]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/events/core.c
407dad6cf89ac55e221c3a4519ed2c25c1241dc7
[karo-tx-linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         WARN_ON_ONCE(!irqs_disabled());
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         WARN_ON_ONCE(!irqs_disabled());
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392
393 /*
394  * perf event paranoia level:
395  *  -1 - not paranoid at all
396  *   0 - disallow raw tracepoint access for unpriv
397  *   1 - disallow cpu events for unpriv
398  *   2 - disallow kernel profiling for unpriv
399  */
400 int sysctl_perf_event_paranoid __read_mostly = 2;
401
402 /* Minimum for 512 kiB + 1 user control page */
403 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
404
405 /*
406  * max perf event sample rate
407  */
408 #define DEFAULT_MAX_SAMPLE_RATE         100000
409 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
410 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
411
412 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
413
414 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
415 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
416
417 static int perf_sample_allowed_ns __read_mostly =
418         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
419
420 static void update_perf_cpu_limits(void)
421 {
422         u64 tmp = perf_sample_period_ns;
423
424         tmp *= sysctl_perf_cpu_time_max_percent;
425         tmp = div_u64(tmp, 100);
426         if (!tmp)
427                 tmp = 1;
428
429         WRITE_ONCE(perf_sample_allowed_ns, tmp);
430 }
431
432 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
433
434 int perf_proc_update_handler(struct ctl_table *table, int write,
435                 void __user *buffer, size_t *lenp,
436                 loff_t *ppos)
437 {
438         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
439
440         if (ret || !write)
441                 return ret;
442
443         /*
444          * If throttling is disabled don't allow the write:
445          */
446         if (sysctl_perf_cpu_time_max_percent == 100 ||
447             sysctl_perf_cpu_time_max_percent == 0)
448                 return -EINVAL;
449
450         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
451         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
452         update_perf_cpu_limits();
453
454         return 0;
455 }
456
457 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
458
459 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
460                                 void __user *buffer, size_t *lenp,
461                                 loff_t *ppos)
462 {
463         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464
465         if (ret || !write)
466                 return ret;
467
468         if (sysctl_perf_cpu_time_max_percent == 100 ||
469             sysctl_perf_cpu_time_max_percent == 0) {
470                 printk(KERN_WARNING
471                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
472                 WRITE_ONCE(perf_sample_allowed_ns, 0);
473         } else {
474                 update_perf_cpu_limits();
475         }
476
477         return 0;
478 }
479
480 /*
481  * perf samples are done in some very critical code paths (NMIs).
482  * If they take too much CPU time, the system can lock up and not
483  * get any real work done.  This will drop the sample rate when
484  * we detect that events are taking too long.
485  */
486 #define NR_ACCUMULATED_SAMPLES 128
487 static DEFINE_PER_CPU(u64, running_sample_length);
488
489 static u64 __report_avg;
490 static u64 __report_allowed;
491
492 static void perf_duration_warn(struct irq_work *w)
493 {
494         printk_ratelimited(KERN_INFO
495                 "perf: interrupt took too long (%lld > %lld), lowering "
496                 "kernel.perf_event_max_sample_rate to %d\n",
497                 __report_avg, __report_allowed,
498                 sysctl_perf_event_sample_rate);
499 }
500
501 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
502
503 void perf_sample_event_took(u64 sample_len_ns)
504 {
505         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
506         u64 running_len;
507         u64 avg_len;
508         u32 max;
509
510         if (max_len == 0)
511                 return;
512
513         /* Decay the counter by 1 average sample. */
514         running_len = __this_cpu_read(running_sample_length);
515         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
516         running_len += sample_len_ns;
517         __this_cpu_write(running_sample_length, running_len);
518
519         /*
520          * Note: this will be biased artifically low until we have
521          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
522          * from having to maintain a count.
523          */
524         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
525         if (avg_len <= max_len)
526                 return;
527
528         __report_avg = avg_len;
529         __report_allowed = max_len;
530
531         /*
532          * Compute a throttle threshold 25% below the current duration.
533          */
534         avg_len += avg_len / 4;
535         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
536         if (avg_len < max)
537                 max /= (u32)avg_len;
538         else
539                 max = 1;
540
541         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
542         WRITE_ONCE(max_samples_per_tick, max);
543
544         sysctl_perf_event_sample_rate = max * HZ;
545         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
546
547         if (!irq_work_queue(&perf_duration_work)) {
548                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
549                              "kernel.perf_event_max_sample_rate to %d\n",
550                              __report_avg, __report_allowed,
551                              sysctl_perf_event_sample_rate);
552         }
553 }
554
555 static atomic64_t perf_event_id;
556
557 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
558                               enum event_type_t event_type);
559
560 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
561                              enum event_type_t event_type,
562                              struct task_struct *task);
563
564 static void update_context_time(struct perf_event_context *ctx);
565 static u64 perf_event_time(struct perf_event *event);
566
567 void __weak perf_event_print_debug(void)        { }
568
569 extern __weak const char *perf_pmu_name(void)
570 {
571         return "pmu";
572 }
573
574 static inline u64 perf_clock(void)
575 {
576         return local_clock();
577 }
578
579 static inline u64 perf_event_clock(struct perf_event *event)
580 {
581         return event->clock();
582 }
583
584 #ifdef CONFIG_CGROUP_PERF
585
586 static inline bool
587 perf_cgroup_match(struct perf_event *event)
588 {
589         struct perf_event_context *ctx = event->ctx;
590         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
591
592         /* @event doesn't care about cgroup */
593         if (!event->cgrp)
594                 return true;
595
596         /* wants specific cgroup scope but @cpuctx isn't associated with any */
597         if (!cpuctx->cgrp)
598                 return false;
599
600         /*
601          * Cgroup scoping is recursive.  An event enabled for a cgroup is
602          * also enabled for all its descendant cgroups.  If @cpuctx's
603          * cgroup is a descendant of @event's (the test covers identity
604          * case), it's a match.
605          */
606         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
607                                     event->cgrp->css.cgroup);
608 }
609
610 static inline void perf_detach_cgroup(struct perf_event *event)
611 {
612         css_put(&event->cgrp->css);
613         event->cgrp = NULL;
614 }
615
616 static inline int is_cgroup_event(struct perf_event *event)
617 {
618         return event->cgrp != NULL;
619 }
620
621 static inline u64 perf_cgroup_event_time(struct perf_event *event)
622 {
623         struct perf_cgroup_info *t;
624
625         t = per_cpu_ptr(event->cgrp->info, event->cpu);
626         return t->time;
627 }
628
629 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
630 {
631         struct perf_cgroup_info *info;
632         u64 now;
633
634         now = perf_clock();
635
636         info = this_cpu_ptr(cgrp->info);
637
638         info->time += now - info->timestamp;
639         info->timestamp = now;
640 }
641
642 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
643 {
644         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
645         if (cgrp_out)
646                 __update_cgrp_time(cgrp_out);
647 }
648
649 static inline void update_cgrp_time_from_event(struct perf_event *event)
650 {
651         struct perf_cgroup *cgrp;
652
653         /*
654          * ensure we access cgroup data only when needed and
655          * when we know the cgroup is pinned (css_get)
656          */
657         if (!is_cgroup_event(event))
658                 return;
659
660         cgrp = perf_cgroup_from_task(current, event->ctx);
661         /*
662          * Do not update time when cgroup is not active
663          */
664         if (cgrp == event->cgrp)
665                 __update_cgrp_time(event->cgrp);
666 }
667
668 static inline void
669 perf_cgroup_set_timestamp(struct task_struct *task,
670                           struct perf_event_context *ctx)
671 {
672         struct perf_cgroup *cgrp;
673         struct perf_cgroup_info *info;
674
675         /*
676          * ctx->lock held by caller
677          * ensure we do not access cgroup data
678          * unless we have the cgroup pinned (css_get)
679          */
680         if (!task || !ctx->nr_cgroups)
681                 return;
682
683         cgrp = perf_cgroup_from_task(task, ctx);
684         info = this_cpu_ptr(cgrp->info);
685         info->timestamp = ctx->timestamp;
686 }
687
688 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
689
690 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
691 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
692
693 /*
694  * reschedule events based on the cgroup constraint of task.
695  *
696  * mode SWOUT : schedule out everything
697  * mode SWIN : schedule in based on cgroup for next
698  */
699 static void perf_cgroup_switch(struct task_struct *task, int mode)
700 {
701         struct perf_cpu_context *cpuctx;
702         struct list_head *list;
703         unsigned long flags;
704
705         /*
706          * Disable interrupts and preemption to avoid this CPU's
707          * cgrp_cpuctx_entry to change under us.
708          */
709         local_irq_save(flags);
710
711         list = this_cpu_ptr(&cgrp_cpuctx_list);
712         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
713                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
714
715                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
716                 perf_pmu_disable(cpuctx->ctx.pmu);
717
718                 if (mode & PERF_CGROUP_SWOUT) {
719                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
720                         /*
721                          * must not be done before ctxswout due
722                          * to event_filter_match() in event_sched_out()
723                          */
724                         cpuctx->cgrp = NULL;
725                 }
726
727                 if (mode & PERF_CGROUP_SWIN) {
728                         WARN_ON_ONCE(cpuctx->cgrp);
729                         /*
730                          * set cgrp before ctxsw in to allow
731                          * event_filter_match() to not have to pass
732                          * task around
733                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
734                          * because cgorup events are only per-cpu
735                          */
736                         cpuctx->cgrp = perf_cgroup_from_task(task,
737                                                              &cpuctx->ctx);
738                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
739                 }
740                 perf_pmu_enable(cpuctx->ctx.pmu);
741                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
742         }
743
744         local_irq_restore(flags);
745 }
746
747 static inline void perf_cgroup_sched_out(struct task_struct *task,
748                                          struct task_struct *next)
749 {
750         struct perf_cgroup *cgrp1;
751         struct perf_cgroup *cgrp2 = NULL;
752
753         rcu_read_lock();
754         /*
755          * we come here when we know perf_cgroup_events > 0
756          * we do not need to pass the ctx here because we know
757          * we are holding the rcu lock
758          */
759         cgrp1 = perf_cgroup_from_task(task, NULL);
760         cgrp2 = perf_cgroup_from_task(next, NULL);
761
762         /*
763          * only schedule out current cgroup events if we know
764          * that we are switching to a different cgroup. Otherwise,
765          * do no touch the cgroup events.
766          */
767         if (cgrp1 != cgrp2)
768                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
769
770         rcu_read_unlock();
771 }
772
773 static inline void perf_cgroup_sched_in(struct task_struct *prev,
774                                         struct task_struct *task)
775 {
776         struct perf_cgroup *cgrp1;
777         struct perf_cgroup *cgrp2 = NULL;
778
779         rcu_read_lock();
780         /*
781          * we come here when we know perf_cgroup_events > 0
782          * we do not need to pass the ctx here because we know
783          * we are holding the rcu lock
784          */
785         cgrp1 = perf_cgroup_from_task(task, NULL);
786         cgrp2 = perf_cgroup_from_task(prev, NULL);
787
788         /*
789          * only need to schedule in cgroup events if we are changing
790          * cgroup during ctxsw. Cgroup events were not scheduled
791          * out of ctxsw out if that was not the case.
792          */
793         if (cgrp1 != cgrp2)
794                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
795
796         rcu_read_unlock();
797 }
798
799 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
800                                       struct perf_event_attr *attr,
801                                       struct perf_event *group_leader)
802 {
803         struct perf_cgroup *cgrp;
804         struct cgroup_subsys_state *css;
805         struct fd f = fdget(fd);
806         int ret = 0;
807
808         if (!f.file)
809                 return -EBADF;
810
811         css = css_tryget_online_from_dir(f.file->f_path.dentry,
812                                          &perf_event_cgrp_subsys);
813         if (IS_ERR(css)) {
814                 ret = PTR_ERR(css);
815                 goto out;
816         }
817
818         cgrp = container_of(css, struct perf_cgroup, css);
819         event->cgrp = cgrp;
820
821         /*
822          * all events in a group must monitor
823          * the same cgroup because a task belongs
824          * to only one perf cgroup at a time
825          */
826         if (group_leader && group_leader->cgrp != cgrp) {
827                 perf_detach_cgroup(event);
828                 ret = -EINVAL;
829         }
830 out:
831         fdput(f);
832         return ret;
833 }
834
835 static inline void
836 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
837 {
838         struct perf_cgroup_info *t;
839         t = per_cpu_ptr(event->cgrp->info, event->cpu);
840         event->shadow_ctx_time = now - t->timestamp;
841 }
842
843 static inline void
844 perf_cgroup_defer_enabled(struct perf_event *event)
845 {
846         /*
847          * when the current task's perf cgroup does not match
848          * the event's, we need to remember to call the
849          * perf_mark_enable() function the first time a task with
850          * a matching perf cgroup is scheduled in.
851          */
852         if (is_cgroup_event(event) && !perf_cgroup_match(event))
853                 event->cgrp_defer_enabled = 1;
854 }
855
856 static inline void
857 perf_cgroup_mark_enabled(struct perf_event *event,
858                          struct perf_event_context *ctx)
859 {
860         struct perf_event *sub;
861         u64 tstamp = perf_event_time(event);
862
863         if (!event->cgrp_defer_enabled)
864                 return;
865
866         event->cgrp_defer_enabled = 0;
867
868         event->tstamp_enabled = tstamp - event->total_time_enabled;
869         list_for_each_entry(sub, &event->sibling_list, group_entry) {
870                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
871                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
872                         sub->cgrp_defer_enabled = 0;
873                 }
874         }
875 }
876
877 /*
878  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
879  * cleared when last cgroup event is removed.
880  */
881 static inline void
882 list_update_cgroup_event(struct perf_event *event,
883                          struct perf_event_context *ctx, bool add)
884 {
885         struct perf_cpu_context *cpuctx;
886         struct list_head *cpuctx_entry;
887
888         if (!is_cgroup_event(event))
889                 return;
890
891         if (add && ctx->nr_cgroups++)
892                 return;
893         else if (!add && --ctx->nr_cgroups)
894                 return;
895         /*
896          * Because cgroup events are always per-cpu events,
897          * this will always be called from the right CPU.
898          */
899         cpuctx = __get_cpu_context(ctx);
900         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
901         /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
902         if (add) {
903                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
904                 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
905                         cpuctx->cgrp = event->cgrp;
906         } else {
907                 list_del(cpuctx_entry);
908                 cpuctx->cgrp = NULL;
909         }
910 }
911
912 #else /* !CONFIG_CGROUP_PERF */
913
914 static inline bool
915 perf_cgroup_match(struct perf_event *event)
916 {
917         return true;
918 }
919
920 static inline void perf_detach_cgroup(struct perf_event *event)
921 {}
922
923 static inline int is_cgroup_event(struct perf_event *event)
924 {
925         return 0;
926 }
927
928 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
929 {
930         return 0;
931 }
932
933 static inline void update_cgrp_time_from_event(struct perf_event *event)
934 {
935 }
936
937 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
938 {
939 }
940
941 static inline void perf_cgroup_sched_out(struct task_struct *task,
942                                          struct task_struct *next)
943 {
944 }
945
946 static inline void perf_cgroup_sched_in(struct task_struct *prev,
947                                         struct task_struct *task)
948 {
949 }
950
951 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
952                                       struct perf_event_attr *attr,
953                                       struct perf_event *group_leader)
954 {
955         return -EINVAL;
956 }
957
958 static inline void
959 perf_cgroup_set_timestamp(struct task_struct *task,
960                           struct perf_event_context *ctx)
961 {
962 }
963
964 void
965 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
966 {
967 }
968
969 static inline void
970 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
971 {
972 }
973
974 static inline u64 perf_cgroup_event_time(struct perf_event *event)
975 {
976         return 0;
977 }
978
979 static inline void
980 perf_cgroup_defer_enabled(struct perf_event *event)
981 {
982 }
983
984 static inline void
985 perf_cgroup_mark_enabled(struct perf_event *event,
986                          struct perf_event_context *ctx)
987 {
988 }
989
990 static inline void
991 list_update_cgroup_event(struct perf_event *event,
992                          struct perf_event_context *ctx, bool add)
993 {
994 }
995
996 #endif
997
998 /*
999  * set default to be dependent on timer tick just
1000  * like original code
1001  */
1002 #define PERF_CPU_HRTIMER (1000 / HZ)
1003 /*
1004  * function must be called with interrupts disabled
1005  */
1006 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1007 {
1008         struct perf_cpu_context *cpuctx;
1009         int rotations = 0;
1010
1011         WARN_ON(!irqs_disabled());
1012
1013         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1014         rotations = perf_rotate_context(cpuctx);
1015
1016         raw_spin_lock(&cpuctx->hrtimer_lock);
1017         if (rotations)
1018                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1019         else
1020                 cpuctx->hrtimer_active = 0;
1021         raw_spin_unlock(&cpuctx->hrtimer_lock);
1022
1023         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1024 }
1025
1026 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1027 {
1028         struct hrtimer *timer = &cpuctx->hrtimer;
1029         struct pmu *pmu = cpuctx->ctx.pmu;
1030         u64 interval;
1031
1032         /* no multiplexing needed for SW PMU */
1033         if (pmu->task_ctx_nr == perf_sw_context)
1034                 return;
1035
1036         /*
1037          * check default is sane, if not set then force to
1038          * default interval (1/tick)
1039          */
1040         interval = pmu->hrtimer_interval_ms;
1041         if (interval < 1)
1042                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1043
1044         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1045
1046         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1047         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1048         timer->function = perf_mux_hrtimer_handler;
1049 }
1050
1051 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1052 {
1053         struct hrtimer *timer = &cpuctx->hrtimer;
1054         struct pmu *pmu = cpuctx->ctx.pmu;
1055         unsigned long flags;
1056
1057         /* not for SW PMU */
1058         if (pmu->task_ctx_nr == perf_sw_context)
1059                 return 0;
1060
1061         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1062         if (!cpuctx->hrtimer_active) {
1063                 cpuctx->hrtimer_active = 1;
1064                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1065                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1066         }
1067         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1068
1069         return 0;
1070 }
1071
1072 void perf_pmu_disable(struct pmu *pmu)
1073 {
1074         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1075         if (!(*count)++)
1076                 pmu->pmu_disable(pmu);
1077 }
1078
1079 void perf_pmu_enable(struct pmu *pmu)
1080 {
1081         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1082         if (!--(*count))
1083                 pmu->pmu_enable(pmu);
1084 }
1085
1086 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1087
1088 /*
1089  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1090  * perf_event_task_tick() are fully serialized because they're strictly cpu
1091  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1092  * disabled, while perf_event_task_tick is called from IRQ context.
1093  */
1094 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1095 {
1096         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1097
1098         WARN_ON(!irqs_disabled());
1099
1100         WARN_ON(!list_empty(&ctx->active_ctx_list));
1101
1102         list_add(&ctx->active_ctx_list, head);
1103 }
1104
1105 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1106 {
1107         WARN_ON(!irqs_disabled());
1108
1109         WARN_ON(list_empty(&ctx->active_ctx_list));
1110
1111         list_del_init(&ctx->active_ctx_list);
1112 }
1113
1114 static void get_ctx(struct perf_event_context *ctx)
1115 {
1116         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1117 }
1118
1119 static void free_ctx(struct rcu_head *head)
1120 {
1121         struct perf_event_context *ctx;
1122
1123         ctx = container_of(head, struct perf_event_context, rcu_head);
1124         kfree(ctx->task_ctx_data);
1125         kfree(ctx);
1126 }
1127
1128 static void put_ctx(struct perf_event_context *ctx)
1129 {
1130         if (atomic_dec_and_test(&ctx->refcount)) {
1131                 if (ctx->parent_ctx)
1132                         put_ctx(ctx->parent_ctx);
1133                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1134                         put_task_struct(ctx->task);
1135                 call_rcu(&ctx->rcu_head, free_ctx);
1136         }
1137 }
1138
1139 /*
1140  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1141  * perf_pmu_migrate_context() we need some magic.
1142  *
1143  * Those places that change perf_event::ctx will hold both
1144  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1145  *
1146  * Lock ordering is by mutex address. There are two other sites where
1147  * perf_event_context::mutex nests and those are:
1148  *
1149  *  - perf_event_exit_task_context()    [ child , 0 ]
1150  *      perf_event_exit_event()
1151  *        put_event()                   [ parent, 1 ]
1152  *
1153  *  - perf_event_init_context()         [ parent, 0 ]
1154  *      inherit_task_group()
1155  *        inherit_group()
1156  *          inherit_event()
1157  *            perf_event_alloc()
1158  *              perf_init_event()
1159  *                perf_try_init_event() [ child , 1 ]
1160  *
1161  * While it appears there is an obvious deadlock here -- the parent and child
1162  * nesting levels are inverted between the two. This is in fact safe because
1163  * life-time rules separate them. That is an exiting task cannot fork, and a
1164  * spawning task cannot (yet) exit.
1165  *
1166  * But remember that that these are parent<->child context relations, and
1167  * migration does not affect children, therefore these two orderings should not
1168  * interact.
1169  *
1170  * The change in perf_event::ctx does not affect children (as claimed above)
1171  * because the sys_perf_event_open() case will install a new event and break
1172  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1173  * concerned with cpuctx and that doesn't have children.
1174  *
1175  * The places that change perf_event::ctx will issue:
1176  *
1177  *   perf_remove_from_context();
1178  *   synchronize_rcu();
1179  *   perf_install_in_context();
1180  *
1181  * to affect the change. The remove_from_context() + synchronize_rcu() should
1182  * quiesce the event, after which we can install it in the new location. This
1183  * means that only external vectors (perf_fops, prctl) can perturb the event
1184  * while in transit. Therefore all such accessors should also acquire
1185  * perf_event_context::mutex to serialize against this.
1186  *
1187  * However; because event->ctx can change while we're waiting to acquire
1188  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1189  * function.
1190  *
1191  * Lock order:
1192  *    cred_guard_mutex
1193  *      task_struct::perf_event_mutex
1194  *        perf_event_context::mutex
1195  *          perf_event::child_mutex;
1196  *            perf_event_context::lock
1197  *          perf_event::mmap_mutex
1198  *          mmap_sem
1199  */
1200 static struct perf_event_context *
1201 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1202 {
1203         struct perf_event_context *ctx;
1204
1205 again:
1206         rcu_read_lock();
1207         ctx = ACCESS_ONCE(event->ctx);
1208         if (!atomic_inc_not_zero(&ctx->refcount)) {
1209                 rcu_read_unlock();
1210                 goto again;
1211         }
1212         rcu_read_unlock();
1213
1214         mutex_lock_nested(&ctx->mutex, nesting);
1215         if (event->ctx != ctx) {
1216                 mutex_unlock(&ctx->mutex);
1217                 put_ctx(ctx);
1218                 goto again;
1219         }
1220
1221         return ctx;
1222 }
1223
1224 static inline struct perf_event_context *
1225 perf_event_ctx_lock(struct perf_event *event)
1226 {
1227         return perf_event_ctx_lock_nested(event, 0);
1228 }
1229
1230 static void perf_event_ctx_unlock(struct perf_event *event,
1231                                   struct perf_event_context *ctx)
1232 {
1233         mutex_unlock(&ctx->mutex);
1234         put_ctx(ctx);
1235 }
1236
1237 /*
1238  * This must be done under the ctx->lock, such as to serialize against
1239  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1240  * calling scheduler related locks and ctx->lock nests inside those.
1241  */
1242 static __must_check struct perf_event_context *
1243 unclone_ctx(struct perf_event_context *ctx)
1244 {
1245         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1246
1247         lockdep_assert_held(&ctx->lock);
1248
1249         if (parent_ctx)
1250                 ctx->parent_ctx = NULL;
1251         ctx->generation++;
1252
1253         return parent_ctx;
1254 }
1255
1256 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1257 {
1258         /*
1259          * only top level events have the pid namespace they were created in
1260          */
1261         if (event->parent)
1262                 event = event->parent;
1263
1264         return task_tgid_nr_ns(p, event->ns);
1265 }
1266
1267 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1268 {
1269         /*
1270          * only top level events have the pid namespace they were created in
1271          */
1272         if (event->parent)
1273                 event = event->parent;
1274
1275         return task_pid_nr_ns(p, event->ns);
1276 }
1277
1278 /*
1279  * If we inherit events we want to return the parent event id
1280  * to userspace.
1281  */
1282 static u64 primary_event_id(struct perf_event *event)
1283 {
1284         u64 id = event->id;
1285
1286         if (event->parent)
1287                 id = event->parent->id;
1288
1289         return id;
1290 }
1291
1292 /*
1293  * Get the perf_event_context for a task and lock it.
1294  *
1295  * This has to cope with with the fact that until it is locked,
1296  * the context could get moved to another task.
1297  */
1298 static struct perf_event_context *
1299 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1300 {
1301         struct perf_event_context *ctx;
1302
1303 retry:
1304         /*
1305          * One of the few rules of preemptible RCU is that one cannot do
1306          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1307          * part of the read side critical section was irqs-enabled -- see
1308          * rcu_read_unlock_special().
1309          *
1310          * Since ctx->lock nests under rq->lock we must ensure the entire read
1311          * side critical section has interrupts disabled.
1312          */
1313         local_irq_save(*flags);
1314         rcu_read_lock();
1315         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1316         if (ctx) {
1317                 /*
1318                  * If this context is a clone of another, it might
1319                  * get swapped for another underneath us by
1320                  * perf_event_task_sched_out, though the
1321                  * rcu_read_lock() protects us from any context
1322                  * getting freed.  Lock the context and check if it
1323                  * got swapped before we could get the lock, and retry
1324                  * if so.  If we locked the right context, then it
1325                  * can't get swapped on us any more.
1326                  */
1327                 raw_spin_lock(&ctx->lock);
1328                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1329                         raw_spin_unlock(&ctx->lock);
1330                         rcu_read_unlock();
1331                         local_irq_restore(*flags);
1332                         goto retry;
1333                 }
1334
1335                 if (ctx->task == TASK_TOMBSTONE ||
1336                     !atomic_inc_not_zero(&ctx->refcount)) {
1337                         raw_spin_unlock(&ctx->lock);
1338                         ctx = NULL;
1339                 } else {
1340                         WARN_ON_ONCE(ctx->task != task);
1341                 }
1342         }
1343         rcu_read_unlock();
1344         if (!ctx)
1345                 local_irq_restore(*flags);
1346         return ctx;
1347 }
1348
1349 /*
1350  * Get the context for a task and increment its pin_count so it
1351  * can't get swapped to another task.  This also increments its
1352  * reference count so that the context can't get freed.
1353  */
1354 static struct perf_event_context *
1355 perf_pin_task_context(struct task_struct *task, int ctxn)
1356 {
1357         struct perf_event_context *ctx;
1358         unsigned long flags;
1359
1360         ctx = perf_lock_task_context(task, ctxn, &flags);
1361         if (ctx) {
1362                 ++ctx->pin_count;
1363                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1364         }
1365         return ctx;
1366 }
1367
1368 static void perf_unpin_context(struct perf_event_context *ctx)
1369 {
1370         unsigned long flags;
1371
1372         raw_spin_lock_irqsave(&ctx->lock, flags);
1373         --ctx->pin_count;
1374         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1375 }
1376
1377 /*
1378  * Update the record of the current time in a context.
1379  */
1380 static void update_context_time(struct perf_event_context *ctx)
1381 {
1382         u64 now = perf_clock();
1383
1384         ctx->time += now - ctx->timestamp;
1385         ctx->timestamp = now;
1386 }
1387
1388 static u64 perf_event_time(struct perf_event *event)
1389 {
1390         struct perf_event_context *ctx = event->ctx;
1391
1392         if (is_cgroup_event(event))
1393                 return perf_cgroup_event_time(event);
1394
1395         return ctx ? ctx->time : 0;
1396 }
1397
1398 /*
1399  * Update the total_time_enabled and total_time_running fields for a event.
1400  */
1401 static void update_event_times(struct perf_event *event)
1402 {
1403         struct perf_event_context *ctx = event->ctx;
1404         u64 run_end;
1405
1406         lockdep_assert_held(&ctx->lock);
1407
1408         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1409             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1410                 return;
1411
1412         /*
1413          * in cgroup mode, time_enabled represents
1414          * the time the event was enabled AND active
1415          * tasks were in the monitored cgroup. This is
1416          * independent of the activity of the context as
1417          * there may be a mix of cgroup and non-cgroup events.
1418          *
1419          * That is why we treat cgroup events differently
1420          * here.
1421          */
1422         if (is_cgroup_event(event))
1423                 run_end = perf_cgroup_event_time(event);
1424         else if (ctx->is_active)
1425                 run_end = ctx->time;
1426         else
1427                 run_end = event->tstamp_stopped;
1428
1429         event->total_time_enabled = run_end - event->tstamp_enabled;
1430
1431         if (event->state == PERF_EVENT_STATE_INACTIVE)
1432                 run_end = event->tstamp_stopped;
1433         else
1434                 run_end = perf_event_time(event);
1435
1436         event->total_time_running = run_end - event->tstamp_running;
1437
1438 }
1439
1440 /*
1441  * Update total_time_enabled and total_time_running for all events in a group.
1442  */
1443 static void update_group_times(struct perf_event *leader)
1444 {
1445         struct perf_event *event;
1446
1447         update_event_times(leader);
1448         list_for_each_entry(event, &leader->sibling_list, group_entry)
1449                 update_event_times(event);
1450 }
1451
1452 static enum event_type_t get_event_type(struct perf_event *event)
1453 {
1454         struct perf_event_context *ctx = event->ctx;
1455         enum event_type_t event_type;
1456
1457         lockdep_assert_held(&ctx->lock);
1458
1459         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1460         if (!ctx->task)
1461                 event_type |= EVENT_CPU;
1462
1463         return event_type;
1464 }
1465
1466 static struct list_head *
1467 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1468 {
1469         if (event->attr.pinned)
1470                 return &ctx->pinned_groups;
1471         else
1472                 return &ctx->flexible_groups;
1473 }
1474
1475 /*
1476  * Add a event from the lists for its context.
1477  * Must be called with ctx->mutex and ctx->lock held.
1478  */
1479 static void
1480 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1481 {
1482         lockdep_assert_held(&ctx->lock);
1483
1484         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1485         event->attach_state |= PERF_ATTACH_CONTEXT;
1486
1487         /*
1488          * If we're a stand alone event or group leader, we go to the context
1489          * list, group events are kept attached to the group so that
1490          * perf_group_detach can, at all times, locate all siblings.
1491          */
1492         if (event->group_leader == event) {
1493                 struct list_head *list;
1494
1495                 event->group_caps = event->event_caps;
1496
1497                 list = ctx_group_list(event, ctx);
1498                 list_add_tail(&event->group_entry, list);
1499         }
1500
1501         list_update_cgroup_event(event, ctx, true);
1502
1503         list_add_rcu(&event->event_entry, &ctx->event_list);
1504         ctx->nr_events++;
1505         if (event->attr.inherit_stat)
1506                 ctx->nr_stat++;
1507
1508         ctx->generation++;
1509 }
1510
1511 /*
1512  * Initialize event state based on the perf_event_attr::disabled.
1513  */
1514 static inline void perf_event__state_init(struct perf_event *event)
1515 {
1516         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1517                                               PERF_EVENT_STATE_INACTIVE;
1518 }
1519
1520 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1521 {
1522         int entry = sizeof(u64); /* value */
1523         int size = 0;
1524         int nr = 1;
1525
1526         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1527                 size += sizeof(u64);
1528
1529         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1530                 size += sizeof(u64);
1531
1532         if (event->attr.read_format & PERF_FORMAT_ID)
1533                 entry += sizeof(u64);
1534
1535         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1536                 nr += nr_siblings;
1537                 size += sizeof(u64);
1538         }
1539
1540         size += entry * nr;
1541         event->read_size = size;
1542 }
1543
1544 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1545 {
1546         struct perf_sample_data *data;
1547         u16 size = 0;
1548
1549         if (sample_type & PERF_SAMPLE_IP)
1550                 size += sizeof(data->ip);
1551
1552         if (sample_type & PERF_SAMPLE_ADDR)
1553                 size += sizeof(data->addr);
1554
1555         if (sample_type & PERF_SAMPLE_PERIOD)
1556                 size += sizeof(data->period);
1557
1558         if (sample_type & PERF_SAMPLE_WEIGHT)
1559                 size += sizeof(data->weight);
1560
1561         if (sample_type & PERF_SAMPLE_READ)
1562                 size += event->read_size;
1563
1564         if (sample_type & PERF_SAMPLE_DATA_SRC)
1565                 size += sizeof(data->data_src.val);
1566
1567         if (sample_type & PERF_SAMPLE_TRANSACTION)
1568                 size += sizeof(data->txn);
1569
1570         event->header_size = size;
1571 }
1572
1573 /*
1574  * Called at perf_event creation and when events are attached/detached from a
1575  * group.
1576  */
1577 static void perf_event__header_size(struct perf_event *event)
1578 {
1579         __perf_event_read_size(event,
1580                                event->group_leader->nr_siblings);
1581         __perf_event_header_size(event, event->attr.sample_type);
1582 }
1583
1584 static void perf_event__id_header_size(struct perf_event *event)
1585 {
1586         struct perf_sample_data *data;
1587         u64 sample_type = event->attr.sample_type;
1588         u16 size = 0;
1589
1590         if (sample_type & PERF_SAMPLE_TID)
1591                 size += sizeof(data->tid_entry);
1592
1593         if (sample_type & PERF_SAMPLE_TIME)
1594                 size += sizeof(data->time);
1595
1596         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1597                 size += sizeof(data->id);
1598
1599         if (sample_type & PERF_SAMPLE_ID)
1600                 size += sizeof(data->id);
1601
1602         if (sample_type & PERF_SAMPLE_STREAM_ID)
1603                 size += sizeof(data->stream_id);
1604
1605         if (sample_type & PERF_SAMPLE_CPU)
1606                 size += sizeof(data->cpu_entry);
1607
1608         event->id_header_size = size;
1609 }
1610
1611 static bool perf_event_validate_size(struct perf_event *event)
1612 {
1613         /*
1614          * The values computed here will be over-written when we actually
1615          * attach the event.
1616          */
1617         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1618         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1619         perf_event__id_header_size(event);
1620
1621         /*
1622          * Sum the lot; should not exceed the 64k limit we have on records.
1623          * Conservative limit to allow for callchains and other variable fields.
1624          */
1625         if (event->read_size + event->header_size +
1626             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1627                 return false;
1628
1629         return true;
1630 }
1631
1632 static void perf_group_attach(struct perf_event *event)
1633 {
1634         struct perf_event *group_leader = event->group_leader, *pos;
1635
1636         lockdep_assert_held(&event->ctx->lock);
1637
1638         /*
1639          * We can have double attach due to group movement in perf_event_open.
1640          */
1641         if (event->attach_state & PERF_ATTACH_GROUP)
1642                 return;
1643
1644         event->attach_state |= PERF_ATTACH_GROUP;
1645
1646         if (group_leader == event)
1647                 return;
1648
1649         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1650
1651         group_leader->group_caps &= event->event_caps;
1652
1653         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1654         group_leader->nr_siblings++;
1655
1656         perf_event__header_size(group_leader);
1657
1658         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1659                 perf_event__header_size(pos);
1660 }
1661
1662 /*
1663  * Remove a event from the lists for its context.
1664  * Must be called with ctx->mutex and ctx->lock held.
1665  */
1666 static void
1667 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1668 {
1669         WARN_ON_ONCE(event->ctx != ctx);
1670         lockdep_assert_held(&ctx->lock);
1671
1672         /*
1673          * We can have double detach due to exit/hot-unplug + close.
1674          */
1675         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1676                 return;
1677
1678         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1679
1680         list_update_cgroup_event(event, ctx, false);
1681
1682         ctx->nr_events--;
1683         if (event->attr.inherit_stat)
1684                 ctx->nr_stat--;
1685
1686         list_del_rcu(&event->event_entry);
1687
1688         if (event->group_leader == event)
1689                 list_del_init(&event->group_entry);
1690
1691         update_group_times(event);
1692
1693         /*
1694          * If event was in error state, then keep it
1695          * that way, otherwise bogus counts will be
1696          * returned on read(). The only way to get out
1697          * of error state is by explicit re-enabling
1698          * of the event
1699          */
1700         if (event->state > PERF_EVENT_STATE_OFF)
1701                 event->state = PERF_EVENT_STATE_OFF;
1702
1703         ctx->generation++;
1704 }
1705
1706 static void perf_group_detach(struct perf_event *event)
1707 {
1708         struct perf_event *sibling, *tmp;
1709         struct list_head *list = NULL;
1710
1711         lockdep_assert_held(&event->ctx->lock);
1712
1713         /*
1714          * We can have double detach due to exit/hot-unplug + close.
1715          */
1716         if (!(event->attach_state & PERF_ATTACH_GROUP))
1717                 return;
1718
1719         event->attach_state &= ~PERF_ATTACH_GROUP;
1720
1721         /*
1722          * If this is a sibling, remove it from its group.
1723          */
1724         if (event->group_leader != event) {
1725                 list_del_init(&event->group_entry);
1726                 event->group_leader->nr_siblings--;
1727                 goto out;
1728         }
1729
1730         if (!list_empty(&event->group_entry))
1731                 list = &event->group_entry;
1732
1733         /*
1734          * If this was a group event with sibling events then
1735          * upgrade the siblings to singleton events by adding them
1736          * to whatever list we are on.
