]> git.karo-electronics.de Git - linux-beck.git/blob - kernel/cpu.c
9048c33689ac46ea2e1d6d76c5ccd365aa249e62
[linux-beck.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25 #include <linux/smpboot.h>
26
27 #include <trace/events/power.h>
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/cpuhp.h>
30
31 #include "smpboot.h"
32
33 /**
34  * cpuhp_cpu_state - Per cpu hotplug state storage
35  * @state:      The current cpu state
36  * @target:     The target state
37  * @thread:     Pointer to the hotplug thread
38  * @should_run: Thread should execute
39  * @cb_stat:    The state for a single callback (install/uninstall)
40  * @cb:         Single callback function (install/uninstall)
41  * @result:     Result of the operation
42  * @done:       Signal completion to the issuer of the task
43  */
44 struct cpuhp_cpu_state {
45         enum cpuhp_state        state;
46         enum cpuhp_state        target;
47 #ifdef CONFIG_SMP
48         struct task_struct      *thread;
49         bool                    should_run;
50         enum cpuhp_state        cb_state;
51         int                     (*cb)(unsigned int cpu);
52         int                     result;
53         struct completion       done;
54 #endif
55 };
56
57 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
58
59 /**
60  * cpuhp_step - Hotplug state machine step
61  * @name:       Name of the step
62  * @startup:    Startup function of the step
63  * @teardown:   Teardown function of the step
64  * @skip_onerr: Do not invoke the functions on error rollback
65  *              Will go away once the notifiers are gone
66  * @cant_stop:  Bringup/teardown can't be stopped at this step
67  */
68 struct cpuhp_step {
69         const char      *name;
70         int             (*startup)(unsigned int cpu);
71         int             (*teardown)(unsigned int cpu);
72         bool            skip_onerr;
73         bool            cant_stop;
74 };
75
76 static DEFINE_MUTEX(cpuhp_state_mutex);
77 static struct cpuhp_step cpuhp_bp_states[];
78 static struct cpuhp_step cpuhp_ap_states[];
79
80 /**
81  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
82  * @cpu:        The cpu for which the callback should be invoked
83  * @step:       The step in the state machine
84  * @cb:         The callback function to invoke
85  *
86  * Called from cpu hotplug and from the state register machinery
87  */
88 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state step,
89                                  int (*cb)(unsigned int))
90 {
91         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
92         int ret = 0;
93
94         if (cb) {
95                 trace_cpuhp_enter(cpu, st->target, step, cb);
96                 ret = cb(cpu);
97                 trace_cpuhp_exit(cpu, st->state, step, ret);
98         }
99         return ret;
100 }
101
102 #ifdef CONFIG_SMP
103 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
104 static DEFINE_MUTEX(cpu_add_remove_lock);
105 bool cpuhp_tasks_frozen;
106 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
107
108 /*
109  * The following two APIs (cpu_maps_update_begin/done) must be used when
110  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
111  * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
112  * hotplug callback (un)registration performed using __register_cpu_notifier()
113  * or __unregister_cpu_notifier().
114  */
115 void cpu_maps_update_begin(void)
116 {
117         mutex_lock(&cpu_add_remove_lock);
118 }
119 EXPORT_SYMBOL(cpu_notifier_register_begin);
120
121 void cpu_maps_update_done(void)
122 {
123         mutex_unlock(&cpu_add_remove_lock);
124 }
125 EXPORT_SYMBOL(cpu_notifier_register_done);
126
127 static RAW_NOTIFIER_HEAD(cpu_chain);
128
129 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
130  * Should always be manipulated under cpu_add_remove_lock
131  */
132 static int cpu_hotplug_disabled;
133
134 #ifdef CONFIG_HOTPLUG_CPU
135
136 static struct {
137         struct task_struct *active_writer;
138         /* wait queue to wake up the active_writer */
139         wait_queue_head_t wq;
140         /* verifies that no writer will get active while readers are active */
141         struct mutex lock;
142         /*
143          * Also blocks the new readers during
144          * an ongoing cpu hotplug operation.
145          */
146         atomic_t refcount;
147
148 #ifdef CONFIG_DEBUG_LOCK_ALLOC
149         struct lockdep_map dep_map;
150 #endif
151 } cpu_hotplug = {
152         .active_writer = NULL,
153         .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
154         .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
155 #ifdef CONFIG_DEBUG_LOCK_ALLOC
156         .dep_map = {.name = "cpu_hotplug.lock" },
157 #endif
158 };
159
160 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
161 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
162 #define cpuhp_lock_acquire_tryread() \
163                                   lock_map_acquire_tryread(&cpu_hotplug.dep_map)
164 #define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
165 #define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
166
167
168 void get_online_cpus(void)
169 {
170         might_sleep();
171         if (cpu_hotplug.active_writer == current)
172                 return;
173         cpuhp_lock_acquire_read();
174         mutex_lock(&cpu_hotplug.lock);
175         atomic_inc(&cpu_hotplug.refcount);
176         mutex_unlock(&cpu_hotplug.lock);
177 }
178 EXPORT_SYMBOL_GPL(get_online_cpus);
179
180 void put_online_cpus(void)
181 {
182         int refcount;
183
184         if (cpu_hotplug.active_writer == current)
185                 return;
186
187         refcount = atomic_dec_return(&cpu_hotplug.refcount);
188         if (WARN_ON(refcount < 0)) /* try to fix things up */
189                 atomic_inc(&cpu_hotplug.refcount);
190
191         if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
192                 wake_up(&cpu_hotplug.wq);
193
194         cpuhp_lock_release();
195
196 }
197 EXPORT_SYMBOL_GPL(put_online_cpus);
198
199 /*
200  * This ensures that the hotplug operation can begin only when the
201  * refcount goes to zero.
202  *
203  * Note that during a cpu-hotplug operation, the new readers, if any,
204  * will be blocked by the cpu_hotplug.lock
205  *
206  * Since cpu_hotplug_begin() is always called after invoking
207  * cpu_maps_update_begin(), we can be sure that only one writer is active.
