2 #include <linux/fsnotify_backend.h>
3 #include <linux/namei.h>
4 #include <linux/mount.h>
5 #include <linux/kthread.h>
6 #include <linux/slab.h>
14 struct audit_chunk *root;
15 struct list_head chunks;
16 struct list_head rules;
17 struct list_head list;
18 struct list_head same_root;
24 struct list_head hash;
25 struct fsnotify_mark mark;
26 struct list_head trees; /* with root here */
32 struct list_head list;
33 struct audit_tree *owner;
34 unsigned index; /* index; upper bit indicates 'will prune' */
38 static LIST_HEAD(tree_list);
39 static LIST_HEAD(prune_list);
40 static struct task_struct *prune_thread;
43 * One struct chunk is attached to each inode of interest.
44 * We replace struct chunk on tagging/untagging.
45 * Rules have pointer to struct audit_tree.
46 * Rules have struct list_head rlist forming a list of rules over
48 * References to struct chunk are collected at audit_inode{,_child}()
49 * time and used in AUDIT_TREE rule matching.
50 * These references are dropped at the same time we are calling
51 * audit_free_names(), etc.
53 * Cyclic lists galore:
54 * tree.chunks anchors chunk.owners[].list hash_lock
55 * tree.rules anchors rule.rlist audit_filter_mutex
56 * chunk.trees anchors tree.same_root hash_lock
57 * chunk.hash is a hash with middle bits of watch.inode as
58 * a hash function. RCU, hash_lock
60 * tree is refcounted; one reference for "some rules on rules_list refer to
61 * it", one for each chunk with pointer to it.
63 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
64 * of watch contributes 1 to .refs).
66 * node.index allows to get from node.list to containing chunk.
67 * MSB of that sucker is stolen to mark taggings that we might have to
68 * revert - several operations have very unpleasant cleanup logics and
69 * that makes a difference. Some.
72 static struct fsnotify_group *audit_tree_group;
74 static struct audit_tree *alloc_tree(const char *s)
76 struct audit_tree *tree;
78 tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
80 atomic_set(&tree->count, 1);
82 INIT_LIST_HEAD(&tree->chunks);
83 INIT_LIST_HEAD(&tree->rules);
84 INIT_LIST_HEAD(&tree->list);
85 INIT_LIST_HEAD(&tree->same_root);
87 strcpy(tree->pathname, s);
92 static inline void get_tree(struct audit_tree *tree)
94 atomic_inc(&tree->count);
97 static inline void put_tree(struct audit_tree *tree)
99 if (atomic_dec_and_test(&tree->count))
100 kfree_rcu(tree, head);
103 /* to avoid bringing the entire thing in audit.h */
104 const char *audit_tree_path(struct audit_tree *tree)
106 return tree->pathname;
109 static void free_chunk(struct audit_chunk *chunk)
113 for (i = 0; i < chunk->count; i++) {
114 if (chunk->owners[i].owner)
115 put_tree(chunk->owners[i].owner);
120 void audit_put_chunk(struct audit_chunk *chunk)
122 if (atomic_long_dec_and_test(&chunk->refs))
126 static void __put_chunk(struct rcu_head *rcu)
128 struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
129 audit_put_chunk(chunk);
132 static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
134 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
135 call_rcu(&chunk->head, __put_chunk);
138 static struct audit_chunk *alloc_chunk(int count)
140 struct audit_chunk *chunk;
144 size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
145 chunk = kzalloc(size, GFP_KERNEL);
149 INIT_LIST_HEAD(&chunk->hash);
150 INIT_LIST_HEAD(&chunk->trees);
151 chunk->count = count;
152 atomic_long_set(&chunk->refs, 1);
153 for (i = 0; i < count; i++) {
154 INIT_LIST_HEAD(&chunk->owners[i].list);
155 chunk->owners[i].index = i;
157 fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
158 chunk->mark.mask = FS_IN_IGNORED;
162 enum {HASH_SIZE = 128};
163 static struct list_head chunk_hash_heads[HASH_SIZE];
164 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
166 static inline struct list_head *chunk_hash(const struct inode *inode)
168 unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
169 return chunk_hash_heads + n % HASH_SIZE;