1737          */
1738         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1739                 if (list)
1740                         list_move_tail(&sibling->group_entry, list);
1741                 sibling->group_leader = sibling;
1742
1743                 /* Inherit group flags from the previous leader */
1744                 sibling->group_caps = event->group_caps;
1745
1746                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1747         }
1748
1749 out:
1750         perf_event__header_size(event->group_leader);
1751
1752         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1753                 perf_event__header_size(tmp);
1754 }
1755
1756 static bool is_orphaned_event(struct perf_event *event)
1757 {
1758         return event->state == PERF_EVENT_STATE_DEAD;
1759 }
1760
1761 static inline int __pmu_filter_match(struct perf_event *event)
1762 {
1763         struct pmu *pmu = event->pmu;
1764         return pmu->filter_match ? pmu->filter_match(event) : 1;
1765 }
1766
1767 /*
1768  * Check whether we should attempt to schedule an event group based on
1769  * PMU-specific filtering. An event group can consist of HW and SW events,
1770  * potentially with a SW leader, so we must check all the filters, to
1771  * determine whether a group is schedulable:
1772  */
1773 static inline int pmu_filter_match(struct perf_event *event)
1774 {
1775         struct perf_event *child;
1776
1777         if (!__pmu_filter_match(event))
1778                 return 0;
1779
1780         list_for_each_entry(child, &event->sibling_list, group_entry) {
1781                 if (!__pmu_filter_match(child))
1782                         return 0;
1783         }
1784
1785         return 1;
1786 }
1787
1788 static inline int
1789 event_filter_match(struct perf_event *event)
1790 {
1791         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1792                perf_cgroup_match(event) && pmu_filter_match(event);
1793 }
1794
1795 static void
1796 event_sched_out(struct perf_event *event,
1797                   struct perf_cpu_context *cpuctx,
1798                   struct perf_event_context *ctx)
1799 {
1800         u64 tstamp = perf_event_time(event);
1801         u64 delta;
1802
1803         WARN_ON_ONCE(event->ctx != ctx);
1804         lockdep_assert_held(&ctx->lock);
1805
1806         /*
1807          * An event which could not be activated because of
1808          * filter mismatch still needs to have its timings
1809          * maintained, otherwise bogus information is return
1810          * via read() for time_enabled, time_running:
1811          */
1812         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1813             !event_filter_match(event)) {
1814                 delta = tstamp - event->tstamp_stopped;
1815                 event->tstamp_running += delta;
1816                 event->tstamp_stopped = tstamp;
1817         }
1818
1819         if (event->state != PERF_EVENT_STATE_ACTIVE)
1820                 return;
1821
1822         perf_pmu_disable(event->pmu);
1823
1824         event->tstamp_stopped = tstamp;
1825         event->pmu->del(event, 0);
1826         event->oncpu = -1;
1827         event->state = PERF_EVENT_STATE_INACTIVE;
1828         if (event->pending_disable) {
1829                 event->pending_disable = 0;
1830                 event->state = PERF_EVENT_STATE_OFF;
1831         }
1832
1833         if (!is_software_event(event))
1834                 cpuctx->active_oncpu--;
1835         if (!--ctx->nr_active)
1836                 perf_event_ctx_deactivate(ctx);
1837         if (event->attr.freq && event->attr.sample_freq)
1838                 ctx->nr_freq--;
1839         if (event->attr.exclusive || !cpuctx->active_oncpu)
1840                 cpuctx->exclusive = 0;
1841
1842         perf_pmu_enable(event->pmu);
1843 }
1844
1845 static void
1846 group_sched_out(struct perf_event *group_event,
1847                 struct perf_cpu_context *cpuctx,
1848                 struct perf_event_context *ctx)
1849 {
1850         struct perf_event *event;
1851         int state = group_event->state;
1852
1853         perf_pmu_disable(ctx->pmu);
1854
1855         event_sched_out(group_event, cpuctx, ctx);
1856
1857         /*
1858          * Schedule out siblings (if any):
1859          */
1860         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1861                 event_sched_out(event, cpuctx, ctx);
1862
1863         perf_pmu_enable(ctx->pmu);
1864
1865         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1866                 cpuctx->exclusive = 0;
1867 }
1868
1869 #define DETACH_GROUP    0x01UL
1870
1871 /*
1872  * Cross CPU call to remove a performance event
1873  *
1874  * We disable the event on the hardware level first. After that we
1875  * remove it from the context list.
1876  */
1877 static void
1878 __perf_remove_from_context(struct perf_event *event,
1879                            struct perf_cpu_context *cpuctx,
1880                            struct perf_event_context *ctx,
1881                            void *info)
1882 {
1883         unsigned long flags = (unsigned long)info;
1884
1885         event_sched_out(event, cpuctx, ctx);
1886         if (flags & DETACH_GROUP)
1887                 perf_group_detach(event);
1888         list_del_event(event, ctx);
1889
1890         if (!ctx->nr_events && ctx->is_active) {
1891                 ctx->is_active = 0;
1892                 if (ctx->task) {
1893                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1894                         cpuctx->task_ctx = NULL;
1895                 }
1896         }
1897 }
1898
1899 /*
1900  * Remove the event from a task's (or a CPU's) list of events.
1901  *
1902  * If event->ctx is a cloned context, callers must make sure that
1903  * every task struct that event->ctx->task could possibly point to
1904  * remains valid.  This is OK when called from perf_release since
1905  * that only calls us on the top-level context, which can't be a clone.
1906  * When called from perf_event_exit_task, it's OK because the
1907  * context has been detached from its task.
1908  */
1909 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1910 {
1911         struct perf_event_context *ctx = event->ctx;
1912
1913         lockdep_assert_held(&ctx->mutex);
1914
1915         event_function_call(event, __perf_remove_from_context, (void *)flags);
1916
1917         /*
1918          * The above event_function_call() can NO-OP when it hits
1919          * TASK_TOMBSTONE. In that case we must already have been detached
1920          * from the context (by perf_event_exit_event()) but the grouping
1921          * might still be in-tact.
1922          */
1923         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1924         if ((flags & DETACH_GROUP) &&
1925             (event->attach_state & PERF_ATTACH_GROUP)) {
1926                 /*
1927                  * Since in that case we cannot possibly be scheduled, simply
1928                  * detach now.
1929                  */
1930                 raw_spin_lock_irq(&ctx->lock);
1931                 perf_group_detach(event);
1932                 raw_spin_unlock_irq(&ctx->lock);
1933         }
1934 }
1935
1936 /*
1937  * Cross CPU call to disable a performance event
1938  */
1939 static void __perf_event_disable(struct perf_event *event,
1940                                  struct perf_cpu_context *cpuctx,
1941                                  struct perf_event_context *ctx,
1942                                  void *info)
1943 {
1944         if (event->state < PERF_EVENT_STATE_INACTIVE)
1945                 return;
1946
1947         update_context_time(ctx);
1948         update_cgrp_time_from_event(event);
1949         update_group_times(event);
1950         if (event == event->group_leader)
1951                 group_sched_out(event, cpuctx, ctx);
1952         else
1953                 event_sched_out(event, cpuctx, ctx);
1954         event->state = PERF_EVENT_STATE_OFF;
1955 }
1956
1957 /*
1958  * Disable a event.
1959  *
1960  * If event->ctx is a cloned context, callers must make sure that
1961  * every task struct that event->ctx->task could possibly point to
1962  * remains valid.  This condition is satisifed when called through
1963  * perf_event_for_each_child or perf_event_for_each because they
1964  * hold the top-level event's child_mutex, so any descendant that
1965  * goes to exit will block in perf_event_exit_event().
1966  *
1967  * When called from perf_pending_event it's OK because event->ctx
1968  * is the current context on this CPU and preemption is disabled,
1969  * hence we can't get into perf_event_task_sched_out for this context.
1970  */
1971 static void _perf_event_disable(struct perf_event *event)
1972 {
1973         struct perf_event_context *ctx = event->ctx;
1974
1975         raw_spin_lock_irq(&ctx->lock);
1976         if (event->state <= PERF_EVENT_STATE_OFF) {
1977                 raw_spin_unlock_irq(&ctx->lock);
1978                 return;
1979         }
1980         raw_spin_unlock_irq(&ctx->lock);
1981
1982         event_function_call(event, __perf_event_disable, NULL);
1983 }
1984
1985 void perf_event_disable_local(struct perf_event *event)
1986 {
1987         event_function_local(event, __perf_event_disable, NULL);
1988 }
1989
1990 /*
1991  * Strictly speaking kernel users cannot create groups and therefore this
1992  * interface does not need the perf_event_ctx_lock() magic.
1993  */
1994 void perf_event_disable(struct perf_event *event)
1995 {
1996         struct perf_event_context *ctx;
1997
1998         ctx = perf_event_ctx_lock(event);
1999         _perf_event_disable(event);
2000         perf_event_ctx_unlock(event, ctx);
2001 }
2002 EXPORT_SYMBOL_GPL(perf_event_disable);
2003
2004 void perf_event_disable_inatomic(struct perf_event *event)
2005 {
2006         event->pending_disable = 1;
2007         irq_work_queue(&event->pending);
2008 }
2009
2010 static void perf_set_shadow_time(struct perf_event *event,
2011                                  struct perf_event_context *ctx,
2012                                  u64 tstamp)
2013 {
2014         /*
2015          * use the correct time source for the time snapshot
2016          *
2017          * We could get by without this by leveraging the
2018          * fact that to get to this function, the caller
2019          * has most likely already called update_context_time()
2020          * and update_cgrp_time_xx() and thus both timestamp
2021          * are identical (or very close). Given that tstamp is,
2022          * already adjusted for cgroup, we could say that:
2023          *    tstamp - ctx->timestamp
2024          * is equivalent to
2025          *    tstamp - cgrp->timestamp.
2026          *
2027          * Then, in perf_output_read(), the calculation would
2028          * work with no changes because:
2029          * - event is guaranteed scheduled in
2030          * - no scheduled out in between
2031          * - thus the timestamp would be the same
2032          *
2033          * But this is a bit hairy.
2034          *
2035          * So instead, we have an explicit cgroup call to remain
2036          * within the time time source all along. We believe it
2037          * is cleaner and simpler to understand.
2038          */
2039         if (is_cgroup_event(event))
2040                 perf_cgroup_set_shadow_time(event, tstamp);
2041         else
2042                 event->shadow_ctx_time = tstamp - ctx->timestamp;
2043 }
2044
2045 #define MAX_INTERRUPTS (~0ULL)
2046
2047 static void perf_log_throttle(struct perf_event *event, int enable);
2048 static void perf_log_itrace_start(struct perf_event *event);
2049
2050 static int
2051 event_sched_in(struct perf_event *event,
2052                  struct perf_cpu_context *cpuctx,
2053                  struct perf_event_context *ctx)
2054 {
2055         u64 tstamp = perf_event_time(event);
2056         int ret = 0;
2057
2058         lockdep_assert_held(&ctx->lock);
2059
2060         if (event->state <= PERF_EVENT_STATE_OFF)
2061                 return 0;
2062
2063         WRITE_ONCE(event->oncpu, smp_processor_id());
2064         /*
2065          * Order event::oncpu write to happen before the ACTIVE state
2066          * is visible.
2067          */
2068         smp_wmb();
2069         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2070
2071         /*
2072          * Unthrottle events, since we scheduled we might have missed several
2073          * ticks already, also for a heavily scheduling task there is little
2074          * guarantee it'll get a tick in a timely manner.
2075          */
2076         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2077                 perf_log_throttle(event, 1);
2078                 event->hw.interrupts = 0;
2079         }
2080
2081         /*
2082          * The new state must be visible before we turn it on in the hardware:
2083          */
2084         smp_wmb();
2085
2086         perf_pmu_disable(event->pmu);
2087
2088         perf_set_shadow_time(event, ctx, tstamp);
2089
2090         perf_log_itrace_start(event);
2091
2092         if (event->pmu->add(event, PERF_EF_START)) {
2093                 event->state = PERF_EVENT_STATE_INACTIVE;
2094                 event->oncpu = -1;
2095                 ret = -EAGAIN;
2096                 goto out;
2097         }
2098
2099         event->tstamp_running += tstamp - event->tstamp_stopped;
2100
2101         if (!is_software_event(event))
2102                 cpuctx->active_oncpu++;
2103         if (!ctx->nr_active++)
2104                 perf_event_ctx_activate(ctx);
2105         if (event->attr.freq && event->attr.sample_freq)
2106                 ctx->nr_freq++;
2107
2108         if (event->attr.exclusive)
2109                 cpuctx->exclusive = 1;
2110
2111 out:
2112         perf_pmu_enable(event->pmu);
2113
2114         return ret;
2115 }
2116
2117 static int
2118 group_sched_in(struct perf_event *group_event,
2119                struct perf_cpu_context *cpuctx,
2120                struct perf_event_context *ctx)
2121 {
2122         struct perf_event *event, *partial_group = NULL;
2123         struct pmu *pmu = ctx->pmu;
2124         u64 now = ctx->time;
2125         bool simulate = false;
2126
2127         if (group_event->state == PERF_EVENT_STATE_OFF)
2128                 return 0;
2129
2130         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2131
2132         if (event_sched_in(group_event, cpuctx, ctx)) {
2133                 pmu->cancel_txn(pmu);
2134                 perf_mux_hrtimer_restart(cpuctx);
2135                 return -EAGAIN;
2136         }
2137
2138         /*
2139          * Schedule in siblings as one group (if any):
2140          */
2141         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2142                 if (event_sched_in(event, cpuctx, ctx)) {
2143                         partial_group = event;
2144                         goto group_error;
2145                 }
2146         }
2147
2148         if (!pmu->commit_txn(pmu))
2149                 return 0;
2150
2151 group_error:
2152         /*
2153          * Groups can be scheduled in as one unit only, so undo any
2154          * partial group before returning:
2155          * The events up to the failed event are scheduled out normally,
2156          * tstamp_stopped will be updated.
2157          *
2158          * The failed events and the remaining siblings need to have
2159          * their timings updated as if they had gone thru event_sched_in()
2160          * and event_sched_out(). This is required to get consistent timings
2161          * across the group. This also takes care of the case where the group
2162          * could never be scheduled by ensuring tstamp_stopped is set to mark
2163          * the time the event was actually stopped, such that time delta
2164          * calculation in update_event_times() is correct.
2165          */
2166         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2167                 if (event == partial_group)
2168                         simulate = true;
2169
2170                 if (simulate) {
2171                         event->tstamp_running += now - event->tstamp_stopped;
2172                         event->tstamp_stopped = now;
2173                 } else {
2174                         event_sched_out(event, cpuctx, ctx);
2175                 }
2176         }
2177         event_sched_out(group_event, cpuctx, ctx);
2178
2179         pmu->cancel_txn(pmu);
2180
2181         perf_mux_hrtimer_restart(cpuctx);
2182
2183         return -EAGAIN;
2184 }
2185
2186 /*
2187  * Work out whether we can put this event group on the CPU now.
2188  */
2189 static int group_can_go_on(struct perf_event *event,
2190                            struct perf_cpu_context *cpuctx,
2191                            int can_add_hw)
2192 {
2193         /*
2194          * Groups consisting entirely of software events can always go on.
2195          */
2196         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2197                 return 1;
2198         /*
2199          * If an exclusive group is already on, no other hardware
2200          * events can go on.
2201          */
2202         if (cpuctx->exclusive)
2203                 return 0;
2204         /*
2205          * If this group is exclusive and there are already
2206          * events on the CPU, it can't go on.
2207          */
2208         if (event->attr.exclusive && cpuctx->active_oncpu)
2209                 return 0;
2210         /*
2211          * Otherwise, try to add it if all previous groups were able
2212          * to go on.
2213          */
2214         return can_add_hw;
2215 }
2216
2217 static void add_event_to_ctx(struct perf_event *event,
2218                                struct perf_event_context *ctx)
2219 {
2220         u64 tstamp = perf_event_time(event);
2221
2222         list_add_event(event, ctx);
2223         perf_group_attach(event);
2224         event->tstamp_enabled = tstamp;
2225         event->tstamp_running = tstamp;
2226         event->tstamp_stopped = tstamp;
2227 }
2228
2229 static void ctx_sched_out(struct perf_event_context *ctx,
2230                           struct perf_cpu_context *cpuctx,
2231                           enum event_type_t event_type);
2232 static void
2233 ctx_sched_in(struct perf_event_context *ctx,
2234              struct perf_cpu_context *cpuctx,
2235              enum event_type_t event_type,
2236              struct task_struct *task);
2237
2238 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2239                                struct perf_event_context *ctx,
2240                                enum event_type_t event_type)
2241 {
2242         if (!cpuctx->task_ctx)
2243                 return;
2244
2245         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2246                 return;
2247
2248         ctx_sched_out(ctx, cpuctx, event_type);
2249 }
2250
2251 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2252                                 struct perf_event_context *ctx,
2253                                 struct task_struct *task)
2254 {
2255         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2256         if (ctx)
2257                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2258         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2259         if (ctx)
2260                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2261 }
2262
2263 /*
2264  * We want to maintain the following priority of scheduling:
2265  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2266  *  - task pinned (EVENT_PINNED)
2267  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2268  *  - task flexible (EVENT_FLEXIBLE).
2269  *
2270  * In order to avoid unscheduling and scheduling back in everything every
2271  * time an event is added, only do it for the groups of equal priority and
2272  * below.
2273  *
2274  * This can be called after a batch operation on task events, in which case
2275  * event_type is a bit mask of the types of events involved. For CPU events,
2276  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2277  */
2278 static void ctx_resched(struct perf_cpu_context *cpuctx,
2279                         struct perf_event_context *task_ctx,
2280                         enum event_type_t event_type)
2281 {
2282         enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2283         bool cpu_event = !!(event_type & EVENT_CPU);
2284
2285         /*
2286          * If pinned groups are involved, flexible groups also need to be
2287          * scheduled out.
2288          */
2289         if (event_type & EVENT_PINNED)
2290                 event_type |= EVENT_FLEXIBLE;
2291
2292         perf_pmu_disable(cpuctx->ctx.pmu);
2293         if (task_ctx)
2294                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2295
2296         /*
2297          * Decide which cpu ctx groups to schedule out based on the types
2298          * of events that caused rescheduling:
2299          *  - EVENT_CPU: schedule out corresponding groups;
2300          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2301          *  - otherwise, do nothing more.
2302          */
2303         if (cpu_event)
2304                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2305         else if (ctx_event_type & EVENT_PINNED)
2306                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2307
2308         perf_event_sched_in(cpuctx, task_ctx, current);
2309         perf_pmu_enable(cpuctx->ctx.pmu);
2310 }
2311
2312 /*
2313  * Cross CPU call to install and enable a performance event
2314  *
2315  * Very similar to remote_function() + event_function() but cannot assume that
2316  * things like ctx->is_active and cpuctx->task_ctx are set.
2317  */
2318 static int  __perf_install_in_context(void *info)
2319 {
2320         struct perf_event *event = info;
2321         struct perf_event_context *ctx = event->ctx;
2322         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2323         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2324         bool reprogram = true;
2325         int ret = 0;
2326
2327         raw_spin_lock(&cpuctx->ctx.lock);
2328         if (ctx->task) {
2329                 raw_spin_lock(&ctx->lock);
2330                 task_ctx = ctx;
2331
2332                 reprogram = (ctx->task == current);
2333
2334                 /*
2335                  * If the task is running, it must be running on this CPU,
2336                  * otherwise we cannot reprogram things.
2337                  *
2338                  * If its not running, we don't care, ctx->lock will
2339                  * serialize against it becoming runnable.
2340                  */
2341                 if (task_curr(ctx->task) && !reprogram) {
2342                         ret = -ESRCH;
2343                         goto unlock;
2344                 }
2345
2346                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2347         } else if (task_ctx) {
2348                 raw_spin_lock(&task_ctx->lock);
2349         }
2350
2351         if (reprogram) {
2352                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2353                 add_event_to_ctx(event, ctx);
2354                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2355         } else {
2356                 add_event_to_ctx(event, ctx);
2357         }
2358
2359 unlock:
2360         perf_ctx_unlock(cpuctx, task_ctx);
2361
2362         return ret;
2363 }
2364
2365 /*
2366  * Attach a performance event to a context.
2367  *
2368  * Very similar to event_function_call, see comment there.
2369  */
2370 static void
2371 perf_install_in_context(struct perf_event_context *ctx,
2372                         struct perf_event *event,
2373                         int cpu)
2374 {
2375         struct task_struct *task = READ_ONCE(ctx->task);
2376
2377         lockdep_assert_held(&ctx->mutex);
2378
2379         if (event->cpu != -1)
2380                 event->cpu = cpu;
2381
2382         /*
2383          * Ensures that if we can observe event->ctx, both the event and ctx
2384          * will be 'complete'. See perf_iterate_sb_cpu().
2385          */
2386         smp_store_release(&event->ctx, ctx);
2387
2388         if (!task) {
2389                 cpu_function_call(cpu, __perf_install_in_context, event);
2390                 return;
2391         }
2392
2393         /*
2394          * Should not happen, we validate the ctx is still alive before calling.
2395          */
2396         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2397                 return;
2398
2399         /*
2400          * Installing events is tricky because we cannot rely on ctx->is_active
2401          * to be set in case this is the nr_events 0 -> 1 transition.
2402          *
2403          * Instead we use task_curr(), which tells us if the task is running.
2404          * However, since we use task_curr() outside of rq::lock, we can race
2405          * against the actual state. This means the result can be wrong.
2406          *
2407          * If we get a false positive, we retry, this is harmless.
2408          *
2409          * If we get a false negative, things are complicated. If we are after
2410          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2411          * value must be correct. If we're before, it doesn't matter since
2412          * perf_event_context_sched_in() will program the counter.
2413          *
2414          * However, this hinges on the remote context switch having observed
2415          * our task->perf_event_ctxp[] store, such that it will in fact take
2416          * ctx::lock in perf_event_context_sched_in().
2417          *
2418          * We do this by task_function_call(), if the IPI fails to hit the task
2419          * we know any future context switch of task must see the
2420          * perf_event_ctpx[] store.
2421          */
2422
2423         /*
2424          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2425          * task_cpu() load, such that if the IPI then does not find the task
2426          * running, a future context switch of that task must observe the
2427          * store.
2428          */
2429         smp_mb();
2430 again:
2431         if (!task_function_call(task, __perf_install_in_context, event))
2432                 return;
2433
2434         raw_spin_lock_irq(&ctx->lock);
2435         task = ctx->task;
2436         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2437                 /*
2438                  * Cannot happen because we already checked above (which also
2439                  * cannot happen), and we hold ctx->mutex, which serializes us
2440                  * against perf_event_exit_task_context().
2441                  */
2442                 raw_spin_unlock_irq(&ctx->lock);
2443                 return;
2444         }
2445         /*
2446          * If the task is not running, ctx->lock will avoid it becoming so,
2447          * thus we can safely install the event.
2448          */
2449         if (task_curr(task)) {
2450                 raw_spin_unlock_irq(&ctx->lock);
2451                 goto again;
2452         }
2453         add_event_to_ctx(event, ctx);
2454         raw_spin_unlock_irq(&ctx->lock);
2455 }
2456
2457 /*
2458  * Put a event into inactive state and update time fields.
2459  * Enabling the leader of a group effectively enables all
2460  * the group members that aren't explicitly disabled, so we
2461  * have to update their ->tstamp_enabled also.
2462  * Note: this works for group members as well as group leaders
2463  * since the non-leader members' sibling_lists will be empty.
2464  */
2465 static void __perf_event_mark_enabled(struct perf_event *event)
2466 {
2467         struct perf_event *sub;
2468         u64 tstamp = perf_event_time(event);
2469
2470         event->state = PERF_EVENT_STATE_INACTIVE;
2471         event->tstamp_enabled = tstamp - event->total_time_enabled;
2472         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2473                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2474                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2475         }
2476 }
2477
2478 /*
2479  * Cross CPU call to enable a performance event
2480  */
2481 static void __perf_event_enable(struct perf_event *event,
2482                                 struct perf_cpu_context *cpuctx,
2483                                 struct perf_event_context *ctx,
2484                                 void *info)
2485 {
2486         struct perf_event *leader = event->group_leader;
2487         struct perf_event_context *task_ctx;
2488
2489         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2490             event->state <= PERF_EVENT_STATE_ERROR)
2491                 return;
2492
2493         if (ctx->is_active)
2494                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2495
2496         __perf_event_mark_enabled(event);
2497
2498         if (!ctx->is_active)
2499                 return;
2500
2501         if (!event_filter_match(event)) {
2502                 if (is_cgroup_event(event))
2503                         perf_cgroup_defer_enabled(event);
2504                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2505                 return;
2506         }
2507
2508         /*
2509          * If the event is in a group and isn't the group leader,
2510          * then don't put it on unless the group is on.
2511          */
2512         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2513                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2514                 return;
2515         }
2516
2517         task_ctx = cpuctx->task_ctx;
2518         if (ctx->task)
2519                 WARN_ON_ONCE(task_ctx != ctx);
2520
2521         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2522 }
2523
2524 /*
2525  * Enable a event.
2526  *
2527  * If event->ctx is a cloned context, callers must make sure that
2528  * every task struct that event->ctx->task could possibly point to
2529  * remains valid.  This condition is satisfied when called through
2530  * perf_event_for_each_child or perf_event_for_each as described
2531  * for perf_event_disable.
2532  */
2533 static void _perf_event_enable(struct perf_event *event)
2534 {
2535         struct perf_event_context *ctx = event->ctx;
2536
2537         raw_spin_lock_irq(&ctx->lock);
2538         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2539             event->state <  PERF_EVENT_STATE_ERROR) {
2540                 raw_spin_unlock_irq(&ctx->lock);
2541                 return;
2542         }
2543
2544         /*
2545          * If the event is in error state, clear that first.
2546          *
2547          * That way, if we see the event in error state below, we know that it
2548          * has gone back into error state, as distinct from the task having
2549          * been scheduled away before the cross-call arrived.
2550          */
2551         if (event->state == PERF_EVENT_STATE_ERROR)
2552                 event->state = PERF_EVENT_STATE_OFF;
2553         raw_spin_unlock_irq(&ctx->lock);
2554
2555         event_function_call(event, __perf_event_enable, NULL);
2556 }
2557
2558 /*
2559  * See perf_event_disable();
2560  */
2561 void perf_event_enable(struct perf_event *event)
2562 {
2563         struct perf_event_context *ctx;
2564
2565         ctx = perf_event_ctx_lock(event);
2566         _perf_event_enable(event);
2567         perf_event_ctx_unlock(event, ctx);
2568 }
2569 EXPORT_SYMBOL_GPL(perf_event_enable);
2570
2571 struct stop_event_data {
2572         struct perf_event       *event;
2573         unsigned int            restart;
2574 };
2575
2576 static int __perf_event_stop(void *info)
2577 {
2578         struct stop_event_data *sd = info;
2579         struct perf_event *event = sd->event;
2580
2581         /* if it's already INACTIVE, do nothing */
2582         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2583                 return 0;
2584
2585         /* matches smp_wmb() in event_sched_in() */
2586         smp_rmb();
2587
2588         /*
2589          * There is a window with interrupts enabled before we get here,
2590          * so we need to check again lest we try to stop another CPU's event.
2591          */
2592         if (READ_ONCE(event->oncpu) != smp_processor_id())
2593                 return -EAGAIN;
2594
2595         event->pmu->stop(event, PERF_EF_UPDATE);
2596
2597         /*
2598          * May race with the actual stop (through perf_pmu_output_stop()),
2599          * but it is only used for events with AUX ring buffer, and such
2600          * events will refuse to restart because of rb::aux_mmap_count==0,
2601          * see comments in perf_aux_output_begin().
2602          *
2603          * Since this is happening on a event-local CPU, no trace is lost
2604          * while restarting.
2605          */
2606         if (sd->restart)
2607                 event->pmu->start(event, 0);
2608
2609         return 0;
2610 }
2611
2612 static int perf_event_stop(struct perf_event *event, int restart)
2613 {
2614         struct stop_event_data sd = {
2615                 .event          = event,
2616                 .restart        = restart,
2617         };
2618         int ret = 0;
2619
2620         do {
2621                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2622                         return 0;
2623
2624                 /* matches smp_wmb() in event_sched_in() */
2625                 smp_rmb();
2626
2627                 /*
2628                  * We only want to restart ACTIVE events, so if the event goes
2629                  * inactive here (event->oncpu==-1), there's nothing more to do;
2630                  * fall through with ret==-ENXIO.
2631                  */
2632                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2633                                         __perf_event_stop, &sd);
2634         } while (ret == -EAGAIN);
2635
2636         return ret;
2637 }
2638
2639 /*
2640  * In order to contain the amount of racy and tricky in the address filter
2641  * configuration management, it is a two part process:
2642  *
2643  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2644  *      we update the addresses of corresponding vmas in
2645  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2646  * (p2) when an event is scheduled in (pmu::add), it calls
2647  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2648  *      if the generation has changed since the previous call.
2649  *
2650  * If (p1) happens while the event is active, we restart it to force (p2).
2651  *
2652  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2653  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2654  *     ioctl;
2655  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2656  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2657  *     for reading;
2658  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2659  *     of exec.
2660  */
2661 void perf_event_addr_filters_sync(struct perf_event *event)
2662 {
2663         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2664
2665         if (!has_addr_filter(event))
2666                 return;
2667
2668         raw_spin_lock(&ifh->lock);
2669         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2670                 event->pmu->addr_filters_sync(event);
2671                 event->hw.addr_filters_gen = event->addr_filters_gen;
2672         }
2673         raw_spin_unlock(&ifh->lock);
2674 }
2675 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2676
2677 static int _perf_event_refresh(struct perf_event *event, int refresh)
2678 {
2679         /*
2680          * not supported on inherited events
2681          */
2682         if (event->attr.inherit || !is_sampling_event(event))
2683                 return -EINVAL;
2684
2685         atomic_add(refresh, &event->event_limit);
2686         _perf_event_enable(event);
2687
2688         return 0;
2689 }
2690
2691 /*
2692  * See perf_event_disable()
2693  */
2694 int perf_event_refresh(struct perf_event *event, int refresh)
2695 {
2696         struct perf_event_context *ctx;
2697         int ret;
2698
2699         ctx = perf_event_ctx_lock(event);
2700         ret = _perf_event_refresh(event, refresh);
2701         perf_event_ctx_unlock(event, ctx);
2702
2703         return ret;
2704 }
2705 EXPORT_SYMBOL_GPL(perf_event_refresh);
2706
2707 static void ctx_sched_out(struct perf_event_context *ctx,
2708                           struct perf_cpu_context *cpuctx,
2709                           enum event_type_t event_type)
2710 {
2711         int is_active = ctx->is_active;
2712         struct perf_event *event;
2713
2714         lockdep_assert_held(&ctx->lock);
2715
2716         if (likely(!ctx->nr_events)) {
2717                 /*
2718                  * See __perf_remove_from_context().
2719                  */
2720                 WARN_ON_ONCE(ctx->is_active);
2721                 if (ctx->task)
2722                         WARN_ON_ONCE(cpuctx->task_ctx);
2723                 return;
2724         }
2725
2726         ctx->is_active &= ~event_type;
2727         if (!(ctx->is_active & EVENT_ALL))
2728                 ctx->is_active = 0;
2729
2730         if (ctx->task) {
2731                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2732                 if (!ctx->is_active)
2733                         cpuctx->task_ctx = NULL;
2734         }
2735
2736         /*
2737          * Always update time if it was set; not only when it changes.
2738          * Otherwise we can 'forget' to update time for any but the last
2739          * context we sched out. For example:
2740          *
2741          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2742          *   ctx_sched_out(.event_type = EVENT_PINNED)
2743          *
2744          * would only update time for the pinned events.
2745          */
2746         if (is_active & EVENT_TIME) {
2747                 /* update (and stop) ctx time */
2748                 update_context_time(ctx);
2749                 update_cgrp_time_from_cpuctx(cpuctx);
2750         }
2751
2752         is_active ^= ctx->is_active; /* changed bits */
2753
2754         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2755                 return;
2756
2757         perf_pmu_disable(ctx->pmu);
2758         if (is_active & EVENT_PINNED) {
2759                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2760                         group_sched_out(event, cpuctx, ctx);
2761         }
2762
2763         if (is_active & EVENT_FLEXIBLE) {
2764                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2765                         group_sched_out(event, cpuctx, ctx);
2766         }
2767         perf_pmu_enable(ctx->pmu);
2768 }
2769
2770 /*
2771  * Test whether two contexts are equivalent, i.e. whether they have both been
2772  * cloned from the same version of the same context.
2773  *
2774  * Equivalence is measured using a generation number in the context that is
2775  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2776  * and list_del_event().
2777  */
2778 static int context_equiv(struct perf_event_context *ctx1,
2779                          struct perf_event_context *ctx2)
2780 {
2781         lockdep_assert_held(&ctx1->lock);
2782         lockdep_assert_held(&ctx2->lock);
2783
2784         /* Pinning disables the swap optimization */
2785         if (ctx1->pin_count || ctx2->pin_count)
2786                 return 0;
2787
2788         /* If ctx1 is the parent of ctx2 */
2789         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2790                 return 1;
2791
2792         /* If ctx2 is the parent of ctx1 */
2793         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2794                 return 1;
2795
2796         /*
2797          * If ctx1 and ctx2 have the same parent; we flatten the parent
2798          * hierarchy, see perf_event_init_context().
2799          */
2800         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2801                         ctx1->parent_gen == ctx2->parent_gen)
2802                 return 1;
2803
2804         /* Unmatched */
2805         return 0;
2806 }
2807
2808 static void __perf_event_sync_stat(struct perf_event *event,
2809                                      struct perf_event *next_event)
2810 {
2811         u64 value;
2812
2813         if (!event->attr.inherit_stat)
2814                 return;
2815
2816         /*
2817          * Update the event value, we cannot use perf_event_read()
2818          * because we're in the middle of a context switch and have IRQs
2819          * disabled, which upsets smp_call_function_single(), however
2820          * we know the event must be on the current CPU, therefore we
2821          * don't need to use it.
2822          */
2823         switch (event->state) {
2824         case PERF_EVENT_STATE_ACTIVE:
2825                 event->pmu->read(event);
2826                 /* fall-through */
2827
2828         case PERF_EVENT_STATE_INACTIVE:
2829                 update_event_times(event);
2830                 break;
2831
2832         default:
2833                 break;
2834         }
2835
2836         /*
2837          * In order to keep per-task stats reliable we need to flip the event
2838          * values when we flip the contexts.
2839          */
2840         value = local64_read(&next_event->count);
2841         value = local64_xchg(&event->count, value);
2842         local64_set(&next_event->count, value);
2843
2844         swap(event->total_time_enabled, next_event->total_time_enabled);
2845         swap(event->total_time_running, next_event->total_time_running);
2846
2847         /*
2848          * Since we swizzled the values, update the user visible data too.
2849          */
2850         perf_event_update_userpage(event);
2851         perf_event_update_userpage(next_event);
2852 }
2853
2854 static void perf_event_sync_stat(struct perf_event_context *ctx,
2855                                    struct perf_event_context *next_ctx)
2856 {
2857         struct perf_event *event, *next_event;
2858
2859         if (!ctx->nr_stat)
2860                 return;
2861
2862         update_context_time(ctx);
2863
2864         event = list_first_entry(&ctx->event_list,
2865                                    struct perf_event, event_entry);
2866
2867         next_event = list_first_entry(&next_ctx->event_list,
2868                                         struct perf_event, event_entry);
2869
2870         while (&event->event_entry != &ctx->event_list &&
2871                &next_event->event_entry != &next_ctx->event_list) {
2872
2873                 __perf_event_sync_stat(event, next_event);
2874
2875                 event = list_next_entry(event, event_entry);
2876                 next_event = list_next_entry(next_event, event_entry);
2877         }
2878 }
2879
2880 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2881                                          struct task_struct *next)
2882 {
2883         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2884         struct perf_event_context *next_ctx;
2885         struct perf_event_context *parent, *next_parent;
2886         struct perf_cpu_context *cpuctx;
2887         int do_switch = 1;
2888
2889         if (likely(!ctx))
2890                 return;
2891
2892         cpuctx = __get_cpu_context(ctx);
2893         if (!cpuctx->task_ctx)
2894                 return;
2895
2896         rcu_read_lock();
2897         next_ctx = next->perf_event_ctxp[ctxn];
2898         if (!next_ctx)
2899                 goto unlock;
2900
2901         parent = rcu_dereference(ctx->parent_ctx);
2902         next_parent = rcu_dereference(next_ctx->parent_ctx);
2903
2904         /* If neither context have a parent context; they cannot be clones. */
2905         if (!parent && !next_parent)
2906                 goto unlock;
2907
2908         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2909                 /*
2910                  * Looks like the two contexts are clones, so we might be
2911                  * able to optimize the context switch.  We lock both
2912                  * contexts and check that they are clones under the
2913                  * lock (including re-checking that neither has been
2914                  * uncloned in the meantime).  It doesn't matter which
2915                  * order we take the locks because no other cpu could
2916                  * be trying to lock both of these tasks.
2917                  */
2918                 raw_spin_lock(&ctx->lock);
2919                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2920                 if (context_equiv(ctx, next_ctx)) {
2921                         WRITE_ONCE(ctx->task, next);
2922                         WRITE_ONCE(next_ctx->task, task);
2923
2924                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2925
2926                         /*
2927                          * RCU_INIT_POINTER here is safe because we've not
2928                          * modified the ctx and the above modification of
2929                          * ctx->task and ctx->task_ctx_data are immaterial
2930                          * since those values are always verified under
2931                          * ctx->lock which we're now holding.
2932                          */
2933                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2934                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2935
2936                         do_switch = 0;
2937
2938                         perf_event_sync_stat(ctx, next_ctx);
2939                 }
2940                 raw_spin_unlock(&next_ctx->lock);
2941                 raw_spin_unlock(&ctx->lock);
2942         }
2943 unlock:
2944         rcu_read_unlock();
2945
2946         if (do_switch) {
2947                 raw_spin_lock(&ctx->lock);
2948                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2949                 raw_spin_unlock(&ctx->lock);
2950         }
2951 }
2952
2953 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2954
2955 void perf_sched_cb_dec(struct pmu *pmu)
2956 {
2957         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2958
2959         this_cpu_dec(perf_sched_cb_usages);
2960
2961         if (!--cpuctx->sched_cb_usage)
2962                 list_del(&cpuctx->sched_cb_entry);
2963 }
2964
2965
2966 void perf_sched_cb_inc(struct pmu *pmu)
2967 {
2968         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2969
2970         if (!cpuctx->sched_cb_usage++)
2971                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2972
2973         this_cpu_inc(perf_sched_cb_usages);
2974 }
2975
2976 /*
2977  * This function provides the context switch callback to the lower code
2978  * layer. It is invoked ONLY when the context switch callback is enabled.
2979  *
2980  * This callback is relevant even to per-cpu events; for example multi event
2981  * PEBS requires this to provide PID/TID information. This requires we flush
2982  * all queued PEBS records before we context switch to a new task.
2983  */
2984 static void perf_pmu_sched_task(struct task_struct *prev,
2985                                 struct task_struct *next,
2986                                 bool sched_in)
2987 {
2988         struct perf_cpu_context *cpuctx;
2989         struct pmu *pmu;
2990
2991         if (prev == next)
2992                 return;
2993
2994         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2995                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2996
2997                 if (WARN_ON_ONCE(!pmu->sched_task))
2998                         continue;
2999
3000                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3001                 perf_pmu_disable(pmu);
3002
3003                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3004
3005                 perf_pmu_enable(pmu);
3006                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3007         }
3008 }
3009
3010 static void perf_event_switch(struct task_struct *task,
3011                               struct task_struct *next_prev, bool sched_in);
3012
3013 #define for_each_task_context_nr(ctxn)                                  \
3014         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3015
3016 /*
3017  * Called from scheduler to remove the events of the current task,
3018  * with interrupts disabled.
3019  *
3020  * We stop each event and update the event value in event->count.
3021  *
3022  * This does not protect us against NMI, but disable()
3023  * sets the disabled bit in the control field of event _before_
3024  * accessing the event control register. If a NMI hits, then it will
3025  * not restart the event.
3026  */
3027 void __perf_event_task_sched_out(struct task_struct *task,
3028                                  struct task_struct *next)
3029 {
3030         int ctxn;
3031
3032         if (__this_cpu_read(perf_sched_cb_usages))
3033                 perf_pmu_sched_task(task, next, false);
3034
3035         if (atomic_read(&nr_switch_events))
3036                 perf_event_switch(task, next, false);
3037
3038         for_each_task_context_nr(ctxn)
3039                 perf_event_context_sched_out(task, ctxn, next);
3040
3041         /*
3042          * if cgroup events exist on this CPU, then we need
3043          * to check if we have to switch out PMU state.
3044          * cgroup event are system-wide mode only
3045          */
3046         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3047                 perf_cgroup_sched_out(task, next);
3048 }
3049
3050 /*
3051  * Called with IRQs disabled
3052  */
3053 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3054                               enum event_type_t event_type)
3055 {
3056         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3057 }
3058
3059 static void
3060 ctx_pinned_sched_in(struct perf_event_context *ctx,
3061                     struct perf_cpu_context *cpuctx)
3062 {
3063         struct perf_event *event;
3064
3065         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3066                 if (event->state <= PERF_EVENT_STATE_OFF)
3067                         continue;
3068                 if (!event_filter_match(event))
3069                         continue;
3070
3071                 /* may need to reset tstamp_enabled */
3072                 if (is_cgroup_event(event))
3073                         perf_cgroup_mark_enabled(event, ctx);
3074
3075                 if (group_can_go_on(event, cpuctx, 1))
3076                         group_sched_in(event, cpuctx, ctx);
3077
3078                 /*
3079                  * If this pinned group hasn't been scheduled,
3080                  * put it in error state.
