]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/cpu.c
sched: Make set_cpu_rq_start_time() a built in hotplug state
[karo-tx-linux.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25 #include <linux/smpboot.h>
26
27 #include <trace/events/power.h>
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/cpuhp.h>
30
31 #include "smpboot.h"
32
33 /**
34  * cpuhp_cpu_state - Per cpu hotplug state storage
35  * @state:      The current cpu state
36  * @target:     The target state
37  * @thread:     Pointer to the hotplug thread
38  * @should_run: Thread should execute
39  * @rollback:   Perform a rollback
40  * @cb_stat:    The state for a single callback (install/uninstall)
41  * @cb:         Single callback function (install/uninstall)
42  * @result:     Result of the operation
43  * @done:       Signal completion to the issuer of the task
44  */
45 struct cpuhp_cpu_state {
46         enum cpuhp_state        state;
47         enum cpuhp_state        target;
48 #ifdef CONFIG_SMP
49         struct task_struct      *thread;
50         bool                    should_run;
51         bool                    rollback;
52         enum cpuhp_state        cb_state;
53         int                     (*cb)(unsigned int cpu);
54         int                     result;
55         struct completion       done;
56 #endif
57 };
58
59 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
60
61 /**
62  * cpuhp_step - Hotplug state machine step
63  * @name:       Name of the step
64  * @startup:    Startup function of the step
65  * @teardown:   Teardown function of the step
66  * @skip_onerr: Do not invoke the functions on error rollback
67  *              Will go away once the notifiers are gone
68  * @cant_stop:  Bringup/teardown can't be stopped at this step
69  */
70 struct cpuhp_step {
71         const char      *name;
72         int             (*startup)(unsigned int cpu);
73         int             (*teardown)(unsigned int cpu);
74         bool            skip_onerr;
75         bool            cant_stop;
76 };
77
78 static DEFINE_MUTEX(cpuhp_state_mutex);
79 static struct cpuhp_step cpuhp_bp_states[];
80 static struct cpuhp_step cpuhp_ap_states[];
81
82 /**
83  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
84  * @cpu:        The cpu for which the callback should be invoked
85  * @step:       The step in the state machine
86  * @cb:         The callback function to invoke
87  *
88  * Called from cpu hotplug and from the state register machinery
89  */
90 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state step,
91                                  int (*cb)(unsigned int))
92 {
93         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
94         int ret = 0;
95
96         if (cb) {
97                 trace_cpuhp_enter(cpu, st->target, step, cb);
98                 ret = cb(cpu);
99                 trace_cpuhp_exit(cpu, st->state, step, ret);
100         }
101         return ret;
102 }
103
104 #ifdef CONFIG_SMP
105 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
106 static DEFINE_MUTEX(cpu_add_remove_lock);
107 bool cpuhp_tasks_frozen;
108 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
109
110 /*
111  * The following two APIs (cpu_maps_update_begin/done) must be used when
112  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
113  * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
114  * hotplug callback (un)registration performed using __register_cpu_notifier()
115  * or __unregister_cpu_notifier().
116  */
117 void cpu_maps_update_begin(void)
118 {
119         mutex_lock(&cpu_add_remove_lock);
120 }
121 EXPORT_SYMBOL(cpu_notifier_register_begin);
122
123 void cpu_maps_update_done(void)
124 {
125         mutex_unlock(&cpu_add_remove_lock);
126 }
127 EXPORT_SYMBOL(cpu_notifier_register_done);
128
129 static RAW_NOTIFIER_HEAD(cpu_chain);
130
131 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
132  * Should always be manipulated under cpu_add_remove_lock
133  */
134 static int cpu_hotplug_disabled;
135
136 #ifdef CONFIG_HOTPLUG_CPU
137
138 static struct {
139         struct task_struct *active_writer;
140         /* wait queue to wake up the active_writer */
141         wait_queue_head_t wq;
142         /* verifies that no writer will get active while readers are active */
143         struct mutex lock;
144         /*
145          * Also blocks the new readers during
146          * an ongoing cpu hotplug operation.
147          */
148         atomic_t refcount;
149
150 #ifdef CONFIG_DEBUG_LOCK_ALLOC
151         struct lockdep_map dep_map;
152 #endif
153 } cpu_hotplug = {
154         .active_writer = NULL,
155         .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
156         .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
157 #ifdef CONFIG_DEBUG_LOCK_ALLOC
158         .dep_map = {.name = "cpu_hotplug.lock" },
159 #endif
160 };
161
162 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
163 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
164 #define cpuhp_lock_acquire_tryread() \
165                                   lock_map_acquire_tryread(&cpu_hotplug.dep_map)
166 #define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
167 #define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
168
169
170 void get_online_cpus(void)
171 {
172         might_sleep();
173         if (cpu_hotplug.active_writer == current)
174                 return;
175         cpuhp_lock_acquire_read();
176         mutex_lock(&cpu_hotplug.lock);
177         atomic_inc(&cpu_hotplug.refcount);
178         mutex_unlock(&cpu_hotplug.lock);
179 }
180 EXPORT_SYMBOL_GPL(get_online_cpus);
181
182 void put_online_cpus(void)
183 {
184         int refcount;
185
186         if (cpu_hotplug.active_writer == current)
187                 return;
188
189         refcount = atomic_dec_return(&cpu_hotplug.refcount);
190         if (WARN_ON(refcount < 0)) /* try to fix things up */
191                 atomic_inc(&cpu_hotplug.refcount);
192
193         if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
194                 wake_up(&cpu_hotplug.wq);
195
196         cpuhp_lock_release();
197
198 }
199 EXPORT_SYMBOL_GPL(put_online_cpus);
200
201 /*
202  * This ensures that the hotplug operation can begin only when the
203  * refcount goes to zero.
204  *
205  * Note that during a cpu-hotplug operation, the new readers, if any,
206  * will be blocked by the cpu_hotplug.lock
207  *
208  * Since cpu_hotplug_begin() is always called after invoking
209  * cpu_maps_update_begin(), we can be sure that only one writer is active.
210  *
211  * Note that theoretically, there is a possibility of a livelock:
212  * - Refcount goes to zero, last reader wakes up the sleeping
213  *   writer.
214  * - Last reader unlocks the cpu_hotplug.lock.
215  * - A new reader arrives at this moment, bumps up the refcount.
216  * - The writer acquires the cpu_hotplug.lock finds the refcount
217  *   non zero and goes to sleep again.
218  *
219  * However, this is very difficult to achieve in practice since
220  * get_online_cpus() not an api which is called all that often.
