]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/events/core.c
mm, fs: reduce fault, page_mkwrite, and pfn_mkwrite to take only vmf
[karo-tx-linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57         struct task_struct      *p;
58         remote_function_f       func;
59         void                    *info;
60         int                     ret;
61 };
62
63 static void remote_function(void *data)
64 {
65         struct remote_function_call *tfc = data;
66         struct task_struct *p = tfc->p;
67
68         if (p) {
69                 /* -EAGAIN */
70                 if (task_cpu(p) != smp_processor_id())
71                         return;
72
73                 /*
74                  * Now that we're on right CPU with IRQs disabled, we can test
75                  * if we hit the right task without races.
76                  */
77
78                 tfc->ret = -ESRCH; /* No such (running) process */
79                 if (p != current)
80                         return;
81         }
82
83         tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:          the task to evaluate
89  * @func:       the function to be called
90  * @info:       the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *          -ESRCH  - when the process isn't running
97  *          -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102         struct remote_function_call data = {
103                 .p      = p,
104                 .func   = func,
105                 .info   = info,
106                 .ret    = -EAGAIN,
107         };
108         int ret;
109
110         do {
111                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112                 if (!ret)
113                         ret = data.ret;
114         } while (ret == -EAGAIN);
115
116         return ret;
117 }
118
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:       the function to be called
122  * @info:       the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130         struct remote_function_call data = {
131                 .p      = NULL,
132                 .func   = func,
133                 .info   = info,
134                 .ret    = -ENXIO, /* No such CPU */
135         };
136
137         smp_call_function_single(cpu, remote_function, &data, 1);
138
139         return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149                           struct perf_event_context *ctx)
150 {
151         raw_spin_lock(&cpuctx->ctx.lock);
152         if (ctx)
153                 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157                             struct perf_event_context *ctx)
158 {
159         if (ctx)
160                 raw_spin_unlock(&ctx->lock);
161         raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191                         struct perf_event_context *, void *);
192
193 struct event_function_struct {
194         struct perf_event *event;
195         event_f func;
196         void *data;
197 };
198
199 static int event_function(void *info)
200 {
201         struct event_function_struct *efs = info;
202         struct perf_event *event = efs->event;
203         struct perf_event_context *ctx = event->ctx;
204         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205         struct perf_event_context *task_ctx = cpuctx->task_ctx;
206         int ret = 0;
207
208         WARN_ON_ONCE(!irqs_disabled());
209
210         perf_ctx_lock(cpuctx, task_ctx);
211         /*
212          * Since we do the IPI call without holding ctx->lock things can have
213          * changed, double check we hit the task we set out to hit.
214          */
215         if (ctx->task) {
216                 if (ctx->task != current) {
217                         ret = -ESRCH;
218                         goto unlock;
219                 }
220
221                 /*
222                  * We only use event_function_call() on established contexts,
223                  * and event_function() is only ever called when active (or
224                  * rather, we'll have bailed in task_function_call() or the
225                  * above ctx->task != current test), therefore we must have
226                  * ctx->is_active here.
227                  */
228                 WARN_ON_ONCE(!ctx->is_active);
229                 /*
230                  * And since we have ctx->is_active, cpuctx->task_ctx must
231                  * match.
232                  */
233                 WARN_ON_ONCE(task_ctx != ctx);
234         } else {
235                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236         }
237
238         efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240         perf_ctx_unlock(cpuctx, task_ctx);
241
242         return ret;
243 }
244
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247         struct perf_event_context *ctx = event->ctx;
248         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249         struct event_function_struct efs = {
250                 .event = event,
251                 .func = func,
252                 .data = data,
253         };
254
255         if (!event->parent) {
256                 /*
257                  * If this is a !child event, we must hold ctx::mutex to
258                  * stabilize the the event->ctx relation. See
259                  * perf_event_ctx_lock().
260                  */
261                 lockdep_assert_held(&ctx->mutex);
262         }
263
264         if (!task) {
265                 cpu_function_call(event->cpu, event_function, &efs);
266                 return;
267         }
268
269         if (task == TASK_TOMBSTONE)
270                 return;
271
272 again:
273         if (!task_function_call(task, event_function, &efs))
274                 return;
275
276         raw_spin_lock_irq(&ctx->lock);
277         /*
278          * Reload the task pointer, it might have been changed by
279          * a concurrent perf_event_context_sched_out().
280          */
281         task = ctx->task;
282         if (task == TASK_TOMBSTONE) {
283                 raw_spin_unlock_irq(&ctx->lock);
284                 return;
285         }
286         if (ctx->is_active) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 goto again;
289         }
290         func(event, NULL, ctx, data);
291         raw_spin_unlock_irq(&ctx->lock);
292 }
293
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300         struct perf_event_context *ctx = event->ctx;
301         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302         struct task_struct *task = READ_ONCE(ctx->task);
303         struct perf_event_context *task_ctx = NULL;
304
305         WARN_ON_ONCE(!irqs_disabled());
306
307         if (task) {
308                 if (task == TASK_TOMBSTONE)
309                         return;
310
311                 task_ctx = ctx;
312         }
313
314         perf_ctx_lock(cpuctx, task_ctx);
315
316         task = ctx->task;
317         if (task == TASK_TOMBSTONE)
318                 goto unlock;
319
320         if (task) {
321                 /*
322                  * We must be either inactive or active and the right task,
323                  * otherwise we're screwed, since we cannot IPI to somewhere
324                  * else.
325                  */
326                 if (ctx->is_active) {
327                         if (WARN_ON_ONCE(task != current))
328                                 goto unlock;
329
330                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331                                 goto unlock;
332                 }
333         } else {
334                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335         }
336
337         func(event, cpuctx, ctx, data);
338 unlock:
339         perf_ctx_unlock(cpuctx, task_ctx);
340 }
341
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343                        PERF_FLAG_FD_OUTPUT  |\
344                        PERF_FLAG_PID_CGROUP |\
345                        PERF_FLAG_FD_CLOEXEC)
346
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351         (PERF_SAMPLE_BRANCH_KERNEL |\
352          PERF_SAMPLE_BRANCH_HV)
353
354 enum event_type_t {
355         EVENT_FLEXIBLE = 0x1,
356         EVENT_PINNED = 0x2,
357         EVENT_TIME = 0x4,
358         /* see ctx_resched() for details */
359         EVENT_CPU = 0x8,
360         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
361 };
362
363 /*
364  * perf_sched_events : >0 events exist
365  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
366  */
367
368 static void perf_sched_delayed(struct work_struct *work);
369 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
370 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
371 static DEFINE_MUTEX(perf_sched_mutex);
372 static atomic_t perf_sched_count;
373
374 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
375 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
376 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
377
378 static atomic_t nr_mmap_events __read_mostly;
379 static atomic_t nr_comm_events __read_mostly;
380 static atomic_t nr_task_events __read_mostly;
381 static atomic_t nr_freq_events __read_mostly;
382 static atomic_t nr_switch_events __read_mostly;
383
384 static LIST_HEAD(pmus);
385 static DEFINE_MUTEX(pmus_lock);
386 static struct srcu_struct pmus_srcu;
387
388 /*
389  * perf event paranoia level:
390  *  -1 - not paranoid at all
391  *   0 - disallow raw tracepoint access for unpriv
392  *   1 - disallow cpu events for unpriv
393  *   2 - disallow kernel profiling for unpriv
394  */
395 int sysctl_perf_event_paranoid __read_mostly = 2;
396
397 /* Minimum for 512 kiB + 1 user control page */
398 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
399
400 /*
401  * max perf event sample rate
402  */
403 #define DEFAULT_MAX_SAMPLE_RATE         100000
404 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
405 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
406
407 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
408
409 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
410 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
411
412 static int perf_sample_allowed_ns __read_mostly =
413         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
414
415 static void update_perf_cpu_limits(void)
416 {
417         u64 tmp = perf_sample_period_ns;
418
419         tmp *= sysctl_perf_cpu_time_max_percent;
420         tmp = div_u64(tmp, 100);
421         if (!tmp)
422                 tmp = 1;
423
424         WRITE_ONCE(perf_sample_allowed_ns, tmp);
425 }
426
427 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
428
429 int perf_proc_update_handler(struct ctl_table *table, int write,
430                 void __user *buffer, size_t *lenp,
431                 loff_t *ppos)
432 {
433         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
434
435         if (ret || !write)
436                 return ret;
437
438         /*
439          * If throttling is disabled don't allow the write:
440          */
441         if (sysctl_perf_cpu_time_max_percent == 100 ||
442             sysctl_perf_cpu_time_max_percent == 0)
443                 return -EINVAL;
444
445         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
446         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
447         update_perf_cpu_limits();
448
449         return 0;
450 }
451
452 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
453
454 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
455                                 void __user *buffer, size_t *lenp,
456                                 loff_t *ppos)
457 {
458         int ret = proc_dointvec(table, write, buffer, lenp, ppos);
459
460         if (ret || !write)
461                 return ret;
462
463         if (sysctl_perf_cpu_time_max_percent == 100 ||
464             sysctl_perf_cpu_time_max_percent == 0) {
465                 printk(KERN_WARNING
466                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
467                 WRITE_ONCE(perf_sample_allowed_ns, 0);
468         } else {
469                 update_perf_cpu_limits();
470         }
471
472         return 0;
473 }
474
475 /*
476  * perf samples are done in some very critical code paths (NMIs).
477  * If they take too much CPU time, the system can lock up and not
478  * get any real work done.  This will drop the sample rate when
479  * we detect that events are taking too long.
480  */
481 #define NR_ACCUMULATED_SAMPLES 128
482 static DEFINE_PER_CPU(u64, running_sample_length);
483
484 static u64 __report_avg;
485 static u64 __report_allowed;
486
487 static void perf_duration_warn(struct irq_work *w)
488 {
489         printk_ratelimited(KERN_INFO
490                 "perf: interrupt took too long (%lld > %lld), lowering "
491                 "kernel.perf_event_max_sample_rate to %d\n",
492                 __report_avg, __report_allowed,
493                 sysctl_perf_event_sample_rate);
494 }
495
496 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
497
498 void perf_sample_event_took(u64 sample_len_ns)
499 {
500         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
501         u64 running_len;
502         u64 avg_len;
503         u32 max;
504
505         if (max_len == 0)
506                 return;
507
508         /* Decay the counter by 1 average sample. */
509         running_len = __this_cpu_read(running_sample_length);
510         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
511         running_len += sample_len_ns;
512         __this_cpu_write(running_sample_length, running_len);
513
514         /*
515          * Note: this will be biased artifically low until we have
516          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
517          * from having to maintain a count.
518          */
519         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
520         if (avg_len <= max_len)
521                 return;
522
523         __report_avg = avg_len;
524         __report_allowed = max_len;
525
526         /*
527          * Compute a throttle threshold 25% below the current duration.
528          */
529         avg_len += avg_len / 4;
530         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
531         if (avg_len < max)
532                 max /= (u32)avg_len;
533         else
534                 max = 1;
535
536         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
537         WRITE_ONCE(max_samples_per_tick, max);
538
539         sysctl_perf_event_sample_rate = max * HZ;
540         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
541
542         if (!irq_work_queue(&perf_duration_work)) {
543                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
544                              "kernel.perf_event_max_sample_rate to %d\n",
545                              __report_avg, __report_allowed,
546                              sysctl_perf_event_sample_rate);
547         }
548 }
549
550 static atomic64_t perf_event_id;
551
552 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
553                               enum event_type_t event_type);
554
555 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
556                              enum event_type_t event_type,
557                              struct task_struct *task);
558
559 static void update_context_time(struct perf_event_context *ctx);
560 static u64 perf_event_time(struct perf_event *event);
561
562 void __weak perf_event_print_debug(void)        { }
563
564 extern __weak const char *perf_pmu_name(void)
565 {
566         return "pmu";
567 }
568
569 static inline u64 perf_clock(void)
570 {
571         return local_clock();
572 }
573
574 static inline u64 perf_event_clock(struct perf_event *event)
575 {
576         return event->clock();
577 }
578
579 #ifdef CONFIG_CGROUP_PERF
580
581 static inline bool
582 perf_cgroup_match(struct perf_event *event)
583 {
584         struct perf_event_context *ctx = event->ctx;
585         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
586
587         /* @event doesn't care about cgroup */
588         if (!event->cgrp)
589                 return true;
590
591         /* wants specific cgroup scope but @cpuctx isn't associated with any */
592         if (!cpuctx->cgrp)
593                 return false;
594
595         /*
596          * Cgroup scoping is recursive.  An event enabled for a cgroup is
597          * also enabled for all its descendant cgroups.  If @cpuctx's
598          * cgroup is a descendant of @event's (the test covers identity
599          * case), it's a match.
600          */
601         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
602                                     event->cgrp->css.cgroup);
603 }
604
605 static inline void perf_detach_cgroup(struct perf_event *event)
606 {
607         css_put(&event->cgrp->css);
608         event->cgrp = NULL;
609 }
610
611 static inline int is_cgroup_event(struct perf_event *event)
612 {
613         return event->cgrp != NULL;
614 }
615
616 static inline u64 perf_cgroup_event_time(struct perf_event *event)
617 {
618         struct perf_cgroup_info *t;
619
620         t = per_cpu_ptr(event->cgrp->info, event->cpu);
621         return t->time;
622 }
623
624 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
625 {
626         struct perf_cgroup_info *info;
627         u64 now;
628
629         now = perf_clock();
630
631         info = this_cpu_ptr(cgrp->info);
632
633         info->time += now - info->timestamp;
634         info->timestamp = now;
635 }
636
637 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
638 {
639         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
640         if (cgrp_out)
641                 __update_cgrp_time(cgrp_out);
642 }
643
644 static inline void update_cgrp_time_from_event(struct perf_event *event)
645 {
646         struct perf_cgroup *cgrp;
647
648         /*
649          * ensure we access cgroup data only when needed and
650          * when we know the cgroup is pinned (css_get)
651          */
652         if (!is_cgroup_event(event))
653                 return;
654
655         cgrp = perf_cgroup_from_task(current, event->ctx);
656         /*
657          * Do not update time when cgroup is not active
658          */
659         if (cgrp == event->cgrp)
660                 __update_cgrp_time(event->cgrp);
661 }
662
663 static inline void
664 perf_cgroup_set_timestamp(struct task_struct *task,
665                           struct perf_event_context *ctx)
666 {
667         struct perf_cgroup *cgrp;
668         struct perf_cgroup_info *info;
669
670         /*
671          * ctx->lock held by caller
672          * ensure we do not access cgroup data
673          * unless we have the cgroup pinned (css_get)
674          */
675         if (!task || !ctx->nr_cgroups)
676                 return;
677
678         cgrp = perf_cgroup_from_task(task, ctx);
679         info = this_cpu_ptr(cgrp->info);
680         info->timestamp = ctx->timestamp;
681 }
682
683 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
684
685 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
686 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
687
688 /*
689  * reschedule events based on the cgroup constraint of task.
690  *
691  * mode SWOUT : schedule out everything
692  * mode SWIN : schedule in based on cgroup for next
693  */
694 static void perf_cgroup_switch(struct task_struct *task, int mode)
695 {
696         struct perf_cpu_context *cpuctx;
697         struct list_head *list;
698         unsigned long flags;
699
700         /*
701          * Disable interrupts and preemption to avoid this CPU's
702          * cgrp_cpuctx_entry to change under us.
703          */
704         local_irq_save(flags);
705
706         list = this_cpu_ptr(&cgrp_cpuctx_list);
707         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
708                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
709
710                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
711                 perf_pmu_disable(cpuctx->ctx.pmu);
712
713                 if (mode & PERF_CGROUP_SWOUT) {
714                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
715                         /*
716                          * must not be done before ctxswout due
717                          * to event_filter_match() in event_sched_out()
718                          */
719                         cpuctx->cgrp = NULL;
720                 }
721
722                 if (mode & PERF_CGROUP_SWIN) {
723                         WARN_ON_ONCE(cpuctx->cgrp);
724                         /*
725                          * set cgrp before ctxsw in to allow
726                          * event_filter_match() to not have to pass
727                          * task around
728                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
729                          * because cgorup events are only per-cpu
730                          */
731                         cpuctx->cgrp = perf_cgroup_from_task(task,
732                                                              &cpuctx->ctx);
733                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
734                 }
735                 perf_pmu_enable(cpuctx->ctx.pmu);
736                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
737         }
738
739         local_irq_restore(flags);
740 }
741
742 static inline void perf_cgroup_sched_out(struct task_struct *task,
743                                          struct task_struct *next)
744 {
745         struct perf_cgroup *cgrp1;
746         struct perf_cgroup *cgrp2 = NULL;
747
748         rcu_read_lock();
749         /*
750          * we come here when we know perf_cgroup_events > 0
751          * we do not need to pass the ctx here because we know
752          * we are holding the rcu lock
753          */
754         cgrp1 = perf_cgroup_from_task(task, NULL);
755         cgrp2 = perf_cgroup_from_task(next, NULL);
756
757         /*
758          * only schedule out current cgroup events if we know
759          * that we are switching to a different cgroup. Otherwise,
760          * do no touch the cgroup events.
761          */
762         if (cgrp1 != cgrp2)
763                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
764
765         rcu_read_unlock();
766 }
767
768 static inline void perf_cgroup_sched_in(struct task_struct *prev,
769                                         struct task_struct *task)
770 {
771         struct perf_cgroup *cgrp1;
772         struct perf_cgroup *cgrp2 = NULL;
773
774         rcu_read_lock();
775         /*
776          * we come here when we know perf_cgroup_events > 0
777          * we do not need to pass the ctx here because we know
778          * we are holding the rcu lock
779          */
780         cgrp1 = perf_cgroup_from_task(task, NULL);
781         cgrp2 = perf_cgroup_from_task(prev, NULL);
782
783         /*
784          * only need to schedule in cgroup events if we are changing
785          * cgroup during ctxsw. Cgroup events were not scheduled
786          * out of ctxsw out if that was not the case.
787          */
788         if (cgrp1 != cgrp2)
789                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
790
791         rcu_read_unlock();
792 }
793
794 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
795                                       struct perf_event_attr *attr,
796                                       struct perf_event *group_leader)
797 {
798         struct perf_cgroup *cgrp;
799         struct cgroup_subsys_state *css;
800         struct fd f = fdget(fd);
801         int ret = 0;
802
803         if (!f.file)
804                 return -EBADF;
805
806         css = css_tryget_online_from_dir(f.file->f_path.dentry,
807                                          &perf_event_cgrp_subsys);
808         if (IS_ERR(css)) {
809                 ret = PTR_ERR(css);
810                 goto out;
811         }
812
813         cgrp = container_of(css, struct perf_cgroup, css);
814         event->cgrp = cgrp;
815
816         /*
817          * all events in a group must monitor
818          * the same cgroup because a task belongs
819          * to only one perf cgroup at a time
820          */
821         if (group_leader && group_leader->cgrp != cgrp) {
822                 perf_detach_cgroup(event);
823                 ret = -EINVAL;
824         }
825 out:
826         fdput(f);
827         return ret;
828 }
829
830 static inline void
831 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
832 {
833         struct perf_cgroup_info *t;
834         t = per_cpu_ptr(event->cgrp->info, event->cpu);
835         event->shadow_ctx_time = now - t->timestamp;
836 }
837
838 static inline void
839 perf_cgroup_defer_enabled(struct perf_event *event)
840 {
841         /*
842          * when the current task's perf cgroup does not match
843          * the event's, we need to remember to call the
844          * perf_mark_enable() function the first time a task with
845          * a matching perf cgroup is scheduled in.
846          */
847         if (is_cgroup_event(event) && !perf_cgroup_match(event))
848                 event->cgrp_defer_enabled = 1;
849 }
850
851 static inline void
852 perf_cgroup_mark_enabled(struct perf_event *event,
853                          struct perf_event_context *ctx)
854 {
855         struct perf_event *sub;
856         u64 tstamp = perf_event_time(event);
857
858         if (!event->cgrp_defer_enabled)
859                 return;
860
861         event->cgrp_defer_enabled = 0;
862
863         event->tstamp_enabled = tstamp - event->total_time_enabled;
864         list_for_each_entry(sub, &event->sibling_list, group_entry) {
865                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
866                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
867                         sub->cgrp_defer_enabled = 0;
868                 }
869         }
870 }
871
872 /*
873  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
874  * cleared when last cgroup event is removed.
875  */
876 static inline void
877 list_update_cgroup_event(struct perf_event *event,
878                          struct perf_event_context *ctx, bool add)
879 {
880         struct perf_cpu_context *cpuctx;
881         struct list_head *cpuctx_entry;
882
883         if (!is_cgroup_event(event))
884                 return;
885
886         if (add && ctx->nr_cgroups++)
887                 return;
888         else if (!add && --ctx->nr_cgroups)
889                 return;
890         /*
891          * Because cgroup events are always per-cpu events,
892          * this will always be called from the right CPU.
893          */
894         cpuctx = __get_cpu_context(ctx);
895         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
896         /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
897         if (add) {
898                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
899                 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
900                         cpuctx->cgrp = event->cgrp;
901         } else {
902                 list_del(cpuctx_entry);
903                 cpuctx->cgrp = NULL;
904         }
905 }
906
907 #else /* !CONFIG_CGROUP_PERF */
908
909 static inline bool
910 perf_cgroup_match(struct perf_event *event)
911 {
912         return true;
913 }
914
915 static inline void perf_detach_cgroup(struct perf_event *event)
916 {}
917
918 static inline int is_cgroup_event(struct perf_event *event)
919 {
920         return 0;
921 }
922
923 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
924 {
925         return 0;
926 }
927
928 static inline void update_cgrp_time_from_event(struct perf_event *event)
929 {
930 }
931
932 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
933 {
934 }
935
936 static inline void perf_cgroup_sched_out(struct task_struct *task,
937                                          struct task_struct *next)
938 {
939 }
940
941 static inline void perf_cgroup_sched_in(struct task_struct *prev,
942                                         struct task_struct *task)
943 {
944 }
945
946 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
947                                       struct perf_event_attr *attr,
948                                       struct perf_event *group_leader)
949 {
950         return -EINVAL;
951 }
952
953 static inline void
954 perf_cgroup_set_timestamp(struct task_struct *task,
955                           struct perf_event_context *ctx)
956 {
957 }
958
959 void
960 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
961 {
962 }
963
964 static inline void
965 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
966 {
967 }
968
969 static inline u64 perf_cgroup_event_time(struct perf_event *event)
970 {
971         return 0;
972 }
973
974 static inline void
975 perf_cgroup_defer_enabled(struct perf_event *event)
976 {
977 }
978
979 static inline void
980 perf_cgroup_mark_enabled(struct perf_event *event,
981                          struct perf_event_context *ctx)
982 {
983 }
984
985 static inline void
986 list_update_cgroup_event(struct perf_event *event,
987                          struct perf_event_context *ctx, bool add)
988 {
989 }
990
991 #endif
992
993 /*
994  * set default to be dependent on timer tick just
995  * like original code
996  */
997 #define PERF_CPU_HRTIMER (1000 / HZ)
998 /*
999  * function must be called with interrupts disbled
1000  */
1001 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1002 {
1003         struct perf_cpu_context *cpuctx;
1004         int rotations = 0;
1005
1006         WARN_ON(!irqs_disabled());
1007
1008         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1009         rotations = perf_rotate_context(cpuctx);
1010
1011         raw_spin_lock(&cpuctx->hrtimer_lock);
1012         if (rotations)
1013                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1014         else
1015                 cpuctx->hrtimer_active = 0;
1016         raw_spin_unlock(&cpuctx->hrtimer_lock);
1017
1018         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1019 }
1020
1021 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1022 {
1023         struct hrtimer *timer = &cpuctx->hrtimer;
1024         struct pmu *pmu = cpuctx->ctx.pmu;
1025         u64 interval;
1026
1027         /* no multiplexing needed for SW PMU */
1028         if (pmu->task_ctx_nr == perf_sw_context)
1029                 return;
1030
1031         /*
1032          * check default is sane, if not set then force to
1033          * default interval (1/tick)
1034          */
1035         interval = pmu->hrtimer_interval_ms;
1036         if (interval < 1)
1037                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1038
1039         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1040
1041         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1042         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1043         timer->function = perf_mux_hrtimer_handler;
1044 }
1045
1046 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1047 {
1048         struct hrtimer *timer = &cpuctx->hrtimer;
1049         struct pmu *pmu = cpuctx->ctx.pmu;
1050         unsigned long flags;
1051
1052         /* not for SW PMU */
1053         if (pmu->task_ctx_nr == perf_sw_context)
1054                 return 0;
1055
1056         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1057         if (!cpuctx->hrtimer_active) {
1058                 cpuctx->hrtimer_active = 1;
1059                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1060                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1061         }
1062         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1063
1064         return 0;
1065 }
1066
1067 void perf_pmu_disable(struct pmu *pmu)
1068 {
1069         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1070         if (!(*count)++)
1071                 pmu->pmu_disable(pmu);
1072 }
1073
1074 void perf_pmu_enable(struct pmu *pmu)
1075 {
1076         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1077         if (!--(*count))
1078                 pmu->pmu_enable(pmu);
1079 }
1080
1081 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1082
1083 /*
1084  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1085  * perf_event_task_tick() are fully serialized because they're strictly cpu
1086  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1087  * disabled, while perf_event_task_tick is called from IRQ context.
1088  */
1089 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1090 {
1091         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1092
1093         WARN_ON(!irqs_disabled());
1094
1095         WARN_ON(!list_empty(&ctx->active_ctx_list));
1096
1097         list_add(&ctx->active_ctx_list, head);
1098 }
1099
1100 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1101 {
1102         WARN_ON(!irqs_disabled());
1103
1104         WARN_ON(list_empty(&ctx->active_ctx_list));
1105
1106         list_del_init(&ctx->active_ctx_list);
1107 }
1108
1109 static void get_ctx(struct perf_event_context *ctx)
1110 {
1111         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1112 }
1113
1114 static void free_ctx(struct rcu_head *head)
1115 {
1116         struct perf_event_context *ctx;
1117
1118         ctx = container_of(head, struct perf_event_context, rcu_head);
1119         kfree(ctx->task_ctx_data);
1120         kfree(ctx);
1121 }
1122
1123 static void put_ctx(struct perf_event_context *ctx)
1124 {
1125         if (atomic_dec_and_test(&ctx->refcount)) {
1126                 if (ctx->parent_ctx)
1127                         put_ctx(ctx->parent_ctx);
1128                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1129                         put_task_struct(ctx->task);
1130                 call_rcu(&ctx->rcu_head, free_ctx);
1131         }
1132 }
1133
1134 /*
1135  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1136  * perf_pmu_migrate_context() we need some magic.
1137  *
1138  * Those places that change perf_event::ctx will hold both
1139  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1140  *
1141  * Lock ordering is by mutex address. There are two other sites where
1142  * perf_event_context::mutex nests and those are:
1143  *
1144  *  - perf_event_exit_task_context()    [ child , 0 ]
1145  *      perf_event_exit_event()
1146  *        put_event()                   [ parent, 1 ]
1147  *
1148  *  - perf_event_init_context()         [ parent, 0 ]
1149  *      inherit_task_group()
1150  *        inherit_group()
1151  *          inherit_event()
1152  *            perf_event_alloc()
1153  *              perf_init_event()
1154  *                perf_try_init_event() [ child , 1 ]
1155  *
1156  * While it appears there is an obvious deadlock here -- the parent and child
1157  * nesting levels are inverted between the two. This is in fact safe because
1158  * life-time rules separate them. That is an exiting task cannot fork, and a
1159  * spawning task cannot (yet) exit.
1160  *
1161  * But remember that that these are parent<->child context relations, and
1162  * migration does not affect children, therefore these two orderings should not
1163  * interact.
1164  *
1165  * The change in perf_event::ctx does not affect children (as claimed above)
1166  * because the sys_perf_event_open() case will install a new event and break
1167  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1168  * concerned with cpuctx and that doesn't have children.
1169  *
1170  * The places that change perf_event::ctx will issue:
1171  *
1172  *   perf_remove_from_context();
1173  *   synchronize_rcu();
1174  *   perf_install_in_context();
1175  *
1176  * to affect the change. The remove_from_context() + synchronize_rcu() should
1177  * quiesce the event, after which we can install it in the new location. This
1178  * means that only external vectors (perf_fops, prctl) can perturb the event
1179  * while in transit. Therefore all such accessors should also acquire
1180  * perf_event_context::mutex to serialize against this.
1181  *
1182  * However; because event->ctx can change while we're waiting to acquire
1183  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1184  * function.
