]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/events/core.c
xhci: fix memleak in xhci_run()
[karo-tx-linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         WARN_ON_ONCE(!irqs_disabled());
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         WARN_ON_ONCE(!irqs_disabled());
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE         100000
410 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423         u64 tmp = perf_sample_period_ns;
424
425         tmp *= sysctl_perf_cpu_time_max_percent;
426         tmp = div_u64(tmp, 100);
427         if (!tmp)
428                 tmp = 1;
429
430         WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436                 void __user *buffer, size_t *lenp,
437                 loff_t *ppos)
438 {
439         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441         if (ret || !write)
442                 return ret;
443
444         /*
445          * If throttling is disabled don't allow the write:
446          */
447         if (sysctl_perf_cpu_time_max_percent == 100 ||
448             sysctl_perf_cpu_time_max_percent == 0)
449                 return -EINVAL;
450
451         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453         update_perf_cpu_limits();
454
455         return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461                                 void __user *buffer, size_t *lenp,
462                                 loff_t *ppos)
463 {
464         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466         if (ret || !write)
467                 return ret;
468
469         if (sysctl_perf_cpu_time_max_percent == 100 ||
470             sysctl_perf_cpu_time_max_percent == 0) {
471                 printk(KERN_WARNING
472                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473                 WRITE_ONCE(perf_sample_allowed_ns, 0);
474         } else {
475                 update_perf_cpu_limits();
476         }
477
478         return 0;
479 }
480
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495         printk_ratelimited(KERN_INFO
496                 "perf: interrupt took too long (%lld > %lld), lowering "
497                 "kernel.perf_event_max_sample_rate to %d\n",
498                 __report_avg, __report_allowed,
499                 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507         u64 running_len;
508         u64 avg_len;
509         u32 max;
510
511         if (max_len == 0)
512                 return;
513
514         /* Decay the counter by 1 average sample. */
515         running_len = __this_cpu_read(running_sample_length);
516         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517         running_len += sample_len_ns;
518         __this_cpu_write(running_sample_length, running_len);
519
520         /*
521          * Note: this will be biased artifically low until we have
522          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523          * from having to maintain a count.
524          */
525         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526         if (avg_len <= max_len)
527                 return;
528
529         __report_avg = avg_len;
530         __report_allowed = max_len;
531
532         /*
533          * Compute a throttle threshold 25% below the current duration.
534          */
535         avg_len += avg_len / 4;
536         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537         if (avg_len < max)
538                 max /= (u32)avg_len;
539         else
540                 max = 1;
541
542         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543         WRITE_ONCE(max_samples_per_tick, max);
544
545         sysctl_perf_event_sample_rate = max * HZ;
546         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548         if (!irq_work_queue(&perf_duration_work)) {
549                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550                              "kernel.perf_event_max_sample_rate to %d\n",
551                              __report_avg, __report_allowed,
552                              sysctl_perf_event_sample_rate);
553         }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559                               enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562                              enum event_type_t event_type,
563                              struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void)        { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572         return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577         return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582         return event->clock();
583 }
584
585 #ifdef CONFIG_CGROUP_PERF
586
587 static inline bool
588 perf_cgroup_match(struct perf_event *event)
589 {
590         struct perf_event_context *ctx = event->ctx;
591         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592
593         /* @event doesn't care about cgroup */
594         if (!event->cgrp)
595                 return true;
596
597         /* wants specific cgroup scope but @cpuctx isn't associated with any */
598         if (!cpuctx->cgrp)
599                 return false;
600
601         /*
602          * Cgroup scoping is recursive.  An event enabled for a cgroup is
603          * also enabled for all its descendant cgroups.  If @cpuctx's
604          * cgroup is a descendant of @event's (the test covers identity
605          * case), it's a match.
606          */
607         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608                                     event->cgrp->css.cgroup);
609 }
610
611 static inline void perf_detach_cgroup(struct perf_event *event)
612 {
613         css_put(&event->cgrp->css);
614         event->cgrp = NULL;
615 }
616
617 static inline int is_cgroup_event(struct perf_event *event)
618 {
619         return event->cgrp != NULL;
620 }
621
622 static inline u64 perf_cgroup_event_time(struct perf_event *event)
623 {
624         struct perf_cgroup_info *t;
625
626         t = per_cpu_ptr(event->cgrp->info, event->cpu);
627         return t->time;
628 }
629
630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631 {
632         struct perf_cgroup_info *info;
633         u64 now;
634
635         now = perf_clock();
636
637         info = this_cpu_ptr(cgrp->info);
638
639         info->time += now - info->timestamp;
640         info->timestamp = now;
641 }
642
643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644 {
645         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646         if (cgrp_out)
647                 __update_cgrp_time(cgrp_out);
648 }
649
650 static inline void update_cgrp_time_from_event(struct perf_event *event)
651 {
652         struct perf_cgroup *cgrp;
653
654         /*
655          * ensure we access cgroup data only when needed and
656          * when we know the cgroup is pinned (css_get)
657          */
658         if (!is_cgroup_event(event))
659                 return;
660
661         cgrp = perf_cgroup_from_task(current, event->ctx);
662         /*
663          * Do not update time when cgroup is not active
664          */
665         if (cgrp == event->cgrp)
666                 __update_cgrp_time(event->cgrp);
667 }
668
669 static inline void
670 perf_cgroup_set_timestamp(struct task_struct *task,
671                           struct perf_event_context *ctx)
672 {
673         struct perf_cgroup *cgrp;
674         struct perf_cgroup_info *info;
675
676         /*
677          * ctx->lock held by caller
678          * ensure we do not access cgroup data
679          * unless we have the cgroup pinned (css_get)
680          */
681         if (!task || !ctx->nr_cgroups)
682                 return;
683
684         cgrp = perf_cgroup_from_task(task, ctx);
685         info = this_cpu_ptr(cgrp->info);
686         info->timestamp = ctx->timestamp;
687 }
688
689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690
691 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
692 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
693
694 /*
695  * reschedule events based on the cgroup constraint of task.
696  *
697  * mode SWOUT : schedule out everything
698  * mode SWIN : schedule in based on cgroup for next
699  */
700 static void perf_cgroup_switch(struct task_struct *task, int mode)
701 {
702         struct perf_cpu_context *cpuctx;
703         struct list_head *list;
704         unsigned long flags;
705
706         /*
707          * Disable interrupts and preemption to avoid this CPU's
708          * cgrp_cpuctx_entry to change under us.
709          */
710         local_irq_save(flags);
711
712         list = this_cpu_ptr(&cgrp_cpuctx_list);
713         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
715
716                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717                 perf_pmu_disable(cpuctx->ctx.pmu);
718
719                 if (mode & PERF_CGROUP_SWOUT) {
720                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721                         /*
722                          * must not be done before ctxswout due
723                          * to event_filter_match() in event_sched_out()
724                          */
725                         cpuctx->cgrp = NULL;
726                 }
727
728                 if (mode & PERF_CGROUP_SWIN) {
729                         WARN_ON_ONCE(cpuctx->cgrp);
730                         /*
731                          * set cgrp before ctxsw in to allow
732                          * event_filter_match() to not have to pass
733                          * task around
734                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
735                          * because cgorup events are only per-cpu
736                          */
737                         cpuctx->cgrp = perf_cgroup_from_task(task,
738                                                              &cpuctx->ctx);
739                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
740                 }
741                 perf_pmu_enable(cpuctx->ctx.pmu);
742                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
743         }
744
745         local_irq_restore(flags);
746 }
747
748 static inline void perf_cgroup_sched_out(struct task_struct *task,
749                                          struct task_struct *next)
750 {
751         struct perf_cgroup *cgrp1;
752         struct perf_cgroup *cgrp2 = NULL;
753
754         rcu_read_lock();
755         /*
756          * we come here when we know perf_cgroup_events > 0
757          * we do not need to pass the ctx here because we know
758          * we are holding the rcu lock
759          */
760         cgrp1 = perf_cgroup_from_task(task, NULL);
761         cgrp2 = perf_cgroup_from_task(next, NULL);
762
763         /*
764          * only schedule out current cgroup events if we know
765          * that we are switching to a different cgroup. Otherwise,
766          * do no touch the cgroup events.
767          */
768         if (cgrp1 != cgrp2)
769                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
770
771         rcu_read_unlock();
772 }
773
774 static inline void perf_cgroup_sched_in(struct task_struct *prev,
775                                         struct task_struct *task)
776 {
777         struct perf_cgroup *cgrp1;
778         struct perf_cgroup *cgrp2 = NULL;
779
780         rcu_read_lock();
781         /*
782          * we come here when we know perf_cgroup_events > 0
783          * we do not need to pass the ctx here because we know
784          * we are holding the rcu lock
785          */
786         cgrp1 = perf_cgroup_from_task(task, NULL);
787         cgrp2 = perf_cgroup_from_task(prev, NULL);
788
789         /*
790          * only need to schedule in cgroup events if we are changing
791          * cgroup during ctxsw. Cgroup events were not scheduled
792          * out of ctxsw out if that was not the case.
793          */
794         if (cgrp1 != cgrp2)
795                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
796
797         rcu_read_unlock();
798 }
799
800 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801                                       struct perf_event_attr *attr,
802                                       struct perf_event *group_leader)
803 {
804         struct perf_cgroup *cgrp;
805         struct cgroup_subsys_state *css;
806         struct fd f = fdget(fd);
807         int ret = 0;
808
809         if (!f.file)
810                 return -EBADF;
811
812         css = css_tryget_online_from_dir(f.file->f_path.dentry,
813                                          &perf_event_cgrp_subsys);
814         if (IS_ERR(css)) {
815                 ret = PTR_ERR(css);
816                 goto out;
817         }
818
819         cgrp = container_of(css, struct perf_cgroup, css);
820         event->cgrp = cgrp;
821
822         /*
823          * all events in a group must monitor
824          * the same cgroup because a task belongs
825          * to only one perf cgroup at a time
826          */
827         if (group_leader && group_leader->cgrp != cgrp) {
828                 perf_detach_cgroup(event);
829                 ret = -EINVAL;
830         }
831 out:
832         fdput(f);
833         return ret;
834 }
835
836 static inline void
837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838 {
839         struct perf_cgroup_info *t;
840         t = per_cpu_ptr(event->cgrp->info, event->cpu);
841         event->shadow_ctx_time = now - t->timestamp;
842 }
843
844 static inline void
845 perf_cgroup_defer_enabled(struct perf_event *event)
846 {
847         /*
848          * when the current task's perf cgroup does not match
849          * the event's, we need to remember to call the
850          * perf_mark_enable() function the first time a task with
851          * a matching perf cgroup is scheduled in.
852          */
853         if (is_cgroup_event(event) && !perf_cgroup_match(event))
854                 event->cgrp_defer_enabled = 1;
855 }
856
857 static inline void
858 perf_cgroup_mark_enabled(struct perf_event *event,
859                          struct perf_event_context *ctx)
860 {
861         struct perf_event *sub;
862         u64 tstamp = perf_event_time(event);
863
864         if (!event->cgrp_defer_enabled)
865                 return;
866
867         event->cgrp_defer_enabled = 0;
868
869         event->tstamp_enabled = tstamp - event->total_time_enabled;
870         list_for_each_entry(sub, &event->sibling_list, group_entry) {
871                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873                         sub->cgrp_defer_enabled = 0;
874                 }
875         }
876 }
877
878 /*
879  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880  * cleared when last cgroup event is removed.
881  */
882 static inline void
883 list_update_cgroup_event(struct perf_event *event,
884                          struct perf_event_context *ctx, bool add)
885 {
886         struct perf_cpu_context *cpuctx;
887         struct list_head *cpuctx_entry;
888
889         if (!is_cgroup_event(event))
890                 return;
891
892         if (add && ctx->nr_cgroups++)
893                 return;
894         else if (!add && --ctx->nr_cgroups)
895                 return;
896         /*
897          * Because cgroup events are always per-cpu events,
898          * this will always be called from the right CPU.
899          */
900         cpuctx = __get_cpu_context(ctx);
901         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902         /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903         if (add) {
904                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
905                 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
906                         cpuctx->cgrp = event->cgrp;
907         } else {
908                 list_del(cpuctx_entry);
909                 cpuctx->cgrp = NULL;
910         }
911 }
912
913 #else /* !CONFIG_CGROUP_PERF */
914
915 static inline bool
916 perf_cgroup_match(struct perf_event *event)
917 {
918         return true;
919 }
920
921 static inline void perf_detach_cgroup(struct perf_event *event)
922 {}
923
924 static inline int is_cgroup_event(struct perf_event *event)
925 {
926         return 0;
927 }
928
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938                                          struct task_struct *next)
939 {
940 }
941
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943                                         struct task_struct *task)
944 {
945 }
946
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948                                       struct perf_event_attr *attr,
949                                       struct perf_event *group_leader)
950 {
951         return -EINVAL;
952 }
953
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956                           struct perf_event_context *ctx)
957 {
958 }
959
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972         return 0;
973 }
974
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982                          struct perf_event_context *ctx)
983 {
984 }
985
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988                          struct perf_event_context *ctx, bool add)
989 {
990 }
991
992 #endif
993
994 /*
995  * set default to be dependent on timer tick just
996  * like original code
997  */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000  * function must be called with interrupts disabled
1001  */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004         struct perf_cpu_context *cpuctx;
1005         int rotations = 0;
1006
1007         WARN_ON(!irqs_disabled());
1008
1009         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010         rotations = perf_rotate_context(cpuctx);
1011
1012         raw_spin_lock(&cpuctx->hrtimer_lock);
1013         if (rotations)
1014                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015         else
1016                 cpuctx->hrtimer_active = 0;
1017         raw_spin_unlock(&cpuctx->hrtimer_lock);
1018
1019         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024         struct hrtimer *timer = &cpuctx->hrtimer;
1025         struct pmu *pmu = cpuctx->ctx.pmu;
1026         u64 interval;
1027
1028         /* no multiplexing needed for SW PMU */
1029         if (pmu->task_ctx_nr == perf_sw_context)
1030                 return;
1031
1032         /*
1033          * check default is sane, if not set then force to
1034          * default interval (1/tick)
1035          */
1036         interval = pmu->hrtimer_interval_ms;
1037         if (interval < 1)
1038                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039
1040         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041
1042         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044         timer->function = perf_mux_hrtimer_handler;
1045 }
1046
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049         struct hrtimer *timer = &cpuctx->hrtimer;
1050         struct pmu *pmu = cpuctx->ctx.pmu;
1051         unsigned long flags;
1052
1053         /* not for SW PMU */
1054         if (pmu->task_ctx_nr == perf_sw_context)
1055                 return 0;
1056
1057         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058         if (!cpuctx->hrtimer_active) {
1059                 cpuctx->hrtimer_active = 1;
1060                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062         }
1063         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064
1065         return 0;
1066 }
1067
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071         if (!(*count)++)
1072                 pmu->pmu_disable(pmu);
1073 }
1074
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078         if (!--(*count))
1079                 pmu->pmu_enable(pmu);
1080 }
1081
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083
1084 /*
1085  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086  * perf_event_task_tick() are fully serialized because they're strictly cpu
1087  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088  * disabled, while perf_event_task_tick is called from IRQ context.
1089  */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093
1094         WARN_ON(!irqs_disabled());
1095
1096         WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098         list_add(&ctx->active_ctx_list, head);
1099 }
1100
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103         WARN_ON(!irqs_disabled());
1104
1105         WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107         list_del_init(&ctx->active_ctx_list);
1108 }
1109
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117         struct perf_event_context *ctx;
1118
1119         ctx = container_of(head, struct perf_event_context, rcu_head);
1120         kfree(ctx->task_ctx_data);
1121         kfree(ctx);
1122 }
1123
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126         if (atomic_dec_and_test(&ctx->refcount)) {
1127                 if (ctx->parent_ctx)
1128                         put_ctx(ctx->parent_ctx);
1129                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130                         put_task_struct(ctx->task);
1131                 call_rcu(&ctx->rcu_head, free_ctx);
1132         }
1133 }
1134
1135 /*
1136  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137  * perf_pmu_migrate_context() we need some magic.
1138  *
1139  * Those places that change perf_event::ctx will hold both
1140  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141  *
1142  * Lock ordering is by mutex address. There are two other sites where
1143  * perf_event_context::mutex nests and those are:
1144  *
1145  *  - perf_event_exit_task_context()    [ child , 0 ]
1146  *      perf_event_exit_event()
1147  *        put_event()                   [ parent, 1 ]
1148  *
1149  *  - perf_event_init_context()         [ parent, 0 ]
1150  *      inherit_task_group()
1151  *        inherit_group()
1152  *          inherit_event()
1153  *            perf_event_alloc()
1154  *              perf_init_event()
1155  *                perf_try_init_event() [ child , 1 ]
1156  *
1157  * While it appears there is an obvious deadlock here -- the parent and child
1158  * nesting levels are inverted between the two. This is in fact safe because
1159  * life-time rules separate them. That is an exiting task cannot fork, and a
1160  * spawning task cannot (yet) exit.
1161  *
1162  * But remember that that these are parent<->child context relations, and
1163  * migration does not affect children, therefore these two orderings should not
1164  * interact.
1165  *
1166  * The change in perf_event::ctx does not affect children (as claimed above)
1167  * because the sys_perf_event_open() case will install a new event and break
1168  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169  * concerned with cpuctx and that doesn't have children.
1170  *
1171  * The places that change perf_event::ctx will issue:
1172  *
1173  *   perf_remove_from_context();
1174  *   synchronize_rcu();
1175  *   perf_install_in_context();
1176  *
1177  * to affect the change. The remove_from_context() + synchronize_rcu() should
1178  * quiesce the event, after which we can install it in the new location. This
1179  * means that only external vectors (perf_fops, prctl) can perturb the event
1180  * while in transit. Therefore all such accessors should also acquire
1181  * perf_event_context::mutex to serialize against this.
1182  *
1183  * However; because event->ctx can change while we're waiting to acquire
1184  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185  * function.
1186  *
1187  * Lock order:
1188  *    cred_guard_mutex
1189  *      task_struct::perf_event_mutex
1190  *        perf_event_context::mutex
1191  *          perf_event::child_mutex;
1192  *            perf_event_context::lock
1193  *          perf_event::mmap_mutex
1194  *          mmap_sem
1195  */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199         struct perf_event_context *ctx;
1200
1201 again:
1202         rcu_read_lock();
1203         ctx = ACCESS_ONCE(event->ctx);
1204         if (!atomic_inc_not_zero(&ctx->refcount)) {
1205                 rcu_read_unlock();
1206                 goto again;
1207         }
1208         rcu_read_unlock();
1209
1210         mutex_lock_nested(&ctx->mutex, nesting);
1211         if (event->ctx != ctx) {
1212                 mutex_unlock(&ctx->mutex);
1213                 put_ctx(ctx);
1214                 goto again;
1215         }
1216
1217         return ctx;
1218 }
1219
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223         return perf_event_ctx_lock_nested(event, 0);
1224 }
1225
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227                                   struct perf_event_context *ctx)
1228 {
1229         mutex_unlock(&ctx->mutex);
1230         put_ctx(ctx);
1231 }
1232
1233 /*
1234  * This must be done under the ctx->lock, such as to serialize against
1235  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236  * calling scheduler related locks and ctx->lock nests inside those.
1237  */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243         lockdep_assert_held(&ctx->lock);
1244
1245         if (parent_ctx)
1246                 ctx->parent_ctx = NULL;
1247         ctx->generation++;
1248
1249         return parent_ctx;
1250 }
1251
1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253 {
1254         /*
1255          * only top level events have the pid namespace they were created in
1256          */
1257         if (event->parent)
1258                 event = event->parent;
1259
1260         return task_tgid_nr_ns(p, event->ns);
1261 }
1262
1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264 {
1265         /*
1266          * only top level events have the pid namespace they were created in
1267          */
1268         if (event->parent)
1269                 event = event->parent;
1270
1271         return task_pid_nr_ns(p, event->ns);
1272 }
1273
1274 /*
1275  * If we inherit events we want to return the parent event id
1276  * to userspace.
1277  */
1278 static u64 primary_event_id(struct perf_event *event)
1279 {
1280         u64 id = event->id;
1281
1282         if (event->parent)
1283                 id = event->parent->id;
1284
1285         return id;
1286 }
1287
1288 /*
1289  * Get the perf_event_context for a task and lock it.
1290  *
1291  * This has to cope with with the fact that until it is locked,
1292  * the context could get moved to another task.
1293  */
1294 static struct perf_event_context *
1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296 {
1297         struct perf_event_context *ctx;
1298
1299 retry:
1300         /*
1301          * One of the few rules of preemptible RCU is that one cannot do
1302          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303          * part of the read side critical section was irqs-enabled -- see
1304          * rcu_read_unlock_special().
1305          *
1306          * Since ctx->lock nests under rq->lock we must ensure the entire read
1307          * side critical section has interrupts disabled.
1308          */
1309         local_irq_save(*flags);
1310         rcu_read_lock();
1311         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312         if (ctx) {
1313                 /*
1314                  * If this context is a clone of another, it might
1315                  * get swapped for another underneath us by
1316                  * perf_event_task_sched_out, though the
1317                  * rcu_read_lock() protects us from any context
1318                  * getting freed.  Lock the context and check if it
1319                  * got swapped before we could get the lock, and retry
1320                  * if so.  If we locked the right context, then it
1321                  * can't get swapped on us any more.
1322                  */
1323                 raw_spin_lock(&ctx->lock);
1324                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325                         raw_spin_unlock(&ctx->lock);
1326                         rcu_read_unlock();
1327                         local_irq_restore(*flags);
1328                         goto retry;
1329                 }
1330
1331                 if (ctx->task == TASK_TOMBSTONE ||
1332                     !atomic_inc_not_zero(&ctx->refcount)) {
1333                         raw_spin_unlock(&ctx->lock);
1334                         ctx = NULL;
1335                 } else {
1336                         WARN_ON_ONCE(ctx->task != task);
1337                 }
1338         }
1339         rcu_read_unlock();
1340         if (!ctx)
1341                 local_irq_restore(*flags);
1342         return ctx;
1343 }
1344
1345 /*
1346  * Get the context for a task and increment its pin_count so it
1347  * can't get swapped to another task.  This also increments its
1348  * reference count so that the context can't get freed.
1349  */
1350 static struct perf_event_context *
1351 perf_pin_task_context(struct task_struct *task, int ctxn)
1352 {
1353         struct perf_event_context *ctx;
1354         unsigned long flags;
1355
1356         ctx = perf_lock_task_context(task, ctxn, &flags);
1357         if (ctx) {
1358                 ++ctx->pin_count;
1359                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360         }
1361         return ctx;
1362 }
1363
1364 static void perf_unpin_context(struct perf_event_context *ctx)
1365 {
1366         unsigned long flags;
1367
1368         raw_spin_lock_irqsave(&ctx->lock, flags);
1369         --ctx->pin_count;
1370         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 }
1372
1373 /*
1374  * Update the record of the current time in a context.
1375  */
1376 static void update_context_time(struct perf_event_context *ctx)
1377 {
1378         u64 now = perf_clock();
1379
1380         ctx->time += now - ctx->timestamp;
1381         ctx->timestamp = now;
1382 }
1383
1384 static u64 perf_event_time(struct perf_event *event)
1385 {
1386         struct perf_event_context *ctx = event->ctx;
1387
1388         if (is_cgroup_event(event))
1389                 return perf_cgroup_event_time(event);
1390
1391         return ctx ? ctx->time : 0;
1392 }
1393
1394 /*
1395  * Update the total_time_enabled and total_time_running fields for a event.
1396  */
1397 static void update_event_times(struct perf_event *event)
1398 {
1399         struct perf_event_context *ctx = event->ctx;
1400         u64 run_end;
1401
1402         lockdep_assert_held(&ctx->lock);
1403
1404         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406                 return;
1407
1408         /*
1409          * in cgroup mode, time_enabled represents
1410          * the time the event was enabled AND active
1411          * tasks were in the monitored cgroup. This is
1412          * independent of the activity of the context as
1413          * there may be a mix of cgroup and non-cgroup events.
1414          *
1415          * That is why we treat cgroup events differently
1416          * here.
1417          */
1418         if (is_cgroup_event(event))
1419                 run_end = perf_cgroup_event_time(event);
1420         else if (ctx->is_active)
1421                 run_end = ctx->time;
1422         else
1423                 run_end = event->tstamp_stopped;
1424
1425         event->total_time_enabled = run_end - event->tstamp_enabled;
1426
1427         if (event->state == PERF_EVENT_STATE_INACTIVE)
1428                 run_end = event->tstamp_stopped;
1429         else
1430                 run_end = perf_event_time(event);
1431
1432         event->total_time_running = run_end - event->tstamp_running;
1433
1434 }
1435
1436 /*
1437  * Update total_time_enabled and total_time_running for all events in a group.
1438  */
1439 static void update_group_times(struct perf_event *leader)
1440 {
1441         struct perf_event *event;
1442
1443         update_event_times(leader);
1444         list_for_each_entry(event, &leader->sibling_list, group_entry)
1445                 update_event_times(event);
1446 }
1447
1448 static enum event_type_t get_event_type(struct perf_event *event)
1449 {
1450         struct perf_event_context *ctx = event->ctx;
1451         enum event_type_t event_type;
1452
1453         lockdep_assert_held(&ctx->lock);
1454
1455         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1456         if (!ctx->task)
1457                 event_type |= EVENT_CPU;
1458
1459         return event_type;
1460 }
1461
1462 static struct list_head *
1463 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1464 {
1465         if (event->attr.pinned)
1466                 return &ctx->pinned_groups;
1467         else
1468                 return &ctx->flexible_groups;
1469 }
1470
1471 /*
1472  * Add a event from the lists for its context.
1473  * Must be called with ctx->mutex and ctx->lock held.
1474  */
1475 static void
1476 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1477 {
1478         lockdep_assert_held(&ctx->lock);
1479
1480         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1481         event->attach_state |= PERF_ATTACH_CONTEXT;
1482
1483         /*
1484          * If we're a stand alone event or group leader, we go to the context
1485          * list, group events are kept attached to the group so that
1486          * perf_group_detach can, at all times, locate all siblings.
1487          */
1488         if (event->group_leader == event) {
1489                 struct list_head *list;
1490
1491                 event->group_caps = event->event_caps;
1492
1493                 list = ctx_group_list(event, ctx);
1494                 list_add_tail(&event->group_entry, list);
1495         }
1496
1497         list_update_cgroup_event(event, ctx, true);
1498
1499         list_add_rcu(&event->event_entry, &ctx->event_list);
1500         ctx->nr_events++;
1501         if (event->attr.inherit_stat)
1502                 ctx->nr_stat++;
1503
1504         ctx->generation++;
1505 }
1506
1507 /*
1508  * Initialize event state based on the perf_event_attr::disabled.
1509  */
1510 static inline void perf_event__state_init(struct perf_event *event)
1511 {
1512         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1513                                               PERF_EVENT_STATE_INACTIVE;
1514 }
1515
1516 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1517 {
1518         int entry = sizeof(u64); /* value */
1519         int size = 0;
1520         int nr = 1;
1521
1522         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1523                 size += sizeof(u64);
1524
1525         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1526                 size += sizeof(u64);
1527
1528         if (event->attr.read_format & PERF_FORMAT_ID)
1529                 entry += sizeof(u64);
1530
1531         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1532                 nr += nr_siblings;
1533                 size += sizeof(u64);
1534         }
1535
1536         size += entry * nr;
1537         event->read_size = size;
1538 }
1539
1540 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1541 {
1542         struct perf_sample_data *data;
1543         u16 size = 0;
1544
1545         if (sample_type & PERF_SAMPLE_IP)
1546                 size += sizeof(data->ip);
1547
1548         if (sample_type & PERF_SAMPLE_ADDR)
1549                 size += sizeof(data->addr);
1550
1551         if (sample_type & PERF_SAMPLE_PERIOD)
1552                 size += sizeof(data->period);
1553
1554         if (sample_type & PERF_SAMPLE_WEIGHT)
1555                 size += sizeof(data->weight);
1556
1557         if (sample_type & PERF_SAMPLE_READ)
1558                 size += event->read_size;
1559
1560         if (sample_type & PERF_SAMPLE_DATA_SRC)
1561                 size += sizeof(data->data_src.val);
1562
1563         if (sample_type & PERF_SAMPLE_TRANSACTION)
1564                 size += sizeof(data->txn);
1565
1566         event->header_size = size;
1567 }
1568
1569 /*
1570  * Called at perf_event creation and when events are attached/detached from a
1571  * group.
1572  */
1573 static void perf_event__header_size(struct perf_event *event)
1574 {
1575         __perf_event_read_size(event,
1576                                event->group_leader->nr_siblings);
1577         __perf_event_header_size(event, event->attr.sample_type);
1578 }
1579
1580 static void perf_event__id_header_size(struct perf_event *event)
1581 {
1582         struct perf_sample_data *data;
1583         u64 sample_type = event->attr.sample_type;
1584         u16 size = 0;
1585
1586         if (sample_type & PERF_SAMPLE_TID)
1587                 size += sizeof(data->tid_entry);
1588
1589         if (sample_type & PERF_SAMPLE_TIME)
1590                 size += sizeof(data->time);
1591
1592         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1593                 size += sizeof(data->id);
1594
1595         if (sample_type & PERF_SAMPLE_ID)
1596                 size += sizeof(data->id);
1597
1598         if (sample_type & PERF_SAMPLE_STREAM_ID)
1599                 size += sizeof(data->stream_id);
1600
1601         if (sample_type & PERF_SAMPLE_CPU)
1602                 size += sizeof(data->cpu_entry);
1603
1604         event->id_header_size = size;
1605 }
1606
1607 static bool perf_event_validate_size(struct perf_event *event)
1608 {
1609         /*
1610          * The values computed here will be over-written when we actually
1611          * attach the event.
1612          */
1613         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1614         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1615         perf_event__id_header_size(event);
1616
1617         /*
1618          * Sum the lot; should not exceed the 64k limit we have on records.
1619          * Conservative limit to allow for callchains and other variable fields.
1620          */
1621         if (event->read_size + event->header_size +
1622             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1623                 return false;
1624
1625         return true;
1626 }
1627
1628 static void perf_group_attach(struct perf_event *event)
1629 {
1630         struct perf_event *group_leader = event->group_leader, *pos;
1631
1632         lockdep_assert_held(&event->ctx->lock);
1633
1634         /*
1635          * We can have double attach due to group movement in perf_event_open.
1636          */
1637         if (event->attach_state & PERF_ATTACH_GROUP)
1638                 return;
1639
1640         event->attach_state |= PERF_ATTACH_GROUP;
1641
1642         if (group_leader == event)
1643                 return;
1644
1645         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1646
1647         group_leader->group_caps &= event->event_caps;
1648
1649         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1650         group_leader->nr_siblings++;
1651
1652         perf_event__header_size(group_leader);
1653
1654         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1655                 perf_event__header_size(pos);
1656 }
1657
1658 /*
1659  * Remove a event from the lists for its context.
1660  * Must be called with ctx->mutex and ctx->lock held.
1661  */
1662 static void
1663 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1664 {
1665         WARN_ON_ONCE(event->ctx != ctx);
1666         lockdep_assert_held(&ctx->lock);
1667
1668         /*
1669          * We can have double detach due to exit/hot-unplug + close.
1670          */
1671         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1672                 return;
1673
1674         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1675
1676         list_update_cgroup_event(event, ctx, false);
1677
1678         ctx->nr_events--;
1679         if (event->attr.inherit_stat)
1680                 ctx->nr_stat--;
1681
1682         list_del_rcu(&event->event_entry);
1683
1684         if (event->group_leader == event)
1685                 list_del_init(&event->group_entry);
1686
1687         update_group_times(event);
1688
1689         /*
1690          * If event was in error state, then keep it
1691          * that way, otherwise bogus counts will be
1692          * returned on read(). The only way to get out
1693          * of error state is by explicit re-enabling
1694          * of the event
1695          */
1696         if (event->state > PERF_EVENT_STATE_OFF)
1697                 event->state = PERF_EVENT_STATE_OFF;
1698
1699         ctx->generation++;
1700 }
1701
1702 static void perf_group_detach(struct perf_event *event)
1703 {
1704         struct perf_event *sibling, *tmp;
1705         struct list_head *list = NULL;
1706
1707         lockdep_assert_held(&event->ctx->lock);
1708
1709         /*
1710          * We can have double detach due to exit/hot-unplug + close.
1711          */
1712         if (!(event->attach_state & PERF_ATTACH_GROUP))
1713                 return;
1714
1715         event->attach_state &= ~PERF_ATTACH_GROUP;
1716
1717         /*
1718          * If this is a sibling, remove it from its group.
1719          */
1720         if (event->group_leader != event) {
1721                 list_del_init(&event->group_entry);
1722                 event->group_leader->nr_siblings--;
1723                 goto out;
1724         }
1725
1726         if (!list_empty(&event->group_entry))
1727                 list = &event->group_entry;
1728
1729         /*
1730          * If this was a group event with sibling events then
1731          * upgrade the siblings to singleton events by adding them
1732          * to whatever list we are on.
1733          */
1734         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1735                 if (list)
1736                         list_move_tail(&sibling->group_entry, list);
1737                 sibling->group_leader = sibling;
1738
1739                 /* Inherit group flags from the previous leader */
1740                 sibling->group_caps = event->group_caps;
1741
1742                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1743         }
1744
1745 out:
1746         perf_event__header_size(event->group_leader);
1747
1748         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1749                 perf_event__header_size(tmp);
1750 }
1751
1752 static bool is_orphaned_event(struct perf_event *event)
1753 {
1754         return event->state == PERF_EVENT_STATE_DEAD;
1755 }
1756
1757 static inline int __pmu_filter_match(struct perf_event *event)
1758 {
1759         struct pmu *pmu = event->pmu;
1760         return pmu->filter_match ? pmu->filter_match(event) : 1;
1761 }
1762
1763 /*
1764  * Check whether we should attempt to schedule an event group based on
1765  * PMU-specific filtering. An event group can consist of HW and SW events,
1766  * potentially with a SW leader, so we must check all the filters, to
1767  * determine whether a group is schedulable:
1768  */
1769 static inline int pmu_filter_match(struct perf_event *event)
1770 {
1771         struct perf_event *child;
1772
1773         if (!__pmu_filter_match(event))
1774                 return 0;
1775
1776         list_for_each_entry(child, &event->sibling_list, group_entry) {
1777                 if (!__pmu_filter_match(child))
1778                         return 0;
1779         }
1780
1781         return 1;
1782 }
1783
1784 static inline int
1785 event_filter_match(struct perf_event *event)
1786 {
1787         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1788                perf_cgroup_match(event) && pmu_filter_match(event);
1789 }
1790
1791 static void
1792 event_sched_out(struct perf_event *event,
1793                   struct perf_cpu_context *cpuctx,
1794                   struct perf_event_context *ctx)
1795 {
1796         u64 tstamp = perf_event_time(event);
1797         u64 delta;
1798
1799         WARN_ON_ONCE(event->ctx != ctx);
1800         lockdep_assert_held(&ctx->lock);
1801
1802         /*
1803          * An event which could not be activated because of
1804          * filter mismatch still needs to have its timings
1805          * maintained, otherwise bogus information is return
1806          * via read() for time_enabled, time_running:
1807          */
1808         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1809             !event_filter_match(event)) {
1810                 delta = tstamp - event->tstamp_stopped;
1811                 event->tstamp_running += delta;
1812                 event->tstamp_stopped = tstamp;
1813         }
1814
1815         if (event->state != PERF_EVENT_STATE_ACTIVE)
1816                 return;
1817
1818         perf_pmu_disable(event->pmu);
1819
1820         event->tstamp_stopped = tstamp;
1821         event->pmu->del(event, 0);
1822         event->oncpu = -1;
1823         event->state = PERF_EVENT_STATE_INACTIVE;
1824         if (event->pending_disable) {
1825                 event->pending_disable = 0;
1826                 event->state = PERF_EVENT_STATE_OFF;
1827         }
1828
1829         if (!is_software_event(event))
1830                 cpuctx->active_oncpu--;
1831         if (!--ctx->nr_active)
1832                 perf_event_ctx_deactivate(ctx);
1833         if (event->attr.freq && event->attr.sample_freq)
1834                 ctx->nr_freq--;
1835         if (event->attr.exclusive || !cpuctx->active_oncpu)
1836                 cpuctx->exclusive = 0;
1837
1838         perf_pmu_enable(event->pmu);
1839 }
1840
1841 static void
1842 group_sched_out(struct perf_event *group_event,
1843                 struct perf_cpu_context *cpuctx,
1844                 struct perf_event_context *ctx)
1845 {
1846         struct perf_event *event;
1847         int state = group_event->state;
1848
1849         perf_pmu_disable(ctx->pmu);
1850
1851         event_sched_out(group_event, cpuctx, ctx);
1852
1853         /*
1854          * Schedule out siblings (if any):
1855          */
1856         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1857                 event_sched_out(event, cpuctx, ctx);
1858
1859         perf_pmu_enable(ctx->pmu);
1860
1861         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1862                 cpuctx->exclusive = 0;
1863 }
1864
1865 #define DETACH_GROUP    0x01UL
1866
1867 /*
1868  * Cross CPU call to remove a performance event
1869  *
1870  * We disable the event on the hardware level first. After that we
1871  * remove it from the context list.
1872  */
1873 static void
1874 __perf_remove_from_context(struct perf_event *event,
1875                            struct perf_cpu_context *cpuctx,
1876                            struct perf_event_context *ctx,
1877                            void *info)
1878 {
1879         unsigned long flags = (unsigned long)info;
1880
1881         event_sched_out(event, cpuctx, ctx);
1882         if (flags & DETACH_GROUP)
1883                 perf_group_detach(event);
1884         list_del_event(event, ctx);
1885
1886         if (!ctx->nr_events && ctx->is_active) {
1887                 ctx->is_active = 0;
1888                 if (ctx->task) {
1889                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1890                         cpuctx->task_ctx = NULL;
1891                 }
1892         }
1893 }
1894
1895 /*
1896  * Remove the event from a task's (or a CPU's) list of events.
1897  *
1898  * If event->ctx is a cloned context, callers must make sure that
1899  * every task struct that event->ctx->task could possibly point to
1900  * remains valid.  This is OK when called from perf_release since
1901  * that only calls us on the top-level context, which can't be a clone.
1902  * When called from perf_event_exit_task, it's OK because the
1903  * context has been detached from its task.
1904  */
1905 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1906 {
1907         struct perf_event_context *ctx = event->ctx;
1908
1909         lockdep_assert_held(&ctx->mutex);
1910
1911         event_function_call(event, __perf_remove_from_context, (void *)flags);
1912
1913         /*
1914          * The above event_function_call() can NO-OP when it hits
1915          * TASK_TOMBSTONE. In that case we must already have been detached
1916          * from the context (by perf_event_exit_event()) but the grouping
1917          * might still be in-tact.
1918          */
1919         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1920         if ((flags & DETACH_GROUP) &&
1921             (event->attach_state & PERF_ATTACH_GROUP)) {
1922                 /*
1923                  * Since in that case we cannot possibly be scheduled, simply
1924                  * detach now.