221  *
222  */
223 void cpu_hotplug_begin(void)
224 {
225         DEFINE_WAIT(wait);
226
227         cpu_hotplug.active_writer = current;
228         cpuhp_lock_acquire();
229
230         for (;;) {
231                 mutex_lock(&cpu_hotplug.lock);
232                 prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
233                 if (likely(!atomic_read(&cpu_hotplug.refcount)))
234                                 break;
235                 mutex_unlock(&cpu_hotplug.lock);
236                 schedule();
237         }
238         finish_wait(&cpu_hotplug.wq, &wait);
239 }
240
241 void cpu_hotplug_done(void)
242 {
243         cpu_hotplug.active_writer = NULL;
244         mutex_unlock(&cpu_hotplug.lock);
245         cpuhp_lock_release();
246 }
247
248 /*
249  * Wait for currently running CPU hotplug operations to complete (if any) and
250  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
251  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
252  * hotplug path before performing hotplug operations. So acquiring that lock
253  * guarantees mutual exclusion from any currently running hotplug operations.
254  */
255 void cpu_hotplug_disable(void)
256 {
257         cpu_maps_update_begin();
258         cpu_hotplug_disabled++;
259         cpu_maps_update_done();
260 }
261 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
262
263 void cpu_hotplug_enable(void)
264 {
265         cpu_maps_update_begin();
266         WARN_ON(--cpu_hotplug_disabled < 0);
267         cpu_maps_update_done();
268 }
269 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
270 #endif  /* CONFIG_HOTPLUG_CPU */
271
272 /* Need to know about CPUs going up/down? */
273 int register_cpu_notifier(struct notifier_block *nb)
274 {
275         int ret;
276         cpu_maps_update_begin();
277         ret = raw_notifier_chain_register(&cpu_chain, nb);
278         cpu_maps_update_done();
279         return ret;
280 }
281
282 int __register_cpu_notifier(struct notifier_block *nb)
283 {
284         return raw_notifier_chain_register(&cpu_chain, nb);
285 }
286
287 static int __cpu_notify(unsigned long val, unsigned int cpu, int nr_to_call,
288                         int *nr_calls)
289 {
290         unsigned long mod = cpuhp_tasks_frozen ? CPU_TASKS_FROZEN : 0;
291         void *hcpu = (void *)(long)cpu;
292
293         int ret;
294
295         ret = __raw_notifier_call_chain(&cpu_chain, val | mod, hcpu, nr_to_call,
296                                         nr_calls);
297
298         return notifier_to_errno(ret);
299 }
300
301 static int cpu_notify(unsigned long val, unsigned int cpu)
302 {
303         return __cpu_notify(val, cpu, -1, NULL);
304 }
305
306 static void cpu_notify_nofail(unsigned long val, unsigned int cpu)
307 {
308         BUG_ON(cpu_notify(val, cpu));
309 }
310
311 /* Notifier wrappers for transitioning to state machine */
312 static int notify_prepare(unsigned int cpu)
313 {
314         int nr_calls = 0;
315         int ret;
316
317         ret = __cpu_notify(CPU_UP_PREPARE, cpu, -1, &nr_calls);
318         if (ret) {
319                 nr_calls--;
320                 printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
321                                 __func__, cpu);
322                 __cpu_notify(CPU_UP_CANCELED, cpu, nr_calls, NULL);
323         }
324         return ret;
325 }
326
327 static int notify_online(unsigned int cpu)
328 {
329         cpu_notify(CPU_ONLINE, cpu);
330         return 0;
331 }
332
333 static int notify_starting(unsigned int cpu)
334 {
335         cpu_notify(CPU_STARTING, cpu);
336         return 0;
337 }
338
339 static int bringup_wait_for_ap(unsigned int cpu)
340 {
341         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
342
343         wait_for_completion(&st->done);
344         return st->result;
345 }
346
347 static int bringup_cpu(unsigned int cpu)
348 {
349         struct task_struct *idle = idle_thread_get(cpu);
350         int ret;
351
352         /* Arch-specific enabling code. */
353         ret = __cpu_up(cpu, idle);
354         if (ret) {
355                 cpu_notify(CPU_UP_CANCELED, cpu);
356                 return ret;
357         }
358         ret = bringup_wait_for_ap(cpu);
359         BUG_ON(!cpu_online(cpu));
360         return ret;
361 }
362
363 /*
364  * Hotplug state machine related functions
365  */
366 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st,
367                           struct cpuhp_step *steps)
368 {
369         for (st->state++; st->state < st->target; st->state++) {
370                 struct cpuhp_step *step = steps + st->state;
371
372                 if (!step->skip_onerr)
373                         cpuhp_invoke_callback(cpu, st->state, step->startup);
374         }
375 }
376
377 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
378                                 struct cpuhp_step *steps, enum cpuhp_state target)
379 {
380         enum cpuhp_state prev_state = st->state;
381         int ret = 0;
382
383         for (; st->state > target; st->state--) {
384                 struct cpuhp_step *step = steps + st->state;
385
386                 ret = cpuhp_invoke_callback(cpu, st->state, step->teardown);
387                 if (ret) {
388                         st->target = prev_state;
389                         undo_cpu_down(cpu, st, steps);
390                         break;
391                 }
392         }
393         return ret;
394 }
395
396 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st,
397                         struct cpuhp_step *steps)
398 {
399         for (st->state--; st->state > st->target; st->state--) {
400                 struct cpuhp_step *step = steps + st->state;
401
402                 if (!step->skip_onerr)
403                         cpuhp_invoke_callback(cpu, st->state, step->teardown);
404         }
405 }
406
407 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
408                               struct cpuhp_step *steps, enum cpuhp_state target)
409 {
410         enum cpuhp_state prev_state = st->state;
411         int ret = 0;
412
413         while (st->state < target) {
414                 struct cpuhp_step *step;
415
416                 st->state++;
417                 step = steps + st->state;
418                 ret = cpuhp_invoke_callback(cpu, st->state, step->startup);
419                 if (ret) {
420                         st->target = prev_state;
421                         undo_cpu_up(cpu, st, steps);
422                         break;
423                 }
424         }
425         return ret;
426 }
427
428 /*
429  * The cpu hotplug threads manage the bringup and teardown of the cpus
430  */
431 static void cpuhp_create(unsigned int cpu)
432 {
433         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
434
435         init_completion(&st->done);
436 }
437
438 static int cpuhp_should_run(unsigned int cpu)
439 {
440         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
441
442         return st->should_run;
443 }
444
445 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
446 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
447 {
448         enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
449
450         return cpuhp_down_callbacks(cpu, st, cpuhp_ap_states, target);
451 }
452
453 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
454 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
455 {
456         return cpuhp_up_callbacks(cpu, st, cpuhp_ap_states, st->target);
457 }
458
459 /*
460  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
461  * callbacks when a state gets [un]installed at runtime.