1185  *
1186  * Lock order:
1187  *    cred_guard_mutex
1188  *      task_struct::perf_event_mutex
1189  *        perf_event_context::mutex
1190  *          perf_event::child_mutex;
1191  *            perf_event_context::lock
1192  *          perf_event::mmap_mutex
1193  *          mmap_sem
1194  */
1195 static struct perf_event_context *
1196 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1197 {
1198         struct perf_event_context *ctx;
1199
1200 again:
1201         rcu_read_lock();
1202         ctx = ACCESS_ONCE(event->ctx);
1203         if (!atomic_inc_not_zero(&ctx->refcount)) {
1204                 rcu_read_unlock();
1205                 goto again;
1206         }
1207         rcu_read_unlock();
1208
1209         mutex_lock_nested(&ctx->mutex, nesting);
1210         if (event->ctx != ctx) {
1211                 mutex_unlock(&ctx->mutex);
1212                 put_ctx(ctx);
1213                 goto again;
1214         }
1215
1216         return ctx;
1217 }
1218
1219 static inline struct perf_event_context *
1220 perf_event_ctx_lock(struct perf_event *event)
1221 {
1222         return perf_event_ctx_lock_nested(event, 0);
1223 }
1224
1225 static void perf_event_ctx_unlock(struct perf_event *event,
1226                                   struct perf_event_context *ctx)
1227 {
1228         mutex_unlock(&ctx->mutex);
1229         put_ctx(ctx);
1230 }
1231
1232 /*
1233  * This must be done under the ctx->lock, such as to serialize against
1234  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1235  * calling scheduler related locks and ctx->lock nests inside those.
1236  */
1237 static __must_check struct perf_event_context *
1238 unclone_ctx(struct perf_event_context *ctx)
1239 {
1240         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1241
1242         lockdep_assert_held(&ctx->lock);
1243
1244         if (parent_ctx)
1245                 ctx->parent_ctx = NULL;
1246         ctx->generation++;
1247
1248         return parent_ctx;
1249 }
1250
1251 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1252 {
1253         /*
1254          * only top level events have the pid namespace they were created in
1255          */
1256         if (event->parent)
1257                 event = event->parent;
1258
1259         return task_tgid_nr_ns(p, event->ns);
1260 }
1261
1262 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1263 {
1264         /*
1265          * only top level events have the pid namespace they were created in
1266          */
1267         if (event->parent)
1268                 event = event->parent;
1269
1270         return task_pid_nr_ns(p, event->ns);
1271 }
1272
1273 /*
1274  * If we inherit events we want to return the parent event id
1275  * to userspace.
1276  */
1277 static u64 primary_event_id(struct perf_event *event)
1278 {
1279         u64 id = event->id;
1280
1281         if (event->parent)
1282                 id = event->parent->id;
1283
1284         return id;
1285 }
1286
1287 /*
1288  * Get the perf_event_context for a task and lock it.
1289  *
1290  * This has to cope with with the fact that until it is locked,
1291  * the context could get moved to another task.
1292  */
1293 static struct perf_event_context *
1294 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1295 {
1296         struct perf_event_context *ctx;
1297
1298 retry:
1299         /*
1300          * One of the few rules of preemptible RCU is that one cannot do
1301          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1302          * part of the read side critical section was irqs-enabled -- see
1303          * rcu_read_unlock_special().
1304          *
1305          * Since ctx->lock nests under rq->lock we must ensure the entire read
1306          * side critical section has interrupts disabled.
1307          */
1308         local_irq_save(*flags);
1309         rcu_read_lock();
1310         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1311         if (ctx) {
1312                 /*
1313                  * If this context is a clone of another, it might
1314                  * get swapped for another underneath us by
1315                  * perf_event_task_sched_out, though the
1316                  * rcu_read_lock() protects us from any context
1317                  * getting freed.  Lock the context and check if it
1318                  * got swapped before we could get the lock, and retry
1319                  * if so.  If we locked the right context, then it
1320                  * can't get swapped on us any more.
1321                  */
1322                 raw_spin_lock(&ctx->lock);
1323                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1324                         raw_spin_unlock(&ctx->lock);
1325                         rcu_read_unlock();
1326                         local_irq_restore(*flags);
1327                         goto retry;
1328                 }
1329
1330                 if (ctx->task == TASK_TOMBSTONE ||
1331                     !atomic_inc_not_zero(&ctx->refcount)) {
1332                         raw_spin_unlock(&ctx->lock);
1333                         ctx = NULL;
1334                 } else {
1335                         WARN_ON_ONCE(ctx->task != task);
1336                 }
1337         }
1338         rcu_read_unlock();
1339         if (!ctx)
1340                 local_irq_restore(*flags);
1341         return ctx;
1342 }
1343
1344 /*
1345  * Get the context for a task and increment its pin_count so it
1346  * can't get swapped to another task.  This also increments its
1347  * reference count so that the context can't get freed.
1348  */
1349 static struct perf_event_context *
1350 perf_pin_task_context(struct task_struct *task, int ctxn)
1351 {
1352         struct perf_event_context *ctx;
1353         unsigned long flags;
1354
1355         ctx = perf_lock_task_context(task, ctxn, &flags);
1356         if (ctx) {
1357                 ++ctx->pin_count;
1358                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1359         }
1360         return ctx;
1361 }
1362
1363 static void perf_unpin_context(struct perf_event_context *ctx)
1364 {
1365         unsigned long flags;
1366
1367         raw_spin_lock_irqsave(&ctx->lock, flags);
1368         --ctx->pin_count;
1369         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1370 }
1371
1372 /*
1373  * Update the record of the current time in a context.
1374  */
1375 static void update_context_time(struct perf_event_context *ctx)
1376 {
1377         u64 now = perf_clock();
1378
1379         ctx->time += now - ctx->timestamp;
1380         ctx->timestamp = now;
1381 }
1382
1383 static u64 perf_event_time(struct perf_event *event)
1384 {
1385         struct perf_event_context *ctx = event->ctx;
1386
1387         if (is_cgroup_event(event))
1388                 return perf_cgroup_event_time(event);
1389
1390         return ctx ? ctx->time : 0;
1391 }
1392
1393 /*
1394  * Update the total_time_enabled and total_time_running fields for a event.
1395  */
1396 static void update_event_times(struct perf_event *event)
1397 {
1398         struct perf_event_context *ctx = event->ctx;
1399         u64 run_end;
1400
1401         lockdep_assert_held(&ctx->lock);
1402
1403         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1404             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1405                 return;
1406
1407         /*
1408          * in cgroup mode, time_enabled represents
1409          * the time the event was enabled AND active
1410          * tasks were in the monitored cgroup. This is
1411          * independent of the activity of the context as
1412          * there may be a mix of cgroup and non-cgroup events.
1413          *
1414          * That is why we treat cgroup events differently
1415          * here.
1416          */
1417         if (is_cgroup_event(event))
1418                 run_end = perf_cgroup_event_time(event);
1419         else if (ctx->is_active)
1420                 run_end = ctx->time;
1421         else
1422                 run_end = event->tstamp_stopped;
1423
1424         event->total_time_enabled = run_end - event->tstamp_enabled;
1425
1426         if (event->state == PERF_EVENT_STATE_INACTIVE)
1427                 run_end = event->tstamp_stopped;
1428         else
1429                 run_end = perf_event_time(event);
1430
1431         event->total_time_running = run_end - event->tstamp_running;
1432
1433 }
1434
1435 /*
1436  * Update total_time_enabled and total_time_running for all events in a group.
1437  */
1438 static void update_group_times(struct perf_event *leader)
1439 {
1440         struct perf_event *event;
1441
1442         update_event_times(leader);
1443         list_for_each_entry(event, &leader->sibling_list, group_entry)
1444                 update_event_times(event);
1445 }
1446
1447 static enum event_type_t get_event_type(struct perf_event *event)
1448 {
1449         struct perf_event_context *ctx = event->ctx;
1450         enum event_type_t event_type;
1451
1452         lockdep_assert_held(&ctx->lock);
1453
1454         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1455         if (!ctx->task)
1456                 event_type |= EVENT_CPU;
1457
1458         return event_type;
1459 }
1460
1461 static struct list_head *
1462 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1463 {
1464         if (event->attr.pinned)
1465                 return &ctx->pinned_groups;
1466         else
1467                 return &ctx->flexible_groups;
1468 }
1469
1470 /*
1471  * Add a event from the lists for its context.
1472  * Must be called with ctx->mutex and ctx->lock held.
1473  */
1474 static void
1475 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1476 {
1477         lockdep_assert_held(&ctx->lock);
1478
1479         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1480         event->attach_state |= PERF_ATTACH_CONTEXT;
1481
1482         /*
1483          * If we're a stand alone event or group leader, we go to the context
1484          * list, group events are kept attached to the group so that
1485          * perf_group_detach can, at all times, locate all siblings.
1486          */
1487         if (event->group_leader == event) {
1488                 struct list_head *list;
1489
1490                 event->group_caps = event->event_caps;
1491
1492                 list = ctx_group_list(event, ctx);
1493                 list_add_tail(&event->group_entry, list);
1494         }
1495
1496         list_update_cgroup_event(event, ctx, true);
1497
1498         list_add_rcu(&event->event_entry, &ctx->event_list);
1499         ctx->nr_events++;
1500         if (event->attr.inherit_stat)
1501                 ctx->nr_stat++;
1502
1503         ctx->generation++;
1504 }
1505
1506 /*
1507  * Initialize event state based on the perf_event_attr::disabled.
1508  */
1509 static inline void perf_event__state_init(struct perf_event *event)
1510 {
1511         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1512                                               PERF_EVENT_STATE_INACTIVE;
1513 }
1514
1515 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1516 {
1517         int entry = sizeof(u64); /* value */
1518         int size = 0;
1519         int nr = 1;
1520
1521         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1522                 size += sizeof(u64);
1523
1524         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1525                 size += sizeof(u64);
1526
1527         if (event->attr.read_format & PERF_FORMAT_ID)
1528                 entry += sizeof(u64);
1529
1530         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1531                 nr += nr_siblings;
1532                 size += sizeof(u64);
1533         }
1534
1535         size += entry * nr;
1536         event->read_size = size;
1537 }
1538
1539 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1540 {
1541         struct perf_sample_data *data;
1542         u16 size = 0;
1543
1544         if (sample_type & PERF_SAMPLE_IP)
1545                 size += sizeof(data->ip);
1546
1547         if (sample_type & PERF_SAMPLE_ADDR)
1548                 size += sizeof(data->addr);
1549
1550         if (sample_type & PERF_SAMPLE_PERIOD)
1551                 size += sizeof(data->period);
1552
1553         if (sample_type & PERF_SAMPLE_WEIGHT)
1554                 size += sizeof(data->weight);
1555
1556         if (sample_type & PERF_SAMPLE_READ)
1557                 size += event->read_size;
1558
1559         if (sample_type & PERF_SAMPLE_DATA_SRC)
1560                 size += sizeof(data->data_src.val);
1561
1562         if (sample_type & PERF_SAMPLE_TRANSACTION)
1563                 size += sizeof(data->txn);
1564
1565         event->header_size = size;
1566 }
1567
1568 /*
1569  * Called at perf_event creation and when events are attached/detached from a
1570  * group.
1571  */
1572 static void perf_event__header_size(struct perf_event *event)
1573 {
1574         __perf_event_read_size(event,
1575                                event->group_leader->nr_siblings);
1576         __perf_event_header_size(event, event->attr.sample_type);
1577 }
1578
1579 static void perf_event__id_header_size(struct perf_event *event)
1580 {
1581         struct perf_sample_data *data;
1582         u64 sample_type = event->attr.sample_type;
1583         u16 size = 0;
1584
1585         if (sample_type & PERF_SAMPLE_TID)
1586                 size += sizeof(data->tid_entry);
1587
1588         if (sample_type & PERF_SAMPLE_TIME)
1589                 size += sizeof(data->time);
1590
1591         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1592                 size += sizeof(data->id);
1593
1594         if (sample_type & PERF_SAMPLE_ID)
1595                 size += sizeof(data->id);
1596
1597         if (sample_type & PERF_SAMPLE_STREAM_ID)
1598                 size += sizeof(data->stream_id);
1599
1600         if (sample_type & PERF_SAMPLE_CPU)
1601                 size += sizeof(data->cpu_entry);
1602
1603         event->id_header_size = size;
1604 }
1605
1606 static bool perf_event_validate_size(struct perf_event *event)
1607 {
1608         /*
1609          * The values computed here will be over-written when we actually
1610          * attach the event.
1611          */
1612         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1613         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1614         perf_event__id_header_size(event);
1615
1616         /*
1617          * Sum the lot; should not exceed the 64k limit we have on records.
1618          * Conservative limit to allow for callchains and other variable fields.
1619          */
1620         if (event->read_size + event->header_size +
1621             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1622                 return false;
1623
1624         return true;
1625 }
1626
1627 static void perf_group_attach(struct perf_event *event)
1628 {
1629         struct perf_event *group_leader = event->group_leader, *pos;
1630
1631         lockdep_assert_held(&event->ctx->lock);
1632
1633         /*
1634          * We can have double attach due to group movement in perf_event_open.
1635          */
1636         if (event->attach_state & PERF_ATTACH_GROUP)
1637                 return;
1638
1639         event->attach_state |= PERF_ATTACH_GROUP;
1640
1641         if (group_leader == event)
1642                 return;
1643
1644         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1645
1646         group_leader->group_caps &= event->event_caps;
1647
1648         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1649         group_leader->nr_siblings++;
1650
1651         perf_event__header_size(group_leader);
1652
1653         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1654                 perf_event__header_size(pos);
1655 }
1656
1657 /*
1658  * Remove a event from the lists for its context.
1659  * Must be called with ctx->mutex and ctx->lock held.
1660  */
1661 static void
1662 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1663 {
1664         WARN_ON_ONCE(event->ctx != ctx);
1665         lockdep_assert_held(&ctx->lock);
1666
1667         /*
1668          * We can have double detach due to exit/hot-unplug + close.
1669          */
1670         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1671                 return;
1672
1673         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1674
1675         list_update_cgroup_event(event, ctx, false);
1676
1677         ctx->nr_events--;
1678         if (event->attr.inherit_stat)
1679                 ctx->nr_stat--;
1680
1681         list_del_rcu(&event->event_entry);
1682
1683         if (event->group_leader == event)
1684                 list_del_init(&event->group_entry);
1685
1686         update_group_times(event);
1687
1688         /*
1689          * If event was in error state, then keep it
1690          * that way, otherwise bogus counts will be
1691          * returned on read(). The only way to get out
1692          * of error state is by explicit re-enabling
1693          * of the event
1694          */
1695         if (event->state > PERF_EVENT_STATE_OFF)
1696                 event->state = PERF_EVENT_STATE_OFF;
1697
1698         ctx->generation++;
1699 }
1700
1701 static void perf_group_detach(struct perf_event *event)
1702 {
1703         struct perf_event *sibling, *tmp;
1704         struct list_head *list = NULL;
1705
1706         lockdep_assert_held(&event->ctx->lock);
1707
1708         /*
1709          * We can have double detach due to exit/hot-unplug + close.
1710          */
1711         if (!(event->attach_state & PERF_ATTACH_GROUP))
1712                 return;
1713
1714         event->attach_state &= ~PERF_ATTACH_GROUP;
1715
1716         /*
1717          * If this is a sibling, remove it from its group.
1718          */
1719         if (event->group_leader != event) {
1720                 list_del_init(&event->group_entry);
1721                 event->group_leader->nr_siblings--;
1722                 goto out;
1723         }
1724
1725         if (!list_empty(&event->group_entry))
1726                 list = &event->group_entry;
1727
1728         /*
1729          * If this was a group event with sibling events then
1730          * upgrade the siblings to singleton events by adding them
1731          * to whatever list we are on.
1732          */
1733         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1734                 if (list)
1735                         list_move_tail(&sibling->group_entry, list);
1736                 sibling->group_leader = sibling;
1737
1738                 /* Inherit group flags from the previous leader */
1739                 sibling->group_caps = event->group_caps;
1740
1741                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1742         }
1743
1744 out:
1745         perf_event__header_size(event->group_leader);
1746
1747         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1748                 perf_event__header_size(tmp);
1749 }
1750
1751 static bool is_orphaned_event(struct perf_event *event)
1752 {
1753         return event->state == PERF_EVENT_STATE_DEAD;
1754 }
1755
1756 static inline int __pmu_filter_match(struct perf_event *event)
1757 {
1758         struct pmu *pmu = event->pmu;
1759         return pmu->filter_match ? pmu->filter_match(event) : 1;
1760 }
1761
1762 /*
1763  * Check whether we should attempt to schedule an event group based on
1764  * PMU-specific filtering. An event group can consist of HW and SW events,
1765  * potentially with a SW leader, so we must check all the filters, to
1766  * determine whether a group is schedulable:
1767  */
1768 static inline int pmu_filter_match(struct perf_event *event)
1769 {
1770         struct perf_event *child;
1771
1772         if (!__pmu_filter_match(event))
1773                 return 0;
1774
1775         list_for_each_entry(child, &event->sibling_list, group_entry) {
1776                 if (!__pmu_filter_match(child))
1777                         return 0;
1778         }
1779
1780         return 1;
1781 }
1782
1783 static inline int
1784 event_filter_match(struct perf_event *event)
1785 {
1786         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1787                perf_cgroup_match(event) && pmu_filter_match(event);
1788 }
1789
1790 static void
1791 event_sched_out(struct perf_event *event,
1792                   struct perf_cpu_context *cpuctx,
1793                   struct perf_event_context *ctx)
1794 {
1795         u64 tstamp = perf_event_time(event);
1796         u64 delta;
1797
1798         WARN_ON_ONCE(event->ctx != ctx);
1799         lockdep_assert_held(&ctx->lock);
1800
1801         /*
1802          * An event which could not be activated because of
1803          * filter mismatch still needs to have its timings
1804          * maintained, otherwise bogus information is return
1805          * via read() for time_enabled, time_running:
1806          */
1807         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1808             !event_filter_match(event)) {
1809                 delta = tstamp - event->tstamp_stopped;
1810                 event->tstamp_running += delta;
1811                 event->tstamp_stopped = tstamp;
1812         }
1813
1814         if (event->state != PERF_EVENT_STATE_ACTIVE)
1815                 return;
1816
1817         perf_pmu_disable(event->pmu);
1818
1819         event->tstamp_stopped = tstamp;
1820         event->pmu->del(event, 0);
1821         event->oncpu = -1;
1822         event->state = PERF_EVENT_STATE_INACTIVE;
1823         if (event->pending_disable) {
1824                 event->pending_disable = 0;
1825                 event->state = PERF_EVENT_STATE_OFF;
1826         }
1827
1828         if (!is_software_event(event))
1829                 cpuctx->active_oncpu--;
1830         if (!--ctx->nr_active)
1831                 perf_event_ctx_deactivate(ctx);
1832         if (event->attr.freq && event->attr.sample_freq)
1833                 ctx->nr_freq--;
1834         if (event->attr.exclusive || !cpuctx->active_oncpu)
1835                 cpuctx->exclusive = 0;
1836
1837         perf_pmu_enable(event->pmu);
1838 }
1839
1840 static void
1841 group_sched_out(struct perf_event *group_event,
1842                 struct perf_cpu_context *cpuctx,
1843                 struct perf_event_context *ctx)
1844 {
1845         struct perf_event *event;
1846         int state = group_event->state;
1847
1848         perf_pmu_disable(ctx->pmu);
1849
1850         event_sched_out(group_event, cpuctx, ctx);
1851
1852         /*
1853          * Schedule out siblings (if any):
1854          */
1855         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1856                 event_sched_out(event, cpuctx, ctx);
1857
1858         perf_pmu_enable(ctx->pmu);
1859
1860         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1861                 cpuctx->exclusive = 0;
1862 }
1863
1864 #define DETACH_GROUP    0x01UL
1865
1866 /*
1867  * Cross CPU call to remove a performance event
1868  *
1869  * We disable the event on the hardware level first. After that we
1870  * remove it from the context list.
1871  */
1872 static void
1873 __perf_remove_from_context(struct perf_event *event,
1874                            struct perf_cpu_context *cpuctx,
1875                            struct perf_event_context *ctx,
1876                            void *info)
1877 {
1878         unsigned long flags = (unsigned long)info;
1879
1880         event_sched_out(event, cpuctx, ctx);
1881         if (flags & DETACH_GROUP)
1882                 perf_group_detach(event);
1883         list_del_event(event, ctx);
1884
1885         if (!ctx->nr_events && ctx->is_active) {
1886                 ctx->is_active = 0;
1887                 if (ctx->task) {
1888                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1889                         cpuctx->task_ctx = NULL;
1890                 }
1891         }
1892 }
1893
1894 /*
1895  * Remove the event from a task's (or a CPU's) list of events.
1896  *
1897  * If event->ctx is a cloned context, callers must make sure that
1898  * every task struct that event->ctx->task could possibly point to
1899  * remains valid.  This is OK when called from perf_release since
1900  * that only calls us on the top-level context, which can't be a clone.
1901  * When called from perf_event_exit_task, it's OK because the
1902  * context has been detached from its task.
1903  */
1904 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1905 {
1906         struct perf_event_context *ctx = event->ctx;
1907
1908         lockdep_assert_held(&ctx->mutex);
1909
1910         event_function_call(event, __perf_remove_from_context, (void *)flags);
1911
1912         /*
1913          * The above event_function_call() can NO-OP when it hits
1914          * TASK_TOMBSTONE. In that case we must already have been detached
1915          * from the context (by perf_event_exit_event()) but the grouping
1916          * might still be in-tact.
1917          */
1918         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1919         if ((flags & DETACH_GROUP) &&
1920             (event->attach_state & PERF_ATTACH_GROUP)) {
1921                 /*
1922                  * Since in that case we cannot possibly be scheduled, simply
1923                  * detach now.
1924                  */
1925                 raw_spin_lock_irq(&ctx->lock);
1926                 perf_group_detach(event);
1927                 raw_spin_unlock_irq(&ctx->lock);
1928         }
1929 }
1930
1931 /*
1932  * Cross CPU call to disable a performance event
1933  */
1934 static void __perf_event_disable(struct perf_event *event,
1935                                  struct perf_cpu_context *cpuctx,
1936                                  struct perf_event_context *ctx,
1937                                  void *info)
1938 {
1939         if (event->state < PERF_EVENT_STATE_INACTIVE)
1940                 return;
1941
1942         update_context_time(ctx);
1943         update_cgrp_time_from_event(event);
1944         update_group_times(event);
1945         if (event == event->group_leader)
1946                 group_sched_out(event, cpuctx, ctx);
1947         else
1948                 event_sched_out(event, cpuctx, ctx);
1949         event->state = PERF_EVENT_STATE_OFF;
1950 }
1951
1952 /*
1953  * Disable a event.
1954  *
1955  * If event->ctx is a cloned context, callers must make sure that
1956  * every task struct that event->ctx->task could possibly point to
1957  * remains valid.  This condition is satisifed when called through
1958  * perf_event_for_each_child or perf_event_for_each because they
1959  * hold the top-level event's child_mutex, so any descendant that
1960  * goes to exit will block in perf_event_exit_event().
1961  *
1962  * When called from perf_pending_event it's OK because event->ctx
1963  * is the current context on this CPU and preemption is disabled,
1964  * hence we can't get into perf_event_task_sched_out for this context.
1965  */
1966 static void _perf_event_disable(struct perf_event *event)
1967 {
1968         struct perf_event_context *ctx = event->ctx;
1969
1970         raw_spin_lock_irq(&ctx->lock);
1971         if (event->state <= PERF_EVENT_STATE_OFF) {
1972                 raw_spin_unlock_irq(&ctx->lock);
1973                 return;
1974         }
1975         raw_spin_unlock_irq(&ctx->lock);
1976
1977         event_function_call(event, __perf_event_disable, NULL);
1978 }
1979
1980 void perf_event_disable_local(struct perf_event *event)
1981 {
1982         event_function_local(event, __perf_event_disable, NULL);
1983 }
1984
1985 /*
1986  * Strictly speaking kernel users cannot create groups and therefore this
1987  * interface does not need the perf_event_ctx_lock() magic.
1988  */
1989 void perf_event_disable(struct perf_event *event)
1990 {
1991         struct perf_event_context *ctx;
1992
1993         ctx = perf_event_ctx_lock(event);
1994         _perf_event_disable(event);
1995         perf_event_ctx_unlock(event, ctx);
1996 }
1997 EXPORT_SYMBOL_GPL(perf_event_disable);
1998
1999 void perf_event_disable_inatomic(struct perf_event *event)
2000 {
2001         event->pending_disable = 1;
2002         irq_work_queue(&event->pending);
2003 }
2004
2005 static void perf_set_shadow_time(struct perf_event *event,
2006                                  struct perf_event_context *ctx,
2007                                  u64 tstamp)
2008 {
2009         /*
2010          * use the correct time source for the time snapshot
2011          *
2012          * We could get by without this by leveraging the
2013          * fact that to get to this function, the caller
2014          * has most likely already called update_context_time()
2015          * and update_cgrp_time_xx() and thus both timestamp
2016          * are identical (or very close). Given that tstamp is,
2017          * already adjusted for cgroup, we could say that:
2018          *    tstamp - ctx->timestamp
2019          * is equivalent to
2020          *    tstamp - cgrp->timestamp.
2021          *
2022          * Then, in perf_output_read(), the calculation would
2023          * work with no changes because:
2024          * - event is guaranteed scheduled in
2025          * - no scheduled out in between
2026          * - thus the timestamp would be the same
2027          *
2028          * But this is a bit hairy.
2029          *
2030          * So instead, we have an explicit cgroup call to remain
2031          * within the time time source all along. We believe it
2032          * is cleaner and simpler to understand.
2033          */
2034         if (is_cgroup_event(event))
2035                 perf_cgroup_set_shadow_time(event, tstamp);
2036         else
2037                 event->shadow_ctx_time = tstamp - ctx->timestamp;
2038 }
2039
2040 #define MAX_INTERRUPTS (~0ULL)
2041
2042 static void perf_log_throttle(struct perf_event *event, int enable);
2043 static void perf_log_itrace_start(struct perf_event *event);
2044
2045 static int
2046 event_sched_in(struct perf_event *event,
2047                  struct perf_cpu_context *cpuctx,
2048                  struct perf_event_context *ctx)
2049 {
2050         u64 tstamp = perf_event_time(event);
2051         int ret = 0;
2052
2053         lockdep_assert_held(&ctx->lock);
2054
2055         if (event->state <= PERF_EVENT_STATE_OFF)
2056                 return 0;
2057
2058         WRITE_ONCE(event->oncpu, smp_processor_id());
2059         /*
2060          * Order event::oncpu write to happen before the ACTIVE state
2061          * is visible.
2062          */
2063         smp_wmb();
2064         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2065
2066         /*
2067          * Unthrottle events, since we scheduled we might have missed several
2068          * ticks already, also for a heavily scheduling task there is little
2069          * guarantee it'll get a tick in a timely manner.
2070          */
2071         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2072                 perf_log_throttle(event, 1);
2073                 event->hw.interrupts = 0;
2074         }
2075
2076         /*
2077          * The new state must be visible before we turn it on in the hardware:
2078          */
2079         smp_wmb();
2080
2081         perf_pmu_disable(event->pmu);
2082
2083         perf_set_shadow_time(event, ctx, tstamp);
2084
2085         perf_log_itrace_start(event);
2086
2087         if (event->pmu->add(event, PERF_EF_START)) {
2088                 event->state = PERF_EVENT_STATE_INACTIVE;
2089                 event->oncpu = -1;
2090                 ret = -EAGAIN;
2091                 goto out;
2092         }
2093
2094         event->tstamp_running += tstamp - event->tstamp_stopped;
2095
2096         if (!is_software_event(event))
2097                 cpuctx->active_oncpu++;
2098         if (!ctx->nr_active++)
2099                 perf_event_ctx_activate(ctx);
2100         if (event->attr.freq && event->attr.sample_freq)
2101                 ctx->nr_freq++;
2102
2103         if (event->attr.exclusive)
2104                 cpuctx->exclusive = 1;
2105
2106 out:
2107         perf_pmu_enable(event->pmu);
2108
2109         return ret;
2110 }
2111
2112 static int
2113 group_sched_in(struct perf_event *group_event,
2114                struct perf_cpu_context *cpuctx,
2115                struct perf_event_context *ctx)
2116 {
2117         struct perf_event *event, *partial_group = NULL;
2118         struct pmu *pmu = ctx->pmu;
2119         u64 now = ctx->time;
2120         bool simulate = false;
2121
2122         if (group_event->state == PERF_EVENT_STATE_OFF)
2123                 return 0;
2124
2125         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2126
2127         if (event_sched_in(group_event, cpuctx, ctx)) {
2128                 pmu->cancel_txn(pmu);
2129                 perf_mux_hrtimer_restart(cpuctx);
2130                 return -EAGAIN;
2131         }
2132
2133         /*
2134          * Schedule in siblings as one group (if any):
2135          */
2136         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2137                 if (event_sched_in(event, cpuctx, ctx)) {
2138                         partial_group = event;
2139                         goto group_error;
2140                 }
2141         }
2142
2143         if (!pmu->commit_txn(pmu))
2144                 return 0;
2145
2146 group_error:
2147         /*
2148          * Groups can be scheduled in as one unit only, so undo any
2149          * partial group before returning:
2150          * The events up to the failed event are scheduled out normally,
2151          * tstamp_stopped will be updated.