1925                  */
1926                 raw_spin_lock_irq(&ctx->lock);
1927                 perf_group_detach(event);
1928                 raw_spin_unlock_irq(&ctx->lock);
1929         }
1930 }
1931
1932 /*
1933  * Cross CPU call to disable a performance event
1934  */
1935 static void __perf_event_disable(struct perf_event *event,
1936                                  struct perf_cpu_context *cpuctx,
1937                                  struct perf_event_context *ctx,
1938                                  void *info)
1939 {
1940         if (event->state < PERF_EVENT_STATE_INACTIVE)
1941                 return;
1942
1943         update_context_time(ctx);
1944         update_cgrp_time_from_event(event);
1945         update_group_times(event);
1946         if (event == event->group_leader)
1947                 group_sched_out(event, cpuctx, ctx);
1948         else
1949                 event_sched_out(event, cpuctx, ctx);
1950         event->state = PERF_EVENT_STATE_OFF;
1951 }
1952
1953 /*
1954  * Disable a event.
1955  *
1956  * If event->ctx is a cloned context, callers must make sure that
1957  * every task struct that event->ctx->task could possibly point to
1958  * remains valid.  This condition is satisifed when called through
1959  * perf_event_for_each_child or perf_event_for_each because they
1960  * hold the top-level event's child_mutex, so any descendant that
1961  * goes to exit will block in perf_event_exit_event().
1962  *
1963  * When called from perf_pending_event it's OK because event->ctx
1964  * is the current context on this CPU and preemption is disabled,
1965  * hence we can't get into perf_event_task_sched_out for this context.
1966  */
1967 static void _perf_event_disable(struct perf_event *event)
1968 {
1969         struct perf_event_context *ctx = event->ctx;
1970
1971         raw_spin_lock_irq(&ctx->lock);
1972         if (event->state <= PERF_EVENT_STATE_OFF) {
1973                 raw_spin_unlock_irq(&ctx->lock);
1974                 return;
1975         }
1976         raw_spin_unlock_irq(&ctx->lock);
1977
1978         event_function_call(event, __perf_event_disable, NULL);
1979 }
1980
1981 void perf_event_disable_local(struct perf_event *event)
1982 {
1983         event_function_local(event, __perf_event_disable, NULL);
1984 }
1985
1986 /*
1987  * Strictly speaking kernel users cannot create groups and therefore this
1988  * interface does not need the perf_event_ctx_lock() magic.
1989  */
1990 void perf_event_disable(struct perf_event *event)
1991 {
1992         struct perf_event_context *ctx;
1993
1994         ctx = perf_event_ctx_lock(event);
1995         _perf_event_disable(event);
1996         perf_event_ctx_unlock(event, ctx);
1997 }
1998 EXPORT_SYMBOL_GPL(perf_event_disable);
1999
2000 void perf_event_disable_inatomic(struct perf_event *event)
2001 {
2002         event->pending_disable = 1;
2003         irq_work_queue(&event->pending);
2004 }
2005
2006 static void perf_set_shadow_time(struct perf_event *event,
2007                                  struct perf_event_context *ctx,
2008                                  u64 tstamp)
2009 {
2010         /*
2011          * use the correct time source for the time snapshot
2012          *
2013          * We could get by without this by leveraging the
2014          * fact that to get to this function, the caller
2015          * has most likely already called update_context_time()
2016          * and update_cgrp_time_xx() and thus both timestamp
2017          * are identical (or very close). Given that tstamp is,
2018          * already adjusted for cgroup, we could say that:
2019          *    tstamp - ctx->timestamp
2020          * is equivalent to
2021          *    tstamp - cgrp->timestamp.
2022          *
2023          * Then, in perf_output_read(), the calculation would
2024          * work with no changes because:
2025          * - event is guaranteed scheduled in
2026          * - no scheduled out in between
2027          * - thus the timestamp would be the same
2028          *
2029          * But this is a bit hairy.
2030          *
2031          * So instead, we have an explicit cgroup call to remain
2032          * within the time time source all along. We believe it
2033          * is cleaner and simpler to understand.
2034          */
2035         if (is_cgroup_event(event))
2036                 perf_cgroup_set_shadow_time(event, tstamp);
2037         else
2038                 event->shadow_ctx_time = tstamp - ctx->timestamp;
2039 }
2040
2041 #define MAX_INTERRUPTS (~0ULL)
2042
2043 static void perf_log_throttle(struct perf_event *event, int enable);
2044 static void perf_log_itrace_start(struct perf_event *event);
2045
2046 static int
2047 event_sched_in(struct perf_event *event,
2048                  struct perf_cpu_context *cpuctx,
2049                  struct perf_event_context *ctx)
2050 {
2051         u64 tstamp = perf_event_time(event);
2052         int ret = 0;
2053
2054         lockdep_assert_held(&ctx->lock);
2055
2056         if (event->state <= PERF_EVENT_STATE_OFF)
2057                 return 0;
2058
2059         WRITE_ONCE(event->oncpu, smp_processor_id());
2060         /*
2061          * Order event::oncpu write to happen before the ACTIVE state
2062          * is visible.
2063          */
2064         smp_wmb();
2065         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2066
2067         /*
2068          * Unthrottle events, since we scheduled we might have missed several
2069          * ticks already, also for a heavily scheduling task there is little
2070          * guarantee it'll get a tick in a timely manner.
2071          */
2072         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2073                 perf_log_throttle(event, 1);
2074                 event->hw.interrupts = 0;
2075         }
2076
2077         /*
2078          * The new state must be visible before we turn it on in the hardware:
2079          */
2080         smp_wmb();
2081
2082         perf_pmu_disable(event->pmu);
2083
2084         perf_set_shadow_time(event, ctx, tstamp);
2085
2086         perf_log_itrace_start(event);
2087
2088         if (event->pmu->add(event, PERF_EF_START)) {
2089                 event->state = PERF_EVENT_STATE_INACTIVE;
2090                 event->oncpu = -1;
2091                 ret = -EAGAIN;
2092                 goto out;
2093         }
2094
2095         event->tstamp_running += tstamp - event->tstamp_stopped;
2096
2097         if (!is_software_event(event))
2098                 cpuctx->active_oncpu++;
2099         if (!ctx->nr_active++)
2100                 perf_event_ctx_activate(ctx);
2101         if (event->attr.freq && event->attr.sample_freq)
2102                 ctx->nr_freq++;
2103
2104         if (event->attr.exclusive)
2105                 cpuctx->exclusive = 1;
2106
2107 out:
2108         perf_pmu_enable(event->pmu);
2109
2110         return ret;
2111 }
2112
2113 static int
2114 group_sched_in(struct perf_event *group_event,
2115                struct perf_cpu_context *cpuctx,
2116                struct perf_event_context *ctx)
2117 {
2118         struct perf_event *event, *partial_group = NULL;
2119         struct pmu *pmu = ctx->pmu;
2120         u64 now = ctx->time;
2121         bool simulate = false;
2122
2123         if (group_event->state == PERF_EVENT_STATE_OFF)
2124                 return 0;
2125
2126         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2127
2128         if (event_sched_in(group_event, cpuctx, ctx)) {
2129                 pmu->cancel_txn(pmu);
2130                 perf_mux_hrtimer_restart(cpuctx);
2131                 return -EAGAIN;
2132         }
2133
2134         /*
2135          * Schedule in siblings as one group (if any):
2136          */
2137         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2138                 if (event_sched_in(event, cpuctx, ctx)) {
2139                         partial_group = event;
2140                         goto group_error;
2141                 }
2142         }
2143
2144         if (!pmu->commit_txn(pmu))
2145                 return 0;
2146
2147 group_error:
2148         /*
2149          * Groups can be scheduled in as one unit only, so undo any
2150          * partial group before returning:
2151          * The events up to the failed event are scheduled out normally,
2152          * tstamp_stopped will be updated.
2153          *
2154          * The failed events and the remaining siblings need to have
2155          * their timings updated as if they had gone thru event_sched_in()
2156          * and event_sched_out(). This is required to get consistent timings
2157          * across the group. This also takes care of the case where the group
2158          * could never be scheduled by ensuring tstamp_stopped is set to mark
2159          * the time the event was actually stopped, such that time delta
2160          * calculation in update_event_times() is correct.
2161          */
2162         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2163                 if (event == partial_group)
2164                         simulate = true;
2165
2166                 if (simulate) {
2167                         event->tstamp_running += now - event->tstamp_stopped;
2168                         event->tstamp_stopped = now;
2169                 } else {
2170                         event_sched_out(event, cpuctx, ctx);
2171                 }
2172         }
2173         event_sched_out(group_event, cpuctx, ctx);
2174
2175         pmu->cancel_txn(pmu);
2176
2177         perf_mux_hrtimer_restart(cpuctx);
2178
2179         return -EAGAIN;
2180 }
2181
2182 /*
2183  * Work out whether we can put this event group on the CPU now.
2184  */
2185 static int group_can_go_on(struct perf_event *event,
2186                            struct perf_cpu_context *cpuctx,
2187                            int can_add_hw)
2188 {
2189         /*
2190          * Groups consisting entirely of software events can always go on.
2191          */
2192         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2193                 return 1;
2194         /*
2195          * If an exclusive group is already on, no other hardware
2196          * events can go on.
2197          */
2198         if (cpuctx->exclusive)
2199                 return 0;
2200         /*
2201          * If this group is exclusive and there are already
2202          * events on the CPU, it can't go on.
2203          */
2204         if (event->attr.exclusive && cpuctx->active_oncpu)
2205                 return 0;
2206         /*
2207          * Otherwise, try to add it if all previous groups were able
2208          * to go on.
2209          */
2210         return can_add_hw;
2211 }
2212
2213 static void add_event_to_ctx(struct perf_event *event,
2214                                struct perf_event_context *ctx)
2215 {
2216         u64 tstamp = perf_event_time(event);
2217
2218         list_add_event(event, ctx);
2219         perf_group_attach(event);
2220         event->tstamp_enabled = tstamp;
2221         event->tstamp_running = tstamp;
2222         event->tstamp_stopped = tstamp;
2223 }
2224
2225 static void ctx_sched_out(struct perf_event_context *ctx,
2226                           struct perf_cpu_context *cpuctx,
2227                           enum event_type_t event_type);
2228 static void
2229 ctx_sched_in(struct perf_event_context *ctx,
2230              struct perf_cpu_context *cpuctx,
2231              enum event_type_t event_type,
2232              struct task_struct *task);
2233
2234 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2235                                struct perf_event_context *ctx,
2236                                enum event_type_t event_type)
2237 {
2238         if (!cpuctx->task_ctx)
2239                 return;
2240
2241         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2242                 return;
2243
2244         ctx_sched_out(ctx, cpuctx, event_type);
2245 }
2246
2247 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2248                                 struct perf_event_context *ctx,
2249                                 struct task_struct *task)
2250 {
2251         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2252         if (ctx)
2253                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2254         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2255         if (ctx)
2256                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2257 }
2258
2259 /*
2260  * We want to maintain the following priority of scheduling:
2261  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2262  *  - task pinned (EVENT_PINNED)
2263  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2264  *  - task flexible (EVENT_FLEXIBLE).
2265  *
2266  * In order to avoid unscheduling and scheduling back in everything every
2267  * time an event is added, only do it for the groups of equal priority and
2268  * below.
2269  *
2270  * This can be called after a batch operation on task events, in which case
2271  * event_type is a bit mask of the types of events involved. For CPU events,
2272  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2273  */
2274 static void ctx_resched(struct perf_cpu_context *cpuctx,
2275                         struct perf_event_context *task_ctx,
2276                         enum event_type_t event_type)
2277 {
2278         enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2279         bool cpu_event = !!(event_type & EVENT_CPU);
2280
2281         /*
2282          * If pinned groups are involved, flexible groups also need to be
2283          * scheduled out.
2284          */
2285         if (event_type & EVENT_PINNED)
2286                 event_type |= EVENT_FLEXIBLE;
2287
2288         perf_pmu_disable(cpuctx->ctx.pmu);
2289         if (task_ctx)
2290                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2291
2292         /*
2293          * Decide which cpu ctx groups to schedule out based on the types
2294          * of events that caused rescheduling:
2295          *  - EVENT_CPU: schedule out corresponding groups;
2296          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2297          *  - otherwise, do nothing more.
2298          */
2299         if (cpu_event)
2300                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2301         else if (ctx_event_type & EVENT_PINNED)
2302                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2303
2304         perf_event_sched_in(cpuctx, task_ctx, current);
2305         perf_pmu_enable(cpuctx->ctx.pmu);
2306 }
2307
2308 /*
2309  * Cross CPU call to install and enable a performance event
2310  *
2311  * Very similar to remote_function() + event_function() but cannot assume that
2312  * things like ctx->is_active and cpuctx->task_ctx are set.
2313  */
2314 static int  __perf_install_in_context(void *info)
2315 {
2316         struct perf_event *event = info;
2317         struct perf_event_context *ctx = event->ctx;
2318         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2319         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2320         bool reprogram = true;
2321         int ret = 0;
2322
2323         raw_spin_lock(&cpuctx->ctx.lock);
2324         if (ctx->task) {
2325                 raw_spin_lock(&ctx->lock);
2326                 task_ctx = ctx;
2327
2328                 reprogram = (ctx->task == current);
2329
2330                 /*
2331                  * If the task is running, it must be running on this CPU,
2332                  * otherwise we cannot reprogram things.
2333                  *
2334                  * If its not running, we don't care, ctx->lock will
2335                  * serialize against it becoming runnable.
2336                  */
2337                 if (task_curr(ctx->task) && !reprogram) {
2338                         ret = -ESRCH;
2339                         goto unlock;
2340                 }
2341
2342                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2343         } else if (task_ctx) {
2344                 raw_spin_lock(&task_ctx->lock);
2345         }
2346
2347         if (reprogram) {
2348                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2349                 add_event_to_ctx(event, ctx);
2350                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2351         } else {
2352                 add_event_to_ctx(event, ctx);
2353         }
2354
2355 unlock:
2356         perf_ctx_unlock(cpuctx, task_ctx);
2357
2358         return ret;
2359 }
2360
2361 /*
2362  * Attach a performance event to a context.
2363  *
2364  * Very similar to event_function_call, see comment there.
2365  */
2366 static void
2367 perf_install_in_context(struct perf_event_context *ctx,
2368                         struct perf_event *event,
2369                         int cpu)
2370 {
2371         struct task_struct *task = READ_ONCE(ctx->task);
2372
2373         lockdep_assert_held(&ctx->mutex);
2374
2375         if (event->cpu != -1)
2376                 event->cpu = cpu;
2377
2378         /*
2379          * Ensures that if we can observe event->ctx, both the event and ctx
2380          * will be 'complete'. See perf_iterate_sb_cpu().
2381          */
2382         smp_store_release(&event->ctx, ctx);
2383
2384         if (!task) {
2385                 cpu_function_call(cpu, __perf_install_in_context, event);
2386                 return;
2387         }
2388
2389         /*
2390          * Should not happen, we validate the ctx is still alive before calling.
2391          */
2392         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2393                 return;
2394
2395         /*
2396          * Installing events is tricky because we cannot rely on ctx->is_active
2397          * to be set in case this is the nr_events 0 -> 1 transition.
2398          *
2399          * Instead we use task_curr(), which tells us if the task is running.
2400          * However, since we use task_curr() outside of rq::lock, we can race
2401          * against the actual state. This means the result can be wrong.
2402          *
2403          * If we get a false positive, we retry, this is harmless.
2404          *
2405          * If we get a false negative, things are complicated. If we are after
2406          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2407          * value must be correct. If we're before, it doesn't matter since
2408          * perf_event_context_sched_in() will program the counter.
2409          *
2410          * However, this hinges on the remote context switch having observed
2411          * our task->perf_event_ctxp[] store, such that it will in fact take
2412          * ctx::lock in perf_event_context_sched_in().
2413          *
2414          * We do this by task_function_call(), if the IPI fails to hit the task
2415          * we know any future context switch of task must see the
2416          * perf_event_ctpx[] store.
2417          */
2418
2419         /*
2420          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2421          * task_cpu() load, such that if the IPI then does not find the task
2422          * running, a future context switch of that task must observe the
2423          * store.
2424          */
2425         smp_mb();
2426 again:
2427         if (!task_function_call(task, __perf_install_in_context, event))
2428                 return;
2429
2430         raw_spin_lock_irq(&ctx->lock);
2431         task = ctx->task;
2432         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2433                 /*
2434                  * Cannot happen because we already checked above (which also
2435                  * cannot happen), and we hold ctx->mutex, which serializes us
2436                  * against perf_event_exit_task_context().
2437                  */
2438                 raw_spin_unlock_irq(&ctx->lock);
2439                 return;
2440         }
2441         /*
2442          * If the task is not running, ctx->lock will avoid it becoming so,
2443          * thus we can safely install the event.
2444          */
2445         if (task_curr(task)) {
2446                 raw_spin_unlock_irq(&ctx->lock);
2447                 goto again;
2448         }
2449         add_event_to_ctx(event, ctx);
2450         raw_spin_unlock_irq(&ctx->lock);
2451 }
2452
2453 /*
2454  * Put a event into inactive state and update time fields.
2455  * Enabling the leader of a group effectively enables all
2456  * the group members that aren't explicitly disabled, so we
2457  * have to update their ->tstamp_enabled also.
2458  * Note: this works for group members as well as group leaders
2459  * since the non-leader members' sibling_lists will be empty.
2460  */
2461 static void __perf_event_mark_enabled(struct perf_event *event)
2462 {
2463         struct perf_event *sub;
2464         u64 tstamp = perf_event_time(event);
2465
2466         event->state = PERF_EVENT_STATE_INACTIVE;
2467         event->tstamp_enabled = tstamp - event->total_time_enabled;
2468         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2469                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2470                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2471         }
2472 }
2473
2474 /*
2475  * Cross CPU call to enable a performance event
2476  */
2477 static void __perf_event_enable(struct perf_event *event,
2478                                 struct perf_cpu_context *cpuctx,
2479                                 struct perf_event_context *ctx,
2480                                 void *info)
2481 {
2482         struct perf_event *leader = event->group_leader;
2483         struct perf_event_context *task_ctx;
2484
2485         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2486             event->state <= PERF_EVENT_STATE_ERROR)
2487                 return;
2488
2489         if (ctx->is_active)
2490                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2491
2492         __perf_event_mark_enabled(event);
2493
2494         if (!ctx->is_active)
2495                 return;
2496
2497         if (!event_filter_match(event)) {
2498                 if (is_cgroup_event(event))
2499                         perf_cgroup_defer_enabled(event);
2500                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2501                 return;
2502         }
2503
2504         /*
2505          * If the event is in a group and isn't the group leader,
2506          * then don't put it on unless the group is on.
2507          */
2508         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2509                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2510                 return;
2511         }
2512
2513         task_ctx = cpuctx->task_ctx;
2514         if (ctx->task)
2515                 WARN_ON_ONCE(task_ctx != ctx);
2516
2517         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2518 }
2519
2520 /*
2521  * Enable a event.
2522  *
2523  * If event->ctx is a cloned context, callers must make sure that
2524  * every task struct that event->ctx->task could possibly point to
2525  * remains valid.  This condition is satisfied when called through
2526  * perf_event_for_each_child or perf_event_for_each as described
2527  * for perf_event_disable.
2528  */
2529 static void _perf_event_enable(struct perf_event *event)
2530 {
2531         struct perf_event_context *ctx = event->ctx;
2532
2533         raw_spin_lock_irq(&ctx->lock);
2534         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2535             event->state <  PERF_EVENT_STATE_ERROR) {
2536                 raw_spin_unlock_irq(&ctx->lock);
2537                 return;
2538         }
2539
2540         /*
2541          * If the event is in error state, clear that first.
2542          *
2543          * That way, if we see the event in error state below, we know that it
2544          * has gone back into error state, as distinct from the task having
2545          * been scheduled away before the cross-call arrived.
2546          */
2547         if (event->state == PERF_EVENT_STATE_ERROR)
2548                 event->state = PERF_EVENT_STATE_OFF;
2549         raw_spin_unlock_irq(&ctx->lock);
2550
2551         event_function_call(event, __perf_event_enable, NULL);
2552 }
2553
2554 /*
2555  * See perf_event_disable();
2556  */
2557 void perf_event_enable(struct perf_event *event)
2558 {
2559         struct perf_event_context *ctx;
2560
2561         ctx = perf_event_ctx_lock(event);
2562         _perf_event_enable(event);
2563         perf_event_ctx_unlock(event, ctx);
2564 }
2565 EXPORT_SYMBOL_GPL(perf_event_enable);
2566
2567 struct stop_event_data {
2568         struct perf_event       *event;
2569         unsigned int            restart;
2570 };
2571
2572 static int __perf_event_stop(void *info)
2573 {
2574         struct stop_event_data *sd = info;
2575         struct perf_event *event = sd->event;
2576
2577         /* if it's already INACTIVE, do nothing */
2578         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2579                 return 0;
2580
2581         /* matches smp_wmb() in event_sched_in() */
2582         smp_rmb();
2583
2584         /*
2585          * There is a window with interrupts enabled before we get here,
2586          * so we need to check again lest we try to stop another CPU's event.
2587          */
2588         if (READ_ONCE(event->oncpu) != smp_processor_id())
2589                 return -EAGAIN;
2590
2591         event->pmu->stop(event, PERF_EF_UPDATE);
2592
2593         /*
2594          * May race with the actual stop (through perf_pmu_output_stop()),
2595          * but it is only used for events with AUX ring buffer, and such
2596          * events will refuse to restart because of rb::aux_mmap_count==0,
2597          * see comments in perf_aux_output_begin().
2598          *
2599          * Since this is happening on a event-local CPU, no trace is lost
2600          * while restarting.
2601          */
2602         if (sd->restart)
2603                 event->pmu->start(event, 0);
2604
2605         return 0;
2606 }
2607
2608 static int perf_event_stop(struct perf_event *event, int restart)
2609 {
2610         struct stop_event_data sd = {
2611                 .event          = event,
2612                 .restart        = restart,
2613         };
2614         int ret = 0;
2615
2616         do {
2617                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2618                         return 0;
2619
2620                 /* matches smp_wmb() in event_sched_in() */
2621                 smp_rmb();
2622
2623                 /*
2624                  * We only want to restart ACTIVE events, so if the event goes
2625                  * inactive here (event->oncpu==-1), there's nothing more to do;
2626                  * fall through with ret==-ENXIO.
2627                  */
2628                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2629                                         __perf_event_stop, &sd);
2630         } while (ret == -EAGAIN);
2631
2632         return ret;
2633 }
2634
2635 /*
2636  * In order to contain the amount of racy and tricky in the address filter
2637  * configuration management, it is a two part process:
2638  *
2639  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2640  *      we update the addresses of corresponding vmas in
2641  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2642  * (p2) when an event is scheduled in (pmu::add), it calls
2643  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2644  *      if the generation has changed since the previous call.
2645  *
2646  * If (p1) happens while the event is active, we restart it to force (p2).
2647  *
2648  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2649  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2650  *     ioctl;
2651  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2652  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2653  *     for reading;
2654  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2655  *     of exec.
2656  */
2657 void perf_event_addr_filters_sync(struct perf_event *event)
2658 {
2659         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2660
2661         if (!has_addr_filter(event))
2662                 return;
2663
2664         raw_spin_lock(&ifh->lock);
2665         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2666                 event->pmu->addr_filters_sync(event);
2667                 event->hw.addr_filters_gen = event->addr_filters_gen;
2668         }
2669         raw_spin_unlock(&ifh->lock);
2670 }
2671 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2672
2673 static int _perf_event_refresh(struct perf_event *event, int refresh)
2674 {
2675         /*
2676          * not supported on inherited events
2677          */
2678         if (event->attr.inherit || !is_sampling_event(event))
2679                 return -EINVAL;
2680
2681         atomic_add(refresh, &event->event_limit);
2682         _perf_event_enable(event);
2683
2684         return 0;
2685 }
2686
2687 /*
2688  * See perf_event_disable()
2689  */
2690 int perf_event_refresh(struct perf_event *event, int refresh)
2691 {
2692         struct perf_event_context *ctx;
2693         int ret;
2694
2695         ctx = perf_event_ctx_lock(event);
2696         ret = _perf_event_refresh(event, refresh);
2697         perf_event_ctx_unlock(event, ctx);
2698
2699         return ret;
2700 }
2701 EXPORT_SYMBOL_GPL(perf_event_refresh);
2702
2703 static void ctx_sched_out(struct perf_event_context *ctx,
2704                           struct perf_cpu_context *cpuctx,
2705                           enum event_type_t event_type)
2706 {
2707         int is_active = ctx->is_active;
2708         struct perf_event *event;
2709
2710         lockdep_assert_held(&ctx->lock);
2711
2712         if (likely(!ctx->nr_events)) {
2713                 /*
2714                  * See __perf_remove_from_context().
2715                  */
2716                 WARN_ON_ONCE(ctx->is_active);
2717                 if (ctx->task)
2718                         WARN_ON_ONCE(cpuctx->task_ctx);
2719                 return;
2720         }
2721
2722         ctx->is_active &= ~event_type;
2723         if (!(ctx->is_active & EVENT_ALL))
2724                 ctx->is_active = 0;
2725
2726         if (ctx->task) {
2727                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2728                 if (!ctx->is_active)
2729                         cpuctx->task_ctx = NULL;
2730         }
2731
2732         /*
2733          * Always update time if it was set; not only when it changes.
2734          * Otherwise we can 'forget' to update time for any but the last
2735          * context we sched out. For example:
2736          *
2737          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2738          *   ctx_sched_out(.event_type = EVENT_PINNED)
2739          *
2740          * would only update time for the pinned events.
2741          */
2742         if (is_active & EVENT_TIME) {
2743                 /* update (and stop) ctx time */
2744                 update_context_time(ctx);
2745                 update_cgrp_time_from_cpuctx(cpuctx);
2746         }
2747
2748         is_active ^= ctx->is_active; /* changed bits */
2749
2750         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2751                 return;
2752
2753         perf_pmu_disable(ctx->pmu);
2754         if (is_active & EVENT_PINNED) {
2755                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2756                         group_sched_out(event, cpuctx, ctx);
2757         }
2758
2759         if (is_active & EVENT_FLEXIBLE) {
2760                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2761                         group_sched_out(event, cpuctx, ctx);
2762         }
2763         perf_pmu_enable(ctx->pmu);
2764 }
2765
2766 /*
2767  * Test whether two contexts are equivalent, i.e. whether they have both been
2768  * cloned from the same version of the same context.
2769  *
2770  * Equivalence is measured using a generation number in the context that is
2771  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2772  * and list_del_event().
2773  */
2774 static int context_equiv(struct perf_event_context *ctx1,
2775                          struct perf_event_context *ctx2)
2776 {
2777         lockdep_assert_held(&ctx1->lock);
2778         lockdep_assert_held(&ctx2->lock);
2779
2780         /* Pinning disables the swap optimization */
2781         if (ctx1->pin_count || ctx2->pin_count)
2782                 return 0;
2783
2784         /* If ctx1 is the parent of ctx2 */
2785         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2786                 return 1;
2787
2788         /* If ctx2 is the parent of ctx1 */
2789         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2790                 return 1;
2791
2792         /*
2793          * If ctx1 and ctx2 have the same parent; we flatten the parent
2794          * hierarchy, see perf_event_init_context().
2795          */
2796         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2797                         ctx1->parent_gen == ctx2->parent_gen)
2798                 return 1;
2799
2800         /* Unmatched */
2801         return 0;
2802 }
2803
2804 static void __perf_event_sync_stat(struct perf_event *event,
2805                                      struct perf_event *next_event)
2806 {
2807         u64 value;
2808
2809         if (!event->attr.inherit_stat)
2810                 return;
2811
2812         /*
2813          * Update the event value, we cannot use perf_event_read()
2814          * because we're in the middle of a context switch and have IRQs
2815          * disabled, which upsets smp_call_function_single(), however
2816          * we know the event must be on the current CPU, therefore we
2817          * don't need to use it.
2818          */
2819         switch (event->state) {
2820         case PERF_EVENT_STATE_ACTIVE:
2821                 event->pmu->read(event);
2822                 /* fall-through */
2823
2824         case PERF_EVENT_STATE_INACTIVE:
2825                 update_event_times(event);
2826                 break;
2827
2828         default:
2829                 break;
2830         }
2831
2832         /*
2833          * In order to keep per-task stats reliable we need to flip the event
2834          * values when we flip the contexts.
2835          */
2836         value = local64_read(&next_event->count);
2837         value = local64_xchg(&event->count, value);
2838         local64_set(&next_event->count, value);
2839
2840         swap(event->total_time_enabled, next_event->total_time_enabled);
2841         swap(event->total_time_running, next_event->total_time_running);
2842
2843         /*
2844          * Since we swizzled the values, update the user visible data too.
2845          */
2846         perf_event_update_userpage(event);
2847         perf_event_update_userpage(next_event);
2848 }
2849
2850 static void perf_event_sync_stat(struct perf_event_context *ctx,
2851                                    struct perf_event_context *next_ctx)
2852 {
2853         struct perf_event *event, *next_event;
2854
2855         if (!ctx->nr_stat)
2856                 return;
2857
2858         update_context_time(ctx);
2859
2860         event = list_first_entry(&ctx->event_list,
2861                                    struct perf_event, event_entry);
2862
2863         next_event = list_first_entry(&next_ctx->event_list,
2864                                         struct perf_event, event_entry);
2865
2866         while (&event->event_entry != &ctx->event_list &&
2867                &next_event->event_entry != &next_ctx->event_list) {
2868
2869                 __perf_event_sync_stat(event, next_event);
2870
2871                 event = list_next_entry(event, event_entry);
2872                 next_event = list_next_entry(next_event, event_entry);
2873         }
2874 }
2875
2876 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2877                                          struct task_struct *next)
2878 {
2879         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2880         struct perf_event_context *next_ctx;
2881         struct perf_event_context *parent, *next_parent;
2882         struct perf_cpu_context *cpuctx;
2883         int do_switch = 1;
2884
2885         if (likely(!ctx))
2886                 return;
2887
2888         cpuctx = __get_cpu_context(ctx);
2889         if (!cpuctx->task_ctx)
2890                 return;
2891
2892         rcu_read_lock();
2893         next_ctx = next->perf_event_ctxp[ctxn];
2894         if (!next_ctx)
2895                 goto unlock;
2896
2897         parent = rcu_dereference(ctx->parent_ctx);
2898         next_parent = rcu_dereference(next_ctx->parent_ctx);
2899
2900         /* If neither context have a parent context; they cannot be clones. */
2901         if (!parent && !next_parent)
2902                 goto unlock;
2903
2904         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2905                 /*
2906                  * Looks like the two contexts are clones, so we might be
2907                  * able to optimize the context switch.  We lock both
2908                  * contexts and check that they are clones under the
2909                  * lock (including re-checking that neither has been
2910                  * uncloned in the meantime).  It doesn't matter which
2911                  * order we take the locks because no other cpu could
2912                  * be trying to lock both of these tasks.
2913                  */
2914                 raw_spin_lock(&ctx->lock);
2915                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2916                 if (context_equiv(ctx, next_ctx)) {
2917                         WRITE_ONCE(ctx->task, next);
2918                         WRITE_ONCE(next_ctx->task, task);
2919
2920                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2921
2922                         /*
2923                          * RCU_INIT_POINTER here is safe because we've not
2924                          * modified the ctx and the above modification of
2925                          * ctx->task and ctx->task_ctx_data are immaterial
2926                          * since those values are always verified under
2927                          * ctx->lock which we're now holding.
2928                          */
2929                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2930                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2931
2932                         do_switch = 0;
2933
2934                         perf_event_sync_stat(ctx, next_ctx);
2935                 }
2936                 raw_spin_unlock(&next_ctx->lock);
2937                 raw_spin_unlock(&ctx->lock);
2938         }
2939 unlock:
2940         rcu_read_unlock();
2941
2942         if (do_switch) {
2943                 raw_spin_lock(&ctx->lock);
2944                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2945                 raw_spin_unlock(&ctx->lock);
2946         }
2947 }
2948
2949 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2950
2951 void perf_sched_cb_dec(struct pmu *pmu)
2952 {
2953         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2954
2955         this_cpu_dec(perf_sched_cb_usages);
2956
2957         if (!--cpuctx->sched_cb_usage)
2958                 list_del(&cpuctx->sched_cb_entry);
2959 }
2960
2961
2962 void perf_sched_cb_inc(struct pmu *pmu)
2963 {
2964         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2965
2966         if (!cpuctx->sched_cb_usage++)
2967                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2968
2969         this_cpu_inc(perf_sched_cb_usages);
2970 }
2971
2972 /*
2973  * This function provides the context switch callback to the lower code
2974  * layer. It is invoked ONLY when the context switch callback is enabled.
2975  *
2976  * This callback is relevant even to per-cpu events; for example multi event
2977  * PEBS requires this to provide PID/TID information. This requires we flush
2978  * all queued PEBS records before we context switch to a new task.
2979  */
2980 static void perf_pmu_sched_task(struct task_struct *prev,
2981                                 struct task_struct *next,
2982                                 bool sched_in)
2983 {
2984         struct perf_cpu_context *cpuctx;
2985         struct pmu *pmu;
2986
2987         if (prev == next)
2988                 return;
2989
2990         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2991                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2992
2993                 if (WARN_ON_ONCE(!pmu->sched_task))
2994                         continue;
2995
2996                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2997                 perf_pmu_disable(pmu);
2998
2999                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3000
3001                 perf_pmu_enable(pmu);
3002                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3003         }
3004 }
3005
3006 static void perf_event_switch(struct task_struct *task,
3007                               struct task_struct *next_prev, bool sched_in);
3008
3009 #define for_each_task_context_nr(ctxn)                                  \
3010         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3011
3012 /*
3013  * Called from scheduler to remove the events of the current task,
3014  * with interrupts disabled.
3015  *
3016  * We stop each event and update the event value in event->count.
3017  *
3018  * This does not protect us against NMI, but disable()
3019  * sets the disabled bit in the control field of event _before_
3020  * accessing the event control register. If a NMI hits, then it will
3021  * not restart the event.
3022  */
3023 void __perf_event_task_sched_out(struct task_struct *task,
3024                                  struct task_struct *next)
3025 {
3026         int ctxn;
3027
3028         if (__this_cpu_read(perf_sched_cb_usages))
3029                 perf_pmu_sched_task(task, next, false);
3030
3031         if (atomic_read(&nr_switch_events))
3032                 perf_event_switch(task, next, false);
3033
3034         for_each_task_context_nr(ctxn)
3035                 perf_event_context_sched_out(task, ctxn, next);
3036
3037         /*
3038          * if cgroup events exist on this CPU, then we need
3039          * to check if we have to switch out PMU state.
3040          * cgroup event are system-wide mode only
3041          */
3042         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3043                 perf_cgroup_sched_out(task, next);
3044 }
3045
3046 /*
3047  * Called with IRQs disabled
3048  */
3049 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3050                               enum event_type_t event_type)
3051 {
3052         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3053 }
3054
3055 static void
3056 ctx_pinned_sched_in(struct perf_event_context *ctx,
3057                     struct perf_cpu_context *cpuctx)
3058 {
3059         struct perf_event *event;
3060
3061         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3062                 if (event->state <= PERF_EVENT_STATE_OFF)
3063                         continue;
3064                 if (!event_filter_match(event))
3065                         continue;
3066
3067                 /* may need to reset tstamp_enabled */
3068                 if (is_cgroup_event(event))
3069                         perf_cgroup_mark_enabled(event, ctx);
3070
3071                 if (group_can_go_on(event, cpuctx, 1))
3072                         group_sched_in(event, cpuctx, ctx);
3073
3074                 /*
3075                  * If this pinned group hasn't been scheduled,
3076                  * put it in error state.
3077                  */
3078                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3079                         update_group_times(event);
3080                         event->state = PERF_EVENT_STATE_ERROR;
3081                 }
3082         }
3083 }
3084
3085 static void
3086 ctx_flexible_sched_in(struct perf_event_context *ctx,
3087                       struct perf_cpu_context *cpuctx)
3088 {
3089         struct perf_event *event;
3090         int can_add_hw = 1;
3091
3092         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3093                 /* Ignore events in OFF or ERROR state */
3094                 if (event->state <= PERF_EVENT_STATE_OFF)
3095                         continue;
3096                 /*
3097                  * Listen to the 'cpu' scheduling filter constraint
3098                  * of events:
3099                  */
3100                 if (!event_filter_match(event))
3101                         continue;
3102
3103                 /* may need to reset tstamp_enabled */
3104                 if (is_cgroup_event(event))
3105                         perf_cgroup_mark_enabled(event, ctx);
3106
3107                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3108                         if (group_sched_in(event, cpuctx, ctx))
3109                                 can_add_hw = 0;
3110                 }
3111         }
3112 }
3113
3114 static void
3115 ctx_sched_in(struct perf_event_context *ctx,
3116              struct perf_cpu_context *cpuctx,
3117              enum event_type_t event_type,
3118              struct task_struct *task)
3119 {
3120         int is_active = ctx->is_active;
3121         u64 now;
3122
3123         lockdep_assert_held(&ctx->lock);
3124
3125         if (likely(!ctx->nr_events))
3126                 return;
3127
3128         ctx->is_active |= (event_type | EVENT_TIME);
3129         if (ctx->task) {
3130                 if (!is_active)
3131                         cpuctx->task_ctx = ctx;
3132                 else
3133                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3134         }
3135
3136         is_active ^= ctx->is_active; /* changed bits */
3137
3138         if (is_active & EVENT_TIME) {
3139                 /* start ctx time */
3140                 now = perf_clock();
3141                 ctx->timestamp = now;
3142                 perf_cgroup_set_timestamp(task, ctx);
3143         }
3144
3145         /*
3146          * First go through the list and put on any pinned groups
3147          * in order to give them the best chance of going on.
3148          */
3149         if (is_active & EVENT_PINNED)
3150                 ctx_pinned_sched_in(ctx, cpuctx);
3151
3152         /* Then walk through the lower prio flexible groups */
3153         if (is_active & EVENT_FLEXIBLE)
3154                 ctx_flexible_sched_in(ctx, cpuctx);
3155 }
3156
3157 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3158                              enum event_type_t event_type,
3159                              struct task_struct *task)
3160 {
3161         struct perf_event_context *ctx = &cpuctx->ctx;
3162
3163         ctx_sched_in(ctx, cpuctx, event_type, task);
3164 }
3165
3166 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3167                                         struct task_struct *task)
3168 {
3169         struct perf_cpu_context *cpuctx;
3170
3171         cpuctx = __get_cpu_context(ctx);
3172         if (cpuctx->task_ctx == ctx)
3173                 return;
3174
3175         perf_ctx_lock(cpuctx, ctx);
3176         perf_pmu_disable(ctx->pmu);
3177         /*
3178          * We want to keep the following priority order:
3179          * cpu pinned (that don't need to move), task pinned,
3180          * cpu flexible, task flexible.
3181          *
3182          * However, if task's ctx is not carrying any pinned
3183          * events, no need to flip the cpuctx's events around.