462  */
463 static void cpuhp_thread_fun(unsigned int cpu)
464 {
465         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
466         int ret = 0;
467
468         /*
469          * Paired with the mb() in cpuhp_kick_ap_work and
470          * cpuhp_invoke_ap_callback, so the work set is consistent visible.
471          */
472         smp_mb();
473         if (!st->should_run)
474                 return;
475
476         st->should_run = false;
477
478         /* Single callback invocation for [un]install ? */
479         if (st->cb) {
480                 if (st->cb_state < CPUHP_AP_ONLINE) {
481                         local_irq_disable();
482                         ret = cpuhp_invoke_callback(cpu, st->cb_state, st->cb);
483                         local_irq_enable();
484                 } else {
485                         ret = cpuhp_invoke_callback(cpu, st->cb_state, st->cb);
486                 }
487         } else if (st->rollback) {
488                 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
489
490                 undo_cpu_down(cpu, st, cpuhp_ap_states);
491                 /*
492                  * This is a momentary workaround to keep the notifier users
493                  * happy. Will go away once we got rid of the notifiers.
494                  */
495                 cpu_notify_nofail(CPU_DOWN_FAILED, cpu);
496                 st->rollback = false;
497         } else {
498                 /* Cannot happen .... */
499                 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
500
501                 /* Regular hotplug work */
502                 if (st->state < st->target)
503                         ret = cpuhp_ap_online(cpu, st);
504                 else if (st->state > st->target)
505                         ret = cpuhp_ap_offline(cpu, st);
506         }
507         st->result = ret;
508         complete(&st->done);
509 }
510
511 /* Invoke a single callback on a remote cpu */
512 static int cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state,
513                                     int (*cb)(unsigned int))
514 {
515         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
516
517         if (!cpu_online(cpu))
518                 return 0;
519
520         st->cb_state = state;
521         st->cb = cb;
522         /*
523          * Make sure the above stores are visible before should_run becomes
524          * true. Paired with the mb() above in cpuhp_thread_fun()
525          */
526         smp_mb();
527         st->should_run = true;
528         wake_up_process(st->thread);
529         wait_for_completion(&st->done);
530         return st->result;
531 }
532
533 /* Regular hotplug invocation of the AP hotplug thread */
534 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
535 {
536         st->result = 0;
537         st->cb = NULL;
538         /*
539          * Make sure the above stores are visible before should_run becomes
540          * true. Paired with the mb() above in cpuhp_thread_fun()
541          */
542         smp_mb();
543         st->should_run = true;
544         wake_up_process(st->thread);
545 }
546
547 static int cpuhp_kick_ap_work(unsigned int cpu)
548 {
549         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
550         enum cpuhp_state state = st->state;
551
552         trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
553         __cpuhp_kick_ap_work(st);
554         wait_for_completion(&st->done);
555         trace_cpuhp_exit(cpu, st->state, state, st->result);
556         return st->result;
557 }
558
559 static struct smp_hotplug_thread cpuhp_threads = {
560         .store                  = &cpuhp_state.thread,
561         .create                 = &cpuhp_create,
562         .thread_should_run      = cpuhp_should_run,
563         .thread_fn              = cpuhp_thread_fun,
564         .thread_comm            = "cpuhp/%u",
565         .selfparking            = true,
566 };
567
568 void __init cpuhp_threads_init(void)
569 {
570         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
571         kthread_unpark(this_cpu_read(cpuhp_state.thread));
572 }
573
574 #ifdef CONFIG_HOTPLUG_CPU
575 EXPORT_SYMBOL(register_cpu_notifier);
576 EXPORT_SYMBOL(__register_cpu_notifier);
577 void unregister_cpu_notifier(struct notifier_block *nb)
578 {
579         cpu_maps_update_begin();
580         raw_notifier_chain_unregister(&cpu_chain, nb);
581         cpu_maps_update_done();
582 }
583 EXPORT_SYMBOL(unregister_cpu_notifier);
584
585 void __unregister_cpu_notifier(struct notifier_block *nb)
586 {
587         raw_notifier_chain_unregister(&cpu_chain, nb);
588 }
589 EXPORT_SYMBOL(__unregister_cpu_notifier);
590
591 /**
592  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
593  * @cpu: a CPU id
594  *
595  * This function walks all processes, finds a valid mm struct for each one and
596  * then clears a corresponding bit in mm's cpumask.  While this all sounds
597  * trivial, there are various non-obvious corner cases, which this function
598  * tries to solve in a safe manner.
599  *
600  * Also note that the function uses a somewhat relaxed locking scheme, so it may
601  * be called only for an already offlined CPU.
602  */
603 void clear_tasks_mm_cpumask(int cpu)
604 {
605         struct task_struct *p;
606
607         /*
608          * This function is called after the cpu is taken down and marked
609          * offline, so its not like new tasks will ever get this cpu set in
610          * their mm mask. -- Peter Zijlstra
611          * Thus, we may use rcu_read_lock() here, instead of grabbing
612          * full-fledged tasklist_lock.
613          */
614         WARN_ON(cpu_online(cpu));
615         rcu_read_lock();
616         for_each_process(p) {
617                 struct task_struct *t;
618
619                 /*
620                  * Main thread might exit, but other threads may still have
621                  * a valid mm. Find one.
622                  */
623                 t = find_lock_task_mm(p);
624                 if (!t)
625                         continue;
626                 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
627                 task_unlock(t);
628         }
629         rcu_read_unlock();
630 }
631
632 static inline void check_for_tasks(int dead_cpu)
633 {
634         struct task_struct *g, *p;
635
636         read_lock(&tasklist_lock);
637         for_each_process_thread(g, p) {
638                 if (!p->on_rq)
639                         continue;
640                 /*
641                  * We do the check with unlocked task_rq(p)->lock.
642                  * Order the reading to do not warn about a task,
643                  * which was running on this cpu in the past, and
644                  * it's just been woken on another cpu.
