * @blink_time: blink time in milliseconds
1866  *      (full cycle, ie. one off + one on period)
1867  */
1868 struct ieee80211_tpt_blink {
1869         int throughput;
1870         int blink_time;
1871 };
1872
1873 /**
1874  * enum ieee80211_tpt_led_trigger_flags - throughput trigger flags
1875  * @IEEE80211_TPT_LEDTRIG_FL_RADIO: enable blinking with radio
1876  * @IEEE80211_TPT_LEDTRIG_FL_WORK: enable blinking when working
1877  * @IEEE80211_TPT_LEDTRIG_FL_CONNECTED: enable blinking when at least one
1878  *      interface is connected in some way, including being an AP
1879  */
1880 enum ieee80211_tpt_led_trigger_flags {
1881         IEEE80211_TPT_LEDTRIG_FL_RADIO          = BIT(0),
1882         IEEE80211_TPT_LEDTRIG_FL_WORK           = BIT(1),
1883         IEEE80211_TPT_LEDTRIG_FL_CONNECTED      = BIT(2),
1884 };
1885
1886 #ifdef CONFIG_MAC80211_LEDS
1887 extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1888 extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1889 extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1890 extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1891 extern char *__ieee80211_create_tpt_led_trigger(
1892                                 struct ieee80211_hw *hw, unsigned int flags,
1893                                 const struct ieee80211_tpt_blink *blink_table,
1894                                 unsigned int blink_table_len);
1895 #endif
1896 /**
1897  * ieee80211_get_tx_led_name - get name of TX LED
1898  *
1899  * mac80211 creates a transmit LED trigger for each wireless hardware
1900  * that can be used to drive LEDs if your driver registers a LED device.
1901  * This function returns the name (or %NULL if not configured for LEDs)
1902  * of the trigger so you can automatically link the LED device.
1903  *
1904  * @hw: the hardware to get the LED trigger name for
1905  */
1906 static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1907 {
1908 #ifdef CONFIG_MAC80211_LEDS
1909         return __ieee80211_get_tx_led_name(hw);
1910 #else
1911         return NULL;
1912 #endif
1913 }
1914
1915 /**
1916  * ieee80211_get_rx_led_name - get name of RX LED
1917  *
1918  * mac80211 creates a receive LED trigger for each wireless hardware
1919  * that can be used to drive LEDs if your driver registers a LED device.
1920  * This function returns the name (or %NULL if not configured for LEDs)
1921  * of the trigger so you can automatically link the LED device.
1922  *
1923  * @hw: the hardware to get the LED trigger name for
1924  */
1925 static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1926 {
1927 #ifdef CONFIG_MAC80211_LEDS
1928         return __ieee80211_get_rx_led_name(hw);
1929 #else
1930         return NULL;
1931 #endif
1932 }
1933
1934 /**
1935  * ieee80211_get_assoc_led_name - get name of association LED
1936  *
1937  * mac80211 creates a association LED trigger for each wireless hardware
1938  * that can be used to drive LEDs if your driver registers a LED device.
1939  * This function returns the name (or %NULL if not configured for LEDs)
1940  * of the trigger so you can automatically link the LED device.
1941  *
1942  * @hw: the hardware to get the LED trigger name for
1943  */
1944 static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1945 {
1946 #ifdef CONFIG_MAC80211_LEDS
1947         return __ieee80211_get_assoc_led_name(hw);
1948 #else
1949         return NULL;
1950 #endif
1951 }
1952
1953 /**
1954  * ieee80211_get_radio_led_name - get name of radio LED
1955  *
1956  * mac80211 creates a radio change LED trigger for each wireless hardware
1957  * that can be used to drive LEDs if your driver registers a LED device.
1958  * This function returns the name (or %NULL if not configured for LEDs)
1959  * of the trigger so you can automatically link the LED device.
1960  *
1961  * @hw: the hardware to get the LED trigger name for
1962  */
1963 static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1964 {
1965 #ifdef CONFIG_MAC80211_LEDS
1966         return __ieee80211_get_radio_led_name(hw);
1967 #else
1968         return NULL;
1969 #endif
1970 }
1971
1972 /**
1973  * ieee80211_create_tpt_led_trigger - create throughput LED trigger
1974  * @hw: the hardware to create the trigger for
1975  * @flags: trigger flags, see &enum ieee80211_tpt_led_trigger_flags
1976  * @blink_table: the blink table -- needs to be ordered by throughput
1977  * @blink_table_len: size of the blink table
1978  *
1979  * This function returns %NULL (in case of error, or if no LED
1980  * triggers are configured) or the name of the new trigger.
1981  * This function must be called before ieee80211_register_hw().
1982  */
1983 static inline char *
1984 ieee80211_create_tpt_led_trigger(struct ieee80211_hw *hw, unsigned int flags,
1985                                  const struct ieee80211_tpt_blink *blink_table,
1986                                  unsigned int blink_table_len)
1987 {
1988 #ifdef CONFIG_MAC80211_LEDS
1989         return __ieee80211_create_tpt_led_trigger(hw, flags, blink_table,
1990                                                   blink_table_len);
1991 #else
1992         return NULL;
1993 #endif
1994 }
1995
1996 /**
1997  * ieee80211_unregister_hw - Unregister a hardware device
1998  *
1999  * This function instructs mac80211 to free allocated resources
2000  * and unregister netdevices from the networking subsystem.