3081                  */
3082                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3083                         update_group_times(event);
3084                         event->state = PERF_EVENT_STATE_ERROR;
3085                 }
3086         }
3087 }
3088
3089 static void
3090 ctx_flexible_sched_in(struct perf_event_context *ctx,
3091                       struct perf_cpu_context *cpuctx)
3092 {
3093         struct perf_event *event;
3094         int can_add_hw = 1;
3095
3096         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3097                 /* Ignore events in OFF or ERROR state */
3098                 if (event->state <= PERF_EVENT_STATE_OFF)
3099                         continue;
3100                 /*
3101                  * Listen to the 'cpu' scheduling filter constraint
3102                  * of events:
3103                  */
3104                 if (!event_filter_match(event))
3105                         continue;
3106
3107                 /* may need to reset tstamp_enabled */
3108                 if (is_cgroup_event(event))
3109                         perf_cgroup_mark_enabled(event, ctx);
3110
3111                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3112                         if (group_sched_in(event, cpuctx, ctx))
3113                                 can_add_hw = 0;
3114                 }
3115         }
3116 }
3117
3118 static void
3119 ctx_sched_in(struct perf_event_context *ctx,
3120              struct perf_cpu_context *cpuctx,
3121              enum event_type_t event_type,
3122              struct task_struct *task)
3123 {
3124         int is_active = ctx->is_active;
3125         u64 now;
3126
3127         lockdep_assert_held(&ctx->lock);
3128
3129         if (likely(!ctx->nr_events))
3130                 return;
3131
3132         ctx->is_active |= (event_type | EVENT_TIME);
3133         if (ctx->task) {
3134                 if (!is_active)
3135                         cpuctx->task_ctx = ctx;
3136                 else
3137                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3138         }
3139
3140         is_active ^= ctx->is_active; /* changed bits */
3141
3142         if (is_active & EVENT_TIME) {
3143                 /* start ctx time */
3144                 now = perf_clock();
3145                 ctx->timestamp = now;
3146                 perf_cgroup_set_timestamp(task, ctx);
3147         }
3148
3149         /*
3150          * First go through the list and put on any pinned groups
3151          * in order to give them the best chance of going on.
3152          */
3153         if (is_active & EVENT_PINNED)
3154                 ctx_pinned_sched_in(ctx, cpuctx);
3155
3156         /* Then walk through the lower prio flexible groups */
3157         if (is_active & EVENT_FLEXIBLE)
3158                 ctx_flexible_sched_in(ctx, cpuctx);
3159 }
3160
3161 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3162                              enum event_type_t event_type,
3163                              struct task_struct *task)
3164 {
3165         struct perf_event_context *ctx = &cpuctx->ctx;
3166
3167         ctx_sched_in(ctx, cpuctx, event_type, task);
3168 }
3169
3170 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3171                                         struct task_struct *task)
3172 {
3173         struct perf_cpu_context *cpuctx;
3174
3175         cpuctx = __get_cpu_context(ctx);
3176         if (cpuctx->task_ctx == ctx)
3177                 return;
3178
3179         perf_ctx_lock(cpuctx, ctx);
3180         perf_pmu_disable(ctx->pmu);
3181         /*
3182          * We want to keep the following priority order:
3183          * cpu pinned (that don't need to move), task pinned,
3184          * cpu flexible, task flexible.
3185          *
3186          * However, if task's ctx is not carrying any pinned
3187          * events, no need to flip the cpuctx's events around.
3188          */
3189         if (!list_empty(&ctx->pinned_groups))
3190                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3191         perf_event_sched_in(cpuctx, ctx, task);
3192         perf_pmu_enable(ctx->pmu);
3193         perf_ctx_unlock(cpuctx, ctx);
3194 }
3195
3196 /*
3197  * Called from scheduler to add the events of the current task
3198  * with interrupts disabled.
3199  *
3200  * We restore the event value and then enable it.
3201  *
3202  * This does not protect us against NMI, but enable()
3203  * sets the enabled bit in the control field of event _before_
3204  * accessing the event control register. If a NMI hits, then it will
3205  * keep the event running.
3206  */
3207 void __perf_event_task_sched_in(struct task_struct *prev,
3208                                 struct task_struct *task)
3209 {
3210         struct perf_event_context *ctx;
3211         int ctxn;
3212
3213         /*
3214          * If cgroup events exist on this CPU, then we need to check if we have
3215          * to switch in PMU state; cgroup event are system-wide mode only.
3216          *
3217          * Since cgroup events are CPU events, we must schedule these in before
3218          * we schedule in the task events.
3219          */
3220         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3221                 perf_cgroup_sched_in(prev, task);
3222
3223         for_each_task_context_nr(ctxn) {
3224                 ctx = task->perf_event_ctxp[ctxn];
3225                 if (likely(!ctx))
3226                         continue;
3227
3228                 perf_event_context_sched_in(ctx, task);
3229         }
3230
3231         if (atomic_read(&nr_switch_events))
3232                 perf_event_switch(task, prev, true);
3233
3234         if (__this_cpu_read(perf_sched_cb_usages))
3235                 perf_pmu_sched_task(prev, task, true);
3236 }
3237
3238 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3239 {
3240         u64 frequency = event->attr.sample_freq;
3241         u64 sec = NSEC_PER_SEC;
3242         u64 divisor, dividend;
3243
3244         int count_fls, nsec_fls, frequency_fls, sec_fls;
3245
3246         count_fls = fls64(count);
3247         nsec_fls = fls64(nsec);
3248         frequency_fls = fls64(frequency);
3249         sec_fls = 30;
3250
3251         /*
3252          * We got @count in @nsec, with a target of sample_freq HZ
3253          * the target period becomes:
3254          *
3255          *             @count * 10^9
3256          * period = -------------------
3257          *          @nsec * sample_freq
3258          *
3259          */
3260
3261         /*
3262          * Reduce accuracy by one bit such that @a and @b converge
3263          * to a similar magnitude.
3264          */
3265 #define REDUCE_FLS(a, b)                \
3266 do {                                    \
3267         if (a##_fls > b##_fls) {        \
3268                 a >>= 1;                \
3269                 a##_fls--;              \
3270         } else {                        \
3271                 b >>= 1;                \
3272                 b##_fls--;              \
3273         }                               \
3274 } while (0)
3275
3276         /*
3277          * Reduce accuracy until either term fits in a u64, then proceed with
3278          * the other, so that finally we can do a u64/u64 division.
3279          */
3280         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3281                 REDUCE_FLS(nsec, frequency);
3282                 REDUCE_FLS(sec, count);
3283         }
3284
3285         if (count_fls + sec_fls > 64) {
3286                 divisor = nsec * frequency;
3287
3288                 while (count_fls + sec_fls > 64) {
3289                         REDUCE_FLS(count, sec);
3290                         divisor >>= 1;
3291                 }
3292
3293                 dividend = count * sec;
3294         } else {
3295                 dividend = count * sec;
3296
3297                 while (nsec_fls + frequency_fls > 64) {
3298                         REDUCE_FLS(nsec, frequency);
3299                         dividend >>= 1;
3300                 }
3301
3302                 divisor = nsec * frequency;
3303         }
3304
3305         if (!divisor)
3306                 return dividend;
3307
3308         return div64_u64(dividend, divisor);
3309 }
3310
3311 static DEFINE_PER_CPU(int, perf_throttled_count);
3312 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3313
3314 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3315 {
3316         struct hw_perf_event *hwc = &event->hw;
3317         s64 period, sample_period;
3318         s64 delta;
3319
3320         period = perf_calculate_period(event, nsec, count);
3321
3322         delta = (s64)(period - hwc->sample_period);
3323         delta = (delta + 7) / 8; /* low pass filter */
3324
3325         sample_period = hwc->sample_period + delta;
3326
3327         if (!sample_period)
3328                 sample_period = 1;
3329
3330         hwc->sample_period = sample_period;
3331
3332         if (local64_read(&hwc->period_left) > 8*sample_period) {
3333                 if (disable)
3334                         event->pmu->stop(event, PERF_EF_UPDATE);
3335
3336                 local64_set(&hwc->period_left, 0);
3337
3338                 if (disable)
3339                         event->pmu->start(event, PERF_EF_RELOAD);
3340         }
3341 }
3342
3343 /*
3344  * combine freq adjustment with unthrottling to avoid two passes over the
3345  * events. At the same time, make sure, having freq events does not change
3346  * the rate of unthrottling as that would introduce bias.
3347  */
3348 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3349                                            int needs_unthr)
3350 {
3351         struct perf_event *event;
3352         struct hw_perf_event *hwc;
3353         u64 now, period = TICK_NSEC;
3354         s64 delta;
3355
3356         /*
3357          * only need to iterate over all events iff:
3358          * - context have events in frequency mode (needs freq adjust)
3359          * - there are events to unthrottle on this cpu
3360          */
3361         if (!(ctx->nr_freq || needs_unthr))
3362                 return;
3363
3364         raw_spin_lock(&ctx->lock);
3365         perf_pmu_disable(ctx->pmu);
3366
3367         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3368                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3369                         continue;
3370
3371                 if (!event_filter_match(event))
3372                         continue;
3373
3374                 perf_pmu_disable(event->pmu);
3375
3376                 hwc = &event->hw;
3377
3378                 if (hwc->interrupts == MAX_INTERRUPTS) {
3379                         hwc->interrupts = 0;
3380                         perf_log_throttle(event, 1);
3381                         event->pmu->start(event, 0);
3382                 }
3383
3384                 if (!event->attr.freq || !event->attr.sample_freq)
3385                         goto next;
3386
3387                 /*
3388                  * stop the event and update event->count
3389                  */
3390                 event->pmu->stop(event, PERF_EF_UPDATE);
3391
3392                 now = local64_read(&event->count);
3393                 delta = now - hwc->freq_count_stamp;
3394                 hwc->freq_count_stamp = now;
3395
3396                 /*
3397                  * restart the event
3398                  * reload only if value has changed
3399                  * we have stopped the event so tell that
3400                  * to perf_adjust_period() to avoid stopping it
3401                  * twice.
3402                  */
3403                 if (delta > 0)
3404                         perf_adjust_period(event, period, delta, false);
3405
3406                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3407         next:
3408                 perf_pmu_enable(event->pmu);
3409         }
3410
3411         perf_pmu_enable(ctx->pmu);
3412         raw_spin_unlock(&ctx->lock);
3413 }
3414
3415 /*
3416  * Round-robin a context's events:
3417  */
3418 static void rotate_ctx(struct perf_event_context *ctx)
3419 {
3420         /*
3421          * Rotate the first entry last of non-pinned groups. Rotation might be
3422          * disabled by the inheritance code.
3423          */
3424         if (!ctx->rotate_disable)
3425                 list_rotate_left(&ctx->flexible_groups);
3426 }
3427
3428 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3429 {
3430         struct perf_event_context *ctx = NULL;
3431         int rotate = 0;
3432
3433         if (cpuctx->ctx.nr_events) {
3434                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3435                         rotate = 1;
3436         }
3437
3438         ctx = cpuctx->task_ctx;
3439         if (ctx && ctx->nr_events) {
3440                 if (ctx->nr_events != ctx->nr_active)
3441                         rotate = 1;
3442         }
3443
3444         if (!rotate)
3445                 goto done;
3446
3447         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3448         perf_pmu_disable(cpuctx->ctx.pmu);
3449
3450         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3451         if (ctx)
3452                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3453
3454         rotate_ctx(&cpuctx->ctx);
3455         if (ctx)
3456                 rotate_ctx(ctx);
3457
3458         perf_event_sched_in(cpuctx, ctx, current);
3459
3460         perf_pmu_enable(cpuctx->ctx.pmu);
3461         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3462 done:
3463
3464         return rotate;
3465 }
3466
3467 void perf_event_task_tick(void)
3468 {
3469         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3470         struct perf_event_context *ctx, *tmp;
3471         int throttled;
3472
3473         WARN_ON(!irqs_disabled());
3474
3475         __this_cpu_inc(perf_throttled_seq);
3476         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3477         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3478
3479         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3480                 perf_adjust_freq_unthr_context(ctx, throttled);
3481 }
3482
3483 static int event_enable_on_exec(struct perf_event *event,
3484                                 struct perf_event_context *ctx)
3485 {
3486         if (!event->attr.enable_on_exec)
3487                 return 0;
3488
3489         event->attr.enable_on_exec = 0;
3490         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3491                 return 0;
3492
3493         __perf_event_mark_enabled(event);
3494
3495         return 1;
3496 }
3497
3498 /*
3499  * Enable all of a task's events that have been marked enable-on-exec.
3500  * This expects task == current.
3501  */
3502 static void perf_event_enable_on_exec(int ctxn)
3503 {
3504         struct perf_event_context *ctx, *clone_ctx = NULL;
3505         enum event_type_t event_type = 0;
3506         struct perf_cpu_context *cpuctx;
3507         struct perf_event *event;
3508         unsigned long flags;
3509         int enabled = 0;
3510
3511         local_irq_save(flags);
3512         ctx = current->perf_event_ctxp[ctxn];
3513         if (!ctx || !ctx->nr_events)
3514                 goto out;
3515
3516         cpuctx = __get_cpu_context(ctx);
3517         perf_ctx_lock(cpuctx, ctx);
3518         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3519         list_for_each_entry(event, &ctx->event_list, event_entry) {
3520                 enabled |= event_enable_on_exec(event, ctx);
3521                 event_type |= get_event_type(event);
3522         }
3523
3524         /*
3525          * Unclone and reschedule this context if we enabled any event.
3526          */
3527         if (enabled) {
3528                 clone_ctx = unclone_ctx(ctx);
3529                 ctx_resched(cpuctx, ctx, event_type);
3530         } else {
3531                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3532         }
3533         perf_ctx_unlock(cpuctx, ctx);
3534
3535 out:
3536         local_irq_restore(flags);
3537
3538         if (clone_ctx)
3539                 put_ctx(clone_ctx);
3540 }
3541
3542 struct perf_read_data {
3543         struct perf_event *event;
3544         bool group;
3545         int ret;
3546 };
3547
3548 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3549 {
3550         u16 local_pkg, event_pkg;
3551
3552         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3553                 int local_cpu = smp_processor_id();
3554
3555                 event_pkg = topology_physical_package_id(event_cpu);
3556                 local_pkg = topology_physical_package_id(local_cpu);
3557
3558                 if (event_pkg == local_pkg)
3559                         return local_cpu;
3560         }
3561
3562         return event_cpu;
3563 }
3564
3565 /*
3566  * Cross CPU call to read the hardware event
3567  */
3568 static void __perf_event_read(void *info)
3569 {
3570         struct perf_read_data *data = info;
3571         struct perf_event *sub, *event = data->event;
3572         struct perf_event_context *ctx = event->ctx;
3573         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3574         struct pmu *pmu = event->pmu;
3575
3576         /*
3577          * If this is a task context, we need to check whether it is
3578          * the current task context of this cpu.  If not it has been
3579          * scheduled out before the smp call arrived.  In that case
3580          * event->count would have been updated to a recent sample
3581          * when the event was scheduled out.
3582          */
3583         if (ctx->task && cpuctx->task_ctx != ctx)
3584                 return;
3585
3586         raw_spin_lock(&ctx->lock);
3587         if (ctx->is_active) {
3588                 update_context_time(ctx);
3589                 update_cgrp_time_from_event(event);
3590         }
3591
3592         update_event_times(event);
3593         if (event->state != PERF_EVENT_STATE_ACTIVE)
3594                 goto unlock;
3595
3596         if (!data->group) {
3597                 pmu->read(event);
3598                 data->ret = 0;
3599                 goto unlock;
3600         }
3601
3602         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3603
3604         pmu->read(event);
3605
3606         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3607                 update_event_times(sub);
3608                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3609                         /*
3610                          * Use sibling's PMU rather than @event's since
3611                          * sibling could be on different (eg: software) PMU.
3612                          */
3613                         sub->pmu->read(sub);
3614                 }
3615         }
3616
3617         data->ret = pmu->commit_txn(pmu);
3618
3619 unlock:
3620         raw_spin_unlock(&ctx->lock);
3621 }
3622
3623 static inline u64 perf_event_count(struct perf_event *event)
3624 {
3625         if (event->pmu->count)
3626                 return event->pmu->count(event);
3627
3628         return __perf_event_count(event);
3629 }
3630
3631 /*
3632  * NMI-safe method to read a local event, that is an event that
3633  * is:
3634  *   - either for the current task, or for this CPU
3635  *   - does not have inherit set, for inherited task events
3636  *     will not be local and we cannot read them atomically
3637  *   - must not have a pmu::count method
3638  */
3639 u64 perf_event_read_local(struct perf_event *event)
3640 {
3641         unsigned long flags;
3642         u64 val;
3643
3644         /*
3645          * Disabling interrupts avoids all counter scheduling (context
3646          * switches, timer based rotation and IPIs).
3647          */
3648         local_irq_save(flags);
3649
3650         /* If this is a per-task event, it must be for current */
3651         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3652                      event->hw.target != current);
3653
3654         /* If this is a per-CPU event, it must be for this CPU */
3655         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3656                      event->cpu != smp_processor_id());
3657
3658         /*
3659          * It must not be an event with inherit set, we cannot read
3660          * all child counters from atomic context.
3661          */
3662         WARN_ON_ONCE(event->attr.inherit);
3663
3664         /*
3665          * It must not have a pmu::count method, those are not
3666          * NMI safe.
3667          */
3668         WARN_ON_ONCE(event->pmu->count);
3669
3670         /*
3671          * If the event is currently on this CPU, its either a per-task event,
3672          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3673          * oncpu == -1).
3674          */
3675         if (event->oncpu == smp_processor_id())
3676                 event->pmu->read(event);
3677
3678         val = local64_read(&event->count);
3679         local_irq_restore(flags);
3680
3681         return val;
3682 }
3683
3684 static int perf_event_read(struct perf_event *event, bool group)
3685 {
3686         int event_cpu, ret = 0;
3687
3688         /*
3689          * If event is enabled and currently active on a CPU, update the
3690          * value in the event structure:
3691          */
3692         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3693                 struct perf_read_data data = {
3694                         .event = event,
3695                         .group = group,
3696                         .ret = 0,
3697                 };
3698
3699                 event_cpu = READ_ONCE(event->oncpu);
3700                 if ((unsigned)event_cpu >= nr_cpu_ids)
3701                         return 0;
3702
3703                 preempt_disable();
3704                 event_cpu = __perf_event_read_cpu(event, event_cpu);
3705
3706                 /*
3707                  * Purposely ignore the smp_call_function_single() return
3708                  * value.
3709                  *
3710                  * If event_cpu isn't a valid CPU it means the event got
3711                  * scheduled out and that will have updated the event count.
3712                  *
3713                  * Therefore, either way, we'll have an up-to-date event count
3714                  * after this.
3715                  */
3716                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3717                 preempt_enable();
3718                 ret = data.ret;
3719         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3720                 struct perf_event_context *ctx = event->ctx;
3721                 unsigned long flags;
3722
3723                 raw_spin_lock_irqsave(&ctx->lock, flags);
3724                 /*
3725                  * may read while context is not active
3726                  * (e.g., thread is blocked), in that case
3727                  * we cannot update context time
3728                  */
3729                 if (ctx->is_active) {
3730                         update_context_time(ctx);
3731                         update_cgrp_time_from_event(event);
3732                 }
3733                 if (group)
3734                         update_group_times(event);
3735                 else
3736                         update_event_times(event);
3737                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3738         }
3739
3740         return ret;
3741 }
3742
3743 /*
3744  * Initialize the perf_event context in a task_struct:
3745  */
3746 static void __perf_event_init_context(struct perf_event_context *ctx)
3747 {
3748         raw_spin_lock_init(&ctx->lock);
3749         mutex_init(&ctx->mutex);
3750         INIT_LIST_HEAD(&ctx->active_ctx_list);
3751         INIT_LIST_HEAD(&ctx->pinned_groups);
3752         INIT_LIST_HEAD(&ctx->flexible_groups);
3753         INIT_LIST_HEAD(&ctx->event_list);
3754         atomic_set(&ctx->refcount, 1);
3755 }
3756
3757 static struct perf_event_context *
3758 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3759 {
3760         struct perf_event_context *ctx;
3761
3762         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3763         if (!ctx)
3764                 return NULL;
3765
3766         __perf_event_init_context(ctx);
3767         if (task) {
3768                 ctx->task = task;
3769                 get_task_struct(task);
3770         }
3771         ctx->pmu = pmu;
3772
3773         return ctx;
3774 }
3775
3776 static struct task_struct *
3777 find_lively_task_by_vpid(pid_t vpid)
3778 {
3779         struct task_struct *task;
3780
3781         rcu_read_lock();
3782         if (!vpid)
3783                 task = current;
3784         else
3785                 task = find_task_by_vpid(vpid);
3786         if (task)
3787                 get_task_struct(task);
3788         rcu_read_unlock();
3789
3790         if (!task)
3791                 return ERR_PTR(-ESRCH);
3792
3793         return task;
3794 }
3795
3796 /*
3797  * Returns a matching context with refcount and pincount.
3798  */
3799 static struct perf_event_context *
3800 find_get_context(struct pmu *pmu, struct task_struct *task,
3801                 struct perf_event *event)
3802 {
3803         struct perf_event_context *ctx, *clone_ctx = NULL;
3804         struct perf_cpu_context *cpuctx;
3805         void *task_ctx_data = NULL;
3806         unsigned long flags;
3807         int ctxn, err;
3808         int cpu = event->cpu;
3809
3810         if (!task) {
3811                 /* Must be root to operate on a CPU event: */
3812                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3813                         return ERR_PTR(-EACCES);
3814
3815                 /*
3816                  * We could be clever and allow to attach a event to an
3817                  * offline CPU and activate it when the CPU comes up, but
3818                  * that's for later.
3819                  */
3820                 if (!cpu_online(cpu))
3821                         return ERR_PTR(-ENODEV);
3822
3823                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3824                 ctx = &cpuctx->ctx;
3825                 get_ctx(ctx);
3826                 ++ctx->pin_count;
3827
3828                 return ctx;
3829         }
3830
3831         err = -EINVAL;
3832         ctxn = pmu->task_ctx_nr;
3833         if (ctxn < 0)
3834                 goto errout;
3835
3836         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3837                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3838                 if (!task_ctx_data) {
3839                         err = -ENOMEM;
3840                         goto errout;
3841                 }
3842         }
3843
3844 retry:
3845         ctx = perf_lock_task_context(task, ctxn, &flags);
3846         if (ctx) {
3847                 clone_ctx = unclone_ctx(ctx);
3848                 ++ctx->pin_count;
3849
3850                 if (task_ctx_data && !ctx->task_ctx_data) {
3851                         ctx->task_ctx_data = task_ctx_data;
3852                         task_ctx_data = NULL;
3853                 }
3854                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3855
3856                 if (clone_ctx)
3857                         put_ctx(clone_ctx);
3858         } else {
3859                 ctx = alloc_perf_context(pmu, task);
3860                 err = -ENOMEM;
3861                 if (!ctx)
3862                         goto errout;
3863
3864                 if (task_ctx_data) {
3865                         ctx->task_ctx_data = task_ctx_data;
3866                         task_ctx_data = NULL;
3867                 }
3868
3869                 err = 0;
3870                 mutex_lock(&task->perf_event_mutex);
3871                 /*
3872                  * If it has already passed perf_event_exit_task().
3873                  * we must see PF_EXITING, it takes this mutex too.
3874                  */
3875                 if (task->flags & PF_EXITING)
3876                         err = -ESRCH;
3877                 else if (task->perf_event_ctxp[ctxn])
3878                         err = -EAGAIN;
3879                 else {
3880                         get_ctx(ctx);
3881                         ++ctx->pin_count;
3882                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3883                 }
3884                 mutex_unlock(&task->perf_event_mutex);
3885
3886                 if (unlikely(err)) {
3887                         put_ctx(ctx);
3888
3889                         if (err == -EAGAIN)
3890                                 goto retry;
3891                         goto errout;
3892                 }
3893         }
3894
3895         kfree(task_ctx_data);
3896         return ctx;
3897
3898 errout:
3899         kfree(task_ctx_data);
3900         return ERR_PTR(err);
3901 }
3902
3903 static void perf_event_free_filter(struct perf_event *event);
3904 static void perf_event_free_bpf_prog(struct perf_event *event);
3905
3906 static void free_event_rcu(struct rcu_head *head)
3907 {
3908         struct perf_event *event;
3909
3910         event = container_of(head, struct perf_event, rcu_head);
3911         if (event->ns)
3912                 put_pid_ns(event->ns);
3913         perf_event_free_filter(event);
3914         kfree(event);
3915 }
3916
3917 static void ring_buffer_attach(struct perf_event *event,
3918                                struct ring_buffer *rb);
3919
3920 static void detach_sb_event(struct perf_event *event)
3921 {
3922         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3923
3924         raw_spin_lock(&pel->lock);
3925         list_del_rcu(&event->sb_list);
3926         raw_spin_unlock(&pel->lock);
3927 }
3928
3929 static bool is_sb_event(struct perf_event *event)
3930 {
3931         struct perf_event_attr *attr = &event->attr;
3932
3933         if (event->parent)
3934                 return false;
3935
3936         if (event->attach_state & PERF_ATTACH_TASK)
3937                 return false;
3938
3939         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3940             attr->comm || attr->comm_exec ||
3941             attr->task ||
3942             attr->context_switch)
3943                 return true;
3944         return false;
3945 }
3946
3947 static void unaccount_pmu_sb_event(struct perf_event *event)
3948 {
3949         if (is_sb_event(event))
3950                 detach_sb_event(event);
3951 }
3952
3953 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3954 {
3955         if (event->parent)
3956                 return;
3957
3958         if (is_cgroup_event(event))
3959                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3960 }
3961
3962 #ifdef CONFIG_NO_HZ_FULL
3963 static DEFINE_SPINLOCK(nr_freq_lock);
3964 #endif
3965
3966 static void unaccount_freq_event_nohz(void)
3967 {
3968 #ifdef CONFIG_NO_HZ_FULL
3969         spin_lock(&nr_freq_lock);
3970         if (atomic_dec_and_test(&nr_freq_events))
3971                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3972         spin_unlock(&nr_freq_lock);
3973 #endif
3974 }
3975
3976 static void unaccount_freq_event(void)
3977 {
3978         if (tick_nohz_full_enabled())
3979                 unaccount_freq_event_nohz();
3980         else
3981                 atomic_dec(&nr_freq_events);
3982 }
3983
3984 static void unaccount_event(struct perf_event *event)
3985 {
3986         bool dec = false;
3987
3988         if (event->parent)
3989                 return;
3990
3991         if (event->attach_state & PERF_ATTACH_TASK)
3992                 dec = true;
3993         if (event->attr.mmap || event->attr.mmap_data)
3994                 atomic_dec(&nr_mmap_events);
3995         if (event->attr.comm)
3996                 atomic_dec(&nr_comm_events);
3997         if (event->attr.namespaces)
3998                 atomic_dec(&nr_namespaces_events);
3999         if (event->attr.task)
4000                 atomic_dec(&nr_task_events);
4001         if (event->attr.freq)
4002                 unaccount_freq_event();
4003         if (event->attr.context_switch) {
4004                 dec = true;
4005                 atomic_dec(&nr_switch_events);
4006         }
4007         if (is_cgroup_event(event))
4008                 dec = true;
4009         if (has_branch_stack(event))
4010                 dec = true;
4011
4012         if (dec) {
4013                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4014                         schedule_delayed_work(&perf_sched_work, HZ);
4015         }
4016
4017         unaccount_event_cpu(event, event->cpu);
4018
4019         unaccount_pmu_sb_event(event);
4020 }
4021
4022 static void perf_sched_delayed(struct work_struct *work)
4023 {
4024         mutex_lock(&perf_sched_mutex);
4025         if (atomic_dec_and_test(&perf_sched_count))
4026                 static_branch_disable(&perf_sched_events);
4027         mutex_unlock(&perf_sched_mutex);
4028 }
4029
4030 /*
4031  * The following implement mutual exclusion of events on "exclusive" pmus
4032  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4033  * at a time, so we disallow creating events that might conflict, namely:
4034  *
4035  *  1) cpu-wide events in the presence of per-task events,
4036  *  2) per-task events in the presence of cpu-wide events,
4037  *  3) two matching events on the same context.
4038  *
4039  * The former two cases are handled in the allocation path (perf_event_alloc(),
4040  * _free_event()), the latter -- before the first perf_install_in_context().
4041  */
4042 static int exclusive_event_init(struct perf_event *event)
4043 {
4044         struct pmu *pmu = event->pmu;
4045
4046         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4047                 return 0;
4048
4049         /*
4050          * Prevent co-existence of per-task and cpu-wide events on the
4051          * same exclusive pmu.
4052          *
4053          * Negative pmu::exclusive_cnt means there are cpu-wide
4054          * events on this "exclusive" pmu, positive means there are
4055          * per-task events.
4056          *
4057          * Since this is called in perf_event_alloc() path, event::ctx
4058          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4059          * to mean "per-task event", because unlike other attach states it
4060          * never gets cleared.
4061          */
4062         if (event->attach_state & PERF_ATTACH_TASK) {
4063                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4064                         return -EBUSY;
4065         } else {
4066                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4067                         return -EBUSY;
4068         }
4069
4070         return 0;
4071 }
4072
4073 static void exclusive_event_destroy(struct perf_event *event)
4074 {
4075         struct pmu *pmu = event->pmu;
4076
4077         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4078                 return;
4079
4080         /* see comment in exclusive_event_init() */
4081         if (event->attach_state & PERF_ATTACH_TASK)
4082                 atomic_dec(&pmu->exclusive_cnt);
4083         else
4084                 atomic_inc(&pmu->exclusive_cnt);
4085 }
4086
4087 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4088 {
4089         if ((e1->pmu == e2->pmu) &&
4090             (e1->cpu == e2->cpu ||
4091              e1->cpu == -1 ||
4092              e2->cpu == -1))
4093                 return true;
4094         return false;
4095 }
4096
4097 /* Called under the same ctx::mutex as perf_install_in_context() */
4098 static bool exclusive_event_installable(struct perf_event *event,
4099                                         struct perf_event_context *ctx)
4100 {
4101         struct perf_event *iter_event;
4102         struct pmu *pmu = event->pmu;
4103
4104         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4105                 return true;
4106
4107         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4108                 if (exclusive_event_match(iter_event, event))
4109                         return false;
4110         }
4111
4112         return true;
4113 }
4114
4115 static void perf_addr_filters_splice(struct perf_event *event,
4116                                        struct list_head *head);
4117
4118 static void _free_event(struct perf_event *event)
4119 {
4120         irq_work_sync(&event->pending);
4121
4122         unaccount_event(event);
4123
4124         if (event->rb) {
4125                 /*
4126                  * Can happen when we close an event with re-directed output.
4127                  *
4128                  * Since we have a 0 refcount, perf_mmap_close() will skip
4129                  * over us; possibly making our ring_buffer_put() the last.
4130                  */
4131                 mutex_lock(&event->mmap_mutex);
4132                 ring_buffer_attach(event, NULL);
4133                 mutex_unlock(&event->mmap_mutex);
4134         }
4135
4136         if (is_cgroup_event(event))
4137                 perf_detach_cgroup(event);
4138
4139         if (!event->parent) {
4140                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4141                         put_callchain_buffers();
4142         }
4143
4144         perf_event_free_bpf_prog(event);
4145         perf_addr_filters_splice(event, NULL);
4146         kfree(event->addr_filters_offs);
4147
4148         if (event->destroy)
4149                 event->destroy(event);
4150
4151         if (event->ctx)
4152                 put_ctx(event->ctx);
4153
4154         exclusive_event_destroy(event);
4155         module_put(event->pmu->module);
4156
4157         call_rcu(&event->rcu_head, free_event_rcu);
4158 }
4159
4160 /*
4161  * Used to free events which have a known refcount of 1, such as in error paths
4162  * where the event isn't exposed yet and inherited events.
4163  */
4164 static void free_event(struct perf_event *event)
4165 {
4166         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4167                                 "unexpected event refcount: %ld; ptr=%p\n",
4168                                 atomic_long_read(&event->refcount), event)) {
4169                 /* leak to avoid use-after-free */
4170                 return;
4171         }
4172
4173         _free_event(event);
4174 }
4175
4176 /*
4177  * Remove user event from the owner task.
4178  */
4179 static void perf_remove_from_owner(struct perf_event *event)
4180 {
4181         struct task_struct *owner;
4182
4183         rcu_read_lock();
4184         /*
4185          * Matches the smp_store_release() in perf_event_exit_task(). If we
4186          * observe !owner it means the list deletion is complete and we can
4187          * indeed free this event, otherwise we need to serialize on
4188          * owner->perf_event_mutex.
4189          */
4190         owner = lockless_dereference(event->owner);
4191         if (owner) {
4192                 /*
4193                  * Since delayed_put_task_struct() also drops the last
4194                  * task reference we can safely take a new reference
4195                  * while holding the rcu_read_lock().
4196                  */
4197                 get_task_struct(owner);
4198         }
4199         rcu_read_unlock();
4200
4201         if (owner) {
4202                 /*
4203                  * If we're here through perf_event_exit_task() we're already
4204                  * holding ctx->mutex which would be an inversion wrt. the
4205                  * normal lock order.
4206                  *
4207                  * However we can safely take this lock because its the child
4208                  * ctx->mutex.
4209                  */
4210                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4211
4212                 /*
4213                  * We have to re-check the event->owner field, if it is cleared
4214                  * we raced with perf_event_exit_task(), acquiring the mutex
4215                  * ensured they're done, and we can proceed with freeing the
4216                  * event.
4217                  */
4218                 if (event->owner) {
4219                         list_del_init(&event->owner_entry);
4220                         smp_store_release(&event->owner, NULL);
4221                 }
4222                 mutex_unlock(&owner->perf_event_mutex);
4223                 put_task_struct(owner);
4224         }
4225 }
4226
4227 static void put_event(struct perf_event *event)
4228 {
4229         if (!atomic_long_dec_and_test(&event->refcount))
4230                 return;
4231
4232         _free_event(event);
4233 }
4234
4235 /*
4236  * Kill an event dead; while event:refcount will preserve the event
4237  * object, it will not preserve its functionality. Once the last 'user'
4238  * gives up the object, we'll destroy the thing.
4239  */
4240 int perf_event_release_kernel(struct perf_event *event)
4241 {
4242         struct perf_event_context *ctx = event->ctx;
4243         struct perf_event *child, *tmp;
4244
4245         /*
4246          * If we got here through err_file: fput(event_file); we will not have
4247          * attached to a context yet.
4248          */
4249         if (!ctx) {
4250                 WARN_ON_ONCE(event->attach_state &
4251                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4252                 goto no_ctx;
4253         }
4254
4255         if (!is_kernel_event(event))
4256                 perf_remove_from_owner(event);
4257
4258         ctx = perf_event_ctx_lock(event);
4259         WARN_ON_ONCE(ctx->parent_ctx);
4260         perf_remove_from_context(event, DETACH_GROUP);
4261
4262         raw_spin_lock_irq(&ctx->lock);
4263         /*
4264          * Mark this event as STATE_DEAD, there is no external reference to it
4265          * anymore.
4266          *
4267          * Anybody acquiring event->child_mutex after the below loop _must_
4268          * also see this, most importantly inherit_event() which will avoid
4269          * placing more children on the list.
4270          *
4271          * Thus this guarantees that we will in fact observe and kill _ALL_
4272          * child events.
4273          */
4274         event->state = PERF_EVENT_STATE_DEAD;
4275         raw_spin_unlock_irq(&ctx->lock);
4276
4277         perf_event_ctx_unlock(event, ctx);
4278
4279 again:
4280         mutex_lock(&event->child_mutex);
4281         list_for_each_entry(child, &event->child_list, child_list) {
4282
4283                 /*
4284                  * Cannot change, child events are not migrated, see the
4285                  * comment with perf_event_ctx_lock_nested().
4286                  */
4287                 ctx = lockless_dereference(child->ctx);
4288                 /*
4289                  * Since child_mutex nests inside ctx::mutex, we must jump
4290                  * through hoops. We start by grabbing a reference on the ctx.
4291                  *
4292                  * Since the event cannot get freed while we hold the
4293                  * child_mutex, the context must also exist and have a !0
4294                  * reference count.
4295                  */
4296                 get_ctx(ctx);
4297
4298                 /*
4299                  * Now that we have a ctx ref, we can drop child_mutex, and
4300                  * acquire ctx::mutex without fear of it going away. Then we
4301                  * can re-acquire child_mutex.
4302                  */
4303                 mutex_unlock(&event->child_mutex);
4304                 mutex_lock(&ctx->mutex);
4305                 mutex_lock(&event->child_mutex);
4306
4307                 /*
4308                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4309                  * state, if child is still the first entry, it didn't get freed
4310                  * and we can continue doing so.
4311                  */
4312                 tmp = list_first_entry_or_null(&event->child_list,
4313                                                struct perf_event, child_list);
4314                 if (tmp == child) {
4315                         perf_remove_from_context(child, DETACH_GROUP);
4316                         list_del(&child->child_list);
4317                         free_event(child);
4318                         /*
4319                          * This matches the refcount bump in inherit_event();
4320                          * this can't be the last reference.
4321                          */
4322                         put_event(event);
4323                 }
4324
4325                 mutex_unlock(&event->child_mutex);
4326                 mutex_unlock(&ctx->mutex);
4327                 put_ctx(ctx);
4328                 goto again;
4329         }
4330         mutex_unlock(&event->child_mutex);
4331
4332 no_ctx:
4333         put_event(event); /* Must be the 'last' reference */
4334         return 0;
4335 }
4336 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4337
4338 /*
4339  * Called when the last reference to the file is gone.
4340  */
4341 static int perf_release(struct inode *inode, struct file *file)
4342 {
4343         perf_event_release_kernel(file->private_data);
4344         return 0;
4345 }
4346
4347 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4348 {
4349         struct perf_event *child;
4350         u64 total = 0;
4351
4352         *enabled = 0;
4353         *running = 0;
4354
4355         mutex_lock(&event->child_mutex);
4356
4357         (void)perf_event_read(event, false);
4358         total += perf_event_count(event);
4359
4360         *enabled += event->total_time_enabled +
4361                         atomic64_read(&event->child_total_time_enabled);
4362         *running += event->total_time_running +
4363                         atomic64_read(&event->child_total_time_running);
4364
4365         list_for_each_entry(child, &event->child_list, child_list) {
4366                 (void)perf_event_read(child, false);
4367                 total += perf_event_count(child);
4368                 *enabled += child->total_time_enabled;
4369                 *running += child->total_time_running;
4370         }
4371         mutex_unlock(&event->child_mutex);
4372
4373         return total;
4374 }
4375 EXPORT_SYMBOL_GPL(perf_event_read_value);
4376
4377 static int __perf_read_group_add(struct perf_event *leader,
4378                                         u64 read_format, u64 *values)
4379 {
4380         struct perf_event *sub;
4381         int n = 1; /* skip @nr */
4382         int ret;
4383
4384         ret = perf_event_read(leader, true);
4385         if (ret)
4386                 return ret;
4387
4388         /*
4389          * Since we co-schedule groups, {enabled,running} times of siblings
4390          * will be identical to those of the leader, so we only publish one
4391          * set.