208  *
209  * Note that theoretically, there is a possibility of a livelock:
210  * - Refcount goes to zero, last reader wakes up the sleeping
211  *   writer.
212  * - Last reader unlocks the cpu_hotplug.lock.
213  * - A new reader arrives at this moment, bumps up the refcount.
214  * - The writer acquires the cpu_hotplug.lock finds the refcount
215  *   non zero and goes to sleep again.
216  *
217  * However, this is very difficult to achieve in practice since
218  * get_online_cpus() not an api which is called all that often.
219  *
220  */
221 void cpu_hotplug_begin(void)
222 {
223         DEFINE_WAIT(wait);
224
225         cpu_hotplug.active_writer = current;
226         cpuhp_lock_acquire();
227
228         for (;;) {
229                 mutex_lock(&cpu_hotplug.lock);
230                 prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
231                 if (likely(!atomic_read(&cpu_hotplug.refcount)))
232                                 break;
233                 mutex_unlock(&cpu_hotplug.lock);
234                 schedule();
235         }
236         finish_wait(&cpu_hotplug.wq, &wait);
237 }
238
239 void cpu_hotplug_done(void)
240 {
241         cpu_hotplug.active_writer = NULL;
242         mutex_unlock(&cpu_hotplug.lock);
243         cpuhp_lock_release();
244 }
245
246 /*
247  * Wait for currently running CPU hotplug operations to complete (if any) and
248  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
249  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
250  * hotplug path before performing hotplug operations. So acquiring that lock
251  * guarantees mutual exclusion from any currently running hotplug operations.
252  */
253 void cpu_hotplug_disable(void)
254 {
255         cpu_maps_update_begin();
256         cpu_hotplug_disabled++;
257         cpu_maps_update_done();
258 }
259 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
260
261 void cpu_hotplug_enable(void)
262 {
263         cpu_maps_update_begin();
264         WARN_ON(--cpu_hotplug_disabled < 0);
265         cpu_maps_update_done();
266 }
267 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
268 #endif  /* CONFIG_HOTPLUG_CPU */
269
270 /* Need to know about CPUs going up/down? */
271 int register_cpu_notifier(struct notifier_block *nb)
272 {
273         int ret;
274         cpu_maps_update_begin();
275         ret = raw_notifier_chain_register(&cpu_chain, nb);
276         cpu_maps_update_done();
277         return ret;
278 }
279
280 int __register_cpu_notifier(struct notifier_block *nb)
281 {
282         return raw_notifier_chain_register(&cpu_chain, nb);
283 }
284
285 static int __cpu_notify(unsigned long val, unsigned int cpu, int nr_to_call,
286                         int *nr_calls)
287 {
288         unsigned long mod = cpuhp_tasks_frozen ? CPU_TASKS_FROZEN : 0;
289         void *hcpu = (void *)(long)cpu;
290
291         int ret;
292
293         ret = __raw_notifier_call_chain(&cpu_chain, val | mod, hcpu, nr_to_call,
294                                         nr_calls);
295
296         return notifier_to_errno(ret);
297 }
298
299 static int cpu_notify(unsigned long val, unsigned int cpu)
300 {
301         return __cpu_notify(val, cpu, -1, NULL);
302 }
303
304 /* Notifier wrappers for transitioning to state machine */
305 static int notify_prepare(unsigned int cpu)
306 {
307         int nr_calls = 0;
308         int ret;
309
310         ret = __cpu_notify(CPU_UP_PREPARE, cpu, -1, &nr_calls);
311         if (ret) {
312                 nr_calls--;
313                 printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
314                                 __func__, cpu);
315                 __cpu_notify(CPU_UP_CANCELED, cpu, nr_calls, NULL);
316         }
317         return ret;
318 }
319
320 static int notify_online(unsigned int cpu)
321 {
322         cpu_notify(CPU_ONLINE, cpu);
323         return 0;
324 }
325
326 static int notify_starting(unsigned int cpu)
327 {
328         cpu_notify(CPU_STARTING, cpu);
329         return 0;
330 }
331
332 static int bringup_cpu(unsigned int cpu)
333 {
334         struct task_struct *idle = idle_thread_get(cpu);
335         int ret;
336
337         /* Arch-specific enabling code. */
338         ret = __cpu_up(cpu, idle);
339         if (ret) {
340                 cpu_notify(CPU_UP_CANCELED, cpu);
341                 return ret;
342         }
343         BUG_ON(!cpu_online(cpu));
344         return 0;
345 }
346
347 /*
348  * Hotplug state machine related functions
349  */
350 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st,
351                           struct cpuhp_step *steps)
352 {
353         for (st->state++; st->state < st->target; st->state++) {
354                 struct cpuhp_step *step = steps + st->state;
355
356                 if (!step->skip_onerr)
357                         cpuhp_invoke_callback(cpu, st->state, step->startup);
358         }
359 }
360
361 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
362                                 struct cpuhp_step *steps, enum cpuhp_state target)
363 {
364         enum cpuhp_state prev_state = st->state;
365         int ret = 0;
366
367         for (; st->state > target; st->state--) {
368                 struct cpuhp_step *step = steps + st->state;
369
370                 ret = cpuhp_invoke_callback(cpu, st->state, step->teardown);
371                 if (ret) {
372                         st->target = prev_state;
373                         undo_cpu_down(cpu, st, steps);
374                         break;
375                 }
376         }
377         return ret;
378 }
379
380 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st,
381                         struct cpuhp_step *steps)
382 {
383         for (st->state--; st->state > st->target; st->state--) {
384                 struct cpuhp_step *step = steps + st->state;
385
386                 if (!step->skip_onerr)
387                         cpuhp_invoke_callback(cpu, st->state, step->teardown);
388         }
389 }
390
391 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
392                               struct cpuhp_step *steps, enum cpuhp_state target)
393 {
394         enum cpuhp_state prev_state = st->state;
395         int ret = 0;
396
397         while (st->state < target) {
398                 struct cpuhp_step *step;
399
400                 st->state++;
401                 step = steps + st->state;
402                 ret = cpuhp_invoke_callback(cpu, st->state, step->startup);
403                 if (ret) {
404                         st->target = prev_state;
405                         undo_cpu_up(cpu, st, steps);
406                         break;
407                 }
408         }
409         return ret;
410 }
411
412 /*
413  * The cpu hotplug threads manage the bringup and teardown of the cpus
414  */
415 static void cpuhp_create(unsigned int cpu)
416 {
417         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
418
419         init_completion(&st->done);
420 }
421
422 static int cpuhp_should_run(unsigned int cpu)
423 {
424         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
425
426         return st->should_run;
427 }
428
429 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
430 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
431 {
432         enum cpuhp_state target = max((int)st->target, CPUHP_AP_ONLINE);
433
434         return cpuhp_down_callbacks(cpu, st, cpuhp_ap_states, target);
435 }
436
437 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
438 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
439 {
440         return cpuhp_up_callbacks(cpu, st, cpuhp_ap_states, st->target);
441 }
442
443 /*
444  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
445  * callbacks when a state gets [un]installed at runtime.