172 /* hash_lock & entry->lock is held by caller */
173 static void insert_hash(struct audit_chunk *chunk)
175 struct fsnotify_mark *entry = &chunk->mark;
176 struct list_head *list;
180 list = chunk_hash(entry->inode);
181 list_add_rcu(&chunk->hash, list);
184 /* called under rcu_read_lock */
185 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
187 struct list_head *list = chunk_hash(inode);
188 struct audit_chunk *p;
190 list_for_each_entry_rcu(p, list, hash) {
191 /* mark.inode may have gone NULL, but who cares? */
192 if (p->mark.inode == inode) {
193 atomic_long_inc(&p->refs);
200 bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
203 for (n = 0; n < chunk->count; n++)
204 if (chunk->owners[n].owner == tree)
209 /* tagging and untagging inodes with trees */
211 static struct audit_chunk *find_chunk(struct node *p)
213 int index = p->index & ~(1U<<31);
215 return container_of(p, struct audit_chunk, owners[0]);
218 static void untag_chunk(struct node *p)
220 struct audit_chunk *chunk = find_chunk(p);
221 struct fsnotify_mark *entry = &chunk->mark;
222 struct audit_chunk *new = NULL;
223 struct audit_tree *owner;
224 int size = chunk->count - 1;
227 fsnotify_get_mark(entry);
229 spin_unlock(&hash_lock);
232 new = alloc_chunk(size);
234 mutex_lock(&entry->group->mark_mutex);
235 spin_lock(&entry->lock);
236 if (chunk->dead || !entry->inode) {
237 spin_unlock(&entry->lock);
238 mutex_unlock(&entry->group->mark_mutex);
248 spin_lock(&hash_lock);
249 list_del_init(&chunk->trees);
250 if (owner->root == chunk)
252 list_del_init(&p->list);
253 list_del_rcu(&chunk->hash);
254 spin_unlock(&hash_lock);
255 spin_unlock(&entry->lock);
256 mutex_unlock(&entry->group->mark_mutex);
257 fsnotify_destroy_mark(entry, audit_tree_group);
264 if (fsnotify_add_mark_locked(&new->mark, entry->group, entry->inode,
266 fsnotify_put_mark(&new->mark);
271 spin_lock(&hash_lock);
272 list_replace_init(&chunk->trees, &new->trees);
273 if (owner->root == chunk) {
274 list_del_init(&owner->same_root);
278 for (i = j = 0; j <= size; i++, j++) {
279 struct audit_tree *s;
280 if (&chunk->owners[j] == p) {
281 list_del_init(&p->list);
285 s = chunk->owners[j].owner;
286 new->owners[i].owner = s;
287 new->owners[i].index = chunk->owners[j].index - j + i;
288 if (!s) /* result of earlier fallback */
291 list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
294 list_replace_rcu(&chunk->hash, &new->hash);
295 list_for_each_entry(owner, &new->trees, same_root)
297 spin_unlock(&hash_lock);
298 spin_unlock(&entry->lock);
299 mutex_unlock(&entry->group->mark_mutex);
300 fsnotify_destroy_mark(entry, audit_tree_group);
301 fsnotify_put_mark(&new->mark); /* drop initial reference */
305 // do the best we can
306 spin_lock(&hash_lock);
307 if (owner->root == chunk) {
308 list_del_init(&owner->same_root);
311 list_del_init(&p->list);
314 spin_unlock(&hash_lock);
315 spin_unlock(&entry->lock);
316 mutex_unlock(&entry->group->mark_mutex);
318 fsnotify_put_mark(entry);
319 spin_lock(&hash_lock);
322 static int create_chunk(struct inode *inode, struct audit_tree *tree)
324 struct fsnotify_mark *entry;
325 struct audit_chunk *chunk = alloc_chunk(1);
329 entry = &chunk->mark;
330 if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) {
331 fsnotify_put_mark(entry);
335 spin_lock(&entry->lock);
336 spin_lock(&hash_lock);
338 spin_unlock(&hash_lock);
340 spin_unlock(&entry->lock);
341 fsnotify_destroy_mark(entry, audit_tree_group);
342 fsnotify_put_mark(entry);
345 chunk->owners[0].index = (1U << 31);
346 chunk->owners[0].owner = tree;
348 list_add(&chunk->owners[0].list, &tree->chunks);
351 list_add(&tree->same_root, &chunk->trees);
354 spin_unlock(&hash_lock);
355 spin_unlock(&entry->lock);
356 fsnotify_put_mark(entry); /* drop initial reference */
360 /* the first tagged inode becomes root of tree */
361 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
363 struct fsnotify_mark *old_entry, *chunk_entry;
364 struct audit_tree *owner;