2152          *
2153          * The failed events and the remaining siblings need to have
2154          * their timings updated as if they had gone thru event_sched_in()
2155          * and event_sched_out(). This is required to get consistent timings
2156          * across the group. This also takes care of the case where the group
2157          * could never be scheduled by ensuring tstamp_stopped is set to mark
2158          * the time the event was actually stopped, such that time delta
2159          * calculation in update_event_times() is correct.
2160          */
2161         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2162                 if (event == partial_group)
2163                         simulate = true;
2164
2165                 if (simulate) {
2166                         event->tstamp_running += now - event->tstamp_stopped;
2167                         event->tstamp_stopped = now;
2168                 } else {
2169                         event_sched_out(event, cpuctx, ctx);
2170                 }
2171         }
2172         event_sched_out(group_event, cpuctx, ctx);
2173
2174         pmu->cancel_txn(pmu);
2175
2176         perf_mux_hrtimer_restart(cpuctx);
2177
2178         return -EAGAIN;
2179 }
2180
2181 /*
2182  * Work out whether we can put this event group on the CPU now.
2183  */
2184 static int group_can_go_on(struct perf_event *event,
2185                            struct perf_cpu_context *cpuctx,
2186                            int can_add_hw)
2187 {
2188         /*
2189          * Groups consisting entirely of software events can always go on.
2190          */
2191         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2192                 return 1;
2193         /*
2194          * If an exclusive group is already on, no other hardware
2195          * events can go on.
2196          */
2197         if (cpuctx->exclusive)
2198                 return 0;
2199         /*
2200          * If this group is exclusive and there are already
2201          * events on the CPU, it can't go on.
2202          */
2203         if (event->attr.exclusive && cpuctx->active_oncpu)
2204                 return 0;
2205         /*
2206          * Otherwise, try to add it if all previous groups were able
2207          * to go on.
2208          */
2209         return can_add_hw;
2210 }
2211
2212 static void add_event_to_ctx(struct perf_event *event,
2213                                struct perf_event_context *ctx)
2214 {
2215         u64 tstamp = perf_event_time(event);
2216
2217         list_add_event(event, ctx);
2218         perf_group_attach(event);
2219         event->tstamp_enabled = tstamp;
2220         event->tstamp_running = tstamp;
2221         event->tstamp_stopped = tstamp;
2222 }
2223
2224 static void ctx_sched_out(struct perf_event_context *ctx,
2225                           struct perf_cpu_context *cpuctx,
2226                           enum event_type_t event_type);
2227 static void
2228 ctx_sched_in(struct perf_event_context *ctx,
2229              struct perf_cpu_context *cpuctx,
2230              enum event_type_t event_type,
2231              struct task_struct *task);
2232
2233 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2234                                struct perf_event_context *ctx,
2235                                enum event_type_t event_type)
2236 {
2237         if (!cpuctx->task_ctx)
2238                 return;
2239
2240         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2241                 return;
2242
2243         ctx_sched_out(ctx, cpuctx, event_type);
2244 }
2245
2246 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2247                                 struct perf_event_context *ctx,
2248                                 struct task_struct *task)
2249 {
2250         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2251         if (ctx)
2252                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2253         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2254         if (ctx)
2255                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2256 }
2257
2258 /*
2259  * We want to maintain the following priority of scheduling:
2260  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2261  *  - task pinned (EVENT_PINNED)
2262  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2263  *  - task flexible (EVENT_FLEXIBLE).
2264  *
2265  * In order to avoid unscheduling and scheduling back in everything every
2266  * time an event is added, only do it for the groups of equal priority and
2267  * below.
2268  *
2269  * This can be called after a batch operation on task events, in which case
2270  * event_type is a bit mask of the types of events involved. For CPU events,
2271  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2272  */
2273 static void ctx_resched(struct perf_cpu_context *cpuctx,
2274                         struct perf_event_context *task_ctx,
2275                         enum event_type_t event_type)
2276 {
2277         enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2278         bool cpu_event = !!(event_type & EVENT_CPU);
2279
2280         /*
2281          * If pinned groups are involved, flexible groups also need to be
2282          * scheduled out.
2283          */
2284         if (event_type & EVENT_PINNED)
2285                 event_type |= EVENT_FLEXIBLE;
2286
2287         perf_pmu_disable(cpuctx->ctx.pmu);
2288         if (task_ctx)
2289                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2290
2291         /*
2292          * Decide which cpu ctx groups to schedule out based on the types
2293          * of events that caused rescheduling:
2294          *  - EVENT_CPU: schedule out corresponding groups;
2295          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2296          *  - otherwise, do nothing more.
2297          */
2298         if (cpu_event)
2299                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2300         else if (ctx_event_type & EVENT_PINNED)
2301                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2302
2303         perf_event_sched_in(cpuctx, task_ctx, current);
2304         perf_pmu_enable(cpuctx->ctx.pmu);
2305 }
2306
2307 /*
2308  * Cross CPU call to install and enable a performance event
2309  *
2310  * Very similar to remote_function() + event_function() but cannot assume that
2311  * things like ctx->is_active and cpuctx->task_ctx are set.
2312  */
2313 static int  __perf_install_in_context(void *info)
2314 {
2315         struct perf_event *event = info;
2316         struct perf_event_context *ctx = event->ctx;
2317         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2318         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2319         bool reprogram = true;
2320         int ret = 0;
2321
2322         raw_spin_lock(&cpuctx->ctx.lock);
2323         if (ctx->task) {
2324                 raw_spin_lock(&ctx->lock);
2325                 task_ctx = ctx;
2326
2327                 reprogram = (ctx->task == current);
2328
2329                 /*
2330                  * If the task is running, it must be running on this CPU,
2331                  * otherwise we cannot reprogram things.
2332                  *
2333                  * If its not running, we don't care, ctx->lock will
2334                  * serialize against it becoming runnable.
2335                  */
2336                 if (task_curr(ctx->task) && !reprogram) {
2337                         ret = -ESRCH;
2338                         goto unlock;
2339                 }
2340
2341                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2342         } else if (task_ctx) {
2343                 raw_spin_lock(&task_ctx->lock);
2344         }
2345
2346         if (reprogram) {
2347                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2348                 add_event_to_ctx(event, ctx);
2349                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2350         } else {
2351                 add_event_to_ctx(event, ctx);
2352         }
2353
2354 unlock:
2355         perf_ctx_unlock(cpuctx, task_ctx);
2356
2357         return ret;
2358 }
2359
2360 /*
2361  * Attach a performance event to a context.
2362  *
2363  * Very similar to event_function_call, see comment there.
2364  */
2365 static void
2366 perf_install_in_context(struct perf_event_context *ctx,
2367                         struct perf_event *event,
2368                         int cpu)
2369 {
2370         struct task_struct *task = READ_ONCE(ctx->task);
2371
2372         lockdep_assert_held(&ctx->mutex);
2373
2374         if (event->cpu != -1)
2375                 event->cpu = cpu;
2376
2377         /*
2378          * Ensures that if we can observe event->ctx, both the event and ctx
2379          * will be 'complete'. See perf_iterate_sb_cpu().
2380          */
2381         smp_store_release(&event->ctx, ctx);
2382
2383         if (!task) {
2384                 cpu_function_call(cpu, __perf_install_in_context, event);
2385                 return;
2386         }
2387
2388         /*
2389          * Should not happen, we validate the ctx is still alive before calling.
2390          */
2391         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2392                 return;
2393
2394         /*
2395          * Installing events is tricky because we cannot rely on ctx->is_active
2396          * to be set in case this is the nr_events 0 -> 1 transition.
2397          *
2398          * Instead we use task_curr(), which tells us if the task is running.
2399          * However, since we use task_curr() outside of rq::lock, we can race
2400          * against the actual state. This means the result can be wrong.
2401          *
2402          * If we get a false positive, we retry, this is harmless.
2403          *
2404          * If we get a false negative, things are complicated. If we are after
2405          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2406          * value must be correct. If we're before, it doesn't matter since
2407          * perf_event_context_sched_in() will program the counter.
2408          *
2409          * However, this hinges on the remote context switch having observed
2410          * our task->perf_event_ctxp[] store, such that it will in fact take
2411          * ctx::lock in perf_event_context_sched_in().
2412          *
2413          * We do this by task_function_call(), if the IPI fails to hit the task
2414          * we know any future context switch of task must see the
2415          * perf_event_ctpx[] store.
2416          */
2417
2418         /*
2419          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2420          * task_cpu() load, such that if the IPI then does not find the task
2421          * running, a future context switch of that task must observe the
2422          * store.
2423          */
2424         smp_mb();
2425 again:
2426         if (!task_function_call(task, __perf_install_in_context, event))
2427                 return;
2428
2429         raw_spin_lock_irq(&ctx->lock);
2430         task = ctx->task;
2431         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2432                 /*
2433                  * Cannot happen because we already checked above (which also
2434                  * cannot happen), and we hold ctx->mutex, which serializes us
2435                  * against perf_event_exit_task_context().
2436                  */
2437                 raw_spin_unlock_irq(&ctx->lock);
2438                 return;
2439         }
2440         /*
2441          * If the task is not running, ctx->lock will avoid it becoming so,
2442          * thus we can safely install the event.
2443          */
2444         if (task_curr(task)) {
2445                 raw_spin_unlock_irq(&ctx->lock);
2446                 goto again;
2447         }
2448         add_event_to_ctx(event, ctx);
2449         raw_spin_unlock_irq(&ctx->lock);
2450 }
2451
2452 /*
2453  * Put a event into inactive state and update time fields.
2454  * Enabling the leader of a group effectively enables all
2455  * the group members that aren't explicitly disabled, so we
2456  * have to update their ->tstamp_enabled also.
2457  * Note: this works for group members as well as group leaders
2458  * since the non-leader members' sibling_lists will be empty.
2459  */
2460 static void __perf_event_mark_enabled(struct perf_event *event)
2461 {
2462         struct perf_event *sub;
2463         u64 tstamp = perf_event_time(event);
2464
2465         event->state = PERF_EVENT_STATE_INACTIVE;
2466         event->tstamp_enabled = tstamp - event->total_time_enabled;
2467         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2468                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2469                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2470         }
2471 }
2472
2473 /*
2474  * Cross CPU call to enable a performance event
2475  */
2476 static void __perf_event_enable(struct perf_event *event,
2477                                 struct perf_cpu_context *cpuctx,
2478                                 struct perf_event_context *ctx,
2479                                 void *info)
2480 {
2481         struct perf_event *leader = event->group_leader;
2482         struct perf_event_context *task_ctx;
2483
2484         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2485             event->state <= PERF_EVENT_STATE_ERROR)
2486                 return;
2487
2488         if (ctx->is_active)
2489                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2490
2491         __perf_event_mark_enabled(event);
2492
2493         if (!ctx->is_active)
2494                 return;
2495
2496         if (!event_filter_match(event)) {
2497                 if (is_cgroup_event(event))
2498                         perf_cgroup_defer_enabled(event);
2499                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2500                 return;
2501         }
2502
2503         /*
2504          * If the event is in a group and isn't the group leader,
2505          * then don't put it on unless the group is on.
2506          */
2507         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2508                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2509                 return;
2510         }
2511
2512         task_ctx = cpuctx->task_ctx;
2513         if (ctx->task)
2514                 WARN_ON_ONCE(task_ctx != ctx);
2515
2516         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2517 }
2518
2519 /*
2520  * Enable a event.
2521  *
2522  * If event->ctx is a cloned context, callers must make sure that
2523  * every task struct that event->ctx->task could possibly point to
2524  * remains valid.  This condition is satisfied when called through
2525  * perf_event_for_each_child or perf_event_for_each as described
2526  * for perf_event_disable.
2527  */
2528 static void _perf_event_enable(struct perf_event *event)
2529 {
2530         struct perf_event_context *ctx = event->ctx;
2531
2532         raw_spin_lock_irq(&ctx->lock);
2533         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2534             event->state <  PERF_EVENT_STATE_ERROR) {
2535                 raw_spin_unlock_irq(&ctx->lock);
2536                 return;
2537         }
2538
2539         /*
2540          * If the event is in error state, clear that first.
2541          *
2542          * That way, if we see the event in error state below, we know that it
2543          * has gone back into error state, as distinct from the task having
2544          * been scheduled away before the cross-call arrived.
2545          */
2546         if (event->state == PERF_EVENT_STATE_ERROR)
2547                 event->state = PERF_EVENT_STATE_OFF;
2548         raw_spin_unlock_irq(&ctx->lock);
2549
2550         event_function_call(event, __perf_event_enable, NULL);
2551 }
2552
2553 /*
2554  * See perf_event_disable();
2555  */
2556 void perf_event_enable(struct perf_event *event)
2557 {
2558         struct perf_event_context *ctx;
2559
2560         ctx = perf_event_ctx_lock(event);
2561         _perf_event_enable(event);
2562         perf_event_ctx_unlock(event, ctx);
2563 }
2564 EXPORT_SYMBOL_GPL(perf_event_enable);
2565
2566 struct stop_event_data {
2567         struct perf_event       *event;
2568         unsigned int            restart;
2569 };
2570
2571 static int __perf_event_stop(void *info)
2572 {
2573         struct stop_event_data *sd = info;
2574         struct perf_event *event = sd->event;
2575
2576         /* if it's already INACTIVE, do nothing */
2577         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2578                 return 0;
2579
2580         /* matches smp_wmb() in event_sched_in() */
2581         smp_rmb();
2582
2583         /*
2584          * There is a window with interrupts enabled before we get here,
2585          * so we need to check again lest we try to stop another CPU's event.
2586          */
2587         if (READ_ONCE(event->oncpu) != smp_processor_id())
2588                 return -EAGAIN;
2589
2590         event->pmu->stop(event, PERF_EF_UPDATE);
2591
2592         /*
2593          * May race with the actual stop (through perf_pmu_output_stop()),
2594          * but it is only used for events with AUX ring buffer, and such
2595          * events will refuse to restart because of rb::aux_mmap_count==0,
2596          * see comments in perf_aux_output_begin().
2597          *
2598          * Since this is happening on a event-local CPU, no trace is lost
2599          * while restarting.
2600          */
2601         if (sd->restart)
2602                 event->pmu->start(event, 0);
2603
2604         return 0;
2605 }
2606
2607 static int perf_event_stop(struct perf_event *event, int restart)
2608 {
2609         struct stop_event_data sd = {
2610                 .event          = event,
2611                 .restart        = restart,
2612         };
2613         int ret = 0;
2614
2615         do {
2616                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2617                         return 0;
2618
2619                 /* matches smp_wmb() in event_sched_in() */
2620                 smp_rmb();
2621
2622                 /*
2623                  * We only want to restart ACTIVE events, so if the event goes
2624                  * inactive here (event->oncpu==-1), there's nothing more to do;
2625                  * fall through with ret==-ENXIO.
2626                  */
2627                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2628                                         __perf_event_stop, &sd);
2629         } while (ret == -EAGAIN);
2630
2631         return ret;
2632 }
2633
2634 /*
2635  * In order to contain the amount of racy and tricky in the address filter
2636  * configuration management, it is a two part process:
2637  *
2638  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2639  *      we update the addresses of corresponding vmas in
2640  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2641  * (p2) when an event is scheduled in (pmu::add), it calls
2642  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2643  *      if the generation has changed since the previous call.
2644  *
2645  * If (p1) happens while the event is active, we restart it to force (p2).
2646  *
2647  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2648  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2649  *     ioctl;
2650  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2651  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2652  *     for reading;
2653  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2654  *     of exec.
2655  */
2656 void perf_event_addr_filters_sync(struct perf_event *event)
2657 {
2658         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2659
2660         if (!has_addr_filter(event))
2661                 return;
2662
2663         raw_spin_lock(&ifh->lock);
2664         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2665                 event->pmu->addr_filters_sync(event);
2666                 event->hw.addr_filters_gen = event->addr_filters_gen;
2667         }
2668         raw_spin_unlock(&ifh->lock);
2669 }
2670 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2671
2672 static int _perf_event_refresh(struct perf_event *event, int refresh)
2673 {
2674         /*
2675          * not supported on inherited events
2676          */
2677         if (event->attr.inherit || !is_sampling_event(event))
2678                 return -EINVAL;
2679
2680         atomic_add(refresh, &event->event_limit);
2681         _perf_event_enable(event);
2682
2683         return 0;
2684 }
2685
2686 /*
2687  * See perf_event_disable()
2688  */
2689 int perf_event_refresh(struct perf_event *event, int refresh)
2690 {
2691         struct perf_event_context *ctx;
2692         int ret;
2693
2694         ctx = perf_event_ctx_lock(event);
2695         ret = _perf_event_refresh(event, refresh);
2696         perf_event_ctx_unlock(event, ctx);
2697
2698         return ret;
2699 }
2700 EXPORT_SYMBOL_GPL(perf_event_refresh);
2701
2702 static void ctx_sched_out(struct perf_event_context *ctx,
2703                           struct perf_cpu_context *cpuctx,
2704                           enum event_type_t event_type)
2705 {
2706         int is_active = ctx->is_active;
2707         struct perf_event *event;
2708
2709         lockdep_assert_held(&ctx->lock);
2710
2711         if (likely(!ctx->nr_events)) {
2712                 /*
2713                  * See __perf_remove_from_context().
2714                  */
2715                 WARN_ON_ONCE(ctx->is_active);
2716                 if (ctx->task)
2717                         WARN_ON_ONCE(cpuctx->task_ctx);
2718                 return;
2719         }
2720
2721         ctx->is_active &= ~event_type;
2722         if (!(ctx->is_active & EVENT_ALL))
2723                 ctx->is_active = 0;
2724
2725         if (ctx->task) {
2726                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2727                 if (!ctx->is_active)
2728                         cpuctx->task_ctx = NULL;
2729         }
2730
2731         /*
2732          * Always update time if it was set; not only when it changes.
2733          * Otherwise we can 'forget' to update time for any but the last
2734          * context we sched out. For example:
2735          *
2736          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2737          *   ctx_sched_out(.event_type = EVENT_PINNED)
2738          *
2739          * would only update time for the pinned events.
2740          */
2741         if (is_active & EVENT_TIME) {
2742                 /* update (and stop) ctx time */
2743                 update_context_time(ctx);
2744                 update_cgrp_time_from_cpuctx(cpuctx);
2745         }
2746
2747         is_active ^= ctx->is_active; /* changed bits */
2748
2749         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2750                 return;
2751
2752         perf_pmu_disable(ctx->pmu);
2753         if (is_active & EVENT_PINNED) {
2754                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2755                         group_sched_out(event, cpuctx, ctx);
2756         }
2757
2758         if (is_active & EVENT_FLEXIBLE) {
2759                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2760                         group_sched_out(event, cpuctx, ctx);
2761         }
2762         perf_pmu_enable(ctx->pmu);
2763 }
2764
2765 /*
2766  * Test whether two contexts are equivalent, i.e. whether they have both been
2767  * cloned from the same version of the same context.
2768  *
2769  * Equivalence is measured using a generation number in the context that is
2770  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2771  * and list_del_event().
2772  */
2773 static int context_equiv(struct perf_event_context *ctx1,
2774                          struct perf_event_context *ctx2)
2775 {
2776         lockdep_assert_held(&ctx1->lock);
2777         lockdep_assert_held(&ctx2->lock);
2778
2779         /* Pinning disables the swap optimization */
2780         if (ctx1->pin_count || ctx2->pin_count)
2781                 return 0;
2782
2783         /* If ctx1 is the parent of ctx2 */
2784         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2785                 return 1;
2786
2787         /* If ctx2 is the parent of ctx1 */
2788         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2789                 return 1;
2790
2791         /*
2792          * If ctx1 and ctx2 have the same parent; we flatten the parent
2793          * hierarchy, see perf_event_init_context().
2794          */
2795         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2796                         ctx1->parent_gen == ctx2->parent_gen)
2797                 return 1;
2798
2799         /* Unmatched */
2800         return 0;
2801 }
2802
2803 static void __perf_event_sync_stat(struct perf_event *event,
2804                                      struct perf_event *next_event)
2805 {
2806         u64 value;
2807
2808         if (!event->attr.inherit_stat)
2809                 return;
2810
2811         /*
2812          * Update the event value, we cannot use perf_event_read()
2813          * because we're in the middle of a context switch and have IRQs
2814          * disabled, which upsets smp_call_function_single(), however
2815          * we know the event must be on the current CPU, therefore we
2816          * don't need to use it.
2817          */
2818         switch (event->state) {
2819         case PERF_EVENT_STATE_ACTIVE:
2820                 event->pmu->read(event);
2821                 /* fall-through */
2822
2823         case PERF_EVENT_STATE_INACTIVE:
2824                 update_event_times(event);
2825                 break;
2826
2827         default:
2828                 break;
2829         }
2830
2831         /*
2832          * In order to keep per-task stats reliable we need to flip the event
2833          * values when we flip the contexts.
2834          */
2835         value = local64_read(&next_event->count);
2836         value = local64_xchg(&event->count, value);
2837         local64_set(&next_event->count, value);
2838
2839         swap(event->total_time_enabled, next_event->total_time_enabled);
2840         swap(event->total_time_running, next_event->total_time_running);
2841
2842         /*
2843          * Since we swizzled the values, update the user visible data too.
2844          */
2845         perf_event_update_userpage(event);
2846         perf_event_update_userpage(next_event);
2847 }
2848
2849 static void perf_event_sync_stat(struct perf_event_context *ctx,
2850                                    struct perf_event_context *next_ctx)
2851 {
2852         struct perf_event *event, *next_event;
2853
2854         if (!ctx->nr_stat)
2855                 return;
2856
2857         update_context_time(ctx);
2858
2859         event = list_first_entry(&ctx->event_list,
2860                                    struct perf_event, event_entry);
2861
2862         next_event = list_first_entry(&next_ctx->event_list,
2863                                         struct perf_event, event_entry);
2864
2865         while (&event->event_entry != &ctx->event_list &&
2866                &next_event->event_entry != &next_ctx->event_list) {
2867
2868                 __perf_event_sync_stat(event, next_event);
2869
2870                 event = list_next_entry(event, event_entry);
2871                 next_event = list_next_entry(next_event, event_entry);
2872         }
2873 }
2874
2875 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2876                                          struct task_struct *next)
2877 {
2878         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2879         struct perf_event_context *next_ctx;
2880         struct perf_event_context *parent, *next_parent;
2881         struct perf_cpu_context *cpuctx;
2882         int do_switch = 1;
2883
2884         if (likely(!ctx))
2885                 return;
2886
2887         cpuctx = __get_cpu_context(ctx);
2888         if (!cpuctx->task_ctx)
2889                 return;
2890
2891         rcu_read_lock();
2892         next_ctx = next->perf_event_ctxp[ctxn];
2893         if (!next_ctx)
2894                 goto unlock;
2895
2896         parent = rcu_dereference(ctx->parent_ctx);
2897         next_parent = rcu_dereference(next_ctx->parent_ctx);
2898
2899         /* If neither context have a parent context; they cannot be clones. */
2900         if (!parent && !next_parent)
2901                 goto unlock;
2902
2903         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2904                 /*
2905                  * Looks like the two contexts are clones, so we might be
2906                  * able to optimize the context switch.  We lock both
2907                  * contexts and check that they are clones under the
2908                  * lock (including re-checking that neither has been
2909                  * uncloned in the meantime).  It doesn't matter which
2910                  * order we take the locks because no other cpu could
2911                  * be trying to lock both of these tasks.
2912                  */
2913                 raw_spin_lock(&ctx->lock);
2914                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2915                 if (context_equiv(ctx, next_ctx)) {
2916                         WRITE_ONCE(ctx->task, next);
2917                         WRITE_ONCE(next_ctx->task, task);
2918
2919                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2920
2921                         /*
2922                          * RCU_INIT_POINTER here is safe because we've not
2923                          * modified the ctx and the above modification of
2924                          * ctx->task and ctx->task_ctx_data are immaterial
2925                          * since those values are always verified under
2926                          * ctx->lock which we're now holding.
2927                          */
2928                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2929                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2930
2931                         do_switch = 0;
2932
2933                         perf_event_sync_stat(ctx, next_ctx);
2934                 }
2935                 raw_spin_unlock(&next_ctx->lock);
2936                 raw_spin_unlock(&ctx->lock);
2937         }
2938 unlock:
2939         rcu_read_unlock();
2940
2941         if (do_switch) {
2942                 raw_spin_lock(&ctx->lock);
2943                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2944                 raw_spin_unlock(&ctx->lock);
2945         }
2946 }
2947
2948 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2949
2950 void perf_sched_cb_dec(struct pmu *pmu)
2951 {
2952         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2953
2954         this_cpu_dec(perf_sched_cb_usages);
2955
2956         if (!--cpuctx->sched_cb_usage)
2957                 list_del(&cpuctx->sched_cb_entry);
2958 }
2959
2960
2961 void perf_sched_cb_inc(struct pmu *pmu)
2962 {
2963         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2964
2965         if (!cpuctx->sched_cb_usage++)
2966                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2967
2968         this_cpu_inc(perf_sched_cb_usages);
2969 }
2970
2971 /*
2972  * This function provides the context switch callback to the lower code
2973  * layer. It is invoked ONLY when the context switch callback is enabled.
2974  *
2975  * This callback is relevant even to per-cpu events; for example multi event
2976  * PEBS requires this to provide PID/TID information. This requires we flush
2977  * all queued PEBS records before we context switch to a new task.
2978  */
2979 static void perf_pmu_sched_task(struct task_struct *prev,
2980                                 struct task_struct *next,
2981                                 bool sched_in)
2982 {
2983         struct perf_cpu_context *cpuctx;
2984         struct pmu *pmu;
2985
2986         if (prev == next)
2987                 return;
2988
2989         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2990                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2991
2992                 if (WARN_ON_ONCE(!pmu->sched_task))
2993                         continue;
2994
2995                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2996                 perf_pmu_disable(pmu);
2997
2998                 pmu->sched_task(cpuctx->task_ctx, sched_in);
2999
3000                 perf_pmu_enable(pmu);
3001                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3002         }
3003 }
3004
3005 static void perf_event_switch(struct task_struct *task,
3006                               struct task_struct *next_prev, bool sched_in);
3007
3008 #define for_each_task_context_nr(ctxn)                                  \
3009         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3010
3011 /*
3012  * Called from scheduler to remove the events of the current task,
3013  * with interrupts disabled.
3014  *
3015  * We stop each event and update the event value in event->count.
3016  *
3017  * This does not protect us against NMI, but disable()
3018  * sets the disabled bit in the control field of event _before_
3019  * accessing the event control register. If a NMI hits, then it will
3020  * not restart the event.
3021  */
3022 void __perf_event_task_sched_out(struct task_struct *task,
3023                                  struct task_struct *next)
3024 {
3025         int ctxn;
3026
3027         if (__this_cpu_read(perf_sched_cb_usages))
3028                 perf_pmu_sched_task(task, next, false);
3029
3030         if (atomic_read(&nr_switch_events))
3031                 perf_event_switch(task, next, false);
3032
3033         for_each_task_context_nr(ctxn)
3034                 perf_event_context_sched_out(task, ctxn, next);
3035
3036         /*
3037          * if cgroup events exist on this CPU, then we need
3038          * to check if we have to switch out PMU state.
3039          * cgroup event are system-wide mode only
3040          */
3041         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3042                 perf_cgroup_sched_out(task, next);
3043 }
3044
3045 /*
3046  * Called with IRQs disabled
3047  */
3048 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3049                               enum event_type_t event_type)
3050 {
3051         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3052 }
3053
3054 static void
3055 ctx_pinned_sched_in(struct perf_event_context *ctx,
3056                     struct perf_cpu_context *cpuctx)
3057 {
3058         struct perf_event *event;
3059
3060         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3061                 if (event->state <= PERF_EVENT_STATE_OFF)
3062                         continue;
3063                 if (!event_filter_match(event))
3064                         continue;
3065
3066                 /* may need to reset tstamp_enabled */
3067                 if (is_cgroup_event(event))
3068                         perf_cgroup_mark_enabled(event, ctx);
3069
3070                 if (group_can_go_on(event, cpuctx, 1))
3071                         group_sched_in(event, cpuctx, ctx);
3072
3073                 /*
3074                  * If this pinned group hasn't been scheduled,
3075                  * put it in error state.