446  */
447 static void cpuhp_thread_fun(unsigned int cpu)
448 {
449         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
450         int ret = 0;
451
452         /*
453          * Paired with the mb() in cpuhp_kick_ap_work and
454          * cpuhp_invoke_ap_callback, so the work set is consistent visible.
455          */
456         smp_mb();
457         if (!st->should_run)
458                 return;
459
460         st->should_run = false;
461
462         /* Single callback invocation for [un]install ? */
463         if (st->cb) {
464                 if (st->cb_state < CPUHP_AP_ONLINE) {
465                         local_irq_disable();
466                         ret = cpuhp_invoke_callback(cpu, st->cb_state, st->cb);
467                         local_irq_enable();
468                 } else {
469                         ret = cpuhp_invoke_callback(cpu, st->cb_state, st->cb);
470                 }
471         } else {
472                 /* Regular hotplug work */
473                 if (st->state < st->target)
474                         ret = cpuhp_ap_online(cpu, st);
475                 else if (st->state > st->target)
476                         ret = cpuhp_ap_offline(cpu, st);
477         }
478         st->result = ret;
479         complete(&st->done);
480 }
481
482 /* Invoke a single callback on a remote cpu */
483 static int cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state,
484                                     int (*cb)(unsigned int))
485 {
486         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
487
488         if (!cpu_online(cpu))
489                 return 0;
490
491         st->cb_state = state;
492         st->cb = cb;
493         /*
494          * Make sure the above stores are visible before should_run becomes
495          * true. Paired with the mb() above in cpuhp_thread_fun()
496          */
497         smp_mb();
498         st->should_run = true;
499         wake_up_process(st->thread);
500         wait_for_completion(&st->done);
501         return st->result;
502 }
503
504 /* Regular hotplug invocation of the AP hotplug thread */
505 static int cpuhp_kick_ap_work(unsigned int cpu)
506 {
507         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
508         enum cpuhp_state state = st->state;
509
510         trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
511         st->result = 0;
512         st->cb = NULL;
513         /*
514          * Make sure the above stores are visible before should_run becomes
515          * true. Paired with the mb() above in cpuhp_thread_fun()
516          */
517         smp_mb();
518         st->should_run = true;
519         wake_up_process(st->thread);
520         wait_for_completion(&st->done);
521         trace_cpuhp_exit(cpu, st->state, state, st->result);
522         return st->result;
523 }
524
525 static struct smp_hotplug_thread cpuhp_threads = {
526         .store                  = &cpuhp_state.thread,
527         .create                 = &cpuhp_create,
528         .thread_should_run      = cpuhp_should_run,
529         .thread_fn              = cpuhp_thread_fun,
530         .thread_comm            = "cpuhp/%u",
531         .selfparking            = true,
532 };
533
534 void __init cpuhp_threads_init(void)
535 {
536         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
537         kthread_unpark(this_cpu_read(cpuhp_state.thread));
538 }
539
540 #ifdef CONFIG_HOTPLUG_CPU
541 EXPORT_SYMBOL(register_cpu_notifier);
542 EXPORT_SYMBOL(__register_cpu_notifier);
543 void unregister_cpu_notifier(struct notifier_block *nb)
544 {
545         cpu_maps_update_begin();
546         raw_notifier_chain_unregister(&cpu_chain, nb);
547         cpu_maps_update_done();
548 }
549 EXPORT_SYMBOL(unregister_cpu_notifier);
550
551 void __unregister_cpu_notifier(struct notifier_block *nb)
552 {
553         raw_notifier_chain_unregister(&cpu_chain, nb);
554 }
555 EXPORT_SYMBOL(__unregister_cpu_notifier);
556
557 /**
558  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
559  * @cpu: a CPU id
560  *
561  * This function walks all processes, finds a valid mm struct for each one and
562  * then clears a corresponding bit in mm's cpumask.  While this all sounds
563  * trivial, there are various non-obvious corner cases, which this function
564  * tries to solve in a safe manner.
565  *
566  * Also note that the function uses a somewhat relaxed locking scheme, so it may
567  * be called only for an already offlined CPU.
568  */
569 void clear_tasks_mm_cpumask(int cpu)
570 {
571         struct task_struct *p;
572
573         /*
574          * This function is called after the cpu is taken down and marked
575          * offline, so its not like new tasks will ever get this cpu set in
576          * their mm mask. -- Peter Zijlstra
577          * Thus, we may use rcu_read_lock() here, instead of grabbing
578          * full-fledged tasklist_lock.
579          */
580         WARN_ON(cpu_online(cpu));
581         rcu_read_lock();
582         for_each_process(p) {
583                 struct task_struct *t;
584
585                 /*
586                  * Main thread might exit, but other threads may still have
587                  * a valid mm. Find one.