2001  *
2002  * @hw: the hardware to unregister
2003  */
2004 void ieee80211_unregister_hw(struct ieee80211_hw *hw);
2005
2006 /**
2007  * ieee80211_free_hw - free hardware descriptor
2008  *
2009  * This function frees everything that was allocated, including the
2010  * private data for the driver. You must call ieee80211_unregister_hw()
2011  * before calling this function.
2012  *
2013  * @hw: the hardware to free
2014  */
2015 void ieee80211_free_hw(struct ieee80211_hw *hw);
2016
2017 /**
2018  * ieee80211_restart_hw - restart hardware completely
2019  *
2020  * Call this function when the hardware was restarted for some reason
2021  * (hardware error, ...) and the driver is unable to restore its state
2022  * by itself. mac80211 assumes that at this point the driver/hardware
2023  * is completely uninitialised and stopped, it starts the process by
2024  * calling the ->start() operation. The driver will need to reset all
2025  * internal state that it has prior to calling this function.
2026  *
2027  * @hw: the hardware to restart
2028  */
2029 void ieee80211_restart_hw(struct ieee80211_hw *hw);
2030
2031 /** ieee80211_napi_schedule - schedule NAPI poll
2032  *
2033  * Use this function to schedule NAPI polling on a device.
2034  *
2035  * @hw: the hardware to start polling
2036  */
2037 void ieee80211_napi_schedule(struct ieee80211_hw *hw);
2038
2039 /** ieee80211_napi_complete - complete NAPI polling
2040  *
2041  * Use this function to finish NAPI polling on a device.
2042  *
2043  * @hw: the hardware to stop polling
2044  */
2045 void ieee80211_napi_complete(struct ieee80211_hw *hw);
2046
2047 /**
2048  * ieee80211_rx - receive frame
2049  *
2050  * Use this function to hand received frames to mac80211. The receive
2051  * buffer in @skb must start with an IEEE 802.11 header. In case of a
2052  * paged @skb is used, the driver is recommended to put the ieee80211
2053  * header of the frame on the linear part of the @skb to avoid memory
2054  * allocation and/or memcpy by the stack.
2055  *
2056  * This function may not be called in IRQ context. Calls to this function
2057  * for a single hardware must be synchronized against each other. Calls to
2058  * this function, ieee80211_rx_ni() and ieee80211_rx_irqsafe() may not be
2059  * mixed for a single hardware.
2060  *
2061  * In process context use instead ieee80211_rx_ni().
2062  *
2063  * @hw: the hardware this frame came in on
2064  * @skb: the buffer to receive, owned by mac80211 after this call
2065  */
2066 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb);
2067
2068 /**
2069  * ieee80211_rx_irqsafe - receive frame
2070  *
2071  * Like ieee80211_rx() but can be called in IRQ context
2072  * (internally defers to a tasklet.)
2073  *
2074  * Calls to this function, ieee80211_rx() or ieee80211_rx_ni() may not
2075  * be mixed for a single hardware.
2076  *
2077  * @hw: the hardware this frame came in on
2078  * @skb: the buffer to receive, owned by mac80211 after this call
2079  */
2080 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb);
2081
2082 /**
2083  * ieee80211_rx_ni - receive frame (in process context)
2084  *
2085  * Like ieee80211_rx() but can be called in process context
2086  * (internally disables bottom halves).
2087  *
2088  * Calls to this function, ieee80211_rx() and ieee80211_rx_irqsafe() may
2089  * not be mixed for a single hardware.
2090  *
2091  * @hw: the hardware this frame came in on
2092  * @skb: the buffer to receive, owned by mac80211 after this call
2093  */
2094 static inline void ieee80211_rx_ni(struct ieee80211_hw *hw,
2095                                    struct sk_buff *skb)
2096 {
2097         local_bh_disable();
2098         ieee80211_rx(hw, skb);
2099         local_bh_enable();
2100 }
2101
2102 /*
2103  * The TX headroom reserved by mac80211 for its own tx_status functions.
2104  * This is enough for the radiotap header.
2105  */
2106 #define IEEE80211_TX_STATUS_HEADROOM    13
2107
2108 /**
2109  * ieee80211_tx_status - transmit status callback
2110  *
2111  * Call this function for all transmitted frames after they have been
2112  * transmitted. It is permissible to not call this function for
2113  * multicast frames but this can affect statistics.
2114  *
2115  * This function may not be called in IRQ context. Calls to this function
2116  * for a single hardware must be synchronized against each other. Calls
2117  * to this function, ieee80211_tx_status_ni() and ieee80211_tx_status_irqsafe()
2118  * may not be mixed for a single hardware.
2119  *
2120  * @hw: the hardware the frame was transmitted by
2121  * @skb: the frame that was transmitted, owned by mac80211 after this call
2122  */
2123 void ieee80211_tx_status(struct ieee80211_hw *hw,
2124                          struct sk_buff *skb);
2125
2126 /**
2127  * ieee80211_tx_status_ni - transmit status callback (in process context)
2128  *
2129  * Like ieee80211_tx_status() but can be called in process context.