3076                  */
3077                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3078                         update_group_times(event);
3079                         event->state = PERF_EVENT_STATE_ERROR;
3080                 }
3081         }
3082 }
3083
3084 static void
3085 ctx_flexible_sched_in(struct perf_event_context *ctx,
3086                       struct perf_cpu_context *cpuctx)
3087 {
3088         struct perf_event *event;
3089         int can_add_hw = 1;
3090
3091         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3092                 /* Ignore events in OFF or ERROR state */
3093                 if (event->state <= PERF_EVENT_STATE_OFF)
3094                         continue;
3095                 /*
3096                  * Listen to the 'cpu' scheduling filter constraint
3097                  * of events:
3098                  */
3099                 if (!event_filter_match(event))
3100                         continue;
3101
3102                 /* may need to reset tstamp_enabled */
3103                 if (is_cgroup_event(event))
3104                         perf_cgroup_mark_enabled(event, ctx);
3105
3106                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3107                         if (group_sched_in(event, cpuctx, ctx))
3108                                 can_add_hw = 0;
3109                 }
3110         }
3111 }
3112
3113 static void
3114 ctx_sched_in(struct perf_event_context *ctx,
3115              struct perf_cpu_context *cpuctx,
3116              enum event_type_t event_type,
3117              struct task_struct *task)
3118 {
3119         int is_active = ctx->is_active;
3120         u64 now;
3121
3122         lockdep_assert_held(&ctx->lock);
3123
3124         if (likely(!ctx->nr_events))
3125                 return;
3126
3127         ctx->is_active |= (event_type | EVENT_TIME);
3128         if (ctx->task) {
3129                 if (!is_active)
3130                         cpuctx->task_ctx = ctx;
3131                 else
3132                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3133         }
3134
3135         is_active ^= ctx->is_active; /* changed bits */
3136
3137         if (is_active & EVENT_TIME) {
3138                 /* start ctx time */
3139                 now = perf_clock();
3140                 ctx->timestamp = now;
3141                 perf_cgroup_set_timestamp(task, ctx);
3142         }
3143
3144         /*
3145          * First go through the list and put on any pinned groups
3146          * in order to give them the best chance of going on.
3147          */
3148         if (is_active & EVENT_PINNED)
3149                 ctx_pinned_sched_in(ctx, cpuctx);
3150
3151         /* Then walk through the lower prio flexible groups */
3152         if (is_active & EVENT_FLEXIBLE)
3153                 ctx_flexible_sched_in(ctx, cpuctx);
3154 }
3155
3156 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3157                              enum event_type_t event_type,
3158                              struct task_struct *task)
3159 {
3160         struct perf_event_context *ctx = &cpuctx->ctx;
3161
3162         ctx_sched_in(ctx, cpuctx, event_type, task);
3163 }
3164
3165 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3166                                         struct task_struct *task)
3167 {
3168         struct perf_cpu_context *cpuctx;
3169
3170         cpuctx = __get_cpu_context(ctx);
3171         if (cpuctx->task_ctx == ctx)
3172                 return;
3173
3174         perf_ctx_lock(cpuctx, ctx);
3175         perf_pmu_disable(ctx->pmu);
3176         /*
3177          * We want to keep the following priority order:
3178          * cpu pinned (that don't need to move), task pinned,
3179          * cpu flexible, task flexible.
3180          *
3181          * However, if task's ctx is not carrying any pinned
3182          * events, no need to flip the cpuctx's events around.
3183          */
3184         if (!list_empty(&ctx->pinned_groups))
3185                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3186         perf_event_sched_in(cpuctx, ctx, task);
3187         perf_pmu_enable(ctx->pmu);
3188         perf_ctx_unlock(cpuctx, ctx);
3189 }
3190
3191 /*
3192  * Called from scheduler to add the events of the current task
3193  * with interrupts disabled.
3194  *
3195  * We restore the event value and then enable it.
3196  *
3197  * This does not protect us against NMI, but enable()
3198  * sets the enabled bit in the control field of event _before_
3199  * accessing the event control register. If a NMI hits, then it will
3200  * keep the event running.
3201  */
3202 void __perf_event_task_sched_in(struct task_struct *prev,
3203                                 struct task_struct *task)
3204 {
3205         struct perf_event_context *ctx;
3206         int ctxn;
3207
3208         /*
3209          * If cgroup events exist on this CPU, then we need to check if we have
3210          * to switch in PMU state; cgroup event are system-wide mode only.
3211          *
3212          * Since cgroup events are CPU events, we must schedule these in before
3213          * we schedule in the task events.
3214          */
3215         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3216                 perf_cgroup_sched_in(prev, task);
3217
3218         for_each_task_context_nr(ctxn) {
3219                 ctx = task->perf_event_ctxp[ctxn];
3220                 if (likely(!ctx))
3221                         continue;
3222
3223                 perf_event_context_sched_in(ctx, task);
3224         }
3225
3226         if (atomic_read(&nr_switch_events))
3227                 perf_event_switch(task, prev, true);
3228
3229         if (__this_cpu_read(perf_sched_cb_usages))
3230                 perf_pmu_sched_task(prev, task, true);
3231 }
3232
3233 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3234 {
3235         u64 frequency = event->attr.sample_freq;
3236         u64 sec = NSEC_PER_SEC;
3237         u64 divisor, dividend;
3238
3239         int count_fls, nsec_fls, frequency_fls, sec_fls;
3240
3241         count_fls = fls64(count);
3242         nsec_fls = fls64(nsec);
3243         frequency_fls = fls64(frequency);
3244         sec_fls = 30;
3245
3246         /*
3247          * We got @count in @nsec, with a target of sample_freq HZ
3248          * the target period becomes:
3249          *
3250          *             @count * 10^9
3251          * period = -------------------
3252          *          @nsec * sample_freq
3253          *
3254          */
3255
3256         /*
3257          * Reduce accuracy by one bit such that @a and @b converge
3258          * to a similar magnitude.
3259          */
3260 #define REDUCE_FLS(a, b)                \
3261 do {                                    \
3262         if (a##_fls > b##_fls) {        \
3263                 a >>= 1;                \
3264                 a##_fls--;              \
3265         } else {                        \
3266                 b >>= 1;                \
3267                 b##_fls--;              \
3268         }                               \
3269 } while (0)
3270
3271         /*
3272          * Reduce accuracy until either term fits in a u64, then proceed with
3273          * the other, so that finally we can do a u64/u64 division.
3274          */
3275         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3276                 REDUCE_FLS(nsec, frequency);
3277                 REDUCE_FLS(sec, count);
3278         }
3279
3280         if (count_fls + sec_fls > 64) {
3281                 divisor = nsec * frequency;
3282
3283                 while (count_fls + sec_fls > 64) {
3284                         REDUCE_FLS(count, sec);
3285                         divisor >>= 1;
3286                 }
3287
3288                 dividend = count * sec;
3289         } else {
3290                 dividend = count * sec;
3291
3292                 while (nsec_fls + frequency_fls > 64) {
3293                         REDUCE_FLS(nsec, frequency);
3294                         dividend >>= 1;
3295                 }
3296
3297                 divisor = nsec * frequency;
3298         }
3299
3300         if (!divisor)
3301                 return dividend;
3302
3303         return div64_u64(dividend, divisor);
3304 }
3305
3306 static DEFINE_PER_CPU(int, perf_throttled_count);
3307 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3308
3309 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3310 {
3311         struct hw_perf_event *hwc = &event->hw;
3312         s64 period, sample_period;
3313         s64 delta;
3314
3315         period = perf_calculate_period(event, nsec, count);
3316
3317         delta = (s64)(period - hwc->sample_period);
3318         delta = (delta + 7) / 8; /* low pass filter */
3319
3320         sample_period = hwc->sample_period + delta;
3321
3322         if (!sample_period)
3323                 sample_period = 1;
3324
3325         hwc->sample_period = sample_period;
3326
3327         if (local64_read(&hwc->period_left) > 8*sample_period) {
3328                 if (disable)
3329                         event->pmu->stop(event, PERF_EF_UPDATE);
3330
3331                 local64_set(&hwc->period_left, 0);
3332
3333                 if (disable)
3334                         event->pmu->start(event, PERF_EF_RELOAD);
3335         }
3336 }
3337
3338 /*
3339  * combine freq adjustment with unthrottling to avoid two passes over the
3340  * events. At the same time, make sure, having freq events does not change
3341  * the rate of unthrottling as that would introduce bias.
3342  */
3343 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3344                                            int needs_unthr)
3345 {
3346         struct perf_event *event;
3347         struct hw_perf_event *hwc;
3348         u64 now, period = TICK_NSEC;
3349         s64 delta;
3350
3351         /*
3352          * only need to iterate over all events iff:
3353          * - context have events in frequency mode (needs freq adjust)
3354          * - there are events to unthrottle on this cpu
3355          */
3356         if (!(ctx->nr_freq || needs_unthr))
3357                 return;
3358
3359         raw_spin_lock(&ctx->lock);
3360         perf_pmu_disable(ctx->pmu);
3361
3362         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3363                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3364                         continue;
3365
3366                 if (!event_filter_match(event))
3367                         continue;
3368
3369                 perf_pmu_disable(event->pmu);
3370
3371                 hwc = &event->hw;
3372
3373                 if (hwc->interrupts == MAX_INTERRUPTS) {
3374                         hwc->interrupts = 0;
3375                         perf_log_throttle(event, 1);
3376                         event->pmu->start(event, 0);
3377                 }
3378
3379                 if (!event->attr.freq || !event->attr.sample_freq)
3380                         goto next;
3381
3382                 /*
3383                  * stop the event and update event->count
3384                  */
3385                 event->pmu->stop(event, PERF_EF_UPDATE);
3386
3387                 now = local64_read(&event->count);
3388                 delta = now - hwc->freq_count_stamp;
3389                 hwc->freq_count_stamp = now;
3390
3391                 /*
3392                  * restart the event
3393                  * reload only if value has changed
3394                  * we have stopped the event so tell that
3395                  * to perf_adjust_period() to avoid stopping it
3396                  * twice.
3397                  */
3398                 if (delta > 0)
3399                         perf_adjust_period(event, period, delta, false);
3400
3401                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3402         next:
3403                 perf_pmu_enable(event->pmu);
3404         }
3405
3406         perf_pmu_enable(ctx->pmu);
3407         raw_spin_unlock(&ctx->lock);
3408 }
3409
3410 /*
3411  * Round-robin a context's events:
3412  */
3413 static void rotate_ctx(struct perf_event_context *ctx)
3414 {
3415         /*
3416          * Rotate the first entry last of non-pinned groups. Rotation might be
3417          * disabled by the inheritance code.
3418          */
3419         if (!ctx->rotate_disable)
3420                 list_rotate_left(&ctx->flexible_groups);
3421 }
3422
3423 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3424 {
3425         struct perf_event_context *ctx = NULL;
3426         int rotate = 0;
3427
3428         if (cpuctx->ctx.nr_events) {
3429                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3430                         rotate = 1;
3431         }
3432
3433         ctx = cpuctx->task_ctx;
3434         if (ctx && ctx->nr_events) {
3435                 if (ctx->nr_events != ctx->nr_active)
3436                         rotate = 1;
3437         }
3438
3439         if (!rotate)
3440                 goto done;
3441
3442         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3443         perf_pmu_disable(cpuctx->ctx.pmu);
3444
3445         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3446         if (ctx)
3447                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3448
3449         rotate_ctx(&cpuctx->ctx);
3450         if (ctx)
3451                 rotate_ctx(ctx);
3452
3453         perf_event_sched_in(cpuctx, ctx, current);
3454
3455         perf_pmu_enable(cpuctx->ctx.pmu);
3456         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3457 done:
3458
3459         return rotate;
3460 }
3461
3462 void perf_event_task_tick(void)
3463 {
3464         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3465         struct perf_event_context *ctx, *tmp;
3466         int throttled;
3467
3468         WARN_ON(!irqs_disabled());
3469
3470         __this_cpu_inc(perf_throttled_seq);
3471         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3472         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3473
3474         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3475                 perf_adjust_freq_unthr_context(ctx, throttled);
3476 }
3477
3478 static int event_enable_on_exec(struct perf_event *event,
3479                                 struct perf_event_context *ctx)
3480 {
3481         if (!event->attr.enable_on_exec)
3482                 return 0;
3483
3484         event->attr.enable_on_exec = 0;
3485         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3486                 return 0;
3487
3488         __perf_event_mark_enabled(event);
3489
3490         return 1;
3491 }
3492
3493 /*
3494  * Enable all of a task's events that have been marked enable-on-exec.
3495  * This expects task == current.
3496  */
3497 static void perf_event_enable_on_exec(int ctxn)
3498 {
3499         struct perf_event_context *ctx, *clone_ctx = NULL;
3500         enum event_type_t event_type = 0;
3501         struct perf_cpu_context *cpuctx;
3502         struct perf_event *event;
3503         unsigned long flags;
3504         int enabled = 0;
3505
3506         local_irq_save(flags);
3507         ctx = current->perf_event_ctxp[ctxn];
3508         if (!ctx || !ctx->nr_events)
3509                 goto out;
3510
3511         cpuctx = __get_cpu_context(ctx);
3512         perf_ctx_lock(cpuctx, ctx);
3513         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3514         list_for_each_entry(event, &ctx->event_list, event_entry) {
3515                 enabled |= event_enable_on_exec(event, ctx);
3516                 event_type |= get_event_type(event);
3517         }
3518
3519         /*
3520          * Unclone and reschedule this context if we enabled any event.
3521          */
3522         if (enabled) {
3523                 clone_ctx = unclone_ctx(ctx);
3524                 ctx_resched(cpuctx, ctx, event_type);
3525         }
3526         perf_ctx_unlock(cpuctx, ctx);
3527
3528 out:
3529         local_irq_restore(flags);
3530
3531         if (clone_ctx)
3532                 put_ctx(clone_ctx);
3533 }
3534
3535 struct perf_read_data {
3536         struct perf_event *event;
3537         bool group;
3538         int ret;
3539 };
3540
3541 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3542 {
3543         u16 local_pkg, event_pkg;
3544
3545         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3546                 int local_cpu = smp_processor_id();
3547
3548                 event_pkg = topology_physical_package_id(event_cpu);
3549                 local_pkg = topology_physical_package_id(local_cpu);
3550
3551                 if (event_pkg == local_pkg)
3552                         return local_cpu;
3553         }
3554
3555         return event_cpu;
3556 }
3557
3558 /*
3559  * Cross CPU call to read the hardware event
3560  */
3561 static void __perf_event_read(void *info)
3562 {
3563         struct perf_read_data *data = info;
3564         struct perf_event *sub, *event = data->event;
3565         struct perf_event_context *ctx = event->ctx;
3566         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3567         struct pmu *pmu = event->pmu;
3568
3569         /*
3570          * If this is a task context, we need to check whether it is
3571          * the current task context of this cpu.  If not it has been
3572          * scheduled out before the smp call arrived.  In that case
3573          * event->count would have been updated to a recent sample
3574          * when the event was scheduled out.
3575          */
3576         if (ctx->task && cpuctx->task_ctx != ctx)
3577                 return;
3578
3579         raw_spin_lock(&ctx->lock);
3580         if (ctx->is_active) {
3581                 update_context_time(ctx);
3582                 update_cgrp_time_from_event(event);
3583         }
3584
3585         update_event_times(event);
3586         if (event->state != PERF_EVENT_STATE_ACTIVE)
3587                 goto unlock;
3588
3589         if (!data->group) {
3590                 pmu->read(event);
3591                 data->ret = 0;
3592                 goto unlock;
3593         }
3594
3595         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3596
3597         pmu->read(event);
3598
3599         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3600                 update_event_times(sub);
3601                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3602                         /*
3603                          * Use sibling's PMU rather than @event's since
3604                          * sibling could be on different (eg: software) PMU.
3605                          */
3606                         sub->pmu->read(sub);
3607                 }
3608         }
3609
3610         data->ret = pmu->commit_txn(pmu);
3611
3612 unlock:
3613         raw_spin_unlock(&ctx->lock);
3614 }
3615
3616 static inline u64 perf_event_count(struct perf_event *event)
3617 {
3618         if (event->pmu->count)
3619                 return event->pmu->count(event);
3620
3621         return __perf_event_count(event);
3622 }
3623
3624 /*
3625  * NMI-safe method to read a local event, that is an event that
3626  * is:
3627  *   - either for the current task, or for this CPU
3628  *   - does not have inherit set, for inherited task events
3629  *     will not be local and we cannot read them atomically
3630  *   - must not have a pmu::count method
3631  */
3632 u64 perf_event_read_local(struct perf_event *event)
3633 {
3634         unsigned long flags;
3635         u64 val;
3636
3637         /*
3638          * Disabling interrupts avoids all counter scheduling (context
3639          * switches, timer based rotation and IPIs).
3640          */
3641         local_irq_save(flags);
3642
3643         /* If this is a per-task event, it must be for current */
3644         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3645                      event->hw.target != current);
3646
3647         /* If this is a per-CPU event, it must be for this CPU */
3648         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3649                      event->cpu != smp_processor_id());
3650
3651         /*
3652          * It must not be an event with inherit set, we cannot read
3653          * all child counters from atomic context.
3654          */
3655         WARN_ON_ONCE(event->attr.inherit);
3656
3657         /*
3658          * It must not have a pmu::count method, those are not
3659          * NMI safe.
3660          */
3661         WARN_ON_ONCE(event->pmu->count);
3662
3663         /*
3664          * If the event is currently on this CPU, its either a per-task event,
3665          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3666          * oncpu == -1).
3667          */
3668         if (event->oncpu == smp_processor_id())
3669                 event->pmu->read(event);
3670
3671         val = local64_read(&event->count);
3672         local_irq_restore(flags);
3673
3674         return val;
3675 }
3676
3677 static int perf_event_read(struct perf_event *event, bool group)
3678 {
3679         int event_cpu, ret = 0;
3680
3681         /*
3682          * If event is enabled and currently active on a CPU, update the
3683          * value in the event structure:
3684          */
3685         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3686                 struct perf_read_data data = {
3687                         .event = event,
3688                         .group = group,
3689                         .ret = 0,
3690                 };
3691
3692                 event_cpu = READ_ONCE(event->oncpu);
3693                 if ((unsigned)event_cpu >= nr_cpu_ids)
3694                         return 0;
3695
3696                 preempt_disable();
3697                 event_cpu = __perf_event_read_cpu(event, event_cpu);
3698
3699                 /*
3700                  * Purposely ignore the smp_call_function_single() return
3701                  * value.
3702                  *
3703                  * If event_cpu isn't a valid CPU it means the event got
3704                  * scheduled out and that will have updated the event count.
3705                  *
3706                  * Therefore, either way, we'll have an up-to-date event count
3707                  * after this.
3708                  */
3709                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3710                 preempt_enable();
3711                 ret = data.ret;
3712         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3713                 struct perf_event_context *ctx = event->ctx;
3714                 unsigned long flags;
3715
3716                 raw_spin_lock_irqsave(&ctx->lock, flags);
3717                 /*
3718                  * may read while context is not active
3719                  * (e.g., thread is blocked), in that case
3720                  * we cannot update context time
3721                  */
3722                 if (ctx->is_active) {
3723                         update_context_time(ctx);
3724                         update_cgrp_time_from_event(event);
3725                 }
3726                 if (group)
3727                         update_group_times(event);
3728                 else
3729                         update_event_times(event);
3730                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3731         }
3732
3733         return ret;
3734 }
3735
3736 /*
3737  * Initialize the perf_event context in a task_struct:
3738  */
3739 static void __perf_event_init_context(struct perf_event_context *ctx)
3740 {
3741         raw_spin_lock_init(&ctx->lock);
3742         mutex_init(&ctx->mutex);
3743         INIT_LIST_HEAD(&ctx->active_ctx_list);
3744         INIT_LIST_HEAD(&ctx->pinned_groups);
3745         INIT_LIST_HEAD(&ctx->flexible_groups);
3746         INIT_LIST_HEAD(&ctx->event_list);
3747         atomic_set(&ctx->refcount, 1);
3748 }
3749
3750 static struct perf_event_context *
3751 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3752 {
3753         struct perf_event_context *ctx;
3754
3755         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3756         if (!ctx)
3757                 return NULL;
3758
3759         __perf_event_init_context(ctx);
3760         if (task) {
3761                 ctx->task = task;
3762                 get_task_struct(task);
3763         }
3764         ctx->pmu = pmu;
3765
3766         return ctx;
3767 }
3768
3769 static struct task_struct *
3770 find_lively_task_by_vpid(pid_t vpid)
3771 {
3772         struct task_struct *task;
3773
3774         rcu_read_lock();
3775         if (!vpid)
3776                 task = current;
3777         else
3778                 task = find_task_by_vpid(vpid);
3779         if (task)
3780                 get_task_struct(task);
3781         rcu_read_unlock();
3782
3783         if (!task)
3784                 return ERR_PTR(-ESRCH);
3785
3786         return task;
3787 }
3788
3789 /*
3790  * Returns a matching context with refcount and pincount.
3791  */
3792 static struct perf_event_context *
3793 find_get_context(struct pmu *pmu, struct task_struct *task,
3794                 struct perf_event *event)
3795 {
3796         struct perf_event_context *ctx, *clone_ctx = NULL;
3797         struct perf_cpu_context *cpuctx;
3798         void *task_ctx_data = NULL;
3799         unsigned long flags;
3800         int ctxn, err;
3801         int cpu = event->cpu;
3802
3803         if (!task) {
3804                 /* Must be root to operate on a CPU event: */
3805                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3806                         return ERR_PTR(-EACCES);
3807
3808                 /*
3809                  * We could be clever and allow to attach a event to an
3810                  * offline CPU and activate it when the CPU comes up, but
3811                  * that's for later.
3812                  */
3813                 if (!cpu_online(cpu))
3814                         return ERR_PTR(-ENODEV);
3815
3816                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3817                 ctx = &cpuctx->ctx;
3818                 get_ctx(ctx);
3819                 ++ctx->pin_count;
3820
3821                 return ctx;
3822         }
3823
3824         err = -EINVAL;
3825         ctxn = pmu->task_ctx_nr;
3826         if (ctxn < 0)
3827                 goto errout;
3828
3829         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3830                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3831                 if (!task_ctx_data) {
3832                         err = -ENOMEM;
3833                         goto errout;
3834                 }
3835         }
3836
3837 retry:
3838         ctx = perf_lock_task_context(task, ctxn, &flags);
3839         if (ctx) {
3840                 clone_ctx = unclone_ctx(ctx);
3841                 ++ctx->pin_count;
3842
3843                 if (task_ctx_data && !ctx->task_ctx_data) {
3844                         ctx->task_ctx_data = task_ctx_data;
3845                         task_ctx_data = NULL;
3846                 }
3847                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3848
3849                 if (clone_ctx)
3850                         put_ctx(clone_ctx);
3851         } else {
3852                 ctx = alloc_perf_context(pmu, task);
3853                 err = -ENOMEM;
3854                 if (!ctx)
3855                         goto errout;
3856
3857                 if (task_ctx_data) {
3858                         ctx->task_ctx_data = task_ctx_data;
3859                         task_ctx_data = NULL;
3860                 }
3861
3862                 err = 0;
3863                 mutex_lock(&task->perf_event_mutex);
3864                 /*
3865                  * If it has already passed perf_event_exit_task().
3866                  * we must see PF_EXITING, it takes this mutex too.
3867                  */
3868                 if (task->flags & PF_EXITING)
3869                         err = -ESRCH;
3870                 else if (task->perf_event_ctxp[ctxn])
3871                         err = -EAGAIN;
3872                 else {
3873                         get_ctx(ctx);
3874                         ++ctx->pin_count;
3875                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3876                 }
3877                 mutex_unlock(&task->perf_event_mutex);
3878
3879                 if (unlikely(err)) {
3880                         put_ctx(ctx);
3881
3882                         if (err == -EAGAIN)
3883                                 goto retry;
3884                         goto errout;
3885                 }
3886         }
3887
3888         kfree(task_ctx_data);
3889         return ctx;
3890
3891 errout:
3892         kfree(task_ctx_data);
3893         return ERR_PTR(err);
3894 }
3895
3896 static void perf_event_free_filter(struct perf_event *event);
3897 static void perf_event_free_bpf_prog(struct perf_event *event);
3898
3899 static void free_event_rcu(struct rcu_head *head)
3900 {
3901         struct perf_event *event;
3902
3903         event = container_of(head, struct perf_event, rcu_head);
3904         if (event->ns)
3905                 put_pid_ns(event->ns);
3906         perf_event_free_filter(event);
3907         kfree(event);
3908 }
3909
3910 static void ring_buffer_attach(struct perf_event *event,
3911                                struct ring_buffer *rb);
3912
3913 static void detach_sb_event(struct perf_event *event)
3914 {
3915         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3916
3917         raw_spin_lock(&pel->lock);
3918         list_del_rcu(&event->sb_list);
3919         raw_spin_unlock(&pel->lock);
3920 }
3921
3922 static bool is_sb_event(struct perf_event *event)
3923 {
3924         struct perf_event_attr *attr = &event->attr;
3925
3926         if (event->parent)
3927                 return false;
3928
3929         if (event->attach_state & PERF_ATTACH_TASK)
3930                 return false;
3931
3932         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3933             attr->comm || attr->comm_exec ||
3934             attr->task ||
3935             attr->context_switch)
3936                 return true;
3937         return false;
3938 }
3939
3940 static void unaccount_pmu_sb_event(struct perf_event *event)
3941 {
3942         if (is_sb_event(event))
3943                 detach_sb_event(event);
3944 }
3945
3946 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3947 {
3948         if (event->parent)
3949                 return;
3950
3951         if (is_cgroup_event(event))
3952                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3953 }
3954
3955 #ifdef CONFIG_NO_HZ_FULL
3956 static DEFINE_SPINLOCK(nr_freq_lock);
3957 #endif
3958
3959 static void unaccount_freq_event_nohz(void)
3960 {
3961 #ifdef CONFIG_NO_HZ_FULL
3962         spin_lock(&nr_freq_lock);
3963         if (atomic_dec_and_test(&nr_freq_events))
3964                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3965         spin_unlock(&nr_freq_lock);
3966 #endif
3967 }
3968
3969 static void unaccount_freq_event(void)
3970 {
3971         if (tick_nohz_full_enabled())
3972                 unaccount_freq_event_nohz();
3973         else
3974                 atomic_dec(&nr_freq_events);
3975 }
3976
3977 static void unaccount_event(struct perf_event *event)
3978 {
3979         bool dec = false;
3980
3981         if (event->parent)
3982                 return;
3983
3984         if (event->attach_state & PERF_ATTACH_TASK)
3985                 dec = true;
3986         if (event->attr.mmap || event->attr.mmap_data)
3987                 atomic_dec(&nr_mmap_events);
3988         if (event->attr.comm)
3989                 atomic_dec(&nr_comm_events);
3990         if (event->attr.task)
3991                 atomic_dec(&nr_task_events);
3992         if (event->attr.freq)
3993                 unaccount_freq_event();
3994         if (event->attr.context_switch) {
3995                 dec = true;
3996                 atomic_dec(&nr_switch_events);
3997         }
3998         if (is_cgroup_event(event))
3999                 dec = true;
4000         if (has_branch_stack(event))
4001                 dec = true;
4002
4003         if (dec) {
4004                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4005                         schedule_delayed_work(&perf_sched_work, HZ);
4006         }
4007
4008         unaccount_event_cpu(event, event->cpu);
4009
4010         unaccount_pmu_sb_event(event);
4011 }
4012
4013 static void perf_sched_delayed(struct work_struct *work)
4014 {
4015         mutex_lock(&perf_sched_mutex);
4016         if (atomic_dec_and_test(&perf_sched_count))
4017                 static_branch_disable(&perf_sched_events);
4018         mutex_unlock(&perf_sched_mutex);
4019 }
4020
4021 /*
4022  * The following implement mutual exclusion of events on "exclusive" pmus
4023  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4024  * at a time, so we disallow creating events that might conflict, namely:
4025  *
4026  *  1) cpu-wide events in the presence of per-task events,
4027  *  2) per-task events in the presence of cpu-wide events,
4028  *  3) two matching events on the same context.
4029  *
4030  * The former two cases are handled in the allocation path (perf_event_alloc(),
4031  * _free_event()), the latter -- before the first perf_install_in_context().
4032  */
4033 static int exclusive_event_init(struct perf_event *event)
4034 {
4035         struct pmu *pmu = event->pmu;
4036
4037         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4038                 return 0;
4039
4040         /*
4041          * Prevent co-existence of per-task and cpu-wide events on the
4042          * same exclusive pmu.
4043          *
4044          * Negative pmu::exclusive_cnt means there are cpu-wide
4045          * events on this "exclusive" pmu, positive means there are
4046          * per-task events.
4047          *
4048          * Since this is called in perf_event_alloc() path, event::ctx
4049          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4050          * to mean "per-task event", because unlike other attach states it
4051          * never gets cleared.