4392          */
4393         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4394                 values[n++] += leader->total_time_enabled +
4395                         atomic64_read(&leader->child_total_time_enabled);
4396         }
4397
4398         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4399                 values[n++] += leader->total_time_running +
4400                         atomic64_read(&leader->child_total_time_running);
4401         }
4402
4403         /*
4404          * Write {count,id} tuples for every sibling.
4405          */
4406         values[n++] += perf_event_count(leader);
4407         if (read_format & PERF_FORMAT_ID)
4408                 values[n++] = primary_event_id(leader);
4409
4410         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4411                 values[n++] += perf_event_count(sub);
4412                 if (read_format & PERF_FORMAT_ID)
4413                         values[n++] = primary_event_id(sub);
4414         }
4415
4416         return 0;
4417 }
4418
4419 static int perf_read_group(struct perf_event *event,
4420                                    u64 read_format, char __user *buf)
4421 {
4422         struct perf_event *leader = event->group_leader, *child;
4423         struct perf_event_context *ctx = leader->ctx;
4424         int ret;
4425         u64 *values;
4426
4427         lockdep_assert_held(&ctx->mutex);
4428
4429         values = kzalloc(event->read_size, GFP_KERNEL);
4430         if (!values)
4431                 return -ENOMEM;
4432
4433         values[0] = 1 + leader->nr_siblings;
4434
4435         /*
4436          * By locking the child_mutex of the leader we effectively
4437          * lock the child list of all siblings.. XXX explain how.
4438          */
4439         mutex_lock(&leader->child_mutex);
4440
4441         ret = __perf_read_group_add(leader, read_format, values);
4442         if (ret)
4443                 goto unlock;
4444
4445         list_for_each_entry(child, &leader->child_list, child_list) {
4446                 ret = __perf_read_group_add(child, read_format, values);
4447                 if (ret)
4448                         goto unlock;
4449         }
4450
4451         mutex_unlock(&leader->child_mutex);
4452
4453         ret = event->read_size;
4454         if (copy_to_user(buf, values, event->read_size))
4455                 ret = -EFAULT;
4456         goto out;
4457
4458 unlock:
4459         mutex_unlock(&leader->child_mutex);
4460 out:
4461         kfree(values);
4462         return ret;
4463 }
4464
4465 static int perf_read_one(struct perf_event *event,
4466                                  u64 read_format, char __user *buf)
4467 {
4468         u64 enabled, running;
4469         u64 values[4];
4470         int n = 0;
4471
4472         values[n++] = perf_event_read_value(event, &enabled, &running);
4473         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4474                 values[n++] = enabled;
4475         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4476                 values[n++] = running;
4477         if (read_format & PERF_FORMAT_ID)
4478                 values[n++] = primary_event_id(event);
4479
4480         if (copy_to_user(buf, values, n * sizeof(u64)))
4481                 return -EFAULT;
4482
4483         return n * sizeof(u64);
4484 }
4485
4486 static bool is_event_hup(struct perf_event *event)
4487 {
4488         bool no_children;
4489
4490         if (event->state > PERF_EVENT_STATE_EXIT)
4491                 return false;
4492
4493         mutex_lock(&event->child_mutex);
4494         no_children = list_empty(&event->child_list);
4495         mutex_unlock(&event->child_mutex);
4496         return no_children;
4497 }
4498
4499 /*
4500  * Read the performance event - simple non blocking version for now
4501  */
4502 static ssize_t
4503 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4504 {
4505         u64 read_format = event->attr.read_format;
4506         int ret;
4507
4508         /*
4509          * Return end-of-file for a read on a event that is in
4510          * error state (i.e. because it was pinned but it couldn't be
4511          * scheduled on to the CPU at some point).
4512          */
4513         if (event->state == PERF_EVENT_STATE_ERROR)
4514                 return 0;
4515
4516         if (count < event->read_size)
4517                 return -ENOSPC;
4518
4519         WARN_ON_ONCE(event->ctx->parent_ctx);
4520         if (read_format & PERF_FORMAT_GROUP)
4521                 ret = perf_read_group(event, read_format, buf);
4522         else
4523                 ret = perf_read_one(event, read_format, buf);
4524
4525         return ret;
4526 }
4527
4528 static ssize_t
4529 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4530 {
4531         struct perf_event *event = file->private_data;
4532         struct perf_event_context *ctx;
4533         int ret;
4534
4535         ctx = perf_event_ctx_lock(event);
4536         ret = __perf_read(event, buf, count);
4537         perf_event_ctx_unlock(event, ctx);
4538
4539         return ret;
4540 }
4541
4542 static unsigned int perf_poll(struct file *file, poll_table *wait)
4543 {
4544         struct perf_event *event = file->private_data;
4545         struct ring_buffer *rb;
4546         unsigned int events = POLLHUP;
4547
4548         poll_wait(file, &event->waitq, wait);
4549
4550         if (is_event_hup(event))
4551                 return events;
4552
4553         /*
4554          * Pin the event->rb by taking event->mmap_mutex; otherwise
4555          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4556          */
4557         mutex_lock(&event->mmap_mutex);
4558         rb = event->rb;
4559         if (rb)
4560                 events = atomic_xchg(&rb->poll, 0);
4561         mutex_unlock(&event->mmap_mutex);
4562         return events;
4563 }
4564
4565 static void _perf_event_reset(struct perf_event *event)
4566 {
4567         (void)perf_event_read(event, false);
4568         local64_set(&event->count, 0);
4569         perf_event_update_userpage(event);
4570 }
4571
4572 /*
4573  * Holding the top-level event's child_mutex means that any
4574  * descendant process that has inherited this event will block
4575  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4576  * task existence requirements of perf_event_enable/disable.
4577  */
4578 static void perf_event_for_each_child(struct perf_event *event,
4579                                         void (*func)(struct perf_event *))
4580 {
4581         struct perf_event *child;
4582
4583         WARN_ON_ONCE(event->ctx->parent_ctx);
4584
4585         mutex_lock(&event->child_mutex);
4586         func(event);
4587         list_for_each_entry(child, &event->child_list, child_list)
4588                 func(child);
4589         mutex_unlock(&event->child_mutex);
4590 }
4591
4592 static void perf_event_for_each(struct perf_event *event,
4593                                   void (*func)(struct perf_event *))
4594 {
4595         struct perf_event_context *ctx = event->ctx;
4596         struct perf_event *sibling;
4597
4598         lockdep_assert_held(&ctx->mutex);
4599
4600         event = event->group_leader;
4601
4602         perf_event_for_each_child(event, func);
4603         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4604                 perf_event_for_each_child(sibling, func);
4605 }
4606
4607 static void __perf_event_period(struct perf_event *event,
4608                                 struct perf_cpu_context *cpuctx,
4609                                 struct perf_event_context *ctx,
4610                                 void *info)
4611 {
4612         u64 value = *((u64 *)info);
4613         bool active;
4614
4615         if (event->attr.freq) {
4616                 event->attr.sample_freq = value;
4617         } else {
4618                 event->attr.sample_period = value;
4619                 event->hw.sample_period = value;
4620         }
4621
4622         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4623         if (active) {
4624                 perf_pmu_disable(ctx->pmu);
4625                 /*
4626                  * We could be throttled; unthrottle now to avoid the tick
4627                  * trying to unthrottle while we already re-started the event.
4628                  */
4629                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4630                         event->hw.interrupts = 0;
4631                         perf_log_throttle(event, 1);
4632                 }
4633                 event->pmu->stop(event, PERF_EF_UPDATE);
4634         }
4635
4636         local64_set(&event->hw.period_left, 0);
4637
4638         if (active) {
4639                 event->pmu->start(event, PERF_EF_RELOAD);
4640                 perf_pmu_enable(ctx->pmu);
4641         }
4642 }
4643
4644 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4645 {
4646         u64 value;
4647
4648         if (!is_sampling_event(event))
4649                 return -EINVAL;
4650
4651         if (copy_from_user(&value, arg, sizeof(value)))
4652                 return -EFAULT;
4653
4654         if (!value)
4655                 return -EINVAL;
4656
4657         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4658                 return -EINVAL;
4659
4660         event_function_call(event, __perf_event_period, &value);
4661
4662         return 0;
4663 }
4664
4665 static const struct file_operations perf_fops;
4666
4667 static inline int perf_fget_light(int fd, struct fd *p)
4668 {
4669         struct fd f = fdget(fd);
4670         if (!f.file)
4671                 return -EBADF;
4672
4673         if (f.file->f_op != &perf_fops) {
4674                 fdput(f);
4675                 return -EBADF;
4676         }
4677         *p = f;
4678         return 0;
4679 }
4680
4681 static int perf_event_set_output(struct perf_event *event,
4682                                  struct perf_event *output_event);
4683 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4684 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4685
4686 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4687 {
4688         void (*func)(struct perf_event *);
4689         u32 flags = arg;
4690
4691         switch (cmd) {
4692         case PERF_EVENT_IOC_ENABLE:
4693                 func = _perf_event_enable;
4694                 break;
4695         case PERF_EVENT_IOC_DISABLE:
4696                 func = _perf_event_disable;
4697                 break;
4698         case PERF_EVENT_IOC_RESET:
4699                 func = _perf_event_reset;
4700                 break;
4701
4702         case PERF_EVENT_IOC_REFRESH:
4703                 return _perf_event_refresh(event, arg);
4704
4705         case PERF_EVENT_IOC_PERIOD:
4706                 return perf_event_period(event, (u64 __user *)arg);
4707
4708         case PERF_EVENT_IOC_ID:
4709         {
4710                 u64 id = primary_event_id(event);
4711
4712                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4713                         return -EFAULT;
4714                 return 0;
4715         }
4716
4717         case PERF_EVENT_IOC_SET_OUTPUT:
4718         {
4719                 int ret;
4720                 if (arg != -1) {
4721                         struct perf_event *output_event;
4722                         struct fd output;
4723                         ret = perf_fget_light(arg, &output);
4724                         if (ret)
4725                                 return ret;
4726                         output_event = output.file->private_data;
4727                         ret = perf_event_set_output(event, output_event);
4728                         fdput(output);
4729                 } else {
4730                         ret = perf_event_set_output(event, NULL);
4731                 }
4732                 return ret;
4733         }
4734
4735         case PERF_EVENT_IOC_SET_FILTER:
4736                 return perf_event_set_filter(event, (void __user *)arg);
4737
4738         case PERF_EVENT_IOC_SET_BPF:
4739                 return perf_event_set_bpf_prog(event, arg);
4740
4741         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4742                 struct ring_buffer *rb;
4743
4744                 rcu_read_lock();
4745                 rb = rcu_dereference(event->rb);
4746                 if (!rb || !rb->nr_pages) {
4747                         rcu_read_unlock();
4748                         return -EINVAL;
4749                 }
4750                 rb_toggle_paused(rb, !!arg);
4751                 rcu_read_unlock();
4752                 return 0;
4753         }
4754         default:
4755                 return -ENOTTY;
4756         }
4757
4758         if (flags & PERF_IOC_FLAG_GROUP)
4759                 perf_event_for_each(event, func);
4760         else
4761                 perf_event_for_each_child(event, func);
4762
4763         return 0;
4764 }
4765
4766 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4767 {
4768         struct perf_event *event = file->private_data;
4769         struct perf_event_context *ctx;
4770         long ret;
4771
4772         ctx = perf_event_ctx_lock(event);
4773         ret = _perf_ioctl(event, cmd, arg);
4774         perf_event_ctx_unlock(event, ctx);
4775
4776         return ret;
4777 }
4778
4779 #ifdef CONFIG_COMPAT
4780 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4781                                 unsigned long arg)
4782 {
4783         switch (_IOC_NR(cmd)) {
4784         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4785         case _IOC_NR(PERF_EVENT_IOC_ID):
4786                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4787                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4788                         cmd &= ~IOCSIZE_MASK;
4789                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4790                 }
4791                 break;
4792         }
4793         return perf_ioctl(file, cmd, arg);
4794 }
4795 #else
4796 # define perf_compat_ioctl NULL
4797 #endif
4798
4799 int perf_event_task_enable(void)
4800 {
4801         struct perf_event_context *ctx;
4802         struct perf_event *event;
4803
4804         mutex_lock(&current->perf_event_mutex);
4805         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4806                 ctx = perf_event_ctx_lock(event);
4807                 perf_event_for_each_child(event, _perf_event_enable);
4808                 perf_event_ctx_unlock(event, ctx);
4809         }
4810         mutex_unlock(&current->perf_event_mutex);
4811
4812         return 0;
4813 }
4814
4815 int perf_event_task_disable(void)
4816 {
4817         struct perf_event_context *ctx;
4818         struct perf_event *event;
4819
4820         mutex_lock(&current->perf_event_mutex);
4821         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4822                 ctx = perf_event_ctx_lock(event);
4823                 perf_event_for_each_child(event, _perf_event_disable);
4824                 perf_event_ctx_unlock(event, ctx);
4825         }
4826         mutex_unlock(&current->perf_event_mutex);
4827
4828         return 0;
4829 }
4830
4831 static int perf_event_index(struct perf_event *event)
4832 {
4833         if (event->hw.state & PERF_HES_STOPPED)
4834                 return 0;
4835
4836         if (event->state != PERF_EVENT_STATE_ACTIVE)
4837                 return 0;
4838
4839         return event->pmu->event_idx(event);
4840 }
4841
4842 static void calc_timer_values(struct perf_event *event,
4843                                 u64 *now,
4844                                 u64 *enabled,
4845                                 u64 *running)
4846 {
4847         u64 ctx_time;
4848
4849         *now = perf_clock();
4850         ctx_time = event->shadow_ctx_time + *now;
4851         *enabled = ctx_time - event->tstamp_enabled;
4852         *running = ctx_time - event->tstamp_running;
4853 }
4854
4855 static void perf_event_init_userpage(struct perf_event *event)
4856 {
4857         struct perf_event_mmap_page *userpg;
4858         struct ring_buffer *rb;
4859
4860         rcu_read_lock();
4861         rb = rcu_dereference(event->rb);
4862         if (!rb)
4863                 goto unlock;
4864
4865         userpg = rb->user_page;
4866
4867         /* Allow new userspace to detect that bit 0 is deprecated */
4868         userpg->cap_bit0_is_deprecated = 1;
4869         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4870         userpg->data_offset = PAGE_SIZE;
4871         userpg->data_size = perf_data_size(rb);
4872
4873 unlock:
4874         rcu_read_unlock();
4875 }
4876
4877 void __weak arch_perf_update_userpage(
4878         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4879 {
4880 }
4881
4882 /*
4883  * Callers need to ensure there can be no nesting of this function, otherwise
4884  * the seqlock logic goes bad. We can not serialize this because the arch
4885  * code calls this from NMI context.
4886  */
4887 void perf_event_update_userpage(struct perf_event *event)
4888 {
4889         struct perf_event_mmap_page *userpg;
4890         struct ring_buffer *rb;
4891         u64 enabled, running, now;
4892
4893         rcu_read_lock();
4894         rb = rcu_dereference(event->rb);
4895         if (!rb)
4896                 goto unlock;
4897
4898         /*
4899          * compute total_time_enabled, total_time_running
4900          * based on snapshot values taken when the event
4901          * was last scheduled in.
4902          *
4903          * we cannot simply called update_context_time()
4904          * because of locking issue as we can be called in
4905          * NMI context
4906          */
4907         calc_timer_values(event, &now, &enabled, &running);
4908
4909         userpg = rb->user_page;
4910         /*
4911          * Disable preemption so as to not let the corresponding user-space
4912          * spin too long if we get preempted.
4913          */
4914         preempt_disable();
4915         ++userpg->lock;
4916         barrier();
4917         userpg->index = perf_event_index(event);
4918         userpg->offset = perf_event_count(event);
4919         if (userpg->index)
4920                 userpg->offset -= local64_read(&event->hw.prev_count);
4921
4922         userpg->time_enabled = enabled +
4923                         atomic64_read(&event->child_total_time_enabled);
4924
4925         userpg->time_running = running +
4926                         atomic64_read(&event->child_total_time_running);
4927
4928         arch_perf_update_userpage(event, userpg, now);
4929
4930         barrier();
4931         ++userpg->lock;
4932         preempt_enable();
4933 unlock:
4934         rcu_read_unlock();
4935 }
4936
4937 static int perf_mmap_fault(struct vm_fault *vmf)
4938 {
4939         struct perf_event *event = vmf->vma->vm_file->private_data;
4940         struct ring_buffer *rb;
4941         int ret = VM_FAULT_SIGBUS;
4942
4943         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4944                 if (vmf->pgoff == 0)
4945                         ret = 0;
4946                 return ret;
4947         }
4948
4949         rcu_read_lock();
4950         rb = rcu_dereference(event->rb);
4951         if (!rb)
4952                 goto unlock;
4953
4954         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4955                 goto unlock;
4956
4957         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4958         if (!vmf->page)
4959                 goto unlock;
4960
4961         get_page(vmf->page);
4962         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4963         vmf->page->index   = vmf->pgoff;
4964
4965         ret = 0;
4966 unlock:
4967         rcu_read_unlock();
4968
4969         return ret;
4970 }
4971
4972 static void ring_buffer_attach(struct perf_event *event,
4973                                struct ring_buffer *rb)
4974 {
4975         struct ring_buffer *old_rb = NULL;
4976         unsigned long flags;
4977
4978         if (event->rb) {
4979                 /*
4980                  * Should be impossible, we set this when removing
4981                  * event->rb_entry and wait/clear when adding event->rb_entry.
4982                  */
4983                 WARN_ON_ONCE(event->rcu_pending);
4984
4985                 old_rb = event->rb;
4986                 spin_lock_irqsave(&old_rb->event_lock, flags);
4987                 list_del_rcu(&event->rb_entry);
4988                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4989
4990                 event->rcu_batches = get_state_synchronize_rcu();
4991                 event->rcu_pending = 1;
4992         }
4993
4994         if (rb) {
4995                 if (event->rcu_pending) {
4996                         cond_synchronize_rcu(event->rcu_batches);
4997                         event->rcu_pending = 0;
4998                 }
4999
5000                 spin_lock_irqsave(&rb->event_lock, flags);
5001                 list_add_rcu(&event->rb_entry, &rb->event_list);
5002                 spin_unlock_irqrestore(&rb->event_lock, flags);
5003         }
5004
5005         /*
5006          * Avoid racing with perf_mmap_close(AUX): stop the event
5007          * before swizzling the event::rb pointer; if it's getting
5008          * unmapped, its aux_mmap_count will be 0 and it won't
5009          * restart. See the comment in __perf_pmu_output_stop().
5010          *
5011          * Data will inevitably be lost when set_output is done in
5012          * mid-air, but then again, whoever does it like this is
5013          * not in for the data anyway.
5014          */
5015         if (has_aux(event))
5016                 perf_event_stop(event, 0);
5017
5018         rcu_assign_pointer(event->rb, rb);
5019
5020         if (old_rb) {
5021                 ring_buffer_put(old_rb);
5022                 /*
5023                  * Since we detached before setting the new rb, so that we
5024                  * could attach the new rb, we could have missed a wakeup.
5025                  * Provide it now.
5026                  */
5027                 wake_up_all(&event->waitq);
5028         }
5029 }
5030
5031 static void ring_buffer_wakeup(struct perf_event *event)
5032 {
5033         struct ring_buffer *rb;
5034
5035         rcu_read_lock();
5036         rb = rcu_dereference(event->rb);
5037         if (rb) {
5038                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5039                         wake_up_all(&event->waitq);
5040         }
5041         rcu_read_unlock();
5042 }
5043
5044 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5045 {
5046         struct ring_buffer *rb;
5047
5048         rcu_read_lock();
5049         rb = rcu_dereference(event->rb);
5050         if (rb) {
5051                 if (!atomic_inc_not_zero(&rb->refcount))
5052                         rb = NULL;
5053         }
5054         rcu_read_unlock();
5055
5056         return rb;
5057 }
5058
5059 void ring_buffer_put(struct ring_buffer *rb)
5060 {
5061         if (!atomic_dec_and_test(&rb->refcount))
5062                 return;
5063
5064         WARN_ON_ONCE(!list_empty(&rb->event_list));
5065
5066         call_rcu(&rb->rcu_head, rb_free_rcu);
5067 }
5068
5069 static void perf_mmap_open(struct vm_area_struct *vma)
5070 {
5071         struct perf_event *event = vma->vm_file->private_data;
5072
5073         atomic_inc(&event->mmap_count);
5074         atomic_inc(&event->rb->mmap_count);
5075
5076         if (vma->vm_pgoff)
5077                 atomic_inc(&event->rb->aux_mmap_count);
5078
5079         if (event->pmu->event_mapped)
5080                 event->pmu->event_mapped(event);
5081 }
5082
5083 static void perf_pmu_output_stop(struct perf_event *event);
5084
5085 /*
5086  * A buffer can be mmap()ed multiple times; either directly through the same
5087  * event, or through other events by use of perf_event_set_output().
5088  *
5089  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5090  * the buffer here, where we still have a VM context. This means we need
5091  * to detach all events redirecting to us.
5092  */
5093 static void perf_mmap_close(struct vm_area_struct *vma)
5094 {
5095         struct perf_event *event = vma->vm_file->private_data;
5096
5097         struct ring_buffer *rb = ring_buffer_get(event);
5098         struct user_struct *mmap_user = rb->mmap_user;
5099         int mmap_locked = rb->mmap_locked;
5100         unsigned long size = perf_data_size(rb);
5101
5102         if (event->pmu->event_unmapped)
5103                 event->pmu->event_unmapped(event);
5104
5105         /*
5106          * rb->aux_mmap_count will always drop before rb->mmap_count and
5107          * event->mmap_count, so it is ok to use event->mmap_mutex to
5108          * serialize with perf_mmap here.
5109          */
5110         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5111             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5112                 /*
5113                  * Stop all AUX events that are writing to this buffer,
5114                  * so that we can free its AUX pages and corresponding PMU
5115                  * data. Note that after rb::aux_mmap_count dropped to zero,
5116                  * they won't start any more (see perf_aux_output_begin()).
5117                  */
5118                 perf_pmu_output_stop(event);
5119
5120                 /* now it's safe to free the pages */
5121                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5122                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5123
5124                 /* this has to be the last one */
5125                 rb_free_aux(rb);
5126                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5127
5128                 mutex_unlock(&event->mmap_mutex);
5129         }
5130
5131         atomic_dec(&rb->mmap_count);
5132
5133         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5134                 goto out_put;
5135
5136         ring_buffer_attach(event, NULL);
5137         mutex_unlock(&event->mmap_mutex);
5138
5139         /* If there's still other mmap()s of this buffer, we're done. */
5140         if (atomic_read(&rb->mmap_count))
5141                 goto out_put;
5142
5143         /*
5144          * No other mmap()s, detach from all other events that might redirect
5145          * into the now unreachable buffer. Somewhat complicated by the
5146          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5147          */
5148 again:
5149         rcu_read_lock();
5150         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5151                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5152                         /*
5153                          * This event is en-route to free_event() which will
5154                          * detach it and remove it from the list.
5155                          */
5156                         continue;
5157                 }
5158                 rcu_read_unlock();
5159
5160                 mutex_lock(&event->mmap_mutex);
5161                 /*
5162                  * Check we didn't race with perf_event_set_output() which can
5163                  * swizzle the rb from under us while we were waiting to
5164                  * acquire mmap_mutex.
5165                  *
5166                  * If we find a different rb; ignore this event, a next
5167                  * iteration will no longer find it on the list. We have to
5168                  * still restart the iteration to make sure we're not now
5169                  * iterating the wrong list.
5170                  */
5171                 if (event->rb == rb)
5172                         ring_buffer_attach(event, NULL);
5173
5174                 mutex_unlock(&event->mmap_mutex);
5175                 put_event(event);
5176
5177                 /*
5178                  * Restart the iteration; either we're on the wrong list or
5179                  * destroyed its integrity by doing a deletion.
5180                  */
5181                 goto again;
5182         }
5183         rcu_read_unlock();
5184
5185         /*
5186          * It could be there's still a few 0-ref events on the list; they'll
5187          * get cleaned up by free_event() -- they'll also still have their
5188          * ref on the rb and will free it whenever they are done with it.
5189          *
5190          * Aside from that, this buffer is 'fully' detached and unmapped,
5191          * undo the VM accounting.
5192          */
5193
5194         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5195         vma->vm_mm->pinned_vm -= mmap_locked;
5196         free_uid(mmap_user);
5197
5198 out_put:
5199         ring_buffer_put(rb); /* could be last */
5200 }
5201
5202 static const struct vm_operations_struct perf_mmap_vmops = {
5203         .open           = perf_mmap_open,
5204         .close          = perf_mmap_close, /* non mergable */
5205         .fault          = perf_mmap_fault,
5206         .page_mkwrite   = perf_mmap_fault,
5207 };
5208
5209 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5210 {
5211         struct perf_event *event = file->private_data;
5212         unsigned long user_locked, user_lock_limit;
5213         struct user_struct *user = current_user();
5214         unsigned long locked, lock_limit;
5215         struct ring_buffer *rb = NULL;
5216         unsigned long vma_size;
5217         unsigned long nr_pages;
5218         long user_extra = 0, extra = 0;
5219         int ret = 0, flags = 0;
5220
5221         /*
5222          * Don't allow mmap() of inherited per-task counters. This would
5223          * create a performance issue due to all children writing to the
5224          * same rb.
5225          */
5226         if (event->cpu == -1 && event->attr.inherit)
5227                 return -EINVAL;
5228
5229         if (!(vma->vm_flags & VM_SHARED))
5230                 return -EINVAL;
5231
5232         vma_size = vma->vm_end - vma->vm_start;
5233
5234         if (vma->vm_pgoff == 0) {
5235                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5236         } else {
5237                 /*
5238                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5239                  * mapped, all subsequent mappings should have the same size
5240                  * and offset. Must be above the normal perf buffer.
5241                  */
5242                 u64 aux_offset, aux_size;
5243
5244                 if (!event->rb)
5245                         return -EINVAL;
5246
5247                 nr_pages = vma_size / PAGE_SIZE;
5248
5249                 mutex_lock(&event->mmap_mutex);
5250                 ret = -EINVAL;
5251
5252                 rb = event->rb;
5253                 if (!rb)
5254                         goto aux_unlock;
5255
5256                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5257                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5258
5259                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5260                         goto aux_unlock;
5261
5262                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5263                         goto aux_unlock;
5264
5265                 /* already mapped with a different offset */
5266                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5267                         goto aux_unlock;
5268
5269                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5270                         goto aux_unlock;
5271
5272                 /* already mapped with a different size */
5273                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5274                         goto aux_unlock;
5275
5276                 if (!is_power_of_2(nr_pages))
5277                         goto aux_unlock;
5278
5279                 if (!atomic_inc_not_zero(&rb->mmap_count))
5280                         goto aux_unlock;
5281
5282                 if (rb_has_aux(rb)) {
5283                         atomic_inc(&rb->aux_mmap_count);
5284                         ret = 0;
5285                         goto unlock;
5286                 }
5287
5288                 atomic_set(&rb->aux_mmap_count, 1);
5289                 user_extra = nr_pages;
5290
5291                 goto accounting;
5292         }
5293
5294         /*
5295          * If we have rb pages ensure they're a power-of-two number, so we
5296          * can do bitmasks instead of modulo.
5297          */
5298         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5299                 return -EINVAL;
5300
5301         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5302                 return -EINVAL;
5303
5304         WARN_ON_ONCE(event->ctx->parent_ctx);
5305 again:
5306         mutex_lock(&event->mmap_mutex);
5307         if (event->rb) {
5308                 if (event->rb->nr_pages != nr_pages) {
5309                         ret = -EINVAL;
5310                         goto unlock;
5311                 }
5312
5313                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5314                         /*
5315                          * Raced against perf_mmap_close() through
5316                          * perf_event_set_output(). Try again, hope for better
5317                          * luck.
5318                          */
5319                         mutex_unlock(&event->mmap_mutex);
5320                         goto again;
5321                 }
5322
5323                 goto unlock;
5324         }
5325
5326         user_extra = nr_pages + 1;
5327
5328 accounting:
5329         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5330
5331         /*
5332          * Increase the limit linearly with more CPUs:
5333          */
5334         user_lock_limit *= num_online_cpus();
5335
5336         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5337
5338         if (user_locked > user_lock_limit)
5339                 extra = user_locked - user_lock_limit;
5340
5341         lock_limit = rlimit(RLIMIT_MEMLOCK);
5342         lock_limit >>= PAGE_SHIFT;
5343         locked = vma->vm_mm->pinned_vm + extra;
5344
5345         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5346                 !capable(CAP_IPC_LOCK)) {
5347                 ret = -EPERM;
5348                 goto unlock;
5349         }
5350
5351         WARN_ON(!rb && event->rb);
5352
5353         if (vma->vm_flags & VM_WRITE)
5354                 flags |= RING_BUFFER_WRITABLE;
5355
5356         if (!rb) {
5357                 rb = rb_alloc(nr_pages,
5358                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5359                               event->cpu, flags);
5360
5361                 if (!rb) {
5362                         ret = -ENOMEM;
5363                         goto unlock;
5364                 }
5365
5366                 atomic_set(&rb->mmap_count, 1);
5367                 rb->mmap_user = get_current_user();
5368                 rb->mmap_locked = extra;
5369
5370                 ring_buffer_attach(event, rb);
5371
5372                 perf_event_init_userpage(event);
5373                 perf_event_update_userpage(event);
5374         } else {
5375                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5376                                    event->attr.aux_watermark, flags);
5377                 if (!ret)
5378                         rb->aux_mmap_locked = extra;
5379         }
5380
5381 unlock:
5382         if (!ret) {
5383                 atomic_long_add(user_extra, &user->locked_vm);
5384                 vma->vm_mm->pinned_vm += extra;
5385
5386                 atomic_inc(&event->mmap_count);
5387         } else if (rb) {
5388                 atomic_dec(&rb->mmap_count);
5389         }
5390 aux_unlock:
5391         mutex_unlock(&event->mmap_mutex);
5392
5393         /*
5394          * Since pinned accounting is per vm we cannot allow fork() to copy our
5395          * vma.
5396          */
5397         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5398         vma->vm_ops = &perf_mmap_vmops;
5399
5400         if (event->pmu->event_mapped)
5401                 event->pmu->event_mapped(event);
5402
5403         return ret;
5404 }
5405
5406 static int perf_fasync(int fd, struct file *filp, int on)
5407 {
5408         struct inode *inode = file_inode(filp);
5409         struct perf_event *event = filp->private_data;
5410         int retval;
5411
5412         inode_lock(inode);
5413         retval = fasync_helper(fd, filp, on, &event->fasync);
5414         inode_unlock(inode);
5415
5416         if (retval < 0)
5417                 return retval;
5418
5419         return 0;
5420 }
5421
5422 static const struct file_operations perf_fops = {
5423         .llseek                 = no_llseek,
5424         .release                = perf_release,
5425         .read                   = perf_read,
5426         .poll                   = perf_poll,
5427         .unlocked_ioctl         = perf_ioctl,
5428         .compat_ioctl           = perf_compat_ioctl,
5429         .mmap                   = perf_mmap,
5430         .fasync                 = perf_fasync,
5431 };
5432
5433 /*
5434  * Perf event wakeup
5435  *
5436  * If there's data, ensure we set the poll() state and publish everything
5437  * to user-space before waking everybody up.
5438  */
5439
5440 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5441 {
5442         /* only the parent has fasync state */
5443         if (event->parent)
5444                 event = event->parent;
5445         return &event->fasync;
5446 }
5447
5448 void perf_event_wakeup(struct perf_event *event)
5449 {
5450         ring_buffer_wakeup(event);
5451
5452         if (event->pending_kill) {
5453                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5454                 event->pending_kill = 0;
5455         }
5456 }
5457
5458 static void perf_pending_event(struct irq_work *entry)
5459 {
5460         struct perf_event *event = container_of(entry,
5461                         struct perf_event, pending);
5462         int rctx;
5463
5464         rctx = perf_swevent_get_recursion_context();
5465         /*
5466          * If we 'fail' here, that's OK, it means recursion is already disabled
5467          * and we won't recurse 'further'.
5468          */
5469
5470         if (event->pending_disable) {
5471                 event->pending_disable = 0;
5472                 perf_event_disable_local(event);
5473         }
5474
5475         if (event->pending_wakeup) {
5476                 event->pending_wakeup = 0;
5477                 perf_event_wakeup(event);
5478         }
5479
5480         if (rctx >= 0)
5481                 perf_swevent_put_recursion_context(rctx);
5482 }
5483
5484 /*
5485  * We assume there is only KVM supporting the callbacks.
5486  * Later on, we might change it to a list if there is
5487  * another virtualization implementation supporting the callbacks.
5488  */
5489 struct perf_guest_info_callbacks *perf_guest_cbs;
5490
5491 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5492 {
5493         perf_guest_cbs = cbs;
5494         return 0;
5495 }
5496 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5497
5498 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5499 {
5500         perf_guest_cbs = NULL;
5501         return 0;
5502 }
5503 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5504
5505 static void
5506 perf_output_sample_regs(struct perf_output_handle *handle,
5507                         struct pt_regs *regs, u64 mask)
5508 {
5509         int bit;
5510         DECLARE_BITMAP(_mask, 64);
5511
5512         bitmap_from_u64(_mask, mask);
5513         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5514                 u64 val;
5515
5516                 val = perf_reg_value(regs, bit);
5517                 perf_output_put(handle, val);
5518         }
5519 }
5520
5521 static void perf_sample_regs_user(struct perf_regs *regs_user,
5522                                   struct pt_regs *regs,
5523                                   struct pt_regs *regs_user_copy)
5524 {
5525         if (user_mode(regs)) {
5526                 regs_user->abi = perf_reg_abi(current);
5527                 regs_user->regs = regs;
5528         } else if (current->mm) {
5529                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5530         } else {
5531                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5532                 regs_user->regs = NULL;
5533         }
5534 }
5535
5536 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5537                                   struct pt_regs *regs)
5538 {
5539         regs_intr->regs = regs;
5540         regs_intr->abi  = perf_reg_abi(current);
5541 }
5542
5543
5544 /*
5545  * Get remaining task size from user stack pointer.
5546  *
5547  * It'd be better to take stack vma map and limit this more
5548  * precisly, but there's no way to get it safely under interrupt,
5549  * so using TASK_SIZE as limit.
5550  */
5551 static u64 perf_ustack_task_size(struct pt_regs *regs)
5552 {
5553         unsigned long addr = perf_user_stack_pointer(regs);
5554
5555         if (!addr || addr >= TASK_SIZE)
5556                 return 0;
5557
5558         return TASK_SIZE - addr;
5559 }
5560
5561 static u16
5562 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5563                         struct pt_regs *regs)
5564 {
5565         u64 task_size;
5566
5567         /* No regs, no stack pointer, no dump. */
5568         if (!regs)
5569                 return 0;
5570
5571         /*
5572          * Check if we fit in with the requested stack size into the:
5573          * - TASK_SIZE
5574          *   If we don't, we limit the size to the TASK_SIZE.
5575          *
5576          * - remaining sample size
5577          *   If we don't, we customize the stack size to
5578          *   fit in to the remaining sample size.
5579          */
5580
5581         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5582         stack_size = min(stack_size, (u16) task_size);
5583
5584         /* Current header size plus static size and dynamic size. */
5585         header_size += 2 * sizeof(u64);
5586
5587         /* Do we fit in with the current stack dump size? */
5588         if ((u16) (header_size + stack_size) < header_size) {
5589                 /*
5590                  * If we overflow the maximum size for the sample,
5591                  * we customize the stack dump size to fit in.
5592                  */
5593                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5594                 stack_size = round_up(stack_size, sizeof(u64));
5595         }
5596
5597         return stack_size;
5598 }
5599
5600 static void
5601 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5602                           struct pt_regs *regs)
5603 {
5604         /* Case of a kernel thread, nothing to dump */
5605         if (!regs) {
5606                 u64 size = 0;
5607                 perf_output_put(handle, size);
5608         } else {
5609                 unsigned long sp;
5610                 unsigned int rem;
5611                 u64 dyn_size;
5612
5613                 /*
5614                  * We dump:
5615                  * static size
5616                  *   - the size requested by user or the best one we can fit
5617                  *     in to the sample max size
5618                  * data
5619                  *   - user stack dump data
5620                  * dynamic size
5621                  *   - the actual dumped size
5622                  */
5623
5624                 /* Static size. */
5625                 perf_output_put(handle, dump_size);
5626
5627                 /* Data. */
5628                 sp = perf_user_stack_pointer(regs);
5629                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5630                 dyn_size = dump_size - rem;
5631
5632                 perf_output_skip(handle, rem);
5633
5634                 /* Dynamic size. */
5635                 perf_output_put(handle, dyn_size);
5636         }
5637 }
5638
5639 static void __perf_event_header__init_id(struct perf_event_header *header,
5640                                          struct perf_sample_data *data,
5641                                          struct perf_event *event)
5642 {
5643         u64 sample_type = event->attr.sample_type;
5644
5645         data->type = sample_type;
5646         header->size += event->id_header_size;
5647
5648         if (sample_type & PERF_SAMPLE_TID) {
5649                 /* namespace issues */
5650                 data->tid_entry.pid = perf_event_pid(event, current);
5651                 data->tid_entry.tid = perf_event_tid(event, current);
5652         }
5653
5654         if (sample_type & PERF_SAMPLE_TIME)
5655                 data->time = perf_event_clock(event);
5656
5657         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5658                 data->id = primary_event_id(event);
5659
5660         if (sample_type & PERF_SAMPLE_STREAM_ID)
5661                 data->stream_id = event->id;
5662
5663         if (sample_type & PERF_SAMPLE_CPU) {
5664                 data->cpu_entry.cpu      = raw_smp_processor_id();
5665                 data->cpu_entry.reserved = 0;
5666         }
5667 }
5668
5669 void perf_event_header__init_id(struct perf_event_header *header,
5670                                 struct perf_sample_data *data,
5671                                 struct perf_event *event)
5672 {
5673         if (event->attr.sample_id_all)
5674                 __perf_event_header__init_id(header, data, event);
5675 }
5676
5677 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5678                                            struct perf_sample_data *data)
5679 {
5680         u64 sample_type = data->type;
5681
5682         if (sample_type & PERF_SAMPLE_TID)
5683                 perf_output_put(handle, data->tid_entry);
5684
5685         if (sample_type & PERF_SAMPLE_TIME)
5686                 perf_output_put(handle, data->time);
5687
5688         if (sample_type & PERF_SAMPLE_ID)
5689                 perf_output_put(handle, data->id);
5690
5691         if (sample_type & PERF_SAMPLE_STREAM_ID)
5692                 perf_output_put(handle, data->stream_id);
5693
5694         if (sample_type & PERF_SAMPLE_CPU)
5695                 perf_output_put(handle, data->cpu_entry);
5696
5697         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5698                 perf_output_put(handle, data->id);
5699 }
5700
5701 void perf_event__output_id_sample(struct perf_event *event,
5702                                   struct perf_output_handle *handle,
5703                                   struct perf_sample_data *sample)
5704 {
5705         if (event->attr.sample_id_all)
5706                 __perf_event__output_id_sample(handle, sample);
5707 }
5708
5709 static void perf_output_read_one(struct perf_output_handle *handle,
5710                                  struct perf_event *event,
5711                                  u64 enabled, u64 running)
5712 {
5713         u64 read_format = event->attr.read_format;
5714         u64 values[4];
5715         int n = 0;
5716
5717         values[n++] = perf_event_count(event);
5718         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5719                 values[n++] = enabled +
5720                         atomic64_read(&event->child_total_time_enabled);
5721         }
5722         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5723                 values[n++] = running +
5724                         atomic64_read(&event->child_total_time_running);
5725         }
5726         if (read_format & PERF_FORMAT_ID)
5727                 values[n++] = primary_event_id(event);
5728
5729         __output_copy(handle, values, n * sizeof(u64));
5730 }
5731
5732 static void perf_output_read_group(struct perf_output_handle *handle,
5733                             struct perf_event *event,
5734                             u64 enabled, u64 running)
5735 {
5736         struct perf_event *leader = event->group_leader, *sub;
5737         u64 read_format = event->attr.read_format;
5738         u64 values[5];
5739         int n = 0;
5740
5741         values[n++] = 1 + leader->nr_siblings;
5742
5743         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5744                 values[n++] = enabled;
5745
5746         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5747                 values[n++] = running;
5748
5749         if (leader != event)
5750                 leader->pmu->read(leader);
5751
5752         values[n++] = perf_event_count(leader);
5753         if (read_format & PERF_FORMAT_ID)
5754                 values[n++] = primary_event_id(leader);
5755
5756         __output_copy(handle, values, n * sizeof(u64));
5757
5758         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5759                 n = 0;
5760
5761                 if ((sub != event) &&
5762                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5763                         sub->pmu->read(sub);
5764
5765                 values[n++] = perf_event_count(sub);
5766                 if (read_format & PERF_FORMAT_ID)
5767                         values[n++] = primary_event_id(sub);
5768
5769                 __output_copy(handle, values, n * sizeof(u64));
5770         }
5771 }
5772
5773 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5774                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5775
5776 /*
5777  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5778  *
5779  * The problem is that its both hard and excessively expensive to iterate the
5780  * child list, not to mention that its impossible to IPI the children running
5781  * on another CPU, from interrupt/NMI context.