3184          */
3185         if (!list_empty(&ctx->pinned_groups))
3186                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3187         perf_event_sched_in(cpuctx, ctx, task);
3188         perf_pmu_enable(ctx->pmu);
3189         perf_ctx_unlock(cpuctx, ctx);
3190 }
3191
3192 /*
3193  * Called from scheduler to add the events of the current task
3194  * with interrupts disabled.
3195  *
3196  * We restore the event value and then enable it.
3197  *
3198  * This does not protect us against NMI, but enable()
3199  * sets the enabled bit in the control field of event _before_
3200  * accessing the event control register. If a NMI hits, then it will
3201  * keep the event running.
3202  */
3203 void __perf_event_task_sched_in(struct task_struct *prev,
3204                                 struct task_struct *task)
3205 {
3206         struct perf_event_context *ctx;
3207         int ctxn;
3208
3209         /*
3210          * If cgroup events exist on this CPU, then we need to check if we have
3211          * to switch in PMU state; cgroup event are system-wide mode only.
3212          *
3213          * Since cgroup events are CPU events, we must schedule these in before
3214          * we schedule in the task events.
3215          */
3216         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3217                 perf_cgroup_sched_in(prev, task);
3218
3219         for_each_task_context_nr(ctxn) {
3220                 ctx = task->perf_event_ctxp[ctxn];
3221                 if (likely(!ctx))
3222                         continue;
3223
3224                 perf_event_context_sched_in(ctx, task);
3225         }
3226
3227         if (atomic_read(&nr_switch_events))
3228                 perf_event_switch(task, prev, true);
3229
3230         if (__this_cpu_read(perf_sched_cb_usages))
3231                 perf_pmu_sched_task(prev, task, true);
3232 }
3233
3234 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3235 {
3236         u64 frequency = event->attr.sample_freq;
3237         u64 sec = NSEC_PER_SEC;
3238         u64 divisor, dividend;
3239
3240         int count_fls, nsec_fls, frequency_fls, sec_fls;
3241
3242         count_fls = fls64(count);
3243         nsec_fls = fls64(nsec);
3244         frequency_fls = fls64(frequency);
3245         sec_fls = 30;
3246
3247         /*
3248          * We got @count in @nsec, with a target of sample_freq HZ
3249          * the target period becomes:
3250          *
3251          *             @count * 10^9
3252          * period = -------------------
3253          *          @nsec * sample_freq
3254          *
3255          */
3256
3257         /*
3258          * Reduce accuracy by one bit such that @a and @b converge
3259          * to a similar magnitude.
3260          */
3261 #define REDUCE_FLS(a, b)                \
3262 do {                                    \
3263         if (a##_fls > b##_fls) {        \
3264                 a >>= 1;                \
3265                 a##_fls--;              \
3266         } else {                        \
3267                 b >>= 1;                \
3268                 b##_fls--;              \
3269         }                               \
3270 } while (0)
3271
3272         /*
3273          * Reduce accuracy until either term fits in a u64, then proceed with
3274          * the other, so that finally we can do a u64/u64 division.
3275          */
3276         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3277                 REDUCE_FLS(nsec, frequency);
3278                 REDUCE_FLS(sec, count);
3279         }
3280
3281         if (count_fls + sec_fls > 64) {
3282                 divisor = nsec * frequency;
3283
3284                 while (count_fls + sec_fls > 64) {
3285                         REDUCE_FLS(count, sec);
3286                         divisor >>= 1;
3287                 }
3288
3289                 dividend = count * sec;
3290         } else {
3291                 dividend = count * sec;
3292
3293                 while (nsec_fls + frequency_fls > 64) {
3294                         REDUCE_FLS(nsec, frequency);
3295                         dividend >>= 1;
3296                 }
3297
3298                 divisor = nsec * frequency;
3299         }
3300
3301         if (!divisor)
3302                 return dividend;
3303
3304         return div64_u64(dividend, divisor);
3305 }
3306
3307 static DEFINE_PER_CPU(int, perf_throttled_count);
3308 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3309
3310 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3311 {
3312         struct hw_perf_event *hwc = &event->hw;
3313         s64 period, sample_period;
3314         s64 delta;
3315
3316         period = perf_calculate_period(event, nsec, count);
3317
3318         delta = (s64)(period - hwc->sample_period);
3319         delta = (delta + 7) / 8; /* low pass filter */
3320
3321         sample_period = hwc->sample_period + delta;
3322
3323         if (!sample_period)
3324                 sample_period = 1;
3325
3326         hwc->sample_period = sample_period;
3327
3328         if (local64_read(&hwc->period_left) > 8*sample_period) {
3329                 if (disable)
3330                         event->pmu->stop(event, PERF_EF_UPDATE);
3331
3332                 local64_set(&hwc->period_left, 0);
3333
3334                 if (disable)
3335                         event->pmu->start(event, PERF_EF_RELOAD);
3336         }
3337 }
3338
3339 /*
3340  * combine freq adjustment with unthrottling to avoid two passes over the
3341  * events. At the same time, make sure, having freq events does not change
3342  * the rate of unthrottling as that would introduce bias.
3343  */
3344 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3345                                            int needs_unthr)
3346 {
3347         struct perf_event *event;
3348         struct hw_perf_event *hwc;
3349         u64 now, period = TICK_NSEC;
3350         s64 delta;
3351
3352         /*
3353          * only need to iterate over all events iff:
3354          * - context have events in frequency mode (needs freq adjust)
3355          * - there are events to unthrottle on this cpu
3356          */
3357         if (!(ctx->nr_freq || needs_unthr))
3358                 return;
3359
3360         raw_spin_lock(&ctx->lock);
3361         perf_pmu_disable(ctx->pmu);
3362
3363         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3364                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3365                         continue;
3366
3367                 if (!event_filter_match(event))
3368                         continue;
3369
3370                 perf_pmu_disable(event->pmu);
3371
3372                 hwc = &event->hw;
3373
3374                 if (hwc->interrupts == MAX_INTERRUPTS) {
3375                         hwc->interrupts = 0;
3376                         perf_log_throttle(event, 1);
3377                         event->pmu->start(event, 0);
3378                 }
3379
3380                 if (!event->attr.freq || !event->attr.sample_freq)
3381                         goto next;
3382
3383                 /*
3384                  * stop the event and update event->count
3385                  */
3386                 event->pmu->stop(event, PERF_EF_UPDATE);
3387
3388                 now = local64_read(&event->count);
3389                 delta = now - hwc->freq_count_stamp;
3390                 hwc->freq_count_stamp = now;
3391
3392                 /*
3393                  * restart the event
3394                  * reload only if value has changed
3395                  * we have stopped the event so tell that
3396                  * to perf_adjust_period() to avoid stopping it
3397                  * twice.
3398                  */
3399                 if (delta > 0)
3400                         perf_adjust_period(event, period, delta, false);
3401
3402                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3403         next:
3404                 perf_pmu_enable(event->pmu);
3405         }
3406
3407         perf_pmu_enable(ctx->pmu);
3408         raw_spin_unlock(&ctx->lock);
3409 }
3410
3411 /*
3412  * Round-robin a context's events:
3413  */
3414 static void rotate_ctx(struct perf_event_context *ctx)
3415 {
3416         /*
3417          * Rotate the first entry last of non-pinned groups. Rotation might be
3418          * disabled by the inheritance code.
3419          */
3420         if (!ctx->rotate_disable)
3421                 list_rotate_left(&ctx->flexible_groups);
3422 }
3423
3424 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3425 {
3426         struct perf_event_context *ctx = NULL;
3427         int rotate = 0;
3428
3429         if (cpuctx->ctx.nr_events) {
3430                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3431                         rotate = 1;
3432         }
3433
3434         ctx = cpuctx->task_ctx;
3435         if (ctx && ctx->nr_events) {
3436                 if (ctx->nr_events != ctx->nr_active)
3437                         rotate = 1;
3438         }
3439
3440         if (!rotate)
3441                 goto done;
3442
3443         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3444         perf_pmu_disable(cpuctx->ctx.pmu);
3445
3446         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3447         if (ctx)
3448                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3449
3450         rotate_ctx(&cpuctx->ctx);
3451         if (ctx)
3452                 rotate_ctx(ctx);
3453
3454         perf_event_sched_in(cpuctx, ctx, current);
3455
3456         perf_pmu_enable(cpuctx->ctx.pmu);
3457         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3458 done:
3459
3460         return rotate;
3461 }
3462
3463 void perf_event_task_tick(void)
3464 {
3465         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3466         struct perf_event_context *ctx, *tmp;
3467         int throttled;
3468
3469         WARN_ON(!irqs_disabled());
3470
3471         __this_cpu_inc(perf_throttled_seq);
3472         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3473         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3474
3475         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3476                 perf_adjust_freq_unthr_context(ctx, throttled);
3477 }
3478
3479 static int event_enable_on_exec(struct perf_event *event,
3480                                 struct perf_event_context *ctx)
3481 {
3482         if (!event->attr.enable_on_exec)
3483                 return 0;
3484
3485         event->attr.enable_on_exec = 0;
3486         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3487                 return 0;
3488
3489         __perf_event_mark_enabled(event);
3490
3491         return 1;
3492 }
3493
3494 /*
3495  * Enable all of a task's events that have been marked enable-on-exec.
3496  * This expects task == current.
3497  */
3498 static void perf_event_enable_on_exec(int ctxn)
3499 {
3500         struct perf_event_context *ctx, *clone_ctx = NULL;
3501         enum event_type_t event_type = 0;
3502         struct perf_cpu_context *cpuctx;
3503         struct perf_event *event;
3504         unsigned long flags;
3505         int enabled = 0;
3506
3507         local_irq_save(flags);
3508         ctx = current->perf_event_ctxp[ctxn];
3509         if (!ctx || !ctx->nr_events)
3510                 goto out;
3511
3512         cpuctx = __get_cpu_context(ctx);
3513         perf_ctx_lock(cpuctx, ctx);
3514         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3515         list_for_each_entry(event, &ctx->event_list, event_entry) {
3516                 enabled |= event_enable_on_exec(event, ctx);
3517                 event_type |= get_event_type(event);
3518         }
3519
3520         /*
3521          * Unclone and reschedule this context if we enabled any event.
3522          */
3523         if (enabled) {
3524                 clone_ctx = unclone_ctx(ctx);
3525                 ctx_resched(cpuctx, ctx, event_type);
3526         } else {
3527                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3528         }
3529         perf_ctx_unlock(cpuctx, ctx);
3530
3531 out:
3532         local_irq_restore(flags);
3533
3534         if (clone_ctx)
3535                 put_ctx(clone_ctx);
3536 }
3537
3538 struct perf_read_data {
3539         struct perf_event *event;
3540         bool group;
3541         int ret;
3542 };
3543
3544 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3545 {
3546         u16 local_pkg, event_pkg;
3547
3548         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3549                 int local_cpu = smp_processor_id();
3550
3551                 event_pkg = topology_physical_package_id(event_cpu);
3552                 local_pkg = topology_physical_package_id(local_cpu);
3553
3554                 if (event_pkg == local_pkg)
3555                         return local_cpu;
3556         }
3557
3558         return event_cpu;
3559 }
3560
3561 /*
3562  * Cross CPU call to read the hardware event
3563  */
3564 static void __perf_event_read(void *info)
3565 {
3566         struct perf_read_data *data = info;
3567         struct perf_event *sub, *event = data->event;
3568         struct perf_event_context *ctx = event->ctx;
3569         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3570         struct pmu *pmu = event->pmu;
3571
3572         /*
3573          * If this is a task context, we need to check whether it is
3574          * the current task context of this cpu.  If not it has been
3575          * scheduled out before the smp call arrived.  In that case
3576          * event->count would have been updated to a recent sample
3577          * when the event was scheduled out.
3578          */
3579         if (ctx->task && cpuctx->task_ctx != ctx)
3580                 return;
3581
3582         raw_spin_lock(&ctx->lock);
3583         if (ctx->is_active) {
3584                 update_context_time(ctx);
3585                 update_cgrp_time_from_event(event);
3586         }
3587
3588         update_event_times(event);
3589         if (event->state != PERF_EVENT_STATE_ACTIVE)
3590                 goto unlock;
3591
3592         if (!data->group) {
3593                 pmu->read(event);
3594                 data->ret = 0;
3595                 goto unlock;
3596         }
3597
3598         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3599
3600         pmu->read(event);
3601
3602         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3603                 update_event_times(sub);
3604                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3605                         /*
3606                          * Use sibling's PMU rather than @event's since
3607                          * sibling could be on different (eg: software) PMU.
3608                          */
3609                         sub->pmu->read(sub);
3610                 }
3611         }
3612
3613         data->ret = pmu->commit_txn(pmu);
3614
3615 unlock:
3616         raw_spin_unlock(&ctx->lock);
3617 }
3618
3619 static inline u64 perf_event_count(struct perf_event *event)
3620 {
3621         if (event->pmu->count)
3622                 return event->pmu->count(event);
3623
3624         return __perf_event_count(event);
3625 }
3626
3627 /*
3628  * NMI-safe method to read a local event, that is an event that
3629  * is:
3630  *   - either for the current task, or for this CPU
3631  *   - does not have inherit set, for inherited task events
3632  *     will not be local and we cannot read them atomically
3633  *   - must not have a pmu::count method
3634  */
3635 int perf_event_read_local(struct perf_event *event, u64 *value)
3636 {
3637         unsigned long flags;
3638         int ret = 0;
3639
3640         /*
3641          * Disabling interrupts avoids all counter scheduling (context
3642          * switches, timer based rotation and IPIs).
3643          */
3644         local_irq_save(flags);
3645
3646         /*
3647          * It must not be an event with inherit set, we cannot read
3648          * all child counters from atomic context.
3649          */
3650         if (event->attr.inherit) {
3651                 ret = -EOPNOTSUPP;
3652                 goto out;
3653         }
3654
3655         /*
3656          * It must not have a pmu::count method, those are not
3657          * NMI safe.
3658          */
3659         if (event->pmu->count) {
3660                 ret = -EOPNOTSUPP;
3661                 goto out;
3662         }
3663
3664         /* If this is a per-task event, it must be for current */
3665         if ((event->attach_state & PERF_ATTACH_TASK) &&
3666             event->hw.target != current) {
3667                 ret = -EINVAL;
3668                 goto out;
3669         }
3670
3671         /* If this is a per-CPU event, it must be for this CPU */
3672         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3673             event->cpu != smp_processor_id()) {
3674                 ret = -EINVAL;
3675                 goto out;
3676         }
3677
3678         /*
3679          * If the event is currently on this CPU, its either a per-task event,
3680          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3681          * oncpu == -1).
3682          */
3683         if (event->oncpu == smp_processor_id())
3684                 event->pmu->read(event);
3685
3686         *value = local64_read(&event->count);
3687 out:
3688         local_irq_restore(flags);
3689
3690         return ret;
3691 }
3692
3693 static int perf_event_read(struct perf_event *event, bool group)
3694 {
3695         int event_cpu, ret = 0;
3696
3697         /*
3698          * If event is enabled and currently active on a CPU, update the
3699          * value in the event structure:
3700          */
3701         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3702                 struct perf_read_data data = {
3703                         .event = event,
3704                         .group = group,
3705                         .ret = 0,
3706                 };
3707
3708                 event_cpu = READ_ONCE(event->oncpu);
3709                 if ((unsigned)event_cpu >= nr_cpu_ids)
3710                         return 0;
3711
3712                 preempt_disable();
3713                 event_cpu = __perf_event_read_cpu(event, event_cpu);
3714
3715                 /*
3716                  * Purposely ignore the smp_call_function_single() return
3717                  * value.
3718                  *
3719                  * If event_cpu isn't a valid CPU it means the event got
3720                  * scheduled out and that will have updated the event count.
3721                  *
3722                  * Therefore, either way, we'll have an up-to-date event count
3723                  * after this.
3724                  */
3725                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3726                 preempt_enable();
3727                 ret = data.ret;
3728         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3729                 struct perf_event_context *ctx = event->ctx;
3730                 unsigned long flags;
3731
3732                 raw_spin_lock_irqsave(&ctx->lock, flags);
3733                 /*
3734                  * may read while context is not active
3735                  * (e.g., thread is blocked), in that case
3736                  * we cannot update context time
3737                  */
3738                 if (ctx->is_active) {
3739                         update_context_time(ctx);
3740                         update_cgrp_time_from_event(event);
3741                 }
3742                 if (group)
3743                         update_group_times(event);
3744                 else
3745                         update_event_times(event);
3746                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3747         }
3748
3749         return ret;
3750 }
3751
3752 /*
3753  * Initialize the perf_event context in a task_struct:
3754  */
3755 static void __perf_event_init_context(struct perf_event_context *ctx)
3756 {
3757         raw_spin_lock_init(&ctx->lock);
3758         mutex_init(&ctx->mutex);
3759         INIT_LIST_HEAD(&ctx->active_ctx_list);
3760         INIT_LIST_HEAD(&ctx->pinned_groups);
3761         INIT_LIST_HEAD(&ctx->flexible_groups);
3762         INIT_LIST_HEAD(&ctx->event_list);
3763         atomic_set(&ctx->refcount, 1);
3764 }
3765
3766 static struct perf_event_context *
3767 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3768 {
3769         struct perf_event_context *ctx;
3770
3771         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3772         if (!ctx)
3773                 return NULL;
3774
3775         __perf_event_init_context(ctx);
3776         if (task) {
3777                 ctx->task = task;
3778                 get_task_struct(task);
3779         }
3780         ctx->pmu = pmu;
3781
3782         return ctx;
3783 }
3784
3785 static struct task_struct *
3786 find_lively_task_by_vpid(pid_t vpid)
3787 {
3788         struct task_struct *task;
3789
3790         rcu_read_lock();
3791         if (!vpid)
3792                 task = current;
3793         else
3794                 task = find_task_by_vpid(vpid);
3795         if (task)
3796                 get_task_struct(task);
3797         rcu_read_unlock();
3798
3799         if (!task)
3800                 return ERR_PTR(-ESRCH);
3801
3802         return task;
3803 }
3804
3805 /*
3806  * Returns a matching context with refcount and pincount.
3807  */
3808 static struct perf_event_context *
3809 find_get_context(struct pmu *pmu, struct task_struct *task,
3810                 struct perf_event *event)
3811 {
3812         struct perf_event_context *ctx, *clone_ctx = NULL;
3813         struct perf_cpu_context *cpuctx;
3814         void *task_ctx_data = NULL;
3815         unsigned long flags;
3816         int ctxn, err;
3817         int cpu = event->cpu;
3818
3819         if (!task) {
3820                 /* Must be root to operate on a CPU event: */
3821                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3822                         return ERR_PTR(-EACCES);
3823
3824                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3825                 ctx = &cpuctx->ctx;
3826                 get_ctx(ctx);
3827                 ++ctx->pin_count;
3828
3829                 return ctx;
3830         }
3831
3832         err = -EINVAL;
3833         ctxn = pmu->task_ctx_nr;
3834         if (ctxn < 0)
3835                 goto errout;
3836
3837         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3838                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3839                 if (!task_ctx_data) {
3840                         err = -ENOMEM;
3841                         goto errout;
3842                 }
3843         }
3844
3845 retry:
3846         ctx = perf_lock_task_context(task, ctxn, &flags);
3847         if (ctx) {
3848                 clone_ctx = unclone_ctx(ctx);
3849                 ++ctx->pin_count;
3850
3851                 if (task_ctx_data && !ctx->task_ctx_data) {
3852                         ctx->task_ctx_data = task_ctx_data;
3853                         task_ctx_data = NULL;
3854                 }
3855                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3856
3857                 if (clone_ctx)
3858                         put_ctx(clone_ctx);
3859         } else {
3860                 ctx = alloc_perf_context(pmu, task);
3861                 err = -ENOMEM;
3862                 if (!ctx)
3863                         goto errout;
3864
3865                 if (task_ctx_data) {
3866                         ctx->task_ctx_data = task_ctx_data;
3867                         task_ctx_data = NULL;
3868                 }
3869
3870                 err = 0;
3871                 mutex_lock(&task->perf_event_mutex);
3872                 /*
3873                  * If it has already passed perf_event_exit_task().
3874                  * we must see PF_EXITING, it takes this mutex too.
3875                  */
3876                 if (task->flags & PF_EXITING)
3877                         err = -ESRCH;
3878                 else if (task->perf_event_ctxp[ctxn])
3879                         err = -EAGAIN;
3880                 else {
3881                         get_ctx(ctx);
3882                         ++ctx->pin_count;
3883                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3884                 }
3885                 mutex_unlock(&task->perf_event_mutex);
3886
3887                 if (unlikely(err)) {
3888                         put_ctx(ctx);
3889
3890                         if (err == -EAGAIN)
3891                                 goto retry;
3892                         goto errout;
3893                 }
3894         }
3895
3896         kfree(task_ctx_data);
3897         return ctx;
3898
3899 errout:
3900         kfree(task_ctx_data);
3901         return ERR_PTR(err);
3902 }
3903
3904 static void perf_event_free_filter(struct perf_event *event);
3905 static void perf_event_free_bpf_prog(struct perf_event *event);
3906
3907 static void free_event_rcu(struct rcu_head *head)
3908 {
3909         struct perf_event *event;
3910
3911         event = container_of(head, struct perf_event, rcu_head);
3912         if (event->ns)
3913                 put_pid_ns(event->ns);
3914         perf_event_free_filter(event);
3915         kfree(event);
3916 }
3917
3918 static void ring_buffer_attach(struct perf_event *event,
3919                                struct ring_buffer *rb);
3920
3921 static void detach_sb_event(struct perf_event *event)
3922 {
3923         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3924
3925         raw_spin_lock(&pel->lock);
3926         list_del_rcu(&event->sb_list);
3927         raw_spin_unlock(&pel->lock);
3928 }
3929
3930 static bool is_sb_event(struct perf_event *event)
3931 {
3932         struct perf_event_attr *attr = &event->attr;
3933
3934         if (event->parent)
3935                 return false;
3936
3937         if (event->attach_state & PERF_ATTACH_TASK)
3938                 return false;
3939
3940         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3941             attr->comm || attr->comm_exec ||
3942             attr->task ||
3943             attr->context_switch)
3944                 return true;
3945         return false;
3946 }
3947
3948 static void unaccount_pmu_sb_event(struct perf_event *event)
3949 {
3950         if (is_sb_event(event))
3951                 detach_sb_event(event);
3952 }
3953
3954 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3955 {
3956         if (event->parent)
3957                 return;
3958
3959         if (is_cgroup_event(event))
3960                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3961 }
3962
3963 #ifdef CONFIG_NO_HZ_FULL
3964 static DEFINE_SPINLOCK(nr_freq_lock);
3965 #endif
3966
3967 static void unaccount_freq_event_nohz(void)
3968 {
3969 #ifdef CONFIG_NO_HZ_FULL
3970         spin_lock(&nr_freq_lock);
3971         if (atomic_dec_and_test(&nr_freq_events))
3972                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3973         spin_unlock(&nr_freq_lock);
3974 #endif
3975 }
3976
3977 static void unaccount_freq_event(void)
3978 {
3979         if (tick_nohz_full_enabled())
3980                 unaccount_freq_event_nohz();
3981         else
3982                 atomic_dec(&nr_freq_events);
3983 }
3984
3985 static void unaccount_event(struct perf_event *event)
3986 {
3987         bool dec = false;
3988
3989         if (event->parent)
3990                 return;
3991
3992         if (event->attach_state & PERF_ATTACH_TASK)
3993                 dec = true;
3994         if (event->attr.mmap || event->attr.mmap_data)
3995                 atomic_dec(&nr_mmap_events);
3996         if (event->attr.comm)
3997                 atomic_dec(&nr_comm_events);
3998         if (event->attr.namespaces)
3999                 atomic_dec(&nr_namespaces_events);
4000         if (event->attr.task)
4001                 atomic_dec(&nr_task_events);
4002         if (event->attr.freq)
4003                 unaccount_freq_event();
4004         if (event->attr.context_switch) {
4005                 dec = true;
4006                 atomic_dec(&nr_switch_events);
4007         }
4008         if (is_cgroup_event(event))
4009                 dec = true;
4010         if (has_branch_stack(event))
4011                 dec = true;
4012
4013         if (dec) {
4014                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4015                         schedule_delayed_work(&perf_sched_work, HZ);
4016         }
4017
4018         unaccount_event_cpu(event, event->cpu);
4019
4020         unaccount_pmu_sb_event(event);
4021 }
4022
4023 static void perf_sched_delayed(struct work_struct *work)
4024 {
4025         mutex_lock(&perf_sched_mutex);
4026         if (atomic_dec_and_test(&perf_sched_count))
4027                 static_branch_disable(&perf_sched_events);
4028         mutex_unlock(&perf_sched_mutex);
4029 }
4030
4031 /*
4032  * The following implement mutual exclusion of events on "exclusive" pmus
4033  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4034  * at a time, so we disallow creating events that might conflict, namely:
4035  *
4036  *  1) cpu-wide events in the presence of per-task events,
4037  *  2) per-task events in the presence of cpu-wide events,
4038  *  3) two matching events on the same context.
4039  *
4040  * The former two cases are handled in the allocation path (perf_event_alloc(),
4041  * _free_event()), the latter -- before the first perf_install_in_context().
4042  */
4043 static int exclusive_event_init(struct perf_event *event)
4044 {
4045         struct pmu *pmu = event->pmu;
4046
4047         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4048                 return 0;
4049
4050         /*
4051          * Prevent co-existence of per-task and cpu-wide events on the
4052          * same exclusive pmu.
4053          *
4054          * Negative pmu::exclusive_cnt means there are cpu-wide
4055          * events on this "exclusive" pmu, positive means there are
4056          * per-task events.
4057          *
4058          * Since this is called in perf_event_alloc() path, event::ctx
4059          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4060          * to mean "per-task event", because unlike other attach states it
4061          * never gets cleared.
4062          */
4063         if (event->attach_state & PERF_ATTACH_TASK) {
4064                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4065                         return -EBUSY;
4066         } else {
4067                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4068                         return -EBUSY;
4069         }
4070
4071         return 0;
4072 }
4073
4074 static void exclusive_event_destroy(struct perf_event *event)
4075 {
4076         struct pmu *pmu = event->pmu;
4077
4078         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4079                 return;
4080
4081         /* see comment in exclusive_event_init() */
4082         if (event->attach_state & PERF_ATTACH_TASK)
4083                 atomic_dec(&pmu->exclusive_cnt);
4084         else
4085                 atomic_inc(&pmu->exclusive_cnt);
4086 }
4087
4088 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4089 {
4090         if ((e1->pmu == e2->pmu) &&
4091             (e1->cpu == e2->cpu ||
4092              e1->cpu == -1 ||
4093              e2->cpu == -1))
4094                 return true;
4095         return false;
4096 }
4097
4098 /* Called under the same ctx::mutex as perf_install_in_context() */
4099 static bool exclusive_event_installable(struct perf_event *event,
4100                                         struct perf_event_context *ctx)
4101 {
4102         struct perf_event *iter_event;
4103         struct pmu *pmu = event->pmu;
4104
4105         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4106                 return true;
4107
4108         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4109                 if (exclusive_event_match(iter_event, event))
4110                         return false;
4111         }
4112
4113         return true;
4114 }
4115
4116 static void perf_addr_filters_splice(struct perf_event *event,
4117                                        struct list_head *head);
4118
4119 static void _free_event(struct perf_event *event)
4120 {
4121         irq_work_sync(&event->pending);
4122
4123         unaccount_event(event);
4124
4125         if (event->rb) {
4126                 /*
4127                  * Can happen when we close an event with re-directed output.
4128                  *
4129                  * Since we have a 0 refcount, perf_mmap_close() will skip
4130                  * over us; possibly making our ring_buffer_put() the last.
4131                  */
4132                 mutex_lock(&event->mmap_mutex);
4133                 ring_buffer_attach(event, NULL);
4134                 mutex_unlock(&event->mmap_mutex);
4135         }
4136
4137         if (is_cgroup_event(event))
4138                 perf_detach_cgroup(event);
4139
4140         if (!event->parent) {
4141                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4142                         put_callchain_buffers();
4143         }
4144
4145         perf_event_free_bpf_prog(event);
4146         perf_addr_filters_splice(event, NULL);
4147         kfree(event->addr_filters_offs);
4148
4149         if (event->destroy)
4150                 event->destroy(event);
4151
4152         if (event->ctx)
4153                 put_ctx(event->ctx);
4154
4155         exclusive_event_destroy(event);
4156         module_put(event->pmu->module);
4157
4158         call_rcu(&event->rcu_head, free_event_rcu);
4159 }
4160
4161 /*
4162  * Used to free events which have a known refcount of 1, such as in error paths
4163  * where the event isn't exposed yet and inherited events.
4164  */
4165 static void free_event(struct perf_event *event)
4166 {
4167         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4168                                 "unexpected event refcount: %ld; ptr=%p\n",
4169                                 atomic_long_read(&event->refcount), event)) {
4170                 /* leak to avoid use-after-free */
4171                 return;
4172         }
4173
4174         _free_event(event);
4175 }
4176
4177 /*
4178  * Remove user event from the owner task.
4179  */
4180 static void perf_remove_from_owner(struct perf_event *event)
4181 {
4182         struct task_struct *owner;
4183
4184         rcu_read_lock();
4185         /*
4186          * Matches the smp_store_release() in perf_event_exit_task(). If we
4187          * observe !owner it means the list deletion is complete and we can
4188          * indeed free this event, otherwise we need to serialize on
4189          * owner->perf_event_mutex.
4190          */
4191         owner = lockless_dereference(event->owner);
4192         if (owner) {
4193                 /*
4194                  * Since delayed_put_task_struct() also drops the last
4195                  * task reference we can safely take a new reference
4196                  * while holding the rcu_read_lock().
4197                  */
4198                 get_task_struct(owner);
4199         }
4200         rcu_read_unlock();
4201
4202         if (owner) {
4203                 /*
4204                  * If we're here through perf_event_exit_task() we're already
4205                  * holding ctx->mutex which would be an inversion wrt. the
4206                  * normal lock order.
4207                  *
4208                  * However we can safely take this lock because its the child
4209                  * ctx->mutex.
4210                  */
4211                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4212
4213                 /*
4214                  * We have to re-check the event->owner field, if it is cleared
4215                  * we raced with perf_event_exit_task(), acquiring the mutex
4216                  * ensured they're done, and we can proceed with freeing the
4217                  * event.
4218                  */
4219                 if (event->owner) {
4220                         list_del_init(&event->owner_entry);
4221                         smp_store_release(&event->owner, NULL);
4222                 }
4223                 mutex_unlock(&owner->perf_event_mutex);
4224                 put_task_struct(owner);
4225         }
4226 }
4227
4228 static void put_event(struct perf_event *event)
4229 {
4230         if (!atomic_long_dec_and_test(&event->refcount))
4231                 return;
4232
4233         _free_event(event);
4234 }
4235
4236 /*
4237  * Kill an event dead; while event:refcount will preserve the event
4238  * object, it will not preserve its functionality. Once the last 'user'
4239  * gives up the object, we'll destroy the thing.
4240  */
4241 int perf_event_release_kernel(struct perf_event *event)
4242 {
4243         struct perf_event_context *ctx = event->ctx;
4244         struct perf_event *child, *tmp;
4245
4246         /*
4247          * If we got here through err_file: fput(event_file); we will not have
4248          * attached to a context yet.
4249          */
4250         if (!ctx) {
4251                 WARN_ON_ONCE(event->attach_state &
4252                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4253                 goto no_ctx;
4254         }
4255
4256         if (!is_kernel_event(event))
4257                 perf_remove_from_owner(event);
4258
4259         ctx = perf_event_ctx_lock(event);
4260         WARN_ON_ONCE(ctx->parent_ctx);
4261         perf_remove_from_context(event, DETACH_GROUP);
4262
4263         raw_spin_lock_irq(&ctx->lock);
4264         /*
4265          * Mark this event as STATE_DEAD, there is no external reference to it
4266          * anymore.
4267          *
4268          * Anybody acquiring event->child_mutex after the below loop _must_
4269          * also see this, most importantly inherit_event() which will avoid
4270          * placing more children on the list.
4271          *
4272          * Thus this guarantees that we will in fact observe and kill _ALL_
4273          * child events.
4274          */
4275         event->state = PERF_EVENT_STATE_DEAD;
4276         raw_spin_unlock_irq(&ctx->lock);
4277
4278         perf_event_ctx_unlock(event, ctx);
4279
4280 again:
4281         mutex_lock(&event->child_mutex);
4282         list_for_each_entry(child, &event->child_list, child_list) {
4283
4284                 /*
4285                  * Cannot change, child events are not migrated, see the
4286                  * comment with perf_event_ctx_lock_nested().
4287                  */
4288                 ctx = lockless_dereference(child->ctx);
4289                 /*
4290                  * Since child_mutex nests inside ctx::mutex, we must jump
4291                  * through hoops. We start by grabbing a reference on the ctx.
4292                  *
4293                  * Since the event cannot get freed while we hold the
4294                  * child_mutex, the context must also exist and have a !0
4295                  * reference count.
4296                  */
4297                 get_ctx(ctx);
4298
4299                 /*
4300                  * Now that we have a ctx ref, we can drop child_mutex, and
4301                  * acquire ctx::mutex without fear of it going away. Then we
4302                  * can re-acquire child_mutex.
4303                  */
4304                 mutex_unlock(&event->child_mutex);
4305                 mutex_lock(&ctx->mutex);
4306                 mutex_lock(&event->child_mutex);
4307
4308                 /*
4309                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4310                  * state, if child is still the first entry, it didn't get freed
4311                  * and we can continue doing so.
4312                  */
4313                 tmp = list_first_entry_or_null(&event->child_list,
4314                                                struct perf_event, child_list);
4315                 if (tmp == child) {
4316                         perf_remove_from_context(child, DETACH_GROUP);
4317                         list_del(&child->child_list);
4318                         free_event(child);
4319                         /*
4320                          * This matches the refcount bump in inherit_event();
4321                          * this can't be the last reference.
4322                          */
4323                         put_event(event);
4324                 }
4325
4326                 mutex_unlock(&event->child_mutex);
4327                 mutex_unlock(&ctx->mutex);
4328                 put_ctx(ctx);
4329                 goto again;
4330         }
4331         mutex_unlock(&event->child_mutex);
4332
4333 no_ctx:
4334         put_event(event); /* Must be the 'last' reference */
4335         return 0;
4336 }
4337 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4338
4339 /*
4340  * Called when the last reference to the file is gone.
4341  */
4342 static int perf_release(struct inode *inode, struct file *file)
4343 {
4344         perf_event_release_kernel(file->private_data);
4345         return 0;
4346 }
4347
4348 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4349 {
4350         struct perf_event *child;
4351         u64 total = 0;
4352
4353         *enabled = 0;
4354         *running = 0;
4355
4356         mutex_lock(&event->child_mutex);
4357
4358         (void)perf_event_read(event, false);
4359         total += perf_event_count(event);
4360
4361         *enabled += event->total_time_enabled +
4362                         atomic64_read(&event->child_total_time_enabled);
4363         *running += event->total_time_running +
4364                         atomic64_read(&event->child_total_time_running);
4365
4366         list_for_each_entry(child, &event->child_list, child_list) {
4367                 (void)perf_event_read(child, false);
4368                 total += perf_event_count(child);
4369                 *enabled += child->total_time_enabled;
4370                 *running += child->total_time_running;
4371         }
4372         mutex_unlock(&event->child_mutex);
4373
4374         return total;
4375 }
4376 EXPORT_SYMBOL_GPL(perf_event_read_value);
4377
4378 static int __perf_read_group_add(struct perf_event *leader,
4379                                         u64 read_format, u64 *values)
4380 {
4381         struct perf_event *sub;
4382         int n = 1; /* skip @nr */
4383         int ret;
4384
4385         ret = perf_event_read(leader, true);
4386         if (ret)
4387                 return ret;
4388
4389         /*
4390          * Since we co-schedule groups, {enabled,running} times of siblings
4391          * will be identical to those of the leader, so we only publish one
4392          * set.
4393          */
4394         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4395                 values[n++] += leader->total_time_enabled +
4396                         atomic64_read(&leader->child_total_time_enabled);
4397         }
4398
4399         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4400                 values[n++] += leader->total_time_running +
4401                         atomic64_read(&leader->child_total_time_running);
4402         }
4403
4404         /*
4405          * Write {count,id} tuples for every sibling.
4406          */
4407         values[n++] += perf_event_count(leader);
4408         if (read_format & PERF_FORMAT_ID)
4409                 values[n++] = primary_event_id(leader);
4410
4411         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4412                 values[n++] += perf_event_count(sub);
4413                 if (read_format & PERF_FORMAT_ID)
4414                         values[n++] = primary_event_id(sub);
4415         }
4416
4417         return 0;
4418 }
4419
4420 static int perf_read_group(struct perf_event *event,
4421                                    u64 read_format, char __user *buf)
4422 {
4423         struct perf_event *leader = event->group_leader, *child;
4424         struct perf_event_context *ctx = leader->ctx;
4425         int ret;
4426         u64 *values;
4427
4428         lockdep_assert_held(&ctx->mutex);
4429
4430         values = kzalloc(event->read_size, GFP_KERNEL);
4431         if (!values)
4432                 return -ENOMEM;
4433
4434         values[0] = 1 + leader->nr_siblings;
4435
4436         /*
4437          * By locking the child_mutex of the leader we effectively
4438          * lock the child list of all siblings.. XXX explain how.
4439          */
4440         mutex_lock(&leader->child_mutex);
4441
4442         ret = __perf_read_group_add(leader, read_format, values);
4443         if (ret)
4444                 goto unlock;
4445
4446         list_for_each_entry(child, &leader->child_list, child_list) {
4447                 ret = __perf_read_group_add(child, read_format, values);
4448                 if (ret)
4449                         goto unlock;
4450         }
4451
4452         mutex_unlock(&leader->child_mutex);
4453
4454         ret = event->read_size;
4455         if (copy_to_user(buf, values, event->read_size))
4456                 ret = -EFAULT;
4457         goto out;
4458
4459 unlock:
4460         mutex_unlock(&leader->child_mutex);
4461 out:
4462         kfree(values);
4463         return ret;
4464 }
4465
4466 static int perf_read_one(struct perf_event *event,
4467                                  u64 read_format, char __user *buf)
4468 {
4469         u64 enabled, running;
4470         u64 values[4];
4471         int n = 0;
4472
4473         values[n++] = perf_event_read_value(event, &enabled, &running);
4474         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4475                 values[n++] = enabled;
4476         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4477                 values[n++] = running;
4478         if (read_format & PERF_FORMAT_ID)
4479                 values[n++] = primary_event_id(event);
4480
4481         if (copy_to_user(buf, values, n * sizeof(u64)))
4482                 return -EFAULT;
4483
4484         return n * sizeof(u64);
4485 }
4486
4487 static bool is_event_hup(struct perf_event *event)
4488 {
4489         bool no_children;
4490
4491         if (event->state > PERF_EVENT_STATE_EXIT)
4492                 return false;
4493
4494         mutex_lock(&event->child_mutex);
4495         no_children = list_empty(&event->child_list);
4496         mutex_unlock(&event->child_mutex);
4497         return no_children;
4498 }
4499
4500 /*
4501  * Read the performance event - simple non blocking version for now
4502  */
4503 static ssize_t
4504 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4505 {
4506         u64 read_format = event->attr.read_format;
4507         int ret;
4508
4509         /*
4510          * Return end-of-file for a read on a event that is in
4511          * error state (i.e. because it was pinned but it couldn't be
4512          * scheduled on to the CPU at some point).