4052          */
4053         if (event->attach_state & PERF_ATTACH_TASK) {
4054                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4055                         return -EBUSY;
4056         } else {
4057                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4058                         return -EBUSY;
4059         }
4060
4061         return 0;
4062 }
4063
4064 static void exclusive_event_destroy(struct perf_event *event)
4065 {
4066         struct pmu *pmu = event->pmu;
4067
4068         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4069                 return;
4070
4071         /* see comment in exclusive_event_init() */
4072         if (event->attach_state & PERF_ATTACH_TASK)
4073                 atomic_dec(&pmu->exclusive_cnt);
4074         else
4075                 atomic_inc(&pmu->exclusive_cnt);
4076 }
4077
4078 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4079 {
4080         if ((e1->pmu == e2->pmu) &&
4081             (e1->cpu == e2->cpu ||
4082              e1->cpu == -1 ||
4083              e2->cpu == -1))
4084                 return true;
4085         return false;
4086 }
4087
4088 /* Called under the same ctx::mutex as perf_install_in_context() */
4089 static bool exclusive_event_installable(struct perf_event *event,
4090                                         struct perf_event_context *ctx)
4091 {
4092         struct perf_event *iter_event;
4093         struct pmu *pmu = event->pmu;
4094
4095         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4096                 return true;
4097
4098         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4099                 if (exclusive_event_match(iter_event, event))
4100                         return false;
4101         }
4102
4103         return true;
4104 }
4105
4106 static void perf_addr_filters_splice(struct perf_event *event,
4107                                        struct list_head *head);
4108
4109 static void _free_event(struct perf_event *event)
4110 {
4111         irq_work_sync(&event->pending);
4112
4113         unaccount_event(event);
4114
4115         if (event->rb) {
4116                 /*
4117                  * Can happen when we close an event with re-directed output.
4118                  *
4119                  * Since we have a 0 refcount, perf_mmap_close() will skip
4120                  * over us; possibly making our ring_buffer_put() the last.
4121                  */
4122                 mutex_lock(&event->mmap_mutex);
4123                 ring_buffer_attach(event, NULL);
4124                 mutex_unlock(&event->mmap_mutex);
4125         }
4126
4127         if (is_cgroup_event(event))
4128                 perf_detach_cgroup(event);
4129
4130         if (!event->parent) {
4131                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4132                         put_callchain_buffers();
4133         }
4134
4135         perf_event_free_bpf_prog(event);
4136         perf_addr_filters_splice(event, NULL);
4137         kfree(event->addr_filters_offs);
4138
4139         if (event->destroy)
4140                 event->destroy(event);
4141
4142         if (event->ctx)
4143                 put_ctx(event->ctx);
4144
4145         exclusive_event_destroy(event);
4146         module_put(event->pmu->module);
4147
4148         call_rcu(&event->rcu_head, free_event_rcu);
4149 }
4150
4151 /*
4152  * Used to free events which have a known refcount of 1, such as in error paths
4153  * where the event isn't exposed yet and inherited events.
4154  */
4155 static void free_event(struct perf_event *event)
4156 {
4157         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4158                                 "unexpected event refcount: %ld; ptr=%p\n",
4159                                 atomic_long_read(&event->refcount), event)) {
4160                 /* leak to avoid use-after-free */
4161                 return;
4162         }
4163
4164         _free_event(event);
4165 }
4166
4167 /*
4168  * Remove user event from the owner task.
4169  */
4170 static void perf_remove_from_owner(struct perf_event *event)
4171 {
4172         struct task_struct *owner;
4173
4174         rcu_read_lock();
4175         /*
4176          * Matches the smp_store_release() in perf_event_exit_task(). If we
4177          * observe !owner it means the list deletion is complete and we can
4178          * indeed free this event, otherwise we need to serialize on
4179          * owner->perf_event_mutex.
4180          */
4181         owner = lockless_dereference(event->owner);
4182         if (owner) {
4183                 /*
4184                  * Since delayed_put_task_struct() also drops the last
4185                  * task reference we can safely take a new reference
4186                  * while holding the rcu_read_lock().
4187                  */
4188                 get_task_struct(owner);
4189         }
4190         rcu_read_unlock();
4191
4192         if (owner) {
4193                 /*
4194                  * If we're here through perf_event_exit_task() we're already
4195                  * holding ctx->mutex which would be an inversion wrt. the
4196                  * normal lock order.
4197                  *
4198                  * However we can safely take this lock because its the child
4199                  * ctx->mutex.
4200                  */
4201                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4202
4203                 /*
4204                  * We have to re-check the event->owner field, if it is cleared
4205                  * we raced with perf_event_exit_task(), acquiring the mutex
4206                  * ensured they're done, and we can proceed with freeing the
4207                  * event.
4208                  */
4209                 if (event->owner) {
4210                         list_del_init(&event->owner_entry);
4211                         smp_store_release(&event->owner, NULL);
4212                 }
4213                 mutex_unlock(&owner->perf_event_mutex);
4214                 put_task_struct(owner);
4215         }
4216 }
4217
4218 static void put_event(struct perf_event *event)
4219 {
4220         if (!atomic_long_dec_and_test(&event->refcount))
4221                 return;
4222
4223         _free_event(event);
4224 }
4225
4226 /*
4227  * Kill an event dead; while event:refcount will preserve the event
4228  * object, it will not preserve its functionality. Once the last 'user'
4229  * gives up the object, we'll destroy the thing.
4230  */
4231 int perf_event_release_kernel(struct perf_event *event)
4232 {
4233         struct perf_event_context *ctx = event->ctx;
4234         struct perf_event *child, *tmp;
4235
4236         /*
4237          * If we got here through err_file: fput(event_file); we will not have
4238          * attached to a context yet.
4239          */
4240         if (!ctx) {
4241                 WARN_ON_ONCE(event->attach_state &
4242                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4243                 goto no_ctx;
4244         }
4245
4246         if (!is_kernel_event(event))
4247                 perf_remove_from_owner(event);
4248
4249         ctx = perf_event_ctx_lock(event);
4250         WARN_ON_ONCE(ctx->parent_ctx);
4251         perf_remove_from_context(event, DETACH_GROUP);
4252
4253         raw_spin_lock_irq(&ctx->lock);
4254         /*
4255          * Mark this even as STATE_DEAD, there is no external reference to it
4256          * anymore.
4257          *
4258          * Anybody acquiring event->child_mutex after the below loop _must_
4259          * also see this, most importantly inherit_event() which will avoid
4260          * placing more children on the list.
4261          *
4262          * Thus this guarantees that we will in fact observe and kill _ALL_
4263          * child events.
4264          */
4265         event->state = PERF_EVENT_STATE_DEAD;
4266         raw_spin_unlock_irq(&ctx->lock);
4267
4268         perf_event_ctx_unlock(event, ctx);
4269
4270 again:
4271         mutex_lock(&event->child_mutex);
4272         list_for_each_entry(child, &event->child_list, child_list) {
4273
4274                 /*
4275                  * Cannot change, child events are not migrated, see the
4276                  * comment with perf_event_ctx_lock_nested().
4277                  */
4278                 ctx = lockless_dereference(child->ctx);
4279                 /*
4280                  * Since child_mutex nests inside ctx::mutex, we must jump
4281                  * through hoops. We start by grabbing a reference on the ctx.
4282                  *
4283                  * Since the event cannot get freed while we hold the
4284                  * child_mutex, the context must also exist and have a !0
4285                  * reference count.
4286                  */
4287                 get_ctx(ctx);
4288
4289                 /*
4290                  * Now that we have a ctx ref, we can drop child_mutex, and
4291                  * acquire ctx::mutex without fear of it going away. Then we
4292                  * can re-acquire child_mutex.
4293                  */
4294                 mutex_unlock(&event->child_mutex);
4295                 mutex_lock(&ctx->mutex);
4296                 mutex_lock(&event->child_mutex);
4297
4298                 /*
4299                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4300                  * state, if child is still the first entry, it didn't get freed
4301                  * and we can continue doing so.
4302                  */
4303                 tmp = list_first_entry_or_null(&event->child_list,
4304                                                struct perf_event, child_list);
4305                 if (tmp == child) {
4306                         perf_remove_from_context(child, DETACH_GROUP);
4307                         list_del(&child->child_list);
4308                         free_event(child);
4309                         /*
4310                          * This matches the refcount bump in inherit_event();
4311                          * this can't be the last reference.
4312                          */
4313                         put_event(event);
4314                 }
4315
4316                 mutex_unlock(&event->child_mutex);
4317                 mutex_unlock(&ctx->mutex);
4318                 put_ctx(ctx);
4319                 goto again;
4320         }
4321         mutex_unlock(&event->child_mutex);
4322
4323 no_ctx:
4324         put_event(event); /* Must be the 'last' reference */
4325         return 0;
4326 }
4327 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4328
4329 /*
4330  * Called when the last reference to the file is gone.
4331  */
4332 static int perf_release(struct inode *inode, struct file *file)
4333 {
4334         perf_event_release_kernel(file->private_data);
4335         return 0;
4336 }
4337
4338 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4339 {
4340         struct perf_event *child;
4341         u64 total = 0;
4342
4343         *enabled = 0;
4344         *running = 0;
4345
4346         mutex_lock(&event->child_mutex);
4347
4348         (void)perf_event_read(event, false);
4349         total += perf_event_count(event);
4350
4351         *enabled += event->total_time_enabled +
4352                         atomic64_read(&event->child_total_time_enabled);
4353         *running += event->total_time_running +
4354                         atomic64_read(&event->child_total_time_running);
4355
4356         list_for_each_entry(child, &event->child_list, child_list) {
4357                 (void)perf_event_read(child, false);
4358                 total += perf_event_count(child);
4359                 *enabled += child->total_time_enabled;
4360                 *running += child->total_time_running;
4361         }
4362         mutex_unlock(&event->child_mutex);
4363
4364         return total;
4365 }
4366 EXPORT_SYMBOL_GPL(perf_event_read_value);
4367
4368 static int __perf_read_group_add(struct perf_event *leader,
4369                                         u64 read_format, u64 *values)
4370 {
4371         struct perf_event *sub;
4372         int n = 1; /* skip @nr */
4373         int ret;
4374
4375         ret = perf_event_read(leader, true);
4376         if (ret)
4377                 return ret;
4378
4379         /*
4380          * Since we co-schedule groups, {enabled,running} times of siblings
4381          * will be identical to those of the leader, so we only publish one
4382          * set.
4383          */
4384         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4385                 values[n++] += leader->total_time_enabled +
4386                         atomic64_read(&leader->child_total_time_enabled);
4387         }
4388
4389         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4390                 values[n++] += leader->total_time_running +
4391                         atomic64_read(&leader->child_total_time_running);
4392         }
4393
4394         /*
4395          * Write {count,id} tuples for every sibling.
4396          */
4397         values[n++] += perf_event_count(leader);
4398         if (read_format & PERF_FORMAT_ID)
4399                 values[n++] = primary_event_id(leader);
4400
4401         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4402                 values[n++] += perf_event_count(sub);
4403                 if (read_format & PERF_FORMAT_ID)
4404                         values[n++] = primary_event_id(sub);
4405         }
4406
4407         return 0;
4408 }
4409
4410 static int perf_read_group(struct perf_event *event,
4411                                    u64 read_format, char __user *buf)
4412 {
4413         struct perf_event *leader = event->group_leader, *child;
4414         struct perf_event_context *ctx = leader->ctx;
4415         int ret;
4416         u64 *values;
4417
4418         lockdep_assert_held(&ctx->mutex);
4419
4420         values = kzalloc(event->read_size, GFP_KERNEL);
4421         if (!values)
4422                 return -ENOMEM;
4423
4424         values[0] = 1 + leader->nr_siblings;
4425
4426         /*
4427          * By locking the child_mutex of the leader we effectively
4428          * lock the child list of all siblings.. XXX explain how.
4429          */
4430         mutex_lock(&leader->child_mutex);
4431
4432         ret = __perf_read_group_add(leader, read_format, values);
4433         if (ret)
4434                 goto unlock;
4435
4436         list_for_each_entry(child, &leader->child_list, child_list) {
4437                 ret = __perf_read_group_add(child, read_format, values);
4438                 if (ret)
4439                         goto unlock;
4440         }
4441
4442         mutex_unlock(&leader->child_mutex);
4443
4444         ret = event->read_size;
4445         if (copy_to_user(buf, values, event->read_size))
4446                 ret = -EFAULT;
4447         goto out;
4448
4449 unlock:
4450         mutex_unlock(&leader->child_mutex);
4451 out:
4452         kfree(values);
4453         return ret;
4454 }
4455
4456 static int perf_read_one(struct perf_event *event,
4457                                  u64 read_format, char __user *buf)
4458 {
4459         u64 enabled, running;
4460         u64 values[4];
4461         int n = 0;
4462
4463         values[n++] = perf_event_read_value(event, &enabled, &running);
4464         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4465                 values[n++] = enabled;
4466         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4467                 values[n++] = running;
4468         if (read_format & PERF_FORMAT_ID)
4469                 values[n++] = primary_event_id(event);
4470
4471         if (copy_to_user(buf, values, n * sizeof(u64)))
4472                 return -EFAULT;
4473
4474         return n * sizeof(u64);
4475 }
4476
4477 static bool is_event_hup(struct perf_event *event)
4478 {
4479         bool no_children;
4480
4481         if (event->state > PERF_EVENT_STATE_EXIT)
4482                 return false;
4483
4484         mutex_lock(&event->child_mutex);
4485         no_children = list_empty(&event->child_list);
4486         mutex_unlock(&event->child_mutex);
4487         return no_children;
4488 }
4489
4490 /*
4491  * Read the performance event - simple non blocking version for now
4492  */
4493 static ssize_t
4494 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4495 {
4496         u64 read_format = event->attr.read_format;
4497         int ret;
4498
4499         /*
4500          * Return end-of-file for a read on a event that is in
4501          * error state (i.e. because it was pinned but it couldn't be
4502          * scheduled on to the CPU at some point).
4503          */
4504         if (event->state == PERF_EVENT_STATE_ERROR)
4505                 return 0;
4506
4507         if (count < event->read_size)
4508                 return -ENOSPC;
4509
4510         WARN_ON_ONCE(event->ctx->parent_ctx);
4511         if (read_format & PERF_FORMAT_GROUP)
4512                 ret = perf_read_group(event, read_format, buf);
4513         else
4514                 ret = perf_read_one(event, read_format, buf);
4515
4516         return ret;
4517 }
4518
4519 static ssize_t
4520 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4521 {
4522         struct perf_event *event = file->private_data;
4523         struct perf_event_context *ctx;
4524         int ret;
4525
4526         ctx = perf_event_ctx_lock(event);
4527         ret = __perf_read(event, buf, count);
4528         perf_event_ctx_unlock(event, ctx);
4529
4530         return ret;
4531 }
4532
4533 static unsigned int perf_poll(struct file *file, poll_table *wait)
4534 {
4535         struct perf_event *event = file->private_data;
4536         struct ring_buffer *rb;
4537         unsigned int events = POLLHUP;
4538
4539         poll_wait(file, &event->waitq, wait);
4540
4541         if (is_event_hup(event))
4542                 return events;
4543
4544         /*
4545          * Pin the event->rb by taking event->mmap_mutex; otherwise
4546          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4547          */
4548         mutex_lock(&event->mmap_mutex);
4549         rb = event->rb;
4550         if (rb)
4551                 events = atomic_xchg(&rb->poll, 0);
4552         mutex_unlock(&event->mmap_mutex);
4553         return events;
4554 }
4555
4556 static void _perf_event_reset(struct perf_event *event)
4557 {
4558         (void)perf_event_read(event, false);
4559         local64_set(&event->count, 0);
4560         perf_event_update_userpage(event);
4561 }
4562
4563 /*
4564  * Holding the top-level event's child_mutex means that any
4565  * descendant process that has inherited this event will block
4566  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4567  * task existence requirements of perf_event_enable/disable.
4568  */
4569 static void perf_event_for_each_child(struct perf_event *event,
4570                                         void (*func)(struct perf_event *))
4571 {
4572         struct perf_event *child;
4573
4574         WARN_ON_ONCE(event->ctx->parent_ctx);
4575
4576         mutex_lock(&event->child_mutex);
4577         func(event);
4578         list_for_each_entry(child, &event->child_list, child_list)
4579                 func(child);
4580         mutex_unlock(&event->child_mutex);
4581 }
4582
4583 static void perf_event_for_each(struct perf_event *event,
4584                                   void (*func)(struct perf_event *))
4585 {
4586         struct perf_event_context *ctx = event->ctx;
4587         struct perf_event *sibling;
4588
4589         lockdep_assert_held(&ctx->mutex);
4590
4591         event = event->group_leader;
4592
4593         perf_event_for_each_child(event, func);
4594         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4595                 perf_event_for_each_child(sibling, func);
4596 }
4597
4598 static void __perf_event_period(struct perf_event *event,
4599                                 struct perf_cpu_context *cpuctx,
4600                                 struct perf_event_context *ctx,
4601                                 void *info)
4602 {
4603         u64 value = *((u64 *)info);
4604         bool active;
4605
4606         if (event->attr.freq) {
4607                 event->attr.sample_freq = value;
4608         } else {
4609                 event->attr.sample_period = value;
4610                 event->hw.sample_period = value;
4611         }
4612
4613         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4614         if (active) {
4615                 perf_pmu_disable(ctx->pmu);
4616                 /*
4617                  * We could be throttled; unthrottle now to avoid the tick
4618                  * trying to unthrottle while we already re-started the event.
4619                  */
4620                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4621                         event->hw.interrupts = 0;
4622                         perf_log_throttle(event, 1);
4623                 }
4624                 event->pmu->stop(event, PERF_EF_UPDATE);
4625         }
4626
4627         local64_set(&event->hw.period_left, 0);
4628
4629         if (active) {
4630                 event->pmu->start(event, PERF_EF_RELOAD);
4631                 perf_pmu_enable(ctx->pmu);
4632         }
4633 }
4634
4635 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4636 {
4637         u64 value;
4638
4639         if (!is_sampling_event(event))
4640                 return -EINVAL;
4641
4642         if (copy_from_user(&value, arg, sizeof(value)))
4643                 return -EFAULT;
4644
4645         if (!value)
4646                 return -EINVAL;
4647
4648         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4649                 return -EINVAL;
4650
4651         event_function_call(event, __perf_event_period, &value);
4652
4653         return 0;
4654 }
4655
4656 static const struct file_operations perf_fops;
4657
4658 static inline int perf_fget_light(int fd, struct fd *p)
4659 {
4660         struct fd f = fdget(fd);
4661         if (!f.file)
4662                 return -EBADF;
4663
4664         if (f.file->f_op != &perf_fops) {
4665                 fdput(f);
4666                 return -EBADF;
4667         }
4668         *p = f;
4669         return 0;
4670 }
4671
4672 static int perf_event_set_output(struct perf_event *event,
4673                                  struct perf_event *output_event);
4674 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4675 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4676
4677 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4678 {
4679         void (*func)(struct perf_event *);
4680         u32 flags = arg;
4681
4682         switch (cmd) {
4683         case PERF_EVENT_IOC_ENABLE:
4684                 func = _perf_event_enable;
4685                 break;
4686         case PERF_EVENT_IOC_DISABLE:
4687                 func = _perf_event_disable;
4688                 break;
4689         case PERF_EVENT_IOC_RESET:
4690                 func = _perf_event_reset;
4691                 break;
4692
4693         case PERF_EVENT_IOC_REFRESH:
4694                 return _perf_event_refresh(event, arg);
4695
4696         case PERF_EVENT_IOC_PERIOD:
4697                 return perf_event_period(event, (u64 __user *)arg);
4698
4699         case PERF_EVENT_IOC_ID:
4700         {
4701                 u64 id = primary_event_id(event);
4702
4703                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4704                         return -EFAULT;
4705                 return 0;
4706         }
4707
4708         case PERF_EVENT_IOC_SET_OUTPUT:
4709         {
4710                 int ret;
4711                 if (arg != -1) {
4712                         struct perf_event *output_event;
4713                         struct fd output;
4714                         ret = perf_fget_light(arg, &output);
4715                         if (ret)
4716                                 return ret;
4717                         output_event = output.file->private_data;
4718                         ret = perf_event_set_output(event, output_event);
4719                         fdput(output);
4720                 } else {
4721                         ret = perf_event_set_output(event, NULL);
4722                 }
4723                 return ret;
4724         }
4725
4726         case PERF_EVENT_IOC_SET_FILTER:
4727                 return perf_event_set_filter(event, (void __user *)arg);
4728
4729         case PERF_EVENT_IOC_SET_BPF:
4730                 return perf_event_set_bpf_prog(event, arg);
4731
4732         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4733                 struct ring_buffer *rb;
4734
4735                 rcu_read_lock();
4736                 rb = rcu_dereference(event->rb);
4737                 if (!rb || !rb->nr_pages) {
4738                         rcu_read_unlock();
4739                         return -EINVAL;
4740                 }
4741                 rb_toggle_paused(rb, !!arg);
4742                 rcu_read_unlock();
4743                 return 0;
4744         }
4745         default:
4746                 return -ENOTTY;
4747         }
4748
4749         if (flags & PERF_IOC_FLAG_GROUP)
4750                 perf_event_for_each(event, func);
4751         else
4752                 perf_event_for_each_child(event, func);
4753
4754         return 0;
4755 }
4756
4757 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4758 {
4759         struct perf_event *event = file->private_data;
4760         struct perf_event_context *ctx;
4761         long ret;
4762
4763         ctx = perf_event_ctx_lock(event);
4764         ret = _perf_ioctl(event, cmd, arg);
4765         perf_event_ctx_unlock(event, ctx);
4766
4767         return ret;
4768 }
4769
4770 #ifdef CONFIG_COMPAT
4771 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4772                                 unsigned long arg)
4773 {
4774         switch (_IOC_NR(cmd)) {
4775         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4776         case _IOC_NR(PERF_EVENT_IOC_ID):
4777                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4778                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4779                         cmd &= ~IOCSIZE_MASK;
4780                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4781                 }
4782                 break;
4783         }
4784         return perf_ioctl(file, cmd, arg);
4785 }
4786 #else
4787 # define perf_compat_ioctl NULL
4788 #endif
4789
4790 int perf_event_task_enable(void)
4791 {
4792         struct perf_event_context *ctx;
4793         struct perf_event *event;
4794
4795         mutex_lock(&current->perf_event_mutex);
4796         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4797                 ctx = perf_event_ctx_lock(event);
4798                 perf_event_for_each_child(event, _perf_event_enable);
4799                 perf_event_ctx_unlock(event, ctx);
4800         }
4801         mutex_unlock(&current->perf_event_mutex);
4802
4803         return 0;
4804 }
4805
4806 int perf_event_task_disable(void)
4807 {
4808         struct perf_event_context *ctx;
4809         struct perf_event *event;
4810
4811         mutex_lock(&current->perf_event_mutex);
4812         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4813                 ctx = perf_event_ctx_lock(event);
4814                 perf_event_for_each_child(event, _perf_event_disable);
4815                 perf_event_ctx_unlock(event, ctx);
4816         }
4817         mutex_unlock(&current->perf_event_mutex);
4818
4819         return 0;
4820 }
4821
4822 static int perf_event_index(struct perf_event *event)
4823 {
4824         if (event->hw.state & PERF_HES_STOPPED)
4825                 return 0;
4826
4827         if (event->state != PERF_EVENT_STATE_ACTIVE)
4828                 return 0;
4829
4830         return event->pmu->event_idx(event);
4831 }
4832
4833 static void calc_timer_values(struct perf_event *event,
4834                                 u64 *now,
4835                                 u64 *enabled,
4836                                 u64 *running)
4837 {
4838         u64 ctx_time;
4839
4840         *now = perf_clock();
4841         ctx_time = event->shadow_ctx_time + *now;
4842         *enabled = ctx_time - event->tstamp_enabled;
4843         *running = ctx_time - event->tstamp_running;
4844 }
4845
4846 static void perf_event_init_userpage(struct perf_event *event)
4847 {
4848         struct perf_event_mmap_page *userpg;
4849         struct ring_buffer *rb;
4850
4851         rcu_read_lock();
4852         rb = rcu_dereference(event->rb);
4853         if (!rb)
4854                 goto unlock;
4855
4856         userpg = rb->user_page;
4857
4858         /* Allow new userspace to detect that bit 0 is deprecated */
4859         userpg->cap_bit0_is_deprecated = 1;
4860         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4861         userpg->data_offset = PAGE_SIZE;
4862         userpg->data_size = perf_data_size(rb);
4863
4864 unlock:
4865         rcu_read_unlock();
4866 }
4867
4868 void __weak arch_perf_update_userpage(
4869         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4870 {
4871 }
4872
4873 /*
4874  * Callers need to ensure there can be no nesting of this function, otherwise
4875  * the seqlock logic goes bad. We can not serialize this because the arch
4876  * code calls this from NMI context.
4877  */
4878 void perf_event_update_userpage(struct perf_event *event)
4879 {
4880         struct perf_event_mmap_page *userpg;
4881         struct ring_buffer *rb;
4882         u64 enabled, running, now;
4883
4884         rcu_read_lock();
4885         rb = rcu_dereference(event->rb);
4886         if (!rb)
4887                 goto unlock;
4888
4889         /*
4890          * compute total_time_enabled, total_time_running
4891          * based on snapshot values taken when the event
4892          * was last scheduled in.
4893          *
4894          * we cannot simply called update_context_time()
4895          * because of locking issue as we can be called in
4896          * NMI context
4897          */
4898         calc_timer_values(event, &now, &enabled, &running);
4899
4900         userpg = rb->user_page;
4901         /*
4902          * Disable preemption so as to not let the corresponding user-space
4903          * spin too long if we get preempted.
4904          */
4905         preempt_disable();
4906         ++userpg->lock;
4907         barrier();
4908         userpg->index = perf_event_index(event);
4909         userpg->offset = perf_event_count(event);
4910         if (userpg->index)
4911                 userpg->offset -= local64_read(&event->hw.prev_count);
4912
4913         userpg->time_enabled = enabled +
4914                         atomic64_read(&event->child_total_time_enabled);
4915
4916         userpg->time_running = running +
4917                         atomic64_read(&event->child_total_time_running);
4918
4919         arch_perf_update_userpage(event, userpg, now);
4920
4921         barrier();
4922         ++userpg->lock;
4923         preempt_enable();
4924 unlock:
4925         rcu_read_unlock();
4926 }
4927
4928 static int perf_mmap_fault(struct vm_fault *vmf)
4929 {
4930         struct perf_event *event = vmf->vma->vm_file->private_data;
4931         struct ring_buffer *rb;
4932         int ret = VM_FAULT_SIGBUS;
4933
4934         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4935                 if (vmf->pgoff == 0)
4936                         ret = 0;
4937                 return ret;
4938         }
4939
4940         rcu_read_lock();
4941         rb = rcu_dereference(event->rb);
4942         if (!rb)
4943                 goto unlock;
4944
4945         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4946                 goto unlock;
4947
4948         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4949         if (!vmf->page)
4950                 goto unlock;
4951
4952         get_page(vmf->page);
4953         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4954         vmf->page->index   = vmf->pgoff;
4955
4956         ret = 0;
4957 unlock:
4958         rcu_read_unlock();
4959
4960         return ret;
4961 }
4962
4963 static void ring_buffer_attach(struct perf_event *event,
4964                                struct ring_buffer *rb)
4965 {
4966         struct ring_buffer *old_rb = NULL;
4967         unsigned long flags;
4968
4969         if (event->rb) {
4970                 /*
4971                  * Should be impossible, we set this when removing
4972                  * event->rb_entry and wait/clear when adding event->rb_entry.
4973                  */
4974                 WARN_ON_ONCE(event->rcu_pending);
4975
4976                 old_rb = event->rb;
4977                 spin_lock_irqsave(&old_rb->event_lock, flags);
4978                 list_del_rcu(&event->rb_entry);
4979                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4980
4981                 event->rcu_batches = get_state_synchronize_rcu();
4982                 event->rcu_pending = 1;
4983         }
4984
4985         if (rb) {
4986                 if (event->rcu_pending) {
4987                         cond_synchronize_rcu(event->rcu_batches);
4988                         event->rcu_pending = 0;
4989                 }
4990
4991                 spin_lock_irqsave(&rb->event_lock, flags);
4992                 list_add_rcu(&event->rb_entry, &rb->event_list);
4993                 spin_unlock_irqrestore(&rb->event_lock, flags);
4994         }
4995
4996         /*
4997          * Avoid racing with perf_mmap_close(AUX): stop the event
4998          * before swizzling the event::rb pointer; if it's getting
4999          * unmapped, its aux_mmap_count will be 0 and it won't
5000          * restart. See the comment in __perf_pmu_output_stop().
5001          *
5002          * Data will inevitably be lost when set_output is done in
5003          * mid-air, but then again, whoever does it like this is
5004          * not in for the data anyway.
5005          */
5006         if (has_aux(event))
5007                 perf_event_stop(event, 0);
5008
5009         rcu_assign_pointer(event->rb, rb);
5010
5011         if (old_rb) {
5012                 ring_buffer_put(old_rb);
5013                 /*
5014                  * Since we detached before setting the new rb, so that we
5015                  * could attach the new rb, we could have missed a wakeup.
5016                  * Provide it now.