365 struct audit_chunk *chunk, *old;
369 old_entry = fsnotify_find_inode_mark(audit_tree_group, inode);
371 return create_chunk(inode, tree);
373 old = container_of(old_entry, struct audit_chunk, mark);
375 /* are we already there? */
376 spin_lock(&hash_lock);
377 for (n = 0; n < old->count; n++) {
378 if (old->owners[n].owner == tree) {
379 spin_unlock(&hash_lock);
380 fsnotify_put_mark(old_entry);
384 spin_unlock(&hash_lock);
386 chunk = alloc_chunk(old->count + 1);
388 fsnotify_put_mark(old_entry);
392 chunk_entry = &chunk->mark;
394 mutex_lock(&old_entry->group->mark_mutex);
395 spin_lock(&old_entry->lock);
396 if (!old_entry->inode) {
397 /* old_entry is being shot, lets just lie */
398 spin_unlock(&old_entry->lock);
399 mutex_unlock(&old_entry->group->mark_mutex);
400 fsnotify_put_mark(old_entry);
405 if (fsnotify_add_mark_locked(chunk_entry, old_entry->group,
406 old_entry->inode, NULL, 1)) {
407 spin_unlock(&old_entry->lock);
408 mutex_unlock(&old_entry->group->mark_mutex);
409 fsnotify_put_mark(chunk_entry);
410 fsnotify_put_mark(old_entry);
414 /* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
415 spin_lock(&chunk_entry->lock);
416 spin_lock(&hash_lock);
418 /* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
420 spin_unlock(&hash_lock);
422 spin_unlock(&chunk_entry->lock);
423 spin_unlock(&old_entry->lock);
424 mutex_unlock(&old_entry->group->mark_mutex);
426 fsnotify_destroy_mark(chunk_entry, audit_tree_group);
428 fsnotify_put_mark(chunk_entry);
429 fsnotify_put_mark(old_entry);
432 list_replace_init(&old->trees, &chunk->trees);
433 for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
434 struct audit_tree *s = old->owners[n].owner;
436 p->index = old->owners[n].index;
437 if (!s) /* result of fallback in untag */
440 list_replace_init(&old->owners[n].list, &p->list);
442 p->index = (chunk->count - 1) | (1U<<31);
445 list_add(&p->list, &tree->chunks);
446 list_replace_rcu(&old->hash, &chunk->hash);
447 list_for_each_entry(owner, &chunk->trees, same_root)
452 list_add(&tree->same_root, &chunk->trees);
454 spin_unlock(&hash_lock);
455 spin_unlock(&chunk_entry->lock);
456 spin_unlock(&old_entry->lock);
457 mutex_unlock(&old_entry->group->mark_mutex);
458 fsnotify_destroy_mark(old_entry, audit_tree_group);
459 fsnotify_put_mark(chunk_entry); /* drop initial reference */
460 fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
464 static void audit_tree_log_remove_rule(struct audit_krule *rule)
466 struct audit_buffer *ab;
468 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
471 audit_log_format(ab, "op=remove_rule");
472 audit_log_format(ab, " dir=");
473 audit_log_untrustedstring(ab, rule->tree->pathname);
474 audit_log_key(ab, rule->filterkey);
475 audit_log_format(ab, " list=%d res=1", rule->listnr);
479 static void kill_rules(struct audit_tree *tree)
481 struct audit_krule *rule, *next;
482 struct audit_entry *entry;
484 list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
485 entry = container_of(rule, struct audit_entry, rule);
487 list_del_init(&rule->rlist);
489 /* not a half-baked one */
490 audit_tree_log_remove_rule(rule);
492 audit_remove_mark(entry->rule.exe);
494 list_del_rcu(&entry->list);
495 list_del(&entry->rule.list);
496 call_rcu(&entry->rcu, audit_free_rule_rcu);
502 * finish killing struct audit_tree
504 static void prune_one(struct audit_tree *victim)
506 spin_lock(&hash_lock);
507 while (!list_empty(&victim->chunks)) {
510 p = list_entry(victim->chunks.next, struct node, list);
514 spin_unlock(&hash_lock);
518 /* trim the uncommitted chunks from tree */
520 static void trim_marked(struct audit_tree *tree)
522 struct list_head *p, *q;
523 spin_lock(&hash_lock);
525 spin_unlock(&hash_lock);
529 for (p = tree->chunks.next; p != &tree->chunks; p = q) {
530 struct node *node = list_entry(p, struct node, list);
532 if (node->index & (1U<<31)) {
534 list_add(p, &tree->chunks);
538 while (!list_empty(&tree->chunks)) {
541 node = list_entry(tree->chunks.next, struct node, list);