2130  *
2131  * Calls to this function, ieee80211_tx_status() and
2132  * ieee80211_tx_status_irqsafe() may not be mixed
2133  * for a single hardware.
2134  *
2135  * @hw: the hardware the frame was transmitted by
2136  * @skb: the frame that was transmitted, owned by mac80211 after this call
2137  */
2138 static inline void ieee80211_tx_status_ni(struct ieee80211_hw *hw,
2139                                           struct sk_buff *skb)
2140 {
2141         local_bh_disable();
2142         ieee80211_tx_status(hw, skb);
2143         local_bh_enable();
2144 }
2145
2146 /**
2147  * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
2148  *
2149  * Like ieee80211_tx_status() but can be called in IRQ context
2150  * (internally defers to a tasklet.)
2151  *
2152  * Calls to this function, ieee80211_tx_status() and
2153  * ieee80211_tx_status_ni() may not be mixed for a single hardware.
2154  *
2155  * @hw: the hardware the frame was transmitted by
2156  * @skb: the frame that was transmitted, owned by mac80211 after this call
2157  */
2158 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
2159                                  struct sk_buff *skb);
2160
2161 /**
2162  * ieee80211_beacon_get_tim - beacon generation function
2163  * @hw: pointer obtained from ieee80211_alloc_hw().
2164  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2165  * @tim_offset: pointer to variable that will receive the TIM IE offset.
2166  *      Set to 0 if invalid (in non-AP modes).
2167  * @tim_length: pointer to variable that will receive the TIM IE length,
2168  *      (including the ID and length bytes!).
2169  *      Set to 0 if invalid (in non-AP modes).
2170  *
2171  * If the driver implements beaconing modes, it must use this function to
2172  * obtain the beacon frame/template.
2173  *
2174  * If the beacon frames are generated by the host system (i.e., not in
2175  * hardware/firmware), the driver uses this function to get each beacon
2176  * frame from mac80211 -- it is responsible for calling this function
2177  * before the beacon is needed (e.g. based on hardware interrupt).
2178  *
2179  * If the beacon frames are generated by the device, then the driver
2180  * must use the returned beacon as the template and change the TIM IE
2181  * according to the current DTIM parameters/TIM bitmap.
2182  *
2183  * The driver is responsible for freeing the returned skb.
2184  */
2185 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
2186                                          struct ieee80211_vif *vif,
2187                                          u16 *tim_offset, u16 *tim_length);
2188
2189 /**
2190  * ieee80211_beacon_get - beacon generation function
2191  * @hw: pointer obtained from ieee80211_alloc_hw().
2192  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2193  *
2194  * See ieee80211_beacon_get_tim().
2195  */
2196 static inline struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
2197                                                    struct ieee80211_vif *vif)
2198 {
2199         return ieee80211_beacon_get_tim(hw, vif, NULL, NULL);
2200 }
2201
2202 /**
2203  * ieee80211_pspoll_get - retrieve a PS Poll template
2204  * @hw: pointer obtained from ieee80211_alloc_hw().
2205  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2206  *
2207  * Creates a PS Poll a template which can, for example, uploaded to
2208  * hardware. The template must be updated after association so that correct
2209  * AID, BSSID and MAC address is used.
2210  *
2211  * Note: Caller (or hardware) is responsible for setting the
2212  * &IEEE80211_FCTL_PM bit.
2213  */
2214 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw,
2215                                      struct ieee80211_vif *vif);
2216
2217 /**
2218  * ieee80211_nullfunc_get - retrieve a nullfunc template
2219  * @hw: pointer obtained from ieee80211_alloc_hw().
2220  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2221  *
2222  * Creates a Nullfunc template which can, for example, uploaded to
2223  * hardware. The template must be updated after association so that correct
2224  * BSSID and address is used.
2225  *
2226  * Note: Caller (or hardware) is responsible for setting the
2227  * &IEEE80211_FCTL_PM bit as well as Duration and Sequence Control fields.
2228  */
2229 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw,
2230                                        struct ieee80211_vif *vif);
2231
2232 /**
2233  * ieee80211_probereq_get - retrieve a Probe Request template
2234  * @hw: pointer obtained from ieee80211_alloc_hw().
2235  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2236  * @ssid: SSID buffer
2237  * @ssid_len: length of SSID
2238  * @ie: buffer containing all IEs except SSID for the template
2239  * @ie_len: length of the IE buffer
2240  *
2241  * Creates a Probe Request template which can, for example, be uploaded to
2242  * hardware.
2243  */
2244 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw,
2245                                        struct ieee80211_vif *vif,
2246                                        const u8 *ssid, size_t ssid_len,
2247                                        const u8 *ie, size_t ie_len);
2248
2249 /**
2250  * ieee80211_rts_get - RTS frame generation function
2251  * @hw: pointer obtained from ieee80211_alloc_hw().
2252  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2253  * @frame: pointer to the frame that is going to be protected by the RTS.
2254  * @frame_len: the frame length (in octets).
2255  * @frame_txctl: &struct ieee80211_tx_info of the frame.
2256  * @rts: The buffer where to store the RTS frame.
2257  *
2258  * If the RTS frames are generated by the host system (i.e., not in
2259  * hardware/firmware), the low-level driver uses this function to receive
2260  * the next RTS frame from the 802.11 code. The low-level is responsible
2261  * for calling this function before and RTS frame is needed.