5017                  */
5018                 wake_up_all(&event->waitq);
5019         }
5020 }
5021
5022 static void ring_buffer_wakeup(struct perf_event *event)
5023 {
5024         struct ring_buffer *rb;
5025
5026         rcu_read_lock();
5027         rb = rcu_dereference(event->rb);
5028         if (rb) {
5029                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5030                         wake_up_all(&event->waitq);
5031         }
5032         rcu_read_unlock();
5033 }
5034
5035 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5036 {
5037         struct ring_buffer *rb;
5038
5039         rcu_read_lock();
5040         rb = rcu_dereference(event->rb);
5041         if (rb) {
5042                 if (!atomic_inc_not_zero(&rb->refcount))
5043                         rb = NULL;
5044         }
5045         rcu_read_unlock();
5046
5047         return rb;
5048 }
5049
5050 void ring_buffer_put(struct ring_buffer *rb)
5051 {
5052         if (!atomic_dec_and_test(&rb->refcount))
5053                 return;
5054
5055         WARN_ON_ONCE(!list_empty(&rb->event_list));
5056
5057         call_rcu(&rb->rcu_head, rb_free_rcu);
5058 }
5059
5060 static void perf_mmap_open(struct vm_area_struct *vma)
5061 {
5062         struct perf_event *event = vma->vm_file->private_data;
5063
5064         atomic_inc(&event->mmap_count);
5065         atomic_inc(&event->rb->mmap_count);
5066
5067         if (vma->vm_pgoff)
5068                 atomic_inc(&event->rb->aux_mmap_count);
5069
5070         if (event->pmu->event_mapped)
5071                 event->pmu->event_mapped(event);
5072 }
5073
5074 static void perf_pmu_output_stop(struct perf_event *event);
5075
5076 /*
5077  * A buffer can be mmap()ed multiple times; either directly through the same
5078  * event, or through other events by use of perf_event_set_output().
5079  *
5080  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5081  * the buffer here, where we still have a VM context. This means we need
5082  * to detach all events redirecting to us.
5083  */
5084 static void perf_mmap_close(struct vm_area_struct *vma)
5085 {
5086         struct perf_event *event = vma->vm_file->private_data;
5087
5088         struct ring_buffer *rb = ring_buffer_get(event);
5089         struct user_struct *mmap_user = rb->mmap_user;
5090         int mmap_locked = rb->mmap_locked;
5091         unsigned long size = perf_data_size(rb);
5092
5093         if (event->pmu->event_unmapped)
5094                 event->pmu->event_unmapped(event);
5095
5096         /*
5097          * rb->aux_mmap_count will always drop before rb->mmap_count and
5098          * event->mmap_count, so it is ok to use event->mmap_mutex to
5099          * serialize with perf_mmap here.
5100          */
5101         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5102             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5103                 /*
5104                  * Stop all AUX events that are writing to this buffer,
5105                  * so that we can free its AUX pages and corresponding PMU
5106                  * data. Note that after rb::aux_mmap_count dropped to zero,
5107                  * they won't start any more (see perf_aux_output_begin()).
5108                  */
5109                 perf_pmu_output_stop(event);
5110
5111                 /* now it's safe to free the pages */
5112                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5113                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5114
5115                 /* this has to be the last one */
5116                 rb_free_aux(rb);
5117                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5118
5119                 mutex_unlock(&event->mmap_mutex);
5120         }
5121
5122         atomic_dec(&rb->mmap_count);
5123
5124         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5125                 goto out_put;
5126
5127         ring_buffer_attach(event, NULL);
5128         mutex_unlock(&event->mmap_mutex);
5129
5130         /* If there's still other mmap()s of this buffer, we're done. */
5131         if (atomic_read(&rb->mmap_count))
5132                 goto out_put;
5133
5134         /*
5135          * No other mmap()s, detach from all other events that might redirect
5136          * into the now unreachable buffer. Somewhat complicated by the
5137          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5138          */
5139 again:
5140         rcu_read_lock();
5141         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5142                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5143                         /*
5144                          * This event is en-route to free_event() which will
5145                          * detach it and remove it from the list.
5146                          */
5147                         continue;
5148                 }
5149                 rcu_read_unlock();
5150
5151                 mutex_lock(&event->mmap_mutex);
5152                 /*
5153                  * Check we didn't race with perf_event_set_output() which can
5154                  * swizzle the rb from under us while we were waiting to
5155                  * acquire mmap_mutex.
5156                  *
5157                  * If we find a different rb; ignore this event, a next
5158                  * iteration will no longer find it on the list. We have to
5159                  * still restart the iteration to make sure we're not now
5160                  * iterating the wrong list.
5161                  */
5162                 if (event->rb == rb)
5163                         ring_buffer_attach(event, NULL);
5164
5165                 mutex_unlock(&event->mmap_mutex);
5166                 put_event(event);
5167
5168                 /*
5169                  * Restart the iteration; either we're on the wrong list or
5170                  * destroyed its integrity by doing a deletion.
5171                  */
5172                 goto again;
5173         }
5174         rcu_read_unlock();
5175
5176         /*
5177          * It could be there's still a few 0-ref events on the list; they'll
5178          * get cleaned up by free_event() -- they'll also still have their
5179          * ref on the rb and will free it whenever they are done with it.
5180          *
5181          * Aside from that, this buffer is 'fully' detached and unmapped,
5182          * undo the VM accounting.
5183          */
5184
5185         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5186         vma->vm_mm->pinned_vm -= mmap_locked;
5187         free_uid(mmap_user);
5188
5189 out_put:
5190         ring_buffer_put(rb); /* could be last */
5191 }
5192
5193 static const struct vm_operations_struct perf_mmap_vmops = {
5194         .open           = perf_mmap_open,
5195         .close          = perf_mmap_close, /* non mergable */
5196         .fault          = perf_mmap_fault,
5197         .page_mkwrite   = perf_mmap_fault,
5198 };
5199
5200 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5201 {
5202         struct perf_event *event = file->private_data;
5203         unsigned long user_locked, user_lock_limit;
5204         struct user_struct *user = current_user();
5205         unsigned long locked, lock_limit;
5206         struct ring_buffer *rb = NULL;
5207         unsigned long vma_size;
5208         unsigned long nr_pages;
5209         long user_extra = 0, extra = 0;
5210         int ret = 0, flags = 0;
5211
5212         /*
5213          * Don't allow mmap() of inherited per-task counters. This would
5214          * create a performance issue due to all children writing to the
5215          * same rb.
5216          */
5217         if (event->cpu == -1 && event->attr.inherit)
5218                 return -EINVAL;
5219
5220         if (!(vma->vm_flags & VM_SHARED))
5221                 return -EINVAL;
5222
5223         vma_size = vma->vm_end - vma->vm_start;
5224
5225         if (vma->vm_pgoff == 0) {
5226                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5227         } else {
5228                 /*
5229                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5230                  * mapped, all subsequent mappings should have the same size
5231                  * and offset. Must be above the normal perf buffer.
5232                  */
5233                 u64 aux_offset, aux_size;
5234
5235                 if (!event->rb)
5236                         return -EINVAL;
5237
5238                 nr_pages = vma_size / PAGE_SIZE;
5239
5240                 mutex_lock(&event->mmap_mutex);
5241                 ret = -EINVAL;
5242
5243                 rb = event->rb;
5244                 if (!rb)
5245                         goto aux_unlock;
5246
5247                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5248                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5249
5250                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5251                         goto aux_unlock;
5252
5253                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5254                         goto aux_unlock;
5255
5256                 /* already mapped with a different offset */
5257                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5258                         goto aux_unlock;
5259
5260                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5261                         goto aux_unlock;
5262
5263                 /* already mapped with a different size */
5264                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5265                         goto aux_unlock;
5266
5267                 if (!is_power_of_2(nr_pages))
5268                         goto aux_unlock;
5269
5270                 if (!atomic_inc_not_zero(&rb->mmap_count))
5271                         goto aux_unlock;
5272
5273                 if (rb_has_aux(rb)) {
5274                         atomic_inc(&rb->aux_mmap_count);
5275                         ret = 0;
5276                         goto unlock;
5277                 }
5278
5279                 atomic_set(&rb->aux_mmap_count, 1);
5280                 user_extra = nr_pages;
5281
5282                 goto accounting;
5283         }
5284
5285         /*
5286          * If we have rb pages ensure they're a power-of-two number, so we
5287          * can do bitmasks instead of modulo.
5288          */
5289         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5290                 return -EINVAL;
5291
5292         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5293                 return -EINVAL;
5294
5295         WARN_ON_ONCE(event->ctx->parent_ctx);
5296 again:
5297         mutex_lock(&event->mmap_mutex);
5298         if (event->rb) {
5299                 if (event->rb->nr_pages != nr_pages) {
5300                         ret = -EINVAL;
5301                         goto unlock;
5302                 }
5303
5304                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5305                         /*
5306                          * Raced against perf_mmap_close() through
5307                          * perf_event_set_output(). Try again, hope for better
5308                          * luck.
5309                          */
5310                         mutex_unlock(&event->mmap_mutex);
5311                         goto again;
5312                 }
5313
5314                 goto unlock;
5315         }
5316
5317         user_extra = nr_pages + 1;
5318
5319 accounting:
5320         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5321
5322         /*
5323          * Increase the limit linearly with more CPUs:
5324          */
5325         user_lock_limit *= num_online_cpus();
5326
5327         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5328
5329         if (user_locked > user_lock_limit)
5330                 extra = user_locked - user_lock_limit;
5331
5332         lock_limit = rlimit(RLIMIT_MEMLOCK);
5333         lock_limit >>= PAGE_SHIFT;
5334         locked = vma->vm_mm->pinned_vm + extra;
5335
5336         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5337                 !capable(CAP_IPC_LOCK)) {
5338                 ret = -EPERM;
5339                 goto unlock;
5340         }
5341
5342         WARN_ON(!rb && event->rb);
5343
5344         if (vma->vm_flags & VM_WRITE)
5345                 flags |= RING_BUFFER_WRITABLE;
5346
5347         if (!rb) {
5348                 rb = rb_alloc(nr_pages,
5349                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5350                               event->cpu, flags);
5351
5352                 if (!rb) {
5353                         ret = -ENOMEM;
5354                         goto unlock;
5355                 }
5356
5357                 atomic_set(&rb->mmap_count, 1);
5358                 rb->mmap_user = get_current_user();
5359                 rb->mmap_locked = extra;
5360
5361                 ring_buffer_attach(event, rb);
5362
5363                 perf_event_init_userpage(event);
5364                 perf_event_update_userpage(event);
5365         } else {
5366                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5367                                    event->attr.aux_watermark, flags);
5368                 if (!ret)
5369                         rb->aux_mmap_locked = extra;
5370         }
5371
5372 unlock:
5373         if (!ret) {
5374                 atomic_long_add(user_extra, &user->locked_vm);
5375                 vma->vm_mm->pinned_vm += extra;
5376
5377                 atomic_inc(&event->mmap_count);
5378         } else if (rb) {
5379                 atomic_dec(&rb->mmap_count);
5380         }
5381 aux_unlock:
5382         mutex_unlock(&event->mmap_mutex);
5383
5384         /*
5385          * Since pinned accounting is per vm we cannot allow fork() to copy our
5386          * vma.
5387          */
5388         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5389         vma->vm_ops = &perf_mmap_vmops;
5390
5391         if (event->pmu->event_mapped)
5392                 event->pmu->event_mapped(event);
5393
5394         return ret;
5395 }
5396
5397 static int perf_fasync(int fd, struct file *filp, int on)
5398 {
5399         struct inode *inode = file_inode(filp);
5400         struct perf_event *event = filp->private_data;
5401         int retval;
5402
5403         inode_lock(inode);
5404         retval = fasync_helper(fd, filp, on, &event->fasync);
5405         inode_unlock(inode);
5406
5407         if (retval < 0)
5408                 return retval;
5409
5410         return 0;
5411 }
5412
5413 static const struct file_operations perf_fops = {
5414         .llseek                 = no_llseek,
5415         .release                = perf_release,
5416         .read                   = perf_read,
5417         .poll                   = perf_poll,
5418         .unlocked_ioctl         = perf_ioctl,
5419         .compat_ioctl           = perf_compat_ioctl,
5420         .mmap                   = perf_mmap,
5421         .fasync                 = perf_fasync,
5422 };
5423
5424 /*
5425  * Perf event wakeup
5426  *
5427  * If there's data, ensure we set the poll() state and publish everything
5428  * to user-space before waking everybody up.
5429  */
5430
5431 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5432 {
5433         /* only the parent has fasync state */
5434         if (event->parent)
5435                 event = event->parent;
5436         return &event->fasync;
5437 }
5438
5439 void perf_event_wakeup(struct perf_event *event)
5440 {
5441         ring_buffer_wakeup(event);
5442
5443         if (event->pending_kill) {
5444                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5445                 event->pending_kill = 0;
5446         }
5447 }
5448
5449 static void perf_pending_event(struct irq_work *entry)
5450 {
5451         struct perf_event *event = container_of(entry,
5452                         struct perf_event, pending);
5453         int rctx;
5454
5455         rctx = perf_swevent_get_recursion_context();
5456         /*
5457          * If we 'fail' here, that's OK, it means recursion is already disabled
5458          * and we won't recurse 'further'.
5459          */
5460
5461         if (event->pending_disable) {
5462                 event->pending_disable = 0;
5463                 perf_event_disable_local(event);
5464         }
5465
5466         if (event->pending_wakeup) {
5467                 event->pending_wakeup = 0;
5468                 perf_event_wakeup(event);
5469         }
5470
5471         if (rctx >= 0)
5472                 perf_swevent_put_recursion_context(rctx);
5473 }
5474
5475 /*
5476  * We assume there is only KVM supporting the callbacks.
5477  * Later on, we might change it to a list if there is
5478  * another virtualization implementation supporting the callbacks.
5479  */
5480 struct perf_guest_info_callbacks *perf_guest_cbs;
5481
5482 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5483 {
5484         perf_guest_cbs = cbs;
5485         return 0;
5486 }
5487 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5488
5489 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5490 {
5491         perf_guest_cbs = NULL;
5492         return 0;
5493 }
5494 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5495
5496 static void
5497 perf_output_sample_regs(struct perf_output_handle *handle,
5498                         struct pt_regs *regs, u64 mask)
5499 {
5500         int bit;
5501         DECLARE_BITMAP(_mask, 64);
5502
5503         bitmap_from_u64(_mask, mask);
5504         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5505                 u64 val;
5506
5507                 val = perf_reg_value(regs, bit);
5508                 perf_output_put(handle, val);
5509         }
5510 }
5511
5512 static void perf_sample_regs_user(struct perf_regs *regs_user,
5513                                   struct pt_regs *regs,
5514                                   struct pt_regs *regs_user_copy)
5515 {
5516         if (user_mode(regs)) {
5517                 regs_user->abi = perf_reg_abi(current);
5518                 regs_user->regs = regs;
5519         } else if (current->mm) {
5520                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5521         } else {
5522                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5523                 regs_user->regs = NULL;
5524         }
5525 }
5526
5527 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5528                                   struct pt_regs *regs)
5529 {
5530         regs_intr->regs = regs;
5531         regs_intr->abi  = perf_reg_abi(current);
5532 }
5533
5534
5535 /*
5536  * Get remaining task size from user stack pointer.
5537  *
5538  * It'd be better to take stack vma map and limit this more
5539  * precisly, but there's no way to get it safely under interrupt,
5540  * so using TASK_SIZE as limit.
5541  */
5542 static u64 perf_ustack_task_size(struct pt_regs *regs)
5543 {
5544         unsigned long addr = perf_user_stack_pointer(regs);
5545
5546         if (!addr || addr >= TASK_SIZE)
5547                 return 0;
5548
5549         return TASK_SIZE - addr;
5550 }
5551
5552 static u16
5553 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5554                         struct pt_regs *regs)
5555 {
5556         u64 task_size;
5557
5558         /* No regs, no stack pointer, no dump. */
5559         if (!regs)
5560                 return 0;
5561
5562         /*
5563          * Check if we fit in with the requested stack size into the:
5564          * - TASK_SIZE
5565          *   If we don't, we limit the size to the TASK_SIZE.
5566          *
5567          * - remaining sample size
5568          *   If we don't, we customize the stack size to
5569          *   fit in to the remaining sample size.
5570          */
5571
5572         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5573         stack_size = min(stack_size, (u16) task_size);
5574
5575         /* Current header size plus static size and dynamic size. */
5576         header_size += 2 * sizeof(u64);
5577
5578         /* Do we fit in with the current stack dump size? */
5579         if ((u16) (header_size + stack_size) < header_size) {
5580                 /*
5581                  * If we overflow the maximum size for the sample,
5582                  * we customize the stack dump size to fit in.
5583                  */
5584                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5585                 stack_size = round_up(stack_size, sizeof(u64));
5586         }
5587
5588         return stack_size;
5589 }
5590
5591 static void
5592 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5593                           struct pt_regs *regs)
5594 {
5595         /* Case of a kernel thread, nothing to dump */
5596         if (!regs) {
5597                 u64 size = 0;
5598                 perf_output_put(handle, size);
5599         } else {
5600                 unsigned long sp;
5601                 unsigned int rem;
5602                 u64 dyn_size;
5603
5604                 /*
5605                  * We dump:
5606                  * static size
5607                  *   - the size requested by user or the best one we can fit
5608                  *     in to the sample max size
5609                  * data
5610                  *   - user stack dump data
5611                  * dynamic size
5612                  *   - the actual dumped size
5613                  */
5614
5615                 /* Static size. */
5616                 perf_output_put(handle, dump_size);
5617
5618                 /* Data. */
5619                 sp = perf_user_stack_pointer(regs);
5620                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5621                 dyn_size = dump_size - rem;
5622
5623                 perf_output_skip(handle, rem);
5624
5625                 /* Dynamic size. */
5626                 perf_output_put(handle, dyn_size);
5627         }
5628 }
5629
5630 static void __perf_event_header__init_id(struct perf_event_header *header,
5631                                          struct perf_sample_data *data,
5632                                          struct perf_event *event)
5633 {
5634         u64 sample_type = event->attr.sample_type;
5635
5636         data->type = sample_type;
5637         header->size += event->id_header_size;
5638
5639         if (sample_type & PERF_SAMPLE_TID) {
5640                 /* namespace issues */
5641                 data->tid_entry.pid = perf_event_pid(event, current);
5642                 data->tid_entry.tid = perf_event_tid(event, current);
5643         }
5644
5645         if (sample_type & PERF_SAMPLE_TIME)
5646                 data->time = perf_event_clock(event);
5647
5648         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5649                 data->id = primary_event_id(event);
5650
5651         if (sample_type & PERF_SAMPLE_STREAM_ID)
5652                 data->stream_id = event->id;
5653
5654         if (sample_type & PERF_SAMPLE_CPU) {
5655                 data->cpu_entry.cpu      = raw_smp_processor_id();
5656                 data->cpu_entry.reserved = 0;
5657         }
5658 }
5659
5660 void perf_event_header__init_id(struct perf_event_header *header,
5661                                 struct perf_sample_data *data,
5662                                 struct perf_event *event)
5663 {
5664         if (event->attr.sample_id_all)
5665                 __perf_event_header__init_id(header, data, event);
5666 }
5667
5668 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5669                                            struct perf_sample_data *data)
5670 {
5671         u64 sample_type = data->type;
5672
5673         if (sample_type & PERF_SAMPLE_TID)
5674                 perf_output_put(handle, data->tid_entry);
5675
5676         if (sample_type & PERF_SAMPLE_TIME)
5677                 perf_output_put(handle, data->time);
5678
5679         if (sample_type & PERF_SAMPLE_ID)
5680                 perf_output_put(handle, data->id);
5681
5682         if (sample_type & PERF_SAMPLE_STREAM_ID)
5683                 perf_output_put(handle, data->stream_id);
5684
5685         if (sample_type & PERF_SAMPLE_CPU)
5686                 perf_output_put(handle, data->cpu_entry);
5687
5688         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5689                 perf_output_put(handle, data->id);
5690 }
5691
5692 void perf_event__output_id_sample(struct perf_event *event,
5693                                   struct perf_output_handle *handle,
5694                                   struct perf_sample_data *sample)
5695 {
5696         if (event->attr.sample_id_all)
5697                 __perf_event__output_id_sample(handle, sample);
5698 }
5699
5700 static void perf_output_read_one(struct perf_output_handle *handle,
5701                                  struct perf_event *event,
5702                                  u64 enabled, u64 running)
5703 {
5704         u64 read_format = event->attr.read_format;
5705         u64 values[4];
5706         int n = 0;
5707
5708         values[n++] = perf_event_count(event);
5709         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5710                 values[n++] = enabled +
5711                         atomic64_read(&event->child_total_time_enabled);
5712         }
5713         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5714                 values[n++] = running +
5715                         atomic64_read(&event->child_total_time_running);
5716         }
5717         if (read_format & PERF_FORMAT_ID)
5718                 values[n++] = primary_event_id(event);
5719
5720         __output_copy(handle, values, n * sizeof(u64));
5721 }
5722
5723 /*
5724  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5725  */
5726 static void perf_output_read_group(struct perf_output_handle *handle,
5727                             struct perf_event *event,
5728                             u64 enabled, u64 running)
5729 {
5730         struct perf_event *leader = event->group_leader, *sub;
5731         u64 read_format = event->attr.read_format;
5732         u64 values[5];
5733         int n = 0;
5734
5735         values[n++] = 1 + leader->nr_siblings;
5736
5737         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5738                 values[n++] = enabled;
5739
5740         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5741                 values[n++] = running;
5742
5743         if (leader != event)
5744                 leader->pmu->read(leader);
5745
5746         values[n++] = perf_event_count(leader);
5747         if (read_format & PERF_FORMAT_ID)
5748                 values[n++] = primary_event_id(leader);
5749
5750         __output_copy(handle, values, n * sizeof(u64));
5751
5752         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5753                 n = 0;
5754
5755                 if ((sub != event) &&
5756                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5757                         sub->pmu->read(sub);
5758
5759                 values[n++] = perf_event_count(sub);
5760                 if (read_format & PERF_FORMAT_ID)
5761                         values[n++] = primary_event_id(sub);
5762
5763                 __output_copy(handle, values, n * sizeof(u64));
5764         }
5765 }
5766
5767 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5768                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5769
5770 static void perf_output_read(struct perf_output_handle *handle,
5771                              struct perf_event *event)
5772 {
5773         u64 enabled = 0, running = 0, now;
5774         u64 read_format = event->attr.read_format;
5775
5776         /*
5777          * compute total_time_enabled, total_time_running
5778          * based on snapshot values taken when the event
5779          * was last scheduled in.
5780          *
5781          * we cannot simply called update_context_time()
5782          * because of locking issue as we are called in
5783          * NMI context
5784          */
5785         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5786                 calc_timer_values(event, &now, &enabled, &running);
5787
5788         if (event->attr.read_format & PERF_FORMAT_GROUP)
5789                 perf_output_read_group(handle, event, enabled, running);
5790         else
5791                 perf_output_read_one(handle, event, enabled, running);
5792 }
5793
5794 void perf_output_sample(struct perf_output_handle *handle,
5795                         struct perf_event_header *header,
5796                         struct perf_sample_data *data,
5797                         struct perf_event *event)
5798 {
5799         u64 sample_type = data->type;
5800
5801         perf_output_put(handle, *header);
5802
5803         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5804                 perf_output_put(handle, data->id);
5805
5806         if (sample_type & PERF_SAMPLE_IP)
5807                 perf_output_put(handle, data->ip);
5808
5809         if (sample_type & PERF_SAMPLE_TID)
5810                 perf_output_put(handle, data->tid_entry);
5811
5812         if (sample_type & PERF_SAMPLE_TIME)
5813                 perf_output_put(handle, data->time);
5814
5815         if (sample_type & PERF_SAMPLE_ADDR)
5816                 perf_output_put(handle, data->addr);
5817
5818         if (sample_type & PERF_SAMPLE_ID)
5819                 perf_output_put(handle, data->id);
5820
5821         if (sample_type & PERF_SAMPLE_STREAM_ID)
5822                 perf_output_put(handle, data->stream_id);
5823
5824         if (sample_type & PERF_SAMPLE_CPU)
5825                 perf_output_put(handle, data->cpu_entry);
5826
5827         if (sample_type & PERF_SAMPLE_PERIOD)
5828                 perf_output_put(handle, data->period);
5829
5830         if (sample_type & PERF_SAMPLE_READ)
5831                 perf_output_read(handle, event);
5832
5833         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5834                 if (data->callchain) {
5835                         int size = 1;
5836
5837                         if (data->callchain)
5838                                 size += data->callchain->nr;
5839
5840                         size *= sizeof(u64);
5841
5842                         __output_copy(handle, data->callchain, size);
5843                 } else {
5844                         u64 nr = 0;
5845                         perf_output_put(handle, nr);
5846                 }
5847         }
5848
5849         if (sample_type & PERF_SAMPLE_RAW) {
5850                 struct perf_raw_record *raw = data->raw;
5851
5852                 if (raw) {
5853                         struct perf_raw_frag *frag = &raw->frag;
5854
5855                         perf_output_put(handle, raw->size);
5856                         do {
5857                                 if (frag->copy) {
5858                                         __output_custom(handle, frag->copy,
5859                                                         frag->data, frag->size);
5860                                 } else {
5861                                         __output_copy(handle, frag->data,
5862                                                       frag->size);
5863                                 }
5864                                 if (perf_raw_frag_last(frag))
5865                                         break;
5866                                 frag = frag->next;
5867                         } while (1);
5868                         if (frag->pad)
5869                                 __output_skip(handle, NULL, frag->pad);
5870                 } else {
5871                         struct {
5872                                 u32     size;
5873                                 u32     data;
5874                         } raw = {
5875                                 .size = sizeof(u32),
5876                                 .data = 0,
5877                         };
5878                         perf_output_put(handle, raw);
5879                 }
5880         }
5881
5882         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5883                 if (data->br_stack) {
5884                         size_t size;
5885
5886                         size = data->br_stack->nr
5887                              * sizeof(struct perf_branch_entry);
5888
5889                         perf_output_put(handle, data->br_stack->nr);
5890                         perf_output_copy(handle, data->br_stack->entries, size);
5891                 } else {
5892                         /*
5893                          * we always store at least the value of nr
5894                          */
5895                         u64 nr = 0;
5896                         perf_output_put(handle, nr);
5897                 }
5898         }
5899
5900         if (sample_type & PERF_SAMPLE_REGS_USER) {
5901                 u64 abi = data->regs_user.abi;
5902
5903                 /*
5904                  * If there are no regs to dump, notice it through
5905                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5906                  */
5907                 perf_output_put(handle, abi);
5908
5909                 if (abi) {
5910                         u64 mask = event->attr.sample_regs_user;
5911                         perf_output_sample_regs(handle,
5912                                                 data->regs_user.regs,
5913                                                 mask);
5914                 }
5915         }
5916
5917         if (sample_type & PERF_SAMPLE_STACK_USER) {
5918                 perf_output_sample_ustack(handle,
5919                                           data->stack_user_size,
5920                                           data->regs_user.regs);
5921         }
5922
5923         if (sample_type & PERF_SAMPLE_WEIGHT)
5924                 perf_output_put(handle, data->weight);
5925
5926         if (sample_type & PERF_SAMPLE_DATA_SRC)
5927                 perf_output_put(handle, data->data_src.val);
5928
5929         if (sample_type & PERF_SAMPLE_TRANSACTION)
5930                 perf_output_put(handle, data->txn);
5931
5932         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5933                 u64 abi = data->regs_intr.abi;
5934                 /*
5935                  * If there are no regs to dump, notice it through
5936                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5937                  */
5938                 perf_output_put(handle, abi);
5939
5940                 if (abi) {
5941                         u64 mask = event->attr.sample_regs_intr;
5942
5943                         perf_output_sample_regs(handle,
5944                                                 data->regs_intr.regs,
5945                                                 mask);
5946                 }
5947         }
5948
5949         if (!event->attr.watermark) {
5950                 int wakeup_events = event->attr.wakeup_events;
5951
5952                 if (wakeup_events) {
5953                         struct ring_buffer *rb = handle->rb;
5954                         int events = local_inc_return(&rb->events);
5955
5956                         if (events >= wakeup_events) {
5957                                 local_sub(wakeup_events, &rb->events);
5958                                 local_inc(&rb->wakeup);
5959                         }
5960                 }
5961         }
5962 }
5963
5964 void perf_prepare_sample(struct perf_event_header *header,
5965                          struct perf_sample_data *data,
5966                          struct perf_event *event,
5967                          struct pt_regs *regs)
5968 {
5969         u64 sample_type = event->attr.sample_type;
5970
5971         header->type = PERF_RECORD_SAMPLE;
5972         header->size = sizeof(*header) + event->header_size;
5973
5974         header->misc = 0;
5975         header->misc |= perf_misc_flags(regs);
5976
5977         __perf_event_header__init_id(header, data, event);
5978
5979         if (sample_type & PERF_SAMPLE_IP)
5980                 data->ip = perf_instruction_pointer(regs);
5981
5982         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5983                 int size = 1;
5984
5985                 data->callchain = perf_callchain(event, regs);
5986
5987                 if (data->callchain)
5988                         size += data->callchain->nr;
5989
5990                 header->size += size * sizeof(u64);
5991         }
5992
5993         if (sample_type & PERF_SAMPLE_RAW) {
5994                 struct perf_raw_record *raw = data->raw;
5995                 int size;
5996
5997                 if (raw) {
5998                         struct perf_raw_frag *frag = &raw->frag;
5999                         u32 sum = 0;
6000
6001                         do {
6002                                 sum += frag->size;
6003                                 if (perf_raw_frag_last(frag))
6004                                         break;
6005                                 frag = frag->next;
6006                         } while (1);
6007
6008                         size = round_up(sum + sizeof(u32), sizeof(u64));
6009                         raw->size = size - sizeof(u32);
6010                         frag->pad = raw->size - sum;
6011                 } else {
6012                         size = sizeof(u64);
6013                 }
6014
6015                 header->size += size;
6016         }
6017
6018         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6019                 int size = sizeof(u64); /* nr */
6020                 if (data->br_stack) {
6021                         size += data->br_stack->nr
6022                               * sizeof(struct perf_branch_entry);
6023                 }
6024                 header->size += size;
6025         }
6026
6027         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6028                 perf_sample_regs_user(&data->regs_user, regs,
6029                                       &data->regs_user_copy);
6030
6031         if (sample_type & PERF_SAMPLE_REGS_USER) {
6032                 /* regs dump ABI info */
6033                 int size = sizeof(u64);
6034
6035                 if (data->regs_user.regs) {
6036                         u64 mask = event->attr.sample_regs_user;
6037                         size += hweight64(mask) * sizeof(u64);
6038                 }
6039
6040                 header->size += size;
6041         }
6042
6043         if (sample_type & PERF_SAMPLE_STACK_USER) {
6044                 /*
6045                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6046                  * processed as the last one or have additional check added
6047                  * in case new sample type is added, because we could eat
6048                  * up the rest of the sample size.