543 /* have we run out of marked? */
544 if (!(node->index & (1U<<31)))
549 if (!tree->root && !tree->goner) {
551 spin_unlock(&hash_lock);
552 mutex_lock(&audit_filter_mutex);
554 list_del_init(&tree->list);
555 mutex_unlock(&audit_filter_mutex);
558 spin_unlock(&hash_lock);
562 static void audit_schedule_prune(void);
564 /* called with audit_filter_mutex */
565 int audit_remove_tree_rule(struct audit_krule *rule)
567 struct audit_tree *tree;
570 spin_lock(&hash_lock);
571 list_del_init(&rule->rlist);
572 if (list_empty(&tree->rules) && !tree->goner) {
574 list_del_init(&tree->same_root);
576 list_move(&tree->list, &prune_list);
578 spin_unlock(&hash_lock);
579 audit_schedule_prune();
583 spin_unlock(&hash_lock);
589 static int compare_root(struct vfsmount *mnt, void *arg)
591 return d_backing_inode(mnt->mnt_root) == arg;
594 void audit_trim_trees(void)
596 struct list_head cursor;
598 mutex_lock(&audit_filter_mutex);
599 list_add(&cursor, &tree_list);
600 while (cursor.next != &tree_list) {
601 struct audit_tree *tree;
603 struct vfsmount *root_mnt;
607 tree = container_of(cursor.next, struct audit_tree, list);
610 list_add(&cursor, &tree->list);
611 mutex_unlock(&audit_filter_mutex);
613 err = kern_path(tree->pathname, 0, &path);
617 root_mnt = collect_mounts(&path);
619 if (IS_ERR(root_mnt))
622 spin_lock(&hash_lock);
623 list_for_each_entry(node, &tree->chunks, list) {
624 struct audit_chunk *chunk = find_chunk(node);
625 /* this could be NULL if the watch is dying else where... */
626 struct inode *inode = chunk->mark.inode;
627 node->index |= 1U<<31;
628 if (iterate_mounts(compare_root, inode, root_mnt))
629 node->index &= ~(1U<<31);
631 spin_unlock(&hash_lock);
633 drop_collected_mounts(root_mnt);
636 mutex_lock(&audit_filter_mutex);
639 mutex_unlock(&audit_filter_mutex);
642 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
645 if (pathname[0] != '/' ||
646 rule->listnr != AUDIT_FILTER_EXIT ||
648 rule->inode_f || rule->watch || rule->tree)
650 rule->tree = alloc_tree(pathname);
656 void audit_put_tree(struct audit_tree *tree)
661 static int tag_mount(struct vfsmount *mnt, void *arg)
663 return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
667 * That gets run when evict_chunk() ends up needing to kill audit_tree.
668 * Runs from a separate thread.
670 static int prune_tree_thread(void *unused)
673 if (list_empty(&prune_list)) {
674 set_current_state(TASK_INTERRUPTIBLE);
678 mutex_lock(&audit_cmd_mutex);
679 mutex_lock(&audit_filter_mutex);
681 while (!list_empty(&prune_list)) {
682 struct audit_tree *victim;
684 victim = list_entry(prune_list.next,
685 struct audit_tree, list);
686 list_del_init(&victim->list);
688 mutex_unlock(&audit_filter_mutex);
692 mutex_lock(&audit_filter_mutex);
695 mutex_unlock(&audit_filter_mutex);
696 mutex_unlock(&audit_cmd_mutex);
701 static int audit_launch_prune(void)
705 prune_thread = kthread_run(prune_tree_thread, NULL,
707 if (IS_ERR(prune_thread)) {
708 pr_err("cannot start thread audit_prune_tree");
715 /* called with audit_filter_mutex */
716 int audit_add_tree_rule(struct audit_krule *rule)
718 struct audit_tree *seed = rule->tree, *tree;
720 struct vfsmount *mnt;
724 list_for_each_entry(tree, &tree_list, list) {
725 if (!strcmp(seed->pathname, tree->pathname)) {
728 list_add(&rule->rlist, &tree->rules);
733 list_add(&tree->list, &tree_list);
734 list_add(&rule->rlist, &tree->rules);
735 /* do not set rule->tree yet */
736 mutex_unlock(&audit_filter_mutex);
738 if (unlikely(!prune_thread)) {
739 err = audit_launch_prune();
744 err = kern_path(tree->pathname, 0, &path);
747 mnt = collect_mounts(&path);
755 err = iterate_mounts(tag_mount, tree, mnt);
756 drop_collected_mounts(mnt);
760 spin_lock(&hash_lock);
761 list_for_each_entry(node, &tree->chunks, list)
762 node->index &= ~(1U<<31);
763 spin_unlock(&hash_lock);
769 mutex_lock(&audit_filter_mutex);
770 if (list_empty(&rule->rlist)) {
779 mutex_lock(&audit_filter_mutex);
780 list_del_init(&tree->list);