2262  */
2263 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2264                        const void *frame, size_t frame_len,
2265                        const struct ieee80211_tx_info *frame_txctl,
2266                        struct ieee80211_rts *rts);
2267
2268 /**
2269  * ieee80211_rts_duration - Get the duration field for an RTS frame
2270  * @hw: pointer obtained from ieee80211_alloc_hw().
2271  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2272  * @frame_len: the length of the frame that is going to be protected by the RTS.
2273  * @frame_txctl: &struct ieee80211_tx_info of the frame.
2274  *
2275  * If the RTS is generated in firmware, but the host system must provide
2276  * the duration field, the low-level driver uses this function to receive
2277  * the duration field value in little-endian byteorder.
2278  */
2279 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
2280                               struct ieee80211_vif *vif, size_t frame_len,
2281                               const struct ieee80211_tx_info *frame_txctl);
2282
2283 /**
2284  * ieee80211_ctstoself_get - CTS-to-self frame generation function
2285  * @hw: pointer obtained from ieee80211_alloc_hw().
2286  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2287  * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
2288  * @frame_len: the frame length (in octets).
2289  * @frame_txctl: &struct ieee80211_tx_info of the frame.
2290  * @cts: The buffer where to store the CTS-to-self frame.
2291  *
2292  * If the CTS-to-self frames are generated by the host system (i.e., not in
2293  * hardware/firmware), the low-level driver uses this function to receive
2294  * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
2295  * for calling this function before and CTS-to-self frame is needed.
2296  */
2297 void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
2298                              struct ieee80211_vif *vif,
2299                              const void *frame, size_t frame_len,
2300                              const struct ieee80211_tx_info *frame_txctl,
2301                              struct ieee80211_cts *cts);
2302
2303 /**
2304  * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
2305  * @hw: pointer obtained from ieee80211_alloc_hw().
2306  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2307  * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
2308  * @frame_txctl: &struct ieee80211_tx_info of the frame.
2309  *
2310  * If the CTS-to-self is generated in firmware, but the host system must provide
2311  * the duration field, the low-level driver uses this function to receive
2312  * the duration field value in little-endian byteorder.
2313  */
2314 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
2315                                     struct ieee80211_vif *vif,
2316                                     size_t frame_len,
2317                                     const struct ieee80211_tx_info *frame_txctl);
2318
2319 /**
2320  * ieee80211_generic_frame_duration - Calculate the duration field for a frame
2321  * @hw: pointer obtained from ieee80211_alloc_hw().
2322  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2323  * @frame_len: the length of the frame.
2324  * @rate: the rate at which the frame is going to be transmitted.
2325  *
2326  * Calculate the duration field of some generic frame, given its
2327  * length and transmission rate (in 100kbps).
2328  */
2329 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
2330                                         struct ieee80211_vif *vif,
2331                                         size_t frame_len,
2332                                         struct ieee80211_rate *rate);
2333
2334 /**
2335  * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
2336  * @hw: pointer as obtained from ieee80211_alloc_hw().
2337  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2338  *
2339  * Function for accessing buffered broadcast and multicast frames. If
2340  * hardware/firmware does not implement buffering of broadcast/multicast
2341  * frames when power saving is used, 802.11 code buffers them in the host
2342  * memory. The low-level driver uses this function to fetch next buffered
2343  * frame. In most cases, this is used when generating beacon frame. This
2344  * function returns a pointer to the next buffered skb or NULL if no more
2345  * buffered frames are available.
2346  *
2347  * Note: buffered frames are returned only after DTIM beacon frame was
2348  * generated with ieee80211_beacon_get() and the low-level driver must thus
2349  * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
2350  * NULL if the previous generated beacon was not DTIM, so the low-level driver
2351  * does not need to check for DTIM beacons separately and should be able to
2352  * use common code for all beacons.
2353  */
2354 struct sk_buff *
2355 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
2356
2357 /**
2358  * ieee80211_get_tkip_key - get a TKIP rc4 for skb
2359  *
2360  * This function computes a TKIP rc4 key for an skb. It computes
2361  * a phase 1 key if needed (iv16 wraps around). This function is to
2362  * be used by drivers which can do HW encryption but need to compute
2363  * to phase 1/2 key in SW.
2364  *
2365  * @keyconf: the parameter passed with the set key
2366  * @skb: the skb for which the key is needed
2367  * @type: TBD
2368  * @key: a buffer to which the key will be written
2369  */
2370 void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
2371                                 struct sk_buff *skb,
2372                                 enum ieee80211_tkip_key_type type, u8 *key);
2373 /**
2374  * ieee80211_wake_queue - wake specific queue
2375  * @hw: pointer as obtained from ieee80211_alloc_hw().
2376  * @queue: queue number (counted from zero).
2377  *
2378  * Drivers should use this function instead of netif_wake_queue.
2379  */
2380 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
2381
2382 /**
2383  * ieee80211_stop_queue - stop specific queue
2384  * @hw: pointer as obtained from ieee80211_alloc_hw().
2385  * @queue: queue number (counted from zero).
2386  *
2387  * Drivers should use this function instead of netif_stop_queue.
2388  */
2389 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
2390
2391 /**
2392  * ieee80211_queue_stopped - test status of the queue
2393  * @hw: pointer as obtained from ieee80211_alloc_hw().