645                  */
646                 rmb();
647                 if (task_cpu(p) != dead_cpu)
648                         continue;
649
650                 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
651                         p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
652         }
653         read_unlock(&tasklist_lock);
654 }
655
656 static int notify_down_prepare(unsigned int cpu)
657 {
658         int err, nr_calls = 0;
659
660         err = __cpu_notify(CPU_DOWN_PREPARE, cpu, -1, &nr_calls);
661         if (err) {
662                 nr_calls--;
663                 __cpu_notify(CPU_DOWN_FAILED, cpu, nr_calls, NULL);
664                 pr_warn("%s: attempt to take down CPU %u failed\n",
665                                 __func__, cpu);
666         }
667         return err;
668 }
669
670 static int notify_dying(unsigned int cpu)
671 {
672         cpu_notify(CPU_DYING, cpu);
673         return 0;
674 }
675
676 /* Take this CPU down. */
677 static int take_cpu_down(void *_param)
678 {
679         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
680         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
681         int err, cpu = smp_processor_id();
682
683         /* Ensure this CPU doesn't handle any more interrupts. */
684         err = __cpu_disable();
685         if (err < 0)
686                 return err;
687
688         /* Invoke the former CPU_DYING callbacks */
689         for (; st->state > target; st->state--) {
690                 struct cpuhp_step *step = cpuhp_ap_states + st->state;
691
692                 cpuhp_invoke_callback(cpu, st->state, step->teardown);
693         }
694         /* Give up timekeeping duties */
695         tick_handover_do_timer();
696         /* Park the stopper thread */
697         stop_machine_park(cpu);
698         return 0;
699 }
700
701 static int takedown_cpu(unsigned int cpu)
702 {
703         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
704         int err;
705
706         /*
707          * By now we've cleared cpu_active_mask, wait for all preempt-disabled
708          * and RCU users of this state to go away such that all new such users
709          * will observe it.
710          *
711          * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
712          * not imply sync_sched(), so wait for both.
713          *
714          * Do sync before park smpboot threads to take care the rcu boost case.
715          */
716         if (IS_ENABLED(CONFIG_PREEMPT))
717                 synchronize_rcu_mult(call_rcu, call_rcu_sched);
718         else
719                 synchronize_rcu();
720
721         /* Park the smpboot threads */
722         kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
723         smpboot_park_threads(cpu);
724
725         /*
726          * Prevent irq alloc/free while the dying cpu reorganizes the
727          * interrupt affinities.
728          */
729         irq_lock_sparse();
730
731         /*
732          * So now all preempt/rcu users must observe !cpu_active().
733          */
734         err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
735         if (err) {
736                 /* CPU refused to die */
737                 irq_unlock_sparse();
738                 /* Unpark the hotplug thread so we can rollback there */
739                 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
740                 return err;
741         }
742         BUG_ON(cpu_online(cpu));
743
744         /*
745          * The migration_call() CPU_DYING callback will have removed all
746          * runnable tasks from the cpu, there's only the idle task left now
747          * that the migration thread is done doing the stop_machine thing.
748          *
749          * Wait for the stop thread to go away.
750          */
751         wait_for_completion(&st->done);
752         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
753
754         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
755         irq_unlock_sparse();
756
757         hotplug_cpu__broadcast_tick_pull(cpu);
758         /* This actually kills the CPU. */
759         __cpu_die(cpu);
760
761         tick_cleanup_dead_cpu(cpu);
762         return 0;
763 }
764
765 static int notify_dead(unsigned int cpu)
766 {
767         cpu_notify_nofail(CPU_DEAD, cpu);
768         check_for_tasks(cpu);
769         return 0;
770 }
771
772 static void cpuhp_complete_idle_dead(void *arg)
773 {
774         struct cpuhp_cpu_state *st = arg;
775
776         complete(&st->done);
777 }
778
779 void cpuhp_report_idle_dead(void)
780 {
781         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
782
783         BUG_ON(st->state != CPUHP_AP_OFFLINE);
784         rcu_report_dead(smp_processor_id());
785         st->state = CPUHP_AP_IDLE_DEAD;
786         /*
787          * We cannot call complete after rcu_report_dead() so we delegate it
788          * to an online cpu.
789          */
790         smp_call_function_single(cpumask_first(cpu_online_mask),
791                                  cpuhp_complete_idle_dead, st, 0);
792 }
793
794 #else
795 #define notify_down_prepare     NULL
796 #define takedown_cpu            NULL
797 #define notify_dead             NULL
798 #define notify_dying            NULL
799 #endif
800
801 #ifdef CONFIG_HOTPLUG_CPU
802
803 /* Requires cpu_add_remove_lock to be held */
804 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
805                            enum cpuhp_state target)
806 {
807         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
808         int prev_state, ret = 0;
809         bool hasdied = false;
810
811         if (num_online_cpus() == 1)
812                 return -EBUSY;
813
814         if (!cpu_present(cpu))
815                 return -EINVAL;
816
817         cpu_hotplug_begin();
818
819         cpuhp_tasks_frozen = tasks_frozen;
820
821         prev_state = st->state;
822         st->target = target;
823         /*
824          * If the current CPU state is in the range of the AP hotplug thread,
825          * then we need to kick the thread.
826          */
827         if (st->state > CPUHP_TEARDOWN_CPU) {
828                 ret = cpuhp_kick_ap_work(cpu);
829                 /*
830                  * The AP side has done the error rollback already. Just
831                  * return the error code..
832                  */
833                 if (ret)
834                         goto out;
835
836                 /*
837                  * We might have stopped still in the range of the AP hotplug
838                  * thread. Nothing to do anymore.
839                  */
840                 if (st->state > CPUHP_TEARDOWN_CPU)
841                         goto out;
842         }
843         /*
844          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
845          * to do the further cleanups.
846          */
847         ret = cpuhp_down_callbacks(cpu, st, cpuhp_bp_states, target);
848         if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
849                 st->target = prev_state;
850                 st->rollback = true;
851                 cpuhp_kick_ap_work(cpu);
852         }
853
854         hasdied = prev_state != st->state && st->state == CPUHP_OFFLINE;
855 out:
856         cpu_hotplug_done();
857         /* This post dead nonsense must die */
858         if (!ret && hasdied)
859                 cpu_notify_nofail(CPU_POST_DEAD, cpu);
860         return ret;
861 }
862
863 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
864 {
865         int err;
866
867         cpu_maps_update_begin();
868
869         if (cpu_hotplug_disabled) {
870                 err = -EBUSY;
871                 goto out;
872         }
873
874         err = _cpu_down(cpu, 0, target);
875
876 out:
877         cpu_maps_update_done();
878         return err;
879 }
880 int cpu_down(unsigned int cpu)
881 {
882         return do_cpu_down(cpu, CPUHP_OFFLINE);
883 }
884 EXPORT_SYMBOL(cpu_down);
885 #endif /*CONFIG_HOTPLUG_CPU*/
886
887 /**
888  * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
889  * @cpu: cpu that just started
890  *
891  * This function calls the cpu_chain notifiers with CPU_STARTING.