6049                  */
6050                 u16 stack_size = event->attr.sample_stack_user;
6051                 u16 size = sizeof(u64);
6052
6053                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6054                                                      data->regs_user.regs);
6055
6056                 /*
6057                  * If there is something to dump, add space for the dump
6058                  * itself and for the field that tells the dynamic size,
6059                  * which is how many have been actually dumped.
6060                  */
6061                 if (stack_size)
6062                         size += sizeof(u64) + stack_size;
6063
6064                 data->stack_user_size = stack_size;
6065                 header->size += size;
6066         }
6067
6068         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6069                 /* regs dump ABI info */
6070                 int size = sizeof(u64);
6071
6072                 perf_sample_regs_intr(&data->regs_intr, regs);
6073
6074                 if (data->regs_intr.regs) {
6075                         u64 mask = event->attr.sample_regs_intr;
6076
6077                         size += hweight64(mask) * sizeof(u64);
6078                 }
6079
6080                 header->size += size;
6081         }
6082 }
6083
6084 static void __always_inline
6085 __perf_event_output(struct perf_event *event,
6086                     struct perf_sample_data *data,
6087                     struct pt_regs *regs,
6088                     int (*output_begin)(struct perf_output_handle *,
6089                                         struct perf_event *,
6090                                         unsigned int))
6091 {
6092         struct perf_output_handle handle;
6093         struct perf_event_header header;
6094
6095         /* protect the callchain buffers */
6096         rcu_read_lock();
6097
6098         perf_prepare_sample(&header, data, event, regs);
6099
6100         if (output_begin(&handle, event, header.size))
6101                 goto exit;
6102
6103         perf_output_sample(&handle, &header, data, event);
6104
6105         perf_output_end(&handle);
6106
6107 exit:
6108         rcu_read_unlock();
6109 }
6110
6111 void
6112 perf_event_output_forward(struct perf_event *event,
6113                          struct perf_sample_data *data,
6114                          struct pt_regs *regs)
6115 {
6116         __perf_event_output(event, data, regs, perf_output_begin_forward);
6117 }
6118
6119 void
6120 perf_event_output_backward(struct perf_event *event,
6121                            struct perf_sample_data *data,
6122                            struct pt_regs *regs)
6123 {
6124         __perf_event_output(event, data, regs, perf_output_begin_backward);
6125 }
6126
6127 void
6128 perf_event_output(struct perf_event *event,
6129                   struct perf_sample_data *data,
6130                   struct pt_regs *regs)
6131 {
6132         __perf_event_output(event, data, regs, perf_output_begin);
6133 }
6134
6135 /*
6136  * read event_id
6137  */
6138
6139 struct perf_read_event {
6140         struct perf_event_header        header;
6141
6142         u32                             pid;
6143         u32                             tid;
6144 };
6145
6146 static void
6147 perf_event_read_event(struct perf_event *event,
6148                         struct task_struct *task)
6149 {
6150         struct perf_output_handle handle;
6151         struct perf_sample_data sample;
6152         struct perf_read_event read_event = {
6153                 .header = {
6154                         .type = PERF_RECORD_READ,
6155                         .misc = 0,
6156                         .size = sizeof(read_event) + event->read_size,
6157                 },
6158                 .pid = perf_event_pid(event, task),
6159                 .tid = perf_event_tid(event, task),
6160         };
6161         int ret;
6162
6163         perf_event_header__init_id(&read_event.header, &sample, event);
6164         ret = perf_output_begin(&handle, event, read_event.header.size);
6165         if (ret)
6166                 return;
6167
6168         perf_output_put(&handle, read_event);
6169         perf_output_read(&handle, event);
6170         perf_event__output_id_sample(event, &handle, &sample);
6171
6172         perf_output_end(&handle);
6173 }
6174
6175 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6176
6177 static void
6178 perf_iterate_ctx(struct perf_event_context *ctx,
6179                    perf_iterate_f output,
6180                    void *data, bool all)
6181 {
6182         struct perf_event *event;
6183
6184         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6185                 if (!all) {
6186                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6187                                 continue;
6188                         if (!event_filter_match(event))
6189                                 continue;
6190                 }
6191
6192                 output(event, data);
6193         }
6194 }
6195
6196 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6197 {
6198         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6199         struct perf_event *event;
6200
6201         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6202                 /*
6203                  * Skip events that are not fully formed yet; ensure that
6204                  * if we observe event->ctx, both event and ctx will be
6205                  * complete enough. See perf_install_in_context().
6206                  */
6207                 if (!smp_load_acquire(&event->ctx))
6208                         continue;
6209
6210                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6211                         continue;
6212                 if (!event_filter_match(event))
6213                         continue;
6214                 output(event, data);
6215         }
6216 }
6217
6218 /*
6219  * Iterate all events that need to receive side-band events.
6220  *
6221  * For new callers; ensure that account_pmu_sb_event() includes
6222  * your event, otherwise it might not get delivered.
6223  */
6224 static void
6225 perf_iterate_sb(perf_iterate_f output, void *data,
6226                struct perf_event_context *task_ctx)
6227 {
6228         struct perf_event_context *ctx;
6229         int ctxn;
6230
6231         rcu_read_lock();
6232         preempt_disable();
6233
6234         /*
6235          * If we have task_ctx != NULL we only notify the task context itself.
6236          * The task_ctx is set only for EXIT events before releasing task
6237          * context.
6238          */
6239         if (task_ctx) {
6240                 perf_iterate_ctx(task_ctx, output, data, false);
6241                 goto done;
6242         }
6243
6244         perf_iterate_sb_cpu(output, data);
6245
6246         for_each_task_context_nr(ctxn) {
6247                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6248                 if (ctx)
6249                         perf_iterate_ctx(ctx, output, data, false);
6250         }
6251 done:
6252         preempt_enable();
6253         rcu_read_unlock();
6254 }
6255
6256 /*
6257  * Clear all file-based filters at exec, they'll have to be
6258  * re-instated when/if these objects are mmapped again.
6259  */
6260 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6261 {
6262         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6263         struct perf_addr_filter *filter;
6264         unsigned int restart = 0, count = 0;
6265         unsigned long flags;
6266
6267         if (!has_addr_filter(event))
6268                 return;
6269
6270         raw_spin_lock_irqsave(&ifh->lock, flags);
6271         list_for_each_entry(filter, &ifh->list, entry) {
6272                 if (filter->inode) {
6273                         event->addr_filters_offs[count] = 0;
6274                         restart++;
6275                 }
6276
6277                 count++;
6278         }
6279
6280         if (restart)
6281                 event->addr_filters_gen++;
6282         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6283
6284         if (restart)
6285                 perf_event_stop(event, 1);
6286 }
6287
6288 void perf_event_exec(void)
6289 {
6290         struct perf_event_context *ctx;
6291         int ctxn;
6292
6293         rcu_read_lock();
6294         for_each_task_context_nr(ctxn) {
6295                 ctx = current->perf_event_ctxp[ctxn];
6296                 if (!ctx)
6297                         continue;
6298
6299                 perf_event_enable_on_exec(ctxn);
6300
6301                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6302                                    true);
6303         }
6304         rcu_read_unlock();
6305 }
6306
6307 struct remote_output {
6308         struct ring_buffer      *rb;
6309         int                     err;
6310 };
6311
6312 static void __perf_event_output_stop(struct perf_event *event, void *data)
6313 {
6314         struct perf_event *parent = event->parent;
6315         struct remote_output *ro = data;
6316         struct ring_buffer *rb = ro->rb;
6317         struct stop_event_data sd = {
6318                 .event  = event,
6319         };
6320
6321         if (!has_aux(event))
6322                 return;
6323
6324         if (!parent)
6325                 parent = event;
6326
6327         /*
6328          * In case of inheritance, it will be the parent that links to the
6329          * ring-buffer, but it will be the child that's actually using it.
6330          *
6331          * We are using event::rb to determine if the event should be stopped,
6332          * however this may race with ring_buffer_attach() (through set_output),
6333          * which will make us skip the event that actually needs to be stopped.
6334          * So ring_buffer_attach() has to stop an aux event before re-assigning
6335          * its rb pointer.
6336          */
6337         if (rcu_dereference(parent->rb) == rb)
6338                 ro->err = __perf_event_stop(&sd);
6339 }
6340
6341 static int __perf_pmu_output_stop(void *info)
6342 {
6343         struct perf_event *event = info;
6344         struct pmu *pmu = event->pmu;
6345         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6346         struct remote_output ro = {
6347                 .rb     = event->rb,
6348         };
6349
6350         rcu_read_lock();
6351         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6352         if (cpuctx->task_ctx)
6353                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6354                                    &ro, false);
6355         rcu_read_unlock();
6356
6357         return ro.err;
6358 }
6359
6360 static void perf_pmu_output_stop(struct perf_event *event)
6361 {
6362         struct perf_event *iter;
6363         int err, cpu;
6364
6365 restart:
6366         rcu_read_lock();
6367         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6368                 /*
6369                  * For per-CPU events, we need to make sure that neither they
6370                  * nor their children are running; for cpu==-1 events it's
6371                  * sufficient to stop the event itself if it's active, since
6372                  * it can't have children.
6373                  */
6374                 cpu = iter->cpu;
6375                 if (cpu == -1)
6376                         cpu = READ_ONCE(iter->oncpu);
6377
6378                 if (cpu == -1)
6379                         continue;
6380
6381                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6382                 if (err == -EAGAIN) {
6383                         rcu_read_unlock();
6384                         goto restart;
6385                 }
6386         }
6387         rcu_read_unlock();
6388 }
6389
6390 /*
6391  * task tracking -- fork/exit
6392  *
6393  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6394  */
6395
6396 struct perf_task_event {
6397         struct task_struct              *task;
6398         struct perf_event_context       *task_ctx;
6399
6400         struct {
6401                 struct perf_event_header        header;
6402
6403                 u32                             pid;
6404                 u32                             ppid;
6405                 u32                             tid;
6406                 u32                             ptid;
6407                 u64                             time;
6408         } event_id;
6409 };
6410
6411 static int perf_event_task_match(struct perf_event *event)
6412 {
6413         return event->attr.comm  || event->attr.mmap ||
6414                event->attr.mmap2 || event->attr.mmap_data ||
6415                event->attr.task;
6416 }
6417
6418 static void perf_event_task_output(struct perf_event *event,
6419                                    void *data)
6420 {
6421         struct perf_task_event *task_event = data;
6422         struct perf_output_handle handle;
6423         struct perf_sample_data sample;
6424         struct task_struct *task = task_event->task;
6425         int ret, size = task_event->event_id.header.size;
6426
6427         if (!perf_event_task_match(event))
6428                 return;
6429
6430         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6431
6432         ret = perf_output_begin(&handle, event,
6433                                 task_event->event_id.header.size);
6434         if (ret)
6435                 goto out;
6436
6437         task_event->event_id.pid = perf_event_pid(event, task);
6438         task_event->event_id.ppid = perf_event_pid(event, current);
6439
6440         task_event->event_id.tid = perf_event_tid(event, task);
6441         task_event->event_id.ptid = perf_event_tid(event, current);
6442
6443         task_event->event_id.time = perf_event_clock(event);
6444
6445         perf_output_put(&handle, task_event->event_id);
6446
6447         perf_event__output_id_sample(event, &handle, &sample);
6448
6449         perf_output_end(&handle);
6450 out:
6451         task_event->event_id.header.size = size;
6452 }
6453
6454 static void perf_event_task(struct task_struct *task,
6455                               struct perf_event_context *task_ctx,
6456                               int new)
6457 {
6458         struct perf_task_event task_event;
6459
6460         if (!atomic_read(&nr_comm_events) &&
6461             !atomic_read(&nr_mmap_events) &&
6462             !atomic_read(&nr_task_events))
6463                 return;
6464
6465         task_event = (struct perf_task_event){
6466                 .task     = task,
6467                 .task_ctx = task_ctx,
6468                 .event_id    = {
6469                         .header = {
6470                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6471                                 .misc = 0,
6472                                 .size = sizeof(task_event.event_id),
6473                         },
6474                         /* .pid  */
6475                         /* .ppid */
6476                         /* .tid  */
6477                         /* .ptid */
6478                         /* .time */
6479                 },
6480         };
6481
6482         perf_iterate_sb(perf_event_task_output,
6483                        &task_event,
6484                        task_ctx);
6485 }
6486
6487 void perf_event_fork(struct task_struct *task)
6488 {
6489         perf_event_task(task, NULL, 1);
6490 }
6491
6492 /*
6493  * comm tracking
6494  */
6495
6496 struct perf_comm_event {
6497         struct task_struct      *task;
6498         char                    *comm;
6499         int                     comm_size;
6500
6501         struct {
6502                 struct perf_event_header        header;
6503
6504                 u32                             pid;
6505                 u32                             tid;
6506         } event_id;
6507 };
6508
6509 static int perf_event_comm_match(struct perf_event *event)
6510 {
6511         return event->attr.comm;
6512 }
6513
6514 static void perf_event_comm_output(struct perf_event *event,
6515                                    void *data)
6516 {
6517         struct perf_comm_event *comm_event = data;
6518         struct perf_output_handle handle;
6519         struct perf_sample_data sample;
6520         int size = comm_event->event_id.header.size;
6521         int ret;
6522
6523         if (!perf_event_comm_match(event))
6524                 return;
6525
6526         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6527         ret = perf_output_begin(&handle, event,
6528                                 comm_event->event_id.header.size);
6529
6530         if (ret)
6531                 goto out;
6532
6533         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6534         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6535
6536         perf_output_put(&handle, comm_event->event_id);
6537         __output_copy(&handle, comm_event->comm,
6538                                    comm_event->comm_size);
6539
6540         perf_event__output_id_sample(event, &handle, &sample);
6541
6542         perf_output_end(&handle);
6543 out:
6544         comm_event->event_id.header.size = size;
6545 }
6546
6547 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6548 {
6549         char comm[TASK_COMM_LEN];
6550         unsigned int size;
6551
6552         memset(comm, 0, sizeof(comm));
6553         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6554         size = ALIGN(strlen(comm)+1, sizeof(u64));
6555
6556         comm_event->comm = comm;
6557         comm_event->comm_size = size;
6558
6559         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6560
6561         perf_iterate_sb(perf_event_comm_output,
6562                        comm_event,
6563                        NULL);
6564 }
6565
6566 void perf_event_comm(struct task_struct *task, bool exec)
6567 {
6568         struct perf_comm_event comm_event;
6569
6570         if (!atomic_read(&nr_comm_events))
6571                 return;
6572
6573         comm_event = (struct perf_comm_event){
6574                 .task   = task,
6575                 /* .comm      */
6576                 /* .comm_size */
6577                 .event_id  = {
6578                         .header = {
6579                                 .type = PERF_RECORD_COMM,
6580                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6581                                 /* .size */
6582                         },
6583                         /* .pid */
6584                         /* .tid */
6585                 },
6586         };
6587
6588         perf_event_comm_event(&comm_event);
6589 }
6590
6591 /*
6592  * mmap tracking
6593  */
6594
6595 struct perf_mmap_event {
6596         struct vm_area_struct   *vma;
6597
6598         const char              *file_name;
6599         int                     file_size;
6600         int                     maj, min;
6601         u64                     ino;
6602         u64                     ino_generation;
6603         u32                     prot, flags;
6604
6605         struct {
6606                 struct perf_event_header        header;
6607
6608                 u32                             pid;
6609                 u32                             tid;
6610                 u64                             start;
6611                 u64                             len;
6612                 u64                             pgoff;
6613         } event_id;
6614 };
6615
6616 static int perf_event_mmap_match(struct perf_event *event,
6617                                  void *data)
6618 {
6619         struct perf_mmap_event *mmap_event = data;
6620         struct vm_area_struct *vma = mmap_event->vma;
6621         int executable = vma->vm_flags & VM_EXEC;
6622
6623         return (!executable && event->attr.mmap_data) ||
6624                (executable && (event->attr.mmap || event->attr.mmap2));
6625 }
6626
6627 static void perf_event_mmap_output(struct perf_event *event,
6628                                    void *data)
6629 {
6630         struct perf_mmap_event *mmap_event = data;
6631         struct perf_output_handle handle;
6632         struct perf_sample_data sample;
6633         int size = mmap_event->event_id.header.size;
6634         int ret;
6635
6636         if (!perf_event_mmap_match(event, data))
6637                 return;
6638
6639         if (event->attr.mmap2) {
6640                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6641                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6642                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6643                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6644                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6645                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6646                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6647         }
6648
6649         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6650         ret = perf_output_begin(&handle, event,
6651                                 mmap_event->event_id.header.size);
6652         if (ret)
6653                 goto out;
6654
6655         mmap_event->event_id.pid = perf_event_pid(event, current);
6656         mmap_event->event_id.tid = perf_event_tid(event, current);
6657
6658         perf_output_put(&handle, mmap_event->event_id);
6659
6660         if (event->attr.mmap2) {
6661                 perf_output_put(&handle, mmap_event->maj);
6662                 perf_output_put(&handle, mmap_event->min);
6663                 perf_output_put(&handle, mmap_event->ino);
6664                 perf_output_put(&handle, mmap_event->ino_generation);
6665                 perf_output_put(&handle, mmap_event->prot);
6666                 perf_output_put(&handle, mmap_event->flags);
6667         }
6668
6669         __output_copy(&handle, mmap_event->file_name,
6670                                    mmap_event->file_size);
6671
6672         perf_event__output_id_sample(event, &handle, &sample);
6673
6674         perf_output_end(&handle);
6675 out:
6676         mmap_event->event_id.header.size = size;
6677 }
6678
6679 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6680 {
6681         struct vm_area_struct *vma = mmap_event->vma;
6682         struct file *file = vma->vm_file;
6683         int maj = 0, min = 0;
6684         u64 ino = 0, gen = 0;
6685         u32 prot = 0, flags = 0;
6686         unsigned int size;
6687         char tmp[16];
6688         char *buf = NULL;
6689         char *name;
6690
6691         if (vma->vm_flags & VM_READ)
6692                 prot |= PROT_READ;
6693         if (vma->vm_flags & VM_WRITE)
6694                 prot |= PROT_WRITE;
6695         if (vma->vm_flags & VM_EXEC)
6696                 prot |= PROT_EXEC;
6697
6698         if (vma->vm_flags & VM_MAYSHARE)
6699                 flags = MAP_SHARED;
6700         else
6701                 flags = MAP_PRIVATE;
6702
6703         if (vma->vm_flags & VM_DENYWRITE)
6704                 flags |= MAP_DENYWRITE;
6705         if (vma->vm_flags & VM_MAYEXEC)
6706                 flags |= MAP_EXECUTABLE;
6707         if (vma->vm_flags & VM_LOCKED)
6708                 flags |= MAP_LOCKED;
6709         if (vma->vm_flags & VM_HUGETLB)
6710                 flags |= MAP_HUGETLB;
6711
6712         if (file) {
6713                 struct inode *inode;
6714                 dev_t dev;
6715
6716                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6717                 if (!buf) {
6718                         name = "//enomem";
6719                         goto cpy_name;
6720                 }
6721                 /*
6722                  * d_path() works from the end of the rb backwards, so we
6723                  * need to add enough zero bytes after the string to handle
6724                  * the 64bit alignment we do later.
6725                  */
6726                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6727                 if (IS_ERR(name)) {
6728                         name = "//toolong";
6729                         goto cpy_name;
6730                 }
6731                 inode = file_inode(vma->vm_file);
6732                 dev = inode->i_sb->s_dev;
6733                 ino = inode->i_ino;
6734                 gen = inode->i_generation;
6735                 maj = MAJOR(dev);
6736                 min = MINOR(dev);
6737
6738                 goto got_name;
6739         } else {
6740                 if (vma->vm_ops && vma->vm_ops->name) {
6741                         name = (char *) vma->vm_ops->name(vma);
6742                         if (name)
6743                                 goto cpy_name;
6744                 }
6745
6746                 name = (char *)arch_vma_name(vma);
6747                 if (name)
6748                         goto cpy_name;
6749
6750                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6751                                 vma->vm_end >= vma->vm_mm->brk) {
6752                         name = "[heap]";
6753                         goto cpy_name;
6754                 }
6755                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6756                                 vma->vm_end >= vma->vm_mm->start_stack) {
6757                         name = "[stack]";
6758                         goto cpy_name;
6759                 }
6760
6761                 name = "//anon";
6762                 goto cpy_name;
6763         }
6764
6765 cpy_name:
6766         strlcpy(tmp, name, sizeof(tmp));
6767         name = tmp;
6768 got_name:
6769         /*
6770          * Since our buffer works in 8 byte units we need to align our string
6771          * size to a multiple of 8. However, we must guarantee the tail end is
6772          * zero'd out to avoid leaking random bits to userspace.
6773          */
6774         size = strlen(name)+1;
6775         while (!IS_ALIGNED(size, sizeof(u64)))
6776                 name[size++] = '\0';
6777
6778         mmap_event->file_name = name;
6779         mmap_event->file_size = size;
6780         mmap_event->maj = maj;
6781         mmap_event->min = min;
6782         mmap_event->ino = ino;
6783         mmap_event->ino_generation = gen;
6784         mmap_event->prot = prot;
6785         mmap_event->flags = flags;
6786
6787         if (!(vma->vm_flags & VM_EXEC))
6788                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6789
6790         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6791
6792         perf_iterate_sb(perf_event_mmap_output,
6793                        mmap_event,
6794                        NULL);
6795
6796         kfree(buf);
6797 }
6798
6799 /*
6800  * Check whether inode and address range match filter criteria.