2394  * @queue: queue number (counted from zero).
2395  *
2396  * Drivers should use this function instead of netif_stop_queue.
2397  */
2398
2399 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
2400
2401 /**
2402  * ieee80211_stop_queues - stop all queues
2403  * @hw: pointer as obtained from ieee80211_alloc_hw().
2404  *
2405  * Drivers should use this function instead of netif_stop_queue.
2406  */
2407 void ieee80211_stop_queues(struct ieee80211_hw *hw);
2408
2409 /**
2410  * ieee80211_wake_queues - wake all queues
2411  * @hw: pointer as obtained from ieee80211_alloc_hw().
2412  *
2413  * Drivers should use this function instead of netif_wake_queue.
2414  */
2415 void ieee80211_wake_queues(struct ieee80211_hw *hw);
2416
2417 /**
2418  * ieee80211_scan_completed - completed hardware scan
2419  *
2420  * When hardware scan offload is used (i.e. the hw_scan() callback is
2421  * assigned) this function needs to be called by the driver to notify
2422  * mac80211 that the scan finished. This function can be called from
2423  * any context, including hardirq context.
2424  *
2425  * @hw: the hardware that finished the scan
2426  * @aborted: set to true if scan was aborted
2427  */
2428 void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
2429
2430 /**
2431  * ieee80211_iterate_active_interfaces - iterate active interfaces
2432  *
2433  * This function iterates over the interfaces associated with a given
2434  * hardware that are currently active and calls the callback for them.
2435  * This function allows the iterator function to sleep, when the iterator
2436  * function is atomic @ieee80211_iterate_active_interfaces_atomic can
2437  * be used.
2438  * Does not iterate over a new interface during add_interface()
2439  *
2440  * @hw: the hardware struct of which the interfaces should be iterated over
2441  * @iterator: the iterator function to call
2442  * @data: first argument of the iterator function
2443  */
2444 void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
2445                                          void (*iterator)(void *data, u8 *mac,
2446                                                 struct ieee80211_vif *vif),
2447                                          void *data);
2448
2449 /**
2450  * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
2451  *
2452  * This function iterates over the interfaces associated with a given
2453  * hardware that are currently active and calls the callback for them.
2454  * This function requires the iterator callback function to be atomic,
2455  * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
2456  * Does not iterate over a new interface during add_interface()
2457  *
2458  * @hw: the hardware struct of which the interfaces should be iterated over
2459  * @iterator: the iterator function to call, cannot sleep
2460  * @data: first argument of the iterator function
2461  */
2462 void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
2463                                                 void (*iterator)(void *data,
2464                                                     u8 *mac,
2465                                                     struct ieee80211_vif *vif),
2466                                                 void *data);
2467
2468 /**
2469  * ieee80211_queue_work - add work onto the mac80211 workqueue
2470  *
2471  * Drivers and mac80211 use this to add work onto the mac80211 workqueue.
2472  * This helper ensures drivers are not queueing work when they should not be.
2473  *
2474  * @hw: the hardware struct for the interface we are adding work for
2475  * @work: the work we want to add onto the mac80211 workqueue
2476  */
2477 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work);
2478
2479 /**
2480  * ieee80211_queue_delayed_work - add work onto the mac80211 workqueue
2481  *
2482  * Drivers and mac80211 use this to queue delayed work onto the mac80211
2483  * workqueue.
2484  *
2485  * @hw: the hardware struct for the interface we are adding work for
2486  * @dwork: delayable work to queue onto the mac80211 workqueue
2487  * @delay: number of jiffies to wait before queueing
2488  */
2489 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
2490                                   struct delayed_work *dwork,
2491                                   unsigned long delay);
2492
2493 /**
2494  * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
2495  * @sta: the station for which to start a BA session
2496  * @tid: the TID to BA on.
2497  * @timeout: session timeout value (in TUs)
2498  *
2499  * Return: success if addBA request was sent, failure otherwise
2500  *
2501  * Although mac80211/low level driver/user space application can estimate
2502  * the need to start aggregation on a certain RA/TID, the session level
2503  * will be managed by the mac80211.
2504  */
2505 int ieee80211_start_tx_ba_session(struct ieee80211_sta *sta, u16 tid,
2506                                   u16 timeout);
2507
2508 /**
2509  * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
2510  * @vif: &struct ieee80211_vif pointer from the add_interface callback
2511  * @ra: receiver address of the BA session recipient.
2512  * @tid: the TID to BA on.
2513  *
2514  * This function must be called by low level driver once it has
2515  * finished with preparations for the BA session. It can be called
2516  * from any context.
2517  */
2518 void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra,
2519                                       u16 tid);
2520
2521 /**
2522  * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
2523  * @sta: the station whose BA session to stop
2524  * @tid: the TID to stop BA.
2525  *
2526  * Return: negative error if the TID is invalid, or no aggregation active
2527  *
2528  * Although mac80211/low level driver/user space application can estimate
2529  * the need to stop aggregation on a certain RA/TID, the session level
2530  * will be managed by the mac80211.
2531  */
2532 int ieee80211_stop_tx_ba_session(struct ieee80211_sta *sta, u16 tid);
2533
2534 /**
2535  * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
2536  * @vif: &struct ieee80211_vif pointer from the add_interface callback
2537  * @ra: receiver address of the BA session recipient.