4513          */
4514         if (event->state == PERF_EVENT_STATE_ERROR)
4515                 return 0;
4516
4517         if (count < event->read_size)
4518                 return -ENOSPC;
4519
4520         WARN_ON_ONCE(event->ctx->parent_ctx);
4521         if (read_format & PERF_FORMAT_GROUP)
4522                 ret = perf_read_group(event, read_format, buf);
4523         else
4524                 ret = perf_read_one(event, read_format, buf);
4525
4526         return ret;
4527 }
4528
4529 static ssize_t
4530 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4531 {
4532         struct perf_event *event = file->private_data;
4533         struct perf_event_context *ctx;
4534         int ret;
4535
4536         ctx = perf_event_ctx_lock(event);
4537         ret = __perf_read(event, buf, count);
4538         perf_event_ctx_unlock(event, ctx);
4539
4540         return ret;
4541 }
4542
4543 static unsigned int perf_poll(struct file *file, poll_table *wait)
4544 {
4545         struct perf_event *event = file->private_data;
4546         struct ring_buffer *rb;
4547         unsigned int events = POLLHUP;
4548
4549         poll_wait(file, &event->waitq, wait);
4550
4551         if (is_event_hup(event))
4552                 return events;
4553
4554         /*
4555          * Pin the event->rb by taking event->mmap_mutex; otherwise
4556          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4557          */
4558         mutex_lock(&event->mmap_mutex);
4559         rb = event->rb;
4560         if (rb)
4561                 events = atomic_xchg(&rb->poll, 0);
4562         mutex_unlock(&event->mmap_mutex);
4563         return events;
4564 }
4565
4566 static void _perf_event_reset(struct perf_event *event)
4567 {
4568         (void)perf_event_read(event, false);
4569         local64_set(&event->count, 0);
4570         perf_event_update_userpage(event);
4571 }
4572
4573 /*
4574  * Holding the top-level event's child_mutex means that any
4575  * descendant process that has inherited this event will block
4576  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4577  * task existence requirements of perf_event_enable/disable.
4578  */
4579 static void perf_event_for_each_child(struct perf_event *event,
4580                                         void (*func)(struct perf_event *))
4581 {
4582         struct perf_event *child;
4583
4584         WARN_ON_ONCE(event->ctx->parent_ctx);
4585
4586         mutex_lock(&event->child_mutex);
4587         func(event);
4588         list_for_each_entry(child, &event->child_list, child_list)
4589                 func(child);
4590         mutex_unlock(&event->child_mutex);
4591 }
4592
4593 static void perf_event_for_each(struct perf_event *event,
4594                                   void (*func)(struct perf_event *))
4595 {
4596         struct perf_event_context *ctx = event->ctx;
4597         struct perf_event *sibling;
4598
4599         lockdep_assert_held(&ctx->mutex);
4600
4601         event = event->group_leader;
4602
4603         perf_event_for_each_child(event, func);
4604         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4605                 perf_event_for_each_child(sibling, func);
4606 }
4607
4608 static void __perf_event_period(struct perf_event *event,
4609                                 struct perf_cpu_context *cpuctx,
4610                                 struct perf_event_context *ctx,
4611                                 void *info)
4612 {
4613         u64 value = *((u64 *)info);
4614         bool active;
4615
4616         if (event->attr.freq) {
4617                 event->attr.sample_freq = value;
4618         } else {
4619                 event->attr.sample_period = value;
4620                 event->hw.sample_period = value;
4621         }
4622
4623         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4624         if (active) {
4625                 perf_pmu_disable(ctx->pmu);
4626                 /*
4627                  * We could be throttled; unthrottle now to avoid the tick
4628                  * trying to unthrottle while we already re-started the event.
4629                  */
4630                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4631                         event->hw.interrupts = 0;
4632                         perf_log_throttle(event, 1);
4633                 }
4634                 event->pmu->stop(event, PERF_EF_UPDATE);
4635         }
4636
4637         local64_set(&event->hw.period_left, 0);
4638
4639         if (active) {
4640                 event->pmu->start(event, PERF_EF_RELOAD);
4641                 perf_pmu_enable(ctx->pmu);
4642         }
4643 }
4644
4645 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4646 {
4647         u64 value;
4648
4649         if (!is_sampling_event(event))
4650                 return -EINVAL;
4651
4652         if (copy_from_user(&value, arg, sizeof(value)))
4653                 return -EFAULT;
4654
4655         if (!value)
4656                 return -EINVAL;
4657
4658         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4659                 return -EINVAL;
4660
4661         event_function_call(event, __perf_event_period, &value);
4662
4663         return 0;
4664 }
4665
4666 static const struct file_operations perf_fops;
4667
4668 static inline int perf_fget_light(int fd, struct fd *p)
4669 {
4670         struct fd f = fdget(fd);
4671         if (!f.file)
4672                 return -EBADF;
4673
4674         if (f.file->f_op != &perf_fops) {
4675                 fdput(f);
4676                 return -EBADF;
4677         }
4678         *p = f;
4679         return 0;
4680 }
4681
4682 static int perf_event_set_output(struct perf_event *event,
4683                                  struct perf_event *output_event);
4684 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4685 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4686
4687 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4688 {
4689         void (*func)(struct perf_event *);
4690         u32 flags = arg;
4691
4692         switch (cmd) {
4693         case PERF_EVENT_IOC_ENABLE:
4694                 func = _perf_event_enable;
4695                 break;
4696         case PERF_EVENT_IOC_DISABLE:
4697                 func = _perf_event_disable;
4698                 break;
4699         case PERF_EVENT_IOC_RESET:
4700                 func = _perf_event_reset;
4701                 break;
4702
4703         case PERF_EVENT_IOC_REFRESH:
4704                 return _perf_event_refresh(event, arg);
4705
4706         case PERF_EVENT_IOC_PERIOD:
4707                 return perf_event_period(event, (u64 __user *)arg);
4708
4709         case PERF_EVENT_IOC_ID:
4710         {
4711                 u64 id = primary_event_id(event);
4712
4713                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4714                         return -EFAULT;
4715                 return 0;
4716         }
4717
4718         case PERF_EVENT_IOC_SET_OUTPUT:
4719         {
4720                 int ret;
4721                 if (arg != -1) {
4722                         struct perf_event *output_event;
4723                         struct fd output;
4724                         ret = perf_fget_light(arg, &output);
4725                         if (ret)
4726                                 return ret;
4727                         output_event = output.file->private_data;
4728                         ret = perf_event_set_output(event, output_event);
4729                         fdput(output);
4730                 } else {
4731                         ret = perf_event_set_output(event, NULL);
4732                 }
4733                 return ret;
4734         }
4735
4736         case PERF_EVENT_IOC_SET_FILTER:
4737                 return perf_event_set_filter(event, (void __user *)arg);
4738
4739         case PERF_EVENT_IOC_SET_BPF:
4740                 return perf_event_set_bpf_prog(event, arg);
4741
4742         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4743                 struct ring_buffer *rb;
4744
4745                 rcu_read_lock();
4746                 rb = rcu_dereference(event->rb);
4747                 if (!rb || !rb->nr_pages) {
4748                         rcu_read_unlock();
4749                         return -EINVAL;
4750                 }
4751                 rb_toggle_paused(rb, !!arg);
4752                 rcu_read_unlock();
4753                 return 0;
4754         }
4755         default:
4756                 return -ENOTTY;
4757         }
4758
4759         if (flags & PERF_IOC_FLAG_GROUP)
4760                 perf_event_for_each(event, func);
4761         else
4762                 perf_event_for_each_child(event, func);
4763
4764         return 0;
4765 }
4766
4767 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4768 {
4769         struct perf_event *event = file->private_data;
4770         struct perf_event_context *ctx;
4771         long ret;
4772
4773         ctx = perf_event_ctx_lock(event);
4774         ret = _perf_ioctl(event, cmd, arg);
4775         perf_event_ctx_unlock(event, ctx);
4776
4777         return ret;
4778 }
4779
4780 #ifdef CONFIG_COMPAT
4781 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4782                                 unsigned long arg)
4783 {
4784         switch (_IOC_NR(cmd)) {
4785         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4786         case _IOC_NR(PERF_EVENT_IOC_ID):
4787                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4788                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4789                         cmd &= ~IOCSIZE_MASK;
4790                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4791                 }
4792                 break;
4793         }
4794         return perf_ioctl(file, cmd, arg);
4795 }
4796 #else
4797 # define perf_compat_ioctl NULL
4798 #endif
4799
4800 int perf_event_task_enable(void)
4801 {
4802         struct perf_event_context *ctx;
4803         struct perf_event *event;
4804
4805         mutex_lock(&current->perf_event_mutex);
4806         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4807                 ctx = perf_event_ctx_lock(event);
4808                 perf_event_for_each_child(event, _perf_event_enable);
4809                 perf_event_ctx_unlock(event, ctx);
4810         }
4811         mutex_unlock(&current->perf_event_mutex);
4812
4813         return 0;
4814 }
4815
4816 int perf_event_task_disable(void)
4817 {
4818         struct perf_event_context *ctx;
4819         struct perf_event *event;
4820
4821         mutex_lock(&current->perf_event_mutex);
4822         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4823                 ctx = perf_event_ctx_lock(event);
4824                 perf_event_for_each_child(event, _perf_event_disable);
4825                 perf_event_ctx_unlock(event, ctx);
4826         }
4827         mutex_unlock(&current->perf_event_mutex);
4828
4829         return 0;
4830 }
4831
4832 static int perf_event_index(struct perf_event *event)
4833 {
4834         if (event->hw.state & PERF_HES_STOPPED)
4835                 return 0;
4836
4837         if (event->state != PERF_EVENT_STATE_ACTIVE)
4838                 return 0;
4839
4840         return event->pmu->event_idx(event);
4841 }
4842
4843 static void calc_timer_values(struct perf_event *event,
4844                                 u64 *now,
4845                                 u64 *enabled,
4846                                 u64 *running)
4847 {
4848         u64 ctx_time;
4849
4850         *now = perf_clock();
4851         ctx_time = event->shadow_ctx_time + *now;
4852         *enabled = ctx_time - event->tstamp_enabled;
4853         *running = ctx_time - event->tstamp_running;
4854 }
4855
4856 static void perf_event_init_userpage(struct perf_event *event)
4857 {
4858         struct perf_event_mmap_page *userpg;
4859         struct ring_buffer *rb;
4860
4861         rcu_read_lock();
4862         rb = rcu_dereference(event->rb);
4863         if (!rb)
4864                 goto unlock;
4865
4866         userpg = rb->user_page;
4867
4868         /* Allow new userspace to detect that bit 0 is deprecated */
4869         userpg->cap_bit0_is_deprecated = 1;
4870         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4871         userpg->data_offset = PAGE_SIZE;
4872         userpg->data_size = perf_data_size(rb);
4873
4874 unlock:
4875         rcu_read_unlock();
4876 }
4877
4878 void __weak arch_perf_update_userpage(
4879         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4880 {
4881 }
4882
4883 /*
4884  * Callers need to ensure there can be no nesting of this function, otherwise
4885  * the seqlock logic goes bad. We can not serialize this because the arch
4886  * code calls this from NMI context.
4887  */
4888 void perf_event_update_userpage(struct perf_event *event)
4889 {
4890         struct perf_event_mmap_page *userpg;
4891         struct ring_buffer *rb;
4892         u64 enabled, running, now;
4893
4894         rcu_read_lock();
4895         rb = rcu_dereference(event->rb);
4896         if (!rb)
4897                 goto unlock;
4898
4899         /*
4900          * compute total_time_enabled, total_time_running
4901          * based on snapshot values taken when the event
4902          * was last scheduled in.
4903          *
4904          * we cannot simply called update_context_time()
4905          * because of locking issue as we can be called in
4906          * NMI context
4907          */
4908         calc_timer_values(event, &now, &enabled, &running);
4909
4910         userpg = rb->user_page;
4911         /*
4912          * Disable preemption so as to not let the corresponding user-space
4913          * spin too long if we get preempted.
4914          */
4915         preempt_disable();
4916         ++userpg->lock;
4917         barrier();
4918         userpg->index = perf_event_index(event);
4919         userpg->offset = perf_event_count(event);
4920         if (userpg->index)
4921                 userpg->offset -= local64_read(&event->hw.prev_count);
4922
4923         userpg->time_enabled = enabled +
4924                         atomic64_read(&event->child_total_time_enabled);
4925
4926         userpg->time_running = running +
4927                         atomic64_read(&event->child_total_time_running);
4928
4929         arch_perf_update_userpage(event, userpg, now);
4930
4931         barrier();
4932         ++userpg->lock;
4933         preempt_enable();
4934 unlock:
4935         rcu_read_unlock();
4936 }
4937
4938 static int perf_mmap_fault(struct vm_fault *vmf)
4939 {
4940         struct perf_event *event = vmf->vma->vm_file->private_data;
4941         struct ring_buffer *rb;
4942         int ret = VM_FAULT_SIGBUS;
4943
4944         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4945                 if (vmf->pgoff == 0)
4946                         ret = 0;
4947                 return ret;
4948         }
4949
4950         rcu_read_lock();
4951         rb = rcu_dereference(event->rb);
4952         if (!rb)
4953                 goto unlock;
4954
4955         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4956                 goto unlock;
4957
4958         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4959         if (!vmf->page)
4960                 goto unlock;
4961
4962         get_page(vmf->page);
4963         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4964         vmf->page->index   = vmf->pgoff;
4965
4966         ret = 0;
4967 unlock:
4968         rcu_read_unlock();
4969
4970         return ret;
4971 }
4972
4973 static void ring_buffer_attach(struct perf_event *event,
4974                                struct ring_buffer *rb)
4975 {
4976         struct ring_buffer *old_rb = NULL;
4977         unsigned long flags;
4978
4979         if (event->rb) {
4980                 /*
4981                  * Should be impossible, we set this when removing
4982                  * event->rb_entry and wait/clear when adding event->rb_entry.
4983                  */
4984                 WARN_ON_ONCE(event->rcu_pending);
4985
4986                 old_rb = event->rb;
4987                 spin_lock_irqsave(&old_rb->event_lock, flags);
4988                 list_del_rcu(&event->rb_entry);
4989                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4990
4991                 event->rcu_batches = get_state_synchronize_rcu();
4992                 event->rcu_pending = 1;
4993         }
4994
4995         if (rb) {
4996                 if (event->rcu_pending) {
4997                         cond_synchronize_rcu(event->rcu_batches);
4998                         event->rcu_pending = 0;
4999                 }
5000
5001                 spin_lock_irqsave(&rb->event_lock, flags);
5002                 list_add_rcu(&event->rb_entry, &rb->event_list);
5003                 spin_unlock_irqrestore(&rb->event_lock, flags);
5004         }
5005
5006         /*
5007          * Avoid racing with perf_mmap_close(AUX): stop the event
5008          * before swizzling the event::rb pointer; if it's getting
5009          * unmapped, its aux_mmap_count will be 0 and it won't
5010          * restart. See the comment in __perf_pmu_output_stop().
5011          *
5012          * Data will inevitably be lost when set_output is done in
5013          * mid-air, but then again, whoever does it like this is
5014          * not in for the data anyway.
5015          */
5016         if (has_aux(event))
5017                 perf_event_stop(event, 0);
5018
5019         rcu_assign_pointer(event->rb, rb);
5020
5021         if (old_rb) {
5022                 ring_buffer_put(old_rb);
5023                 /*
5024                  * Since we detached before setting the new rb, so that we
5025                  * could attach the new rb, we could have missed a wakeup.
5026                  * Provide it now.
5027                  */
5028                 wake_up_all(&event->waitq);
5029         }
5030 }
5031
5032 static void ring_buffer_wakeup(struct perf_event *event)
5033 {
5034         struct ring_buffer *rb;
5035
5036         rcu_read_lock();
5037         rb = rcu_dereference(event->rb);
5038         if (rb) {
5039                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5040                         wake_up_all(&event->waitq);
5041         }
5042         rcu_read_unlock();
5043 }
5044
5045 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5046 {
5047         struct ring_buffer *rb;
5048
5049         rcu_read_lock();
5050         rb = rcu_dereference(event->rb);
5051         if (rb) {
5052                 if (!atomic_inc_not_zero(&rb->refcount))
5053                         rb = NULL;
5054         }
5055         rcu_read_unlock();
5056
5057         return rb;
5058 }
5059
5060 void ring_buffer_put(struct ring_buffer *rb)
5061 {
5062         if (!atomic_dec_and_test(&rb->refcount))
5063                 return;
5064
5065         WARN_ON_ONCE(!list_empty(&rb->event_list));
5066
5067         call_rcu(&rb->rcu_head, rb_free_rcu);
5068 }
5069
5070 static void perf_mmap_open(struct vm_area_struct *vma)
5071 {
5072         struct perf_event *event = vma->vm_file->private_data;
5073
5074         atomic_inc(&event->mmap_count);
5075         atomic_inc(&event->rb->mmap_count);
5076
5077         if (vma->vm_pgoff)
5078                 atomic_inc(&event->rb->aux_mmap_count);
5079
5080         if (event->pmu->event_mapped)
5081                 event->pmu->event_mapped(event);
5082 }
5083
5084 static void perf_pmu_output_stop(struct perf_event *event);
5085
5086 /*
5087  * A buffer can be mmap()ed multiple times; either directly through the same
5088  * event, or through other events by use of perf_event_set_output().
5089  *
5090  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5091  * the buffer here, where we still have a VM context. This means we need
5092  * to detach all events redirecting to us.
5093  */
5094 static void perf_mmap_close(struct vm_area_struct *vma)
5095 {
5096         struct perf_event *event = vma->vm_file->private_data;
5097
5098         struct ring_buffer *rb = ring_buffer_get(event);
5099         struct user_struct *mmap_user = rb->mmap_user;
5100         int mmap_locked = rb->mmap_locked;
5101         unsigned long size = perf_data_size(rb);
5102
5103         if (event->pmu->event_unmapped)
5104                 event->pmu->event_unmapped(event);
5105
5106         /*
5107          * rb->aux_mmap_count will always drop before rb->mmap_count and
5108          * event->mmap_count, so it is ok to use event->mmap_mutex to
5109          * serialize with perf_mmap here.
5110          */
5111         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5112             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5113                 /*
5114                  * Stop all AUX events that are writing to this buffer,
5115                  * so that we can free its AUX pages and corresponding PMU
5116                  * data. Note that after rb::aux_mmap_count dropped to zero,
5117                  * they won't start any more (see perf_aux_output_begin()).
5118                  */
5119                 perf_pmu_output_stop(event);
5120
5121                 /* now it's safe to free the pages */
5122                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5123                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5124
5125                 /* this has to be the last one */
5126                 rb_free_aux(rb);
5127                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5128
5129                 mutex_unlock(&event->mmap_mutex);
5130         }
5131
5132         atomic_dec(&rb->mmap_count);
5133
5134         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5135                 goto out_put;
5136
5137         ring_buffer_attach(event, NULL);
5138         mutex_unlock(&event->mmap_mutex);
5139
5140         /* If there's still other mmap()s of this buffer, we're done. */
5141         if (atomic_read(&rb->mmap_count))
5142                 goto out_put;
5143
5144         /*
5145          * No other mmap()s, detach from all other events that might redirect
5146          * into the now unreachable buffer. Somewhat complicated by the
5147          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5148          */
5149 again:
5150         rcu_read_lock();
5151         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5152                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5153                         /*
5154                          * This event is en-route to free_event() which will
5155                          * detach it and remove it from the list.
5156                          */
5157                         continue;
5158                 }
5159                 rcu_read_unlock();
5160
5161                 mutex_lock(&event->mmap_mutex);
5162                 /*
5163                  * Check we didn't race with perf_event_set_output() which can
5164                  * swizzle the rb from under us while we were waiting to
5165                  * acquire mmap_mutex.
5166                  *
5167                  * If we find a different rb; ignore this event, a next
5168                  * iteration will no longer find it on the list. We have to
5169                  * still restart the iteration to make sure we're not now
5170                  * iterating the wrong list.
5171                  */
5172                 if (event->rb == rb)
5173                         ring_buffer_attach(event, NULL);
5174
5175                 mutex_unlock(&event->mmap_mutex);
5176                 put_event(event);
5177
5178                 /*
5179                  * Restart the iteration; either we're on the wrong list or
5180                  * destroyed its integrity by doing a deletion.
5181                  */
5182                 goto again;
5183         }
5184         rcu_read_unlock();
5185
5186         /*
5187          * It could be there's still a few 0-ref events on the list; they'll
5188          * get cleaned up by free_event() -- they'll also still have their
5189          * ref on the rb and will free it whenever they are done with it.
5190          *
5191          * Aside from that, this buffer is 'fully' detached and unmapped,
5192          * undo the VM accounting.
5193          */
5194
5195         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5196         vma->vm_mm->pinned_vm -= mmap_locked;
5197         free_uid(mmap_user);
5198
5199 out_put:
5200         ring_buffer_put(rb); /* could be last */
5201 }
5202
5203 static const struct vm_operations_struct perf_mmap_vmops = {
5204         .open           = perf_mmap_open,
5205         .close          = perf_mmap_close, /* non mergable */
5206         .fault          = perf_mmap_fault,
5207         .page_mkwrite   = perf_mmap_fault,
5208 };
5209
5210 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5211 {
5212         struct perf_event *event = file->private_data;
5213         unsigned long user_locked, user_lock_limit;
5214         struct user_struct *user = current_user();
5215         unsigned long locked, lock_limit;
5216         struct ring_buffer *rb = NULL;
5217         unsigned long vma_size;
5218         unsigned long nr_pages;
5219         long user_extra = 0, extra = 0;
5220         int ret = 0, flags = 0;
5221
5222         /*
5223          * Don't allow mmap() of inherited per-task counters. This would
5224          * create a performance issue due to all children writing to the
5225          * same rb.
5226          */
5227         if (event->cpu == -1 && event->attr.inherit)
5228                 return -EINVAL;
5229
5230         if (!(vma->vm_flags & VM_SHARED))
5231                 return -EINVAL;
5232
5233         vma_size = vma->vm_end - vma->vm_start;
5234
5235         if (vma->vm_pgoff == 0) {
5236                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5237         } else {
5238                 /*
5239                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5240                  * mapped, all subsequent mappings should have the same size
5241                  * and offset. Must be above the normal perf buffer.
5242                  */
5243                 u64 aux_offset, aux_size;
5244
5245                 if (!event->rb)
5246                         return -EINVAL;
5247
5248                 nr_pages = vma_size / PAGE_SIZE;
5249
5250                 mutex_lock(&event->mmap_mutex);
5251                 ret = -EINVAL;
5252
5253                 rb = event->rb;
5254                 if (!rb)
5255                         goto aux_unlock;
5256
5257                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5258                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5259
5260                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5261                         goto aux_unlock;
5262
5263                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5264                         goto aux_unlock;
5265
5266                 /* already mapped with a different offset */
5267                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5268                         goto aux_unlock;
5269
5270                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5271                         goto aux_unlock;
5272
5273                 /* already mapped with a different size */
5274                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5275                         goto aux_unlock;
5276
5277                 if (!is_power_of_2(nr_pages))
5278                         goto aux_unlock;
5279
5280                 if (!atomic_inc_not_zero(&rb->mmap_count))
5281                         goto aux_unlock;
5282
5283                 if (rb_has_aux(rb)) {
5284                         atomic_inc(&rb->aux_mmap_count);
5285                         ret = 0;
5286                         goto unlock;
5287                 }
5288
5289                 atomic_set(&rb->aux_mmap_count, 1);
5290                 user_extra = nr_pages;
5291
5292                 goto accounting;
5293         }
5294
5295         /*
5296          * If we have rb pages ensure they're a power-of-two number, so we
5297          * can do bitmasks instead of modulo.
5298          */
5299         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5300                 return -EINVAL;
5301
5302         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5303                 return -EINVAL;
5304
5305         WARN_ON_ONCE(event->ctx->parent_ctx);
5306 again:
5307         mutex_lock(&event->mmap_mutex);
5308         if (event->rb) {
5309                 if (event->rb->nr_pages != nr_pages) {
5310                         ret = -EINVAL;
5311                         goto unlock;
5312                 }
5313
5314                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5315                         /*
5316                          * Raced against perf_mmap_close() through
5317                          * perf_event_set_output(). Try again, hope for better
5318                          * luck.
5319                          */
5320                         mutex_unlock(&event->mmap_mutex);
5321                         goto again;
5322                 }
5323
5324                 goto unlock;
5325         }
5326
5327         user_extra = nr_pages + 1;
5328
5329 accounting:
5330         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5331
5332         /*
5333          * Increase the limit linearly with more CPUs:
5334          */
5335         user_lock_limit *= num_online_cpus();
5336
5337         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5338
5339         if (user_locked > user_lock_limit)
5340                 extra = user_locked - user_lock_limit;
5341
5342         lock_limit = rlimit(RLIMIT_MEMLOCK);
5343         lock_limit >>= PAGE_SHIFT;
5344         locked = vma->vm_mm->pinned_vm + extra;
5345
5346         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5347                 !capable(CAP_IPC_LOCK)) {
5348                 ret = -EPERM;
5349                 goto unlock;
5350         }
5351
5352         WARN_ON(!rb && event->rb);
5353
5354         if (vma->vm_flags & VM_WRITE)
5355                 flags |= RING_BUFFER_WRITABLE;
5356
5357         if (!rb) {
5358                 rb = rb_alloc(nr_pages,
5359                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5360                               event->cpu, flags);
5361
5362                 if (!rb) {
5363                         ret = -ENOMEM;
5364                         goto unlock;
5365                 }
5366
5367                 atomic_set(&rb->mmap_count, 1);
5368                 rb->mmap_user = get_current_user();
5369                 rb->mmap_locked = extra;
5370
5371                 ring_buffer_attach(event, rb);
5372
5373                 perf_event_init_userpage(event);
5374                 perf_event_update_userpage(event);
5375         } else {
5376                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5377                                    event->attr.aux_watermark, flags);
5378                 if (!ret)
5379                         rb->aux_mmap_locked = extra;
5380         }
5381
5382 unlock:
5383         if (!ret) {
5384                 atomic_long_add(user_extra, &user->locked_vm);
5385                 vma->vm_mm->pinned_vm += extra;
5386
5387                 atomic_inc(&event->mmap_count);
5388         } else if (rb) {
5389                 atomic_dec(&rb->mmap_count);
5390         }
5391 aux_unlock:
5392         mutex_unlock(&event->mmap_mutex);
5393
5394         /*
5395          * Since pinned accounting is per vm we cannot allow fork() to copy our
5396          * vma.
5397          */
5398         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5399         vma->vm_ops = &perf_mmap_vmops;
5400
5401         if (event->pmu->event_mapped)
5402                 event->pmu->event_mapped(event);
5403
5404         return ret;
5405 }
5406
5407 static int perf_fasync(int fd, struct file *filp, int on)
5408 {
5409         struct inode *inode = file_inode(filp);
5410         struct perf_event *event = filp->private_data;
5411         int retval;
5412
5413         inode_lock(inode);
5414         retval = fasync_helper(fd, filp, on, &event->fasync);
5415         inode_unlock(inode);
5416
5417         if (retval < 0)
5418                 return retval;
5419
5420         return 0;
5421 }
5422
5423 static const struct file_operations perf_fops = {
5424         .llseek                 = no_llseek,
5425         .release                = perf_release,
5426         .read                   = perf_read,
5427         .poll                   = perf_poll,
5428         .unlocked_ioctl         = perf_ioctl,
5429         .compat_ioctl           = perf_compat_ioctl,
5430         .mmap                   = perf_mmap,
5431         .fasync                 = perf_fasync,
5432 };
5433
5434 /*
5435  * Perf event wakeup
5436  *
5437  * If there's data, ensure we set the poll() state and publish everything
5438  * to user-space before waking everybody up.
5439  */
5440
5441 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5442 {
5443         /* only the parent has fasync state */
5444         if (event->parent)
5445                 event = event->parent;
5446         return &event->fasync;
5447 }
5448
5449 void perf_event_wakeup(struct perf_event *event)
5450 {
5451         ring_buffer_wakeup(event);
5452
5453         if (event->pending_kill) {
5454                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5455                 event->pending_kill = 0;
5456         }
5457 }
5458
5459 static void perf_pending_event(struct irq_work *entry)
5460 {
5461         struct perf_event *event = container_of(entry,
5462                         struct perf_event, pending);
5463         int rctx;
5464
5465         rctx = perf_swevent_get_recursion_context();
5466         /*
5467          * If we 'fail' here, that's OK, it means recursion is already disabled
5468          * and we won't recurse 'further'.
5469          */
5470
5471         if (event->pending_disable) {
5472                 event->pending_disable = 0;
5473                 perf_event_disable_local(event);
5474         }
5475
5476         if (event->pending_wakeup) {
5477                 event->pending_wakeup = 0;
5478                 perf_event_wakeup(event);
5479         }
5480
5481         if (rctx >= 0)
5482                 perf_swevent_put_recursion_context(rctx);
5483 }
5484
5485 /*
5486  * We assume there is only KVM supporting the callbacks.
5487  * Later on, we might change it to a list if there is
5488  * another virtualization implementation supporting the callbacks.
5489  */
5490 struct perf_guest_info_callbacks *perf_guest_cbs;
5491
5492 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5493 {
5494         perf_guest_cbs = cbs;
5495         return 0;
5496 }
5497 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5498
5499 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5500 {
5501         perf_guest_cbs = NULL;
5502         return 0;
5503 }
5504 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5505
5506 static void
5507 perf_output_sample_regs(struct perf_output_handle *handle,
5508                         struct pt_regs *regs, u64 mask)
5509 {
5510         int bit;
5511         DECLARE_BITMAP(_mask, 64);
5512
5513         bitmap_from_u64(_mask, mask);
5514         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5515                 u64 val;
5516
5517                 val = perf_reg_value(regs, bit);
5518                 perf_output_put(handle, val);
5519         }
5520 }
5521
5522 static void perf_sample_regs_user(struct perf_regs *regs_user,
5523                                   struct pt_regs *regs,
5524                                   struct pt_regs *regs_user_copy)
5525 {
5526         if (user_mode(regs)) {
5527                 regs_user->abi = perf_reg_abi(current);
5528                 regs_user->regs = regs;
5529         } else if (current->mm) {
5530                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5531         } else {
5532                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5533                 regs_user->regs = NULL;
5534         }
5535 }
5536
5537 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5538                                   struct pt_regs *regs)
5539 {
5540         regs_intr->regs = regs;
5541         regs_intr->abi  = perf_reg_abi(current);
5542 }
5543
5544
5545 /*
5546  * Get remaining task size from user stack pointer.
5547  *
5548  * It'd be better to take stack vma map and limit this more
5549  * precisly, but there's no way to get it safely under interrupt,
5550  * so using TASK_SIZE as limit.
5551  */
5552 static u64 perf_ustack_task_size(struct pt_regs *regs)
5553 {
5554         unsigned long addr = perf_user_stack_pointer(regs);
5555
5556         if (!addr || addr >= TASK_SIZE)
5557                 return 0;
5558
5559         return TASK_SIZE - addr;
5560 }
5561
5562 static u16
5563 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5564                         struct pt_regs *regs)
5565 {
5566         u64 task_size;
5567
5568         /* No regs, no stack pointer, no dump. */
5569         if (!regs)
5570                 return 0;
5571
5572         /*
5573          * Check if we fit in with the requested stack size into the:
5574          * - TASK_SIZE
5575          *   If we don't, we limit the size to the TASK_SIZE.
5576          *
5577          * - remaining sample size
5578          *   If we don't, we customize the stack size to
5579          *   fit in to the remaining sample size.
5580          */
5581
5582         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5583         stack_size = min(stack_size, (u16) task_size);
5584
5585         /* Current header size plus static size and dynamic size. */
5586         header_size += 2 * sizeof(u64);
5587
5588         /* Do we fit in with the current stack dump size? */
5589         if ((u16) (header_size + stack_size) < header_size) {
5590                 /*
5591                  * If we overflow the maximum size for the sample,
5592                  * we customize the stack dump size to fit in.
5593                  */
5594                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5595                 stack_size = round_up(stack_size, sizeof(u64));
5596         }
5597
5598         return stack_size;
5599 }
5600
5601 static void
5602 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5603                           struct pt_regs *regs)
5604 {
5605         /* Case of a kernel thread, nothing to dump */
5606         if (!regs) {
5607                 u64 size = 0;
5608                 perf_output_put(handle, size);
5609         } else {
5610                 unsigned long sp;
5611                 unsigned int rem;
5612                 u64 dyn_size;
5613
5614                 /*
5615                  * We dump:
5616                  * static size
5617                  *   - the size requested by user or the best one we can fit
5618                  *     in to the sample max size
5619                  * data
5620                  *   - user stack dump data
5621                  * dynamic size
5622                  *   - the actual dumped size
5623                  */
5624
5625                 /* Static size. */
5626                 perf_output_put(handle, dump_size);
5627
5628                 /* Data. */
5629                 sp = perf_user_stack_pointer(regs);
5630                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5631                 dyn_size = dump_size - rem;
5632
5633                 perf_output_skip(handle, rem);
5634
5635                 /* Dynamic size. */
5636                 perf_output_put(handle, dyn_size);
5637         }
5638 }
5639
5640 static void __perf_event_header__init_id(struct perf_event_header *header,
5641                                          struct perf_sample_data *data,
5642                                          struct perf_event *event)
5643 {
5644         u64 sample_type = event->attr.sample_type;
5645
5646         data->type = sample_type;
5647         header->size += event->id_header_size;
5648
5649         if (sample_type & PERF_SAMPLE_TID) {
5650                 /* namespace issues */
5651                 data->tid_entry.pid = perf_event_pid(event, current);
5652                 data->tid_entry.tid = perf_event_tid(event, current);
5653         }
5654
5655         if (sample_type & PERF_SAMPLE_TIME)
5656                 data->time = perf_event_clock(event);
5657
5658         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5659                 data->id = primary_event_id(event);
5660
5661         if (sample_type & PERF_SAMPLE_STREAM_ID)
5662                 data->stream_id = event->id;
5663
5664         if (sample_type & PERF_SAMPLE_CPU) {
5665                 data->cpu_entry.cpu      = raw_smp_processor_id();
5666                 data->cpu_entry.reserved = 0;
5667         }
5668 }
5669
5670 void perf_event_header__init_id(struct perf_event_header *header,
5671                                 struct perf_sample_data *data,
5672                                 struct perf_event *event)
5673 {
5674         if (event->attr.sample_id_all)
5675                 __perf_event_header__init_id(header, data, event);
5676 }
5677
5678 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5679                                            struct perf_sample_data *data)
5680 {
5681         u64 sample_type = data->type;
5682
5683         if (sample_type & PERF_SAMPLE_TID)
5684                 perf_output_put(handle, data->tid_entry);
5685
5686         if (sample_type & PERF_SAMPLE_TIME)
5687                 perf_output_put(handle, data->time);
5688
5689         if (sample_type & PERF_SAMPLE_ID)
5690                 perf_output_put(handle, data->id);
5691
5692         if (sample_type & PERF_SAMPLE_STREAM_ID)
5693                 perf_output_put(handle, data->stream_id);
5694
5695         if (sample_type & PERF_SAMPLE_CPU)
5696                 perf_output_put(handle, data->cpu_entry);
5697
5698         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5699                 perf_output_put(handle, data->id);
5700 }
5701
5702 void perf_event__output_id_sample(struct perf_event *event,
5703                                   struct perf_output_handle *handle,
5704                                   struct perf_sample_data *sample)
5705 {
5706         if (event->attr.sample_id_all)
5707                 __perf_event__output_id_sample(handle, sample);
5708 }
5709
5710 static void perf_output_read_one(struct perf_output_handle *handle,
5711                                  struct perf_event *event,
5712                                  u64 enabled, u64 running)
5713 {
5714         u64 read_format = event->attr.read_format;
5715         u64 values[4];
5716         int n = 0;
5717
5718         values[n++] = perf_event_count(event);
5719         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5720                 values[n++] = enabled +
5721                         atomic64_read(&event->child_total_time_enabled);
5722         }
5723         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5724                 values[n++] = running +
5725                         atomic64_read(&event->child_total_time_running);
5726         }
5727         if (read_format & PERF_FORMAT_ID)
5728                 values[n++] = primary_event_id(event);
5729
5730         __output_copy(handle, values, n * sizeof(u64));
5731 }
5732
5733 static void perf_output_read_group(struct perf_output_handle *handle,
5734                             struct perf_event *event,
5735                             u64 enabled, u64 running)
5736 {
5737         struct perf_event *leader = event->group_leader, *sub;
5738         u64 read_format = event->attr.read_format;
5739         u64 values[5];
5740         int n = 0;
5741
5742         values[n++] = 1 + leader->nr_siblings;
5743
5744         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5745                 values[n++] = enabled;
5746
5747         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5748                 values[n++] = running;
5749
5750         if (leader != event)
5751                 leader->pmu->read(leader);
5752
5753         values[n++] = perf_event_count(leader);
5754         if (read_format & PERF_FORMAT_ID)
5755                 values[n++] = primary_event_id(leader);
5756
5757         __output_copy(handle, values, n * sizeof(u64));
5758
5759         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5760                 n = 0;
5761
5762                 if ((sub != event) &&
5763                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5764                         sub->pmu->read(sub);
5765
5766                 values[n++] = perf_event_count(sub);
5767                 if (read_format & PERF_FORMAT_ID)
5768                         values[n++] = primary_event_id(sub);
5769
5770                 __output_copy(handle, values, n * sizeof(u64));
5771         }
5772 }
5773
5774 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5775                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5776
5777 /*
5778  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5779  *
5780  * The problem is that its both hard and excessively expensive to iterate the
5781  * child list, not to mention that its impossible to IPI the children running
5782  * on another CPU, from interrupt/NMI context.
5783  */
5784 static void perf_output_read(struct perf_output_handle *handle,
5785                              struct perf_event *event)
5786 {
5787         u64 enabled = 0, running = 0, now;
5788         u64 read_format = event->attr.read_format;
5789
5790         /*
5791          * compute total_time_enabled, total_time_running
5792          * based on snapshot values taken when the event
5793          * was last scheduled in.