892  * It must be called by the arch code on the new cpu, before the new cpu
893  * enables interrupts and before the "boot" cpu returns from __cpu_up().
894  */
895 void notify_cpu_starting(unsigned int cpu)
896 {
897         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
898         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
899
900         while (st->state < target) {
901                 struct cpuhp_step *step;
902
903                 st->state++;
904                 step = cpuhp_ap_states + st->state;
905                 cpuhp_invoke_callback(cpu, st->state, step->startup);
906         }
907 }
908
909 /*
910  * Called from the idle task. We need to set active here, so we can kick off
911  * the stopper thread and unpark the smpboot threads. If the target state is
912  * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
913  * cpu further.
914  */
915 void cpuhp_online_idle(enum cpuhp_state state)
916 {
917         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
918         unsigned int cpu = smp_processor_id();
919
920         /* Happens for the boot cpu */
921         if (state != CPUHP_AP_ONLINE_IDLE)
922                 return;
923
924         st->state = CPUHP_AP_ONLINE_IDLE;
925
926         /* The cpu is marked online, set it active now */
927         set_cpu_active(cpu, true);
928         /* Unpark the stopper thread and the hotplug thread of this cpu */
929         stop_machine_unpark(cpu);
930         kthread_unpark(st->thread);
931
932         /* Should we go further up ? */
933         if (st->target > CPUHP_AP_ONLINE_IDLE)
934                 __cpuhp_kick_ap_work(st);
935         else
936                 complete(&st->done);
937 }
938
939 /* Requires cpu_add_remove_lock to be held */
940 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
941 {
942         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
943         struct task_struct *idle;
944         int ret = 0;
945
946         cpu_hotplug_begin();
947
948         if (!cpu_present(cpu)) {
949                 ret = -EINVAL;
950                 goto out;
951         }
952
953         /*
954          * The caller of do_cpu_up might have raced with another
955          * caller. Ignore it for now.
956          */
957         if (st->state >= target)
958                 goto out;
959
960         if (st->state == CPUHP_OFFLINE) {
961                 /* Let it fail before we try to bring the cpu up */
962                 idle = idle_thread_get(cpu);
963                 if (IS_ERR(idle)) {
964                         ret = PTR_ERR(idle);
965                         goto out;
966                 }
967         }
968
969         cpuhp_tasks_frozen = tasks_frozen;
970
971         st->target = target;
972         /*
973          * If the current CPU state is in the range of the AP hotplug thread,
974          * then we need to kick the thread once more.
975          */
976         if (st->state > CPUHP_BRINGUP_CPU) {
977                 ret = cpuhp_kick_ap_work(cpu);
978                 /*
979                  * The AP side has done the error rollback already. Just
980                  * return the error code..
981                  */
982                 if (ret)
983                         goto out;
984         }
985
986         /*
987          * Try to reach the target state. We max out on the BP at
988          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
989          * responsible for bringing it up to the target state.
990          */
991         target = min((int)target, CPUHP_BRINGUP_CPU);
992         ret = cpuhp_up_callbacks(cpu, st, cpuhp_bp_states, target);
993 out:
994         cpu_hotplug_done();
995         return ret;
996 }
997
998 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
999 {
1000         int err = 0;
1001
1002         if (!cpu_possible(cpu)) {
1003                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1004                        cpu);
1005 #if defined(CONFIG_IA64)
1006                 pr_err("please check additional_cpus= boot parameter\n");
1007 #endif
1008                 return -EINVAL;
1009         }
1010
1011         err = try_online_node(cpu_to_node(cpu));
1012         if (err)
1013                 return err;
1014
1015         cpu_maps_update_begin();
1016
1017         if (cpu_hotplug_disabled) {
1018                 err = -EBUSY;
1019                 goto out;
1020         }
1021
1022         err = _cpu_up(cpu, 0, target);
1023 out:
1024         cpu_maps_update_done();
1025         return err;
1026 }
1027
1028 int cpu_up(unsigned int cpu)
1029 {
1030         return do_cpu_up(cpu, CPUHP_ONLINE);
1031 }
1032 EXPORT_SYMBOL_GPL(cpu_up);
1033
1034 #ifdef CONFIG_PM_SLEEP_SMP
1035 static cpumask_var_t frozen_cpus;
1036
1037 int disable_nonboot_cpus(void)
1038 {
1039         int cpu, first_cpu, error = 0;
1040
1041         cpu_maps_update_begin();
1042         first_cpu = cpumask_first(cpu_online_mask);
1043         /*
1044          * We take down all of the non-boot CPUs in one shot to avoid races
1045          * with the userspace trying to use the CPU hotplug at the same time
1046          */
1047         cpumask_clear(frozen_cpus);
1048
1049         pr_info("Disabling non-boot CPUs ...\n");
1050         for_each_online_cpu(cpu) {
1051                 if (cpu == first_cpu)
1052                         continue;
1053                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1054                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1055                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1056                 if (!error)
1057                         cpumask_set_cpu(cpu, frozen_cpus);
1058                 else {
1059                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1060                         break;
1061                 }
1062         }
1063
1064         if (!error)
1065                 BUG_ON(num_online_cpus() > 1);
1066         else
1067                 pr_err("Non-boot CPUs are not disabled\n");
1068
1069         /*
1070          * Make sure the CPUs won't be enabled by someone else. We need to do
1071          * this even in case of failure as all disable_nonboot_cpus() users are
1072          * supposed to do enable_nonboot_cpus() on the failure path.