5782  */
5783 static void perf_output_read(struct perf_output_handle *handle,
5784                              struct perf_event *event)
5785 {
5786         u64 enabled = 0, running = 0, now;
5787         u64 read_format = event->attr.read_format;
5788
5789         /*
5790          * compute total_time_enabled, total_time_running
5791          * based on snapshot values taken when the event
5792          * was last scheduled in.
5793          *
5794          * we cannot simply called update_context_time()
5795          * because of locking issue as we are called in
5796          * NMI context
5797          */
5798         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5799                 calc_timer_values(event, &now, &enabled, &running);
5800
5801         if (event->attr.read_format & PERF_FORMAT_GROUP)
5802                 perf_output_read_group(handle, event, enabled, running);
5803         else
5804                 perf_output_read_one(handle, event, enabled, running);
5805 }
5806
5807 void perf_output_sample(struct perf_output_handle *handle,
5808                         struct perf_event_header *header,
5809                         struct perf_sample_data *data,
5810                         struct perf_event *event)
5811 {
5812         u64 sample_type = data->type;
5813
5814         perf_output_put(handle, *header);
5815
5816         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5817                 perf_output_put(handle, data->id);
5818
5819         if (sample_type & PERF_SAMPLE_IP)
5820                 perf_output_put(handle, data->ip);
5821
5822         if (sample_type & PERF_SAMPLE_TID)
5823                 perf_output_put(handle, data->tid_entry);
5824
5825         if (sample_type & PERF_SAMPLE_TIME)
5826                 perf_output_put(handle, data->time);
5827
5828         if (sample_type & PERF_SAMPLE_ADDR)
5829                 perf_output_put(handle, data->addr);
5830
5831         if (sample_type & PERF_SAMPLE_ID)
5832                 perf_output_put(handle, data->id);
5833
5834         if (sample_type & PERF_SAMPLE_STREAM_ID)
5835                 perf_output_put(handle, data->stream_id);
5836
5837         if (sample_type & PERF_SAMPLE_CPU)
5838                 perf_output_put(handle, data->cpu_entry);
5839
5840         if (sample_type & PERF_SAMPLE_PERIOD)
5841                 perf_output_put(handle, data->period);
5842
5843         if (sample_type & PERF_SAMPLE_READ)
5844                 perf_output_read(handle, event);
5845
5846         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5847                 if (data->callchain) {
5848                         int size = 1;
5849
5850                         if (data->callchain)
5851                                 size += data->callchain->nr;
5852
5853                         size *= sizeof(u64);
5854
5855                         __output_copy(handle, data->callchain, size);
5856                 } else {
5857                         u64 nr = 0;
5858                         perf_output_put(handle, nr);
5859                 }
5860         }
5861
5862         if (sample_type & PERF_SAMPLE_RAW) {
5863                 struct perf_raw_record *raw = data->raw;
5864
5865                 if (raw) {
5866                         struct perf_raw_frag *frag = &raw->frag;
5867
5868                         perf_output_put(handle, raw->size);
5869                         do {
5870                                 if (frag->copy) {
5871                                         __output_custom(handle, frag->copy,
5872                                                         frag->data, frag->size);
5873                                 } else {
5874                                         __output_copy(handle, frag->data,
5875                                                       frag->size);
5876                                 }
5877                                 if (perf_raw_frag_last(frag))
5878                                         break;
5879                                 frag = frag->next;
5880                         } while (1);
5881                         if (frag->pad)
5882                                 __output_skip(handle, NULL, frag->pad);
5883                 } else {
5884                         struct {
5885                                 u32     size;
5886                                 u32     data;
5887                         } raw = {
5888                                 .size = sizeof(u32),
5889                                 .data = 0,
5890                         };
5891                         perf_output_put(handle, raw);
5892                 }
5893         }
5894
5895         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5896                 if (data->br_stack) {
5897                         size_t size;
5898
5899                         size = data->br_stack->nr
5900                              * sizeof(struct perf_branch_entry);
5901
5902                         perf_output_put(handle, data->br_stack->nr);
5903                         perf_output_copy(handle, data->br_stack->entries, size);
5904                 } else {
5905                         /*
5906                          * we always store at least the value of nr
5907                          */
5908                         u64 nr = 0;
5909                         perf_output_put(handle, nr);
5910                 }
5911         }
5912
5913         if (sample_type & PERF_SAMPLE_REGS_USER) {
5914                 u64 abi = data->regs_user.abi;
5915
5916                 /*
5917                  * If there are no regs to dump, notice it through
5918                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5919                  */
5920                 perf_output_put(handle, abi);
5921
5922                 if (abi) {
5923                         u64 mask = event->attr.sample_regs_user;
5924                         perf_output_sample_regs(handle,
5925                                                 data->regs_user.regs,
5926                                                 mask);
5927                 }
5928         }
5929
5930         if (sample_type & PERF_SAMPLE_STACK_USER) {
5931                 perf_output_sample_ustack(handle,
5932                                           data->stack_user_size,
5933                                           data->regs_user.regs);
5934         }
5935
5936         if (sample_type & PERF_SAMPLE_WEIGHT)
5937                 perf_output_put(handle, data->weight);
5938
5939         if (sample_type & PERF_SAMPLE_DATA_SRC)
5940                 perf_output_put(handle, data->data_src.val);
5941
5942         if (sample_type & PERF_SAMPLE_TRANSACTION)
5943                 perf_output_put(handle, data->txn);
5944
5945         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5946                 u64 abi = data->regs_intr.abi;
5947                 /*
5948                  * If there are no regs to dump, notice it through
5949                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5950                  */
5951                 perf_output_put(handle, abi);
5952
5953                 if (abi) {
5954                         u64 mask = event->attr.sample_regs_intr;
5955
5956                         perf_output_sample_regs(handle,
5957                                                 data->regs_intr.regs,
5958                                                 mask);
5959                 }
5960         }
5961
5962         if (!event->attr.watermark) {
5963                 int wakeup_events = event->attr.wakeup_events;
5964
5965                 if (wakeup_events) {
5966                         struct ring_buffer *rb = handle->rb;
5967                         int events = local_inc_return(&rb->events);
5968
5969                         if (events >= wakeup_events) {
5970                                 local_sub(wakeup_events, &rb->events);
5971                                 local_inc(&rb->wakeup);
5972                         }
5973                 }
5974         }
5975 }
5976
5977 void perf_prepare_sample(struct perf_event_header *header,
5978                          struct perf_sample_data *data,
5979                          struct perf_event *event,
5980                          struct pt_regs *regs)
5981 {
5982         u64 sample_type = event->attr.sample_type;
5983
5984         header->type = PERF_RECORD_SAMPLE;
5985         header->size = sizeof(*header) + event->header_size;
5986
5987         header->misc = 0;
5988         header->misc |= perf_misc_flags(regs);
5989
5990         __perf_event_header__init_id(header, data, event);
5991
5992         if (sample_type & PERF_SAMPLE_IP)
5993                 data->ip = perf_instruction_pointer(regs);
5994
5995         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5996                 int size = 1;
5997
5998                 data->callchain = perf_callchain(event, regs);
5999
6000                 if (data->callchain)
6001                         size += data->callchain->nr;
6002
6003                 header->size += size * sizeof(u64);
6004         }
6005
6006         if (sample_type & PERF_SAMPLE_RAW) {
6007                 struct perf_raw_record *raw = data->raw;
6008                 int size;
6009
6010                 if (raw) {
6011                         struct perf_raw_frag *frag = &raw->frag;
6012                         u32 sum = 0;
6013
6014                         do {
6015                                 sum += frag->size;
6016                                 if (perf_raw_frag_last(frag))
6017                                         break;
6018                                 frag = frag->next;
6019                         } while (1);
6020
6021                         size = round_up(sum + sizeof(u32), sizeof(u64));
6022                         raw->size = size - sizeof(u32);
6023                         frag->pad = raw->size - sum;
6024                 } else {
6025                         size = sizeof(u64);
6026                 }
6027
6028                 header->size += size;
6029         }
6030
6031         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6032                 int size = sizeof(u64); /* nr */
6033                 if (data->br_stack) {
6034                         size += data->br_stack->nr
6035                               * sizeof(struct perf_branch_entry);
6036                 }
6037                 header->size += size;
6038         }
6039
6040         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6041                 perf_sample_regs_user(&data->regs_user, regs,
6042                                       &data->regs_user_copy);
6043
6044         if (sample_type & PERF_SAMPLE_REGS_USER) {
6045                 /* regs dump ABI info */
6046                 int size = sizeof(u64);
6047
6048                 if (data->regs_user.regs) {
6049                         u64 mask = event->attr.sample_regs_user;
6050                         size += hweight64(mask) * sizeof(u64);
6051                 }
6052
6053                 header->size += size;
6054         }
6055
6056         if (sample_type & PERF_SAMPLE_STACK_USER) {
6057                 /*
6058                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6059                  * processed as the last one or have additional check added
6060                  * in case new sample type is added, because we could eat
6061                  * up the rest of the sample size.
6062                  */
6063                 u16 stack_size = event->attr.sample_stack_user;
6064                 u16 size = sizeof(u64);
6065
6066                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6067                                                      data->regs_user.regs);
6068
6069                 /*
6070                  * If there is something to dump, add space for the dump
6071                  * itself and for the field that tells the dynamic size,
6072                  * which is how many have been actually dumped.
6073                  */
6074                 if (stack_size)
6075                         size += sizeof(u64) + stack_size;
6076
6077                 data->stack_user_size = stack_size;
6078                 header->size += size;
6079         }
6080
6081         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6082                 /* regs dump ABI info */
6083                 int size = sizeof(u64);
6084
6085                 perf_sample_regs_intr(&data->regs_intr, regs);
6086
6087                 if (data->regs_intr.regs) {
6088                         u64 mask = event->attr.sample_regs_intr;
6089
6090                         size += hweight64(mask) * sizeof(u64);
6091                 }
6092
6093                 header->size += size;
6094         }
6095 }
6096
6097 static void __always_inline
6098 __perf_event_output(struct perf_event *event,
6099                     struct perf_sample_data *data,
6100                     struct pt_regs *regs,
6101                     int (*output_begin)(struct perf_output_handle *,
6102                                         struct perf_event *,
6103                                         unsigned int))
6104 {
6105         struct perf_output_handle handle;
6106         struct perf_event_header header;
6107
6108         /* protect the callchain buffers */
6109         rcu_read_lock();
6110
6111         perf_prepare_sample(&header, data, event, regs);
6112
6113         if (output_begin(&handle, event, header.size))
6114                 goto exit;
6115
6116         perf_output_sample(&handle, &header, data, event);
6117
6118         perf_output_end(&handle);
6119
6120 exit:
6121         rcu_read_unlock();
6122 }
6123
6124 void
6125 perf_event_output_forward(struct perf_event *event,
6126                          struct perf_sample_data *data,
6127                          struct pt_regs *regs)
6128 {
6129         __perf_event_output(event, data, regs, perf_output_begin_forward);
6130 }
6131
6132 void
6133 perf_event_output_backward(struct perf_event *event,
6134                            struct perf_sample_data *data,
6135                            struct pt_regs *regs)
6136 {
6137         __perf_event_output(event, data, regs, perf_output_begin_backward);
6138 }
6139
6140 void
6141 perf_event_output(struct perf_event *event,
6142                   struct perf_sample_data *data,
6143                   struct pt_regs *regs)
6144 {
6145         __perf_event_output(event, data, regs, perf_output_begin);
6146 }
6147
6148 /*
6149  * read event_id
6150  */
6151
6152 struct perf_read_event {
6153         struct perf_event_header        header;
6154
6155         u32                             pid;
6156         u32                             tid;
6157 };
6158
6159 static void
6160 perf_event_read_event(struct perf_event *event,
6161                         struct task_struct *task)
6162 {
6163         struct perf_output_handle handle;
6164         struct perf_sample_data sample;
6165         struct perf_read_event read_event = {
6166                 .header = {
6167                         .type = PERF_RECORD_READ,
6168                         .misc = 0,
6169                         .size = sizeof(read_event) + event->read_size,
6170                 },
6171                 .pid = perf_event_pid(event, task),
6172                 .tid = perf_event_tid(event, task),
6173         };
6174         int ret;
6175
6176         perf_event_header__init_id(&read_event.header, &sample, event);
6177         ret = perf_output_begin(&handle, event, read_event.header.size);
6178         if (ret)
6179                 return;
6180
6181         perf_output_put(&handle, read_event);
6182         perf_output_read(&handle, event);
6183         perf_event__output_id_sample(event, &handle, &sample);
6184
6185         perf_output_end(&handle);
6186 }
6187
6188 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6189
6190 static void
6191 perf_iterate_ctx(struct perf_event_context *ctx,
6192                    perf_iterate_f output,
6193                    void *data, bool all)
6194 {
6195         struct perf_event *event;
6196
6197         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6198                 if (!all) {
6199                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6200                                 continue;
6201                         if (!event_filter_match(event))
6202                                 continue;
6203                 }
6204
6205                 output(event, data);
6206         }
6207 }
6208
6209 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6210 {
6211         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6212         struct perf_event *event;
6213
6214         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6215                 /*
6216                  * Skip events that are not fully formed yet; ensure that
6217                  * if we observe event->ctx, both event and ctx will be
6218                  * complete enough. See perf_install_in_context().
6219                  */
6220                 if (!smp_load_acquire(&event->ctx))
6221                         continue;
6222
6223                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6224                         continue;
6225                 if (!event_filter_match(event))
6226                         continue;
6227                 output(event, data);
6228         }
6229 }
6230
6231 /*
6232  * Iterate all events that need to receive side-band events.
6233  *
6234  * For new callers; ensure that account_pmu_sb_event() includes
6235  * your event, otherwise it might not get delivered.
6236  */
6237 static void
6238 perf_iterate_sb(perf_iterate_f output, void *data,
6239                struct perf_event_context *task_ctx)
6240 {
6241         struct perf_event_context *ctx;
6242         int ctxn;
6243
6244         rcu_read_lock();
6245         preempt_disable();
6246
6247         /*
6248          * If we have task_ctx != NULL we only notify the task context itself.
6249          * The task_ctx is set only for EXIT events before releasing task
6250          * context.
6251          */
6252         if (task_ctx) {
6253                 perf_iterate_ctx(task_ctx, output, data, false);
6254                 goto done;
6255         }
6256
6257         perf_iterate_sb_cpu(output, data);
6258
6259         for_each_task_context_nr(ctxn) {
6260                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6261                 if (ctx)
6262                         perf_iterate_ctx(ctx, output, data, false);
6263         }
6264 done:
6265         preempt_enable();
6266         rcu_read_unlock();
6267 }
6268
6269 /*
6270  * Clear all file-based filters at exec, they'll have to be
6271  * re-instated when/if these objects are mmapped again.
6272  */
6273 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6274 {
6275         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6276         struct perf_addr_filter *filter;
6277         unsigned int restart = 0, count = 0;
6278         unsigned long flags;
6279
6280         if (!has_addr_filter(event))
6281                 return;
6282
6283         raw_spin_lock_irqsave(&ifh->lock, flags);
6284         list_for_each_entry(filter, &ifh->list, entry) {
6285                 if (filter->inode) {
6286                         event->addr_filters_offs[count] = 0;
6287                         restart++;
6288                 }
6289
6290                 count++;
6291         }
6292
6293         if (restart)
6294                 event->addr_filters_gen++;
6295         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6296
6297         if (restart)
6298                 perf_event_stop(event, 1);
6299 }
6300
6301 void perf_event_exec(void)
6302 {
6303         struct perf_event_context *ctx;
6304         int ctxn;
6305
6306         rcu_read_lock();
6307         for_each_task_context_nr(ctxn) {
6308                 ctx = current->perf_event_ctxp[ctxn];
6309                 if (!ctx)
6310                         continue;
6311
6312                 perf_event_enable_on_exec(ctxn);
6313
6314                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6315                                    true);
6316         }
6317         rcu_read_unlock();
6318 }
6319
6320 struct remote_output {
6321         struct ring_buffer      *rb;
6322         int                     err;
6323 };
6324
6325 static void __perf_event_output_stop(struct perf_event *event, void *data)
6326 {
6327         struct perf_event *parent = event->parent;
6328         struct remote_output *ro = data;
6329         struct ring_buffer *rb = ro->rb;
6330         struct stop_event_data sd = {
6331                 .event  = event,
6332         };
6333
6334         if (!has_aux(event))
6335                 return;
6336
6337         if (!parent)
6338                 parent = event;
6339
6340         /*
6341          * In case of inheritance, it will be the parent that links to the
6342          * ring-buffer, but it will be the child that's actually using it.
6343          *
6344          * We are using event::rb to determine if the event should be stopped,
6345          * however this may race with ring_buffer_attach() (through set_output),
6346          * which will make us skip the event that actually needs to be stopped.
6347          * So ring_buffer_attach() has to stop an aux event before re-assigning
6348          * its rb pointer.
6349          */
6350         if (rcu_dereference(parent->rb) == rb)
6351                 ro->err = __perf_event_stop(&sd);
6352 }
6353
6354 static int __perf_pmu_output_stop(void *info)
6355 {
6356         struct perf_event *event = info;
6357         struct pmu *pmu = event->pmu;
6358         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6359         struct remote_output ro = {
6360                 .rb     = event->rb,
6361         };
6362
6363         rcu_read_lock();
6364         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6365         if (cpuctx->task_ctx)
6366                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6367                                    &ro, false);
6368         rcu_read_unlock();
6369
6370         return ro.err;
6371 }
6372
6373 static void perf_pmu_output_stop(struct perf_event *event)
6374 {
6375         struct perf_event *iter;
6376         int err, cpu;
6377
6378 restart:
6379         rcu_read_lock();
6380         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6381                 /*
6382                  * For per-CPU events, we need to make sure that neither they
6383                  * nor their children are running; for cpu==-1 events it's
6384                  * sufficient to stop the event itself if it's active, since
6385                  * it can't have children.
6386                  */
6387                 cpu = iter->cpu;
6388                 if (cpu == -1)
6389                         cpu = READ_ONCE(iter->oncpu);
6390
6391                 if (cpu == -1)
6392                         continue;
6393
6394                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6395                 if (err == -EAGAIN) {
6396                         rcu_read_unlock();
6397                         goto restart;
6398                 }
6399         }
6400         rcu_read_unlock();
6401 }
6402
6403 /*
6404  * task tracking -- fork/exit
6405  *
6406  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6407  */
6408
6409 struct perf_task_event {
6410         struct task_struct              *task;
6411         struct perf_event_context       *task_ctx;
6412
6413         struct {
6414                 struct perf_event_header        header;
6415
6416                 u32                             pid;
6417                 u32                             ppid;
6418                 u32                             tid;
6419                 u32                             ptid;
6420                 u64                             time;
6421         } event_id;
6422 };
6423
6424 static int perf_event_task_match(struct perf_event *event)
6425 {
6426         return event->attr.comm  || event->attr.mmap ||
6427                event->attr.mmap2 || event->attr.mmap_data ||
6428                event->attr.task;
6429 }
6430
6431 static void perf_event_task_output(struct perf_event *event,
6432                                    void *data)
6433 {
6434         struct perf_task_event *task_event = data;
6435         struct perf_output_handle handle;
6436         struct perf_sample_data sample;
6437         struct task_struct *task = task_event->task;
6438         int ret, size = task_event->event_id.header.size;
6439
6440         if (!perf_event_task_match(event))
6441                 return;
6442
6443         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6444
6445         ret = perf_output_begin(&handle, event,
6446                                 task_event->event_id.header.size);
6447         if (ret)
6448                 goto out;
6449
6450         task_event->event_id.pid = perf_event_pid(event, task);
6451         task_event->event_id.ppid = perf_event_pid(event, current);
6452
6453         task_event->event_id.tid = perf_event_tid(event, task);
6454         task_event->event_id.ptid = perf_event_tid(event, current);
6455
6456         task_event->event_id.time = perf_event_clock(event);
6457
6458         perf_output_put(&handle, task_event->event_id);
6459
6460         perf_event__output_id_sample(event, &handle, &sample);
6461
6462         perf_output_end(&handle);
6463 out:
6464         task_event->event_id.header.size = size;
6465 }
6466
6467 static void perf_event_task(struct task_struct *task,
6468                               struct perf_event_context *task_ctx,
6469                               int new)
6470 {
6471         struct perf_task_event task_event;
6472
6473         if (!atomic_read(&nr_comm_events) &&
6474             !atomic_read(&nr_mmap_events) &&
6475             !atomic_read(&nr_task_events))
6476                 return;
6477
6478         task_event = (struct perf_task_event){
6479                 .task     = task,
6480                 .task_ctx = task_ctx,
6481                 .event_id    = {
6482                         .header = {
6483                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6484                                 .misc = 0,
6485                                 .size = sizeof(task_event.event_id),
6486                         },
6487                         /* .pid  */
6488                         /* .ppid */
6489                         /* .tid  */
6490                         /* .ptid */
6491                         /* .time */
6492                 },
6493         };
6494
6495         perf_iterate_sb(perf_event_task_output,
6496                        &task_event,
6497                        task_ctx);
6498 }
6499
6500 void perf_event_fork(struct task_struct *task)
6501 {
6502         perf_event_task(task, NULL, 1);
6503         perf_event_namespaces(task);
6504 }
6505
6506 /*
6507  * comm tracking
6508  */
6509
6510 struct perf_comm_event {
6511         struct task_struct      *task;
6512         char                    *comm;
6513         int                     comm_size;
6514
6515         struct {
6516                 struct perf_event_header        header;
6517
6518                 u32                             pid;
6519                 u32                             tid;
6520         } event_id;
6521 };
6522
6523 static int perf_event_comm_match(struct perf_event *event)
6524 {
6525         return event->attr.comm;
6526 }
6527
6528 static void perf_event_comm_output(struct perf_event *event,
6529                                    void *data)
6530 {
6531         struct perf_comm_event *comm_event = data;
6532         struct perf_output_handle handle;
6533         struct perf_sample_data sample;
6534         int size = comm_event->event_id.header.size;
6535         int ret;
6536
6537         if (!perf_event_comm_match(event))
6538                 return;
6539
6540         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6541         ret = perf_output_begin(&handle, event,
6542                                 comm_event->event_id.header.size);
6543
6544         if (ret)
6545                 goto out;
6546
6547         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6548         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6549
6550         perf_output_put(&handle, comm_event->event_id);
6551         __output_copy(&handle, comm_event->comm,
6552                                    comm_event->comm_size);
6553
6554         perf_event__output_id_sample(event, &handle, &sample);
6555
6556         perf_output_end(&handle);
6557 out:
6558         comm_event->event_id.header.size = size;
6559 }
6560
6561 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6562 {
6563         char comm[TASK_COMM_LEN];
6564         unsigned int size;
6565
6566         memset(comm, 0, sizeof(comm));
6567         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6568         size = ALIGN(strlen(comm)+1, sizeof(u64));
6569
6570         comm_event->comm = comm;
6571         comm_event->comm_size = size;
6572
6573         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6574
6575         perf_iterate_sb(perf_event_comm_output,
6576                        comm_event,
6577                        NULL);
6578 }
6579
6580 void perf_event_comm(struct task_struct *task, bool exec)
6581 {
6582         struct perf_comm_event comm_event;
6583
6584         if (!atomic_read(&nr_comm_events))
6585                 return;
6586
6587         comm_event = (struct perf_comm_event){
6588                 .task   = task,
6589                 /* .comm      */
6590                 /* .comm_size */
6591                 .event_id  = {
6592                         .header = {
6593                                 .type = PERF_RECORD_COMM,
6594                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6595                                 /* .size */
6596                         },
6597                         /* .pid */
6598                         /* .tid */
6599                 },
6600         };
6601
6602         perf_event_comm_event(&comm_event);
6603 }
6604
6605 /*
6606  * namespaces tracking
6607  */
6608
6609 struct perf_namespaces_event {
6610         struct task_struct              *task;
6611
6612         struct {
6613                 struct perf_event_header        header;
6614
6615                 u32                             pid;
6616                 u32                             tid;
6617                 u64                             nr_namespaces;
6618                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
6619         } event_id;
6620 };
6621
6622 static int perf_event_namespaces_match(struct perf_event *event)
6623 {
6624         return event->attr.namespaces;
6625 }
6626
6627 static void perf_event_namespaces_output(struct perf_event *event,
6628                                          void *data)
6629 {
6630         struct perf_namespaces_event *namespaces_event = data;
6631         struct perf_output_handle handle;
6632         struct perf_sample_data sample;
6633         int ret;
6634
6635         if (!perf_event_namespaces_match(event))
6636                 return;
6637
6638         perf_event_header__init_id(&namespaces_event->event_id.header,
6639                                    &sample, event);
6640         ret = perf_output_begin(&handle, event,
6641                                 namespaces_event->event_id.header.size);
6642         if (ret)
6643                 return;
6644
6645         namespaces_event->event_id.pid = perf_event_pid(event,
6646                                                         namespaces_event->task);
6647         namespaces_event->event_id.tid = perf_event_tid(event,
6648                                                         namespaces_event->task);
6649
6650         perf_output_put(&handle, namespaces_event->event_id);
6651
6652         perf_event__output_id_sample(event, &handle, &sample);
6653
6654         perf_output_end(&handle);
6655 }
6656
6657 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6658                                    struct task_struct *task,
6659                                    const struct proc_ns_operations *ns_ops)
6660 {
6661         struct path ns_path;
6662         struct inode *ns_inode;
6663         void *error;
6664
6665         error = ns_get_path(&ns_path, task, ns_ops);
6666         if (!error) {
6667                 ns_inode = ns_path.dentry->d_inode;
6668                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6669                 ns_link_info->ino = ns_inode->i_ino;
6670         }
6671 }
6672
6673 void perf_event_namespaces(struct task_struct *task)
6674 {
6675         struct perf_namespaces_event namespaces_event;
6676         struct perf_ns_link_info *ns_link_info;
6677
6678         if (!atomic_read(&nr_namespaces_events))
6679                 return;
6680
6681         namespaces_event = (struct perf_namespaces_event){
6682                 .task   = task,
6683                 .event_id  = {
6684                         .header = {
6685                                 .type = PERF_RECORD_NAMESPACES,
6686                                 .misc = 0,
6687                                 .size = sizeof(namespaces_event.event_id),
6688                         },
6689                         /* .pid */
6690                         /* .tid */
6691                         .nr_namespaces = NR_NAMESPACES,
6692                         /* .link_info[NR_NAMESPACES] */
6693                 },
6694         };
6695
6696         ns_link_info = namespaces_event.event_id.link_info;
6697
6698         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6699                                task, &mntns_operations);
6700
6701 #ifdef CONFIG_USER_NS
6702         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6703                                task, &userns_operations);
6704 #endif
6705 #ifdef CONFIG_NET_NS
6706         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6707                                task, &netns_operations);
6708 #endif
6709 #ifdef CONFIG_UTS_NS
6710         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6711                                task, &utsns_operations);
6712 #endif
6713 #ifdef CONFIG_IPC_NS
6714         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6715                                task, &ipcns_operations);
6716 #endif
6717 #ifdef CONFIG_PID_NS
6718         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6719                                task, &pidns_operations);
6720 #endif
6721 #ifdef CONFIG_CGROUPS
6722         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6723                                task, &cgroupns_operations);
6724 #endif
6725
6726         perf_iterate_sb(perf_event_namespaces_output,
6727                         &namespaces_event,
6728                         NULL);
6729 }
6730
6731 /*
6732  * mmap tracking
6733  */
6734
6735 struct perf_mmap_event {
6736         struct vm_area_struct   *vma;
6737
6738         const char              *file_name;
6739         int                     file_size;
6740         int                     maj, min;
6741         u64                     ino;
6742         u64                     ino_generation;
6743         u32                     prot, flags;
6744
6745         struct {
6746                 struct perf_event_header        header;
6747
6748                 u32                             pid;
6749                 u32                             tid;
6750                 u64                             start;
6751                 u64                             len;
6752                 u64                             pgoff;
6753         } event_id;
6754 };
6755
6756 static int perf_event_mmap_match(struct perf_event *event,
6757                                  void *data)
6758 {
6759         struct perf_mmap_event *mmap_event = data;
6760         struct vm_area_struct *vma = mmap_event->vma;
6761         int executable = vma->vm_flags & VM_EXEC;
6762
6763         return (!executable && event->attr.mmap_data) ||
6764                (executable && (event->attr.mmap || event->attr.mmap2));
6765 }
6766
6767 static void perf_event_mmap_output(struct perf_event *event,
6768                                    void *data)
6769 {
6770         struct perf_mmap_event *mmap_event = data;
6771         struct perf_output_handle handle;
6772         struct perf_sample_data sample;
6773         int size = mmap_event->event_id.header.size;
6774         int ret;
6775
6776         if (!perf_event_mmap_match(event, data))
6777                 return;
6778
6779         if (event->attr.mmap2) {
6780                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6781                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6782                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6783                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6784                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6785                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6786                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6787         }
6788
6789         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6790         ret = perf_output_begin(&handle, event,
6791                                 mmap_event->event_id.header.size);
6792         if (ret)
6793                 goto out;
6794
6795         mmap_event->event_id.pid = perf_event_pid(event, current);
6796         mmap_event->event_id.tid = perf_event_tid(event, current);
6797
6798         perf_output_put(&handle, mmap_event->event_id);
6799
6800         if (event->attr.mmap2) {
6801                 perf_output_put(&handle, mmap_event->maj);
6802                 perf_output_put(&handle, mmap_event->min);
6803                 perf_output_put(&handle, mmap_event->ino);
6804                 perf_output_put(&handle, mmap_event->ino_generation);
6805                 perf_output_put(&handle, mmap_event->prot);
6806                 perf_output_put(&handle, mmap_event->flags);
6807         }
6808
6809         __output_copy(&handle, mmap_event->file_name,
6810                                    mmap_event->file_size);
6811
6812         perf_event__output_id_sample(event, &handle, &sample);
6813
6814         perf_output_end(&handle);
6815 out:
6816         mmap_event->event_id.header.size = size;
6817 }
6818
6819 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6820 {
6821         struct vm_area_struct *vma = mmap_event->vma;
6822         struct file *file = vma->vm_file;
6823         int maj = 0, min = 0;
6824         u64 ino = 0, gen = 0;
6825         u32 prot = 0, flags = 0;
6826         unsigned int size;
6827         char tmp[16];
6828         char *buf = NULL;
6829         char *name;
6830
6831         if (vma->vm_flags & VM_READ)
6832                 prot |= PROT_READ;
6833         if (vma->vm_flags & VM_WRITE)
6834                 prot |= PROT_WRITE;
6835         if (vma->vm_flags & VM_EXEC)
6836                 prot |= PROT_EXEC;
6837
6838         if (vma->vm_flags & VM_MAYSHARE)
6839                 flags = MAP_SHARED;
6840         else
6841                 flags = MAP_PRIVATE;
6842
6843         if (vma->vm_flags & VM_DENYWRITE)
6844                 flags |= MAP_DENYWRITE;
6845         if (vma->vm_flags & VM_MAYEXEC)
6846                 flags |= MAP_EXECUTABLE;
6847         if (vma->vm_flags & VM_LOCKED)
6848                 flags |= MAP_LOCKED;
6849         if (vma->vm_flags & VM_HUGETLB)
6850                 flags |= MAP_HUGETLB;
6851
6852         if (file) {
6853                 struct inode *inode;
6854                 dev_t dev;
6855
6856                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6857                 if (!buf) {
6858                         name = "//enomem";
6859                         goto cpy_name;
6860                 }
6861                 /*
6862                  * d_path() works from the end of the rb backwards, so we
6863                  * need to add enough zero bytes after the string to handle
6864                  * the 64bit alignment we do later.
6865                  */
6866                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6867                 if (IS_ERR(name)) {
6868                         name = "//toolong";
6869                         goto cpy_name;
6870                 }
6871                 inode = file_inode(vma->vm_file);
6872                 dev = inode->i_sb->s_dev;
6873                 ino = inode->i_ino;
6874                 gen = inode->i_generation;
6875                 maj = MAJOR(dev);
6876                 min = MINOR(dev);
6877
6878                 goto got_name;
6879         } else {
6880                 if (vma->vm_ops && vma->vm_ops->name) {
6881                         name = (char *) vma->vm_ops->name(vma);
6882                         if (name)
6883                                 goto cpy_name;
6884                 }
6885
6886                 name = (char *)arch_vma_name(vma);
6887                 if (name)
6888                         goto cpy_name;
6889
6890                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6891                                 vma->vm_end >= vma->vm_mm->brk) {
6892                         name = "[heap]";
6893                         goto cpy_name;
6894                 }
6895                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6896                                 vma->vm_end >= vma->vm_mm->start_stack) {
6897                         name = "[stack]";
6898                         goto cpy_name;
6899                 }
6900
6901                 name = "//anon";
6902                 goto cpy_name;
6903         }
6904
6905 cpy_name:
6906         strlcpy(tmp, name, sizeof(tmp));
6907         name = tmp;
6908 got_name:
6909         /*
6910          * Since our buffer works in 8 byte units we need to align our string
6911          * size to a multiple of 8. However, we must guarantee the tail end is
6912          * zero'd out to avoid leaking random bits to userspace.
6913          */
6914         size = strlen(name)+1;
6915         while (!IS_ALIGNED(size, sizeof(u64)))
6916                 name[size++] = '\0';
6917
6918         mmap_event->file_name = name;
6919         mmap_event->file_size = size;
6920         mmap_event->maj = maj;
6921         mmap_event->min = min;
6922         mmap_event->ino = ino;
6923         mmap_event->ino_generation = gen;
6924         mmap_event->prot = prot;
6925         mmap_event->flags = flags;
6926
6927         if (!(vma->vm_flags & VM_EXEC))
6928                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6929
6930         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6931
6932         perf_iterate_sb(perf_event_mmap_output,
6933                        mmap_event,
6934                        NULL);
6935
6936         kfree(buf);
6937 }
6938
6939 /*
6940  * Check whether inode and address range match filter criteria.