2538  * @tid: the desired TID to BA on.
2539  *
2540  * This function must be called by low level driver once it has
2541  * finished with preparations for the BA session tear down. It
2542  * can be called from any context.
2543  */
2544 void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra,
2545                                      u16 tid);
2546
2547 /**
2548  * ieee80211_find_sta - find a station
2549  *
2550  * @vif: virtual interface to look for station on
2551  * @addr: station's address
2552  *
2553  * This function must be called under RCU lock and the
2554  * resulting pointer is only valid under RCU lock as well.
2555  */
2556 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
2557                                          const u8 *addr);
2558
2559 /**
2560  * ieee80211_find_sta_by_ifaddr - find a station on hardware
2561  *
2562  * @hw: pointer as obtained from ieee80211_alloc_hw()
2563  * @addr: remote station's address
2564  * @localaddr: local address (vif->sdata->vif.addr). Use NULL for 'any'.
2565  *
2566  * This function must be called under RCU lock and the
2567  * resulting pointer is only valid under RCU lock as well.
2568  *
2569  * NOTE: You may pass NULL for localaddr, but then you will just get
2570  *      the first STA that matches the remote address 'addr'.
2571  *      We can have multiple STA associated with multiple
2572  *      logical stations (e.g. consider a station connecting to another
2573  *      BSSID on the same AP hardware without disconnecting first).
2574  *      In this case, the result of this method with localaddr NULL
2575  *      is not reliable.
2576  *
2577  * DO NOT USE THIS FUNCTION with localaddr NULL if at all possible.
2578  */
2579 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
2580                                                const u8 *addr,
2581                                                const u8 *localaddr);
2582
2583 /**
2584  * ieee80211_sta_block_awake - block station from waking up
2585  * @hw: the hardware
2586  * @pubsta: the station
2587  * @block: whether to block or unblock
2588  *
2589  * Some devices require that all frames that are on the queues
2590  * for a specific station that went to sleep are flushed before
2591  * a poll response or frames after the station woke up can be
2592  * delivered to that it. Note that such frames must be rejected
2593  * by the driver as filtered, with the appropriate status flag.
2594  *
2595  * This function allows implementing this mode in a race-free
2596  * manner.
2597  *
2598  * To do this, a driver must keep track of the number of frames
2599  * still enqueued for a specific station. If this number is not
2600  * zero when the station goes to sleep, the driver must call
2601  * this function to force mac80211 to consider the station to
2602  * be asleep regardless of the station's actual state. Once the
2603  * number of outstanding frames reaches zero, the driver must
2604  * call this function again to unblock the station. That will
2605  * cause mac80211 to be able to send ps-poll responses, and if
2606  * the station queried in the meantime then frames will also
2607  * be sent out as a result of this. Additionally, the driver
2608  * will be notified that the station woke up some time after
2609  * it is unblocked, regardless of whether the station actually
2610  * woke up while blocked or not.
2611  */
2612 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
2613                                struct ieee80211_sta *pubsta, bool block);
2614
2615 /**
2616  * ieee80211_ap_probereq_get - retrieve a Probe Request template
2617  * @hw: pointer obtained from ieee80211_alloc_hw().
2618  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2619  *
2620  * Creates a Probe Request template which can, for example, be uploaded to
2621  * hardware. The template is filled with bssid, ssid and supported rate
2622  * information. This function must only be called from within the
2623  * .bss_info_changed callback function and only in managed mode. The function
2624  * is only useful when the interface is associated, otherwise it will return
2625  * NULL.
2626  */
2627 struct sk_buff *ieee80211_ap_probereq_get(struct ieee80211_hw *hw,
2628                                           struct ieee80211_vif *vif);
2629
2630 /**
2631  * ieee80211_beacon_loss - inform hardware does not receive beacons
2632  *
2633  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2634  *
2635  * When beacon filtering is enabled with %IEEE80211_HW_BEACON_FILTER and
2636  * %IEEE80211_CONF_PS is set, the driver needs to inform whenever the
2637  * hardware is not receiving beacons with this function.
2638  */
2639 void ieee80211_beacon_loss(struct ieee80211_vif *vif);
2640
2641 /**
2642  * ieee80211_connection_loss - inform hardware has lost connection to the AP
2643  *
2644  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2645  *
2646  * When beacon filtering is enabled with %IEEE80211_HW_BEACON_FILTER, and
2647  * %IEEE80211_CONF_PS and %IEEE80211_HW_CONNECTION_MONITOR are set, the driver
2648  * needs to inform if the connection to the AP has been lost.
2649  *
2650  * This function will cause immediate change to disassociated state,
2651  * without connection recovery attempts.
2652  */
2653 void ieee80211_connection_loss(struct ieee80211_vif *vif);
2654
2655 /**
2656  * ieee80211_disable_dyn_ps - force mac80211 to temporarily disable dynamic psm
2657  *
2658  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2659  *
2660  * Some hardware require full power save to manage simultaneous BT traffic
2661  * on the WLAN frequency. Full PSM is required periodically, whenever there are
2662  * burst of BT traffic. The hardware gets information of BT traffic via
2663  * hardware co-existence lines, and consequentially requests mac80211 to
2664  * (temporarily) enter full psm.