1073          */
1074         cpu_hotplug_disabled++;
1075
1076         cpu_maps_update_done();
1077         return error;
1078 }
1079
1080 void __weak arch_enable_nonboot_cpus_begin(void)
1081 {
1082 }
1083
1084 void __weak arch_enable_nonboot_cpus_end(void)
1085 {
1086 }
1087
1088 void enable_nonboot_cpus(void)
1089 {
1090         int cpu, error;
1091
1092         /* Allow everyone to use the CPU hotplug again */
1093         cpu_maps_update_begin();
1094         WARN_ON(--cpu_hotplug_disabled < 0);
1095         if (cpumask_empty(frozen_cpus))
1096                 goto out;
1097
1098         pr_info("Enabling non-boot CPUs ...\n");
1099
1100         arch_enable_nonboot_cpus_begin();
1101
1102         for_each_cpu(cpu, frozen_cpus) {
1103                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1104                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1105                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1106                 if (!error) {
1107                         pr_info("CPU%d is up\n", cpu);
1108                         continue;
1109                 }
1110                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1111         }
1112
1113         arch_enable_nonboot_cpus_end();
1114
1115         cpumask_clear(frozen_cpus);
1116 out:
1117         cpu_maps_update_done();
1118 }
1119
1120 static int __init alloc_frozen_cpus(void)
1121 {
1122         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1123                 return -ENOMEM;
1124         return 0;
1125 }
1126 core_initcall(alloc_frozen_cpus);
1127
1128 /*
1129  * When callbacks for CPU hotplug notifications are being executed, we must
1130  * ensure that the state of the system with respect to the tasks being frozen
1131  * or not, as reported by the notification, remains unchanged *throughout the
1132  * duration* of the execution of the callbacks.
1133  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1134  *
1135  * This synchronization is implemented by mutually excluding regular CPU
1136  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1137  * Hibernate notifications.
1138  */
1139 static int
1140 cpu_hotplug_pm_callback(struct notifier_block *nb,
1141                         unsigned long action, void *ptr)
1142 {
1143         switch (action) {
1144
1145         case PM_SUSPEND_PREPARE:
1146         case PM_HIBERNATION_PREPARE:
1147                 cpu_hotplug_disable();
1148                 break;
1149
1150         case PM_POST_SUSPEND:
1151         case PM_POST_HIBERNATION:
1152                 cpu_hotplug_enable();
1153                 break;
1154
1155         default:
1156                 return NOTIFY_DONE;
1157         }
1158
1159         return NOTIFY_OK;
1160 }
1161
1162
1163 static int __init cpu_hotplug_pm_sync_init(void)
1164 {
1165         /*
1166          * cpu_hotplug_pm_callback has higher priority than x86
1167          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1168          * to disable cpu hotplug to avoid cpu hotplug race.
1169          */
1170         pm_notifier(cpu_hotplug_pm_callback, 0);
1171         return 0;
1172 }
1173 core_initcall(cpu_hotplug_pm_sync_init);
1174
1175 #endif /* CONFIG_PM_SLEEP_SMP */
1176
1177 #endif /* CONFIG_SMP */
1178
1179 /* Boot processor state steps */
1180 static struct cpuhp_step cpuhp_bp_states[] = {
1181         [CPUHP_OFFLINE] = {
1182                 .name                   = "offline",
1183                 .startup                = NULL,
1184                 .teardown               = NULL,
1185         },
1186 #ifdef CONFIG_SMP
1187         [CPUHP_CREATE_THREADS]= {
1188                 .name                   = "threads:create",
1189                 .startup                = smpboot_create_threads,
1190                 .teardown               = NULL,
1191                 .cant_stop              = true,
1192         },
1193         /*
1194          * Preparatory and dead notifiers. Will be replaced once the notifiers
1195          * are converted to states.
1196          */
1197         [CPUHP_NOTIFY_PREPARE] = {
1198                 .name                   = "notify:prepare",
1199                 .startup                = notify_prepare,
1200                 .teardown               = notify_dead,
1201                 .skip_onerr             = true,
1202                 .cant_stop              = true,
1203         },
1204         /* Kicks the plugged cpu into life */
1205         [CPUHP_BRINGUP_CPU] = {
1206                 .name                   = "cpu:bringup",
1207                 .startup                = bringup_cpu,
1208                 .teardown               = NULL,
1209                 .cant_stop              = true,
1210         },
1211         /*
1212          * Handled on controll processor until the plugged processor manages
1213          * this itself.
1214          */
1215         [CPUHP_TEARDOWN_CPU] = {
1216                 .name                   = "cpu:teardown",
1217                 .startup                = NULL,
1218                 .teardown               = takedown_cpu,
1219                 .cant_stop              = true,
1220         },
1221 #endif
1222 };
1223
1224 /* Application processor state steps */
1225 static struct cpuhp_step cpuhp_ap_states[] = {
1226 #ifdef CONFIG_SMP
1227         /* Final state before CPU kills itself */
1228         [CPUHP_AP_IDLE_DEAD] = {
1229                 .name                   = "idle:dead",
1230         },
1231         /*
1232          * Last state before CPU enters the idle loop to die. Transient state
1233          * for synchronization.
1234          */
1235         [CPUHP_AP_OFFLINE] = {
1236                 .name                   = "ap:offline",
1237                 .cant_stop              = true,
1238         },
1239         /* First state is scheduler control. Interrupts are disabled */
1240         [CPUHP_AP_SCHED_STARTING] = {
1241                 .name                   = "sched:starting",
1242                 .startup                = sched_cpu_starting,
1243                 .teardown               = NULL,
1244         },
1245         /*
1246          * Low level startup/teardown notifiers. Run with interrupts
1247          * disabled. Will be removed once the notifiers are converted to
1248          * states.
1249          */
1250         [CPUHP_AP_NOTIFY_STARTING] = {
1251                 .name                   = "notify:starting",
1252                 .startup                = notify_starting,
1253                 .teardown               = notify_dying,
1254                 .skip_onerr             = true,
1255                 .cant_stop              = true,
1256         },
1257         /* Entry state on starting. Interrupts enabled from here on. Transient
1258          * state for synchronsization */
1259         [CPUHP_AP_ONLINE] = {
1260                 .name                   = "ap:online",
1261         },
1262         /* Handle smpboot threads park/unpark */
1263         [CPUHP_AP_SMPBOOT_THREADS] = {
1264                 .name                   = "smpboot:threads",
1265                 .startup                = smpboot_unpark_threads,
1266                 .teardown               = NULL,
1267         },
1268         /*
1269          * Online/down_prepare notifiers. Will be removed once the notifiers
1270          * are converted to states.
1271          */
1272         [CPUHP_AP_NOTIFY_ONLINE] = {
1273                 .name                   = "notify:online",
1274                 .startup                = notify_online,
1275                 .teardown               = notify_down_prepare,
1276                 .skip_onerr             = true,
1277         },
1278 #endif
1279         /*
1280          * The dynamically registered state space is here
1281          */
1282
1283         /* CPU is fully up and running. */
1284         [CPUHP_ONLINE] = {
1285                 .name                   = "online",
1286                 .startup                = NULL,
1287                 .teardown               = NULL,
1288         },
1289 };
1290
1291 /* Sanity check for callbacks */
1292 static int cpuhp_cb_check(enum cpuhp_state state)
1293 {
1294         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1295                 return -EINVAL;
1296         return 0;
1297 }
1298
1299 static bool cpuhp_is_ap_state(enum cpuhp_state state)
1300 {
1301         /*
1302          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
1303          * purposes as that state is handled explicitely in cpu_down.