6941  */
6942 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6943                                      struct file *file, unsigned long offset,
6944                                      unsigned long size)
6945 {
6946         if (filter->inode != file_inode(file))
6947                 return false;
6948
6949         if (filter->offset > offset + size)
6950                 return false;
6951
6952         if (filter->offset + filter->size < offset)
6953                 return false;
6954
6955         return true;
6956 }
6957
6958 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6959 {
6960         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6961         struct vm_area_struct *vma = data;
6962         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6963         struct file *file = vma->vm_file;
6964         struct perf_addr_filter *filter;
6965         unsigned int restart = 0, count = 0;
6966
6967         if (!has_addr_filter(event))
6968                 return;
6969
6970         if (!file)
6971                 return;
6972
6973         raw_spin_lock_irqsave(&ifh->lock, flags);
6974         list_for_each_entry(filter, &ifh->list, entry) {
6975                 if (perf_addr_filter_match(filter, file, off,
6976                                              vma->vm_end - vma->vm_start)) {
6977                         event->addr_filters_offs[count] = vma->vm_start;
6978                         restart++;
6979                 }
6980
6981                 count++;
6982         }
6983
6984         if (restart)
6985                 event->addr_filters_gen++;
6986         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6987
6988         if (restart)
6989                 perf_event_stop(event, 1);
6990 }
6991
6992 /*
6993  * Adjust all task's events' filters to the new vma
6994  */
6995 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6996 {
6997         struct perf_event_context *ctx;
6998         int ctxn;
6999
7000         /*
7001          * Data tracing isn't supported yet and as such there is no need
7002          * to keep track of anything that isn't related to executable code:
7003          */
7004         if (!(vma->vm_flags & VM_EXEC))
7005                 return;
7006
7007         rcu_read_lock();
7008         for_each_task_context_nr(ctxn) {
7009                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7010                 if (!ctx)
7011                         continue;
7012
7013                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7014         }
7015         rcu_read_unlock();
7016 }
7017
7018 void perf_event_mmap(struct vm_area_struct *vma)
7019 {
7020         struct perf_mmap_event mmap_event;
7021
7022         if (!atomic_read(&nr_mmap_events))
7023                 return;
7024
7025         mmap_event = (struct perf_mmap_event){
7026                 .vma    = vma,
7027                 /* .file_name */
7028                 /* .file_size */
7029                 .event_id  = {
7030                         .header = {
7031                                 .type = PERF_RECORD_MMAP,
7032                                 .misc = PERF_RECORD_MISC_USER,
7033                                 /* .size */
7034                         },
7035                         /* .pid */
7036                         /* .tid */
7037                         .start  = vma->vm_start,
7038                         .len    = vma->vm_end - vma->vm_start,
7039                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7040                 },
7041                 /* .maj (attr_mmap2 only) */
7042                 /* .min (attr_mmap2 only) */
7043                 /* .ino (attr_mmap2 only) */
7044                 /* .ino_generation (attr_mmap2 only) */
7045                 /* .prot (attr_mmap2 only) */
7046                 /* .flags (attr_mmap2 only) */
7047         };
7048
7049         perf_addr_filters_adjust(vma);
7050         perf_event_mmap_event(&mmap_event);
7051 }
7052
7053 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7054                           unsigned long size, u64 flags)
7055 {
7056         struct perf_output_handle handle;
7057         struct perf_sample_data sample;
7058         struct perf_aux_event {
7059                 struct perf_event_header        header;
7060                 u64                             offset;
7061                 u64                             size;
7062                 u64                             flags;
7063         } rec = {
7064                 .header = {
7065                         .type = PERF_RECORD_AUX,
7066                         .misc = 0,
7067                         .size = sizeof(rec),
7068                 },
7069                 .offset         = head,
7070                 .size           = size,
7071                 .flags          = flags,
7072         };
7073         int ret;
7074
7075         perf_event_header__init_id(&rec.header, &sample, event);
7076         ret = perf_output_begin(&handle, event, rec.header.size);
7077
7078         if (ret)
7079                 return;
7080
7081         perf_output_put(&handle, rec);
7082         perf_event__output_id_sample(event, &handle, &sample);
7083
7084         perf_output_end(&handle);
7085 }
7086
7087 /*
7088  * Lost/dropped samples logging
7089  */
7090 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7091 {
7092         struct perf_output_handle handle;
7093         struct perf_sample_data sample;
7094         int ret;
7095
7096         struct {
7097                 struct perf_event_header        header;
7098                 u64                             lost;
7099         } lost_samples_event = {
7100                 .header = {
7101                         .type = PERF_RECORD_LOST_SAMPLES,
7102                         .misc = 0,
7103                         .size = sizeof(lost_samples_event),
7104                 },
7105                 .lost           = lost,
7106         };
7107
7108         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7109
7110         ret = perf_output_begin(&handle, event,
7111                                 lost_samples_event.header.size);
7112         if (ret)
7113                 return;
7114
7115         perf_output_put(&handle, lost_samples_event);
7116         perf_event__output_id_sample(event, &handle, &sample);
7117         perf_output_end(&handle);
7118 }
7119
7120 /*
7121  * context_switch tracking
7122  */
7123
7124 struct perf_switch_event {
7125         struct task_struct      *task;
7126         struct task_struct      *next_prev;
7127
7128         struct {
7129                 struct perf_event_header        header;
7130                 u32                             next_prev_pid;
7131                 u32                             next_prev_tid;
7132         } event_id;
7133 };
7134
7135 static int perf_event_switch_match(struct perf_event *event)
7136 {
7137         return event->attr.context_switch;
7138 }
7139
7140 static void perf_event_switch_output(struct perf_event *event, void *data)
7141 {
7142         struct perf_switch_event *se = data;
7143         struct perf_output_handle handle;
7144         struct perf_sample_data sample;
7145         int ret;
7146
7147         if (!perf_event_switch_match(event))
7148                 return;
7149
7150         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7151         if (event->ctx->task) {
7152                 se->event_id.header.type = PERF_RECORD_SWITCH;
7153                 se->event_id.header.size = sizeof(se->event_id.header);
7154         } else {
7155                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7156                 se->event_id.header.size = sizeof(se->event_id);
7157                 se->event_id.next_prev_pid =
7158                                         perf_event_pid(event, se->next_prev);
7159                 se->event_id.next_prev_tid =
7160                                         perf_event_tid(event, se->next_prev);
7161         }
7162
7163         perf_event_header__init_id(&se->event_id.header, &sample, event);
7164
7165         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7166         if (ret)
7167                 return;
7168
7169         if (event->ctx->task)
7170                 perf_output_put(&handle, se->event_id.header);
7171         else
7172                 perf_output_put(&handle, se->event_id);
7173
7174         perf_event__output_id_sample(event, &handle, &sample);
7175
7176         perf_output_end(&handle);
7177 }
7178
7179 static void perf_event_switch(struct task_struct *task,
7180                               struct task_struct *next_prev, bool sched_in)
7181 {
7182         struct perf_switch_event switch_event;
7183
7184         /* N.B. caller checks nr_switch_events != 0 */
7185
7186         switch_event = (struct perf_switch_event){
7187                 .task           = task,
7188                 .next_prev      = next_prev,
7189                 .event_id       = {
7190                         .header = {
7191                                 /* .type */
7192                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7193                                 /* .size */
7194                         },
7195                         /* .next_prev_pid */
7196                         /* .next_prev_tid */
7197                 },
7198         };
7199
7200         perf_iterate_sb(perf_event_switch_output,
7201                        &switch_event,
7202                        NULL);
7203 }
7204
7205 /*
7206  * IRQ throttle logging
7207  */
7208
7209 static void perf_log_throttle(struct perf_event *event, int enable)
7210 {
7211         struct perf_output_handle handle;
7212         struct perf_sample_data sample;
7213         int ret;
7214
7215         struct {
7216                 struct perf_event_header        header;
7217                 u64                             time;
7218                 u64                             id;
7219                 u64                             stream_id;
7220         } throttle_event = {
7221                 .header = {
7222                         .type = PERF_RECORD_THROTTLE,
7223                         .misc = 0,
7224                         .size = sizeof(throttle_event),
7225                 },
7226                 .time           = perf_event_clock(event),
7227                 .id             = primary_event_id(event),
7228                 .stream_id      = event->id,
7229         };
7230
7231         if (enable)
7232                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7233
7234         perf_event_header__init_id(&throttle_event.header, &sample, event);
7235
7236         ret = perf_output_begin(&handle, event,
7237                                 throttle_event.header.size);
7238         if (ret)
7239                 return;
7240
7241         perf_output_put(&handle, throttle_event);
7242         perf_event__output_id_sample(event, &handle, &sample);
7243         perf_output_end(&handle);
7244 }
7245
7246 static void perf_log_itrace_start(struct perf_event *event)
7247 {
7248         struct perf_output_handle handle;
7249         struct perf_sample_data sample;
7250         struct perf_aux_event {
7251                 struct perf_event_header        header;
7252                 u32                             pid;
7253                 u32                             tid;
7254         } rec;
7255         int ret;
7256
7257         if (event->parent)
7258                 event = event->parent;
7259
7260         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7261             event->hw.itrace_started)
7262                 return;
7263
7264         rec.header.type = PERF_RECORD_ITRACE_START;
7265         rec.header.misc = 0;
7266         rec.header.size = sizeof(rec);
7267         rec.pid = perf_event_pid(event, current);
7268         rec.tid = perf_event_tid(event, current);
7269
7270         perf_event_header__init_id(&rec.header, &sample, event);
7271         ret = perf_output_begin(&handle, event, rec.header.size);
7272
7273         if (ret)
7274                 return;
7275
7276         perf_output_put(&handle, rec);
7277         perf_event__output_id_sample(event, &handle, &sample);
7278
7279         perf_output_end(&handle);
7280 }
7281
7282 static int
7283 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7284 {
7285         struct hw_perf_event *hwc = &event->hw;
7286         int ret = 0;
7287         u64 seq;
7288
7289         seq = __this_cpu_read(perf_throttled_seq);
7290         if (seq != hwc->interrupts_seq) {
7291                 hwc->interrupts_seq = seq;
7292                 hwc->interrupts = 1;
7293         } else {
7294                 hwc->interrupts++;
7295                 if (unlikely(throttle
7296                              && hwc->interrupts >= max_samples_per_tick)) {
7297                         __this_cpu_inc(perf_throttled_count);
7298                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7299                         hwc->interrupts = MAX_INTERRUPTS;
7300                         perf_log_throttle(event, 0);
7301                         ret = 1;
7302                 }
7303         }
7304
7305         if (event->attr.freq) {
7306                 u64 now = perf_clock();
7307                 s64 delta = now - hwc->freq_time_stamp;
7308
7309                 hwc->freq_time_stamp = now;
7310
7311                 if (delta > 0 && delta < 2*TICK_NSEC)
7312                         perf_adjust_period(event, delta, hwc->last_period, true);
7313         }
7314
7315         return ret;
7316 }
7317
7318 int perf_event_account_interrupt(struct perf_event *event)
7319 {
7320         return __perf_event_account_interrupt(event, 1);
7321 }
7322
7323 static bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
7324 {
7325         /*
7326          * Due to interrupt latency (AKA "skid"), we may enter the
7327          * kernel before taking an overflow, even if the PMU is only
7328          * counting user events.
7329          * To avoid leaking information to userspace, we must always
7330          * reject kernel samples when exclude_kernel is set.
7331          */
7332         if (event->attr.exclude_kernel && !user_mode(regs))
7333                 return false;
7334
7335         return true;
7336 }
7337
7338 /*
7339  * Generic event overflow handling, sampling.
7340  */
7341
7342 static int __perf_event_overflow(struct perf_event *event,
7343                                    int throttle, struct perf_sample_data *data,
7344                                    struct pt_regs *regs)
7345 {
7346         int events = atomic_read(&event->event_limit);
7347         int ret = 0;
7348
7349         /*
7350          * Non-sampling counters might still use the PMI to fold short
7351          * hardware counters, ignore those.
7352          */
7353         if (unlikely(!is_sampling_event(event)))
7354                 return 0;
7355
7356         ret = __perf_event_account_interrupt(event, throttle);
7357
7358         /*
7359          * For security, drop the skid kernel samples if necessary.
7360          */
7361         if (!sample_is_allowed(event, regs))
7362                 return ret;
7363
7364         /*
7365          * XXX event_limit might not quite work as expected on inherited
7366          * events
7367          */
7368
7369         event->pending_kill = POLL_IN;
7370         if (events && atomic_dec_and_test(&event->event_limit)) {
7371                 ret = 1;
7372                 event->pending_kill = POLL_HUP;
7373
7374                 perf_event_disable_inatomic(event);
7375         }
7376
7377         READ_ONCE(event->overflow_handler)(event, data, regs);
7378
7379         if (*perf_event_fasync(event) && event->pending_kill) {
7380                 event->pending_wakeup = 1;
7381                 irq_work_queue(&event->pending);
7382         }
7383
7384         return ret;
7385 }
7386
7387 int perf_event_overflow(struct perf_event *event,
7388                           struct perf_sample_data *data,
7389                           struct pt_regs *regs)
7390 {
7391         return __perf_event_overflow(event, 1, data, regs);
7392 }
7393
7394 /*
7395  * Generic software event infrastructure
7396  */
7397
7398 struct swevent_htable {
7399         struct swevent_hlist            *swevent_hlist;
7400         struct mutex                    hlist_mutex;
7401         int                             hlist_refcount;
7402
7403         /* Recursion avoidance in each contexts */
7404         int                             recursion[PERF_NR_CONTEXTS];
7405 };
7406
7407 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7408
7409 /*
7410  * We directly increment event->count and keep a second value in
7411  * event->hw.period_left to count intervals. This period event
7412  * is kept in the range [-sample_period, 0] so that we can use the
7413  * sign as trigger.
7414  */
7415
7416 u64 perf_swevent_set_period(struct perf_event *event)
7417 {
7418         struct hw_perf_event *hwc = &event->hw;
7419         u64 period = hwc->last_period;
7420         u64 nr, offset;
7421         s64 old, val;
7422
7423         hwc->last_period = hwc->sample_period;
7424
7425 again:
7426         old = val = local64_read(&hwc->period_left);
7427         if (val < 0)
7428                 return 0;
7429
7430         nr = div64_u64(period + val, period);
7431         offset = nr * period;
7432         val -= offset;
7433         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7434                 goto again;
7435
7436         return nr;
7437 }
7438
7439 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7440                                     struct perf_sample_data *data,
7441                                     struct pt_regs *regs)
7442 {
7443         struct hw_perf_event *hwc = &event->hw;
7444         int throttle = 0;
7445
7446         if (!overflow)
7447                 overflow = perf_swevent_set_period(event);
7448
7449         if (hwc->interrupts == MAX_INTERRUPTS)
7450                 return;
7451
7452         for (; overflow; overflow--) {
7453                 if (__perf_event_overflow(event, throttle,
7454                                             data, regs)) {
7455                         /*
7456                          * We inhibit the overflow from happening when
7457                          * hwc->interrupts == MAX_INTERRUPTS.
7458                          */
7459                         break;
7460                 }
7461                 throttle = 1;
7462         }
7463 }
7464
7465 static void perf_swevent_event(struct perf_event *event, u64 nr,
7466                                struct perf_sample_data *data,
7467                                struct pt_regs *regs)
7468 {
7469         struct hw_perf_event *hwc = &event->hw;
7470
7471         local64_add(nr, &event->count);
7472
7473         if (!regs)
7474                 return;
7475
7476         if (!is_sampling_event(event))
7477                 return;
7478
7479         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7480                 data->period = nr;
7481                 return perf_swevent_overflow(event, 1, data, regs);
7482         } else
7483                 data->period = event->hw.last_period;
7484
7485         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7486                 return perf_swevent_overflow(event, 1, data, regs);
7487
7488         if (local64_add_negative(nr, &hwc->period_left))
7489                 return;
7490
7491         perf_swevent_overflow(event, 0, data, regs);
7492 }
7493
7494 static int perf_exclude_event(struct perf_event *event,
7495                               struct pt_regs *regs)
7496 {
7497         if (event->hw.state & PERF_HES_STOPPED)
7498                 return 1;
7499
7500         if (regs) {
7501                 if (event->attr.exclude_user && user_mode(regs))
7502                         return 1;
7503
7504                 if (event->attr.exclude_kernel && !user_mode(regs))
7505                         return 1;
7506         }
7507
7508         return 0;
7509 }
7510
7511 static int perf_swevent_match(struct perf_event *event,
7512                                 enum perf_type_id type,
7513                                 u32 event_id,
7514                                 struct perf_sample_data *data,
7515                                 struct pt_regs *regs)
7516 {
7517         if (event->attr.type != type)
7518                 return 0;
7519
7520         if (event->attr.config != event_id)
7521                 return 0;
7522
7523         if (perf_exclude_event(event, regs))
7524                 return 0;
7525
7526         return 1;
7527 }
7528
7529 static inline u64 swevent_hash(u64 type, u32 event_id)
7530 {
7531         u64 val = event_id | (type << 32);
7532
7533         return hash_64(val, SWEVENT_HLIST_BITS);
7534 }
7535
7536 static inline struct hlist_head *
7537 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7538 {
7539         u64 hash = swevent_hash(type, event_id);
7540
7541         return &hlist->heads[hash];
7542 }
7543
7544 /* For the read side: events when they trigger */
7545 static inline struct hlist_head *
7546 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7547 {
7548         struct swevent_hlist *hlist;
7549
7550         hlist = rcu_dereference(swhash->swevent_hlist);
7551         if (!hlist)
7552                 return NULL;
7553
7554         return __find_swevent_head(hlist, type, event_id);
7555 }
7556
7557 /* For the event head insertion and removal in the hlist */
7558 static inline struct hlist_head *
7559 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7560 {
7561         struct swevent_hlist *hlist;
7562         u32 event_id = event->attr.config;
7563         u64 type = event->attr.type;
7564
7565         /*
7566          * Event scheduling is always serialized against hlist allocation
7567          * and release. Which makes the protected version suitable here.
7568          * The context lock guarantees that.
7569          */
7570         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7571                                           lockdep_is_held(&event->ctx->lock));
7572         if (!hlist)
7573                 return NULL;
7574
7575         return __find_swevent_head(hlist, type, event_id);
7576 }
7577
7578 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7579                                     u64 nr,
7580                                     struct perf_sample_data *data,
7581                                     struct pt_regs *regs)
7582 {
7583         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7584         struct perf_event *event;
7585         struct hlist_head *head;
7586
7587         rcu_read_lock();
7588         head = find_swevent_head_rcu(swhash, type, event_id);
7589         if (!head)
7590                 goto end;
7591
7592         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7593                 if (perf_swevent_match(event, type, event_id, data, regs))
7594                         perf_swevent_event(event, nr, data, regs);
7595         }
7596 end:
7597         rcu_read_unlock();
7598 }
7599
7600 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7601
7602 int perf_swevent_get_recursion_context(void)
7603 {
7604         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7605
7606         return get_recursion_context(swhash->recursion);
7607 }
7608 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7609
7610 void perf_swevent_put_recursion_context(int rctx)
7611 {
7612         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7613
7614         put_recursion_context(swhash->recursion, rctx);
7615 }
7616
7617 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7618 {
7619         struct perf_sample_data data;
7620
7621         if (WARN_ON_ONCE(!regs))
7622                 return;
7623
7624         perf_sample_data_init(&data, addr, 0);
7625         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7626 }
7627
7628 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7629 {
7630         int rctx;
7631
7632         preempt_disable_notrace();
7633         rctx = perf_swevent_get_recursion_context();
7634         if (unlikely(rctx < 0))
7635                 goto fail;
7636
7637         ___perf_sw_event(event_id, nr, regs, addr);
7638
7639         perf_swevent_put_recursion_context(rctx);
7640 fail:
7641         preempt_enable_notrace();
7642 }
7643
7644 static void perf_swevent_read(struct perf_event *event)
7645 {
7646 }
7647
7648 static int perf_swevent_add(struct perf_event *event, int flags)
7649 {
7650         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7651         struct hw_perf_event *hwc = &event->hw;
7652         struct hlist_head *head;
7653
7654         if (is_sampling_event(event)) {
7655                 hwc->last_period = hwc->sample_period;
7656                 perf_swevent_set_period(event);
7657         }
7658
7659         hwc->state = !(flags & PERF_EF_START);
7660
7661         head = find_swevent_head(swhash, event);
7662         if (WARN_ON_ONCE(!head))
7663                 return -EINVAL;
7664
7665         hlist_add_head_rcu(&event->hlist_entry, head);
7666         perf_event_update_userpage(event);
7667
7668         return 0;
7669 }
7670
7671 static void perf_swevent_del(struct perf_event *event, int flags)
7672 {
7673         hlist_del_rcu(&event->hlist_entry);
7674 }
7675
7676 static void perf_swevent_start(struct perf_event *event, int flags)
7677 {
7678         event->hw.state = 0;
7679 }
7680
7681 static void perf_swevent_stop(struct perf_event *event, int flags)
7682 {
7683         event->hw.state = PERF_HES_STOPPED;
7684 }
7685
7686 /* Deref the hlist from the update side */
7687 static inline struct swevent_hlist *
7688 swevent_hlist_deref(struct swevent_htable *swhash)
7689 {
7690         return rcu_dereference_protected(swhash->swevent_hlist,
7691                                          lockdep_is_held(&swhash->hlist_mutex));
7692 }
7693
7694 static void swevent_hlist_release(struct swevent_htable *swhash)
7695 {
7696         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7697
7698         if (!hlist)
7699                 return;
7700
7701         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7702         kfree_rcu(hlist, rcu_head);
7703 }
7704
7705 static void swevent_hlist_put_cpu(int cpu)
7706 {
7707         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7708
7709         mutex_lock(&swhash->hlist_mutex);
7710
7711         if (!--swhash->hlist_refcount)
7712                 swevent_hlist_release(swhash);
7713
7714         mutex_unlock(&swhash->hlist_mutex);
7715 }
7716
7717 static void swevent_hlist_put(void)
7718 {
7719         int cpu;
7720
7721         for_each_possible_cpu(cpu)
7722                 swevent_hlist_put_cpu(cpu);
7723 }
7724
7725 static int swevent_hlist_get_cpu(int cpu)
7726 {
7727         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7728         int err = 0;
7729
7730         mutex_lock(&swhash->hlist_mutex);
7731         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7732                 struct swevent_hlist *hlist;
7733
7734                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7735                 if (!hlist) {
7736                         err = -ENOMEM;
7737                         goto exit;
7738                 }
7739                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7740         }
7741         swhash->hlist_refcount++;
7742 exit:
7743         mutex_unlock(&swhash->hlist_mutex);
7744
7745         return err;
7746 }
7747
7748 static int swevent_hlist_get(void)
7749 {
7750         int err, cpu, failed_cpu;
7751
7752         get_online_cpus();
7753         for_each_possible_cpu(cpu) {
7754                 err = swevent_hlist_get_cpu(cpu);
7755                 if (err) {
7756                         failed_cpu = cpu;
7757                         goto fail;
7758                 }
7759         }
7760         put_online_cpus();
7761
7762         return 0;
7763 fail:
7764         for_each_possible_cpu(cpu) {
7765                 if (cpu == failed_cpu)
7766                         break;
7767                 swevent_hlist_put_cpu(cpu);
7768         }
7769
7770         put_online_cpus();
7771         return err;
7772 }
7773
7774 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7775
7776 static void sw_perf_event_destroy(struct perf_event *event)
7777 {
7778         u64 event_id = event->attr.config;
7779
7780         WARN_ON(event->parent);
7781
7782         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7783         swevent_hlist_put();
7784 }
7785
7786 static int perf_swevent_init(struct perf_event *event)
7787 {
7788         u64 event_id = event->attr.config;
7789
7790         if (event->attr.type != PERF_TYPE_SOFTWARE)
7791                 return -ENOENT;
7792
7793         /*
7794          * no branch sampling for software events
7795          */
7796         if (has_branch_stack(event))
7797                 return -EOPNOTSUPP;
7798
7799         switch (event_id) {
7800         case PERF_COUNT_SW_CPU_CLOCK:
7801         case PERF_COUNT_SW_TASK_CLOCK:
7802                 return -ENOENT;
7803
7804         default:
7805                 break;
7806         }
7807
7808         if (event_id >= PERF_COUNT_SW_MAX)
7809                 return -ENOENT;
7810
7811         if (!event->parent) {
7812                 int err;
7813
7814                 err = swevent_hlist_get();
7815                 if (err)
7816                         return err;
7817
7818                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7819                 event->destroy = sw_perf_event_destroy;
7820         }
7821
7822         return 0;
7823 }
7824
7825 static struct pmu perf_swevent = {
7826         .task_ctx_nr    = perf_sw_context,
7827
7828         .capabilities   = PERF_PMU_CAP_NO_NMI,
7829
7830         .event_init     = perf_swevent_init,
7831         .add            = perf_swevent_add,
7832         .del            = perf_swevent_del,
7833         .start          = perf_swevent_start,
7834         .stop           = perf_swevent_stop,
7835         .read           = perf_swevent_read,
7836 };
7837
7838 #ifdef CONFIG_EVENT_TRACING
7839
7840 static int perf_tp_filter_match(struct perf_event *event,
7841                                 struct perf_sample_data *data)
7842 {
7843         void *record = data->raw->frag.data;
7844
7845         /* only top level events have filters set */
7846         if (event->parent)
7847                 event = event->parent;
7848
7849         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7850                 return 1;
7851         return 0;
7852 }
7853
7854 static int perf_tp_event_match(struct perf_event *event,
7855                                 struct perf_sample_data *data,
7856                                 struct pt_regs *regs)
7857 {
7858         if (event->hw.state & PERF_HES_STOPPED)
7859                 return 0;
7860         /*
7861          * All tracepoints are from kernel-space.
7862          */
7863         if (event->attr.exclude_kernel)
7864                 return 0;
7865
7866         if (!perf_tp_filter_match(event, data))
7867                 return 0;
7868
7869         return 1;
7870 }
7871
7872 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7873                                struct trace_event_call *call, u64 count,
7874                                struct pt_regs *regs, struct hlist_head *head,
7875                                struct task_struct *task)
7876 {
7877         struct bpf_prog *prog = call->prog;
7878
7879         if (prog) {
7880                 *(struct pt_regs **)raw_data = regs;
7881                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7882                         perf_swevent_put_recursion_context(rctx);
7883                         return;
7884                 }
7885         }
7886         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7887                       rctx, task);
7888 }
7889 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7890
7891 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7892                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7893                    struct task_struct *task)
7894 {
7895         struct perf_sample_data data;
7896         struct perf_event *event;
7897
7898         struct perf_raw_record raw = {
7899                 .frag = {
7900                         .size = entry_size,
7901                         .data = record,
7902                 },
7903         };
7904
7905         perf_sample_data_init(&data, 0, 0);
7906         data.raw = &raw;
7907
7908         perf_trace_buf_update(record, event_type);
7909
7910         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7911                 if (perf_tp_event_match(event, &data, regs))
7912                         perf_swevent_event(event, count, &data, regs);
7913         }
7914
7915         /*
7916          * If we got specified a target task, also iterate its context and
7917          * deliver this event there too.
7918          */
7919         if (task && task != current) {
7920                 struct perf_event_context *ctx;
7921                 struct trace_entry *entry = record;
7922
7923                 rcu_read_lock();
7924                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7925                 if (!ctx)
7926                         goto unlock;
7927
7928                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7929                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7930                                 continue;
7931                         if (event->attr.config != entry->type)
7932                                 continue;
7933                         if (perf_tp_event_match(event, &data, regs))
7934                                 perf_swevent_event(event, count, &data, regs);
7935                 }
7936 unlock:
7937                 rcu_read_unlock();
7938         }
7939
7940         perf_swevent_put_recursion_context(rctx);
7941 }
7942 EXPORT_SYMBOL_GPL(perf_tp_event);
7943
7944 static void tp_perf_event_destroy(struct perf_event *event)
7945 {
7946         perf_trace_destroy(event);
7947 }
7948
7949 static int perf_tp_event_init(struct perf_event *event)
7950 {
7951         int err;
7952
7953         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7954                 return -ENOENT;
7955
7956         /*
7957          * no branch sampling for tracepoint events
7958          */
7959         if (has_branch_stack(event))
7960                 return -EOPNOTSUPP;
7961
7962         err = perf_trace_init(event);
7963         if (err)
7964                 return err;
7965
7966         event->destroy = tp_perf_event_destroy;
7967
7968         return 0;
7969 }
7970
7971 static struct pmu perf_tracepoint = {
7972         .task_ctx_nr    = perf_sw_context,
7973
7974         .event_init     = perf_tp_event_init,
7975         .add            = perf_trace_add,
7976         .del            = perf_trace_del,
7977         .start          = perf_swevent_start,
7978         .stop           = perf_swevent_stop,
7979         .read           = perf_swevent_read,
7980 };
7981
7982 static inline void perf_tp_register(void)
7983 {
7984         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7985 }
7986
7987 static void perf_event_free_filter(struct perf_event *event)
7988 {
7989         ftrace_profile_free_filter(event);
7990 }
7991
7992 #ifdef CONFIG_BPF_SYSCALL
7993 static void bpf_overflow_handler(struct perf_event *event,
7994                                  struct perf_sample_data *data,
7995                                  struct pt_regs *regs)
7996 {
7997         struct bpf_perf_event_data_kern ctx = {
7998                 .data = data,
7999                 .regs = regs,
8000         };
8001         int ret = 0;
8002
8003         preempt_disable();
8004         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8005                 goto out;
8006         rcu_read_lock();
8007         ret = BPF_PROG_RUN(event->prog, &ctx);
8008         rcu_read_unlock();
8009 out:
8010         __this_cpu_dec(bpf_prog_active);
8011         preempt_enable();
8012         if (!ret)
8013                 return;
8014
8015         event->orig_overflow_handler(event, data, regs);
8016 }
8017
8018 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8019 {
8020         struct bpf_prog *prog;
8021
8022         if (event->overflow_handler_context)
8023                 /* hw breakpoint or kernel counter */
8024                 return -EINVAL;
8025
8026         if (event->prog)
8027                 return -EEXIST;
8028
8029         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8030         if (IS_ERR(prog))
8031                 return PTR_ERR(prog);
8032
8033         event->prog = prog;
8034         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8035         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8036         return 0;
8037 }
8038
8039 static void perf_event_free_bpf_handler(struct perf_event *event)
8040 {
8041         struct bpf_prog *prog = event->prog;
8042
8043         if (!prog)
8044                 return;
8045
8046         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8047         event->prog = NULL;
8048         bpf_prog_put(prog);
8049 }
8050 #else
8051 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8052 {
8053         return -EOPNOTSUPP;
8054 }
8055 static void perf_event_free_bpf_handler(struct perf_event *event)
8056 {
8057 }
8058 #endif
8059
8060 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8061 {
8062         bool is_kprobe, is_tracepoint;
8063         struct bpf_prog *prog;
8064
8065         if (event->attr.type == PERF_TYPE_HARDWARE ||
8066             event->attr.type == PERF_TYPE_SOFTWARE)
8067                 return perf_event_set_bpf_handler(event, prog_fd);
8068
8069         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8070                 return -EINVAL;
8071
8072         if (event->tp_event->prog)
8073                 return -EEXIST;
8074
8075         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8076         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8077         if (!is_kprobe && !is_tracepoint)
8078                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8079                 return -EINVAL;
8080
8081         prog = bpf_prog_get(prog_fd);
8082         if (IS_ERR(prog))
8083                 return PTR_ERR(prog);
8084
8085         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8086             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8087                 /* valid fd, but invalid bpf program type */
8088                 bpf_prog_put(prog);
8089                 return -EINVAL;
8090         }
8091
8092         if (is_tracepoint) {
8093                 int off = trace_event_get_offsets(event->tp_event);
8094
8095                 if (prog->aux->max_ctx_offset > off) {
8096                         bpf_prog_put(prog);
8097                         return -EACCES;
8098                 }
8099         }
8100         event->tp_event->prog = prog;
8101
8102         return 0;
8103 }
8104
8105 static void perf_event_free_bpf_prog(struct perf_event *event)
8106 {
8107         struct bpf_prog *prog;
8108
8109         perf_event_free_bpf_handler(event);
8110
8111         if (!event->tp_event)
8112                 return;
8113
8114         prog = event->tp_event->prog;
8115         if (prog) {
8116                 event->tp_event->prog = NULL;
8117                 bpf_prog_put(prog);
8118         }
8119 }
8120
8121 #else
8122
8123 static inline void perf_tp_register(void)
8124 {
8125 }
8126
8127 static void perf_event_free_filter(struct perf_event *event)
8128 {
8129 }
8130
8131 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8132 {
8133         return -ENOENT;
8134 }
8135
8136 static void perf_event_free_bpf_prog(struct perf_event *event)
8137 {
8138 }
8139 #endif /* CONFIG_EVENT_TRACING */
8140
8141 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8142 void perf_bp_event(struct perf_event *bp, void *data)
8143 {
8144         struct perf_sample_data sample;
8145         struct pt_regs *regs = data;
8146
8147         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8148
8149         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8150                 perf_swevent_event(bp, 1, &sample, regs);
8151 }
8152 #endif
8153
8154 /*
8155  * Allocate a new address filter
8156  */
8157 static struct perf_addr_filter *
8158 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8159 {
8160         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8161         struct perf_addr_filter *filter;
8162
8163         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8164         if (!filter)
8165                 return NULL;
8166
8167         INIT_LIST_HEAD(&filter->entry);
8168         list_add_tail(&filter->entry, filters);
8169
8170         return filter;
8171 }
8172
8173 static void free_filters_list(struct list_head *filters)
8174 {
8175         struct perf_addr_filter *filter, *iter;
8176
8177         list_for_each_entry_safe(filter, iter, filters, entry) {
8178                 if (filter->inode)
8179                         iput(filter->inode);
8180                 list_del(&filter->entry);
8181                 kfree(filter);
8182         }
8183 }
8184
8185 /*
8186  * Free existing address filters and optionally install new ones
8187  */
8188 static void perf_addr_filters_splice(struct perf_event *event,
8189                                      struct list_head *head)
8190 {
8191         unsigned long flags;
8192         LIST_HEAD(list);
8193
8194         if (!has_addr_filter(event))
8195                 return;
8196
8197         /* don't bother with children, they don't have their own filters */
8198         if (event->parent)
8199                 return;
8200
8201         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8202
8203         list_splice_init(&event->addr_filters.list, &list);
8204         if (head)
8205                 list_splice(head, &event->addr_filters.list);
8206
8207         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8208
8209         free_filters_list(&list);
8210 }
8211
8212 /*
8213  * Scan through mm's vmas and see if one of them matches the
8214  * @filter; if so, adjust filter's address range.
8215  * Called with mm::mmap_sem down for reading.
8216  */
8217 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8218                                             struct mm_struct *mm)
8219 {
8220         struct vm_area_struct *vma;
8221
8222         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8223                 struct file *file = vma->vm_file;
8224                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8225                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8226
8227                 if (!file)
8228                         continue;
8229
8230                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8231                         continue;
8232
8233                 return vma->vm_start;
8234         }
8235
8236         return 0;
8237 }
8238
8239 /*
8240  * Update event's address range filters based on the
8241  * task's existing mappings, if any.
8242  */
8243 static void perf_event_addr_filters_apply(struct perf_event *event)
8244 {
8245         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8246         struct task_struct *task = READ_ONCE(event->ctx->task);
8247         struct perf_addr_filter *filter;
8248         struct mm_struct *mm = NULL;
8249         unsigned int count = 0;
8250         unsigned long flags;
8251
8252         /*
8253          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8254          * will stop on the parent's child_mutex that our caller is also holding
8255          */
8256         if (task == TASK_TOMBSTONE)
8257                 return;
8258
8259         if (!ifh->nr_file_filters)
8260                 return;
8261
8262         mm = get_task_mm(event->ctx->task);
8263         if (!mm)
8264                 goto restart;
8265
8266         down_read(&mm->mmap_sem);
8267
8268         raw_spin_lock_irqsave(&ifh->lock, flags);
8269         list_for_each_entry(filter, &ifh->list, entry) {
8270                 event->addr_filters_offs[count] = 0;
8271
8272                 /*
8273                  * Adjust base offset if the filter is associated to a binary
8274                  * that needs to be mapped:
8275                  */
8276                 if (filter->inode)
8277                         event->addr_filters_offs[count] =
8278                                 perf_addr_filter_apply(filter, mm);
8279
8280                 count++;
8281         }
8282
8283         event->addr_filters_gen++;
8284         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8285
8286         up_read(&mm->mmap_sem);
8287
8288         mmput(mm);
8289
8290 restart:
8291         perf_event_stop(event, 1);
8292 }
8293
8294 /*
8295  * Address range filtering: limiting the data to certain
8296  * instruction address ranges. Filters are ioctl()ed to us from
8297  * userspace as ascii strings.
8298  *
8299  * Filter string format:
8300  *
8301  * ACTION RANGE_SPEC
8302  * where ACTION is one of the
8303  *  * "filter": limit the trace to this region
8304  *  * "start": start tracing from this address
8305  *  * "stop": stop tracing at this address/region;
8306  * RANGE_SPEC is
8307  *  * for kernel addresses: <start address>[/<size>]
8308  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8309  *
8310  * if <size> is not specified, the range is treated as a single address.
8311  */
8312 enum {
8313         IF_ACT_NONE = -1,
8314         IF_ACT_FILTER,
8315         IF_ACT_START,
8316         IF_ACT_STOP,
8317         IF_SRC_FILE,
8318         IF_SRC_KERNEL,
8319         IF_SRC_FILEADDR,
8320         IF_SRC_KERNELADDR,
8321 };
8322
8323 enum {
8324         IF_STATE_ACTION = 0,
8325         IF_STATE_SOURCE,
8326         IF_STATE_END,
8327 };
8328
8329 static const match_table_t if_tokens = {
8330         { IF_ACT_FILTER,        "filter" },
8331         { IF_ACT_START,         "start" },
8332         { IF_ACT_STOP,          "stop" },
8333         { IF_SRC_FILE,          "%u/%u@%s" },
8334         { IF_SRC_KERNEL,        "%u/%u" },
8335         { IF_SRC_FILEADDR,      "%u@%s" },
8336         { IF_SRC_KERNELADDR,    "%u" },
8337         { IF_ACT_NONE,          NULL },
8338 };
8339
8340 /*
8341  * Address filter string parser
8342  */
8343 static int
8344 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8345                              struct list_head *filters)
8346 {
8347         struct perf_addr_filter *filter = NULL;
8348         char *start, *orig, *filename = NULL;
8349         struct path path;
8350         substring_t args[MAX_OPT_ARGS];
8351         int state = IF_STATE_ACTION, token;
8352         unsigned int kernel = 0;
8353         int ret = -EINVAL;
8354
8355         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8356         if (!fstr)
8357                 return -ENOMEM;
8358
8359         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8360                 ret = -EINVAL;
8361
8362                 if (!*start)
8363                         continue;
8364
8365                 /* filter definition begins */
8366                 if (state == IF_STATE_ACTION) {
8367                         filter = perf_addr_filter_new(event, filters);
8368                         if (!filter)
8369                                 goto fail;
8370                 }
8371
8372                 token = match_token(start, if_tokens, args);
8373                 switch (token) {
8374                 case IF_ACT_FILTER:
8375                 case IF_ACT_START:
8376                         filter->filter = 1;
8377
8378                 case IF_ACT_STOP:
8379                         if (state != IF_STATE_ACTION)
8380                                 goto fail;
8381
8382                         state = IF_STATE_SOURCE;
8383                         break;
8384
8385                 case IF_SRC_KERNELADDR:
8386                 case IF_SRC_KERNEL:
8387                         kernel = 1;
8388
8389                 case IF_SRC_FILEADDR:
8390                 case IF_SRC_FILE:
8391                         if (state != IF_STATE_SOURCE)
8392                                 goto fail;
8393
8394                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8395                                 filter->range = 1;
8396
8397                         *args[0].to = 0;
8398                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8399                         if (ret)
8400                                 goto fail;
8401
8402                         if (filter->range) {
8403                                 *args[1].to = 0;
8404                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8405                                 if (ret)
8406                                         goto fail;
8407                         }
8408
8409                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8410                                 int fpos = filter->range ? 2 : 1;
8411
8412                                 filename = match_strdup(&args[fpos]);
8413                                 if (!filename) {
8414                                         ret = -ENOMEM;
8415                                         goto fail;
8416                                 }
8417                         }
8418
8419                         state = IF_STATE_END;
8420                         break;
8421
8422                 default:
8423                         goto fail;
8424                 }
8425
8426                 /*
8427                  * Filter definition is fully parsed, validate and install it.
8428                  * Make sure that it doesn't contradict itself or the event's
8429                  * attribute.
8430                  */
8431                 if (state == IF_STATE_END) {
8432                         ret = -EINVAL;
8433                         if (kernel && event->attr.exclude_kernel)
8434                                 goto fail;
8435
8436                         if (!kernel) {
8437                                 if (!filename)
8438                                         goto fail;
8439
8440                                 /*
8441                                  * For now, we only support file-based filters
8442                                  * in per-task events; doing so for CPU-wide
8443                                  * events requires additional context switching
8444                                  * trickery, since same object code will be
8445                                  * mapped at different virtual addresses in
8446                                  * different processes.
8447                                  */
8448                                 ret = -EOPNOTSUPP;
8449                                 if (!event->ctx->task)
8450                                         goto fail_free_name;
8451
8452                                 /* look up the path and grab its inode */
8453                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8454                                 if (ret)
8455                                         goto fail_free_name;
8456
8457                                 filter->inode = igrab(d_inode(path.dentry));
8458                                 path_put(&path);
8459                                 kfree(filename);
8460                                 filename = NULL;
8461
8462                                 ret = -EINVAL;
8463                                 if (!filter->inode ||
8464                                     !S_ISREG(filter->inode->i_mode))
8465                                         /* free_filters_list() will iput() */
8466                                         goto fail;
8467
8468                                 event->addr_filters.nr_file_filters++;
8469                         }
8470
8471                         /* ready to consume more filters */
8472                         state = IF_STATE_ACTION;
8473                         filter = NULL;
8474                 }
8475         }
8476
8477         if (state != IF_STATE_ACTION)
8478                 goto fail;
8479
8480         kfree(orig);
8481
8482         return 0;
8483
8484 fail_free_name:
8485         kfree(filename);
8486 fail:
8487         free_filters_list(filters);
8488         kfree(orig);
8489
8490         return ret;
8491 }
8492
8493 static int
8494 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8495 {
8496         LIST_HEAD(filters);
8497         int ret;
8498
8499         /*
8500          * Since this is called in perf_ioctl() path, we're already holding
8501          * ctx::mutex.