2665  * This function will only temporarily disable dynamic PS, not enable PSM if
2666  * it was not already enabled.
2667  * The driver must make sure to re-enable dynamic PS using
2668  * ieee80211_enable_dyn_ps() if the driver has disabled it.
2669  *
2670  */
2671 void ieee80211_disable_dyn_ps(struct ieee80211_vif *vif);
2672
2673 /**
2674  * ieee80211_enable_dyn_ps - restore dynamic psm after being disabled
2675  *
2676  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2677  *
2678  * This function restores dynamic PS after being temporarily disabled via
2679  * ieee80211_disable_dyn_ps(). Each ieee80211_disable_dyn_ps() call must
2680  * be coupled with an eventual call to this function.
2681  *
2682  */
2683 void ieee80211_enable_dyn_ps(struct ieee80211_vif *vif);
2684
2685 /**
2686  * ieee80211_cqm_rssi_notify - inform a configured connection quality monitoring
2687  *      rssi threshold triggered
2688  *
2689  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2690  * @rssi_event: the RSSI trigger event type
2691  * @gfp: context flags
2692  *
2693  * When the %IEEE80211_HW_SUPPORTS_CQM_RSSI is set, and a connection quality
2694  * monitoring is configured with an rssi threshold, the driver will inform
2695  * whenever the rssi level reaches the threshold.
2696  */
2697 void ieee80211_cqm_rssi_notify(struct ieee80211_vif *vif,
2698                                enum nl80211_cqm_rssi_threshold_event rssi_event,
2699                                gfp_t gfp);
2700
2701 /**
2702  * ieee80211_chswitch_done - Complete channel switch process
2703  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2704  * @success: make the channel switch successful or not
2705  *
2706  * Complete the channel switch post-process: set the new operational channel
2707  * and wake up the suspended queues.
2708  */
2709 void ieee80211_chswitch_done(struct ieee80211_vif *vif, bool success);
2710
2711 /**
2712  * ieee80211_request_smps - request SM PS transition
2713  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2714  * @smps_mode: new SM PS mode
2715  *
2716  * This allows the driver to request an SM PS transition in managed
2717  * mode. This is useful when the driver has more information than
2718  * the stack about possible interference, for example by bluetooth.
2719  */
2720 void ieee80211_request_smps(struct ieee80211_vif *vif,
2721                             enum ieee80211_smps_mode smps_mode);
2722
2723 /**
2724  * ieee80211_key_removed - disable hw acceleration for key
2725  * @key_conf: The key hw acceleration should be disabled for
2726  *
2727  * This allows drivers to indicate that the given key has been
2728  * removed from hardware acceleration, due to a new key that
2729  * was added. Don't use this if the key can continue to be used
2730  * for TX, if the key restriction is on RX only it is permitted
2731  * to keep the key for TX only and not call this function.
2732  *
2733  * Due to locking constraints, it may only be called during
2734  * @set_key. This function must be allowed to sleep, and the
2735  * key it tries to disable may still be used until it returns.
2736  */
2737 void ieee80211_key_removed(struct ieee80211_key_conf *key_conf);
2738
2739 /**
2740  * ieee80211_ready_on_channel - notification of remain-on-channel start
2741  * @hw: pointer as obtained from ieee80211_alloc_hw()
2742  */
2743 void ieee80211_ready_on_channel(struct ieee80211_hw *hw);
2744
2745 /**
2746  * ieee80211_remain_on_channel_expired - remain_on_channel duration expired
2747  * @hw: pointer as obtained from ieee80211_alloc_hw()
2748  */
2749 void ieee80211_remain_on_channel_expired(struct ieee80211_hw *hw);
2750
2751 /* Rate control API */
2752
2753 /**
2754  * enum rate_control_changed - flags to indicate which parameter changed
2755  *
2756  * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
2757  *      changed, rate control algorithm can update its internal state if needed.
2758  */
2759 enum rate_control_changed {
2760         IEEE80211_RC_HT_CHANGED = BIT(0)
2761 };
2762
2763 /**
2764  * struct ieee80211_tx_rate_control - rate control information for/from RC algo
2765  *
2766  * @hw: The hardware the algorithm is invoked for.
2767  * @sband: The band this frame is being transmitted on.
2768  * @bss_conf: the current BSS configuration
2769  * @reported_rate: The rate control algorithm can fill this in to indicate
2770  *      which rate should be reported to userspace as the current rate and
2771  *      used for rate calculations in the mesh network.