588                  */
589                 t = find_lock_task_mm(p);
590                 if (!t)
591                         continue;
592                 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
593                 task_unlock(t);
594         }
595         rcu_read_unlock();
596 }
597
598 static inline void check_for_tasks(int dead_cpu)
599 {
600         struct task_struct *g, *p;
601
602         read_lock(&tasklist_lock);
603         for_each_process_thread(g, p) {
604                 if (!p->on_rq)
605                         continue;
606                 /*
607                  * We do the check with unlocked task_rq(p)->lock.
608                  * Order the reading to do not warn about a task,
609                  * which was running on this cpu in the past, and
610                  * it's just been woken on another cpu.
611                  */
612                 rmb();
613                 if (task_cpu(p) != dead_cpu)
614                         continue;
615
616                 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
617                         p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
618         }
619         read_unlock(&tasklist_lock);
620 }
621
622 static void cpu_notify_nofail(unsigned long val, unsigned int cpu)
623 {
624         BUG_ON(cpu_notify(val, cpu));
625 }
626
627 static int notify_down_prepare(unsigned int cpu)
628 {
629         int err, nr_calls = 0;
630
631         err = __cpu_notify(CPU_DOWN_PREPARE, cpu, -1, &nr_calls);
632         if (err) {
633                 nr_calls--;
634                 __cpu_notify(CPU_DOWN_FAILED, cpu, nr_calls, NULL);
635                 pr_warn("%s: attempt to take down CPU %u failed\n",
636                                 __func__, cpu);
637         }
638         return err;
639 }
640
641 static int notify_dying(unsigned int cpu)
642 {
643         cpu_notify(CPU_DYING, cpu);
644         return 0;
645 }
646
647 /* Take this CPU down. */
648 static int take_cpu_down(void *_param)
649 {
650         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
651         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
652         int err, cpu = smp_processor_id();
653
654         /* Ensure this CPU doesn't handle any more interrupts. */
655         err = __cpu_disable();
656         if (err < 0)
657                 return err;
658
659         /* Invoke the former CPU_DYING callbacks */
660         for (; st->state > target; st->state--) {
661                 struct cpuhp_step *step = cpuhp_ap_states + st->state;
662
663                 cpuhp_invoke_callback(cpu, st->state, step->teardown);
664         }
665         /* Give up timekeeping duties */
666         tick_handover_do_timer();
667         /* Park the stopper thread */
668         stop_machine_park(cpu);
669         return 0;
670 }
671
672 static int takedown_cpu(unsigned int cpu)
673 {
674         int err;
675
676         /*
677          * By now we've cleared cpu_active_mask, wait for all preempt-disabled
678          * and RCU users of this state to go away such that all new such users
679          * will observe it.
680          *
681          * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
682          * not imply sync_sched(), so wait for both.
683          *
684          * Do sync before park smpboot threads to take care the rcu boost case.
685          */
686         if (IS_ENABLED(CONFIG_PREEMPT))
687                 synchronize_rcu_mult(call_rcu, call_rcu_sched);
688         else
689                 synchronize_rcu();
690
691         /*
692          * Prevent irq alloc/free while the dying cpu reorganizes the
693          * interrupt affinities.
694          */
695         irq_lock_sparse();
696
697         /*
698          * So now all preempt/rcu users must observe !cpu_active().
699          */
700         err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
701         if (err) {
702                 /* CPU didn't die: tell everyone.  Can't complain. */
703                 cpu_notify_nofail(CPU_DOWN_FAILED, cpu);
704                 irq_unlock_sparse();
705                 return err;
706         }
707         BUG_ON(cpu_online(cpu));
708
709         /*
710          * The migration_call() CPU_DYING callback will have removed all
711          * runnable tasks from the cpu, there's only the idle task left now
712          * that the migration thread is done doing the stop_machine thing.
713          *
714          * Wait for the stop thread to go away.
715          */
716         while (!per_cpu(cpu_dead_idle, cpu))
717                 cpu_relax();
718         smp_mb(); /* Read from cpu_dead_idle before __cpu_die(). */
719         per_cpu(cpu_dead_idle, cpu) = false;
720
721         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
722         irq_unlock_sparse();
723
724         hotplug_cpu__broadcast_tick_pull(cpu);
725         /* This actually kills the CPU. */
726         __cpu_die(cpu);
727
728         tick_cleanup_dead_cpu(cpu);
729         return 0;
730 }
731
732 static int notify_dead(unsigned int cpu)
733 {
734         cpu_notify_nofail(CPU_DEAD, cpu);
735         check_for_tasks(cpu);
736         return 0;
737 }
738
739 #else
740 #define notify_down_prepare     NULL
741 #define takedown_cpu            NULL
742 #define notify_dead             NULL
743 #define notify_dying            NULL
744 #endif
745
746 #ifdef CONFIG_HOTPLUG_CPU
747
748 /* Requires cpu_add_remove_lock to be held */
749 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
750                            enum cpuhp_state target)
751 {
752         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
753         int prev_state, ret = 0;
754         bool hasdied = false;
755
756         if (num_online_cpus() == 1)
757                 return -EBUSY;
758
759         if (!cpu_present(cpu))
760                 return -EINVAL;
761
762         cpu_hotplug_begin();
763
764         cpuhp_tasks_frozen = tasks_frozen;
765
766         prev_state = st->state;
767         st->target = target;
768         ret = cpuhp_down_callbacks(cpu, st, cpuhp_bp_states, target);
769
770         hasdied = prev_state != st->state && st->state == CPUHP_OFFLINE;
771
772         cpu_hotplug_done();
773         /* This post dead nonsense must die */
774         if (!ret && hasdied)
775                 cpu_notify_nofail(CPU_POST_DEAD, cpu);
776         return ret;
777 }
778
779 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
780 {
781         int err;
782
783         cpu_maps_update_begin();
784
785         if (cpu_hotplug_disabled) {
786                 err = -EBUSY;
787                 goto out;
788         }
789
790         err = _cpu_down(cpu, 0, target);
791
792 out:
793         cpu_maps_update_done();
794         return err;
795 }
796 int cpu_down(unsigned int cpu)
797 {
798         return do_cpu_down(cpu, CPUHP_OFFLINE);
799 }
800 EXPORT_SYMBOL(cpu_down);
801 #endif /*CONFIG_HOTPLUG_CPU*/
802
803 /**
804  * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
805  * @cpu: cpu that just started
806  *
807  * This function calls the cpu_chain notifiers with CPU_STARTING.