1304          */
1305         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
1306 }
1307
1308 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
1309 {
1310         struct cpuhp_step *sp;
1311
1312         sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
1313         return sp + state;
1314 }
1315
1316 static void cpuhp_store_callbacks(enum cpuhp_state state,
1317                                   const char *name,
1318                                   int (*startup)(unsigned int cpu),
1319                                   int (*teardown)(unsigned int cpu))
1320 {
1321         /* (Un)Install the callbacks for further cpu hotplug operations */
1322         struct cpuhp_step *sp;
1323
1324         mutex_lock(&cpuhp_state_mutex);
1325         sp = cpuhp_get_step(state);
1326         sp->startup = startup;
1327         sp->teardown = teardown;
1328         sp->name = name;
1329         mutex_unlock(&cpuhp_state_mutex);
1330 }
1331
1332 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1333 {
1334         return cpuhp_get_step(state)->teardown;
1335 }
1336
1337 /*
1338  * Call the startup/teardown function for a step either on the AP or
1339  * on the current CPU.
1340  */
1341 static int cpuhp_issue_call(int cpu, enum cpuhp_state state,
1342                             int (*cb)(unsigned int), bool bringup)
1343 {
1344         int ret;
1345
1346         if (!cb)
1347                 return 0;
1348         /*
1349          * The non AP bound callbacks can fail on bringup. On teardown
1350          * e.g. module removal we crash for now.
1351          */
1352 #ifdef CONFIG_SMP
1353         if (cpuhp_is_ap_state(state))
1354                 ret = cpuhp_invoke_ap_callback(cpu, state, cb);
1355         else
1356                 ret = cpuhp_invoke_callback(cpu, state, cb);
1357 #else
1358         ret = cpuhp_invoke_callback(cpu, state, cb);
1359 #endif
1360         BUG_ON(ret && !bringup);
1361         return ret;
1362 }
1363
1364 /*
1365  * Called from __cpuhp_setup_state on a recoverable failure.
1366  *
1367  * Note: The teardown callbacks for rollback are not allowed to fail!
1368  */
1369 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1370                                    int (*teardown)(unsigned int cpu))
1371 {
1372         int cpu;
1373
1374         if (!teardown)
1375                 return;
1376
1377         /* Roll back the already executed steps on the other cpus */
1378         for_each_present_cpu(cpu) {
1379                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1380                 int cpustate = st->state;
1381
1382                 if (cpu >= failedcpu)
1383                         break;
1384
1385                 /* Did we invoke the startup call on that cpu ? */
1386                 if (cpustate >= state)
1387                         cpuhp_issue_call(cpu, state, teardown, false);
1388         }
1389 }
1390
1391 /*
1392  * Returns a free for dynamic slot assignment of the Online state. The states
1393  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1394  * by having no name assigned.
1395  */
1396 static int cpuhp_reserve_state(enum cpuhp_state state)
1397 {
1398         enum cpuhp_state i;
1399
1400         mutex_lock(&cpuhp_state_mutex);
1401         for (i = CPUHP_AP_ONLINE_DYN; i <= CPUHP_AP_ONLINE_DYN_END; i++) {
1402                 if (cpuhp_ap_states[i].name)
1403                         continue;
1404
1405                 cpuhp_ap_states[i].name = "Reserved";
1406                 mutex_unlock(&cpuhp_state_mutex);
1407                 return i;
1408         }
1409         mutex_unlock(&cpuhp_state_mutex);
1410         WARN(1, "No more dynamic states available for CPU hotplug\n");
1411         return -ENOSPC;
1412 }
1413
1414 /**
1415  * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1416  * @state:      The state to setup
1417  * @invoke:     If true, the startup function is invoked for cpus where
1418  *              cpu state >= @state
1419  * @startup:    startup callback function
1420  * @teardown:   teardown callback function
1421  *
1422  * Returns 0 if successful, otherwise a proper error code
1423  */
1424 int __cpuhp_setup_state(enum cpuhp_state state,
1425                         const char *name, bool invoke,
1426                         int (*startup)(unsigned int cpu),
1427                         int (*teardown)(unsigned int cpu))
1428 {
1429         int cpu, ret = 0;
1430         int dyn_state = 0;
1431
1432         if (cpuhp_cb_check(state) || !name)
1433                 return -EINVAL;
1434
1435         get_online_cpus();
1436
1437         /* currently assignments for the ONLINE state are possible */
1438         if (state == CPUHP_AP_ONLINE_DYN) {
1439                 dyn_state = 1;
1440                 ret = cpuhp_reserve_state(state);
1441                 if (ret < 0)
1442                         goto out;
1443                 state = ret;
1444         }
1445
1446         cpuhp_store_callbacks(state, name, startup, teardown);
1447
1448         if (!invoke || !startup)
1449                 goto out;
1450
1451         /*
1452          * Try to call the startup callback for each present cpu
1453          * depending on the hotplug state of the cpu.
1454          */
1455         for_each_present_cpu(cpu) {
1456                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1457                 int cpustate = st->state;
1458
1459                 if (cpustate < state)
1460                         continue;
1461
1462                 ret = cpuhp_issue_call(cpu, state, startup, true);
1463                 if (ret) {
1464                         cpuhp_rollback_install(cpu, state, teardown);
1465                         cpuhp_store_callbacks(state, NULL, NULL, NULL);
1466                         goto out;
1467                 }
1468         }
1469 out:
1470         put_online_cpus();
1471         if (!ret && dyn_state)
1472                 return state;
1473         return ret;
1474 }
1475 EXPORT_SYMBOL(__cpuhp_setup_state);
1476
1477 /**
1478  * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1479  * @state:      The state to remove
1480  * @invoke:     If true, the teardown function is invoked for cpus where
1481  *              cpu state >= @state
1482  *
1483  * The teardown callback is currently not allowed to fail. Think
1484  * about module removal!
1485  */
1486 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1487 {
1488         int (*teardown)(unsigned int cpu) = cpuhp_get_teardown_cb(state);
1489         int cpu;
1490
1491         BUG_ON(cpuhp_cb_check(state));
1492
1493         get_online_cpus();
1494
1495         if (!invoke || !teardown)
1496                 goto remove;
1497
1498         /*
1499          * Call the teardown callback for each present cpu depending
1500          * on the hotplug state of the cpu. This function is not
1501          * allowed to fail currently!