2772  * @rts: whether RTS will be used for this frame because it is longer than the
2773  *      RTS threshold
2774  * @short_preamble: whether mac80211 will request short-preamble transmission
2775  *      if the selected rate supports it
2776  * @max_rate_idx: user-requested maximum rate (not MCS for now)
2777  *      (deprecated; this will be removed once drivers get updated to use
2778  *      rate_idx_mask)
2779  * @rate_idx_mask: user-requested rate mask (not MCS for now)
2780  * @skb: the skb that will be transmitted, the control information in it needs
2781  *      to be filled in
2782  * @bss: whether this frame is sent out in AP or IBSS mode
2783  */
2784 struct ieee80211_tx_rate_control {
2785         struct ieee80211_hw *hw;
2786         struct ieee80211_supported_band *sband;
2787         struct ieee80211_bss_conf *bss_conf;
2788         struct sk_buff *skb;
2789         struct ieee80211_tx_rate reported_rate;
2790         bool rts, short_preamble;
2791         u8 max_rate_idx;
2792         u32 rate_idx_mask;
2793         bool bss;
2794 };
2795
2796 struct rate_control_ops {
2797         struct module *module;
2798         const char *name;
2799         void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
2800         void (*free)(void *priv);
2801
2802         void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
2803         void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
2804                           struct ieee80211_sta *sta, void *priv_sta);
2805         void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
2806                             struct ieee80211_sta *sta,
2807                             void *priv_sta, u32 changed,
2808                             enum nl80211_channel_type oper_chan_type);
2809         void (*free_sta)(void *priv, struct ieee80211_sta *sta,
2810                          void *priv_sta);
2811
2812         void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
2813                           struct ieee80211_sta *sta, void *priv_sta,
2814                           struct sk_buff *skb);
2815         void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
2816                          struct ieee80211_tx_rate_control *txrc);
2817
2818         void (*add_sta_debugfs)(void *priv, void *priv_sta,
2819                                 struct dentry *dir);
2820         void (*remove_sta_debugfs)(void *priv, void *priv_sta);
2821 };
2822
2823 static inline int rate_supported(struct ieee80211_sta *sta,
2824                                  enum ieee80211_band band,
2825                                  int index)
2826 {
2827         return (sta == NULL || sta->supp_rates[band] & BIT(index));
2828 }
2829
2830 /**
2831  * rate_control_send_low - helper for drivers for management/no-ack frames
2832  *
2833  * Rate control algorithms that agree to use the lowest rate to
2834  * send management frames and NO_ACK data with the respective hw
2835  * retries should use this in the beginning of their mac80211 get_rate
2836  * callback. If true is returned the rate control can simply return.
2837  * If false is returned we guarantee that sta and sta and priv_sta is
2838  * not null.
2839  *
2840  * Rate control algorithms wishing to do more intelligent selection of
2841  * rate for multicast/broadcast frames may choose to not use this.
2842  *
2843  * @sta: &struct ieee80211_sta pointer to the target destination. Note
2844  *      that this may be null.
2845  * @priv_sta: private rate control structure. This may be null.
2846  * @txrc: rate control information we sholud populate for mac80211.
2847  */
2848 bool rate_control_send_low(struct ieee80211_sta *sta,
2849                            void *priv_sta,
2850                            struct ieee80211_tx_rate_control *txrc);
2851
2852
2853 static inline s8
2854 rate_lowest_index(struct ieee80211_supported_band *sband,
2855                   struct ieee80211_sta *sta)
2856 {
2857         int i;
2858
2859         for (i = 0; i < sband->n_bitrates; i++)
2860                 if (rate_supported(sta, sband->band, i))
2861                         return i;
2862
2863         /* warn when we cannot find a rate. */
2864         WARN_ON(1);
2865
2866         return 0;
2867 }
2868
2869 static inline
2870 bool rate_usable_index_exists(struct ieee80211_supported_band *sband,
2871                               struct ieee80211_sta *sta)
2872 {
2873         unsigned int i;
2874
2875         for (i = 0; i < sband->n_bitrates; i++)
2876                 if (rate_supported(sta, sband->band, i))
2877                         return true;
2878         return false;
2879 }
2880
2881 int ieee80211_rate_control_register(struct rate_control_ops *ops);
2882 void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2883
2884 static inline bool
2885 conf_is_ht20(struct ieee80211_conf *conf)
2886 {
2887         return conf->channel_type == NL80211_CHAN_HT20;
2888 }
2889
2890 static inline bool
2891 conf_is_ht40_minus(struct ieee80211_conf *conf)
2892 {
2893         return conf->channel_type == NL80211_CHAN_HT40MINUS;
2894 }
2895
2896 static inline bool
2897 conf_is_ht40_plus(struct ieee80211_conf *conf)
2898 {
2899         return conf->channel_type == NL80211_CHAN_HT40PLUS;
2900 }
2901
2902 static inline bool
2903 conf_is_ht40(struct ieee80211_conf *conf)
2904 {
2905         return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2906 }
2907
2908 static inline bool
2909 conf_is_ht(struct ieee80211_conf *conf)
2910 {
2911         return conf->channel_type != NL80211_CHAN_NO_HT;
2912 }
2913
2914 static inline enum nl80211_iftype
2915 ieee80211_iftype_p2p(enum nl80211_iftype type, bool p2p)
2916 {
2917         if (p2p) {
2918                 switch (type) {
2919                 case NL80211_IFTYPE_STATION:
2920                         return NL80211_IFTYPE_P2P_CLIENT;
2921                 case NL80211_IFTYPE_AP:
2922                         return NL80211_IFTYPE_P2P_GO;
2923                 default:
2924                         break;
2925                 }
2926         }
2927         return type;
2928 }
2929
2930 static inline enum nl80211_iftype
2931 ieee80211_vif_type_p2p(struct ieee80211_vif *vif)
2932 {
2933         return ieee80211_iftype_p2p(vif->type, vif->p2p);
2934 }
2935
2936 #endif /* MAC80211_H */