5794          *
5795          * we cannot simply called update_context_time()
5796          * because of locking issue as we are called in
5797          * NMI context
5798          */
5799         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5800                 calc_timer_values(event, &now, &enabled, &running);
5801
5802         if (event->attr.read_format & PERF_FORMAT_GROUP)
5803                 perf_output_read_group(handle, event, enabled, running);
5804         else
5805                 perf_output_read_one(handle, event, enabled, running);
5806 }
5807
5808 void perf_output_sample(struct perf_output_handle *handle,
5809                         struct perf_event_header *header,
5810                         struct perf_sample_data *data,
5811                         struct perf_event *event)
5812 {
5813         u64 sample_type = data->type;
5814
5815         perf_output_put(handle, *header);
5816
5817         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5818                 perf_output_put(handle, data->id);
5819
5820         if (sample_type & PERF_SAMPLE_IP)
5821                 perf_output_put(handle, data->ip);
5822
5823         if (sample_type & PERF_SAMPLE_TID)
5824                 perf_output_put(handle, data->tid_entry);
5825
5826         if (sample_type & PERF_SAMPLE_TIME)
5827                 perf_output_put(handle, data->time);
5828
5829         if (sample_type & PERF_SAMPLE_ADDR)
5830                 perf_output_put(handle, data->addr);
5831
5832         if (sample_type & PERF_SAMPLE_ID)
5833                 perf_output_put(handle, data->id);
5834
5835         if (sample_type & PERF_SAMPLE_STREAM_ID)
5836                 perf_output_put(handle, data->stream_id);
5837
5838         if (sample_type & PERF_SAMPLE_CPU)
5839                 perf_output_put(handle, data->cpu_entry);
5840
5841         if (sample_type & PERF_SAMPLE_PERIOD)
5842                 perf_output_put(handle, data->period);
5843
5844         if (sample_type & PERF_SAMPLE_READ)
5845                 perf_output_read(handle, event);
5846
5847         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5848                 if (data->callchain) {
5849                         int size = 1;
5850
5851                         if (data->callchain)
5852                                 size += data->callchain->nr;
5853
5854                         size *= sizeof(u64);
5855
5856                         __output_copy(handle, data->callchain, size);
5857                 } else {
5858                         u64 nr = 0;
5859                         perf_output_put(handle, nr);
5860                 }
5861         }
5862
5863         if (sample_type & PERF_SAMPLE_RAW) {
5864                 struct perf_raw_record *raw = data->raw;
5865
5866                 if (raw) {
5867                         struct perf_raw_frag *frag = &raw->frag;
5868
5869                         perf_output_put(handle, raw->size);
5870                         do {
5871                                 if (frag->copy) {
5872                                         __output_custom(handle, frag->copy,
5873                                                         frag->data, frag->size);
5874                                 } else {
5875                                         __output_copy(handle, frag->data,
5876                                                       frag->size);
5877                                 }
5878                                 if (perf_raw_frag_last(frag))
5879                                         break;
5880                                 frag = frag->next;
5881                         } while (1);
5882                         if (frag->pad)
5883                                 __output_skip(handle, NULL, frag->pad);
5884                 } else {
5885                         struct {
5886                                 u32     size;
5887                                 u32     data;
5888                         } raw = {
5889                                 .size = sizeof(u32),
5890                                 .data = 0,
5891                         };
5892                         perf_output_put(handle, raw);
5893                 }
5894         }
5895
5896         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5897                 if (data->br_stack) {
5898                         size_t size;
5899
5900                         size = data->br_stack->nr
5901                              * sizeof(struct perf_branch_entry);
5902
5903                         perf_output_put(handle, data->br_stack->nr);
5904                         perf_output_copy(handle, data->br_stack->entries, size);
5905                 } else {
5906                         /*
5907                          * we always store at least the value of nr
5908                          */
5909                         u64 nr = 0;
5910                         perf_output_put(handle, nr);
5911                 }
5912         }
5913
5914         if (sample_type & PERF_SAMPLE_REGS_USER) {
5915                 u64 abi = data->regs_user.abi;
5916
5917                 /*
5918                  * If there are no regs to dump, notice it through
5919                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5920                  */
5921                 perf_output_put(handle, abi);
5922
5923                 if (abi) {
5924                         u64 mask = event->attr.sample_regs_user;
5925                         perf_output_sample_regs(handle,
5926                                                 data->regs_user.regs,
5927                                                 mask);
5928                 }
5929         }
5930
5931         if (sample_type & PERF_SAMPLE_STACK_USER) {
5932                 perf_output_sample_ustack(handle,
5933                                           data->stack_user_size,
5934                                           data->regs_user.regs);
5935         }
5936
5937         if (sample_type & PERF_SAMPLE_WEIGHT)
5938                 perf_output_put(handle, data->weight);
5939
5940         if (sample_type & PERF_SAMPLE_DATA_SRC)
5941                 perf_output_put(handle, data->data_src.val);
5942
5943         if (sample_type & PERF_SAMPLE_TRANSACTION)
5944                 perf_output_put(handle, data->txn);
5945
5946         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5947                 u64 abi = data->regs_intr.abi;
5948                 /*
5949                  * If there are no regs to dump, notice it through
5950                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5951                  */
5952                 perf_output_put(handle, abi);
5953
5954                 if (abi) {
5955                         u64 mask = event->attr.sample_regs_intr;
5956
5957                         perf_output_sample_regs(handle,
5958                                                 data->regs_intr.regs,
5959                                                 mask);
5960                 }
5961         }
5962
5963         if (!event->attr.watermark) {
5964                 int wakeup_events = event->attr.wakeup_events;
5965
5966                 if (wakeup_events) {
5967                         struct ring_buffer *rb = handle->rb;
5968                         int events = local_inc_return(&rb->events);
5969
5970                         if (events >= wakeup_events) {
5971                                 local_sub(wakeup_events, &rb->events);
5972                                 local_inc(&rb->wakeup);
5973                         }
5974                 }
5975         }
5976 }
5977
5978 void perf_prepare_sample(struct perf_event_header *header,
5979                          struct perf_sample_data *data,
5980                          struct perf_event *event,
5981                          struct pt_regs *regs)
5982 {
5983         u64 sample_type = event->attr.sample_type;
5984
5985         header->type = PERF_RECORD_SAMPLE;
5986         header->size = sizeof(*header) + event->header_size;
5987
5988         header->misc = 0;
5989         header->misc |= perf_misc_flags(regs);
5990
5991         __perf_event_header__init_id(header, data, event);
5992
5993         if (sample_type & PERF_SAMPLE_IP)
5994                 data->ip = perf_instruction_pointer(regs);
5995
5996         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5997                 int size = 1;
5998
5999                 data->callchain = perf_callchain(event, regs);
6000
6001                 if (data->callchain)
6002                         size += data->callchain->nr;
6003
6004                 header->size += size * sizeof(u64);
6005         }
6006
6007         if (sample_type & PERF_SAMPLE_RAW) {
6008                 struct perf_raw_record *raw = data->raw;
6009                 int size;
6010
6011                 if (raw) {
6012                         struct perf_raw_frag *frag = &raw->frag;
6013                         u32 sum = 0;
6014
6015                         do {
6016                                 sum += frag->size;
6017                                 if (perf_raw_frag_last(frag))
6018                                         break;
6019                                 frag = frag->next;
6020                         } while (1);
6021
6022                         size = round_up(sum + sizeof(u32), sizeof(u64));
6023                         raw->size = size - sizeof(u32);
6024                         frag->pad = raw->size - sum;
6025                 } else {
6026                         size = sizeof(u64);
6027                 }
6028
6029                 header->size += size;
6030         }
6031
6032         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6033                 int size = sizeof(u64); /* nr */
6034                 if (data->br_stack) {
6035                         size += data->br_stack->nr
6036                               * sizeof(struct perf_branch_entry);
6037                 }
6038                 header->size += size;
6039         }
6040
6041         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6042                 perf_sample_regs_user(&data->regs_user, regs,
6043                                       &data->regs_user_copy);
6044
6045         if (sample_type & PERF_SAMPLE_REGS_USER) {
6046                 /* regs dump ABI info */
6047                 int size = sizeof(u64);
6048
6049                 if (data->regs_user.regs) {
6050                         u64 mask = event->attr.sample_regs_user;
6051                         size += hweight64(mask) * sizeof(u64);
6052                 }
6053
6054                 header->size += size;
6055         }
6056
6057         if (sample_type & PERF_SAMPLE_STACK_USER) {
6058                 /*
6059                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6060                  * processed as the last one or have additional check added
6061                  * in case new sample type is added, because we could eat
6062                  * up the rest of the sample size.
6063                  */
6064                 u16 stack_size = event->attr.sample_stack_user;
6065                 u16 size = sizeof(u64);
6066
6067                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6068                                                      data->regs_user.regs);
6069
6070                 /*
6071                  * If there is something to dump, add space for the dump
6072                  * itself and for the field that tells the dynamic size,
6073                  * which is how many have been actually dumped.
6074                  */
6075                 if (stack_size)
6076                         size += sizeof(u64) + stack_size;
6077
6078                 data->stack_user_size = stack_size;
6079                 header->size += size;
6080         }
6081
6082         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6083                 /* regs dump ABI info */
6084                 int size = sizeof(u64);
6085
6086                 perf_sample_regs_intr(&data->regs_intr, regs);
6087
6088                 if (data->regs_intr.regs) {
6089                         u64 mask = event->attr.sample_regs_intr;
6090
6091                         size += hweight64(mask) * sizeof(u64);
6092                 }
6093
6094                 header->size += size;
6095         }
6096 }
6097
6098 static void __always_inline
6099 __perf_event_output(struct perf_event *event,
6100                     struct perf_sample_data *data,
6101                     struct pt_regs *regs,
6102                     int (*output_begin)(struct perf_output_handle *,
6103                                         struct perf_event *,
6104                                         unsigned int))
6105 {
6106         struct perf_output_handle handle;
6107         struct perf_event_header header;
6108
6109         /* protect the callchain buffers */
6110         rcu_read_lock();
6111
6112         perf_prepare_sample(&header, data, event, regs);
6113
6114         if (output_begin(&handle, event, header.size))
6115                 goto exit;
6116
6117         perf_output_sample(&handle, &header, data, event);
6118
6119         perf_output_end(&handle);
6120
6121 exit:
6122         rcu_read_unlock();
6123 }
6124
6125 void
6126 perf_event_output_forward(struct perf_event *event,
6127                          struct perf_sample_data *data,
6128                          struct pt_regs *regs)
6129 {
6130         __perf_event_output(event, data, regs, perf_output_begin_forward);
6131 }
6132
6133 void
6134 perf_event_output_backward(struct perf_event *event,
6135                            struct perf_sample_data *data,
6136                            struct pt_regs *regs)
6137 {
6138         __perf_event_output(event, data, regs, perf_output_begin_backward);
6139 }
6140
6141 void
6142 perf_event_output(struct perf_event *event,
6143                   struct perf_sample_data *data,
6144                   struct pt_regs *regs)
6145 {
6146         __perf_event_output(event, data, regs, perf_output_begin);
6147 }
6148
6149 /*
6150  * read event_id
6151  */
6152
6153 struct perf_read_event {
6154         struct perf_event_header        header;
6155
6156         u32                             pid;
6157         u32                             tid;
6158 };
6159
6160 static void
6161 perf_event_read_event(struct perf_event *event,
6162                         struct task_struct *task)
6163 {
6164         struct perf_output_handle handle;
6165         struct perf_sample_data sample;
6166         struct perf_read_event read_event = {
6167                 .header = {
6168                         .type = PERF_RECORD_READ,
6169                         .misc = 0,
6170                         .size = sizeof(read_event) + event->read_size,
6171                 },
6172                 .pid = perf_event_pid(event, task),
6173                 .tid = perf_event_tid(event, task),
6174         };
6175         int ret;
6176
6177         perf_event_header__init_id(&read_event.header, &sample, event);
6178         ret = perf_output_begin(&handle, event, read_event.header.size);
6179         if (ret)
6180                 return;
6181
6182         perf_output_put(&handle, read_event);
6183         perf_output_read(&handle, event);
6184         perf_event__output_id_sample(event, &handle, &sample);
6185
6186         perf_output_end(&handle);
6187 }
6188
6189 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6190
6191 static void
6192 perf_iterate_ctx(struct perf_event_context *ctx,
6193                    perf_iterate_f output,
6194                    void *data, bool all)
6195 {
6196         struct perf_event *event;
6197
6198         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6199                 if (!all) {
6200                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6201                                 continue;
6202                         if (!event_filter_match(event))
6203                                 continue;
6204                 }
6205
6206                 output(event, data);
6207         }
6208 }
6209
6210 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6211 {
6212         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6213         struct perf_event *event;
6214
6215         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6216                 /*
6217                  * Skip events that are not fully formed yet; ensure that
6218                  * if we observe event->ctx, both event and ctx will be
6219                  * complete enough. See perf_install_in_context().
6220                  */
6221                 if (!smp_load_acquire(&event->ctx))
6222                         continue;
6223
6224                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6225                         continue;
6226                 if (!event_filter_match(event))
6227                         continue;
6228                 output(event, data);
6229         }
6230 }
6231
6232 /*
6233  * Iterate all events that need to receive side-band events.
6234  *
6235  * For new callers; ensure that account_pmu_sb_event() includes
6236  * your event, otherwise it might not get delivered.
6237  */
6238 static void
6239 perf_iterate_sb(perf_iterate_f output, void *data,
6240                struct perf_event_context *task_ctx)
6241 {
6242         struct perf_event_context *ctx;
6243         int ctxn;
6244
6245         rcu_read_lock();
6246         preempt_disable();
6247
6248         /*
6249          * If we have task_ctx != NULL we only notify the task context itself.
6250          * The task_ctx is set only for EXIT events before releasing task
6251          * context.
6252          */
6253         if (task_ctx) {
6254                 perf_iterate_ctx(task_ctx, output, data, false);
6255                 goto done;
6256         }
6257
6258         perf_iterate_sb_cpu(output, data);
6259
6260         for_each_task_context_nr(ctxn) {
6261                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6262                 if (ctx)
6263                         perf_iterate_ctx(ctx, output, data, false);
6264         }
6265 done:
6266         preempt_enable();
6267         rcu_read_unlock();
6268 }
6269
6270 /*
6271  * Clear all file-based filters at exec, they'll have to be
6272  * re-instated when/if these objects are mmapped again.
6273  */
6274 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6275 {
6276         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6277         struct perf_addr_filter *filter;
6278         unsigned int restart = 0, count = 0;
6279         unsigned long flags;
6280
6281         if (!has_addr_filter(event))
6282                 return;
6283
6284         raw_spin_lock_irqsave(&ifh->lock, flags);
6285         list_for_each_entry(filter, &ifh->list, entry) {
6286                 if (filter->inode) {
6287                         event->addr_filters_offs[count] = 0;
6288                         restart++;
6289                 }
6290
6291                 count++;
6292         }
6293
6294         if (restart)
6295                 event->addr_filters_gen++;
6296         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6297
6298         if (restart)
6299                 perf_event_stop(event, 1);
6300 }
6301
6302 void perf_event_exec(void)
6303 {
6304         struct perf_event_context *ctx;
6305         int ctxn;
6306
6307         rcu_read_lock();
6308         for_each_task_context_nr(ctxn) {
6309                 ctx = current->perf_event_ctxp[ctxn];
6310                 if (!ctx)
6311                         continue;
6312
6313                 perf_event_enable_on_exec(ctxn);
6314
6315                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6316                                    true);
6317         }
6318         rcu_read_unlock();
6319 }
6320
6321 struct remote_output {
6322         struct ring_buffer      *rb;
6323         int                     err;
6324 };
6325
6326 static void __perf_event_output_stop(struct perf_event *event, void *data)
6327 {
6328         struct perf_event *parent = event->parent;
6329         struct remote_output *ro = data;
6330         struct ring_buffer *rb = ro->rb;
6331         struct stop_event_data sd = {
6332                 .event  = event,
6333         };
6334
6335         if (!has_aux(event))
6336                 return;
6337
6338         if (!parent)
6339                 parent = event;
6340
6341         /*
6342          * In case of inheritance, it will be the parent that links to the
6343          * ring-buffer, but it will be the child that's actually using it.
6344          *
6345          * We are using event::rb to determine if the event should be stopped,
6346          * however this may race with ring_buffer_attach() (through set_output),
6347          * which will make us skip the event that actually needs to be stopped.
6348          * So ring_buffer_attach() has to stop an aux event before re-assigning
6349          * its rb pointer.
6350          */
6351         if (rcu_dereference(parent->rb) == rb)
6352                 ro->err = __perf_event_stop(&sd);
6353 }
6354
6355 static int __perf_pmu_output_stop(void *info)
6356 {
6357         struct perf_event *event = info;
6358         struct pmu *pmu = event->pmu;
6359         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6360         struct remote_output ro = {
6361                 .rb     = event->rb,
6362         };
6363
6364         rcu_read_lock();
6365         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6366         if (cpuctx->task_ctx)
6367                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6368                                    &ro, false);
6369         rcu_read_unlock();
6370
6371         return ro.err;
6372 }
6373
6374 static void perf_pmu_output_stop(struct perf_event *event)
6375 {
6376         struct perf_event *iter;
6377         int err, cpu;
6378
6379 restart:
6380         rcu_read_lock();
6381         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6382                 /*
6383                  * For per-CPU events, we need to make sure that neither they
6384                  * nor their children are running; for cpu==-1 events it's
6385                  * sufficient to stop the event itself if it's active, since
6386                  * it can't have children.
6387                  */
6388                 cpu = iter->cpu;
6389                 if (cpu == -1)
6390                         cpu = READ_ONCE(iter->oncpu);
6391
6392                 if (cpu == -1)
6393                         continue;
6394
6395                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6396                 if (err == -EAGAIN) {
6397                         rcu_read_unlock();
6398                         goto restart;
6399                 }
6400         }
6401         rcu_read_unlock();
6402 }
6403
6404 /*
6405  * task tracking -- fork/exit
6406  *
6407  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6408  */
6409
6410 struct perf_task_event {
6411         struct task_struct              *task;
6412         struct perf_event_context       *task_ctx;
6413
6414         struct {
6415                 struct perf_event_header        header;
6416
6417                 u32                             pid;
6418                 u32                             ppid;
6419                 u32                             tid;
6420                 u32                             ptid;
6421                 u64                             time;
6422         } event_id;
6423 };
6424
6425 static int perf_event_task_match(struct perf_event *event)
6426 {
6427         return event->attr.comm  || event->attr.mmap ||
6428                event->attr.mmap2 || event->attr.mmap_data ||
6429                event->attr.task;
6430 }
6431
6432 static void perf_event_task_output(struct perf_event *event,
6433                                    void *data)
6434 {
6435         struct perf_task_event *task_event = data;
6436         struct perf_output_handle handle;
6437         struct perf_sample_data sample;
6438         struct task_struct *task = task_event->task;
6439         int ret, size = task_event->event_id.header.size;
6440
6441         if (!perf_event_task_match(event))
6442                 return;
6443
6444         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6445
6446         ret = perf_output_begin(&handle, event,
6447                                 task_event->event_id.header.size);
6448         if (ret)
6449                 goto out;
6450
6451         task_event->event_id.pid = perf_event_pid(event, task);
6452         task_event->event_id.ppid = perf_event_pid(event, current);
6453
6454         task_event->event_id.tid = perf_event_tid(event, task);
6455         task_event->event_id.ptid = perf_event_tid(event, current);
6456
6457         task_event->event_id.time = perf_event_clock(event);
6458
6459         perf_output_put(&handle, task_event->event_id);
6460
6461         perf_event__output_id_sample(event, &handle, &sample);
6462
6463         perf_output_end(&handle);
6464 out:
6465         task_event->event_id.header.size = size;
6466 }
6467
6468 static void perf_event_task(struct task_struct *task,
6469                               struct perf_event_context *task_ctx,
6470                               int new)
6471 {
6472         struct perf_task_event task_event;
6473
6474         if (!atomic_read(&nr_comm_events) &&
6475             !atomic_read(&nr_mmap_events) &&
6476             !atomic_read(&nr_task_events))
6477                 return;
6478
6479         task_event = (struct perf_task_event){
6480                 .task     = task,
6481                 .task_ctx = task_ctx,
6482                 .event_id    = {
6483                         .header = {
6484                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6485                                 .misc = 0,
6486                                 .size = sizeof(task_event.event_id),
6487                         },
6488                         /* .pid  */
6489                         /* .ppid */
6490                         /* .tid  */
6491                         /* .ptid */
6492                         /* .time */
6493                 },
6494         };
6495
6496         perf_iterate_sb(perf_event_task_output,
6497                        &task_event,
6498                        task_ctx);
6499 }
6500
6501 void perf_event_fork(struct task_struct *task)
6502 {
6503         perf_event_task(task, NULL, 1);
6504         perf_event_namespaces(task);
6505 }
6506
6507 /*
6508  * comm tracking
6509  */
6510
6511 struct perf_comm_event {
6512         struct task_struct      *task;
6513         char                    *comm;
6514         int                     comm_size;
6515
6516         struct {
6517                 struct perf_event_header        header;
6518
6519                 u32                             pid;
6520                 u32                             tid;
6521         } event_id;
6522 };
6523
6524 static int perf_event_comm_match(struct perf_event *event)
6525 {
6526         return event->attr.comm;
6527 }
6528
6529 static void perf_event_comm_output(struct perf_event *event,
6530                                    void *data)
6531 {
6532         struct perf_comm_event *comm_event = data;
6533         struct perf_output_handle handle;
6534         struct perf_sample_data sample;
6535         int size = comm_event->event_id.header.size;
6536         int ret;
6537
6538         if (!perf_event_comm_match(event))
6539                 return;
6540
6541         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6542         ret = perf_output_begin(&handle, event,
6543                                 comm_event->event_id.header.size);
6544
6545         if (ret)
6546                 goto out;
6547
6548         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6549         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6550
6551         perf_output_put(&handle, comm_event->event_id);
6552         __output_copy(&handle, comm_event->comm,
6553                                    comm_event->comm_size);
6554
6555         perf_event__output_id_sample(event, &handle, &sample);
6556
6557         perf_output_end(&handle);
6558 out:
6559         comm_event->event_id.header.size = size;
6560 }
6561
6562 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6563 {
6564         char comm[TASK_COMM_LEN];
6565         unsigned int size;
6566
6567         memset(comm, 0, sizeof(comm));
6568         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6569         size = ALIGN(strlen(comm)+1, sizeof(u64));
6570
6571         comm_event->comm = comm;
6572         comm_event->comm_size = size;
6573
6574         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6575
6576         perf_iterate_sb(perf_event_comm_output,
6577                        comm_event,
6578                        NULL);
6579 }
6580
6581 void perf_event_comm(struct task_struct *task, bool exec)
6582 {
6583         struct perf_comm_event comm_event;
6584
6585         if (!atomic_read(&nr_comm_events))
6586                 return;
6587
6588         comm_event = (struct perf_comm_event){
6589                 .task   = task,
6590                 /* .comm      */
6591                 /* .comm_size */
6592                 .event_id  = {
6593                         .header = {
6594                                 .type = PERF_RECORD_COMM,
6595                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6596                                 /* .size */
6597                         },
6598                         /* .pid */
6599                         /* .tid */
6600                 },
6601         };
6602
6603         perf_event_comm_event(&comm_event);
6604 }
6605
6606 /*
6607  * namespaces tracking
6608  */
6609
6610 struct perf_namespaces_event {
6611         struct task_struct              *task;
6612
6613         struct {
6614                 struct perf_event_header        header;
6615
6616                 u32                             pid;
6617                 u32                             tid;
6618                 u64                             nr_namespaces;
6619                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
6620         } event_id;
6621 };
6622
6623 static int perf_event_namespaces_match(struct perf_event *event)
6624 {
6625         return event->attr.namespaces;
6626 }
6627
6628 static void perf_event_namespaces_output(struct perf_event *event,
6629                                          void *data)
6630 {
6631         struct perf_namespaces_event *namespaces_event = data;
6632         struct perf_output_handle handle;
6633         struct perf_sample_data sample;
6634         int ret;
6635
6636         if (!perf_event_namespaces_match(event))
6637                 return;
6638
6639         perf_event_header__init_id(&namespaces_event->event_id.header,
6640                                    &sample, event);
6641         ret = perf_output_begin(&handle, event,
6642                                 namespaces_event->event_id.header.size);
6643         if (ret)
6644                 return;
6645
6646         namespaces_event->event_id.pid = perf_event_pid(event,
6647                                                         namespaces_event->task);
6648         namespaces_event->event_id.tid = perf_event_tid(event,
6649                                                         namespaces_event->task);
6650
6651         perf_output_put(&handle, namespaces_event->event_id);
6652
6653         perf_event__output_id_sample(event, &handle, &sample);
6654
6655         perf_output_end(&handle);
6656 }
6657
6658 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6659                                    struct task_struct *task,
6660                                    const struct proc_ns_operations *ns_ops)
6661 {
6662         struct path ns_path;
6663         struct inode *ns_inode;
6664         void *error;
6665
6666         error = ns_get_path(&ns_path, task, ns_ops);
6667         if (!error) {
6668                 ns_inode = ns_path.dentry->d_inode;
6669                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6670                 ns_link_info->ino = ns_inode->i_ino;
6671         }
6672 }
6673
6674 void perf_event_namespaces(struct task_struct *task)
6675 {
6676         struct perf_namespaces_event namespaces_event;
6677         struct perf_ns_link_info *ns_link_info;
6678
6679         if (!atomic_read(&nr_namespaces_events))
6680                 return;
6681
6682         namespaces_event = (struct perf_namespaces_event){
6683                 .task   = task,
6684                 .event_id  = {
6685                         .header = {
6686                                 .type = PERF_RECORD_NAMESPACES,
6687                                 .misc = 0,
6688                                 .size = sizeof(namespaces_event.event_id),
6689                         },
6690                         /* .pid */
6691                         /* .tid */
6692                         .nr_namespaces = NR_NAMESPACES,
6693                         /* .link_info[NR_NAMESPACES] */
6694                 },
6695         };
6696
6697         ns_link_info = namespaces_event.event_id.link_info;
6698
6699         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6700                                task, &mntns_operations);
6701
6702 #ifdef CONFIG_USER_NS
6703         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6704                                task, &userns_operations);
6705 #endif
6706 #ifdef CONFIG_NET_NS
6707         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6708                                task, &netns_operations);
6709 #endif
6710 #ifdef CONFIG_UTS_NS
6711         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6712                                task, &utsns_operations);
6713 #endif
6714 #ifdef CONFIG_IPC_NS
6715         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6716                                task, &ipcns_operations);
6717 #endif
6718 #ifdef CONFIG_PID_NS
6719         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6720                                task, &pidns_operations);
6721 #endif
6722 #ifdef CONFIG_CGROUPS
6723         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6724                                task, &cgroupns_operations);
6725 #endif
6726
6727         perf_iterate_sb(perf_event_namespaces_output,
6728                         &namespaces_event,
6729                         NULL);
6730 }
6731
6732 /*
6733  * mmap tracking
6734  */
6735
6736 struct perf_mmap_event {
6737         struct vm_area_struct   *vma;
6738
6739         const char              *file_name;
6740         int                     file_size;
6741         int                     maj, min;
6742         u64                     ino;
6743         u64                     ino_generation;
6744         u32                     prot, flags;
6745
6746         struct {
6747                 struct perf_event_header        header;
6748
6749                 u32                             pid;
6750                 u32                             tid;
6751                 u64                             start;
6752                 u64                             len;
6753                 u64                             pgoff;
6754         } event_id;
6755 };
6756
6757 static int perf_event_mmap_match(struct perf_event *event,
6758                                  void *data)
6759 {
6760         struct perf_mmap_event *mmap_event = data;
6761         struct vm_area_struct *vma = mmap_event->vma;
6762         int executable = vma->vm_flags & VM_EXEC;
6763
6764         return (!executable && event->attr.mmap_data) ||
6765                (executable && (event->attr.mmap || event->attr.mmap2));
6766 }
6767
6768 static void perf_event_mmap_output(struct perf_event *event,
6769                                    void *data)
6770 {
6771         struct perf_mmap_event *mmap_event = data;
6772         struct perf_output_handle handle;
6773         struct perf_sample_data sample;
6774         int size = mmap_event->event_id.header.size;
6775         int ret;
6776
6777         if (!perf_event_mmap_match(event, data))
6778                 return;
6779
6780         if (event->attr.mmap2) {
6781                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6782                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6783                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6784                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6785                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6786                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6787                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6788         }
6789
6790         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6791         ret = perf_output_begin(&handle, event,
6792                                 mmap_event->event_id.header.size);
6793         if (ret)
6794                 goto out;
6795
6796         mmap_event->event_id.pid = perf_event_pid(event, current);
6797         mmap_event->event_id.tid = perf_event_tid(event, current);
6798
6799         perf_output_put(&handle, mmap_event->event_id);
6800
6801         if (event->attr.mmap2) {
6802                 perf_output_put(&handle, mmap_event->maj);
6803                 perf_output_put(&handle, mmap_event->min);
6804                 perf_output_put(&handle, mmap_event->ino);
6805                 perf_output_put(&handle, mmap_event->ino_generation);
6806                 perf_output_put(&handle, mmap_event->prot);
6807                 perf_output_put(&handle, mmap_event->flags);
6808         }
6809
6810         __output_copy(&handle, mmap_event->file_name,
6811                                    mmap_event->file_size);
6812
6813         perf_event__output_id_sample(event, &handle, &sample);
6814
6815         perf_output_end(&handle);
6816 out:
6817         mmap_event->event_id.header.size = size;
6818 }
6819
6820 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6821 {
6822         struct vm_area_struct *vma = mmap_event->vma;
6823         struct file *file = vma->vm_file;
6824         int maj = 0, min = 0;
6825         u64 ino = 0, gen = 0;
6826         u32 prot = 0, flags = 0;
6827         unsigned int size;
6828         char tmp[16];
6829         char *buf = NULL;
6830         char *name;
6831
6832         if (vma->vm_flags & VM_READ)
6833                 prot |= PROT_READ;
6834         if (vma->vm_flags & VM_WRITE)
6835                 prot |= PROT_WRITE;
6836         if (vma->vm_flags & VM_EXEC)
6837                 prot |= PROT_EXEC;
6838
6839         if (vma->vm_flags & VM_MAYSHARE)
6840                 flags = MAP_SHARED;
6841         else
6842                 flags = MAP_PRIVATE;
6843
6844         if (vma->vm_flags & VM_DENYWRITE)
6845                 flags |= MAP_DENYWRITE;
6846         if (vma->vm_flags & VM_MAYEXEC)
6847                 flags |= MAP_EXECUTABLE;
6848         if (vma->vm_flags & VM_LOCKED)
6849                 flags |= MAP_LOCKED;
6850         if (vma->vm_flags & VM_HUGETLB)
6851                 flags |= MAP_HUGETLB;
6852
6853         if (file) {
6854                 struct inode *inode;
6855                 dev_t dev;
6856
6857                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6858                 if (!buf) {
6859                         name = "//enomem";
6860                         goto cpy_name;
6861                 }
6862                 /*
6863                  * d_path() works from the end of the rb backwards, so we
6864                  * need to add enough zero bytes after the string to handle
6865                  * the 64bit alignment we do later.
6866                  */
6867                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6868                 if (IS_ERR(name)) {
6869                         name = "//toolong";
6870                         goto cpy_name;
6871                 }
6872                 inode = file_inode(vma->vm_file);
6873                 dev = inode->i_sb->s_dev;
6874                 ino = inode->i_ino;
6875                 gen = inode->i_generation;
6876                 maj = MAJOR(dev);
6877                 min = MINOR(dev);
6878
6879                 goto got_name;
6880         } else {
6881                 if (vma->vm_ops && vma->vm_ops->name) {
6882                         name = (char *) vma->vm_ops->name(vma);
6883                         if (name)
6884                                 goto cpy_name;
6885                 }
6886
6887                 name = (char *)arch_vma_name(vma);
6888                 if (name)
6889                         goto cpy_name;
6890
6891                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6892                                 vma->vm_end >= vma->vm_mm->brk) {
6893                         name = "[heap]";
6894                         goto cpy_name;
6895                 }
6896                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6897                                 vma->vm_end >= vma->vm_mm->start_stack) {
6898                         name = "[stack]";
6899                         goto cpy_name;
6900                 }
6901
6902                 name = "//anon";
6903                 goto cpy_name;
6904         }
6905
6906 cpy_name:
6907         strlcpy(tmp, name, sizeof(tmp));
6908         name = tmp;
6909 got_name:
6910         /*
6911          * Since our buffer works in 8 byte units we need to align our string
6912          * size to a multiple of 8. However, we must guarantee the tail end is
6913          * zero'd out to avoid leaking random bits to userspace.
6914          */
6915         size = strlen(name)+1;
6916         while (!IS_ALIGNED(size, sizeof(u64)))
6917                 name[size++] = '\0';
6918
6919         mmap_event->file_name = name;
6920         mmap_event->file_size = size;
6921         mmap_event->maj = maj;
6922         mmap_event->min = min;
6923         mmap_event->ino = ino;
6924         mmap_event->ino_generation = gen;
6925         mmap_event->prot = prot;
6926         mmap_event->flags = flags;
6927
6928         if (!(vma->vm_flags & VM_EXEC))
6929                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6930
6931         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6932
6933         perf_iterate_sb(perf_event_mmap_output,
6934                        mmap_event,
6935                        NULL);
6936
6937         kfree(buf);
6938 }
6939
6940 /*
6941  * Check whether inode and address range match filter criteria.
6942  */
6943 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6944                                      struct file *file, unsigned long offset,
6945                                      unsigned long size)
6946 {
6947         if (filter->inode != file_inode(file))
6948                 return false;
6949
6950         if (filter->offset > offset + size)
6951                 return false;
6952
6953         if (filter->offset + filter->size < offset)
6954                 return false;
6955
6956         return true;
6957 }
6958
6959 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6960 {
6961         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6962         struct vm_area_struct *vma = data;
6963         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6964         struct file *file = vma->vm_file;
6965         struct perf_addr_filter *filter;
6966         unsigned int restart = 0, count = 0;
6967
6968         if (!has_addr_filter(event))
6969                 return;
6970
6971         if (!file)
6972                 return;
6973
6974         raw_spin_lock_irqsave(&ifh->lock, flags);
6975         list_for_each_entry(filter, &ifh->list, entry) {
6976                 if (perf_addr_filter_match(filter, file, off,
6977                                              vma->vm_end - vma->vm_start)) {
6978                         event->addr_filters_offs[count] = vma->vm_start;
6979                         restart++;
6980                 }
6981
6982                 count++;
6983         }
6984
6985         if (restart)
6986                 event->addr_filters_gen++;
6987         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6988
6989         if (restart)
6990                 perf_event_stop(event, 1);
6991 }
6992
6993 /*
6994  * Adjust all task's events' filters to the new vma
6995  */
6996 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6997 {
6998         struct perf_event_context *ctx;
6999         int ctxn;
7000
7001         /*
7002          * Data tracing isn't supported yet and as such there is no need
7003          * to keep track of anything that isn't related to executable code:
7004          */
7005         if (!(vma->vm_flags & VM_EXEC))
7006                 return;
7007
7008         rcu_read_lock();
7009         for_each_task_context_nr(ctxn) {
7010                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7011                 if (!ctx)
7012                         continue;
7013
7014                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7015         }
7016         rcu_read_unlock();
7017 }
7018
7019 void perf_event_mmap(struct vm_area_struct *vma)
7020 {
7021         struct perf_mmap_event mmap_event;
7022
7023         if (!atomic_read(&nr_mmap_events))
7024                 return;
7025
7026         mmap_event = (struct perf_mmap_event){
7027                 .vma    = vma,
7028                 /* .file_name */
7029                 /* .file_size */
7030                 .event_id  = {
7031                         .header = {
7032                                 .type = PERF_RECORD_MMAP,
7033                                 .misc = PERF_RECORD_MISC_USER,
7034                                 /* .size */
7035                         },
7036                         /* .pid */
7037                         /* .tid */
7038                         .start  = vma->vm_start,
7039                         .len    = vma->vm_end - vma->vm_start,
7040                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7041                 },
7042                 /* .maj (attr_mmap2 only) */
7043                 /* .min (attr_mmap2 only) */
7044                 /* .ino (attr_mmap2 only) */
7045                 /* .ino_generation (attr_mmap2 only) */
7046                 /* .prot (attr_mmap2 only) */
7047                 /* .flags (attr_mmap2 only) */
7048         };
7049
7050         perf_addr_filters_adjust(vma);
7051         perf_event_mmap_event(&mmap_event);
7052 }
7053
7054 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7055                           unsigned long size, u64 flags)
7056 {
7057         struct perf_output_handle handle;
7058         struct perf_sample_data sample;
7059         struct perf_aux_event {
7060                 struct perf_event_header        header;
7061                 u64                             offset;
7062                 u64                             size;
7063                 u64                             flags;
7064         } rec = {
7065                 .header = {
7066                         .type = PERF_RECORD_AUX,
7067                         .misc = 0,
7068                         .size = sizeof(rec),
7069                 },
7070                 .offset         = head,
7071                 .size           = size,
7072                 .flags          = flags,
7073         };
7074         int ret;
7075
7076         perf_event_header__init_id(&rec.header, &sample, event);
7077         ret = perf_output_begin(&handle, event, rec.header.size);
7078
7079         if (ret)
7080                 return;
7081
7082         perf_output_put(&handle, rec);
7083         perf_event__output_id_sample(event, &handle, &sample);
7084
7085         perf_output_end(&handle);
7086 }
7087
7088 /*
7089  * Lost/dropped samples logging
7090  */
7091 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7092 {
7093         struct perf_output_handle handle;
7094         struct perf_sample_data sample;
7095         int ret;
7096
7097         struct {
7098                 struct perf_event_header        header;
7099                 u64                             lost;
7100         } lost_samples_event = {
7101                 .header = {
7102                         .type = PERF_RECORD_LOST_SAMPLES,
7103                         .misc = 0,
7104                         .size = sizeof(lost_samples_event),
7105                 },
7106                 .lost           = lost,
7107         };
7108
7109         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7110
7111         ret = perf_output_begin(&handle, event,
7112                                 lost_samples_event.header.size);
7113         if (ret)
7114                 return;
7115
7116         perf_output_put(&handle, lost_samples_event);
7117         perf_event__output_id_sample(event, &handle, &sample);
7118         perf_output_end(&handle);
7119 }
7120
7121 /*
7122  * context_switch tracking
7123  */
7124
7125 struct perf_switch_event {
7126         struct task_struct      *task;
7127         struct task_struct      *next_prev;
7128
7129         struct {
7130                 struct perf_event_header        header;
7131                 u32                             next_prev_pid;
7132                 u32                             next_prev_tid;
7133         } event_id;
7134 };
7135
7136 static int perf_event_switch_match(struct perf_event *event)
7137 {
7138         return event->attr.context_switch;
7139 }
7140
7141 static void perf_event_switch_output(struct perf_event *event, void *data)
7142 {
7143         struct perf_switch_event *se = data;
7144         struct perf_output_handle handle;
7145         struct perf_sample_data sample;
7146         int ret;
7147
7148         if (!perf_event_switch_match(event))
7149                 return;
7150
7151         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7152         if (event->ctx->task) {
7153                 se->event_id.header.type = PERF_RECORD_SWITCH;
7154                 se->event_id.header.size = sizeof(se->event_id.header);
7155         } else {
7156                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7157                 se->event_id.header.size = sizeof(se->event_id);
7158                 se->event_id.next_prev_pid =
7159                                         perf_event_pid(event, se->next_prev);
7160                 se->event_id.next_prev_tid =
7161                                         perf_event_tid(event, se->next_prev);
7162         }
7163
7164         perf_event_header__init_id(&se->event_id.header, &sample, event);
7165
7166         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7167         if (ret)
7168                 return;
7169
7170         if (event->ctx->task)
7171                 perf_output_put(&handle, se->event_id.header);
7172         else
7173                 perf_output_put(&handle, se->event_id);
7174
7175         perf_event__output_id_sample(event, &handle, &sample);
7176
7177         perf_output_end(&handle);
7178 }
7179
7180 static void perf_event_switch(struct task_struct *task,
7181                               struct task_struct *next_prev, bool sched_in)
7182 {
7183         struct perf_switch_event switch_event;
7184
7185         /* N.B. caller checks nr_switch_events != 0 */
7186
7187         switch_event = (struct perf_switch_event){
7188                 .task           = task,
7189                 .next_prev      = next_prev,
7190                 .event_id       = {
7191                         .header = {
7192                                 /* .type */
7193                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7194                                 /* .size */
7195                         },
7196                         /* .next_prev_pid */
7197                         /* .next_prev_tid */
7198                 },
7199         };
7200
7201         perf_iterate_sb(perf_event_switch_output,
7202                        &switch_event,
7203                        NULL);
7204 }
7205
7206 /*
7207  * IRQ throttle logging
7208  */
7209
7210 static void perf_log_throttle(struct perf_event *event, int enable)
7211 {
7212         struct perf_output_handle handle;
7213         struct perf_sample_data sample;
7214         int ret;
7215
7216         struct {
7217                 struct perf_event_header        header;
7218                 u64                             time;
7219                 u64                             id;
7220                 u64                             stream_id;
7221         } throttle_event = {
7222                 .header = {
7223                         .type = PERF_RECORD_THROTTLE,
7224                         .misc = 0,
7225                         .size = sizeof(throttle_event),
7226                 },
7227                 .time           = perf_event_clock(event),
7228                 .id             = primary_event_id(event),
7229                 .stream_id      = event->id,
7230         };
7231
7232         if (enable)
7233                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7234
7235         perf_event_header__init_id(&throttle_event.header, &sample, event);
7236
7237         ret = perf_output_begin(&handle, event,
7238                                 throttle_event.header.size);
7239         if (ret)
7240                 return;
7241
7242         perf_output_put(&handle, throttle_event);
7243         perf_event__output_id_sample(event, &handle, &sample);
7244         perf_output_end(&handle);
7245 }
7246
7247 static void perf_log_itrace_start(struct perf_event *event)
7248 {
7249         struct perf_output_handle handle;
7250         struct perf_sample_data sample;
7251         struct perf_aux_event {
7252                 struct perf_event_header        header;
7253                 u32                             pid;
7254                 u32                             tid;
7255         } rec;
7256         int ret;
7257
7258         if (event->parent)
7259                 event = event->parent;
7260
7261         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7262             event->hw.itrace_started)
7263                 return;
7264
7265         rec.header.type = PERF_RECORD_ITRACE_START;
7266         rec.header.misc = 0;
7267         rec.header.size = sizeof(rec);
7268         rec.pid = perf_event_pid(event, current);
7269         rec.tid = perf_event_tid(event, current);
7270
7271         perf_event_header__init_id(&rec.header, &sample, event);
7272         ret = perf_output_begin(&handle, event, rec.header.size);
7273
7274         if (ret)
7275                 return;
7276
7277         perf_output_put(&handle, rec);
7278         perf_event__output_id_sample(event, &handle, &sample);
7279
7280         perf_output_end(&handle);
7281 }
7282
7283 static int
7284 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7285 {
7286         struct hw_perf_event *hwc = &event->hw;
7287         int ret = 0;
7288         u64 seq;
7289
7290         seq = __this_cpu_read(perf_throttled_seq);
7291         if (seq != hwc->interrupts_seq) {
7292                 hwc->interrupts_seq = seq;
7293                 hwc->interrupts = 1;
7294         } else {
7295                 hwc->interrupts++;
7296                 if (unlikely(throttle
7297                              && hwc->interrupts >= max_samples_per_tick)) {
7298                         __this_cpu_inc(perf_throttled_count);
7299                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7300                         hwc->interrupts = MAX_INTERRUPTS;
7301                         perf_log_throttle(event, 0);
7302                         ret = 1;
7303                 }
7304         }
7305
7306         if (event->attr.freq) {
7307                 u64 now = perf_clock();
7308                 s64 delta = now - hwc->freq_time_stamp;
7309
7310                 hwc->freq_time_stamp = now;
7311
7312                 if (delta > 0 && delta < 2*TICK_NSEC)
7313                         perf_adjust_period(event, delta, hwc->last_period, true);
7314         }
7315
7316         return ret;
7317 }
7318
7319 int perf_event_account_interrupt(struct perf_event *event)
7320 {
7321         return __perf_event_account_interrupt(event, 1);
7322 }
7323
7324 static bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
7325 {
7326         /*
7327          * Due to interrupt latency (AKA "skid"), we may enter the
7328          * kernel before taking an overflow, even if the PMU is only
7329          * counting user events.