1502          */
1503         for_each_present_cpu(cpu) {
1504                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1505                 int cpustate = st->state;
1506
1507                 if (cpustate >= state)
1508                         cpuhp_issue_call(cpu, state, teardown, false);
1509         }
1510 remove:
1511         cpuhp_store_callbacks(state, NULL, NULL, NULL);
1512         put_online_cpus();
1513 }
1514 EXPORT_SYMBOL(__cpuhp_remove_state);
1515
1516 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1517 static ssize_t show_cpuhp_state(struct device *dev,
1518                                 struct device_attribute *attr, char *buf)
1519 {
1520         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1521
1522         return sprintf(buf, "%d\n", st->state);
1523 }
1524 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1525
1526 static ssize_t write_cpuhp_target(struct device *dev,
1527                                   struct device_attribute *attr,
1528                                   const char *buf, size_t count)
1529 {
1530         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1531         struct cpuhp_step *sp;
1532         int target, ret;
1533
1534         ret = kstrtoint(buf, 10, &target);
1535         if (ret)
1536                 return ret;
1537
1538 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1539         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1540                 return -EINVAL;
1541 #else
1542         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1543                 return -EINVAL;
1544 #endif
1545
1546         ret = lock_device_hotplug_sysfs();
1547         if (ret)
1548                 return ret;
1549
1550         mutex_lock(&cpuhp_state_mutex);
1551         sp = cpuhp_get_step(target);
1552         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1553         mutex_unlock(&cpuhp_state_mutex);
1554         if (ret)
1555                 return ret;
1556
1557         if (st->state < target)
1558                 ret = do_cpu_up(dev->id, target);
1559         else
1560                 ret = do_cpu_down(dev->id, target);
1561
1562         unlock_device_hotplug();
1563         return ret ? ret : count;
1564 }
1565
1566 static ssize_t show_cpuhp_target(struct device *dev,
1567                                  struct device_attribute *attr, char *buf)
1568 {
1569         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1570
1571         return sprintf(buf, "%d\n", st->target);
1572 }
1573 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1574
1575 static struct attribute *cpuhp_cpu_attrs[] = {
1576         &dev_attr_state.attr,
1577         &dev_attr_target.attr,
1578         NULL
1579 };
1580
1581 static struct attribute_group cpuhp_cpu_attr_group = {
1582         .attrs = cpuhp_cpu_attrs,
1583         .name = "hotplug",
1584         NULL
1585 };
1586
1587 static ssize_t show_cpuhp_states(struct device *dev,
1588                                  struct device_attribute *attr, char *buf)
1589 {
1590         ssize_t cur, res = 0;
1591         int i;
1592
1593         mutex_lock(&cpuhp_state_mutex);
1594         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1595                 struct cpuhp_step *sp = cpuhp_get_step(i);
1596
1597                 if (sp->name) {
1598                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1599                         buf += cur;
1600                         res += cur;
1601                 }
1602         }
1603         mutex_unlock(&cpuhp_state_mutex);
1604         return res;
1605 }
1606 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1607
1608 static struct attribute *cpuhp_cpu_root_attrs[] = {
1609         &dev_attr_states.attr,
1610         NULL
1611 };
1612
1613 static struct attribute_group cpuhp_cpu_root_attr_group = {
1614         .attrs = cpuhp_cpu_root_attrs,
1615         .name = "hotplug",
1616         NULL
1617 };
1618
1619 static int __init cpuhp_sysfs_init(void)
1620 {
1621         int cpu, ret;
1622
1623         ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1624                                  &cpuhp_cpu_root_attr_group);
1625         if (ret)
1626                 return ret;
1627
1628         for_each_possible_cpu(cpu) {
1629                 struct device *dev = get_cpu_device(cpu);
1630
1631                 if (!dev)
1632                         continue;
1633                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1634                 if (ret)
1635                         return ret;
1636         }
1637         return 0;
1638 }
1639 device_initcall(cpuhp_sysfs_init);
1640 #endif
1641
1642 /*
1643  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1644  * represents all NR_CPUS bits binary values of 1<<nr.
1645  *
1646  * It is used by cpumask_of() to get a constant address to a CPU
1647  * mask value that has a single bit set only.
1648  */
1649
1650 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1651 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
1652 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1653 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1654 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1655
1656 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1657
1658         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
1659         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
1660 #if BITS_PER_LONG > 32
1661         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
1662         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
1663 #endif
1664 };
1665 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1666
1667 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1668 EXPORT_SYMBOL(cpu_all_bits);
1669
1670 #ifdef CONFIG_INIT_ALL_POSSIBLE
1671 struct cpumask __cpu_possible_mask __read_mostly
1672         = {CPU_BITS_ALL};
1673 #else
1674 struct cpumask __cpu_possible_mask __read_mostly;
1675 #endif
1676 EXPORT_SYMBOL(__cpu_possible_mask);
1677
1678 struct cpumask __cpu_online_mask __read_mostly;
1679 EXPORT_SYMBOL(__cpu_online_mask);
1680
1681 struct cpumask __cpu_present_mask __read_mostly;
1682 EXPORT_SYMBOL(__cpu_present_mask);
1683
1684 struct cpumask __cpu_active_mask __read_mostly;
1685 EXPORT_SYMBOL(__cpu_active_mask);
1686
1687 void init_cpu_present(const struct cpumask *src)
1688 {
1689         cpumask_copy(&__cpu_present_mask, src);
1690 }
1691
1692 void init_cpu_possible(const struct cpumask *src)
1693 {
1694         cpumask_copy(&__cpu_possible_mask, src);
1695 }
1696
1697 void init_cpu_online(const struct cpumask *src)
1698 {
1699         cpumask_copy(&__cpu_online_mask, src);
1700 }
1701
1702 /*
1703  * Activate the first processor.
1704  */
1705 void __init boot_cpu_init(void)
1706 {
1707         int cpu = smp_processor_id();
1708
1709         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1710         set_cpu_online(cpu, true);
1711         set_cpu_active(cpu, true);
1712         set_cpu_present(cpu, true);
1713         set_cpu_possible(cpu, true);
1714 }
1715
1716 /*
1717  * Must be called _AFTER_ setting up the per_cpu areas
1718  */
1719 void __init boot_cpu_state_init(void)
1720 {
1721         per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1722 }