8502          */
8503         lockdep_assert_held(&event->ctx->mutex);
8504
8505         if (WARN_ON_ONCE(event->parent))
8506                 return -EINVAL;
8507
8508         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8509         if (ret)
8510                 goto fail_clear_files;
8511
8512         ret = event->pmu->addr_filters_validate(&filters);
8513         if (ret)
8514                 goto fail_free_filters;
8515
8516         /* remove existing filters, if any */
8517         perf_addr_filters_splice(event, &filters);
8518
8519         /* install new filters */
8520         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8521
8522         return ret;
8523
8524 fail_free_filters:
8525         free_filters_list(&filters);
8526
8527 fail_clear_files:
8528         event->addr_filters.nr_file_filters = 0;
8529
8530         return ret;
8531 }
8532
8533 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8534 {
8535         char *filter_str;
8536         int ret = -EINVAL;
8537
8538         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8539             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8540             !has_addr_filter(event))
8541                 return -EINVAL;
8542
8543         filter_str = strndup_user(arg, PAGE_SIZE);
8544         if (IS_ERR(filter_str))
8545                 return PTR_ERR(filter_str);
8546
8547         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8548             event->attr.type == PERF_TYPE_TRACEPOINT)
8549                 ret = ftrace_profile_set_filter(event, event->attr.config,
8550                                                 filter_str);
8551         else if (has_addr_filter(event))
8552                 ret = perf_event_set_addr_filter(event, filter_str);
8553
8554         kfree(filter_str);
8555         return ret;
8556 }
8557
8558 /*
8559  * hrtimer based swevent callback
8560  */
8561
8562 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8563 {
8564         enum hrtimer_restart ret = HRTIMER_RESTART;
8565         struct perf_sample_data data;
8566         struct pt_regs *regs;
8567         struct perf_event *event;
8568         u64 period;
8569
8570         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8571
8572         if (event->state != PERF_EVENT_STATE_ACTIVE)
8573                 return HRTIMER_NORESTART;
8574
8575         event->pmu->read(event);
8576
8577         perf_sample_data_init(&data, 0, event->hw.last_period);
8578         regs = get_irq_regs();
8579
8580         if (regs && !perf_exclude_event(event, regs)) {
8581                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8582                         if (__perf_event_overflow(event, 1, &data, regs))
8583                                 ret = HRTIMER_NORESTART;
8584         }
8585
8586         period = max_t(u64, 10000, event->hw.sample_period);
8587         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8588
8589         return ret;
8590 }
8591
8592 static void perf_swevent_start_hrtimer(struct perf_event *event)
8593 {
8594         struct hw_perf_event *hwc = &event->hw;
8595         s64 period;
8596
8597         if (!is_sampling_event(event))
8598                 return;
8599
8600         period = local64_read(&hwc->period_left);
8601         if (period) {
8602                 if (period < 0)
8603                         period = 10000;
8604
8605                 local64_set(&hwc->period_left, 0);
8606         } else {
8607                 period = max_t(u64, 10000, hwc->sample_period);
8608         }
8609         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8610                       HRTIMER_MODE_REL_PINNED);
8611 }
8612
8613 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8614 {
8615         struct hw_perf_event *hwc = &event->hw;
8616
8617         if (is_sampling_event(event)) {
8618                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8619                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8620
8621                 hrtimer_cancel(&hwc->hrtimer);
8622         }
8623 }
8624
8625 static void perf_swevent_init_hrtimer(struct perf_event *event)
8626 {
8627         struct hw_perf_event *hwc = &event->hw;
8628
8629         if (!is_sampling_event(event))
8630                 return;
8631
8632         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8633         hwc->hrtimer.function = perf_swevent_hrtimer;
8634
8635         /*
8636          * Since hrtimers have a fixed rate, we can do a static freq->period
8637          * mapping and avoid the whole period adjust feedback stuff.
8638          */
8639         if (event->attr.freq) {
8640                 long freq = event->attr.sample_freq;
8641
8642                 event->attr.sample_period = NSEC_PER_SEC / freq;
8643                 hwc->sample_period = event->attr.sample_period;
8644                 local64_set(&hwc->period_left, hwc->sample_period);
8645                 hwc->last_period = hwc->sample_period;
8646                 event->attr.freq = 0;
8647         }
8648 }
8649
8650 /*
8651  * Software event: cpu wall time clock
8652  */
8653
8654 static void cpu_clock_event_update(struct perf_event *event)
8655 {
8656         s64 prev;
8657         u64 now;
8658
8659         now = local_clock();
8660         prev = local64_xchg(&event->hw.prev_count, now);
8661         local64_add(now - prev, &event->count);
8662 }
8663
8664 static void cpu_clock_event_start(struct perf_event *event, int flags)
8665 {
8666         local64_set(&event->hw.prev_count, local_clock());
8667         perf_swevent_start_hrtimer(event);
8668 }
8669
8670 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8671 {
8672         perf_swevent_cancel_hrtimer(event);
8673         cpu_clock_event_update(event);
8674 }
8675
8676 static int cpu_clock_event_add(struct perf_event *event, int flags)
8677 {
8678         if (flags & PERF_EF_START)
8679                 cpu_clock_event_start(event, flags);
8680         perf_event_update_userpage(event);
8681
8682         return 0;
8683 }
8684
8685 static void cpu_clock_event_del(struct perf_event *event, int flags)
8686 {
8687         cpu_clock_event_stop(event, flags);
8688 }
8689
8690 static void cpu_clock_event_read(struct perf_event *event)
8691 {
8692         cpu_clock_event_update(event);
8693 }
8694
8695 static int cpu_clock_event_init(struct perf_event *event)
8696 {
8697         if (event->attr.type != PERF_TYPE_SOFTWARE)
8698                 return -ENOENT;
8699
8700         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8701                 return -ENOENT;
8702
8703         /*
8704          * no branch sampling for software events
8705          */
8706         if (has_branch_stack(event))
8707                 return -EOPNOTSUPP;
8708
8709         perf_swevent_init_hrtimer(event);
8710
8711         return 0;
8712 }
8713
8714 static struct pmu perf_cpu_clock = {
8715         .task_ctx_nr    = perf_sw_context,
8716
8717         .capabilities   = PERF_PMU_CAP_NO_NMI,
8718
8719         .event_init     = cpu_clock_event_init,
8720         .add            = cpu_clock_event_add,
8721         .del            = cpu_clock_event_del,
8722         .start          = cpu_clock_event_start,
8723         .stop           = cpu_clock_event_stop,
8724         .read           = cpu_clock_event_read,
8725 };
8726
8727 /*
8728  * Software event: task time clock
8729  */
8730
8731 static void task_clock_event_update(struct perf_event *event, u64 now)
8732 {
8733         u64 prev;
8734         s64 delta;
8735
8736         prev = local64_xchg(&event->hw.prev_count, now);
8737         delta = now - prev;
8738         local64_add(delta, &event->count);
8739 }
8740
8741 static void task_clock_event_start(struct perf_event *event, int flags)
8742 {
8743         local64_set(&event->hw.prev_count, event->ctx->time);
8744         perf_swevent_start_hrtimer(event);
8745 }
8746
8747 static void task_clock_event_stop(struct perf_event *event, int flags)
8748 {
8749         perf_swevent_cancel_hrtimer(event);
8750         task_clock_event_update(event, event->ctx->time);
8751 }
8752
8753 static int task_clock_event_add(struct perf_event *event, int flags)
8754 {
8755         if (flags & PERF_EF_START)
8756                 task_clock_event_start(event, flags);
8757         perf_event_update_userpage(event);
8758
8759         return 0;
8760 }
8761
8762 static void task_clock_event_del(struct perf_event *event, int flags)
8763 {
8764         task_clock_event_stop(event, PERF_EF_UPDATE);
8765 }
8766
8767 static void task_clock_event_read(struct perf_event *event)
8768 {
8769         u64 now = perf_clock();
8770         u64 delta = now - event->ctx->timestamp;
8771         u64 time = event->ctx->time + delta;
8772
8773         task_clock_event_update(event, time);
8774 }
8775
8776 static int task_clock_event_init(struct perf_event *event)
8777 {
8778         if (event->attr.type != PERF_TYPE_SOFTWARE)
8779                 return -ENOENT;
8780
8781         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8782                 return -ENOENT;
8783
8784         /*
8785          * no branch sampling for software events
8786          */
8787         if (has_branch_stack(event))
8788                 return -EOPNOTSUPP;
8789
8790         perf_swevent_init_hrtimer(event);
8791
8792         return 0;
8793 }
8794
8795 static struct pmu perf_task_clock = {
8796         .task_ctx_nr    = perf_sw_context,
8797
8798         .capabilities   = PERF_PMU_CAP_NO_NMI,
8799
8800         .event_init     = task_clock_event_init,
8801         .add            = task_clock_event_add,
8802         .del            = task_clock_event_del,
8803         .start          = task_clock_event_start,
8804         .stop           = task_clock_event_stop,
8805         .read           = task_clock_event_read,
8806 };
8807
8808 static void perf_pmu_nop_void(struct pmu *pmu)
8809 {
8810 }
8811
8812 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8813 {
8814 }
8815
8816 static int perf_pmu_nop_int(struct pmu *pmu)
8817 {
8818         return 0;
8819 }
8820
8821 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8822
8823 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8824 {
8825         __this_cpu_write(nop_txn_flags, flags);
8826
8827         if (flags & ~PERF_PMU_TXN_ADD)
8828                 return;
8829
8830         perf_pmu_disable(pmu);
8831 }
8832
8833 static int perf_pmu_commit_txn(struct pmu *pmu)
8834 {
8835         unsigned int flags = __this_cpu_read(nop_txn_flags);
8836
8837         __this_cpu_write(nop_txn_flags, 0);
8838
8839         if (flags & ~PERF_PMU_TXN_ADD)
8840                 return 0;
8841
8842         perf_pmu_enable(pmu);
8843         return 0;
8844 }
8845
8846 static void perf_pmu_cancel_txn(struct pmu *pmu)
8847 {
8848         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8849
8850         __this_cpu_write(nop_txn_flags, 0);
8851
8852         if (flags & ~PERF_PMU_TXN_ADD)
8853                 return;
8854
8855         perf_pmu_enable(pmu);
8856 }
8857
8858 static int perf_event_idx_default(struct perf_event *event)
8859 {
8860         return 0;
8861 }
8862
8863 /*
8864  * Ensures all contexts with the same task_ctx_nr have the same
8865  * pmu_cpu_context too.
8866  */
8867 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8868 {
8869         struct pmu *pmu;
8870
8871         if (ctxn < 0)
8872                 return NULL;
8873
8874         list_for_each_entry(pmu, &pmus, entry) {
8875                 if (pmu->task_ctx_nr == ctxn)
8876                         return pmu->pmu_cpu_context;
8877         }
8878
8879         return NULL;
8880 }
8881
8882 static void free_pmu_context(struct pmu *pmu)
8883 {
8884         mutex_lock(&pmus_lock);
8885         free_percpu(pmu->pmu_cpu_context);
8886         mutex_unlock(&pmus_lock);
8887 }
8888
8889 /*
8890  * Let userspace know that this PMU supports address range filtering:
8891  */
8892 static ssize_t nr_addr_filters_show(struct device *dev,
8893                                     struct device_attribute *attr,
8894                                     char *page)
8895 {
8896         struct pmu *pmu = dev_get_drvdata(dev);
8897
8898         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8899 }
8900 DEVICE_ATTR_RO(nr_addr_filters);
8901
8902 static struct idr pmu_idr;
8903
8904 static ssize_t
8905 type_show(struct device *dev, struct device_attribute *attr, char *page)
8906 {
8907         struct pmu *pmu = dev_get_drvdata(dev);
8908
8909         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8910 }
8911 static DEVICE_ATTR_RO(type);
8912
8913 static ssize_t
8914 perf_event_mux_interval_ms_show(struct device *dev,
8915                                 struct device_attribute *attr,
8916                                 char *page)
8917 {
8918         struct pmu *pmu = dev_get_drvdata(dev);
8919
8920         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8921 }
8922
8923 static DEFINE_MUTEX(mux_interval_mutex);
8924
8925 static ssize_t
8926 perf_event_mux_interval_ms_store(struct device *dev,
8927                                  struct device_attribute *attr,
8928                                  const char *buf, size_t count)
8929 {
8930         struct pmu *pmu = dev_get_drvdata(dev);
8931         int timer, cpu, ret;
8932
8933         ret = kstrtoint(buf, 0, &timer);
8934         if (ret)
8935                 return ret;
8936
8937         if (timer < 1)
8938                 return -EINVAL;
8939
8940         /* same value, noting to do */
8941         if (timer == pmu->hrtimer_interval_ms)
8942                 return count;
8943
8944         mutex_lock(&mux_interval_mutex);
8945         pmu->hrtimer_interval_ms = timer;
8946
8947         /* update all cpuctx for this PMU */
8948         get_online_cpus();
8949         for_each_online_cpu(cpu) {
8950                 struct perf_cpu_context *cpuctx;
8951                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8952                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8953
8954                 cpu_function_call(cpu,
8955                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8956         }
8957         put_online_cpus();
8958         mutex_unlock(&mux_interval_mutex);
8959
8960         return count;
8961 }
8962 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8963
8964 static struct attribute *pmu_dev_attrs[] = {
8965         &dev_attr_type.attr,
8966         &dev_attr_perf_event_mux_interval_ms.attr,
8967         NULL,
8968 };
8969 ATTRIBUTE_GROUPS(pmu_dev);
8970
8971 static int pmu_bus_running;
8972 static struct bus_type pmu_bus = {
8973         .name           = "event_source",
8974         .dev_groups     = pmu_dev_groups,
8975 };
8976
8977 static void pmu_dev_release(struct device *dev)
8978 {
8979         kfree(dev);
8980 }
8981
8982 static int pmu_dev_alloc(struct pmu *pmu)
8983 {
8984         int ret = -ENOMEM;
8985
8986         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8987         if (!pmu->dev)
8988                 goto out;
8989
8990         pmu->dev->groups = pmu->attr_groups;
8991         device_initialize(pmu->dev);
8992         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8993         if (ret)
8994                 goto free_dev;
8995
8996         dev_set_drvdata(pmu->dev, pmu);
8997         pmu->dev->bus = &pmu_bus;
8998         pmu->dev->release = pmu_dev_release;
8999         ret = device_add(pmu->dev);
9000         if (ret)
9001                 goto free_dev;
9002
9003         /* For PMUs with address filters, throw in an extra attribute: */
9004         if (pmu->nr_addr_filters)
9005                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9006
9007         if (ret)
9008                 goto del_dev;
9009
9010 out:
9011         return ret;
9012
9013 del_dev:
9014         device_del(pmu->dev);
9015
9016 free_dev:
9017         put_device(pmu->dev);
9018         goto out;
9019 }
9020
9021 static struct lock_class_key cpuctx_mutex;
9022 static struct lock_class_key cpuctx_lock;
9023
9024 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9025 {
9026         int cpu, ret;
9027
9028         mutex_lock(&pmus_lock);
9029         ret = -ENOMEM;
9030         pmu->pmu_disable_count = alloc_percpu(int);
9031         if (!pmu->pmu_disable_count)
9032                 goto unlock;
9033
9034         pmu->type = -1;
9035         if (!name)
9036                 goto skip_type;
9037         pmu->name = name;
9038
9039         if (type < 0) {
9040                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9041                 if (type < 0) {
9042                         ret = type;
9043                         goto free_pdc;
9044                 }
9045         }
9046         pmu->type = type;
9047
9048         if (pmu_bus_running) {
9049                 ret = pmu_dev_alloc(pmu);
9050                 if (ret)
9051                         goto free_idr;
9052         }
9053
9054 skip_type:
9055         if (pmu->task_ctx_nr == perf_hw_context) {
9056                 static int hw_context_taken = 0;
9057
9058                 /*
9059                  * Other than systems with heterogeneous CPUs, it never makes
9060                  * sense for two PMUs to share perf_hw_context. PMUs which are
9061                  * uncore must use perf_invalid_context.
9062                  */
9063                 if (WARN_ON_ONCE(hw_context_taken &&
9064                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9065                         pmu->task_ctx_nr = perf_invalid_context;
9066
9067                 hw_context_taken = 1;
9068         }
9069
9070         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9071         if (pmu->pmu_cpu_context)
9072                 goto got_cpu_context;
9073
9074         ret = -ENOMEM;
9075         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9076         if (!pmu->pmu_cpu_context)
9077                 goto free_dev;
9078
9079         for_each_possible_cpu(cpu) {
9080                 struct perf_cpu_context *cpuctx;
9081
9082                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9083                 __perf_event_init_context(&cpuctx->ctx);
9084                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9085                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9086                 cpuctx->ctx.pmu = pmu;
9087
9088                 __perf_mux_hrtimer_init(cpuctx, cpu);
9089         }
9090
9091 got_cpu_context:
9092         if (!pmu->start_txn) {
9093                 if (pmu->pmu_enable) {
9094                         /*
9095                          * If we have pmu_enable/pmu_disable calls, install
9096                          * transaction stubs that use that to try and batch
9097                          * hardware accesses.
9098                          */
9099                         pmu->start_txn  = perf_pmu_start_txn;
9100                         pmu->commit_txn = perf_pmu_commit_txn;
9101                         pmu->cancel_txn = perf_pmu_cancel_txn;
9102                 } else {
9103                         pmu->start_txn  = perf_pmu_nop_txn;
9104                         pmu->commit_txn = perf_pmu_nop_int;
9105                         pmu->cancel_txn = perf_pmu_nop_void;
9106                 }
9107         }
9108
9109         if (!pmu->pmu_enable) {
9110                 pmu->pmu_enable  = perf_pmu_nop_void;
9111                 pmu->pmu_disable = perf_pmu_nop_void;
9112         }
9113
9114         if (!pmu->event_idx)
9115                 pmu->event_idx = perf_event_idx_default;
9116
9117         list_add_rcu(&pmu->entry, &pmus);
9118         atomic_set(&pmu->exclusive_cnt, 0);
9119         ret = 0;
9120 unlock:
9121         mutex_unlock(&pmus_lock);
9122
9123         return ret;
9124
9125 free_dev:
9126         device_del(pmu->dev);
9127         put_device(pmu->dev);
9128
9129 free_idr:
9130         if (pmu->type >= PERF_TYPE_MAX)
9131                 idr_remove(&pmu_idr, pmu->type);
9132
9133 free_pdc:
9134         free_percpu(pmu->pmu_disable_count);
9135         goto unlock;
9136 }
9137 EXPORT_SYMBOL_GPL(perf_pmu_register);
9138
9139 void perf_pmu_unregister(struct pmu *pmu)
9140 {
9141         int remove_device;
9142
9143         mutex_lock(&pmus_lock);
9144         remove_device = pmu_bus_running;
9145         list_del_rcu(&pmu->entry);
9146         mutex_unlock(&pmus_lock);
9147
9148         /*
9149          * We dereference the pmu list under both SRCU and regular RCU, so
9150          * synchronize against both of those.
9151          */
9152         synchronize_srcu(&pmus_srcu);
9153         synchronize_rcu();
9154
9155         free_percpu(pmu->pmu_disable_count);
9156         if (pmu->type >= PERF_TYPE_MAX)
9157                 idr_remove(&pmu_idr, pmu->type);
9158         if (remove_device) {
9159                 if (pmu->nr_addr_filters)
9160                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9161                 device_del(pmu->dev);
9162                 put_device(pmu->dev);
9163         }
9164         free_pmu_context(pmu);
9165 }
9166 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9167
9168 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9169 {
9170         struct perf_event_context *ctx = NULL;
9171         int ret;
9172
9173         if (!try_module_get(pmu->module))
9174                 return -ENODEV;
9175
9176         if (event->group_leader != event) {
9177                 /*
9178                  * This ctx->mutex can nest when we're called through
9179                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9180                  */
9181                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9182                                                  SINGLE_DEPTH_NESTING);
9183                 BUG_ON(!ctx);
9184         }
9185
9186         event->pmu = pmu;
9187         ret = pmu->event_init(event);
9188
9189         if (ctx)
9190                 perf_event_ctx_unlock(event->group_leader, ctx);
9191
9192         if (ret)
9193                 module_put(pmu->module);
9194
9195         return ret;
9196 }
9197
9198 static struct pmu *perf_init_event(struct perf_event *event)
9199 {
9200         struct pmu *pmu;
9201         int idx;
9202         int ret;
9203
9204         idx = srcu_read_lock(&pmus_srcu);
9205
9206         /* Try parent's PMU first: */
9207         if (event->parent && event->parent->pmu) {
9208                 pmu = event->parent->pmu;
9209                 ret = perf_try_init_event(pmu, event);
9210                 if (!ret)
9211                         goto unlock;
9212         }
9213
9214         rcu_read_lock();
9215         pmu = idr_find(&pmu_idr, event->attr.type);
9216         rcu_read_unlock();
9217         if (pmu) {
9218                 ret = perf_try_init_event(pmu, event);
9219                 if (ret)
9220                         pmu = ERR_PTR(ret);
9221                 goto unlock;
9222         }
9223
9224         list_for_each_entry_rcu(pmu, &pmus, entry) {
9225                 ret = perf_try_init_event(pmu, event);
9226                 if (!ret)
9227                         goto unlock;
9228
9229                 if (ret != -ENOENT) {
9230                         pmu = ERR_PTR(ret);
9231                         goto unlock;
9232                 }
9233         }
9234         pmu = ERR_PTR(-ENOENT);
9235 unlock:
9236         srcu_read_unlock(&pmus_srcu, idx);
9237
9238         return pmu;
9239 }
9240
9241 static void attach_sb_event(struct perf_event *event)
9242 {
9243         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9244
9245         raw_spin_lock(&pel->lock);
9246         list_add_rcu(&event->sb_list, &pel->list);
9247         raw_spin_unlock(&pel->lock);
9248 }
9249
9250 /*
9251  * We keep a list of all !task (and therefore per-cpu) events
9252  * that need to receive side-band records.
9253  *
9254  * This avoids having to scan all the various PMU per-cpu contexts
9255  * looking for them.
9256  */
9257 static void account_pmu_sb_event(struct perf_event *event)
9258 {
9259         if (is_sb_event(event))
9260                 attach_sb_event(event);
9261 }
9262
9263 static void account_event_cpu(struct perf_event *event, int cpu)
9264 {
9265         if (event->parent)
9266                 return;
9267
9268         if (is_cgroup_event(event))
9269                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9270 }
9271
9272 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9273 static void account_freq_event_nohz(void)
9274 {
9275 #ifdef CONFIG_NO_HZ_FULL
9276         /* Lock so we don't race with concurrent unaccount */
9277         spin_lock(&nr_freq_lock);
9278         if (atomic_inc_return(&nr_freq_events) == 1)
9279                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9280         spin_unlock(&nr_freq_lock);
9281 #endif
9282 }
9283
9284 static void account_freq_event(void)
9285 {
9286         if (tick_nohz_full_enabled())
9287                 account_freq_event_nohz();
9288         else
9289                 atomic_inc(&nr_freq_events);
9290 }
9291
9292
9293 static void account_event(struct perf_event *event)
9294 {
9295         bool inc = false;
9296
9297         if (event->parent)
9298                 return;
9299
9300         if (event->attach_state & PERF_ATTACH_TASK)
9301                 inc = true;
9302         if (event->attr.mmap || event->attr.mmap_data)
9303                 atomic_inc(&nr_mmap_events);
9304         if (event->attr.comm)
9305                 atomic_inc(&nr_comm_events);
9306         if (event->attr.namespaces)
9307                 atomic_inc(&nr_namespaces_events);
9308         if (event->attr.task)
9309                 atomic_inc(&nr_task_events);
9310         if (event->attr.freq)
9311                 account_freq_event();
9312         if (event->attr.context_switch) {
9313                 atomic_inc(&nr_switch_events);
9314                 inc = true;
9315         }
9316         if (has_branch_stack(event))
9317                 inc = true;
9318         if (is_cgroup_event(event))
9319                 inc = true;
9320
9321         if (inc) {
9322                 if (atomic_inc_not_zero(&perf_sched_count))
9323                         goto enabled;
9324
9325                 mutex_lock(&perf_sched_mutex);
9326                 if (!atomic_read(&perf_sched_count)) {
9327                         static_branch_enable(&perf_sched_events);
9328                         /*
9329                          * Guarantee that all CPUs observe they key change and
9330                          * call the perf scheduling hooks before proceeding to
9331                          * install events that need them.
9332                          */
9333                         synchronize_sched();
9334                 }
9335                 /*
9336                  * Now that we have waited for the sync_sched(), allow further
9337                  * increments to by-pass the mutex.
9338                  */
9339                 atomic_inc(&perf_sched_count);
9340                 mutex_unlock(&perf_sched_mutex);
9341         }
9342 enabled:
9343
9344         account_event_cpu(event, event->cpu);
9345
9346         account_pmu_sb_event(event);
9347 }
9348
9349 /*
9350  * Allocate and initialize a event structure
9351  */
9352 static struct perf_event *
9353 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9354                  struct task_struct *task,
9355                  struct perf_event *group_leader,
9356                  struct perf_event *parent_event,
9357                  perf_overflow_handler_t overflow_handler,
9358                  void *context, int cgroup_fd)
9359 {
9360         struct pmu *pmu;
9361         struct perf_event *event;
9362         struct hw_perf_event *hwc;
9363         long err = -EINVAL;
9364
9365         if ((unsigned)cpu >= nr_cpu_ids) {
9366                 if (!task || cpu != -1)
9367                         return ERR_PTR(-EINVAL);
9368         }
9369
9370         event = kzalloc(sizeof(*event), GFP_KERNEL);
9371         if (!event)
9372                 return ERR_PTR(-ENOMEM);
9373
9374         /*
9375          * Single events are their own group leaders, with an
9376          * empty sibling list:
9377          */
9378         if (!group_leader)
9379                 group_leader = event;
9380
9381         mutex_init(&event->child_mutex);
9382         INIT_LIST_HEAD(&event->child_list);
9383
9384         INIT_LIST_HEAD(&event->group_entry);
9385         INIT_LIST_HEAD(&event->event_entry);
9386         INIT_LIST_HEAD(&event->sibling_list);
9387         INIT_LIST_HEAD(&event->rb_entry);
9388         INIT_LIST_HEAD(&event->active_entry);
9389         INIT_LIST_HEAD(&event->addr_filters.list);
9390         INIT_HLIST_NODE(&event->hlist_entry);
9391
9392
9393         init_waitqueue_head(&event->waitq);
9394         init_irq_work(&event->pending, perf_pending_event);
9395
9396         mutex_init(&event->mmap_mutex);
9397         raw_spin_lock_init(&event->addr_filters.lock);
9398
9399         atomic_long_set(&event->refcount, 1);
9400         event->cpu              = cpu;
9401         event->attr             = *attr;
9402         event->group_leader     = group_leader;
9403         event->pmu              = NULL;
9404         event->oncpu            = -1;
9405
9406         event->parent           = parent_event;
9407
9408         event->ns               = get_pid_ns(task_active_pid_ns(current));
9409         event->id               = atomic64_inc_return(&perf_event_id);
9410
9411         event->state            = PERF_EVENT_STATE_INACTIVE;
9412
9413         if (task) {
9414                 event->attach_state = PERF_ATTACH_TASK;
9415                 /*
9416                  * XXX pmu::event_init needs to know what task to account to
9417                  * and we cannot use the ctx information because we need the
9418                  * pmu before we get a ctx.
9419                  */
9420                 event->hw.target = task;
9421         }
9422
9423         event->clock = &local_clock;
9424         if (parent_event)
9425                 event->clock = parent_event->clock;
9426
9427         if (!overflow_handler && parent_event) {
9428                 overflow_handler = parent_event->overflow_handler;
9429                 context = parent_event->overflow_handler_context;
9430 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9431                 if (overflow_handler == bpf_overflow_handler) {
9432                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9433
9434                         if (IS_ERR(prog)) {
9435                                 err = PTR_ERR(prog);
9436                                 goto err_ns;
9437                         }
9438                         event->prog = prog;
9439                         event->orig_overflow_handler =
9440                                 parent_event->orig_overflow_handler;
9441                 }
9442 #endif
9443         }
9444
9445         if (overflow_handler) {
9446                 event->overflow_handler = overflow_handler;
9447                 event->overflow_handler_context = context;
9448         } else if (is_write_backward(event)){
9449                 event->overflow_handler = perf_event_output_backward;
9450                 event->overflow_handler_context = NULL;
9451         } else {
9452                 event->overflow_handler = perf_event_output_forward;
9453                 event->overflow_handler_context = NULL;
9454         }
9455
9456         perf_event__state_init(event);
9457
9458         pmu = NULL;
9459
9460         hwc = &event->hw;
9461         hwc->sample_period = attr->sample_period;
9462         if (attr->freq && attr->sample_freq)
9463                 hwc->sample_period = 1;
9464         hwc->last_period = hwc->sample_period;
9465
9466         local64_set(&hwc->period_left, hwc->sample_period);
9467
9468         /*
9469          * We currently do not support PERF_SAMPLE_READ on inherited events.
9470          * See perf_output_read().
9471          */
9472         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9473                 goto err_ns;
9474
9475         if (!has_branch_stack(event))
9476                 event->attr.branch_sample_type = 0;
9477
9478         if (cgroup_fd != -1) {
9479                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9480                 if (err)
9481                         goto err_ns;
9482         }
9483
9484         pmu = perf_init_event(event);
9485         if (IS_ERR(pmu)) {
9486                 err = PTR_ERR(pmu);
9487                 goto err_ns;
9488         }
9489
9490         err = exclusive_event_init(event);
9491         if (err)
9492                 goto err_pmu;
9493
9494         if (has_addr_filter(event)) {
9495                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9496                                                    sizeof(unsigned long),
9497                                                    GFP_KERNEL);
9498                 if (!event->addr_filters_offs) {
9499                         err = -ENOMEM;
9500                         goto err_per_task;
9501                 }
9502
9503                 /* force hw sync on the address filters */
9504                 event->addr_filters_gen = 1;
9505         }
9506
9507         if (!event->parent) {
9508                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9509                         err = get_callchain_buffers(attr->sample_max_stack);
9510                         if (err)
9511                                 goto err_addr_filters;
9512                 }
9513         }
9514
9515         /* symmetric to unaccount_event() in _free_event() */
9516         account_event(event);
9517
9518         return event;
9519
9520 err_addr_filters:
9521         kfree(event->addr_filters_offs);
9522
9523 err_per_task:
9524         exclusive_event_destroy(event);
9525
9526 err_pmu:
9527         if (event->destroy)
9528                 event->destroy(event);
9529         module_put(pmu->module);
9530 err_ns:
9531         if (is_cgroup_event(event))
9532                 perf_detach_cgroup(event);
9533         if (event->ns)
9534                 put_pid_ns(event->ns);
9535         kfree(event);
9536
9537         return ERR_PTR(err);
9538 }
9539
9540 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9541                           struct perf_event_attr *attr)
9542 {
9543         u32 size;
9544         int ret;
9545
9546         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9547                 return -EFAULT;
9548
9549         /*
9550          * zero the full structure, so that a short copy will be nice.
9551          */
9552         memset(attr, 0, sizeof(*attr));
9553
9554         ret = get_user(size, &uattr->size);
9555         if (ret)
9556                 return ret;
9557
9558         if (size > PAGE_SIZE)   /* silly large */
9559                 goto err_size;
9560
9561         if (!size)              /* abi compat */
9562                 size = PERF_ATTR_SIZE_VER0;
9563
9564         if (size < PERF_ATTR_SIZE_VER0)
9565                 goto err_size;
9566
9567         /*
9568          * If we're handed a bigger struct than we know of,
9569          * ensure all the unknown bits are 0 - i.e. new
9570          * user-space does not rely on any kernel feature
9571          * extensions we dont know about yet.
9572          */
9573         if (size > sizeof(*attr)) {
9574                 unsigned char __user *addr;
9575                 unsigned char __user *end;
9576                 unsigned char val;
9577
9578                 addr = (void __user *)uattr + sizeof(*attr);
9579                 end  = (void __user *)uattr + size;
9580
9581                 for (; addr < end; addr++) {
9582                         ret = get_user(val, addr);
9583                         if (ret)
9584                                 return ret;
9585                         if (val)
9586                                 goto err_size;
9587                 }
9588                 size = sizeof(*attr);
9589         }
9590
9591         ret = copy_from_user(attr, uattr, size);
9592         if (ret)
9593                 return -EFAULT;
9594
9595         if (attr->__reserved_1)
9596                 return -EINVAL;
9597
9598         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9599                 return -EINVAL;
9600
9601         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9602                 return -EINVAL;
9603
9604         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9605                 u64 mask = attr->branch_sample_type;
9606
9607                 /* only using defined bits */
9608                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9609                         return -EINVAL;
9610
9611                 /* at least one branch bit must be set */
9612                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9613                         return -EINVAL;
9614
9615                 /* propagate priv level, when not set for branch */
9616                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9617
9618                         /* exclude_kernel checked on syscall entry */
9619                         if (!attr->exclude_kernel)
9620                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9621
9622                         if (!attr->exclude_user)
9623                                 mask |= PERF_SAMPLE_BRANCH_USER;
9624
9625                         if (!attr->exclude_hv)
9626                                 mask |= PERF_SAMPLE_BRANCH_HV;
9627                         /*
9628                          * adjust user setting (for HW filter setup)
9629                          */
9630                         attr->branch_sample_type = mask;
9631                 }
9632                 /* privileged levels capture (kernel, hv): check permissions */
9633                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9634                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9635                         return -EACCES;
9636         }
9637
9638         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9639                 ret = perf_reg_validate(attr->sample_regs_user);
9640                 if (ret)
9641                         return ret;
9642         }
9643
9644         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9645                 if (!arch_perf_have_user_stack_dump())
9646                         return -ENOSYS;
9647
9648                 /*
9649                  * We have __u32 type for the size, but so far
9650                  * we can only use __u16 as maximum due to the
9651                  * __u16 sample size limit.
9652                  */
9653                 if (attr->sample_stack_user >= USHRT_MAX)
9654                         ret = -EINVAL;
9655                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9656                         ret = -EINVAL;
9657         }
9658
9659         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9660                 ret = perf_reg_validate(attr->sample_regs_intr);
9661 out:
9662         return ret;
9663
9664 err_size:
9665         put_user(sizeof(*attr), &uattr->size);
9666         ret = -E2BIG;
9667         goto out;
9668 }
9669
9670 static int
9671 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9672 {
9673         struct ring_buffer *rb = NULL;
9674         int ret = -EINVAL;
9675
9676         if (!output_event)
9677                 goto set;
9678
9679         /* don't allow circular references */
9680         if (event == output_event)
9681                 goto out;
9682
9683         /*
9684          * Don't allow cross-cpu buffers
9685          */
9686         if (output_event->cpu != event->cpu)
9687                 goto out;
9688
9689         /*
9690          * If its not a per-cpu rb, it must be the same task.
9691          */
9692         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9693                 goto out;
9694
9695         /*
9696          * Mixing clocks in the same buffer is trouble you don't need.
9697          */
9698         if (output_event->clock != event->clock)
9699                 goto out;
9700
9701         /*
9702          * Either writing ring buffer from beginning or from end.
9703          * Mixing is not allowed.
9704          */
9705         if (is_write_backward(output_event) != is_write_backward(event))
9706                 goto out;
9707
9708         /*
9709          * If both events generate aux data, they must be on the same PMU
9710          */
9711         if (has_aux(event) && has_aux(output_event) &&
9712             event->pmu != output_event->pmu)
9713                 goto out;
9714
9715 set:
9716         mutex_lock(&event->mmap_mutex);
9717         /* Can't redirect output if we've got an active mmap() */
9718         if (atomic_read(&event->mmap_count))
9719                 goto unlock;
9720
9721         if (output_event) {
9722                 /* get the rb we want to redirect to */
9723                 rb = ring_buffer_get(output_event);
9724                 if (!rb)
9725                         goto unlock;
9726         }
9727
9728         ring_buffer_attach(event, rb);
9729
9730         ret = 0;
9731 unlock:
9732         mutex_unlock(&event->mmap_mutex);
9733
9734 out:
9735         return ret;
9736 }
9737
9738 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9739 {
9740         if (b < a)
9741                 swap(a, b);
9742
9743         mutex_lock(a);
9744         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9745 }
9746
9747 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9748 {
9749         bool nmi_safe = false;
9750
9751         switch (clk_id) {
9752         case CLOCK_MONOTONIC:
9753                 event->clock = &ktime_get_mono_fast_ns;
9754                 nmi_safe = true;
9755                 break;
9756
9757         case CLOCK_MONOTONIC_RAW:
9758                 event->clock = &ktime_get_raw_fast_ns;
9759                 nmi_safe = true;
9760                 break;
9761
9762         case CLOCK_REALTIME:
9763                 event->clock = &ktime_get_real_ns;
9764                 break;
9765
9766         case CLOCK_BOOTTIME:
9767                 event->clock = &ktime_get_boot_ns;
9768                 break;
9769
9770         case CLOCK_TAI:
9771                 event->clock = &ktime_get_tai_ns;
9772                 break;
9773
9774         default:
9775                 return -EINVAL;
9776         }
9777
9778         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9779                 return -EINVAL;
9780
9781         return 0;
9782 }
9783
9784 /*
9785  * Variation on perf_event_ctx_lock_nested(), except we take two context
9786  * mutexes.
9787  */
9788 static struct perf_event_context *
9789 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9790                              struct perf_event_context *ctx)
9791 {
9792         struct perf_event_context *gctx;
9793
9794 again:
9795         rcu_read_lock();
9796         gctx = READ_ONCE(group_leader->ctx);
9797         if (!atomic_inc_not_zero(&gctx->refcount)) {
9798                 rcu_read_unlock();
9799                 goto again;
9800         }
9801         rcu_read_unlock();
9802
9803         mutex_lock_double(&gctx->mutex, &ctx->mutex);
9804
9805         if (group_leader->ctx != gctx) {
9806                 mutex_unlock(&ctx->mutex);
9807                 mutex_unlock(&gctx->mutex);
9808                 put_ctx(gctx);
9809                 goto again;
9810         }
9811
9812         return gctx;
9813 }
9814
9815 /**
9816  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9817  *
9818  * @attr_uptr:  event_id type attributes for monitoring/sampling
9819  * @pid:                target pid
9820  * @cpu:                target cpu
9821  * @group_fd:           group leader event fd
9822  */
9823 SYSCALL_DEFINE5(perf_event_open,
9824                 struct perf_event_attr __user *, attr_uptr,
9825                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9826 {
9827         struct perf_event *group_leader = NULL, *output_event = NULL;
9828         struct perf_event *event, *sibling;
9829         struct perf_event_attr attr;
9830         struct perf_event_context *ctx, *uninitialized_var(gctx);
9831         struct file *event_file = NULL;
9832         struct fd group = {NULL, 0};
9833         struct task_struct *task = NULL;
9834         struct pmu *pmu;
9835         int event_fd;
9836         int move_group = 0;
9837         int err;
9838         int f_flags = O_RDWR;
9839         int cgroup_fd = -1;
9840
9841         /* for future expandability... */
9842         if (flags & ~PERF_FLAG_ALL)
9843                 return -EINVAL;
9844
9845         err = perf_copy_attr(attr_uptr, &attr);
9846         if (err)
9847                 return err;
9848
9849         if (!attr.exclude_kernel) {
9850                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9851                         return -EACCES;
9852         }
9853
9854         if (attr.namespaces) {
9855                 if (!capable(CAP_SYS_ADMIN))
9856                         return -EACCES;
9857         }
9858
9859         if (attr.freq) {
9860                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9861                         return -EINVAL;
9862         } else {
9863                 if (attr.sample_period & (1ULL << 63))
9864                         return -EINVAL;
9865         }
9866
9867         if (!attr.sample_max_stack)
9868                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9869
9870         /*
9871          * In cgroup mode, the pid argument is used to pass the fd
9872          * opened to the cgroup directory in cgroupfs. The cpu argument
9873          * designates the cpu on which to monitor threads from that
9874          * cgroup.