7330          * To avoid leaking information to userspace, we must always
7331          * reject kernel samples when exclude_kernel is set.
7332          */
7333         if (event->attr.exclude_kernel && !user_mode(regs))
7334                 return false;
7335
7336         return true;
7337 }
7338
7339 /*
7340  * Generic event overflow handling, sampling.
7341  */
7342
7343 static int __perf_event_overflow(struct perf_event *event,
7344                                    int throttle, struct perf_sample_data *data,
7345                                    struct pt_regs *regs)
7346 {
7347         int events = atomic_read(&event->event_limit);
7348         int ret = 0;
7349
7350         /*
7351          * Non-sampling counters might still use the PMI to fold short
7352          * hardware counters, ignore those.
7353          */
7354         if (unlikely(!is_sampling_event(event)))
7355                 return 0;
7356
7357         ret = __perf_event_account_interrupt(event, throttle);
7358
7359         /*
7360          * For security, drop the skid kernel samples if necessary.
7361          */
7362         if (!sample_is_allowed(event, regs))
7363                 return ret;
7364
7365         /*
7366          * XXX event_limit might not quite work as expected on inherited
7367          * events
7368          */
7369
7370         event->pending_kill = POLL_IN;
7371         if (events && atomic_dec_and_test(&event->event_limit)) {
7372                 ret = 1;
7373                 event->pending_kill = POLL_HUP;
7374
7375                 perf_event_disable_inatomic(event);
7376         }
7377
7378         READ_ONCE(event->overflow_handler)(event, data, regs);
7379
7380         if (*perf_event_fasync(event) && event->pending_kill) {
7381                 event->pending_wakeup = 1;
7382                 irq_work_queue(&event->pending);
7383         }
7384
7385         return ret;
7386 }
7387
7388 int perf_event_overflow(struct perf_event *event,
7389                           struct perf_sample_data *data,
7390                           struct pt_regs *regs)
7391 {
7392         return __perf_event_overflow(event, 1, data, regs);
7393 }
7394
7395 /*
7396  * Generic software event infrastructure
7397  */
7398
7399 struct swevent_htable {
7400         struct swevent_hlist            *swevent_hlist;
7401         struct mutex                    hlist_mutex;
7402         int                             hlist_refcount;
7403
7404         /* Recursion avoidance in each contexts */
7405         int                             recursion[PERF_NR_CONTEXTS];
7406 };
7407
7408 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7409
7410 /*
7411  * We directly increment event->count and keep a second value in
7412  * event->hw.period_left to count intervals. This period event
7413  * is kept in the range [-sample_period, 0] so that we can use the
7414  * sign as trigger.
7415  */
7416
7417 u64 perf_swevent_set_period(struct perf_event *event)
7418 {
7419         struct hw_perf_event *hwc = &event->hw;
7420         u64 period = hwc->last_period;
7421         u64 nr, offset;
7422         s64 old, val;
7423
7424         hwc->last_period = hwc->sample_period;
7425
7426 again:
7427         old = val = local64_read(&hwc->period_left);
7428         if (val < 0)
7429                 return 0;
7430
7431         nr = div64_u64(period + val, period);
7432         offset = nr * period;
7433         val -= offset;
7434         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7435                 goto again;
7436
7437         return nr;
7438 }
7439
7440 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7441                                     struct perf_sample_data *data,
7442                                     struct pt_regs *regs)
7443 {
7444         struct hw_perf_event *hwc = &event->hw;
7445         int throttle = 0;
7446
7447         if (!overflow)
7448                 overflow = perf_swevent_set_period(event);
7449
7450         if (hwc->interrupts == MAX_INTERRUPTS)
7451                 return;
7452
7453         for (; overflow; overflow--) {
7454                 if (__perf_event_overflow(event, throttle,
7455                                             data, regs)) {
7456                         /*
7457                          * We inhibit the overflow from happening when
7458                          * hwc->interrupts == MAX_INTERRUPTS.
7459                          */
7460                         break;
7461                 }
7462                 throttle = 1;
7463         }
7464 }
7465
7466 static void perf_swevent_event(struct perf_event *event, u64 nr,
7467                                struct perf_sample_data *data,
7468                                struct pt_regs *regs)
7469 {
7470         struct hw_perf_event *hwc = &event->hw;
7471
7472         local64_add(nr, &event->count);
7473
7474         if (!regs)
7475                 return;
7476
7477         if (!is_sampling_event(event))
7478                 return;
7479
7480         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7481                 data->period = nr;
7482                 return perf_swevent_overflow(event, 1, data, regs);
7483         } else
7484                 data->period = event->hw.last_period;
7485
7486         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7487                 return perf_swevent_overflow(event, 1, data, regs);
7488
7489         if (local64_add_negative(nr, &hwc->period_left))
7490                 return;
7491
7492         perf_swevent_overflow(event, 0, data, regs);
7493 }
7494
7495 static int perf_exclude_event(struct perf_event *event,
7496                               struct pt_regs *regs)
7497 {
7498         if (event->hw.state & PERF_HES_STOPPED)
7499                 return 1;
7500
7501         if (regs) {
7502                 if (event->attr.exclude_user && user_mode(regs))
7503                         return 1;
7504
7505                 if (event->attr.exclude_kernel && !user_mode(regs))
7506                         return 1;
7507         }
7508
7509         return 0;
7510 }
7511
7512 static int perf_swevent_match(struct perf_event *event,
7513                                 enum perf_type_id type,
7514                                 u32 event_id,
7515                                 struct perf_sample_data *data,
7516                                 struct pt_regs *regs)
7517 {
7518         if (event->attr.type != type)
7519                 return 0;
7520
7521         if (event->attr.config != event_id)
7522                 return 0;
7523
7524         if (perf_exclude_event(event, regs))
7525                 return 0;
7526
7527         return 1;
7528 }
7529
7530 static inline u64 swevent_hash(u64 type, u32 event_id)
7531 {
7532         u64 val = event_id | (type << 32);
7533
7534         return hash_64(val, SWEVENT_HLIST_BITS);
7535 }
7536
7537 static inline struct hlist_head *
7538 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7539 {
7540         u64 hash = swevent_hash(type, event_id);
7541
7542         return &hlist->heads[hash];
7543 }
7544
7545 /* For the read side: events when they trigger */
7546 static inline struct hlist_head *
7547 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7548 {
7549         struct swevent_hlist *hlist;
7550
7551         hlist = rcu_dereference(swhash->swevent_hlist);
7552         if (!hlist)
7553                 return NULL;
7554
7555         return __find_swevent_head(hlist, type, event_id);
7556 }
7557
7558 /* For the event head insertion and removal in the hlist */
7559 static inline struct hlist_head *
7560 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7561 {
7562         struct swevent_hlist *hlist;
7563         u32 event_id = event->attr.config;
7564         u64 type = event->attr.type;
7565
7566         /*
7567          * Event scheduling is always serialized against hlist allocation
7568          * and release. Which makes the protected version suitable here.
7569          * The context lock guarantees that.
7570          */
7571         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7572                                           lockdep_is_held(&event->ctx->lock));
7573         if (!hlist)
7574                 return NULL;
7575
7576         return __find_swevent_head(hlist, type, event_id);
7577 }
7578
7579 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7580                                     u64 nr,
7581                                     struct perf_sample_data *data,
7582                                     struct pt_regs *regs)
7583 {
7584         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7585         struct perf_event *event;
7586         struct hlist_head *head;
7587
7588         rcu_read_lock();
7589         head = find_swevent_head_rcu(swhash, type, event_id);
7590         if (!head)
7591                 goto end;
7592
7593         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7594                 if (perf_swevent_match(event, type, event_id, data, regs))
7595                         perf_swevent_event(event, nr, data, regs);
7596         }
7597 end:
7598         rcu_read_unlock();
7599 }
7600
7601 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7602
7603 int perf_swevent_get_recursion_context(void)
7604 {
7605         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7606
7607         return get_recursion_context(swhash->recursion);
7608 }
7609 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7610
7611 void perf_swevent_put_recursion_context(int rctx)
7612 {
7613         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7614
7615         put_recursion_context(swhash->recursion, rctx);
7616 }
7617
7618 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7619 {
7620         struct perf_sample_data data;
7621
7622         if (WARN_ON_ONCE(!regs))
7623                 return;
7624
7625         perf_sample_data_init(&data, addr, 0);
7626         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7627 }
7628
7629 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7630 {
7631         int rctx;
7632
7633         preempt_disable_notrace();
7634         rctx = perf_swevent_get_recursion_context();
7635         if (unlikely(rctx < 0))
7636                 goto fail;
7637
7638         ___perf_sw_event(event_id, nr, regs, addr);
7639
7640         perf_swevent_put_recursion_context(rctx);
7641 fail:
7642         preempt_enable_notrace();
7643 }
7644
7645 static void perf_swevent_read(struct perf_event *event)
7646 {
7647 }
7648
7649 static int perf_swevent_add(struct perf_event *event, int flags)
7650 {
7651         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7652         struct hw_perf_event *hwc = &event->hw;
7653         struct hlist_head *head;
7654
7655         if (is_sampling_event(event)) {
7656                 hwc->last_period = hwc->sample_period;
7657                 perf_swevent_set_period(event);
7658         }
7659
7660         hwc->state = !(flags & PERF_EF_START);
7661
7662         head = find_swevent_head(swhash, event);
7663         if (WARN_ON_ONCE(!head))
7664                 return -EINVAL;
7665
7666         hlist_add_head_rcu(&event->hlist_entry, head);
7667         perf_event_update_userpage(event);
7668
7669         return 0;
7670 }
7671
7672 static void perf_swevent_del(struct perf_event *event, int flags)
7673 {
7674         hlist_del_rcu(&event->hlist_entry);
7675 }
7676
7677 static void perf_swevent_start(struct perf_event *event, int flags)
7678 {
7679         event->hw.state = 0;
7680 }
7681
7682 static void perf_swevent_stop(struct perf_event *event, int flags)
7683 {
7684         event->hw.state = PERF_HES_STOPPED;
7685 }
7686
7687 /* Deref the hlist from the update side */
7688 static inline struct swevent_hlist *
7689 swevent_hlist_deref(struct swevent_htable *swhash)
7690 {
7691         return rcu_dereference_protected(swhash->swevent_hlist,
7692                                          lockdep_is_held(&swhash->hlist_mutex));
7693 }
7694
7695 static void swevent_hlist_release(struct swevent_htable *swhash)
7696 {
7697         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7698
7699         if (!hlist)
7700                 return;
7701
7702         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7703         kfree_rcu(hlist, rcu_head);
7704 }
7705
7706 static void swevent_hlist_put_cpu(int cpu)
7707 {
7708         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7709
7710         mutex_lock(&swhash->hlist_mutex);
7711
7712         if (!--swhash->hlist_refcount)
7713                 swevent_hlist_release(swhash);
7714
7715         mutex_unlock(&swhash->hlist_mutex);
7716 }
7717
7718 static void swevent_hlist_put(void)
7719 {
7720         int cpu;
7721
7722         for_each_possible_cpu(cpu)
7723                 swevent_hlist_put_cpu(cpu);
7724 }
7725
7726 static int swevent_hlist_get_cpu(int cpu)
7727 {
7728         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7729         int err = 0;
7730
7731         mutex_lock(&swhash->hlist_mutex);
7732         if (!swevent_hlist_deref(swhash) &&
7733             cpumask_test_cpu(cpu, perf_online_mask)) {
7734                 struct swevent_hlist *hlist;
7735
7736                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7737                 if (!hlist) {
7738                         err = -ENOMEM;
7739                         goto exit;
7740                 }
7741                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7742         }
7743         swhash->hlist_refcount++;
7744 exit:
7745         mutex_unlock(&swhash->hlist_mutex);
7746
7747         return err;
7748 }
7749
7750 static int swevent_hlist_get(void)
7751 {
7752         int err, cpu, failed_cpu;
7753
7754         mutex_lock(&pmus_lock);
7755         for_each_possible_cpu(cpu) {
7756                 err = swevent_hlist_get_cpu(cpu);
7757                 if (err) {
7758                         failed_cpu = cpu;
7759                         goto fail;
7760                 }
7761         }
7762         mutex_unlock(&pmus_lock);
7763         return 0;
7764 fail:
7765         for_each_possible_cpu(cpu) {
7766                 if (cpu == failed_cpu)
7767                         break;
7768                 swevent_hlist_put_cpu(cpu);
7769         }
7770         mutex_unlock(&pmus_lock);
7771         return err;
7772 }
7773
7774 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7775
7776 static void sw_perf_event_destroy(struct perf_event *event)
7777 {
7778         u64 event_id = event->attr.config;
7779
7780         WARN_ON(event->parent);
7781
7782         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7783         swevent_hlist_put();
7784 }
7785
7786 static int perf_swevent_init(struct perf_event *event)
7787 {
7788         u64 event_id = event->attr.config;
7789
7790         if (event->attr.type != PERF_TYPE_SOFTWARE)
7791                 return -ENOENT;
7792
7793         /*
7794          * no branch sampling for software events
7795          */
7796         if (has_branch_stack(event))
7797                 return -EOPNOTSUPP;
7798
7799         switch (event_id) {
7800         case PERF_COUNT_SW_CPU_CLOCK:
7801         case PERF_COUNT_SW_TASK_CLOCK:
7802                 return -ENOENT;
7803
7804         default:
7805                 break;
7806         }
7807
7808         if (event_id >= PERF_COUNT_SW_MAX)
7809                 return -ENOENT;
7810
7811         if (!event->parent) {
7812                 int err;
7813
7814                 err = swevent_hlist_get();
7815                 if (err)
7816                         return err;
7817
7818                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7819                 event->destroy = sw_perf_event_destroy;
7820         }
7821
7822         return 0;
7823 }
7824
7825 static struct pmu perf_swevent = {
7826         .task_ctx_nr    = perf_sw_context,
7827
7828         .capabilities   = PERF_PMU_CAP_NO_NMI,
7829
7830         .event_init     = perf_swevent_init,
7831         .add            = perf_swevent_add,
7832         .del            = perf_swevent_del,
7833         .start          = perf_swevent_start,
7834         .stop           = perf_swevent_stop,
7835         .read           = perf_swevent_read,
7836 };
7837
7838 #ifdef CONFIG_EVENT_TRACING
7839
7840 static int perf_tp_filter_match(struct perf_event *event,
7841                                 struct perf_sample_data *data)
7842 {
7843         void *record = data->raw->frag.data;
7844
7845         /* only top level events have filters set */
7846         if (event->parent)
7847                 event = event->parent;
7848
7849         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7850                 return 1;
7851         return 0;
7852 }
7853
7854 static int perf_tp_event_match(struct perf_event *event,
7855                                 struct perf_sample_data *data,
7856                                 struct pt_regs *regs)
7857 {
7858         if (event->hw.state & PERF_HES_STOPPED)
7859                 return 0;
7860         /*
7861          * All tracepoints are from kernel-space.
7862          */
7863         if (event->attr.exclude_kernel)
7864                 return 0;
7865
7866         if (!perf_tp_filter_match(event, data))
7867                 return 0;
7868
7869         return 1;
7870 }
7871
7872 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7873                                struct trace_event_call *call, u64 count,
7874                                struct pt_regs *regs, struct hlist_head *head,
7875                                struct task_struct *task)
7876 {
7877         struct bpf_prog *prog = call->prog;
7878
7879         if (prog) {
7880                 *(struct pt_regs **)raw_data = regs;
7881                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7882                         perf_swevent_put_recursion_context(rctx);
7883                         return;
7884                 }
7885         }
7886         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7887                       rctx, task);
7888 }
7889 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7890
7891 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7892                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7893                    struct task_struct *task)
7894 {
7895         struct perf_sample_data data;
7896         struct perf_event *event;
7897
7898         struct perf_raw_record raw = {
7899                 .frag = {
7900                         .size = entry_size,
7901                         .data = record,
7902                 },
7903         };
7904
7905         perf_sample_data_init(&data, 0, 0);
7906         data.raw = &raw;
7907
7908         perf_trace_buf_update(record, event_type);
7909
7910         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7911                 if (perf_tp_event_match(event, &data, regs))
7912                         perf_swevent_event(event, count, &data, regs);
7913         }
7914
7915         /*
7916          * If we got specified a target task, also iterate its context and
7917          * deliver this event there too.
7918          */
7919         if (task && task != current) {
7920                 struct perf_event_context *ctx;
7921                 struct trace_entry *entry = record;
7922
7923                 rcu_read_lock();
7924                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7925                 if (!ctx)
7926                         goto unlock;
7927
7928                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7929                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7930                                 continue;
7931                         if (event->attr.config != entry->type)
7932                                 continue;
7933                         if (perf_tp_event_match(event, &data, regs))
7934                                 perf_swevent_event(event, count, &data, regs);
7935                 }
7936 unlock:
7937                 rcu_read_unlock();
7938         }
7939
7940         perf_swevent_put_recursion_context(rctx);
7941 }
7942 EXPORT_SYMBOL_GPL(perf_tp_event);
7943
7944 static void tp_perf_event_destroy(struct perf_event *event)
7945 {
7946         perf_trace_destroy(event);
7947 }
7948
7949 static int perf_tp_event_init(struct perf_event *event)
7950 {
7951         int err;
7952
7953         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7954                 return -ENOENT;
7955
7956         /*
7957          * no branch sampling for tracepoint events
7958          */
7959         if (has_branch_stack(event))
7960                 return -EOPNOTSUPP;
7961
7962         err = perf_trace_init(event);
7963         if (err)
7964                 return err;
7965
7966         event->destroy = tp_perf_event_destroy;
7967
7968         return 0;
7969 }
7970
7971 static struct pmu perf_tracepoint = {
7972         .task_ctx_nr    = perf_sw_context,
7973
7974         .event_init     = perf_tp_event_init,
7975         .add            = perf_trace_add,
7976         .del            = perf_trace_del,
7977         .start          = perf_swevent_start,
7978         .stop           = perf_swevent_stop,
7979         .read           = perf_swevent_read,
7980 };
7981
7982 static inline void perf_tp_register(void)
7983 {
7984         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7985 }
7986
7987 static void perf_event_free_filter(struct perf_event *event)
7988 {
7989         ftrace_profile_free_filter(event);
7990 }
7991
7992 #ifdef CONFIG_BPF_SYSCALL
7993 static void bpf_overflow_handler(struct perf_event *event,
7994                                  struct perf_sample_data *data,
7995                                  struct pt_regs *regs)
7996 {
7997         struct bpf_perf_event_data_kern ctx = {
7998                 .data = data,
7999                 .regs = regs,
8000         };
8001         int ret = 0;
8002
8003         preempt_disable();
8004         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8005                 goto out;
8006         rcu_read_lock();
8007         ret = BPF_PROG_RUN(event->prog, &ctx);
8008         rcu_read_unlock();
8009 out:
8010         __this_cpu_dec(bpf_prog_active);
8011         preempt_enable();
8012         if (!ret)
8013                 return;
8014
8015         event->orig_overflow_handler(event, data, regs);
8016 }
8017
8018 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8019 {
8020         struct bpf_prog *prog;
8021
8022         if (event->overflow_handler_context)
8023                 /* hw breakpoint or kernel counter */
8024                 return -EINVAL;
8025
8026         if (event->prog)
8027                 return -EEXIST;
8028
8029         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8030         if (IS_ERR(prog))
8031                 return PTR_ERR(prog);
8032
8033         event->prog = prog;
8034         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8035         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8036         return 0;
8037 }
8038
8039 static void perf_event_free_bpf_handler(struct perf_event *event)
8040 {
8041         struct bpf_prog *prog = event->prog;
8042
8043         if (!prog)
8044                 return;
8045
8046         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8047         event->prog = NULL;
8048         bpf_prog_put(prog);
8049 }
8050 #else
8051 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8052 {
8053         return -EOPNOTSUPP;
8054 }
8055 static void perf_event_free_bpf_handler(struct perf_event *event)
8056 {
8057 }
8058 #endif
8059
8060 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8061 {
8062         bool is_kprobe, is_tracepoint;
8063         struct bpf_prog *prog;
8064
8065         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8066                 return perf_event_set_bpf_handler(event, prog_fd);
8067
8068         if (event->tp_event->prog)
8069                 return -EEXIST;
8070
8071         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8072         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8073         if (!is_kprobe && !is_tracepoint)
8074                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8075                 return -EINVAL;
8076
8077         prog = bpf_prog_get(prog_fd);
8078         if (IS_ERR(prog))
8079                 return PTR_ERR(prog);
8080
8081         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8082             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8083                 /* valid fd, but invalid bpf program type */
8084                 bpf_prog_put(prog);
8085                 return -EINVAL;
8086         }
8087
8088         if (is_tracepoint) {
8089                 int off = trace_event_get_offsets(event->tp_event);
8090
8091                 if (prog->aux->max_ctx_offset > off) {
8092                         bpf_prog_put(prog);
8093                         return -EACCES;
8094                 }
8095         }
8096         event->tp_event->prog = prog;
8097
8098         return 0;
8099 }
8100
8101 static void perf_event_free_bpf_prog(struct perf_event *event)
8102 {
8103         struct bpf_prog *prog;
8104
8105         perf_event_free_bpf_handler(event);
8106
8107         if (!event->tp_event)
8108                 return;
8109
8110         prog = event->tp_event->prog;
8111         if (prog) {
8112                 event->tp_event->prog = NULL;
8113                 bpf_prog_put(prog);
8114         }
8115 }
8116
8117 #else
8118
8119 static inline void perf_tp_register(void)
8120 {
8121 }
8122
8123 static void perf_event_free_filter(struct perf_event *event)
8124 {
8125 }
8126
8127 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8128 {
8129         return -ENOENT;
8130 }
8131
8132 static void perf_event_free_bpf_prog(struct perf_event *event)
8133 {
8134 }
8135 #endif /* CONFIG_EVENT_TRACING */
8136
8137 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8138 void perf_bp_event(struct perf_event *bp, void *data)
8139 {
8140         struct perf_sample_data sample;
8141         struct pt_regs *regs = data;
8142
8143         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8144
8145         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8146                 perf_swevent_event(bp, 1, &sample, regs);
8147 }
8148 #endif
8149
8150 /*
8151  * Allocate a new address filter
8152  */
8153 static struct perf_addr_filter *
8154 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8155 {
8156         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8157         struct perf_addr_filter *filter;
8158
8159         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8160         if (!filter)
8161                 return NULL;
8162
8163         INIT_LIST_HEAD(&filter->entry);
8164         list_add_tail(&filter->entry, filters);
8165
8166         return filter;
8167 }
8168
8169 static void free_filters_list(struct list_head *filters)
8170 {
8171         struct perf_addr_filter *filter, *iter;
8172
8173         list_for_each_entry_safe(filter, iter, filters, entry) {
8174                 if (filter->inode)
8175                         iput(filter->inode);
8176                 list_del(&filter->entry);
8177                 kfree(filter);
8178         }
8179 }
8180
8181 /*
8182  * Free existing address filters and optionally install new ones
8183  */
8184 static void perf_addr_filters_splice(struct perf_event *event,
8185                                      struct list_head *head)
8186 {
8187         unsigned long flags;
8188         LIST_HEAD(list);
8189
8190         if (!has_addr_filter(event))
8191                 return;
8192
8193         /* don't bother with children, they don't have their own filters */
8194         if (event->parent)
8195                 return;
8196
8197         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8198
8199         list_splice_init(&event->addr_filters.list, &list);
8200         if (head)
8201                 list_splice(head, &event->addr_filters.list);
8202
8203         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8204
8205         free_filters_list(&list);
8206 }
8207
8208 /*
8209  * Scan through mm's vmas and see if one of them matches the
8210  * @filter; if so, adjust filter's address range.
8211  * Called with mm::mmap_sem down for reading.
8212  */
8213 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8214                                             struct mm_struct *mm)
8215 {
8216         struct vm_area_struct *vma;
8217
8218         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8219                 struct file *file = vma->vm_file;
8220                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8221                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8222
8223                 if (!file)
8224                         continue;
8225
8226                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8227                         continue;
8228
8229                 return vma->vm_start;
8230         }
8231
8232         return 0;
8233 }
8234
8235 /*
8236  * Update event's address range filters based on the
8237  * task's existing mappings, if any.
8238  */
8239 static void perf_event_addr_filters_apply(struct perf_event *event)
8240 {
8241         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8242         struct task_struct *task = READ_ONCE(event->ctx->task);
8243         struct perf_addr_filter *filter;
8244         struct mm_struct *mm = NULL;
8245         unsigned int count = 0;
8246         unsigned long flags;
8247
8248         /*
8249          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8250          * will stop on the parent's child_mutex that our caller is also holding
8251          */
8252         if (task == TASK_TOMBSTONE)
8253                 return;
8254
8255         if (!ifh->nr_file_filters)
8256                 return;
8257
8258         mm = get_task_mm(event->ctx->task);
8259         if (!mm)
8260                 goto restart;
8261
8262         down_read(&mm->mmap_sem);
8263
8264         raw_spin_lock_irqsave(&ifh->lock, flags);
8265         list_for_each_entry(filter, &ifh->list, entry) {
8266                 event->addr_filters_offs[count] = 0;
8267
8268                 /*
8269                  * Adjust base offset if the filter is associated to a binary
8270                  * that needs to be mapped:
8271                  */
8272                 if (filter->inode)
8273                         event->addr_filters_offs[count] =
8274                                 perf_addr_filter_apply(filter, mm);
8275
8276                 count++;
8277         }
8278
8279         event->addr_filters_gen++;
8280         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8281
8282         up_read(&mm->mmap_sem);
8283
8284         mmput(mm);
8285
8286 restart:
8287         perf_event_stop(event, 1);
8288 }
8289
8290 /*
8291  * Address range filtering: limiting the data to certain
8292  * instruction address ranges. Filters are ioctl()ed to us from
8293  * userspace as ascii strings.
8294  *
8295  * Filter string format:
8296  *
8297  * ACTION RANGE_SPEC
8298  * where ACTION is one of the
8299  *  * "filter": limit the trace to this region
8300  *  * "start": start tracing from this address
8301  *  * "stop": stop tracing at this address/region;
8302  * RANGE_SPEC is
8303  *  * for kernel addresses: <start address>[/<size>]
8304  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8305  *
8306  * if <size> is not specified, the range is treated as a single address.
8307  */
8308 enum {
8309         IF_ACT_NONE = -1,
8310         IF_ACT_FILTER,
8311         IF_ACT_START,
8312         IF_ACT_STOP,
8313         IF_SRC_FILE,
8314         IF_SRC_KERNEL,
8315         IF_SRC_FILEADDR,
8316         IF_SRC_KERNELADDR,
8317 };
8318
8319 enum {
8320         IF_STATE_ACTION = 0,
8321         IF_STATE_SOURCE,
8322         IF_STATE_END,
8323 };
8324
8325 static const match_table_t if_tokens = {
8326         { IF_ACT_FILTER,        "filter" },
8327         { IF_ACT_START,         "start" },
8328         { IF_ACT_STOP,          "stop" },
8329         { IF_SRC_FILE,          "%u/%u@%s" },
8330         { IF_SRC_KERNEL,        "%u/%u" },
8331         { IF_SRC_FILEADDR,      "%u@%s" },
8332         { IF_SRC_KERNELADDR,    "%u" },
8333         { IF_ACT_NONE,          NULL },
8334 };
8335
8336 /*
8337  * Address filter string parser
8338  */
8339 static int
8340 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8341                              struct list_head *filters)
8342 {
8343         struct perf_addr_filter *filter = NULL;
8344         char *start, *orig, *filename = NULL;
8345         struct path path;
8346         substring_t args[MAX_OPT_ARGS];
8347         int state = IF_STATE_ACTION, token;
8348         unsigned int kernel = 0;
8349         int ret = -EINVAL;
8350
8351         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8352         if (!fstr)
8353                 return -ENOMEM;
8354
8355         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8356                 ret = -EINVAL;
8357
8358                 if (!*start)
8359                         continue;
8360
8361                 /* filter definition begins */
8362                 if (state == IF_STATE_ACTION) {
8363                         filter = perf_addr_filter_new(event, filters);
8364                         if (!filter)
8365                                 goto fail;
8366                 }
8367
8368                 token = match_token(start, if_tokens, args);
8369                 switch (token) {
8370                 case IF_ACT_FILTER:
8371                 case IF_ACT_START:
8372                         filter->filter = 1;
8373
8374                 case IF_ACT_STOP:
8375                         if (state != IF_STATE_ACTION)
8376                                 goto fail;
8377
8378                         state = IF_STATE_SOURCE;
8379                         break;
8380
8381                 case IF_SRC_KERNELADDR:
8382                 case IF_SRC_KERNEL:
8383                         kernel = 1;
8384
8385                 case IF_SRC_FILEADDR:
8386                 case IF_SRC_FILE:
8387                         if (state != IF_STATE_SOURCE)
8388                                 goto fail;
8389
8390                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8391                                 filter->range = 1;
8392
8393                         *args[0].to = 0;
8394                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8395                         if (ret)
8396                                 goto fail;
8397
8398                         if (filter->range) {
8399                                 *args[1].to = 0;
8400                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8401                                 if (ret)
8402                                         goto fail;
8403                         }
8404
8405                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8406                                 int fpos = filter->range ? 2 : 1;
8407
8408                                 filename = match_strdup(&args[fpos]);
8409                                 if (!filename) {
8410                                         ret = -ENOMEM;
8411                                         goto fail;
8412                                 }
8413                         }
8414
8415                         state = IF_STATE_END;
8416                         break;
8417
8418                 default:
8419                         goto fail;
8420                 }
8421
8422                 /*
8423                  * Filter definition is fully parsed, validate and install it.
8424                  * Make sure that it doesn't contradict itself or the event's
8425                  * attribute.
8426                  */
8427                 if (state == IF_STATE_END) {
8428                         ret = -EINVAL;
8429                         if (kernel && event->attr.exclude_kernel)
8430                                 goto fail;
8431
8432                         if (!kernel) {
8433                                 if (!filename)
8434                                         goto fail;
8435
8436                                 /*
8437                                  * For now, we only support file-based filters
8438                                  * in per-task events; doing so for CPU-wide
8439                                  * events requires additional context switching
8440                                  * trickery, since same object code will be
8441                                  * mapped at different virtual addresses in
8442                                  * different processes.
8443                                  */
8444                                 ret = -EOPNOTSUPP;
8445                                 if (!event->ctx->task)
8446                                         goto fail_free_name;
8447
8448                                 /* look up the path and grab its inode */
8449                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8450                                 if (ret)
8451                                         goto fail_free_name;
8452
8453                                 filter->inode = igrab(d_inode(path.dentry));
8454                                 path_put(&path);
8455                                 kfree(filename);
8456                                 filename = NULL;
8457
8458                                 ret = -EINVAL;
8459                                 if (!filter->inode ||
8460                                     !S_ISREG(filter->inode->i_mode))
8461                                         /* free_filters_list() will iput() */
8462                                         goto fail;
8463
8464                                 event->addr_filters.nr_file_filters++;
8465                         }
8466
8467                         /* ready to consume more filters */
8468                         state = IF_STATE_ACTION;
8469                         filter = NULL;
8470                 }
8471         }
8472
8473         if (state != IF_STATE_ACTION)
8474                 goto fail;
8475
8476         kfree(orig);
8477
8478         return 0;
8479
8480 fail_free_name:
8481         kfree(filename);
8482 fail:
8483         free_filters_list(filters);
8484         kfree(orig);
8485
8486         return ret;
8487 }
8488
8489 static int
8490 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8491 {
8492         LIST_HEAD(filters);
8493         int ret;
8494
8495         /*
8496          * Since this is called in perf_ioctl() path, we're already holding
8497          * ctx::mutex.
8498          */
8499         lockdep_assert_held(&event->ctx->mutex);
8500
8501         if (WARN_ON_ONCE(event->parent))
8502                 return -EINVAL;
8503
8504         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8505         if (ret)
8506                 goto fail_clear_files;
8507
8508         ret = event->pmu->addr_filters_validate(&filters);
8509         if (ret)
8510                 goto fail_free_filters;
8511
8512         /* remove existing filters, if any */
8513         perf_addr_filters_splice(event, &filters);
8514
8515         /* install new filters */
8516         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8517
8518         return ret;
8519
8520 fail_free_filters:
8521         free_filters_list(&filters);
8522
8523 fail_clear_files:
8524         event->addr_filters.nr_file_filters = 0;
8525
8526         return ret;
8527 }
8528
8529 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8530 {
8531         char *filter_str;
8532         int ret = -EINVAL;
8533
8534         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8535             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8536             !has_addr_filter(event))
8537                 return -EINVAL;
8538
8539         filter_str = strndup_user(arg, PAGE_SIZE);
8540         if (IS_ERR(filter_str))
8541                 return PTR_ERR(filter_str);
8542
8543         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8544             event->attr.type == PERF_TYPE_TRACEPOINT)
8545                 ret = ftrace_profile_set_filter(event, event->attr.config,
8546                                                 filter_str);
8547         else if (has_addr_filter(event))
8548                 ret = perf_event_set_addr_filter(event, filter_str);
8549
8550         kfree(filter_str);
8551         return ret;
8552 }
8553
8554 /*
8555  * hrtimer based swevent callback
8556  */
8557
8558 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8559 {
8560         enum hrtimer_restart ret = HRTIMER_RESTART;
8561         struct perf_sample_data data;
8562         struct pt_regs *regs;
8563         struct perf_event *event;
8564         u64 period;
8565
8566         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8567
8568         if (event->state != PERF_EVENT_STATE_ACTIVE)
8569                 return HRTIMER_NORESTART;
8570
8571         event->pmu->read(event);
8572
8573         perf_sample_data_init(&data, 0, event->hw.last_period);
8574         regs = get_irq_regs();
8575
8576         if (regs && !perf_exclude_event(event, regs)) {
8577                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8578                         if (__perf_event_overflow(event, 1, &data, regs))
8579                                 ret = HRTIMER_NORESTART;
8580         }
8581
8582         period = max_t(u64, 10000, event->hw.sample_period);
8583         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8584
8585         return ret;
8586 }
8587
8588 static void perf_swevent_start_hrtimer(struct perf_event *event)
8589 {
8590         struct hw_perf_event *hwc = &event->hw;
8591         s64 period;
8592
8593         if (!is_sampling_event(event))
8594                 return;
8595
8596         period = local64_read(&hwc->period_left);
8597         if (period) {
8598                 if (period < 0)
8599                         period = 10000;
8600
8601                 local64_set(&hwc->period_left, 0);
8602         } else {
8603                 period = max_t(u64, 10000, hwc->sample_period);
8604         }
8605         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8606                       HRTIMER_MODE_REL_PINNED);
8607 }
8608
8609 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8610 {
8611         struct hw_perf_event *hwc = &event->hw;
8612
8613         if (is_sampling_event(event)) {
8614                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8615                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8616
8617                 hrtimer_cancel(&hwc->hrtimer);
8618         }
8619 }
8620
8621 static void perf_swevent_init_hrtimer(struct perf_event *event)
8622 {
8623         struct hw_perf_event *hwc = &event->hw;
8624
8625         if (!is_sampling_event(event))
8626                 return;
8627
8628         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8629         hwc->hrtimer.function = perf_swevent_hrtimer;
8630
8631         /*
8632          * Since hrtimers have a fixed rate, we can do a static freq->period
8633          * mapping and avoid the whole period adjust feedback stuff.