808  * It must be called by the arch code on the new cpu, before the new cpu
809  * enables interrupts and before the "boot" cpu returns from __cpu_up().
810  */
811 void notify_cpu_starting(unsigned int cpu)
812 {
813         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
814         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
815
816         while (st->state < target) {
817                 struct cpuhp_step *step;
818
819                 st->state++;
820                 step = cpuhp_ap_states + st->state;
821                 cpuhp_invoke_callback(cpu, st->state, step->startup);
822         }
823 }
824
825 /*
826  * Called from the idle task. We need to set active here, so we can kick off
827  * the stopper thread.
828  */
829 static int cpuhp_set_cpu_active(unsigned int cpu)
830 {
831         /* The cpu is marked online, set it active now */
832         set_cpu_active(cpu, true);
833         /* Unpark the stopper thread */
834         stop_machine_unpark(cpu);
835         return 0;
836 }
837
838 /* Requires cpu_add_remove_lock to be held */
839 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
840 {
841         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
842         struct task_struct *idle;
843         int ret = 0;
844
845         cpu_hotplug_begin();
846
847         if (!cpu_present(cpu)) {
848                 ret = -EINVAL;
849                 goto out;
850         }
851
852         /*
853          * The caller of do_cpu_up might have raced with another
854          * caller. Ignore it for now.
855          */
856         if (st->state >= target)
857                 goto out;
858
859         if (st->state == CPUHP_OFFLINE) {
860                 /* Let it fail before we try to bring the cpu up */
861                 idle = idle_thread_get(cpu);
862                 if (IS_ERR(idle)) {
863                         ret = PTR_ERR(idle);
864                         goto out;
865                 }
866         }
867
868         cpuhp_tasks_frozen = tasks_frozen;
869
870         st->target = target;
871         ret = cpuhp_up_callbacks(cpu, st, cpuhp_bp_states, target);
872 out:
873         cpu_hotplug_done();
874         return ret;
875 }
876
877 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
878 {
879         int err = 0;
880
881         if (!cpu_possible(cpu)) {
882                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
883                        cpu);
884 #if defined(CONFIG_IA64)
885                 pr_err("please check additional_cpus= boot parameter\n");
886 #endif
887                 return -EINVAL;
888         }
889
890         err = try_online_node(cpu_to_node(cpu));
891         if (err)
892                 return err;
893
894         cpu_maps_update_begin();
895
896         if (cpu_hotplug_disabled) {
897                 err = -EBUSY;
898                 goto out;
899         }
900
901         err = _cpu_up(cpu, 0, target);
902 out:
903         cpu_maps_update_done();
904         return err;
905 }
906
907 int cpu_up(unsigned int cpu)
908 {
909         return do_cpu_up(cpu, CPUHP_ONLINE);
910 }
911 EXPORT_SYMBOL_GPL(cpu_up);
912
913 #ifdef CONFIG_PM_SLEEP_SMP
914 static cpumask_var_t frozen_cpus;
915
916 int disable_nonboot_cpus(void)
917 {
918         int cpu, first_cpu, error = 0;
919
920         cpu_maps_update_begin();
921         first_cpu = cpumask_first(cpu_online_mask);
922         /*
923          * We take down all of the non-boot CPUs in one shot to avoid races
924          * with the userspace trying to use the CPU hotplug at the same time
925          */
926         cpumask_clear(frozen_cpus);
927
928         pr_info("Disabling non-boot CPUs ...\n");
929         for_each_online_cpu(cpu) {
930                 if (cpu == first_cpu)
931                         continue;
932                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
933                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
934                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
935                 if (!error)
936                         cpumask_set_cpu(cpu, frozen_cpus);
937                 else {
938                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
939                         break;
940                 }
941         }
942
943         if (!error)
944                 BUG_ON(num_online_cpus() > 1);
945         else
946                 pr_err("Non-boot CPUs are not disabled\n");
947
948         /*
949          * Make sure the CPUs won't be enabled by someone else. We need to do
950          * this even in case of failure as all disable_nonboot_cpus() users are
951          * supposed to do enable_nonboot_cpus() on the failure path.
952          */
953         cpu_hotplug_disabled++;
954
955         cpu_maps_update_done();
956         return error;
957 }
958
959 void __weak arch_enable_nonboot_cpus_begin(void)
960 {
961 }
962
963 void __weak arch_enable_nonboot_cpus_end(void)
964 {
965 }
966
967 void enable_nonboot_cpus(void)
968 {
969         int cpu, error;
970
971         /* Allow everyone to use the CPU hotplug again */
972         cpu_maps_update_begin();
973         WARN_ON(--cpu_hotplug_disabled < 0);
974         if (cpumask_empty(frozen_cpus))
975                 goto out;
976
977         pr_info("Enabling non-boot CPUs ...\n");
978
979         arch_enable_nonboot_cpus_begin();
980
981         for_each_cpu(cpu, frozen_cpus) {
982                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
983                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
984                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
985                 if (!error) {
986                         pr_info("CPU%d is up\n", cpu);
987                         continue;
988                 }
989                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
990         }
991
992         arch_enable_nonboot_cpus_end();
993
994         cpumask_clear(frozen_cpus);
995 out:
996         cpu_maps_update_done();
997 }
998
999 static int __init alloc_frozen_cpus(void)
1000 {
1001         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1002                 return -ENOMEM;
1003         return 0;
1004 }
1005 core_initcall(alloc_frozen_cpus);
1006
1007 /*
1008  * When callbacks for CPU hotplug notifications are being executed, we must
1009  * ensure that the state of the system with respect to the tasks being frozen
1010  * or not, as reported by the notification, remains unchanged *throughout the
1011  * duration* of the execution of the callbacks.