9875          */
9876         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9877                 return -EINVAL;
9878
9879         if (flags & PERF_FLAG_FD_CLOEXEC)
9880                 f_flags |= O_CLOEXEC;
9881
9882         event_fd = get_unused_fd_flags(f_flags);
9883         if (event_fd < 0)
9884                 return event_fd;
9885
9886         if (group_fd != -1) {
9887                 err = perf_fget_light(group_fd, &group);
9888                 if (err)
9889                         goto err_fd;
9890                 group_leader = group.file->private_data;
9891                 if (flags & PERF_FLAG_FD_OUTPUT)
9892                         output_event = group_leader;
9893                 if (flags & PERF_FLAG_FD_NO_GROUP)
9894                         group_leader = NULL;
9895         }
9896
9897         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9898                 task = find_lively_task_by_vpid(pid);
9899                 if (IS_ERR(task)) {
9900                         err = PTR_ERR(task);
9901                         goto err_group_fd;
9902                 }
9903         }
9904
9905         if (task && group_leader &&
9906             group_leader->attr.inherit != attr.inherit) {
9907                 err = -EINVAL;
9908                 goto err_task;
9909         }
9910
9911         get_online_cpus();
9912
9913         if (task) {
9914                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9915                 if (err)
9916                         goto err_cpus;
9917
9918                 /*
9919                  * Reuse ptrace permission checks for now.
9920                  *
9921                  * We must hold cred_guard_mutex across this and any potential
9922                  * perf_install_in_context() call for this new event to
9923                  * serialize against exec() altering our credentials (and the
9924                  * perf_event_exit_task() that could imply).
9925                  */
9926                 err = -EACCES;
9927                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9928                         goto err_cred;
9929         }
9930
9931         if (flags & PERF_FLAG_PID_CGROUP)
9932                 cgroup_fd = pid;
9933
9934         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9935                                  NULL, NULL, cgroup_fd);
9936         if (IS_ERR(event)) {
9937                 err = PTR_ERR(event);
9938                 goto err_cred;
9939         }
9940
9941         if (is_sampling_event(event)) {
9942                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9943                         err = -EOPNOTSUPP;
9944                         goto err_alloc;
9945                 }
9946         }
9947
9948         /*
9949          * Special case software events and allow them to be part of
9950          * any hardware group.
9951          */
9952         pmu = event->pmu;
9953
9954         if (attr.use_clockid) {
9955                 err = perf_event_set_clock(event, attr.clockid);
9956                 if (err)
9957                         goto err_alloc;
9958         }
9959
9960         if (pmu->task_ctx_nr == perf_sw_context)
9961                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9962
9963         if (group_leader &&
9964             (is_software_event(event) != is_software_event(group_leader))) {
9965                 if (is_software_event(event)) {
9966                         /*
9967                          * If event and group_leader are not both a software
9968                          * event, and event is, then group leader is not.
9969                          *
9970                          * Allow the addition of software events to !software
9971                          * groups, this is safe because software events never
9972                          * fail to schedule.
9973                          */
9974                         pmu = group_leader->pmu;
9975                 } else if (is_software_event(group_leader) &&
9976                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9977                         /*
9978                          * In case the group is a pure software group, and we
9979                          * try to add a hardware event, move the whole group to
9980                          * the hardware context.
9981                          */
9982                         move_group = 1;
9983                 }
9984         }
9985
9986         /*
9987          * Get the target context (task or percpu):
9988          */
9989         ctx = find_get_context(pmu, task, event);
9990         if (IS_ERR(ctx)) {
9991                 err = PTR_ERR(ctx);
9992                 goto err_alloc;
9993         }
9994
9995         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9996                 err = -EBUSY;
9997                 goto err_context;
9998         }
9999
10000         /*
10001          * Look up the group leader (we will attach this event to it):
10002          */
10003         if (group_leader) {
10004                 err = -EINVAL;
10005
10006                 /*
10007                  * Do not allow a recursive hierarchy (this new sibling
10008                  * becoming part of another group-sibling):
10009                  */
10010                 if (group_leader->group_leader != group_leader)
10011                         goto err_context;
10012
10013                 /* All events in a group should have the same clock */
10014                 if (group_leader->clock != event->clock)
10015                         goto err_context;
10016
10017                 /*
10018                  * Do not allow to attach to a group in a different
10019                  * task or CPU context:
10020                  */
10021                 if (move_group) {
10022                         /*
10023                          * Make sure we're both on the same task, or both
10024                          * per-cpu events.
10025                          */
10026                         if (group_leader->ctx->task != ctx->task)
10027                                 goto err_context;
10028
10029                         /*
10030                          * Make sure we're both events for the same CPU;
10031                          * grouping events for different CPUs is broken; since
10032                          * you can never concurrently schedule them anyhow.
10033                          */
10034                         if (group_leader->cpu != event->cpu)
10035                                 goto err_context;
10036                 } else {
10037                         if (group_leader->ctx != ctx)
10038                                 goto err_context;
10039                 }
10040
10041                 /*
10042                  * Only a group leader can be exclusive or pinned
10043                  */
10044                 if (attr.exclusive || attr.pinned)
10045                         goto err_context;
10046         }
10047
10048         if (output_event) {
10049                 err = perf_event_set_output(event, output_event);
10050                 if (err)
10051                         goto err_context;
10052         }
10053
10054         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10055                                         f_flags);
10056         if (IS_ERR(event_file)) {
10057                 err = PTR_ERR(event_file);
10058                 event_file = NULL;
10059                 goto err_context;
10060         }
10061
10062         if (move_group) {
10063                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10064
10065                 if (gctx->task == TASK_TOMBSTONE) {
10066                         err = -ESRCH;
10067                         goto err_locked;
10068                 }
10069
10070                 /*
10071                  * Check if we raced against another sys_perf_event_open() call
10072                  * moving the software group underneath us.
10073                  */
10074                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10075                         /*
10076                          * If someone moved the group out from under us, check
10077                          * if this new event wound up on the same ctx, if so
10078                          * its the regular !move_group case, otherwise fail.
10079                          */
10080                         if (gctx != ctx) {
10081                                 err = -EINVAL;
10082                                 goto err_locked;
10083                         } else {
10084                                 perf_event_ctx_unlock(group_leader, gctx);
10085                                 move_group = 0;
10086                         }
10087                 }
10088         } else {
10089                 mutex_lock(&ctx->mutex);
10090         }
10091
10092         if (ctx->task == TASK_TOMBSTONE) {
10093                 err = -ESRCH;
10094                 goto err_locked;
10095         }
10096
10097         if (!perf_event_validate_size(event)) {
10098                 err = -E2BIG;
10099                 goto err_locked;
10100         }
10101
10102         /*
10103          * Must be under the same ctx::mutex as perf_install_in_context(),
10104          * because we need to serialize with concurrent event creation.
10105          */
10106         if (!exclusive_event_installable(event, ctx)) {
10107                 /* exclusive and group stuff are assumed mutually exclusive */
10108                 WARN_ON_ONCE(move_group);
10109
10110                 err = -EBUSY;
10111                 goto err_locked;
10112         }
10113
10114         WARN_ON_ONCE(ctx->parent_ctx);
10115
10116         /*
10117          * This is the point on no return; we cannot fail hereafter. This is
10118          * where we start modifying current state.
10119          */
10120
10121         if (move_group) {
10122                 /*
10123                  * See perf_event_ctx_lock() for comments on the details
10124                  * of swizzling perf_event::ctx.
10125                  */
10126                 perf_remove_from_context(group_leader, 0);
10127                 put_ctx(gctx);
10128
10129                 list_for_each_entry(sibling, &group_leader->sibling_list,
10130                                     group_entry) {
10131                         perf_remove_from_context(sibling, 0);
10132                         put_ctx(gctx);
10133                 }
10134
10135                 /*
10136                  * Wait for everybody to stop referencing the events through
10137                  * the old lists, before installing it on new lists.
10138                  */
10139                 synchronize_rcu();
10140
10141                 /*
10142                  * Install the group siblings before the group leader.
10143                  *
10144                  * Because a group leader will try and install the entire group
10145                  * (through the sibling list, which is still in-tact), we can
10146                  * end up with siblings installed in the wrong context.
10147                  *
10148                  * By installing siblings first we NO-OP because they're not
10149                  * reachable through the group lists.
10150                  */
10151                 list_for_each_entry(sibling, &group_leader->sibling_list,
10152                                     group_entry) {
10153                         perf_event__state_init(sibling);
10154                         perf_install_in_context(ctx, sibling, sibling->cpu);
10155                         get_ctx(ctx);
10156                 }
10157
10158                 /*
10159                  * Removing from the context ends up with disabled
10160                  * event. What we want here is event in the initial
10161                  * startup state, ready to be add into new context.
10162                  */
10163                 perf_event__state_init(group_leader);
10164                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10165                 get_ctx(ctx);
10166         }
10167
10168         /*
10169          * Precalculate sample_data sizes; do while holding ctx::mutex such
10170          * that we're serialized against further additions and before
10171          * perf_install_in_context() which is the point the event is active and
10172          * can use these values.
10173          */
10174         perf_event__header_size(event);
10175         perf_event__id_header_size(event);
10176
10177         event->owner = current;
10178
10179         perf_install_in_context(ctx, event, event->cpu);
10180         perf_unpin_context(ctx);
10181
10182         if (move_group)
10183                 perf_event_ctx_unlock(group_leader, gctx);
10184         mutex_unlock(&ctx->mutex);
10185
10186         if (task) {
10187                 mutex_unlock(&task->signal->cred_guard_mutex);
10188                 put_task_struct(task);
10189         }
10190
10191         put_online_cpus();
10192
10193         mutex_lock(&current->perf_event_mutex);
10194         list_add_tail(&event->owner_entry, &current->perf_event_list);
10195         mutex_unlock(&current->perf_event_mutex);
10196
10197         /*
10198          * Drop the reference on the group_event after placing the
10199          * new event on the sibling_list. This ensures destruction
10200          * of the group leader will find the pointer to itself in
10201          * perf_group_detach().
10202          */
10203         fdput(group);
10204         fd_install(event_fd, event_file);
10205         return event_fd;
10206
10207 err_locked:
10208         if (move_group)
10209                 perf_event_ctx_unlock(group_leader, gctx);
10210         mutex_unlock(&ctx->mutex);
10211 /* err_file: */
10212         fput(event_file);
10213 err_context:
10214         perf_unpin_context(ctx);
10215         put_ctx(ctx);
10216 err_alloc:
10217         /*
10218          * If event_file is set, the fput() above will have called ->release()
10219          * and that will take care of freeing the event.
10220          */
10221         if (!event_file)
10222                 free_event(event);
10223 err_cred:
10224         if (task)
10225                 mutex_unlock(&task->signal->cred_guard_mutex);
10226 err_cpus:
10227         put_online_cpus();
10228 err_task:
10229         if (task)
10230                 put_task_struct(task);
10231 err_group_fd:
10232         fdput(group);
10233 err_fd:
10234         put_unused_fd(event_fd);
10235         return err;
10236 }
10237
10238 /**
10239  * perf_event_create_kernel_counter
10240  *
10241  * @attr: attributes of the counter to create
10242  * @cpu: cpu in which the counter is bound
10243  * @task: task to profile (NULL for percpu)
10244  */
10245 struct perf_event *
10246 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10247                                  struct task_struct *task,
10248                                  perf_overflow_handler_t overflow_handler,
10249                                  void *context)
10250 {
10251         struct perf_event_context *ctx;
10252         struct perf_event *event;
10253         int err;
10254
10255         /*
10256          * Get the target context (task or percpu):
10257          */
10258
10259         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10260                                  overflow_handler, context, -1);
10261         if (IS_ERR(event)) {
10262                 err = PTR_ERR(event);
10263                 goto err;
10264         }
10265
10266         /* Mark owner so we could distinguish it from user events. */
10267         event->owner = TASK_TOMBSTONE;
10268
10269         ctx = find_get_context(event->pmu, task, event);
10270         if (IS_ERR(ctx)) {
10271                 err = PTR_ERR(ctx);
10272                 goto err_free;
10273         }
10274
10275         WARN_ON_ONCE(ctx->parent_ctx);
10276         mutex_lock(&ctx->mutex);
10277         if (ctx->task == TASK_TOMBSTONE) {
10278                 err = -ESRCH;
10279                 goto err_unlock;
10280         }
10281
10282         if (!exclusive_event_installable(event, ctx)) {
10283                 err = -EBUSY;
10284                 goto err_unlock;
10285         }
10286
10287         perf_install_in_context(ctx, event, cpu);
10288         perf_unpin_context(ctx);
10289         mutex_unlock(&ctx->mutex);
10290
10291         return event;
10292
10293 err_unlock:
10294         mutex_unlock(&ctx->mutex);
10295         perf_unpin_context(ctx);
10296         put_ctx(ctx);
10297 err_free:
10298         free_event(event);
10299 err:
10300         return ERR_PTR(err);
10301 }
10302 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10303
10304 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10305 {
10306         struct perf_event_context *src_ctx;
10307         struct perf_event_context *dst_ctx;
10308         struct perf_event *event, *tmp;
10309         LIST_HEAD(events);
10310
10311         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10312         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10313
10314         /*
10315          * See perf_event_ctx_lock() for comments on the details
10316          * of swizzling perf_event::ctx.
10317          */
10318         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10319         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10320                                  event_entry) {
10321                 perf_remove_from_context(event, 0);
10322                 unaccount_event_cpu(event, src_cpu);
10323                 put_ctx(src_ctx);
10324                 list_add(&event->migrate_entry, &events);
10325         }
10326
10327         /*
10328          * Wait for the events to quiesce before re-instating them.
10329          */
10330         synchronize_rcu();
10331
10332         /*
10333          * Re-instate events in 2 passes.
10334          *
10335          * Skip over group leaders and only install siblings on this first
10336          * pass, siblings will not get enabled without a leader, however a
10337          * leader will enable its siblings, even if those are still on the old
10338          * context.
10339          */
10340         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10341                 if (event->group_leader == event)
10342                         continue;
10343
10344                 list_del(&event->migrate_entry);
10345                 if (event->state >= PERF_EVENT_STATE_OFF)
10346                         event->state = PERF_EVENT_STATE_INACTIVE;
10347                 account_event_cpu(event, dst_cpu);
10348                 perf_install_in_context(dst_ctx, event, dst_cpu);
10349                 get_ctx(dst_ctx);
10350         }
10351
10352         /*
10353          * Once all the siblings are setup properly, install the group leaders
10354          * to make it go.
10355          */
10356         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10357                 list_del(&event->migrate_entry);
10358                 if (event->state >= PERF_EVENT_STATE_OFF)
10359                         event->state = PERF_EVENT_STATE_INACTIVE;
10360                 account_event_cpu(event, dst_cpu);
10361                 perf_install_in_context(dst_ctx, event, dst_cpu);
10362                 get_ctx(dst_ctx);
10363         }
10364         mutex_unlock(&dst_ctx->mutex);
10365         mutex_unlock(&src_ctx->mutex);
10366 }
10367 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10368
10369 static void sync_child_event(struct perf_event *child_event,
10370                                struct task_struct *child)
10371 {
10372         struct perf_event *parent_event = child_event->parent;
10373         u64 child_val;
10374
10375         if (child_event->attr.inherit_stat)
10376                 perf_event_read_event(child_event, child);
10377
10378         child_val = perf_event_count(child_event);
10379
10380         /*
10381          * Add back the child's count to the parent's count:
10382          */
10383         atomic64_add(child_val, &parent_event->child_count);
10384         atomic64_add(child_event->total_time_enabled,
10385                      &parent_event->child_total_time_enabled);
10386         atomic64_add(child_event->total_time_running,
10387                      &parent_event->child_total_time_running);
10388 }
10389
10390 static void
10391 perf_event_exit_event(struct perf_event *child_event,
10392                       struct perf_event_context *child_ctx,
10393                       struct task_struct *child)
10394 {
10395         struct perf_event *parent_event = child_event->parent;
10396
10397         /*
10398          * Do not destroy the 'original' grouping; because of the context
10399          * switch optimization the original events could've ended up in a
10400          * random child task.
10401          *
10402          * If we were to destroy the original group, all group related
10403          * operations would cease to function properly after this random
10404          * child dies.
10405          *
10406          * Do destroy all inherited groups, we don't care about those
10407          * and being thorough is better.
10408          */
10409         raw_spin_lock_irq(&child_ctx->lock);
10410         WARN_ON_ONCE(child_ctx->is_active);
10411
10412         if (parent_event)
10413                 perf_group_detach(child_event);
10414         list_del_event(child_event, child_ctx);
10415         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10416         raw_spin_unlock_irq(&child_ctx->lock);
10417
10418         /*
10419          * Parent events are governed by their filedesc, retain them.
10420          */
10421         if (!parent_event) {
10422                 perf_event_wakeup(child_event);
10423                 return;
10424         }
10425         /*
10426          * Child events can be cleaned up.
10427          */
10428
10429         sync_child_event(child_event, child);
10430
10431         /*
10432          * Remove this event from the parent's list
10433          */
10434         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10435         mutex_lock(&parent_event->child_mutex);
10436         list_del_init(&child_event->child_list);
10437         mutex_unlock(&parent_event->child_mutex);
10438
10439         /*
10440          * Kick perf_poll() for is_event_hup().
10441          */
10442         perf_event_wakeup(parent_event);
10443         free_event(child_event);
10444         put_event(parent_event);
10445 }
10446
10447 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10448 {
10449         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10450         struct perf_event *child_event, *next;
10451
10452         WARN_ON_ONCE(child != current);
10453
10454         child_ctx = perf_pin_task_context(child, ctxn);
10455         if (!child_ctx)
10456                 return;
10457
10458         /*
10459          * In order to reduce the amount of tricky in ctx tear-down, we hold
10460          * ctx::mutex over the entire thing. This serializes against almost
10461          * everything that wants to access the ctx.
10462          *
10463          * The exception is sys_perf_event_open() /
10464          * perf_event_create_kernel_count() which does find_get_context()
10465          * without ctx::mutex (it cannot because of the move_group double mutex
10466          * lock thing). See the comments in perf_install_in_context().
10467          */
10468         mutex_lock(&child_ctx->mutex);
10469
10470         /*
10471          * In a single ctx::lock section, de-schedule the events and detach the
10472          * context from the task such that we cannot ever get it scheduled back
10473          * in.
10474          */
10475         raw_spin_lock_irq(&child_ctx->lock);
10476         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10477
10478         /*
10479          * Now that the context is inactive, destroy the task <-> ctx relation
10480          * and mark the context dead.
10481          */
10482         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10483         put_ctx(child_ctx); /* cannot be last */
10484         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10485         put_task_struct(current); /* cannot be last */
10486
10487         clone_ctx = unclone_ctx(child_ctx);
10488         raw_spin_unlock_irq(&child_ctx->lock);
10489
10490         if (clone_ctx)
10491                 put_ctx(clone_ctx);
10492
10493         /*
10494          * Report the task dead after unscheduling the events so that we
10495          * won't get any samples after PERF_RECORD_EXIT. We can however still
10496          * get a few PERF_RECORD_READ events.
10497          */
10498         perf_event_task(child, child_ctx, 0);
10499
10500         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10501                 perf_event_exit_event(child_event, child_ctx, child);
10502
10503         mutex_unlock(&child_ctx->mutex);
10504
10505         put_ctx(child_ctx);
10506 }
10507
10508 /*
10509  * When a child task exits, feed back event values to parent events.
10510  *
10511  * Can be called with cred_guard_mutex held when called from
10512  * install_exec_creds().
10513  */
10514 void perf_event_exit_task(struct task_struct *child)
10515 {
10516         struct perf_event *event, *tmp;
10517         int ctxn;
10518
10519         mutex_lock(&child->perf_event_mutex);
10520         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10521                                  owner_entry) {
10522                 list_del_init(&event->owner_entry);
10523
10524                 /*
10525                  * Ensure the list deletion is visible before we clear
10526                  * the owner, closes a race against perf_release() where
10527                  * we need to serialize on the owner->perf_event_mutex.
10528                  */
10529                 smp_store_release(&event->owner, NULL);
10530         }
10531         mutex_unlock(&child->perf_event_mutex);
10532
10533         for_each_task_context_nr(ctxn)
10534                 perf_event_exit_task_context(child, ctxn);
10535
10536         /*
10537          * The perf_event_exit_task_context calls perf_event_task
10538          * with child's task_ctx, which generates EXIT events for
10539          * child contexts and sets child->perf_event_ctxp[] to NULL.
10540          * At this point we need to send EXIT events to cpu contexts.
10541          */
10542         perf_event_task(child, NULL, 0);
10543 }
10544
10545 static void perf_free_event(struct perf_event *event,
10546                             struct perf_event_context *ctx)
10547 {
10548         struct perf_event *parent = event->parent;
10549
10550         if (WARN_ON_ONCE(!parent))
10551                 return;
10552
10553         mutex_lock(&parent->child_mutex);
10554         list_del_init(&event->child_list);
10555         mutex_unlock(&parent->child_mutex);
10556
10557         put_event(parent);
10558
10559         raw_spin_lock_irq(&ctx->lock);
10560         perf_group_detach(event);
10561         list_del_event(event, ctx);
10562         raw_spin_unlock_irq(&ctx->lock);
10563         free_event(event);
10564 }
10565
10566 /*
10567  * Free an unexposed, unused context as created by inheritance by
10568  * perf_event_init_task below, used by fork() in case of fail.
10569  *
10570  * Not all locks are strictly required, but take them anyway to be nice and
10571  * help out with the lockdep assertions.
10572  */
10573 void perf_event_free_task(struct task_struct *task)
10574 {
10575         struct perf_event_context *ctx;
10576         struct perf_event *event, *tmp;
10577         int ctxn;
10578
10579         for_each_task_context_nr(ctxn) {
10580                 ctx = task->perf_event_ctxp[ctxn];
10581                 if (!ctx)
10582                         continue;
10583
10584                 mutex_lock(&ctx->mutex);
10585                 raw_spin_lock_irq(&ctx->lock);
10586                 /*
10587                  * Destroy the task <-> ctx relation and mark the context dead.
10588                  *
10589                  * This is important because even though the task hasn't been
10590                  * exposed yet the context has been (through child_list).
10591                  */
10592                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10593                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10594                 put_task_struct(task); /* cannot be last */
10595                 raw_spin_unlock_irq(&ctx->lock);
10596
10597                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10598                         perf_free_event(event, ctx);
10599
10600                 mutex_unlock(&ctx->mutex);
10601                 put_ctx(ctx);
10602         }
10603 }
10604
10605 void perf_event_delayed_put(struct task_struct *task)
10606 {
10607         int ctxn;
10608
10609         for_each_task_context_nr(ctxn)
10610                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10611 }
10612
10613 struct file *perf_event_get(unsigned int fd)
10614 {
10615         struct file *file;
10616
10617         file = fget_raw(fd);
10618         if (!file)
10619                 return ERR_PTR(-EBADF);
10620
10621         if (file->f_op != &perf_fops) {
10622                 fput(file);
10623                 return ERR_PTR(-EBADF);
10624         }
10625
10626         return file;
10627 }
10628
10629 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10630 {
10631         if (!event)
10632                 return ERR_PTR(-EINVAL);
10633
10634         return &event->attr;
10635 }
10636
10637 /*
10638  * Inherit a event from parent task to child task.
10639  *
10640  * Returns:
10641  *  - valid pointer on success
10642  *  - NULL for orphaned events
10643  *  - IS_ERR() on error
10644  */
10645 static struct perf_event *
10646 inherit_event(struct perf_event *parent_event,
10647               struct task_struct *parent,
10648               struct perf_event_context *parent_ctx,
10649               struct task_struct *child,
10650               struct perf_event *group_leader,
10651               struct perf_event_context *child_ctx)
10652 {
10653         enum perf_event_active_state parent_state = parent_event->state;
10654         struct perf_event *child_event;
10655         unsigned long flags;
10656
10657         /*
10658          * Instead of creating recursive hierarchies of events,
10659          * we link inherited events back to the original parent,
10660          * which has a filp for sure, which we use as the reference
10661          * count:
10662          */
10663         if (parent_event->parent)
10664                 parent_event = parent_event->parent;
10665
10666         child_event = perf_event_alloc(&parent_event->attr,
10667                                            parent_event->cpu,
10668                                            child,
10669                                            group_leader, parent_event,
10670                                            NULL, NULL, -1);
10671         if (IS_ERR(child_event))
10672                 return child_event;
10673
10674         /*
10675          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10676          * must be under the same lock in order to serialize against
10677          * perf_event_release_kernel(), such that either we must observe
10678          * is_orphaned_event() or they will observe us on the child_list.
10679          */
10680         mutex_lock(&parent_event->child_mutex);
10681         if (is_orphaned_event(parent_event) ||
10682             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10683                 mutex_unlock(&parent_event->child_mutex);
10684                 free_event(child_event);
10685                 return NULL;
10686         }
10687
10688         get_ctx(child_ctx);
10689
10690         /*
10691          * Make the child state follow the state of the parent event,
10692          * not its attr.disabled bit.  We hold the parent's mutex,
10693          * so we won't race with perf_event_{en, dis}able_family.
10694          */
10695         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10696                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10697         else
10698                 child_event->state = PERF_EVENT_STATE_OFF;
10699
10700         if (parent_event->attr.freq) {
10701                 u64 sample_period = parent_event->hw.sample_period;
10702                 struct hw_perf_event *hwc = &child_event->hw;
10703
10704                 hwc->sample_period = sample_period;
10705                 hwc->last_period   = sample_period;
10706
10707                 local64_set(&hwc->period_left, sample_period);
10708         }
10709
10710         child_event->ctx = child_ctx;
10711         child_event->overflow_handler = parent_event->overflow_handler;
10712         child_event->overflow_handler_context
10713                 = parent_event->overflow_handler_context;
10714
10715         /*
10716          * Precalculate sample_data sizes
10717          */
10718         perf_event__header_size(child_event);
10719         perf_event__id_header_size(child_event);
10720
10721         /*
10722          * Link it up in the child's context:
10723          */
10724         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10725         add_event_to_ctx(child_event, child_ctx);
10726         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10727
10728         /*
10729          * Link this into the parent event's child list
10730          */
10731         list_add_tail(&child_event->child_list, &parent_event->child_list);
10732         mutex_unlock(&parent_event->child_mutex);
10733
10734         return child_event;
10735 }
10736
10737 /*
10738  * Inherits an event group.
10739  *
10740  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10741  * This matches with perf_event_release_kernel() removing all child events.
10742  *
10743  * Returns:
10744  *  - 0 on success
10745  *  - <0 on error
10746  */
10747 static int inherit_group(struct perf_event *parent_event,
10748               struct task_struct *parent,
10749               struct perf_event_context *parent_ctx,
10750               struct task_struct *child,
10751               struct perf_event_context *child_ctx)
10752 {
10753         struct perf_event *leader;
10754         struct perf_event *sub;
10755         struct perf_event *child_ctr;
10756
10757         leader = inherit_event(parent_event, parent, parent_ctx,
10758                                  child, NULL, child_ctx);
10759         if (IS_ERR(leader))
10760                 return PTR_ERR(leader);
10761         /*
10762          * @leader can be NULL here because of is_orphaned_event(). In this
10763          * case inherit_event() will create individual events, similar to what
10764          * perf_group_detach() would do anyway.
10765          */
10766         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10767                 child_ctr = inherit_event(sub, parent, parent_ctx,
10768                                             child, leader, child_ctx);
10769                 if (IS_ERR(child_ctr))
10770                         return PTR_ERR(child_ctr);
10771         }
10772         return 0;
10773 }
10774
10775 /*
10776  * Creates the child task context and tries to inherit the event-group.
10777  *
10778  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10779  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10780  * consistent with perf_event_release_kernel() removing all child events.
10781  *
10782  * Returns:
10783  *  - 0 on success
10784  *  - <0 on error
10785  */
10786 static int
10787 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10788                    struct perf_event_context *parent_ctx,
10789                    struct task_struct *child, int ctxn,
10790                    int *inherited_all)
10791 {
10792         int ret;
10793         struct perf_event_context *child_ctx;
10794
10795         if (!event->attr.inherit) {
10796                 *inherited_all = 0;
10797                 return 0;
10798         }
10799
10800         child_ctx = child->perf_event_ctxp[ctxn];
10801         if (!child_ctx) {
10802                 /*
10803                  * This is executed from the parent task context, so
10804                  * inherit events that have been marked for cloning.
10805                  * First allocate and initialize a context for the
10806                  * child.
10807                  */
10808                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10809                 if (!child_ctx)
10810                         return -ENOMEM;
10811
10812                 child->perf_event_ctxp[ctxn] = child_ctx;
10813         }
10814
10815         ret = inherit_group(event, parent, parent_ctx,
10816                             child, child_ctx);
10817
10818         if (ret)
10819                 *inherited_all = 0;
10820
10821         return ret;
10822 }
10823
10824 /*
10825  * Initialize the perf_event context in task_struct
10826  */
10827 static int perf_event_init_context(struct task_struct *child, int ctxn)
10828 {
10829         struct perf_event_context *child_ctx, *parent_ctx;
10830         struct perf_event_context *cloned_ctx;
10831         struct perf_event *event;
10832         struct task_struct *parent = current;
10833         int inherited_all = 1;
10834         unsigned long flags;
10835         int ret = 0;
10836
10837         if (likely(!parent->perf_event_ctxp[ctxn]))
10838                 return 0;
10839
10840         /*
10841          * If the parent's context is a clone, pin it so it won't get
10842          * swapped under us.
10843          */
10844         parent_ctx = perf_pin_task_context(parent, ctxn);
10845         if (!parent_ctx)
10846                 return 0;
10847
10848         /*
10849          * No need to check if parent_ctx != NULL here; since we saw
10850          * it non-NULL earlier, the only reason for it to become NULL
10851          * is if we exit, and since we're currently in the middle of
10852          * a fork we can't be exiting at the same time.
10853          */
10854
10855         /*
10856          * Lock the parent list. No need to lock the child - not PID
10857          * hashed yet and not running, so nobody can access it.
10858          */
10859         mutex_lock(&parent_ctx->mutex);
10860
10861         /*
10862          * We dont have to disable NMIs - we are only looking at
10863          * the list, not manipulating it:
10864          */
10865         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10866                 ret = inherit_task_group(event, parent, parent_ctx,
10867                                          child, ctxn, &inherited_all);
10868                 if (ret)
10869                         goto out_unlock;
10870         }
10871
10872         /*
10873          * We can't hold ctx->lock when iterating the ->flexible_group list due
10874          * to allocations, but we need to prevent rotation because
10875          * rotate_ctx() will change the list from interrupt context.
10876          */
10877         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10878         parent_ctx->rotate_disable = 1;
10879         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10880
10881         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10882                 ret = inherit_task_group(event, parent, parent_ctx,
10883                                          child, ctxn, &inherited_all);
10884                 if (ret)
10885                         goto out_unlock;
10886         }
10887
10888         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10889         parent_ctx->rotate_disable = 0;
10890
10891         child_ctx = child->perf_event_ctxp[ctxn];
10892
10893         if (child_ctx && inherited_all) {
10894                 /*
10895                  * Mark the child context as a clone of the parent
10896                  * context, or of whatever the parent is a clone of.
10897                  *
10898                  * Note that if the parent is a clone, the holding of
10899                  * parent_ctx->lock avoids it from being uncloned.
10900                  */
10901                 cloned_ctx = parent_ctx->parent_ctx;
10902                 if (cloned_ctx) {
10903                         child_ctx->parent_ctx = cloned_ctx;
10904                         child_ctx->parent_gen = parent_ctx->parent_gen;
10905                 } else {
10906                         child_ctx->parent_ctx = parent_ctx;
10907                         child_ctx->parent_gen = parent_ctx->generation;
10908                 }
10909                 get_ctx(child_ctx->parent_ctx);
10910         }
10911
10912         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10913 out_unlock:
10914         mutex_unlock(&parent_ctx->mutex);
10915
10916         perf_unpin_context(parent_ctx);
10917         put_ctx(parent_ctx);
10918
10919         return ret;
10920 }
10921
10922 /*
10923  * Initialize the perf_event context in task_struct
10924  */
10925 int perf_event_init_task(struct task_struct *child)
10926 {
10927         int ctxn, ret;
10928
10929         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10930         mutex_init(&child->perf_event_mutex);
10931         INIT_LIST_HEAD(&child->perf_event_list);
10932
10933         for_each_task_context_nr(ctxn) {
10934                 ret = perf_event_init_context(child, ctxn);
10935                 if (ret) {
10936                         perf_event_free_task(child);
10937                         return ret;
10938                 }
10939         }
10940
10941         return 0;
10942 }
10943
10944 static void __init perf_event_init_all_cpus(void)
10945 {
10946         struct swevent_htable *swhash;
10947         int cpu;
10948
10949         for_each_possible_cpu(cpu) {
10950                 swhash = &per_cpu(swevent_htable, cpu);
10951                 mutex_init(&swhash->hlist_mutex);
10952                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10953
10954                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10955                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10956
10957 #ifdef CONFIG_CGROUP_PERF
10958                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10959 #endif
10960                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10961         }
10962 }
10963
10964 int perf_event_init_cpu(unsigned int cpu)
10965 {
10966         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10967
10968         mutex_lock(&swhash->hlist_mutex);
10969         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10970                 struct swevent_hlist *hlist;
10971
10972                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10973                 WARN_ON(!hlist);
10974                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10975         }
10976         mutex_unlock(&swhash->hlist_mutex);
10977         return 0;
10978 }
10979
10980 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10981 static void __perf_event_exit_context(void *__info)
10982 {
10983         struct perf_event_context *ctx = __info;
10984         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10985         struct perf_event *event;
10986
10987         raw_spin_lock(&ctx->lock);
10988         list_for_each_entry(event, &ctx->event_list, event_entry)
10989                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10990         raw_spin_unlock(&ctx->lock);
10991 }
10992
10993 static void perf_event_exit_cpu_context(int cpu)
10994 {
10995         struct perf_event_context *ctx;
10996         struct pmu *pmu;
10997         int idx;
10998
10999         idx = srcu_read_lock(&pmus_srcu);
11000         list_for_each_entry_rcu(pmu, &pmus, entry) {
11001                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
11002
11003                 mutex_lock(&ctx->mutex);
11004                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11005                 mutex_unlock(&ctx->mutex);
11006         }
11007         srcu_read_unlock(&pmus_srcu, idx);
11008 }
11009 #else
11010
11011 static void perf_event_exit_cpu_context(int cpu) { }
11012
11013 #endif
11014
11015 int perf_event_exit_cpu(unsigned int cpu)
11016 {
11017         perf_event_exit_cpu_context(cpu);
11018         return 0;
11019 }
11020
11021 static int
11022 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11023 {
11024         int cpu;
11025
11026         for_each_online_cpu(cpu)
11027                 perf_event_exit_cpu(cpu);
11028
11029         return NOTIFY_OK;
11030 }
11031
11032 /*
11033  * Run the perf reboot notifier at the very last possible moment so that
11034  * the generic watchdog code runs as long as possible.
11035  */
11036 static struct notifier_block perf_reboot_notifier = {
11037         .notifier_call = perf_reboot,
11038         .priority = INT_MIN,
11039 };
11040
11041 void __init perf_event_init(void)
11042 {
11043         int ret;
11044
11045         idr_init(&pmu_idr);
11046
11047         perf_event_init_all_cpus();
11048         init_srcu_struct(&pmus_srcu);
11049         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11050         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11051         perf_pmu_register(&perf_task_clock, NULL, -1);
11052         perf_tp_register();
11053         perf_event_init_cpu(smp_processor_id());
11054         register_reboot_notifier(&perf_reboot_notifier);
11055
11056         ret = init_hw_breakpoint();
11057         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11058
11059         /*
11060          * Build time assertion that we keep the data_head at the intended
11061          * location.  IOW, validation we got the __reserved[] size right.
11062          */
11063         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11064                      != 1024);
11065 }
11066
11067 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11068                               char *page)
11069 {
11070         struct perf_pmu_events_attr *pmu_attr =
11071                 container_of(attr, struct perf_pmu_events_attr, attr);
11072
11073         if (pmu_attr->event_str)
11074                 return sprintf(page, "%s\n", pmu_attr->event_str);
11075
11076         return 0;
11077 }
11078 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11079
11080 static int __init perf_event_sysfs_init(void)
11081 {
11082         struct pmu *pmu;
11083         int ret;
11084
11085         mutex_lock(&pmus_lock);
11086
11087         ret = bus_register(&pmu_bus);
11088         if (ret)
11089                 goto unlock;
11090
11091         list_for_each_entry(pmu, &pmus, entry) {
11092                 if (!pmu->name || pmu->type < 0)
11093                         continue;
11094
11095                 ret = pmu_dev_alloc(pmu);
11096                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11097         }
11098         pmu_bus_running = 1;
11099         ret = 0;
11100
11101 unlock:
11102         mutex_unlock(&pmus_lock);
11103
11104         return ret;
11105 }
11106 device_initcall(perf_event_sysfs_init);
11107
11108 #ifdef CONFIG_CGROUP_PERF
11109 static struct cgroup_subsys_state *
11110 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11111 {
11112         struct perf_cgroup *jc;
11113
11114         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11115         if (!jc)
11116                 return ERR_PTR(-ENOMEM);
11117
11118         jc->info = alloc_percpu(struct perf_cgroup_info);
11119         if (!jc->info) {
11120                 kfree(jc);
11121                 return ERR_PTR(-ENOMEM);
11122         }
11123
11124         return &jc->css;
11125 }
11126
11127 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11128 {
11129         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11130
11131         free_percpu(jc->info);
11132         kfree(jc);
11133 }
11134
11135 static int __perf_cgroup_move(void *info)
11136 {
11137         struct task_struct *task = info;
11138         rcu_read_lock();
11139         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11140         rcu_read_unlock();
11141         return 0;
11142 }
11143
11144 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11145 {
11146         struct task_struct *task;
11147         struct cgroup_subsys_state *css;
11148
11149         cgroup_taskset_for_each(task, css, tset)
11150                 task_function_call(task, __perf_cgroup_move, task);
11151 }
11152
11153 struct cgroup_subsys perf_event_cgrp_subsys = {
11154         .css_alloc      = perf_cgroup_css_alloc,
11155         .css_free       = perf_cgroup_css_free,
11156         .attach         = perf_cgroup_attach,
11157         /*
11158          * Implicitly enable on dfl hierarchy so that perf events can
11159          * always be filtered by cgroup2 path as long as perf_event
11160          * controller is not mounted on a legacy hierarchy.
11161          */
11162         .implicit_on_dfl = true,
11163 };
11164 #endif /* CONFIG_CGROUP_PERF */