781 list_del_init(&tree->rules);
786 int audit_tag_tree(char *old, char *new)
788 struct list_head cursor, barrier;
790 struct path path1, path2;
791 struct vfsmount *tagged;
794 err = kern_path(new, 0, &path2);
797 tagged = collect_mounts(&path2);
800 return PTR_ERR(tagged);
802 err = kern_path(old, 0, &path1);
804 drop_collected_mounts(tagged);
808 mutex_lock(&audit_filter_mutex);
809 list_add(&barrier, &tree_list);
810 list_add(&cursor, &barrier);
812 while (cursor.next != &tree_list) {
813 struct audit_tree *tree;
816 tree = container_of(cursor.next, struct audit_tree, list);
819 list_add(&cursor, &tree->list);
820 mutex_unlock(&audit_filter_mutex);
822 err = kern_path(tree->pathname, 0, &path2);
824 good_one = path_is_under(&path1, &path2);
830 mutex_lock(&audit_filter_mutex);
834 failed = iterate_mounts(tag_mount, tree, tagged);
837 mutex_lock(&audit_filter_mutex);
841 mutex_lock(&audit_filter_mutex);
842 spin_lock(&hash_lock);
844 list_del(&tree->list);
845 list_add(&tree->list, &tree_list);
847 spin_unlock(&hash_lock);
851 while (barrier.prev != &tree_list) {
852 struct audit_tree *tree;
854 tree = container_of(barrier.prev, struct audit_tree, list);
856 list_del(&tree->list);
857 list_add(&tree->list, &barrier);
858 mutex_unlock(&audit_filter_mutex);
862 spin_lock(&hash_lock);
863 list_for_each_entry(node, &tree->chunks, list)
864 node->index &= ~(1U<<31);
865 spin_unlock(&hash_lock);
871 mutex_lock(&audit_filter_mutex);
875 mutex_unlock(&audit_filter_mutex);
877 drop_collected_mounts(tagged);
882 static void audit_schedule_prune(void)
884 wake_up_process(prune_thread);
888 * ... and that one is done if evict_chunk() decides to delay until the end
889 * of syscall. Runs synchronously.
891 void audit_kill_trees(struct list_head *list)
893 mutex_lock(&audit_cmd_mutex);
894 mutex_lock(&audit_filter_mutex);
896 while (!list_empty(list)) {
897 struct audit_tree *victim;
899 victim = list_entry(list->next, struct audit_tree, list);
901 list_del_init(&victim->list);
903 mutex_unlock(&audit_filter_mutex);
907 mutex_lock(&audit_filter_mutex);
910 mutex_unlock(&audit_filter_mutex);
911 mutex_unlock(&audit_cmd_mutex);
915 * Here comes the stuff asynchronous to auditctl operations
918 static void evict_chunk(struct audit_chunk *chunk)
920 struct audit_tree *owner;
921 struct list_head *postponed = audit_killed_trees();
929 mutex_lock(&audit_filter_mutex);
930 spin_lock(&hash_lock);
931 while (!list_empty(&chunk->trees)) {
932 owner = list_entry(chunk->trees.next,
933 struct audit_tree, same_root);
936 list_del_init(&owner->same_root);
937 spin_unlock(&hash_lock);
940 list_move(&owner->list, &prune_list);
943 list_move(&owner->list, postponed);
945 spin_lock(&hash_lock);
947 list_del_rcu(&chunk->hash);
948 for (n = 0; n < chunk->count; n++)
949 list_del_init(&chunk->owners[n].list);
950 spin_unlock(&hash_lock);
951 mutex_unlock(&audit_filter_mutex);
953 audit_schedule_prune();
956 static int audit_tree_handle_event(struct fsnotify_group *group,
957 struct inode *to_tell,
958 struct fsnotify_mark *inode_mark,
959 struct fsnotify_mark *vfsmount_mark,
960 u32 mask, const void *data, int data_type,
961 const unsigned char *file_name, u32 cookie)
966 static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
968 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
973 * We are guaranteed to have at least one reference to the mark from
974 * either the inode or the caller of fsnotify_destroy_mark().
976 BUG_ON(atomic_read(&entry->refcnt) < 1);
979 static const struct fsnotify_ops audit_tree_ops = {
980 .handle_event = audit_tree_handle_event,
981 .freeing_mark = audit_tree_freeing_mark,
984 static int __init audit_tree_init(void)
988 audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
989 if (IS_ERR(audit_tree_group))
990 audit_panic("cannot initialize fsnotify group for rectree watches");
992 for (i = 0; i < HASH_SIZE; i++)
993 INIT_LIST_HEAD(&chunk_hash_heads[i]);
997 __initcall(audit_tree_init);