8634          */
8635         if (event->attr.freq) {
8636                 long freq = event->attr.sample_freq;
8637
8638                 event->attr.sample_period = NSEC_PER_SEC / freq;
8639                 hwc->sample_period = event->attr.sample_period;
8640                 local64_set(&hwc->period_left, hwc->sample_period);
8641                 hwc->last_period = hwc->sample_period;
8642                 event->attr.freq = 0;
8643         }
8644 }
8645
8646 /*
8647  * Software event: cpu wall time clock
8648  */
8649
8650 static void cpu_clock_event_update(struct perf_event *event)
8651 {
8652         s64 prev;
8653         u64 now;
8654
8655         now = local_clock();
8656         prev = local64_xchg(&event->hw.prev_count, now);
8657         local64_add(now - prev, &event->count);
8658 }
8659
8660 static void cpu_clock_event_start(struct perf_event *event, int flags)
8661 {
8662         local64_set(&event->hw.prev_count, local_clock());
8663         perf_swevent_start_hrtimer(event);
8664 }
8665
8666 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8667 {
8668         perf_swevent_cancel_hrtimer(event);
8669         cpu_clock_event_update(event);
8670 }
8671
8672 static int cpu_clock_event_add(struct perf_event *event, int flags)
8673 {
8674         if (flags & PERF_EF_START)
8675                 cpu_clock_event_start(event, flags);
8676         perf_event_update_userpage(event);
8677
8678         return 0;
8679 }
8680
8681 static void cpu_clock_event_del(struct perf_event *event, int flags)
8682 {
8683         cpu_clock_event_stop(event, flags);
8684 }
8685
8686 static void cpu_clock_event_read(struct perf_event *event)
8687 {
8688         cpu_clock_event_update(event);
8689 }
8690
8691 static int cpu_clock_event_init(struct perf_event *event)
8692 {
8693         if (event->attr.type != PERF_TYPE_SOFTWARE)
8694                 return -ENOENT;
8695
8696         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8697                 return -ENOENT;
8698
8699         /*
8700          * no branch sampling for software events
8701          */
8702         if (has_branch_stack(event))
8703                 return -EOPNOTSUPP;
8704
8705         perf_swevent_init_hrtimer(event);
8706
8707         return 0;
8708 }
8709
8710 static struct pmu perf_cpu_clock = {
8711         .task_ctx_nr    = perf_sw_context,
8712
8713         .capabilities   = PERF_PMU_CAP_NO_NMI,
8714
8715         .event_init     = cpu_clock_event_init,
8716         .add            = cpu_clock_event_add,
8717         .del            = cpu_clock_event_del,
8718         .start          = cpu_clock_event_start,
8719         .stop           = cpu_clock_event_stop,
8720         .read           = cpu_clock_event_read,
8721 };
8722
8723 /*
8724  * Software event: task time clock
8725  */
8726
8727 static void task_clock_event_update(struct perf_event *event, u64 now)
8728 {
8729         u64 prev;
8730         s64 delta;
8731
8732         prev = local64_xchg(&event->hw.prev_count, now);
8733         delta = now - prev;
8734         local64_add(delta, &event->count);
8735 }
8736
8737 static void task_clock_event_start(struct perf_event *event, int flags)
8738 {
8739         local64_set(&event->hw.prev_count, event->ctx->time);
8740         perf_swevent_start_hrtimer(event);
8741 }
8742
8743 static void task_clock_event_stop(struct perf_event *event, int flags)
8744 {
8745         perf_swevent_cancel_hrtimer(event);
8746         task_clock_event_update(event, event->ctx->time);
8747 }
8748
8749 static int task_clock_event_add(struct perf_event *event, int flags)
8750 {
8751         if (flags & PERF_EF_START)
8752                 task_clock_event_start(event, flags);
8753         perf_event_update_userpage(event);
8754
8755         return 0;
8756 }
8757
8758 static void task_clock_event_del(struct perf_event *event, int flags)
8759 {
8760         task_clock_event_stop(event, PERF_EF_UPDATE);
8761 }
8762
8763 static void task_clock_event_read(struct perf_event *event)
8764 {
8765         u64 now = perf_clock();
8766         u64 delta = now - event->ctx->timestamp;
8767         u64 time = event->ctx->time + delta;
8768
8769         task_clock_event_update(event, time);
8770 }
8771
8772 static int task_clock_event_init(struct perf_event *event)
8773 {
8774         if (event->attr.type != PERF_TYPE_SOFTWARE)
8775                 return -ENOENT;
8776
8777         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8778                 return -ENOENT;
8779
8780         /*
8781          * no branch sampling for software events
8782          */
8783         if (has_branch_stack(event))
8784                 return -EOPNOTSUPP;
8785
8786         perf_swevent_init_hrtimer(event);
8787
8788         return 0;
8789 }
8790
8791 static struct pmu perf_task_clock = {
8792         .task_ctx_nr    = perf_sw_context,
8793
8794         .capabilities   = PERF_PMU_CAP_NO_NMI,
8795
8796         .event_init     = task_clock_event_init,
8797         .add            = task_clock_event_add,
8798         .del            = task_clock_event_del,
8799         .start          = task_clock_event_start,
8800         .stop           = task_clock_event_stop,
8801         .read           = task_clock_event_read,
8802 };
8803
8804 static void perf_pmu_nop_void(struct pmu *pmu)
8805 {
8806 }
8807
8808 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8809 {
8810 }
8811
8812 static int perf_pmu_nop_int(struct pmu *pmu)
8813 {
8814         return 0;
8815 }
8816
8817 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8818
8819 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8820 {
8821         __this_cpu_write(nop_txn_flags, flags);
8822
8823         if (flags & ~PERF_PMU_TXN_ADD)
8824                 return;
8825
8826         perf_pmu_disable(pmu);
8827 }
8828
8829 static int perf_pmu_commit_txn(struct pmu *pmu)
8830 {
8831         unsigned int flags = __this_cpu_read(nop_txn_flags);
8832
8833         __this_cpu_write(nop_txn_flags, 0);
8834
8835         if (flags & ~PERF_PMU_TXN_ADD)
8836                 return 0;
8837
8838         perf_pmu_enable(pmu);
8839         return 0;
8840 }
8841
8842 static void perf_pmu_cancel_txn(struct pmu *pmu)
8843 {
8844         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8845
8846         __this_cpu_write(nop_txn_flags, 0);
8847
8848         if (flags & ~PERF_PMU_TXN_ADD)
8849                 return;
8850
8851         perf_pmu_enable(pmu);
8852 }
8853
8854 static int perf_event_idx_default(struct perf_event *event)
8855 {
8856         return 0;
8857 }
8858
8859 /*
8860  * Ensures all contexts with the same task_ctx_nr have the same
8861  * pmu_cpu_context too.
8862  */
8863 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8864 {
8865         struct pmu *pmu;
8866
8867         if (ctxn < 0)
8868                 return NULL;
8869
8870         list_for_each_entry(pmu, &pmus, entry) {
8871                 if (pmu->task_ctx_nr == ctxn)
8872                         return pmu->pmu_cpu_context;
8873         }
8874
8875         return NULL;
8876 }
8877
8878 static void free_pmu_context(struct pmu *pmu)
8879 {
8880         mutex_lock(&pmus_lock);
8881         free_percpu(pmu->pmu_cpu_context);
8882         mutex_unlock(&pmus_lock);
8883 }
8884
8885 /*
8886  * Let userspace know that this PMU supports address range filtering:
8887  */
8888 static ssize_t nr_addr_filters_show(struct device *dev,
8889                                     struct device_attribute *attr,
8890                                     char *page)
8891 {
8892         struct pmu *pmu = dev_get_drvdata(dev);
8893
8894         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8895 }
8896 DEVICE_ATTR_RO(nr_addr_filters);
8897
8898 static struct idr pmu_idr;
8899
8900 static ssize_t
8901 type_show(struct device *dev, struct device_attribute *attr, char *page)
8902 {
8903         struct pmu *pmu = dev_get_drvdata(dev);
8904
8905         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8906 }
8907 static DEVICE_ATTR_RO(type);
8908
8909 static ssize_t
8910 perf_event_mux_interval_ms_show(struct device *dev,
8911                                 struct device_attribute *attr,
8912                                 char *page)
8913 {
8914         struct pmu *pmu = dev_get_drvdata(dev);
8915
8916         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8917 }
8918
8919 static DEFINE_MUTEX(mux_interval_mutex);
8920
8921 static ssize_t
8922 perf_event_mux_interval_ms_store(struct device *dev,
8923                                  struct device_attribute *attr,
8924                                  const char *buf, size_t count)
8925 {
8926         struct pmu *pmu = dev_get_drvdata(dev);
8927         int timer, cpu, ret;
8928
8929         ret = kstrtoint(buf, 0, &timer);
8930         if (ret)
8931                 return ret;
8932
8933         if (timer < 1)
8934                 return -EINVAL;
8935
8936         /* same value, noting to do */
8937         if (timer == pmu->hrtimer_interval_ms)
8938                 return count;
8939
8940         mutex_lock(&mux_interval_mutex);
8941         pmu->hrtimer_interval_ms = timer;
8942
8943         /* update all cpuctx for this PMU */
8944         cpus_read_lock();
8945         for_each_online_cpu(cpu) {
8946                 struct perf_cpu_context *cpuctx;
8947                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8948                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8949
8950                 cpu_function_call(cpu,
8951                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8952         }
8953         cpus_read_unlock();
8954         mutex_unlock(&mux_interval_mutex);
8955
8956         return count;
8957 }
8958 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8959
8960 static struct attribute *pmu_dev_attrs[] = {
8961         &dev_attr_type.attr,
8962         &dev_attr_perf_event_mux_interval_ms.attr,
8963         NULL,
8964 };
8965 ATTRIBUTE_GROUPS(pmu_dev);
8966
8967 static int pmu_bus_running;
8968 static struct bus_type pmu_bus = {
8969         .name           = "event_source",
8970         .dev_groups     = pmu_dev_groups,
8971 };
8972
8973 static void pmu_dev_release(struct device *dev)
8974 {
8975         kfree(dev);
8976 }
8977
8978 static int pmu_dev_alloc(struct pmu *pmu)
8979 {
8980         int ret = -ENOMEM;
8981
8982         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8983         if (!pmu->dev)
8984                 goto out;
8985
8986         pmu->dev->groups = pmu->attr_groups;
8987         device_initialize(pmu->dev);
8988         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8989         if (ret)
8990                 goto free_dev;
8991
8992         dev_set_drvdata(pmu->dev, pmu);
8993         pmu->dev->bus = &pmu_bus;
8994         pmu->dev->release = pmu_dev_release;
8995         ret = device_add(pmu->dev);
8996         if (ret)
8997                 goto free_dev;
8998
8999         /* For PMUs with address filters, throw in an extra attribute: */
9000         if (pmu->nr_addr_filters)
9001                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9002
9003         if (ret)
9004                 goto del_dev;
9005
9006 out:
9007         return ret;
9008
9009 del_dev:
9010         device_del(pmu->dev);
9011
9012 free_dev:
9013         put_device(pmu->dev);
9014         goto out;
9015 }
9016
9017 static struct lock_class_key cpuctx_mutex;
9018 static struct lock_class_key cpuctx_lock;
9019
9020 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9021 {
9022         int cpu, ret;
9023
9024         mutex_lock(&pmus_lock);
9025         ret = -ENOMEM;
9026         pmu->pmu_disable_count = alloc_percpu(int);
9027         if (!pmu->pmu_disable_count)
9028                 goto unlock;
9029
9030         pmu->type = -1;
9031         if (!name)
9032                 goto skip_type;
9033         pmu->name = name;
9034
9035         if (type < 0) {
9036                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9037                 if (type < 0) {
9038                         ret = type;
9039                         goto free_pdc;
9040                 }
9041         }
9042         pmu->type = type;
9043
9044         if (pmu_bus_running) {
9045                 ret = pmu_dev_alloc(pmu);
9046                 if (ret)
9047                         goto free_idr;
9048         }
9049
9050 skip_type:
9051         if (pmu->task_ctx_nr == perf_hw_context) {
9052                 static int hw_context_taken = 0;
9053
9054                 /*
9055                  * Other than systems with heterogeneous CPUs, it never makes
9056                  * sense for two PMUs to share perf_hw_context. PMUs which are
9057                  * uncore must use perf_invalid_context.
9058                  */
9059                 if (WARN_ON_ONCE(hw_context_taken &&
9060                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9061                         pmu->task_ctx_nr = perf_invalid_context;
9062
9063                 hw_context_taken = 1;
9064         }
9065
9066         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9067         if (pmu->pmu_cpu_context)
9068                 goto got_cpu_context;
9069
9070         ret = -ENOMEM;
9071         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9072         if (!pmu->pmu_cpu_context)
9073                 goto free_dev;
9074
9075         for_each_possible_cpu(cpu) {
9076                 struct perf_cpu_context *cpuctx;
9077
9078                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9079                 __perf_event_init_context(&cpuctx->ctx);
9080                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9081                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9082                 cpuctx->ctx.pmu = pmu;
9083                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9084
9085                 __perf_mux_hrtimer_init(cpuctx, cpu);
9086         }
9087
9088 got_cpu_context:
9089         if (!pmu->start_txn) {
9090                 if (pmu->pmu_enable) {
9091                         /*
9092                          * If we have pmu_enable/pmu_disable calls, install
9093                          * transaction stubs that use that to try and batch
9094                          * hardware accesses.
9095                          */
9096                         pmu->start_txn  = perf_pmu_start_txn;
9097                         pmu->commit_txn = perf_pmu_commit_txn;
9098                         pmu->cancel_txn = perf_pmu_cancel_txn;
9099                 } else {
9100                         pmu->start_txn  = perf_pmu_nop_txn;
9101                         pmu->commit_txn = perf_pmu_nop_int;
9102                         pmu->cancel_txn = perf_pmu_nop_void;
9103                 }
9104         }
9105
9106         if (!pmu->pmu_enable) {
9107                 pmu->pmu_enable  = perf_pmu_nop_void;
9108                 pmu->pmu_disable = perf_pmu_nop_void;
9109         }
9110
9111         if (!pmu->event_idx)
9112                 pmu->event_idx = perf_event_idx_default;
9113
9114         list_add_rcu(&pmu->entry, &pmus);
9115         atomic_set(&pmu->exclusive_cnt, 0);
9116         ret = 0;
9117 unlock:
9118         mutex_unlock(&pmus_lock);
9119
9120         return ret;
9121
9122 free_dev:
9123         device_del(pmu->dev);
9124         put_device(pmu->dev);
9125
9126 free_idr:
9127         if (pmu->type >= PERF_TYPE_MAX)
9128                 idr_remove(&pmu_idr, pmu->type);
9129
9130 free_pdc:
9131         free_percpu(pmu->pmu_disable_count);
9132         goto unlock;
9133 }
9134 EXPORT_SYMBOL_GPL(perf_pmu_register);
9135
9136 void perf_pmu_unregister(struct pmu *pmu)
9137 {
9138         int remove_device;
9139
9140         mutex_lock(&pmus_lock);
9141         remove_device = pmu_bus_running;
9142         list_del_rcu(&pmu->entry);
9143         mutex_unlock(&pmus_lock);
9144
9145         /*
9146          * We dereference the pmu list under both SRCU and regular RCU, so
9147          * synchronize against both of those.
9148          */
9149         synchronize_srcu(&pmus_srcu);
9150         synchronize_rcu();
9151
9152         free_percpu(pmu->pmu_disable_count);
9153         if (pmu->type >= PERF_TYPE_MAX)
9154                 idr_remove(&pmu_idr, pmu->type);
9155         if (remove_device) {
9156                 if (pmu->nr_addr_filters)
9157                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9158                 device_del(pmu->dev);
9159                 put_device(pmu->dev);
9160         }
9161         free_pmu_context(pmu);
9162 }
9163 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9164
9165 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9166 {
9167         struct perf_event_context *ctx = NULL;
9168         int ret;
9169
9170         if (!try_module_get(pmu->module))
9171                 return -ENODEV;
9172
9173         if (event->group_leader != event) {
9174                 /*
9175                  * This ctx->mutex can nest when we're called through
9176                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9177                  */
9178                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9179                                                  SINGLE_DEPTH_NESTING);
9180                 BUG_ON(!ctx);
9181         }
9182
9183         event->pmu = pmu;
9184         ret = pmu->event_init(event);
9185
9186         if (ctx)
9187                 perf_event_ctx_unlock(event->group_leader, ctx);
9188
9189         if (ret)
9190                 module_put(pmu->module);
9191
9192         return ret;
9193 }
9194
9195 static struct pmu *perf_init_event(struct perf_event *event)
9196 {
9197         struct pmu *pmu;
9198         int idx;
9199         int ret;
9200
9201         idx = srcu_read_lock(&pmus_srcu);
9202
9203         /* Try parent's PMU first: */
9204         if (event->parent && event->parent->pmu) {
9205                 pmu = event->parent->pmu;
9206                 ret = perf_try_init_event(pmu, event);
9207                 if (!ret)
9208                         goto unlock;
9209         }
9210
9211         rcu_read_lock();
9212         pmu = idr_find(&pmu_idr, event->attr.type);
9213         rcu_read_unlock();
9214         if (pmu) {
9215                 ret = perf_try_init_event(pmu, event);
9216                 if (ret)
9217                         pmu = ERR_PTR(ret);
9218                 goto unlock;
9219         }
9220
9221         list_for_each_entry_rcu(pmu, &pmus, entry) {
9222                 ret = perf_try_init_event(pmu, event);
9223                 if (!ret)
9224                         goto unlock;
9225
9226                 if (ret != -ENOENT) {
9227                         pmu = ERR_PTR(ret);
9228                         goto unlock;
9229                 }
9230         }
9231         pmu = ERR_PTR(-ENOENT);
9232 unlock:
9233         srcu_read_unlock(&pmus_srcu, idx);
9234
9235         return pmu;
9236 }
9237
9238 static void attach_sb_event(struct perf_event *event)
9239 {
9240         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9241
9242         raw_spin_lock(&pel->lock);
9243         list_add_rcu(&event->sb_list, &pel->list);
9244         raw_spin_unlock(&pel->lock);
9245 }
9246
9247 /*
9248  * We keep a list of all !task (and therefore per-cpu) events
9249  * that need to receive side-band records.
9250  *
9251  * This avoids having to scan all the various PMU per-cpu contexts
9252  * looking for them.
9253  */
9254 static void account_pmu_sb_event(struct perf_event *event)
9255 {
9256         if (is_sb_event(event))
9257                 attach_sb_event(event);
9258 }
9259
9260 static void account_event_cpu(struct perf_event *event, int cpu)
9261 {
9262         if (event->parent)
9263                 return;
9264
9265         if (is_cgroup_event(event))
9266                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9267 }
9268
9269 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9270 static void account_freq_event_nohz(void)
9271 {
9272 #ifdef CONFIG_NO_HZ_FULL
9273         /* Lock so we don't race with concurrent unaccount */
9274         spin_lock(&nr_freq_lock);
9275         if (atomic_inc_return(&nr_freq_events) == 1)
9276                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9277         spin_unlock(&nr_freq_lock);
9278 #endif
9279 }
9280
9281 static void account_freq_event(void)
9282 {
9283         if (tick_nohz_full_enabled())
9284                 account_freq_event_nohz();
9285         else
9286                 atomic_inc(&nr_freq_events);
9287 }
9288
9289
9290 static void account_event(struct perf_event *event)
9291 {
9292         bool inc = false;
9293
9294         if (event->parent)
9295                 return;
9296
9297         if (event->attach_state & PERF_ATTACH_TASK)
9298                 inc = true;
9299         if (event->attr.mmap || event->attr.mmap_data)
9300                 atomic_inc(&nr_mmap_events);
9301         if (event->attr.comm)
9302                 atomic_inc(&nr_comm_events);
9303         if (event->attr.namespaces)
9304                 atomic_inc(&nr_namespaces_events);
9305         if (event->attr.task)
9306                 atomic_inc(&nr_task_events);
9307         if (event->attr.freq)
9308                 account_freq_event();
9309         if (event->attr.context_switch) {
9310                 atomic_inc(&nr_switch_events);
9311                 inc = true;
9312         }
9313         if (has_branch_stack(event))
9314                 inc = true;
9315         if (is_cgroup_event(event))
9316                 inc = true;
9317
9318         if (inc) {
9319                 if (atomic_inc_not_zero(&perf_sched_count))
9320                         goto enabled;
9321
9322                 mutex_lock(&perf_sched_mutex);
9323                 if (!atomic_read(&perf_sched_count)) {
9324                         static_branch_enable(&perf_sched_events);
9325                         /*
9326                          * Guarantee that all CPUs observe they key change and
9327                          * call the perf scheduling hooks before proceeding to
9328                          * install events that need them.
9329                          */
9330                         synchronize_sched();
9331                 }
9332                 /*
9333                  * Now that we have waited for the sync_sched(), allow further
9334                  * increments to by-pass the mutex.
9335                  */
9336                 atomic_inc(&perf_sched_count);
9337                 mutex_unlock(&perf_sched_mutex);
9338         }
9339 enabled:
9340
9341         account_event_cpu(event, event->cpu);
9342
9343         account_pmu_sb_event(event);
9344 }
9345
9346 /*
9347  * Allocate and initialize a event structure
9348  */
9349 static struct perf_event *
9350 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9351                  struct task_struct *task,
9352                  struct perf_event *group_leader,
9353                  struct perf_event *parent_event,
9354                  perf_overflow_handler_t overflow_handler,
9355                  void *context, int cgroup_fd)
9356 {
9357         struct pmu *pmu;
9358         struct perf_event *event;
9359         struct hw_perf_event *hwc;
9360         long err = -EINVAL;
9361
9362         if ((unsigned)cpu >= nr_cpu_ids) {
9363                 if (!task || cpu != -1)
9364                         return ERR_PTR(-EINVAL);
9365         }
9366
9367         event = kzalloc(sizeof(*event), GFP_KERNEL);
9368         if (!event)
9369                 return ERR_PTR(-ENOMEM);
9370
9371         /*
9372          * Single events are their own group leaders, with an
9373          * empty sibling list:
9374          */
9375         if (!group_leader)
9376                 group_leader = event;
9377
9378         mutex_init(&event->child_mutex);
9379         INIT_LIST_HEAD(&event->child_list);
9380
9381         INIT_LIST_HEAD(&event->group_entry);
9382         INIT_LIST_HEAD(&event->event_entry);
9383         INIT_LIST_HEAD(&event->sibling_list);
9384         INIT_LIST_HEAD(&event->rb_entry);
9385         INIT_LIST_HEAD(&event->active_entry);
9386         INIT_LIST_HEAD(&event->addr_filters.list);
9387         INIT_HLIST_NODE(&event->hlist_entry);
9388
9389
9390         init_waitqueue_head(&event->waitq);
9391         init_irq_work(&event->pending, perf_pending_event);
9392
9393         mutex_init(&event->mmap_mutex);
9394         raw_spin_lock_init(&event->addr_filters.lock);
9395
9396         atomic_long_set(&event->refcount, 1);
9397         event->cpu              = cpu;
9398         event->attr             = *attr;
9399         event->group_leader     = group_leader;
9400         event->pmu              = NULL;
9401         event->oncpu            = -1;
9402
9403         event->parent           = parent_event;
9404
9405         event->ns               = get_pid_ns(task_active_pid_ns(current));
9406         event->id               = atomic64_inc_return(&perf_event_id);
9407
9408         event->state            = PERF_EVENT_STATE_INACTIVE;
9409
9410         if (task) {
9411                 event->attach_state = PERF_ATTACH_TASK;
9412                 /*
9413                  * XXX pmu::event_init needs to know what task to account to
9414                  * and we cannot use the ctx information because we need the
9415                  * pmu before we get a ctx.
9416                  */
9417                 event->hw.target = task;
9418         }
9419
9420         event->clock = &local_clock;
9421         if (parent_event)
9422                 event->clock = parent_event->clock;
9423
9424         if (!overflow_handler && parent_event) {
9425                 overflow_handler = parent_event->overflow_handler;
9426                 context = parent_event->overflow_handler_context;
9427 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9428                 if (overflow_handler == bpf_overflow_handler) {
9429                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9430
9431                         if (IS_ERR(prog)) {
9432                                 err = PTR_ERR(prog);
9433                                 goto err_ns;
9434                         }
9435                         event->prog = prog;
9436                         event->orig_overflow_handler =
9437                                 parent_event->orig_overflow_handler;
9438                 }
9439 #endif
9440         }
9441
9442         if (overflow_handler) {
9443                 event->overflow_handler = overflow_handler;
9444                 event->overflow_handler_context = context;
9445         } else if (is_write_backward(event)){
9446                 event->overflow_handler = perf_event_output_backward;
9447                 event->overflow_handler_context = NULL;
9448         } else {
9449                 event->overflow_handler = perf_event_output_forward;
9450                 event->overflow_handler_context = NULL;
9451         }
9452
9453         perf_event__state_init(event);
9454
9455         pmu = NULL;
9456
9457         hwc = &event->hw;
9458         hwc->sample_period = attr->sample_period;
9459         if (attr->freq && attr->sample_freq)
9460                 hwc->sample_period = 1;
9461         hwc->last_period = hwc->sample_period;
9462
9463         local64_set(&hwc->period_left, hwc->sample_period);
9464
9465         /*
9466          * We currently do not support PERF_SAMPLE_READ on inherited events.
9467          * See perf_output_read().
9468          */
9469         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9470                 goto err_ns;
9471
9472         if (!has_branch_stack(event))
9473                 event->attr.branch_sample_type = 0;
9474
9475         if (cgroup_fd != -1) {
9476                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9477                 if (err)
9478                         goto err_ns;
9479         }
9480
9481         pmu = perf_init_event(event);
9482         if (IS_ERR(pmu)) {
9483                 err = PTR_ERR(pmu);
9484                 goto err_ns;
9485         }
9486
9487         err = exclusive_event_init(event);
9488         if (err)
9489                 goto err_pmu;
9490
9491         if (has_addr_filter(event)) {
9492                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9493                                                    sizeof(unsigned long),
9494                                                    GFP_KERNEL);
9495                 if (!event->addr_filters_offs) {
9496                         err = -ENOMEM;
9497                         goto err_per_task;
9498                 }
9499
9500                 /* force hw sync on the address filters */
9501                 event->addr_filters_gen = 1;
9502         }
9503
9504         if (!event->parent) {
9505                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9506                         err = get_callchain_buffers(attr->sample_max_stack);
9507                         if (err)
9508                                 goto err_addr_filters;
9509                 }
9510         }
9511
9512         /* symmetric to unaccount_event() in _free_event() */
9513         account_event(event);
9514
9515         return event;
9516
9517 err_addr_filters:
9518         kfree(event->addr_filters_offs);
9519
9520 err_per_task:
9521         exclusive_event_destroy(event);
9522
9523 err_pmu:
9524         if (event->destroy)
9525                 event->destroy(event);
9526         module_put(pmu->module);
9527 err_ns:
9528         if (is_cgroup_event(event))
9529                 perf_detach_cgroup(event);
9530         if (event->ns)
9531                 put_pid_ns(event->ns);
9532         kfree(event);
9533
9534         return ERR_PTR(err);
9535 }
9536
9537 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9538                           struct perf_event_attr *attr)
9539 {
9540         u32 size;
9541         int ret;
9542
9543         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9544                 return -EFAULT;
9545
9546         /*
9547          * zero the full structure, so that a short copy will be nice.
9548          */
9549         memset(attr, 0, sizeof(*attr));
9550
9551         ret = get_user(size, &uattr->size);
9552         if (ret)
9553                 return ret;
9554
9555         if (size > PAGE_SIZE)   /* silly large */
9556                 goto err_size;
9557
9558         if (!size)              /* abi compat */
9559                 size = PERF_ATTR_SIZE_VER0;
9560
9561         if (size < PERF_ATTR_SIZE_VER0)
9562                 goto err_size;
9563
9564         /*
9565          * If we're handed a bigger struct than we know of,
9566          * ensure all the unknown bits are 0 - i.e. new
9567          * user-space does not rely on any kernel feature
9568          * extensions we dont know about yet.
9569          */
9570         if (size > sizeof(*attr)) {
9571                 unsigned char __user *addr;
9572                 unsigned char __user *end;
9573                 unsigned char val;
9574
9575                 addr = (void __user *)uattr + sizeof(*attr);
9576                 end  = (void __user *)uattr + size;
9577
9578                 for (; addr < end; addr++) {
9579                         ret = get_user(val, addr);
9580                         if (ret)
9581                                 return ret;
9582                         if (val)
9583                                 goto err_size;
9584                 }
9585                 size = sizeof(*attr);
9586         }
9587
9588         ret = copy_from_user(attr, uattr, size);
9589         if (ret)
9590                 return -EFAULT;
9591
9592         if (attr->__reserved_1)
9593                 return -EINVAL;
9594
9595         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9596                 return -EINVAL;
9597
9598         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9599                 return -EINVAL;
9600
9601         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9602                 u64 mask = attr->branch_sample_type;
9603
9604                 /* only using defined bits */
9605                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9606                         return -EINVAL;
9607
9608                 /* at least one branch bit must be set */
9609                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9610                         return -EINVAL;
9611
9612                 /* propagate priv level, when not set for branch */
9613                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9614
9615                         /* exclude_kernel checked on syscall entry */
9616                         if (!attr->exclude_kernel)
9617                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9618
9619                         if (!attr->exclude_user)
9620                                 mask |= PERF_SAMPLE_BRANCH_USER;
9621
9622                         if (!attr->exclude_hv)
9623                                 mask |= PERF_SAMPLE_BRANCH_HV;
9624                         /*
9625                          * adjust user setting (for HW filter setup)
9626                          */
9627                         attr->branch_sample_type = mask;
9628                 }
9629                 /* privileged levels capture (kernel, hv): check permissions */
9630                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9631                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9632                         return -EACCES;
9633         }
9634
9635         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9636                 ret = perf_reg_validate(attr->sample_regs_user);
9637                 if (ret)
9638                         return ret;
9639         }
9640
9641         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9642                 if (!arch_perf_have_user_stack_dump())
9643                         return -ENOSYS;
9644
9645                 /*
9646                  * We have __u32 type for the size, but so far
9647                  * we can only use __u16 as maximum due to the
9648                  * __u16 sample size limit.
9649                  */
9650                 if (attr->sample_stack_user >= USHRT_MAX)
9651                         ret = -EINVAL;
9652                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9653                         ret = -EINVAL;
9654         }
9655
9656         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9657                 ret = perf_reg_validate(attr->sample_regs_intr);
9658 out:
9659         return ret;
9660
9661 err_size:
9662         put_user(sizeof(*attr), &uattr->size);
9663         ret = -E2BIG;
9664         goto out;
9665 }
9666
9667 static int
9668 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9669 {
9670         struct ring_buffer *rb = NULL;
9671         int ret = -EINVAL;
9672
9673         if (!output_event)
9674                 goto set;
9675
9676         /* don't allow circular references */
9677         if (event == output_event)
9678                 goto out;
9679
9680         /*
9681          * Don't allow cross-cpu buffers
9682          */
9683         if (output_event->cpu != event->cpu)
9684                 goto out;
9685
9686         /*
9687          * If its not a per-cpu rb, it must be the same task.
9688          */
9689         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9690                 goto out;
9691
9692         /*
9693          * Mixing clocks in the same buffer is trouble you don't need.
9694          */
9695         if (output_event->clock != event->clock)
9696                 goto out;
9697
9698         /*
9699          * Either writing ring buffer from beginning or from end.
9700          * Mixing is not allowed.
9701          */
9702         if (is_write_backward(output_event) != is_write_backward(event))
9703                 goto out;
9704
9705         /*
9706          * If both events generate aux data, they must be on the same PMU
9707          */
9708         if (has_aux(event) && has_aux(output_event) &&
9709             event->pmu != output_event->pmu)
9710                 goto out;
9711
9712 set:
9713         mutex_lock(&event->mmap_mutex);
9714         /* Can't redirect output if we've got an active mmap() */
9715         if (atomic_read(&event->mmap_count))
9716                 goto unlock;
9717
9718         if (output_event) {
9719                 /* get the rb we want to redirect to */
9720                 rb = ring_buffer_get(output_event);
9721                 if (!rb)
9722                         goto unlock;
9723         }
9724
9725         ring_buffer_attach(event, rb);
9726
9727         ret = 0;
9728 unlock:
9729         mutex_unlock(&event->mmap_mutex);
9730
9731 out:
9732         return ret;
9733 }
9734
9735 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9736 {
9737         if (b < a)
9738                 swap(a, b);
9739
9740         mutex_lock(a);
9741         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9742 }
9743
9744 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9745 {
9746         bool nmi_safe = false;
9747
9748         switch (clk_id) {
9749         case CLOCK_MONOTONIC:
9750                 event->clock = &ktime_get_mono_fast_ns;
9751                 nmi_safe = true;
9752                 break;
9753
9754         case CLOCK_MONOTONIC_RAW:
9755                 event->clock = &ktime_get_raw_fast_ns;
9756                 nmi_safe = true;
9757                 break;
9758
9759         case CLOCK_REALTIME:
9760                 event->clock = &ktime_get_real_ns;
9761                 break;
9762
9763         case CLOCK_BOOTTIME:
9764                 event->clock = &ktime_get_boot_ns;
9765                 break;
9766
9767         case CLOCK_TAI:
9768                 event->clock = &ktime_get_tai_ns;
9769                 break;
9770
9771         default:
9772                 return -EINVAL;
9773         }
9774
9775         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9776                 return -EINVAL;
9777
9778         return 0;
9779 }
9780
9781 /*
9782  * Variation on perf_event_ctx_lock_nested(), except we take two context
9783  * mutexes.
9784  */
9785 static struct perf_event_context *
9786 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9787                              struct perf_event_context *ctx)
9788 {
9789         struct perf_event_context *gctx;
9790
9791 again:
9792         rcu_read_lock();
9793         gctx = READ_ONCE(group_leader->ctx);
9794         if (!atomic_inc_not_zero(&gctx->refcount)) {
9795                 rcu_read_unlock();
9796                 goto again;
9797         }
9798         rcu_read_unlock();
9799
9800         mutex_lock_double(&gctx->mutex, &ctx->mutex);
9801
9802         if (group_leader->ctx != gctx) {
9803                 mutex_unlock(&ctx->mutex);
9804                 mutex_unlock(&gctx->mutex);
9805                 put_ctx(gctx);
9806                 goto again;
9807         }
9808
9809         return gctx;
9810 }
9811
9812 /**
9813  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9814  *
9815  * @attr_uptr:  event_id type attributes for monitoring/sampling
9816  * @pid:                target pid
9817  * @cpu:                target cpu
9818  * @group_fd:           group leader event fd
9819  */
9820 SYSCALL_DEFINE5(perf_event_open,
9821                 struct perf_event_attr __user *, attr_uptr,
9822                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9823 {
9824         struct perf_event *group_leader = NULL, *output_event = NULL;
9825         struct perf_event *event, *sibling;
9826         struct perf_event_attr attr;
9827         struct perf_event_context *ctx, *uninitialized_var(gctx);
9828         struct file *event_file = NULL;
9829         struct fd group = {NULL, 0};
9830         struct task_struct *task = NULL;
9831         struct pmu *pmu;
9832         int event_fd;
9833         int move_group = 0;
9834         int err;
9835         int f_flags = O_RDWR;
9836         int cgroup_fd = -1;
9837
9838         /* for future expandability... */
9839         if (flags & ~PERF_FLAG_ALL)
9840                 return -EINVAL;
9841
9842         err = perf_copy_attr(attr_uptr, &attr);
9843         if (err)
9844                 return err;
9845
9846         if (!attr.exclude_kernel) {
9847                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9848                         return -EACCES;
9849         }
9850
9851         if (attr.namespaces) {
9852                 if (!capable(CAP_SYS_ADMIN))
9853                         return -EACCES;
9854         }
9855
9856         if (attr.freq) {
9857                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9858                         return -EINVAL;
9859         } else {
9860                 if (attr.sample_period & (1ULL << 63))
9861                         return -EINVAL;
9862         }
9863
9864         if (!attr.sample_max_stack)
9865                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9866
9867         /*
9868          * In cgroup mode, the pid argument is used to pass the fd
9869          * opened to the cgroup directory in cgroupfs. The cpu argument
9870          * designates the cpu on which to monitor threads from that
9871          * cgroup.
9872          */
9873         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9874                 return -EINVAL;
9875
9876         if (flags & PERF_FLAG_FD_CLOEXEC)
9877                 f_flags |= O_CLOEXEC;
9878
9879         event_fd = get_unused_fd_flags(f_flags);
9880         if (event_fd < 0)
9881                 return event_fd;
9882
9883         if (group_fd != -1) {
9884                 err = perf_fget_light(group_fd, &group);
9885                 if (err)
9886                         goto err_fd;
9887                 group_leader = group.file->private_data;
9888                 if (flags & PERF_FLAG_FD_OUTPUT)
9889                         output_event = group_leader;
9890                 if (flags & PERF_FLAG_FD_NO_GROUP)
9891                         group_leader = NULL;
9892         }
9893
9894         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9895                 task = find_lively_task_by_vpid(pid);
9896                 if (IS_ERR(task)) {
9897                         err = PTR_ERR(task);
9898                         goto err_group_fd;
9899                 }
9900         }
9901
9902         if (task && group_leader &&
9903             group_leader->attr.inherit != attr.inherit) {
9904                 err = -EINVAL;
9905                 goto err_task;
9906         }
9907
9908         if (task) {
9909                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9910                 if (err)
9911                         goto err_task;
9912
9913                 /*
9914                  * Reuse ptrace permission checks for now.