1012  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1013  *
1014  * This synchronization is implemented by mutually excluding regular CPU
1015  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1016  * Hibernate notifications.
1017  */
1018 static int
1019 cpu_hotplug_pm_callback(struct notifier_block *nb,
1020                         unsigned long action, void *ptr)
1021 {
1022         switch (action) {
1023
1024         case PM_SUSPEND_PREPARE:
1025         case PM_HIBERNATION_PREPARE:
1026                 cpu_hotplug_disable();
1027                 break;
1028
1029         case PM_POST_SUSPEND:
1030         case PM_POST_HIBERNATION:
1031                 cpu_hotplug_enable();
1032                 break;
1033
1034         default:
1035                 return NOTIFY_DONE;
1036         }
1037
1038         return NOTIFY_OK;
1039 }
1040
1041
1042 static int __init cpu_hotplug_pm_sync_init(void)
1043 {
1044         /*
1045          * cpu_hotplug_pm_callback has higher priority than x86
1046          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1047          * to disable cpu hotplug to avoid cpu hotplug race.
1048          */
1049         pm_notifier(cpu_hotplug_pm_callback, 0);
1050         return 0;
1051 }
1052 core_initcall(cpu_hotplug_pm_sync_init);
1053
1054 #endif /* CONFIG_PM_SLEEP_SMP */
1055
1056 #endif /* CONFIG_SMP */
1057
1058 /* Boot processor state steps */
1059 static struct cpuhp_step cpuhp_bp_states[] = {
1060         [CPUHP_OFFLINE] = {
1061                 .name                   = "offline",
1062                 .startup                = NULL,
1063                 .teardown               = NULL,
1064         },
1065 #ifdef CONFIG_SMP
1066         [CPUHP_CREATE_THREADS]= {
1067                 .name                   = "threads:create",
1068                 .startup                = smpboot_create_threads,
1069                 .teardown               = NULL,
1070                 .cant_stop              = true,
1071         },
1072         [CPUHP_NOTIFY_PREPARE] = {
1073                 .name                   = "notify:prepare",
1074                 .startup                = notify_prepare,
1075                 .teardown               = notify_dead,
1076                 .skip_onerr             = true,
1077                 .cant_stop              = true,
1078         },
1079         [CPUHP_BRINGUP_CPU] = {
1080                 .name                   = "cpu:bringup",
1081                 .startup                = bringup_cpu,
1082                 .teardown               = NULL,
1083                 .cant_stop              = true,
1084         },
1085         [CPUHP_TEARDOWN_CPU] = {
1086                 .name                   = "cpu:teardown",
1087                 .startup                = NULL,
1088                 .teardown               = takedown_cpu,
1089                 .cant_stop              = true,
1090         },
1091         [CPUHP_CPU_SET_ACTIVE] = {
1092                 .name                   = "cpu:active",
1093                 .startup                = cpuhp_set_cpu_active,
1094                 .teardown               = NULL,
1095         },
1096         [CPUHP_SMPBOOT_THREADS] = {
1097                 .name                   = "smpboot:threads",
1098                 .startup                = smpboot_unpark_threads,
1099                 .teardown               = smpboot_park_threads,
1100         },
1101         [CPUHP_NOTIFY_ONLINE] = {
1102                 .name                   = "notify:online",
1103                 .startup                = notify_online,
1104                 .teardown               = notify_down_prepare,
1105                 .cant_stop              = true,
1106         },
1107 #endif
1108         [CPUHP_ONLINE] = {
1109                 .name                   = "online",
1110                 .startup                = NULL,
1111                 .teardown               = NULL,
1112         },
1113 };
1114
1115 /* Application processor state steps */
1116 static struct cpuhp_step cpuhp_ap_states[] = {
1117 #ifdef CONFIG_SMP
1118         [CPUHP_AP_NOTIFY_STARTING] = {
1119                 .name                   = "notify:starting",
1120                 .startup                = notify_starting,
1121                 .teardown               = notify_dying,
1122                 .skip_onerr             = true,
1123                 .cant_stop              = true,
1124         },
1125 #endif
1126         [CPUHP_ONLINE] = {
1127                 .name                   = "online",
1128                 .startup                = NULL,
1129                 .teardown               = NULL,
1130         },
1131 };
1132
1133 /* Sanity check for callbacks */
1134 static int cpuhp_cb_check(enum cpuhp_state state)
1135 {
1136         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1137                 return -EINVAL;
1138         return 0;
1139 }
1140
1141 static bool cpuhp_is_ap_state(enum cpuhp_state state)
1142 {
1143         return (state >= CPUHP_AP_OFFLINE && state <= CPUHP_AP_ONLINE);
1144 }
1145
1146 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
1147 {
1148         struct cpuhp_step *sp;
1149
1150         sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
1151         return sp + state;
1152 }
1153
1154 static void cpuhp_store_callbacks(enum cpuhp_state state,
1155                                   const char *name,
1156                                   int (*startup)(unsigned int cpu),
1157                                   int (*teardown)(unsigned int cpu))
1158 {
1159         /* (Un)Install the callbacks for further cpu hotplug operations */
1160         struct cpuhp_step *sp;
1161
1162         mutex_lock(&cpuhp_state_mutex);
1163         sp = cpuhp_get_step(state);
1164         sp->startup = startup;
1165         sp->teardown = teardown;
1166         sp->name = name;
1167         mutex_unlock(&cpuhp_state_mutex);
1168 }
1169
1170 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1171 {
1172         return cpuhp_get_step(state)->teardown;
1173 }
1174
1175 /* Helper function to run callback on the target cpu */
1176 static void cpuhp_on_cpu_cb(void *__cb)
1177 {
1178         int (*cb)(unsigned int cpu) = __cb;
1179
1180         BUG_ON(cb(smp_processor_id()));
1181 }
1182
1183 /*
1184  * Call the startup/teardown function for a step either on the AP or
1185  * on the current CPU.