9915                  *
9916                  * We must hold cred_guard_mutex across this and any potential
9917                  * perf_install_in_context() call for this new event to
9918                  * serialize against exec() altering our credentials (and the
9919                  * perf_event_exit_task() that could imply).
9920                  */
9921                 err = -EACCES;
9922                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9923                         goto err_cred;
9924         }
9925
9926         if (flags & PERF_FLAG_PID_CGROUP)
9927                 cgroup_fd = pid;
9928
9929         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9930                                  NULL, NULL, cgroup_fd);
9931         if (IS_ERR(event)) {
9932                 err = PTR_ERR(event);
9933                 goto err_cred;
9934         }
9935
9936         if (is_sampling_event(event)) {
9937                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9938                         err = -EOPNOTSUPP;
9939                         goto err_alloc;
9940                 }
9941         }
9942
9943         /*
9944          * Special case software events and allow them to be part of
9945          * any hardware group.
9946          */
9947         pmu = event->pmu;
9948
9949         if (attr.use_clockid) {
9950                 err = perf_event_set_clock(event, attr.clockid);
9951                 if (err)
9952                         goto err_alloc;
9953         }
9954
9955         if (pmu->task_ctx_nr == perf_sw_context)
9956                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9957
9958         if (group_leader &&
9959             (is_software_event(event) != is_software_event(group_leader))) {
9960                 if (is_software_event(event)) {
9961                         /*
9962                          * If event and group_leader are not both a software
9963                          * event, and event is, then group leader is not.
9964                          *
9965                          * Allow the addition of software events to !software
9966                          * groups, this is safe because software events never
9967                          * fail to schedule.
9968                          */
9969                         pmu = group_leader->pmu;
9970                 } else if (is_software_event(group_leader) &&
9971                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9972                         /*
9973                          * In case the group is a pure software group, and we
9974                          * try to add a hardware event, move the whole group to
9975                          * the hardware context.
9976                          */
9977                         move_group = 1;
9978                 }
9979         }
9980
9981         /*
9982          * Get the target context (task or percpu):
9983          */
9984         ctx = find_get_context(pmu, task, event);
9985         if (IS_ERR(ctx)) {
9986                 err = PTR_ERR(ctx);
9987                 goto err_alloc;
9988         }
9989
9990         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9991                 err = -EBUSY;
9992                 goto err_context;
9993         }
9994
9995         /*
9996          * Look up the group leader (we will attach this event to it):
9997          */
9998         if (group_leader) {
9999                 err = -EINVAL;
10000
10001                 /*
10002                  * Do not allow a recursive hierarchy (this new sibling
10003                  * becoming part of another group-sibling):
10004                  */
10005                 if (group_leader->group_leader != group_leader)
10006                         goto err_context;
10007
10008                 /* All events in a group should have the same clock */
10009                 if (group_leader->clock != event->clock)
10010                         goto err_context;
10011
10012                 /*
10013                  * Do not allow to attach to a group in a different
10014                  * task or CPU context:
10015                  */
10016                 if (move_group) {
10017                         /*
10018                          * Make sure we're both on the same task, or both
10019                          * per-cpu events.
10020                          */
10021                         if (group_leader->ctx->task != ctx->task)
10022                                 goto err_context;
10023
10024                         /*
10025                          * Make sure we're both events for the same CPU;
10026                          * grouping events for different CPUs is broken; since
10027                          * you can never concurrently schedule them anyhow.
10028                          */
10029                         if (group_leader->cpu != event->cpu)
10030                                 goto err_context;
10031                 } else {
10032                         if (group_leader->ctx != ctx)
10033                                 goto err_context;
10034                 }
10035
10036                 /*
10037                  * Only a group leader can be exclusive or pinned
10038                  */
10039                 if (attr.exclusive || attr.pinned)
10040                         goto err_context;
10041         }
10042
10043         if (output_event) {
10044                 err = perf_event_set_output(event, output_event);
10045                 if (err)
10046                         goto err_context;
10047         }
10048
10049         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10050                                         f_flags);
10051         if (IS_ERR(event_file)) {
10052                 err = PTR_ERR(event_file);
10053                 event_file = NULL;
10054                 goto err_context;
10055         }
10056
10057         if (move_group) {
10058                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10059
10060                 if (gctx->task == TASK_TOMBSTONE) {
10061                         err = -ESRCH;
10062                         goto err_locked;
10063                 }
10064
10065                 /*
10066                  * Check if we raced against another sys_perf_event_open() call
10067                  * moving the software group underneath us.
10068                  */
10069                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10070                         /*
10071                          * If someone moved the group out from under us, check
10072                          * if this new event wound up on the same ctx, if so
10073                          * its the regular !move_group case, otherwise fail.
10074                          */
10075                         if (gctx != ctx) {
10076                                 err = -EINVAL;
10077                                 goto err_locked;
10078                         } else {
10079                                 perf_event_ctx_unlock(group_leader, gctx);
10080                                 move_group = 0;
10081                         }
10082                 }
10083         } else {
10084                 mutex_lock(&ctx->mutex);
10085         }
10086
10087         if (ctx->task == TASK_TOMBSTONE) {
10088                 err = -ESRCH;
10089                 goto err_locked;
10090         }
10091
10092         if (!perf_event_validate_size(event)) {
10093                 err = -E2BIG;
10094                 goto err_locked;
10095         }
10096
10097         if (!task) {
10098                 /*
10099                  * Check if the @cpu we're creating an event for is online.
10100                  *
10101                  * We use the perf_cpu_context::ctx::mutex to serialize against
10102                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10103                  */
10104                 struct perf_cpu_context *cpuctx =
10105                         container_of(ctx, struct perf_cpu_context, ctx);
10106
10107                 if (!cpuctx->online) {
10108                         err = -ENODEV;
10109                         goto err_locked;
10110                 }
10111         }
10112
10113
10114         /*
10115          * Must be under the same ctx::mutex as perf_install_in_context(),
10116          * because we need to serialize with concurrent event creation.
10117          */
10118         if (!exclusive_event_installable(event, ctx)) {
10119                 /* exclusive and group stuff are assumed mutually exclusive */
10120                 WARN_ON_ONCE(move_group);
10121
10122                 err = -EBUSY;
10123                 goto err_locked;
10124         }
10125
10126         WARN_ON_ONCE(ctx->parent_ctx);
10127
10128         /*
10129          * This is the point on no return; we cannot fail hereafter. This is
10130          * where we start modifying current state.
10131          */
10132
10133         if (move_group) {
10134                 /*
10135                  * See perf_event_ctx_lock() for comments on the details
10136                  * of swizzling perf_event::ctx.
10137                  */
10138                 perf_remove_from_context(group_leader, 0);
10139                 put_ctx(gctx);
10140
10141                 list_for_each_entry(sibling, &group_leader->sibling_list,
10142                                     group_entry) {
10143                         perf_remove_from_context(sibling, 0);
10144                         put_ctx(gctx);
10145                 }
10146
10147                 /*
10148                  * Wait for everybody to stop referencing the events through
10149                  * the old lists, before installing it on new lists.
10150                  */
10151                 synchronize_rcu();
10152
10153                 /*
10154                  * Install the group siblings before the group leader.
10155                  *
10156                  * Because a group leader will try and install the entire group
10157                  * (through the sibling list, which is still in-tact), we can
10158                  * end up with siblings installed in the wrong context.
10159                  *
10160                  * By installing siblings first we NO-OP because they're not
10161                  * reachable through the group lists.
10162                  */
10163                 list_for_each_entry(sibling, &group_leader->sibling_list,
10164                                     group_entry) {
10165                         perf_event__state_init(sibling);
10166                         perf_install_in_context(ctx, sibling, sibling->cpu);
10167                         get_ctx(ctx);
10168                 }
10169
10170                 /*
10171                  * Removing from the context ends up with disabled
10172                  * event. What we want here is event in the initial
10173                  * startup state, ready to be add into new context.
10174                  */
10175                 perf_event__state_init(group_leader);
10176                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10177                 get_ctx(ctx);
10178         }
10179
10180         /*
10181          * Precalculate sample_data sizes; do while holding ctx::mutex such
10182          * that we're serialized against further additions and before
10183          * perf_install_in_context() which is the point the event is active and
10184          * can use these values.
10185          */
10186         perf_event__header_size(event);
10187         perf_event__id_header_size(event);
10188
10189         event->owner = current;
10190
10191         perf_install_in_context(ctx, event, event->cpu);
10192         perf_unpin_context(ctx);
10193
10194         if (move_group)
10195                 perf_event_ctx_unlock(group_leader, gctx);
10196         mutex_unlock(&ctx->mutex);
10197
10198         if (task) {
10199                 mutex_unlock(&task->signal->cred_guard_mutex);
10200                 put_task_struct(task);
10201         }
10202
10203         mutex_lock(&current->perf_event_mutex);
10204         list_add_tail(&event->owner_entry, &current->perf_event_list);
10205         mutex_unlock(&current->perf_event_mutex);
10206
10207         /*
10208          * Drop the reference on the group_event after placing the
10209          * new event on the sibling_list. This ensures destruction
10210          * of the group leader will find the pointer to itself in
10211          * perf_group_detach().
10212          */
10213         fdput(group);
10214         fd_install(event_fd, event_file);
10215         return event_fd;
10216
10217 err_locked:
10218         if (move_group)
10219                 perf_event_ctx_unlock(group_leader, gctx);
10220         mutex_unlock(&ctx->mutex);
10221 /* err_file: */
10222         fput(event_file);
10223 err_context:
10224         perf_unpin_context(ctx);
10225         put_ctx(ctx);
10226 err_alloc:
10227         /*
10228          * If event_file is set, the fput() above will have called ->release()
10229          * and that will take care of freeing the event.
10230          */
10231         if (!event_file)
10232                 free_event(event);
10233 err_cred:
10234         if (task)
10235                 mutex_unlock(&task->signal->cred_guard_mutex);
10236 err_task:
10237         if (task)
10238                 put_task_struct(task);
10239 err_group_fd:
10240         fdput(group);
10241 err_fd:
10242         put_unused_fd(event_fd);
10243         return err;
10244 }
10245
10246 /**
10247  * perf_event_create_kernel_counter
10248  *
10249  * @attr: attributes of the counter to create
10250  * @cpu: cpu in which the counter is bound
10251  * @task: task to profile (NULL for percpu)
10252  */
10253 struct perf_event *
10254 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10255                                  struct task_struct *task,
10256                                  perf_overflow_handler_t overflow_handler,
10257                                  void *context)
10258 {
10259         struct perf_event_context *ctx;
10260         struct perf_event *event;
10261         int err;
10262
10263         /*
10264          * Get the target context (task or percpu):
10265          */
10266
10267         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10268                                  overflow_handler, context, -1);
10269         if (IS_ERR(event)) {
10270                 err = PTR_ERR(event);
10271                 goto err;
10272         }
10273
10274         /* Mark owner so we could distinguish it from user events. */
10275         event->owner = TASK_TOMBSTONE;
10276
10277         ctx = find_get_context(event->pmu, task, event);
10278         if (IS_ERR(ctx)) {
10279                 err = PTR_ERR(ctx);
10280                 goto err_free;
10281         }
10282
10283         WARN_ON_ONCE(ctx->parent_ctx);
10284         mutex_lock(&ctx->mutex);
10285         if (ctx->task == TASK_TOMBSTONE) {
10286                 err = -ESRCH;
10287                 goto err_unlock;
10288         }
10289
10290         if (!task) {
10291                 /*
10292                  * Check if the @cpu we're creating an event for is online.
10293                  *
10294                  * We use the perf_cpu_context::ctx::mutex to serialize against
10295                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10296                  */
10297                 struct perf_cpu_context *cpuctx =
10298                         container_of(ctx, struct perf_cpu_context, ctx);
10299                 if (!cpuctx->online) {
10300                         err = -ENODEV;
10301                         goto err_unlock;
10302                 }
10303         }
10304
10305         if (!exclusive_event_installable(event, ctx)) {
10306                 err = -EBUSY;
10307                 goto err_unlock;
10308         }
10309
10310         perf_install_in_context(ctx, event, cpu);
10311         perf_unpin_context(ctx);
10312         mutex_unlock(&ctx->mutex);
10313
10314         return event;
10315
10316 err_unlock:
10317         mutex_unlock(&ctx->mutex);
10318         perf_unpin_context(ctx);
10319         put_ctx(ctx);
10320 err_free:
10321         free_event(event);
10322 err:
10323         return ERR_PTR(err);
10324 }
10325 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10326
10327 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10328 {
10329         struct perf_event_context *src_ctx;
10330         struct perf_event_context *dst_ctx;
10331         struct perf_event *event, *tmp;
10332         LIST_HEAD(events);
10333
10334         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10335         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10336
10337         /*
10338          * See perf_event_ctx_lock() for comments on the details
10339          * of swizzling perf_event::ctx.
10340          */
10341         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10342         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10343                                  event_entry) {
10344                 perf_remove_from_context(event, 0);
10345                 unaccount_event_cpu(event, src_cpu);
10346                 put_ctx(src_ctx);
10347                 list_add(&event->migrate_entry, &events);
10348         }
10349
10350         /*
10351          * Wait for the events to quiesce before re-instating them.
10352          */
10353         synchronize_rcu();
10354
10355         /*
10356          * Re-instate events in 2 passes.
10357          *
10358          * Skip over group leaders and only install siblings on this first
10359          * pass, siblings will not get enabled without a leader, however a
10360          * leader will enable its siblings, even if those are still on the old
10361          * context.
10362          */
10363         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10364                 if (event->group_leader == event)
10365                         continue;
10366
10367                 list_del(&event->migrate_entry);
10368                 if (event->state >= PERF_EVENT_STATE_OFF)
10369                         event->state = PERF_EVENT_STATE_INACTIVE;
10370                 account_event_cpu(event, dst_cpu);
10371                 perf_install_in_context(dst_ctx, event, dst_cpu);
10372                 get_ctx(dst_ctx);
10373         }
10374
10375         /*
10376          * Once all the siblings are setup properly, install the group leaders
10377          * to make it go.
10378          */
10379         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10380                 list_del(&event->migrate_entry);
10381                 if (event->state >= PERF_EVENT_STATE_OFF)
10382                         event->state = PERF_EVENT_STATE_INACTIVE;
10383                 account_event_cpu(event, dst_cpu);
10384                 perf_install_in_context(dst_ctx, event, dst_cpu);
10385                 get_ctx(dst_ctx);
10386         }
10387         mutex_unlock(&dst_ctx->mutex);
10388         mutex_unlock(&src_ctx->mutex);
10389 }
10390 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10391
10392 static void sync_child_event(struct perf_event *child_event,
10393                                struct task_struct *child)
10394 {
10395         struct perf_event *parent_event = child_event->parent;
10396         u64 child_val;
10397
10398         if (child_event->attr.inherit_stat)
10399                 perf_event_read_event(child_event, child);
10400
10401         child_val = perf_event_count(child_event);
10402
10403         /*
10404          * Add back the child's count to the parent's count:
10405          */
10406         atomic64_add(child_val, &parent_event->child_count);
10407         atomic64_add(child_event->total_time_enabled,
10408                      &parent_event->child_total_time_enabled);
10409         atomic64_add(child_event->total_time_running,
10410                      &parent_event->child_total_time_running);
10411 }
10412
10413 static void
10414 perf_event_exit_event(struct perf_event *child_event,
10415                       struct perf_event_context *child_ctx,
10416                       struct task_struct *child)
10417 {
10418         struct perf_event *parent_event = child_event->parent;
10419
10420         /*
10421          * Do not destroy the 'original' grouping; because of the context
10422          * switch optimization the original events could've ended up in a
10423          * random child task.
10424          *
10425          * If we were to destroy the original group, all group related
10426          * operations would cease to function properly after this random
10427          * child dies.
10428          *
10429          * Do destroy all inherited groups, we don't care about those
10430          * and being thorough is better.
10431          */
10432         raw_spin_lock_irq(&child_ctx->lock);
10433         WARN_ON_ONCE(child_ctx->is_active);
10434
10435         if (parent_event)
10436                 perf_group_detach(child_event);
10437         list_del_event(child_event, child_ctx);
10438         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10439         raw_spin_unlock_irq(&child_ctx->lock);
10440
10441         /*
10442          * Parent events are governed by their filedesc, retain them.
10443          */
10444         if (!parent_event) {
10445                 perf_event_wakeup(child_event);
10446                 return;
10447         }
10448         /*
10449          * Child events can be cleaned up.
10450          */
10451
10452         sync_child_event(child_event, child);
10453
10454         /*
10455          * Remove this event from the parent's list
10456          */
10457         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10458         mutex_lock(&parent_event->child_mutex);
10459         list_del_init(&child_event->child_list);
10460         mutex_unlock(&parent_event->child_mutex);
10461
10462         /*
10463          * Kick perf_poll() for is_event_hup().
10464          */
10465         perf_event_wakeup(parent_event);
10466         free_event(child_event);
10467         put_event(parent_event);
10468 }
10469
10470 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10471 {
10472         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10473         struct perf_event *child_event, *next;
10474
10475         WARN_ON_ONCE(child != current);
10476
10477         child_ctx = perf_pin_task_context(child, ctxn);
10478         if (!child_ctx)
10479                 return;
10480
10481         /*
10482          * In order to reduce the amount of tricky in ctx tear-down, we hold
10483          * ctx::mutex over the entire thing. This serializes against almost
10484          * everything that wants to access the ctx.
10485          *
10486          * The exception is sys_perf_event_open() /
10487          * perf_event_create_kernel_count() which does find_get_context()
10488          * without ctx::mutex (it cannot because of the move_group double mutex
10489          * lock thing). See the comments in perf_install_in_context().
10490          */
10491         mutex_lock(&child_ctx->mutex);
10492
10493         /*
10494          * In a single ctx::lock section, de-schedule the events and detach the
10495          * context from the task such that we cannot ever get it scheduled back
10496          * in.
10497          */
10498         raw_spin_lock_irq(&child_ctx->lock);
10499         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10500
10501         /*
10502          * Now that the context is inactive, destroy the task <-> ctx relation
10503          * and mark the context dead.
10504          */
10505         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10506         put_ctx(child_ctx); /* cannot be last */
10507         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10508         put_task_struct(current); /* cannot be last */
10509
10510         clone_ctx = unclone_ctx(child_ctx);
10511         raw_spin_unlock_irq(&child_ctx->lock);
10512
10513         if (clone_ctx)
10514                 put_ctx(clone_ctx);
10515
10516         /*
10517          * Report the task dead after unscheduling the events so that we
10518          * won't get any samples after PERF_RECORD_EXIT. We can however still
10519          * get a few PERF_RECORD_READ events.
10520          */
10521         perf_event_task(child, child_ctx, 0);
10522
10523         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10524                 perf_event_exit_event(child_event, child_ctx, child);
10525
10526         mutex_unlock(&child_ctx->mutex);
10527
10528         put_ctx(child_ctx);
10529 }
10530
10531 /*
10532  * When a child task exits, feed back event values to parent events.
10533  *
10534  * Can be called with cred_guard_mutex held when called from
10535  * install_exec_creds().
10536  */
10537 void perf_event_exit_task(struct task_struct *child)
10538 {
10539         struct perf_event *event, *tmp;
10540         int ctxn;
10541
10542         mutex_lock(&child->perf_event_mutex);
10543         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10544                                  owner_entry) {
10545                 list_del_init(&event->owner_entry);
10546
10547                 /*
10548                  * Ensure the list deletion is visible before we clear
10549                  * the owner, closes a race against perf_release() where
10550                  * we need to serialize on the owner->perf_event_mutex.
10551                  */
10552                 smp_store_release(&event->owner, NULL);
10553         }
10554         mutex_unlock(&child->perf_event_mutex);
10555
10556         for_each_task_context_nr(ctxn)
10557                 perf_event_exit_task_context(child, ctxn);
10558
10559         /*
10560          * The perf_event_exit_task_context calls perf_event_task
10561          * with child's task_ctx, which generates EXIT events for
10562          * child contexts and sets child->perf_event_ctxp[] to NULL.
10563          * At this point we need to send EXIT events to cpu contexts.
10564          */
10565         perf_event_task(child, NULL, 0);
10566 }
10567
10568 static void perf_free_event(struct perf_event *event,
10569                             struct perf_event_context *ctx)
10570 {
10571         struct perf_event *parent = event->parent;
10572
10573         if (WARN_ON_ONCE(!parent))
10574                 return;
10575
10576         mutex_lock(&parent->child_mutex);
10577         list_del_init(&event->child_list);
10578         mutex_unlock(&parent->child_mutex);
10579
10580         put_event(parent);
10581
10582         raw_spin_lock_irq(&ctx->lock);
10583         perf_group_detach(event);
10584         list_del_event(event, ctx);
10585         raw_spin_unlock_irq(&ctx->lock);
10586         free_event(event);
10587 }
10588
10589 /*
10590  * Free an unexposed, unused context as created by inheritance by
10591  * perf_event_init_task below, used by fork() in case of fail.
10592  *
10593  * Not all locks are strictly required, but take them anyway to be nice and
10594  * help out with the lockdep assertions.
10595  */
10596 void perf_event_free_task(struct task_struct *task)
10597 {
10598         struct perf_event_context *ctx;
10599         struct perf_event *event, *tmp;
10600         int ctxn;
10601
10602         for_each_task_context_nr(ctxn) {
10603                 ctx = task->perf_event_ctxp[ctxn];
10604                 if (!ctx)
10605                         continue;
10606
10607                 mutex_lock(&ctx->mutex);
10608                 raw_spin_lock_irq(&ctx->lock);
10609                 /*
10610                  * Destroy the task <-> ctx relation and mark the context dead.
10611                  *
10612                  * This is important because even though the task hasn't been
10613                  * exposed yet the context has been (through child_list).
10614                  */
10615                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10616                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10617                 put_task_struct(task); /* cannot be last */
10618                 raw_spin_unlock_irq(&ctx->lock);
10619
10620                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10621                         perf_free_event(event, ctx);
10622
10623                 mutex_unlock(&ctx->mutex);
10624                 put_ctx(ctx);
10625         }
10626 }
10627
10628 void perf_event_delayed_put(struct task_struct *task)
10629 {
10630         int ctxn;
10631
10632         for_each_task_context_nr(ctxn)
10633                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10634 }
10635
10636 struct file *perf_event_get(unsigned int fd)
10637 {
10638         struct file *file;
10639
10640         file = fget_raw(fd);
10641         if (!file)
10642                 return ERR_PTR(-EBADF);
10643
10644         if (file->f_op != &perf_fops) {
10645                 fput(file);
10646                 return ERR_PTR(-EBADF);
10647         }
10648
10649         return file;
10650 }
10651
10652 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10653 {
10654         if (!event)
10655                 return ERR_PTR(-EINVAL);
10656
10657         return &event->attr;
10658 }
10659
10660 /*
10661  * Inherit a event from parent task to child task.
10662  *
10663  * Returns:
10664  *  - valid pointer on success
10665  *  - NULL for orphaned events
10666  *  - IS_ERR() on error
10667  */
10668 static struct perf_event *
10669 inherit_event(struct perf_event *parent_event,
10670               struct task_struct *parent,
10671               struct perf_event_context *parent_ctx,
10672               struct task_struct *child,
10673               struct perf_event *group_leader,
10674               struct perf_event_context *child_ctx)
10675 {
10676         enum perf_event_active_state parent_state = parent_event->state;
10677         struct perf_event *child_event;
10678         unsigned long flags;
10679
10680         /*
10681          * Instead of creating recursive hierarchies of events,
10682          * we link inherited events back to the original parent,
10683          * which has a filp for sure, which we use as the reference
10684          * count:
10685          */
10686         if (parent_event->parent)
10687                 parent_event = parent_event->parent;
10688
10689         child_event = perf_event_alloc(&parent_event->attr,
10690                                            parent_event->cpu,
10691                                            child,
10692                                            group_leader, parent_event,
10693                                            NULL, NULL, -1);
10694         if (IS_ERR(child_event))
10695                 return child_event;
10696
10697         /*
10698          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10699          * must be under the same lock in order to serialize against
10700          * perf_event_release_kernel(), such that either we must observe
10701          * is_orphaned_event() or they will observe us on the child_list.
10702          */
10703         mutex_lock(&parent_event->child_mutex);
10704         if (is_orphaned_event(parent_event) ||
10705             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10706                 mutex_unlock(&parent_event->child_mutex);
10707                 free_event(child_event);
10708                 return NULL;
10709         }
10710
10711         get_ctx(child_ctx);
10712
10713         /*
10714          * Make the child state follow the state of the parent event,
10715          * not its attr.disabled bit.  We hold the parent's mutex,
10716          * so we won't race with perf_event_{en, dis}able_family.
10717          */
10718         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10719                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10720         else
10721                 child_event->state = PERF_EVENT_STATE_OFF;
10722
10723         if (parent_event->attr.freq) {
10724                 u64 sample_period = parent_event->hw.sample_period;
10725                 struct hw_perf_event *hwc = &child_event->hw;
10726
10727                 hwc->sample_period = sample_period;
10728                 hwc->last_period   = sample_period;
10729
10730                 local64_set(&hwc->period_left, sample_period);
10731         }
10732
10733         child_event->ctx = child_ctx;
10734         child_event->overflow_handler = parent_event->overflow_handler;
10735         child_event->overflow_handler_context
10736                 = parent_event->overflow_handler_context;
10737
10738         /*
10739          * Precalculate sample_data sizes
10740          */
10741         perf_event__header_size(child_event);
10742         perf_event__id_header_size(child_event);
10743
10744         /*
10745          * Link it up in the child's context:
10746          */
10747         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10748         add_event_to_ctx(child_event, child_ctx);
10749         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10750
10751         /*
10752          * Link this into the parent event's child list
10753          */
10754         list_add_tail(&child_event->child_list, &parent_event->child_list);
10755         mutex_unlock(&parent_event->child_mutex);
10756
10757         return child_event;
10758 }
10759
10760 /*
10761  * Inherits an event group.
10762  *
10763  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10764  * This matches with perf_event_release_kernel() removing all child events.
10765  *
10766  * Returns:
10767  *  - 0 on success
10768  *  - <0 on error
10769  */
10770 static int inherit_group(struct perf_event *parent_event,
10771               struct task_struct *parent,
10772               struct perf_event_context *parent_ctx,
10773               struct task_struct *child,
10774               struct perf_event_context *child_ctx)
10775 {
10776         struct perf_event *leader;
10777         struct perf_event *sub;
10778         struct perf_event *child_ctr;
10779
10780         leader = inherit_event(parent_event, parent, parent_ctx,
10781                                  child, NULL, child_ctx);
10782         if (IS_ERR(leader))
10783                 return PTR_ERR(leader);
10784         /*
10785          * @leader can be NULL here because of is_orphaned_event(). In this
10786          * case inherit_event() will create individual events, similar to what
10787          * perf_group_detach() would do anyway.
10788          */
10789         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10790                 child_ctr = inherit_event(sub, parent, parent_ctx,
10791                                             child, leader, child_ctx);
10792                 if (IS_ERR(child_ctr))
10793                         return PTR_ERR(child_ctr);
10794         }
10795         return 0;
10796 }
10797
10798 /*
10799  * Creates the child task context and tries to inherit the event-group.
10800  *
10801  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10802  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10803  * consistent with perf_event_release_kernel() removing all child events.
10804  *
10805  * Returns:
10806  *  - 0 on success
10807  *  - <0 on error
10808  */
10809 static int
10810 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10811                    struct perf_event_context *parent_ctx,
10812                    struct task_struct *child, int ctxn,
10813                    int *inherited_all)
10814 {
10815         int ret;
10816         struct perf_event_context *child_ctx;
10817
10818         if (!event->attr.inherit) {
10819                 *inherited_all = 0;
10820                 return 0;
10821         }
10822
10823         child_ctx = child->perf_event_ctxp[ctxn];
10824         if (!child_ctx) {
10825                 /*
10826                  * This is executed from the parent task context, so
10827                  * inherit events that have been marked for cloning.
10828                  * First allocate and initialize a context for the
10829                  * child.
10830                  */
10831                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10832                 if (!child_ctx)
10833                         return -ENOMEM;
10834
10835                 child->perf_event_ctxp[ctxn] = child_ctx;
10836         }
10837
10838         ret = inherit_group(event, parent, parent_ctx,
10839                             child, child_ctx);
10840
10841         if (ret)
10842                 *inherited_all = 0;
10843
10844         return ret;
10845 }
10846
10847 /*
10848  * Initialize the perf_event context in task_struct
10849  */
10850 static int perf_event_init_context(struct task_struct *child, int ctxn)
10851 {
10852         struct perf_event_context *child_ctx, *parent_ctx;
10853         struct perf_event_context *cloned_ctx;
10854         struct perf_event *event;
10855         struct task_struct *parent = current;
10856         int inherited_all = 1;
10857         unsigned long flags;
10858         int ret = 0;
10859
10860         if (likely(!parent->perf_event_ctxp[ctxn]))
10861                 return 0;
10862
10863         /*
10864          * If the parent's context is a clone, pin it so it won't get
10865          * swapped under us.
10866          */
10867         parent_ctx = perf_pin_task_context(parent, ctxn);
10868         if (!parent_ctx)
10869                 return 0;
10870
10871         /*
10872          * No need to check if parent_ctx != NULL here; since we saw
10873          * it non-NULL earlier, the only reason for it to become NULL
10874          * is if we exit, and since we're currently in the middle of
10875          * a fork we can't be exiting at the same time.
10876          */
10877
10878         /*
10879          * Lock the parent list. No need to lock the child - not PID
10880          * hashed yet and not running, so nobody can access it.
10881          */
10882         mutex_lock(&parent_ctx->mutex);
10883
10884         /*
10885          * We dont have to disable NMIs - we are only looking at
10886          * the list, not manipulating it:
10887          */
10888         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10889                 ret = inherit_task_group(event, parent, parent_ctx,
10890                                          child, ctxn, &inherited_all);
10891                 if (ret)
10892                         goto out_unlock;
10893         }
10894
10895         /*
10896          * We can't hold ctx->lock when iterating the ->flexible_group list due
10897          * to allocations, but we need to prevent rotation because
10898          * rotate_ctx() will change the list from interrupt context.
10899          */
10900         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10901         parent_ctx->rotate_disable = 1;
10902         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10903
10904         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10905                 ret = inherit_task_group(event, parent, parent_ctx,
10906                                          child, ctxn, &inherited_all);
10907                 if (ret)
10908                         goto out_unlock;
10909         }
10910
10911         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10912         parent_ctx->rotate_disable = 0;
10913
10914         child_ctx = child->perf_event_ctxp[ctxn];
10915
10916         if (child_ctx && inherited_all) {
10917                 /*
10918                  * Mark the child context as a clone of the parent
10919                  * context, or of whatever the parent is a clone of.
10920                  *
10921                  * Note that if the parent is a clone, the holding of
10922                  * parent_ctx->lock avoids it from being uncloned.
10923                  */
10924                 cloned_ctx = parent_ctx->parent_ctx;
10925                 if (cloned_ctx) {
10926                         child_ctx->parent_ctx = cloned_ctx;
10927                         child_ctx->parent_gen = parent_ctx->parent_gen;
10928                 } else {
10929                         child_ctx->parent_ctx = parent_ctx;
10930                         child_ctx->parent_gen = parent_ctx->generation;
10931                 }
10932                 get_ctx(child_ctx->parent_ctx);
10933         }
10934
10935         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10936 out_unlock:
10937         mutex_unlock(&parent_ctx->mutex);
10938
10939         perf_unpin_context(parent_ctx);
10940         put_ctx(parent_ctx);
10941
10942         return ret;
10943 }
10944
10945 /*
10946  * Initialize the perf_event context in task_struct
10947  */
10948 int perf_event_init_task(struct task_struct *child)
10949 {
10950         int ctxn, ret;
10951
10952         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10953         mutex_init(&child->perf_event_mutex);
10954         INIT_LIST_HEAD(&child->perf_event_list);
10955
10956         for_each_task_context_nr(ctxn) {
10957                 ret = perf_event_init_context(child, ctxn);
10958                 if (ret) {
10959                         perf_event_free_task(child);
10960                         return ret;
10961                 }
10962         }
10963
10964         return 0;
10965 }
10966
10967 static void __init perf_event_init_all_cpus(void)
10968 {
10969         struct swevent_htable *swhash;
10970         int cpu;
10971
10972         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
10973
10974         for_each_possible_cpu(cpu) {
10975                 swhash = &per_cpu(swevent_htable, cpu);
10976                 mutex_init(&swhash->hlist_mutex);
10977                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10978
10979                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10980                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10981
10982 #ifdef CONFIG_CGROUP_PERF
10983                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10984 #endif
10985                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10986         }
10987 }
10988
10989 void perf_swevent_init_cpu(unsigned int cpu)
10990 {
10991         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10992
10993         mutex_lock(&swhash->hlist_mutex);
10994         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10995                 struct swevent_hlist *hlist;
10996
10997                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10998                 WARN_ON(!hlist);
10999                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11000         }
11001         mutex_unlock(&swhash->hlist_mutex);
11002 }
11003
11004 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11005 static void __perf_event_exit_context(void *__info)
11006 {
11007         struct perf_event_context *ctx = __info;
11008         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11009         struct perf_event *event;
11010
11011         raw_spin_lock(&ctx->lock);
11012         list_for_each_entry(event, &ctx->event_list, event_entry)
11013                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11014         raw_spin_unlock(&ctx->lock);
11015 }
11016
11017 static void perf_event_exit_cpu_context(int cpu)
11018 {
11019         struct perf_cpu_context *cpuctx;
11020         struct perf_event_context *ctx;
11021         struct pmu *pmu;
11022
11023         mutex_lock(&pmus_lock);
11024         list_for_each_entry(pmu, &pmus, entry) {
11025                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11026                 ctx = &cpuctx->ctx;
11027
11028                 mutex_lock(&ctx->mutex);
11029                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11030                 cpuctx->online = 0;
11031                 mutex_unlock(&ctx->mutex);
11032         }
11033         cpumask_clear_cpu(cpu, perf_online_mask);
11034         mutex_unlock(&pmus_lock);
11035 }
11036 #else
11037
11038 static void perf_event_exit_cpu_context(int cpu) { }
11039
11040 #endif
11041
11042 int perf_event_init_cpu(unsigned int cpu)
11043 {
11044         struct perf_cpu_context *cpuctx;
11045         struct perf_event_context *ctx;
11046         struct pmu *pmu;
11047
11048         perf_swevent_init_cpu(cpu);
11049
11050         mutex_lock(&pmus_lock);
11051         cpumask_set_cpu(cpu, perf_online_mask);
11052         list_for_each_entry(pmu, &pmus, entry) {
11053                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11054                 ctx = &cpuctx->ctx;
11055
11056                 mutex_lock(&ctx->mutex);
11057                 cpuctx->online = 1;
11058                 mutex_unlock(&ctx->mutex);
11059         }
11060         mutex_unlock(&pmus_lock);
11061
11062         return 0;
11063 }
11064
11065 int perf_event_exit_cpu(unsigned int cpu)
11066 {
11067         perf_event_exit_cpu_context(cpu);
11068         return 0;
11069 }
11070
11071 static int
11072 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11073 {
11074         int cpu;
11075
11076         for_each_online_cpu(cpu)
11077                 perf_event_exit_cpu(cpu);
11078
11079         return NOTIFY_OK;
11080 }
11081
11082 /*
11083  * Run the perf reboot notifier at the very last possible moment so that
11084  * the generic watchdog code runs as long as possible.
11085  */
11086 static struct notifier_block perf_reboot_notifier = {
11087         .notifier_call = perf_reboot,
11088         .priority = INT_MIN,
11089 };
11090
11091 void __init perf_event_init(void)
11092 {
11093         int ret;
11094
11095         idr_init(&pmu_idr);
11096
11097         perf_event_init_all_cpus();
11098         init_srcu_struct(&pmus_srcu);
11099         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11100         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11101         perf_pmu_register(&perf_task_clock, NULL, -1);
11102         perf_tp_register();
11103         perf_event_init_cpu(smp_processor_id());
11104         register_reboot_notifier(&perf_reboot_notifier);
11105
11106         ret = init_hw_breakpoint();
11107         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11108
11109         /*
11110          * Build time assertion that we keep the data_head at the intended
11111          * location.  IOW, validation we got the __reserved[] size right.
11112          */
11113         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11114                      != 1024);
11115 }
11116
11117 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11118                               char *page)
11119 {
11120         struct perf_pmu_events_attr *pmu_attr =
11121                 container_of(attr, struct perf_pmu_events_attr, attr);
11122
11123         if (pmu_attr->event_str)
11124                 return sprintf(page, "%s\n", pmu_attr->event_str);
11125
11126         return 0;
11127 }
11128 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11129
11130 static int __init perf_event_sysfs_init(void)
11131 {
11132         struct pmu *pmu;
11133         int ret;
11134
11135         mutex_lock(&pmus_lock);
11136
11137         ret = bus_register(&pmu_bus);
11138         if (ret)
11139                 goto unlock;
11140
11141         list_for_each_entry(pmu, &pmus, entry) {
11142                 if (!pmu->name || pmu->type < 0)
11143                         continue;
11144
11145                 ret = pmu_dev_alloc(pmu);
11146                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11147         }
11148         pmu_bus_running = 1;
11149         ret = 0;
11150
11151 unlock:
11152         mutex_unlock(&pmus_lock);
11153
11154         return ret;
11155 }
11156 device_initcall(perf_event_sysfs_init);
11157
11158 #ifdef CONFIG_CGROUP_PERF
11159 static struct cgroup_subsys_state *
11160 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11161 {
11162         struct perf_cgroup *jc;
11163
11164         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11165         if (!jc)
11166                 return ERR_PTR(-ENOMEM);
11167
11168         jc->info = alloc_percpu(struct perf_cgroup_info);
11169         if (!jc->info) {
11170                 kfree(jc);
11171                 return ERR_PTR(-ENOMEM);
11172         }
11173
11174         return &jc->css;
11175 }
11176
11177 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11178 {
11179         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11180
11181         free_percpu(jc->info);
11182         kfree(jc);
11183 }
11184
11185 static int __perf_cgroup_move(void *info)
11186 {
11187         struct task_struct *task = info;
11188         rcu_read_lock();
11189         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11190         rcu_read_unlock();
11191         return 0;
11192 }
11193
11194 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11195 {
11196         struct task_struct *task;
11197         struct cgroup_subsys_state *css;
11198
11199         cgroup_taskset_for_each(task, css, tset)
11200                 task_function_call(task, __perf_cgroup_move, task);
11201 }
11202
11203 struct cgroup_subsys perf_event_cgrp_subsys = {
11204         .css_alloc      = perf_cgroup_css_alloc,
11205         .css_free       = perf_cgroup_css_free,
11206         .attach         = perf_cgroup_attach,
11207         /*
11208          * Implicitly enable on dfl hierarchy so that perf events can
11209          * always be filtered by cgroup2 path as long as perf_event
11210          * controller is not mounted on a legacy hierarchy.
11211          */
11212         .implicit_on_dfl = true,
11213 };
11214 #endif /* CONFIG_CGROUP_PERF */