1186  */
1187 static int cpuhp_issue_call(int cpu, enum cpuhp_state state,
1188                             int (*cb)(unsigned int), bool bringup)
1189 {
1190         int ret;
1191
1192         if (!cb)
1193                 return 0;
1194
1195         /*
1196          * This invokes the callback directly for now. In a later step we
1197          * convert that to use cpuhp_invoke_callback().
1198          */
1199         if (cpuhp_is_ap_state(state)) {
1200                 /*
1201                  * Note, that a function called on the AP is not
1202                  * allowed to fail.
1203                  */
1204                 if (cpu_online(cpu))
1205                         smp_call_function_single(cpu, cpuhp_on_cpu_cb, cb, 1);
1206                 return 0;
1207         }
1208
1209         /*
1210          * The non AP bound callbacks can fail on bringup. On teardown
1211          * e.g. module removal we crash for now.
1212          */
1213         ret = cb(cpu);
1214         BUG_ON(ret && !bringup);
1215         return ret;
1216 }
1217
1218 /*
1219  * Called from __cpuhp_setup_state on a recoverable failure.
1220  *
1221  * Note: The teardown callbacks for rollback are not allowed to fail!
1222  */
1223 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1224                                    int (*teardown)(unsigned int cpu))
1225 {
1226         int cpu;
1227
1228         if (!teardown)
1229                 return;
1230
1231         /* Roll back the already executed steps on the other cpus */
1232         for_each_present_cpu(cpu) {
1233                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1234                 int cpustate = st->state;
1235
1236                 if (cpu >= failedcpu)
1237                         break;
1238
1239                 /* Did we invoke the startup call on that cpu ? */
1240                 if (cpustate >= state)
1241                         cpuhp_issue_call(cpu, state, teardown, false);
1242         }
1243 }
1244
1245 /*
1246  * Returns a free for dynamic slot assignment of the Online state. The states
1247  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1248  * by having no name assigned.
1249  */
1250 static int cpuhp_reserve_state(enum cpuhp_state state)
1251 {
1252         enum cpuhp_state i;
1253
1254         mutex_lock(&cpuhp_state_mutex);
1255         for (i = CPUHP_ONLINE_DYN; i <= CPUHP_ONLINE_DYN_END; i++) {
1256                 if (cpuhp_bp_states[i].name)
1257                         continue;
1258
1259                 cpuhp_bp_states[i].name = "Reserved";
1260                 mutex_unlock(&cpuhp_state_mutex);
1261                 return i;
1262         }
1263         mutex_unlock(&cpuhp_state_mutex);
1264         WARN(1, "No more dynamic states available for CPU hotplug\n");
1265         return -ENOSPC;
1266 }
1267
1268 /**
1269  * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1270  * @state:      The state to setup
1271  * @invoke:     If true, the startup function is invoked for cpus where
1272  *              cpu state >= @state
1273  * @startup:    startup callback function
1274  * @teardown:   teardown callback function
1275  *
1276  * Returns 0 if successful, otherwise a proper error code
1277  */
1278 int __cpuhp_setup_state(enum cpuhp_state state,
1279                         const char *name, bool invoke,
1280                         int (*startup)(unsigned int cpu),
1281                         int (*teardown)(unsigned int cpu))
1282 {
1283         int cpu, ret = 0;
1284         int dyn_state = 0;
1285
1286         if (cpuhp_cb_check(state) || !name)
1287                 return -EINVAL;
1288
1289         get_online_cpus();
1290
1291         /* currently assignments for the ONLINE state are possible */
1292         if (state == CPUHP_ONLINE_DYN) {
1293                 dyn_state = 1;
1294                 ret = cpuhp_reserve_state(state);
1295                 if (ret < 0)
1296                         goto out;
1297                 state = ret;
1298         }
1299
1300         cpuhp_store_callbacks(state, name, startup, teardown);
1301
1302         if (!invoke || !startup)
1303                 goto out;
1304
1305         /*
1306          * Try to call the startup callback for each present cpu
1307          * depending on the hotplug state of the cpu.
1308          */
1309         for_each_present_cpu(cpu) {
1310                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1311                 int cpustate = st->state;
1312
1313                 if (cpustate < state)
1314                         continue;
1315
1316                 ret = cpuhp_issue_call(cpu, state, startup, true);
1317                 if (ret) {
1318                         cpuhp_rollback_install(cpu, state, teardown);
1319                         cpuhp_store_callbacks(state, NULL, NULL, NULL);
1320                         goto out;
1321                 }
1322         }
1323 out:
1324         put_online_cpus();
1325         if (!ret && dyn_state)
1326                 return state;
1327         return ret;
1328 }
1329 EXPORT_SYMBOL(__cpuhp_setup_state);
1330
1331 /**
1332  * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1333  * @state:      The state to remove
1334  * @invoke:     If true, the teardown function is invoked for cpus where
1335  *              cpu state >= @state
1336  *
1337  * The teardown callback is currently not allowed to fail. Think
1338  * about module removal!
1339  */
1340 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1341 {
1342         int (*teardown)(unsigned int cpu) = cpuhp_get_teardown_cb(state);
1343         int cpu;
1344
1345         BUG_ON(cpuhp_cb_check(state));
1346
1347         get_online_cpus();
1348
1349         if (!invoke || !teardown)
1350                 goto remove;
1351
1352         /*
1353          * Call the teardown callback for each present cpu depending
1354          * on the hotplug state of the cpu. This function is not
1355          * allowed to fail currently!
1356          */
1357         for_each_present_cpu(cpu) {
1358                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1359                 int cpustate = st->state;
1360
1361                 if (cpustate >= state)
1362                         cpuhp_issue_call(cpu, state, teardown, false);
1363         }
1364 remove:
1365         cpuhp_store_callbacks(state, NULL, NULL, NULL);
1366         put_online_cpus();
1367 }
1368 EXPORT_SYMBOL(__cpuhp_remove_state);
1369
1370 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1371 static ssize_t show_cpuhp_state(struct device *dev,
1372                                 struct device_attribute *attr, char *buf)
1373 {
1374         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1375
1376         return sprintf(buf, "%d\n", st->state);
1377 }
1378 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1379
1380 static ssize_t write_cpuhp_target(struct device *dev,
1381                                   struct device_attribute *attr,
1382                                   const char *buf, size_t count)
1383 {
1384         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1385         struct cpuhp_step *sp;
1386         int target, ret;
1387
1388         ret = kstrtoint(buf, 10, &target);
1389         if (ret)
1390                 return ret;
1391
1392 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1393         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1394                 return -EINVAL;
1395 #else
1396         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1397                 return -EINVAL;
1398 #endif
1399
1400         ret = lock_device_hotplug_sysfs();
1401         if (ret)
1402                 return ret;
1403
1404         mutex_lock(&cpuhp_state_mutex);
1405         sp = cpuhp_get_step(target);
1406         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1407         mutex_unlock(&cpuhp_state_mutex);
1408         if (ret)
1409                 return ret;
1410
1411         if (st->state < target)
1412                 ret = do_cpu_up(dev->id, target);
1413         else
1414                 ret = do_cpu_down(dev->id, target);
1415
1416         unlock_device_hotplug();
1417         return ret ? ret : count;
1418 }
1419
1420 static ssize_t show_cpuhp_target(struct device *dev,
1421                                  struct device_attribute *attr, char *buf)
1422 {
1423         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1424
1425         return sprintf(buf, "%d\n", st->target);
1426 }
1427 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1428
1429 static struct attribute *cpuhp_cpu_attrs[] = {
1430         &dev_attr_state.attr,
1431         &dev_attr_target.attr,
1432         NULL
1433 };
1434
1435 static struct attribute_group cpuhp_cpu_attr_group = {
1436         .attrs = cpuhp_cpu_attrs,
1437         .name = "hotplug",
1438         NULL
1439 };
1440
1441 static ssize_t show_cpuhp_states(struct device *dev,
1442                                  struct device_attribute *attr, char *buf)
1443 {
1444         ssize_t cur, res = 0;
1445         int i;
1446
1447         mutex_lock(&cpuhp_state_mutex);
1448         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1449                 struct cpuhp_step *sp = cpuhp_get_step(i);
1450
1451                 if (sp->name) {
1452                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1453                         buf += cur;
1454                         res += cur;
1455                 }
1456         }
1457         mutex_unlock(&cpuhp_state_mutex);
1458         return res;
1459 }
1460 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1461
1462 static struct attribute *cpuhp_cpu_root_attrs[] = {
1463         &dev_attr_states.attr,
1464         NULL
1465 };
1466
1467 static struct attribute_group cpuhp_cpu_root_attr_group = {
1468         .attrs = cpuhp_cpu_root_attrs,
1469         .name = "hotplug",
1470         NULL
1471 };
1472
1473 static int __init cpuhp_sysfs_init(void)
1474 {
1475         int cpu, ret;
1476
1477         ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1478                                  &cpuhp_cpu_root_attr_group);
1479         if (ret)
1480                 return ret;
1481
1482         for_each_possible_cpu(cpu) {
1483                 struct device *dev = get_cpu_device(cpu);
1484
1485                 if (!dev)
1486                         continue;
1487                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1488                 if (ret)
1489                         return ret;
1490         }
1491         return 0;
1492 }
1493 device_initcall(cpuhp_sysfs_init);
1494 #endif
1495
1496 /*
1497  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1498  * represents all NR_CPUS bits binary values of 1<<nr.
1499  *
1500  * It is used by cpumask_of() to get a constant address to a CPU
1501  * mask value that has a single bit set only.
1502  */
1503
1504 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1505 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
1506 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1507 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1508 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1509
1510 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1511
1512         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
1513         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
1514 #if BITS_PER_LONG > 32
1515         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
1516         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
1517 #endif
1518 };
1519 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1520
1521 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1522 EXPORT_SYMBOL(cpu_all_bits);
1523
1524 #ifdef CONFIG_INIT_ALL_POSSIBLE
1525 struct cpumask __cpu_possible_mask __read_mostly
1526         = {CPU_BITS_ALL};
1527 #else
1528 struct cpumask __cpu_possible_mask __read_mostly;
1529 #endif
1530 EXPORT_SYMBOL(__cpu_possible_mask);
1531
1532 struct cpumask __cpu_online_mask __read_mostly;
1533 EXPORT_SYMBOL(__cpu_online_mask);
1534
1535 struct cpumask __cpu_present_mask __read_mostly;
1536 EXPORT_SYMBOL(__cpu_present_mask);
1537
1538 struct cpumask __cpu_active_mask __read_mostly;
1539 EXPORT_SYMBOL(__cpu_active_mask);
1540
1541 void init_cpu_present(const struct cpumask *src)
1542 {
1543         cpumask_copy(&__cpu_present_mask, src);
1544 }
1545
1546 void init_cpu_possible(const struct cpumask *src)
1547 {
1548         cpumask_copy(&__cpu_possible_mask, src);
1549 }
1550
1551 void init_cpu_online(const struct cpumask *src)
1552 {
1553         cpumask_copy(&__cpu_online_mask, src);
1554 }
1555
1556 /*
1557  * Activate the first processor.
1558  */
1559 void __init boot_cpu_init(void)
1560 {
1561         int cpu = smp_processor_id();
1562
1563         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1564         set_cpu_online(cpu, true);
1565         set_cpu_active(cpu, true);
1566         set_cpu_present(cpu, true);
1567         set_cpu_possible(cpu, true);
1568 }
1569
1570 /*
1571  * Must be called _AFTER_ setting up the per_cpu areas
1572  */
1573 void __init boot_cpu_state_init(void)
1574 {
1575         per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1576 }