6801  */
6802 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6803                                      struct file *file, unsigned long offset,
6804                                      unsigned long size)
6805 {
6806         if (filter->inode != file_inode(file))
6807                 return false;
6808
6809         if (filter->offset > offset + size)
6810                 return false;
6811
6812         if (filter->offset + filter->size < offset)
6813                 return false;
6814
6815         return true;
6816 }
6817
6818 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6819 {
6820         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6821         struct vm_area_struct *vma = data;
6822         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6823         struct file *file = vma->vm_file;
6824         struct perf_addr_filter *filter;
6825         unsigned int restart = 0, count = 0;
6826
6827         if (!has_addr_filter(event))
6828                 return;
6829
6830         if (!file)
6831                 return;
6832
6833         raw_spin_lock_irqsave(&ifh->lock, flags);
6834         list_for_each_entry(filter, &ifh->list, entry) {
6835                 if (perf_addr_filter_match(filter, file, off,
6836                                              vma->vm_end - vma->vm_start)) {
6837                         event->addr_filters_offs[count] = vma->vm_start;
6838                         restart++;
6839                 }
6840
6841                 count++;
6842         }
6843
6844         if (restart)
6845                 event->addr_filters_gen++;
6846         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6847
6848         if (restart)
6849                 perf_event_stop(event, 1);
6850 }
6851
6852 /*
6853  * Adjust all task's events' filters to the new vma
6854  */
6855 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6856 {
6857         struct perf_event_context *ctx;
6858         int ctxn;
6859
6860         /*
6861          * Data tracing isn't supported yet and as such there is no need
6862          * to keep track of anything that isn't related to executable code:
6863          */
6864         if (!(vma->vm_flags & VM_EXEC))
6865                 return;
6866
6867         rcu_read_lock();
6868         for_each_task_context_nr(ctxn) {
6869                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6870                 if (!ctx)
6871                         continue;
6872
6873                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6874         }
6875         rcu_read_unlock();
6876 }
6877
6878 void perf_event_mmap(struct vm_area_struct *vma)
6879 {
6880         struct perf_mmap_event mmap_event;
6881
6882         if (!atomic_read(&nr_mmap_events))
6883                 return;
6884
6885         mmap_event = (struct perf_mmap_event){
6886                 .vma    = vma,
6887                 /* .file_name */
6888                 /* .file_size */
6889                 .event_id  = {
6890                         .header = {
6891                                 .type = PERF_RECORD_MMAP,
6892                                 .misc = PERF_RECORD_MISC_USER,
6893                                 /* .size */
6894                         },
6895                         /* .pid */
6896                         /* .tid */
6897                         .start  = vma->vm_start,
6898                         .len    = vma->vm_end - vma->vm_start,
6899                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6900                 },
6901                 /* .maj (attr_mmap2 only) */
6902                 /* .min (attr_mmap2 only) */
6903                 /* .ino (attr_mmap2 only) */
6904                 /* .ino_generation (attr_mmap2 only) */
6905                 /* .prot (attr_mmap2 only) */
6906                 /* .flags (attr_mmap2 only) */
6907         };
6908
6909         perf_addr_filters_adjust(vma);
6910         perf_event_mmap_event(&mmap_event);
6911 }
6912
6913 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6914                           unsigned long size, u64 flags)
6915 {
6916         struct perf_output_handle handle;
6917         struct perf_sample_data sample;
6918         struct perf_aux_event {
6919                 struct perf_event_header        header;
6920                 u64                             offset;
6921                 u64                             size;
6922                 u64                             flags;
6923         } rec = {
6924                 .header = {
6925                         .type = PERF_RECORD_AUX,
6926                         .misc = 0,
6927                         .size = sizeof(rec),
6928                 },
6929                 .offset         = head,
6930                 .size           = size,
6931                 .flags          = flags,
6932         };
6933         int ret;
6934
6935         perf_event_header__init_id(&rec.header, &sample, event);
6936         ret = perf_output_begin(&handle, event, rec.header.size);
6937
6938         if (ret)
6939                 return;
6940
6941         perf_output_put(&handle, rec);
6942         perf_event__output_id_sample(event, &handle, &sample);
6943
6944         perf_output_end(&handle);
6945 }
6946
6947 /*
6948  * Lost/dropped samples logging
6949  */
6950 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6951 {
6952         struct perf_output_handle handle;
6953         struct perf_sample_data sample;
6954         int ret;
6955
6956         struct {
6957                 struct perf_event_header        header;
6958                 u64                             lost;
6959         } lost_samples_event = {
6960                 .header = {
6961                         .type = PERF_RECORD_LOST_SAMPLES,
6962                         .misc = 0,
6963                         .size = sizeof(lost_samples_event),
6964                 },
6965                 .lost           = lost,
6966         };
6967
6968         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6969
6970         ret = perf_output_begin(&handle, event,
6971                                 lost_samples_event.header.size);
6972         if (ret)
6973                 return;
6974
6975         perf_output_put(&handle, lost_samples_event);
6976         perf_event__output_id_sample(event, &handle, &sample);
6977         perf_output_end(&handle);
6978 }
6979
6980 /*
6981  * context_switch tracking
6982  */
6983
6984 struct perf_switch_event {
6985         struct task_struct      *task;
6986         struct task_struct      *next_prev;
6987
6988         struct {
6989                 struct perf_event_header        header;
6990                 u32                             next_prev_pid;
6991                 u32                             next_prev_tid;
6992         } event_id;
6993 };
6994
6995 static int perf_event_switch_match(struct perf_event *event)
6996 {
6997         return event->attr.context_switch;
6998 }
6999
7000 static void perf_event_switch_output(struct perf_event *event, void *data)
7001 {
7002         struct perf_switch_event *se = data;
7003         struct perf_output_handle handle;
7004         struct perf_sample_data sample;
7005         int ret;
7006
7007         if (!perf_event_switch_match(event))
7008                 return;
7009
7010         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7011         if (event->ctx->task) {
7012                 se->event_id.header.type = PERF_RECORD_SWITCH;
7013                 se->event_id.header.size = sizeof(se->event_id.header);
7014         } else {
7015                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7016                 se->event_id.header.size = sizeof(se->event_id);
7017                 se->event_id.next_prev_pid =
7018                                         perf_event_pid(event, se->next_prev);
7019                 se->event_id.next_prev_tid =
7020                                         perf_event_tid(event, se->next_prev);
7021         }
7022
7023         perf_event_header__init_id(&se->event_id.header, &sample, event);
7024
7025         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7026         if (ret)
7027                 return;
7028
7029         if (event->ctx->task)
7030                 perf_output_put(&handle, se->event_id.header);
7031         else
7032                 perf_output_put(&handle, se->event_id);
7033
7034         perf_event__output_id_sample(event, &handle, &sample);
7035
7036         perf_output_end(&handle);
7037 }
7038
7039 static void perf_event_switch(struct task_struct *task,
7040                               struct task_struct *next_prev, bool sched_in)
7041 {
7042         struct perf_switch_event switch_event;
7043
7044         /* N.B. caller checks nr_switch_events != 0 */
7045
7046         switch_event = (struct perf_switch_event){
7047                 .task           = task,
7048                 .next_prev      = next_prev,
7049                 .event_id       = {
7050                         .header = {
7051                                 /* .type */
7052                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7053                                 /* .size */
7054                         },
7055                         /* .next_prev_pid */
7056                         /* .next_prev_tid */
7057                 },
7058         };
7059
7060         perf_iterate_sb(perf_event_switch_output,
7061                        &switch_event,
7062                        NULL);
7063 }
7064
7065 /*
7066  * IRQ throttle logging
7067  */
7068
7069 static void perf_log_throttle(struct perf_event *event, int enable)
7070 {
7071         struct perf_output_handle handle;
7072         struct perf_sample_data sample;
7073         int ret;
7074
7075         struct {
7076                 struct perf_event_header        header;
7077                 u64                             time;
7078                 u64                             id;
7079                 u64                             stream_id;
7080         } throttle_event = {
7081                 .header = {
7082                         .type = PERF_RECORD_THROTTLE,
7083                         .misc = 0,
7084                         .size = sizeof(throttle_event),
7085                 },
7086                 .time           = perf_event_clock(event),
7087                 .id             = primary_event_id(event),
7088                 .stream_id      = event->id,
7089         };
7090
7091         if (enable)
7092                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7093
7094         perf_event_header__init_id(&throttle_event.header, &sample, event);
7095
7096         ret = perf_output_begin(&handle, event,
7097                                 throttle_event.header.size);
7098         if (ret)
7099                 return;
7100
7101         perf_output_put(&handle, throttle_event);
7102         perf_event__output_id_sample(event, &handle, &sample);
7103         perf_output_end(&handle);
7104 }
7105
7106 static void perf_log_itrace_start(struct perf_event *event)
7107 {
7108         struct perf_output_handle handle;
7109         struct perf_sample_data sample;
7110         struct perf_aux_event {
7111                 struct perf_event_header        header;
7112                 u32                             pid;
7113                 u32                             tid;
7114         } rec;
7115         int ret;
7116
7117         if (event->parent)
7118                 event = event->parent;
7119
7120         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7121             event->hw.itrace_started)
7122                 return;
7123
7124         rec.header.type = PERF_RECORD_ITRACE_START;
7125         rec.header.misc = 0;
7126         rec.header.size = sizeof(rec);
7127         rec.pid = perf_event_pid(event, current);
7128         rec.tid = perf_event_tid(event, current);
7129
7130         perf_event_header__init_id(&rec.header, &sample, event);
7131         ret = perf_output_begin(&handle, event, rec.header.size);
7132
7133         if (ret)
7134                 return;
7135
7136         perf_output_put(&handle, rec);
7137         perf_event__output_id_sample(event, &handle, &sample);
7138
7139         perf_output_end(&handle);
7140 }
7141
7142 static int
7143 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7144 {
7145         struct hw_perf_event *hwc = &event->hw;
7146         int ret = 0;
7147         u64 seq;
7148
7149         seq = __this_cpu_read(perf_throttled_seq);
7150         if (seq != hwc->interrupts_seq) {
7151                 hwc->interrupts_seq = seq;
7152                 hwc->interrupts = 1;
7153         } else {
7154                 hwc->interrupts++;
7155                 if (unlikely(throttle
7156                              && hwc->interrupts >= max_samples_per_tick)) {
7157                         __this_cpu_inc(perf_throttled_count);
7158                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7159                         hwc->interrupts = MAX_INTERRUPTS;
7160                         perf_log_throttle(event, 0);
7161                         ret = 1;
7162                 }
7163         }
7164
7165         if (event->attr.freq) {
7166                 u64 now = perf_clock();
7167                 s64 delta = now - hwc->freq_time_stamp;
7168
7169                 hwc->freq_time_stamp = now;
7170
7171                 if (delta > 0 && delta < 2*TICK_NSEC)
7172                         perf_adjust_period(event, delta, hwc->last_period, true);
7173         }
7174
7175         return ret;
7176 }
7177
7178 int perf_event_account_interrupt(struct perf_event *event)
7179 {
7180         return __perf_event_account_interrupt(event, 1);
7181 }
7182
7183 /*
7184  * Generic event overflow handling, sampling.
7185  */
7186
7187 static int __perf_event_overflow(struct perf_event *event,
7188                                    int throttle, struct perf_sample_data *data,
7189                                    struct pt_regs *regs)
7190 {
7191         int events = atomic_read(&event->event_limit);
7192         int ret = 0;
7193
7194         /*
7195          * Non-sampling counters might still use the PMI to fold short
7196          * hardware counters, ignore those.
7197          */
7198         if (unlikely(!is_sampling_event(event)))
7199                 return 0;
7200
7201         ret = __perf_event_account_interrupt(event, throttle);
7202
7203         /*
7204          * XXX event_limit might not quite work as expected on inherited
7205          * events
7206          */
7207
7208         event->pending_kill = POLL_IN;
7209         if (events && atomic_dec_and_test(&event->event_limit)) {
7210                 ret = 1;
7211                 event->pending_kill = POLL_HUP;
7212
7213                 perf_event_disable_inatomic(event);
7214         }
7215
7216         READ_ONCE(event->overflow_handler)(event, data, regs);
7217
7218         if (*perf_event_fasync(event) && event->pending_kill) {
7219                 event->pending_wakeup = 1;
7220                 irq_work_queue(&event->pending);
7221         }
7222
7223         return ret;
7224 }
7225
7226 int perf_event_overflow(struct perf_event *event,
7227                           struct perf_sample_data *data,
7228                           struct pt_regs *regs)
7229 {
7230         return __perf_event_overflow(event, 1, data, regs);
7231 }
7232
7233 /*
7234  * Generic software event infrastructure
7235  */
7236
7237 struct swevent_htable {
7238         struct swevent_hlist            *swevent_hlist;
7239         struct mutex                    hlist_mutex;
7240         int                             hlist_refcount;
7241
7242         /* Recursion avoidance in each contexts */
7243         int                             recursion[PERF_NR_CONTEXTS];
7244 };
7245
7246 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7247
7248 /*
7249  * We directly increment event->count and keep a second value in
7250  * event->hw.period_left to count intervals. This period event
7251  * is kept in the range [-sample_period, 0] so that we can use the
7252  * sign as trigger.
7253  */
7254
7255 u64 perf_swevent_set_period(struct perf_event *event)
7256 {
7257         struct hw_perf_event *hwc = &event->hw;
7258         u64 period = hwc->last_period;
7259         u64 nr, offset;
7260         s64 old, val;
7261
7262         hwc->last_period = hwc->sample_period;
7263
7264 again:
7265         old = val = local64_read(&hwc->period_left);
7266         if (val < 0)
7267                 return 0;
7268
7269         nr = div64_u64(period + val, period);
7270         offset = nr * period;
7271         val -= offset;
7272         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7273                 goto again;
7274
7275         return nr;
7276 }
7277
7278 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7279                                     struct perf_sample_data *data,
7280                                     struct pt_regs *regs)
7281 {
7282         struct hw_perf_event *hwc = &event->hw;
7283         int throttle = 0;
7284
7285         if (!overflow)
7286                 overflow = perf_swevent_set_period(event);
7287
7288         if (hwc->interrupts == MAX_INTERRUPTS)
7289                 return;
7290
7291         for (; overflow; overflow--) {
7292                 if (__perf_event_overflow(event, throttle,
7293                                             data, regs)) {
7294                         /*
7295                          * We inhibit the overflow from happening when
7296                          * hwc->interrupts == MAX_INTERRUPTS.
7297                          */
7298                         break;
7299                 }
7300                 throttle = 1;
7301         }
7302 }
7303
7304 static void perf_swevent_event(struct perf_event *event, u64 nr,
7305                                struct perf_sample_data *data,
7306                                struct pt_regs *regs)
7307 {
7308         struct hw_perf_event *hwc = &event->hw;
7309
7310         local64_add(nr, &event->count);
7311
7312         if (!regs)
7313                 return;
7314
7315         if (!is_sampling_event(event))
7316                 return;
7317
7318         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7319                 data->period = nr;
7320                 return perf_swevent_overflow(event, 1, data, regs);
7321         } else
7322                 data->period = event->hw.last_period;
7323
7324         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7325                 return perf_swevent_overflow(event, 1, data, regs);
7326
7327         if (local64_add_negative(nr, &hwc->period_left))
7328                 return;
7329
7330         perf_swevent_overflow(event, 0, data, regs);
7331 }
7332
7333 static int perf_exclude_event(struct perf_event *event,
7334                               struct pt_regs *regs)
7335 {
7336         if (event->hw.state & PERF_HES_STOPPED)
7337                 return 1;
7338
7339         if (regs) {
7340                 if (event->attr.exclude_user && user_mode(regs))
7341                         return 1;
7342
7343                 if (event->attr.exclude_kernel && !user_mode(regs))
7344                         return 1;
7345         }
7346
7347         return 0;
7348 }
7349
7350 static int perf_swevent_match(struct perf_event *event,
7351                                 enum perf_type_id type,
7352                                 u32 event_id,
7353                                 struct perf_sample_data *data,
7354                                 struct pt_regs *regs)
7355 {
7356         if (event->attr.type != type)
7357                 return 0;
7358
7359         if (event->attr.config != event_id)
7360                 return 0;
7361
7362         if (perf_exclude_event(event, regs))
7363                 return 0;
7364
7365         return 1;
7366 }
7367
7368 static inline u64 swevent_hash(u64 type, u32 event_id)
7369 {
7370         u64 val = event_id | (type << 32);
7371
7372         return hash_64(val, SWEVENT_HLIST_BITS);
7373 }
7374
7375 static inline struct hlist_head *
7376 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7377 {
7378         u64 hash = swevent_hash(type, event_id);
7379
7380         return &hlist->heads[hash];
7381 }
7382
7383 /* For the read side: events when they trigger */
7384 static inline struct hlist_head *
7385 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7386 {
7387         struct swevent_hlist *hlist;
7388
7389         hlist = rcu_dereference(swhash->swevent_hlist);
7390         if (!hlist)
7391                 return NULL;
7392
7393         return __find_swevent_head(hlist, type, event_id);
7394 }
7395
7396 /* For the event head insertion and removal in the hlist */
7397 static inline struct hlist_head *
7398 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7399 {
7400         struct swevent_hlist *hlist;
7401         u32 event_id = event->attr.config;
7402         u64 type = event->attr.type;
7403
7404         /*
7405          * Event scheduling is always serialized against hlist allocation
7406          * and release. Which makes the protected version suitable here.
7407          * The context lock guarantees that.
7408          */
7409         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7410                                           lockdep_is_held(&event->ctx->lock));
7411         if (!hlist)
7412                 return NULL;
7413
7414         return __find_swevent_head(hlist, type, event_id);
7415 }
7416
7417 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7418                                     u64 nr,
7419                                     struct perf_sample_data *data,
7420                                     struct pt_regs *regs)
7421 {
7422         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7423         struct perf_event *event;
7424         struct hlist_head *head;
7425
7426         rcu_read_lock();
7427         head = find_swevent_head_rcu(swhash, type, event_id);
7428         if (!head)
7429                 goto end;
7430
7431         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7432                 if (perf_swevent_match(event, type, event_id, data, regs))
7433                         perf_swevent_event(event, nr, data, regs);
7434         }
7435 end:
7436         rcu_read_unlock();
7437 }
7438
7439 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7440
7441 int perf_swevent_get_recursion_context(void)
7442 {
7443         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7444
7445         return get_recursion_context(swhash->recursion);
7446 }
7447 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7448
7449 void perf_swevent_put_recursion_context(int rctx)
7450 {
7451         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7452
7453         put_recursion_context(swhash->recursion, rctx);
7454 }
7455
7456 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7457 {
7458         struct perf_sample_data data;
7459
7460         if (WARN_ON_ONCE(!regs))
7461                 return;
7462
7463         perf_sample_data_init(&data, addr, 0);
7464         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7465 }
7466
7467 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7468 {
7469         int rctx;
7470
7471         preempt_disable_notrace();
7472         rctx = perf_swevent_get_recursion_context();
7473         if (unlikely(rctx < 0))
7474                 goto fail;
7475
7476         ___perf_sw_event(event_id, nr, regs, addr);
7477
7478         perf_swevent_put_recursion_context(rctx);
7479 fail:
7480         preempt_enable_notrace();
7481 }
7482
7483 static void perf_swevent_read(struct perf_event *event)
7484 {
7485 }
7486
7487 static int perf_swevent_add(struct perf_event *event, int flags)
7488 {
7489         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7490         struct hw_perf_event *hwc = &event->hw;
7491         struct hlist_head *head;
7492
7493         if (is_sampling_event(event)) {
7494                 hwc->last_period = hwc->sample_period;
7495                 perf_swevent_set_period(event);
7496         }
7497
7498         hwc->state = !(flags & PERF_EF_START);
7499
7500         head = find_swevent_head(swhash, event);
7501         if (WARN_ON_ONCE(!head))
7502                 return -EINVAL;
7503
7504         hlist_add_head_rcu(&event->hlist_entry, head);
7505         perf_event_update_userpage(event);
7506
7507         return 0;
7508 }
7509
7510 static void perf_swevent_del(struct perf_event *event, int flags)
7511 {
7512         hlist_del_rcu(&event->hlist_entry);
7513 }
7514
7515 static void perf_swevent_start(struct perf_event *event, int flags)
7516 {
7517         event->hw.state = 0;
7518 }
7519
7520 static void perf_swevent_stop(struct perf_event *event, int flags)
7521 {
7522         event->hw.state = PERF_HES_STOPPED;
7523 }
7524
7525 /* Deref the hlist from the update side */
7526 static inline struct swevent_hlist *
7527 swevent_hlist_deref(struct swevent_htable *swhash)
7528 {
7529         return rcu_dereference_protected(swhash->swevent_hlist,
7530                                          lockdep_is_held(&swhash->hlist_mutex));
7531 }
7532
7533 static void swevent_hlist_release(struct swevent_htable *swhash)
7534 {
7535         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7536
7537         if (!hlist)
7538                 return;
7539
7540         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7541         kfree_rcu(hlist, rcu_head);
7542 }
7543
7544 static void swevent_hlist_put_cpu(int cpu)
7545 {
7546         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7547
7548         mutex_lock(&swhash->hlist_mutex);
7549
7550         if (!--swhash->hlist_refcount)
7551                 swevent_hlist_release(swhash);
7552
7553         mutex_unlock(&swhash->hlist_mutex);
7554 }
7555
7556 static void swevent_hlist_put(void)
7557 {
7558         int cpu;
7559
7560         for_each_possible_cpu(cpu)
7561                 swevent_hlist_put_cpu(cpu);
7562 }
7563
7564 static int swevent_hlist_get_cpu(int cpu)
7565 {
7566         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7567         int err = 0;
7568
7569         mutex_lock(&swhash->hlist_mutex);
7570         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7571                 struct swevent_hlist *hlist;
7572
7573                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7574                 if (!hlist) {
7575                         err = -ENOMEM;
7576                         goto exit;
7577                 }
7578                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7579         }
7580         swhash->hlist_refcount++;
7581 exit:
7582         mutex_unlock(&swhash->hlist_mutex);
7583
7584         return err;
7585 }
7586
7587 static int swevent_hlist_get(void)
7588 {
7589         int err, cpu, failed_cpu;
7590
7591         get_online_cpus();
7592         for_each_possible_cpu(cpu) {
7593                 err = swevent_hlist_get_cpu(cpu);
7594                 if (err) {
7595                         failed_cpu = cpu;
7596                         goto fail;
7597                 }
7598         }
7599         put_online_cpus();
7600
7601         return 0;
7602 fail:
7603         for_each_possible_cpu(cpu) {
7604                 if (cpu == failed_cpu)
7605                         break;
7606                 swevent_hlist_put_cpu(cpu);
7607         }
7608
7609         put_online_cpus();
7610         return err;
7611 }
7612
7613 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7614
7615 static void sw_perf_event_destroy(struct perf_event *event)
7616 {
7617         u64 event_id = event->attr.config;
7618
7619         WARN_ON(event->parent);
7620
7621         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7622         swevent_hlist_put();
7623 }
7624
7625 static int perf_swevent_init(struct perf_event *event)
7626 {
7627         u64 event_id = event->attr.config;
7628
7629         if (event->attr.type != PERF_TYPE_SOFTWARE)
7630                 return -ENOENT;
7631
7632         /*
7633          * no branch sampling for software events
7634          */
7635         if (has_branch_stack(event))
7636                 return -EOPNOTSUPP;
7637
7638         switch (event_id) {
7639         case PERF_COUNT_SW_CPU_CLOCK:
7640         case PERF_COUNT_SW_TASK_CLOCK:
7641                 return -ENOENT;
7642
7643         default:
7644                 break;
7645         }
7646
7647         if (event_id >= PERF_COUNT_SW_MAX)
7648                 return -ENOENT;
7649
7650         if (!event->parent) {
7651                 int err;
7652
7653                 err = swevent_hlist_get();
7654                 if (err)
7655                         return err;
7656
7657                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7658                 event->destroy = sw_perf_event_destroy;
7659         }
7660
7661         return 0;
7662 }
7663
7664 static struct pmu perf_swevent = {
7665         .task_ctx_nr    = perf_sw_context,
7666
7667         .capabilities   = PERF_PMU_CAP_NO_NMI,
7668
7669         .event_init     = perf_swevent_init,
7670         .add            = perf_swevent_add,
7671         .del            = perf_swevent_del,
7672         .start          = perf_swevent_start,
7673         .stop           = perf_swevent_stop,
7674         .read           = perf_swevent_read,
7675 };
7676
7677 #ifdef CONFIG_EVENT_TRACING
7678
7679 static int perf_tp_filter_match(struct perf_event *event,
7680                                 struct perf_sample_data *data)
7681 {
7682         void *record = data->raw->frag.data;
7683
7684         /* only top level events have filters set */
7685         if (event->parent)
7686                 event = event->parent;
7687
7688         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7689                 return 1;
7690         return 0;
7691 }
7692
7693 static int perf_tp_event_match(struct perf_event *event,
7694                                 struct perf_sample_data *data,
7695                                 struct pt_regs *regs)
7696 {
7697         if (event->hw.state & PERF_HES_STOPPED)
7698                 return 0;
7699         /*
7700          * All tracepoints are from kernel-space.
7701          */
7702         if (event->attr.exclude_kernel)
7703                 return 0;
7704
7705         if (!perf_tp_filter_match(event, data))
7706                 return 0;
7707
7708         return 1;
7709 }
7710
7711 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7712                                struct trace_event_call *call, u64 count,
7713                                struct pt_regs *regs, struct hlist_head *head,
7714                                struct task_struct *task)
7715 {
7716         struct bpf_prog *prog = call->prog;
7717
7718         if (prog) {
7719                 *(struct pt_regs **)raw_data = regs;
7720                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7721                         perf_swevent_put_recursion_context(rctx);
7722                         return;
7723                 }
7724         }
7725         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7726                       rctx, task);
7727 }
7728 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7729
7730 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7731                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7732                    struct task_struct *task)
7733 {
7734         struct perf_sample_data data;
7735         struct perf_event *event;
7736
7737         struct perf_raw_record raw = {
7738                 .frag = {
7739                         .size = entry_size,
7740                         .data = record,
7741                 },
7742         };
7743
7744         perf_sample_data_init(&data, 0, 0);
7745         data.raw = &raw;
7746
7747         perf_trace_buf_update(record, event_type);
7748
7749         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7750                 if (perf_tp_event_match(event, &data, regs))
7751                         perf_swevent_event(event, count, &data, regs);
7752         }
7753
7754         /*
7755          * If we got specified a target task, also iterate its context and
7756          * deliver this event there too.
7757          */
7758         if (task && task != current) {
7759                 struct perf_event_context *ctx;
7760                 struct trace_entry *entry = record;
7761
7762                 rcu_read_lock();
7763                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7764                 if (!ctx)
7765                         goto unlock;
7766
7767                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7768                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7769                                 continue;
7770                         if (event->attr.config != entry->type)
7771                                 continue;
7772                         if (perf_tp_event_match(event, &data, regs))
7773                                 perf_swevent_event(event, count, &data, regs);
7774                 }
7775 unlock:
7776                 rcu_read_unlock();
7777         }
7778
7779         perf_swevent_put_recursion_context(rctx);
7780 }
7781 EXPORT_SYMBOL_GPL(perf_tp_event);
7782
7783 static void tp_perf_event_destroy(struct perf_event *event)
7784 {
7785         perf_trace_destroy(event);
7786 }
7787
7788 static int perf_tp_event_init(struct perf_event *event)
7789 {
7790         int err;
7791
7792         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7793                 return -ENOENT;
7794
7795         /*
7796          * no branch sampling for tracepoint events
7797          */
7798         if (has_branch_stack(event))
7799                 return -EOPNOTSUPP;
7800
7801         err = perf_trace_init(event);
7802         if (err)
7803                 return err;
7804
7805         event->destroy = tp_perf_event_destroy;
7806
7807         return 0;
7808 }
7809
7810 static struct pmu perf_tracepoint = {
7811         .task_ctx_nr    = perf_sw_context,
7812
7813         .event_init     = perf_tp_event_init,
7814         .add            = perf_trace_add,
7815         .del            = perf_trace_del,
7816         .start          = perf_swevent_start,
7817         .stop           = perf_swevent_stop,
7818         .read           = perf_swevent_read,
7819 };
7820
7821 static inline void perf_tp_register(void)
7822 {
7823         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7824 }
7825
7826 static void perf_event_free_filter(struct perf_event *event)
7827 {
7828         ftrace_profile_free_filter(event);
7829 }
7830
7831 #ifdef CONFIG_BPF_SYSCALL
7832 static void bpf_overflow_handler(struct perf_event *event,
7833                                  struct perf_sample_data *data,
7834                                  struct pt_regs *regs)
7835 {
7836         struct bpf_perf_event_data_kern ctx = {
7837                 .data = data,
7838                 .regs = regs,
7839         };
7840         int ret = 0;
7841
7842         preempt_disable();
7843         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7844                 goto out;
7845         rcu_read_lock();
7846         ret = BPF_PROG_RUN(event->prog, &ctx);
7847         rcu_read_unlock();
7848 out:
7849         __this_cpu_dec(bpf_prog_active);
7850         preempt_enable();
7851         if (!ret)
7852                 return;
7853
7854         event->orig_overflow_handler(event, data, regs);
7855 }
7856
7857 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7858 {
7859         struct bpf_prog *prog;
7860
7861         if (event->overflow_handler_context)
7862                 /* hw breakpoint or kernel counter */
7863                 return -EINVAL;
7864
7865         if (event->prog)
7866                 return -EEXIST;
7867
7868         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7869         if (IS_ERR(prog))
7870                 return PTR_ERR(prog);
7871
7872         event->prog = prog;
7873         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7874         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7875         return 0;
7876 }
7877
7878 static void perf_event_free_bpf_handler(struct perf_event *event)
7879 {
7880         struct bpf_prog *prog = event->prog;
7881
7882         if (!prog)
7883                 return;
7884
7885         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7886         event->prog = NULL;
7887         bpf_prog_put(prog);
7888 }
7889 #else
7890 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7891 {
7892         return -EOPNOTSUPP;
7893 }
7894 static void perf_event_free_bpf_handler(struct perf_event *event)
7895 {
7896 }
7897 #endif
7898
7899 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7900 {
7901         bool is_kprobe, is_tracepoint;
7902         struct bpf_prog *prog;
7903
7904         if (event->attr.type == PERF_TYPE_HARDWARE ||
7905             event->attr.type == PERF_TYPE_SOFTWARE)
7906                 return perf_event_set_bpf_handler(event, prog_fd);
7907
7908         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7909                 return -EINVAL;
7910
7911         if (event->tp_event->prog)
7912                 return -EEXIST;
7913
7914         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7915         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7916         if (!is_kprobe && !is_tracepoint)
7917                 /* bpf programs can only be attached to u/kprobe or tracepoint */
7918                 return -EINVAL;
7919
7920         prog = bpf_prog_get(prog_fd);
7921         if (IS_ERR(prog))
7922                 return PTR_ERR(prog);
7923
7924         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7925             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7926                 /* valid fd, but invalid bpf program type */
7927                 bpf_prog_put(prog);
7928                 return -EINVAL;
7929         }
7930
7931         if (is_tracepoint) {
7932                 int off = trace_event_get_offsets(event->tp_event);
7933
7934                 if (prog->aux->max_ctx_offset > off) {
7935                         bpf_prog_put(prog);
7936                         return -EACCES;
7937                 }
7938         }
7939         event->tp_event->prog = prog;
7940
7941         return 0;
7942 }
7943
7944 static void perf_event_free_bpf_prog(struct perf_event *event)
7945 {
7946         struct bpf_prog *prog;
7947
7948         perf_event_free_bpf_handler(event);
7949
7950         if (!event->tp_event)
7951                 return;
7952
7953         prog = event->tp_event->prog;
7954         if (prog) {
7955                 event->tp_event->prog = NULL;
7956                 bpf_prog_put(prog);
7957         }
7958 }
7959
7960 #else
7961
7962 static inline void perf_tp_register(void)
7963 {
7964 }
7965
7966 static void perf_event_free_filter(struct perf_event *event)
7967 {
7968 }
7969
7970 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7971 {
7972         return -ENOENT;
7973 }
7974
7975 static void perf_event_free_bpf_prog(struct perf_event *event)
7976 {
7977 }
7978 #endif /* CONFIG_EVENT_TRACING */
7979
7980 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7981 void perf_bp_event(struct perf_event *bp, void *data)
7982 {
7983         struct perf_sample_data sample;
7984         struct pt_regs *regs = data;
7985
7986         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7987
7988         if (!bp->hw.state && !perf_exclude_event(bp, regs))
7989                 perf_swevent_event(bp, 1, &sample, regs);
7990 }
7991 #endif
7992
7993 /*
7994  * Allocate a new address filter
7995  */
7996 static struct perf_addr_filter *
7997 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7998 {
7999         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8000         struct perf_addr_filter *filter;
8001
8002         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8003         if (!filter)
8004                 return NULL;
8005
8006         INIT_LIST_HEAD(&filter->entry);
8007         list_add_tail(&filter->entry, filters);
8008
8009         return filter;
8010 }
8011
8012 static void free_filters_list(struct list_head *filters)
8013 {
8014         struct perf_addr_filter *filter, *iter;
8015
8016         list_for_each_entry_safe(filter, iter, filters, entry) {
8017                 if (filter->inode)
8018                         iput(filter->inode);
8019                 list_del(&filter->entry);
8020                 kfree(filter);
8021         }
8022 }
8023
8024 /*
8025  * Free existing address filters and optionally install new ones
8026  */
8027 static void perf_addr_filters_splice(struct perf_event *event,
8028                                      struct list_head *head)
8029 {
8030         unsigned long flags;
8031         LIST_HEAD(list);
8032
8033         if (!has_addr_filter(event))
8034                 return;
8035
8036         /* don't bother with children, they don't have their own filters */
8037         if (event->parent)
8038                 return;
8039
8040         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8041
8042         list_splice_init(&event->addr_filters.list, &list);
8043         if (head)
8044                 list_splice(head, &event->addr_filters.list);
8045
8046         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8047
8048         free_filters_list(&list);
8049 }
8050
8051 /*
8052  * Scan through mm's vmas and see if one of them matches the
8053  * @filter; if so, adjust filter's address range.
8054  * Called with mm::mmap_sem down for reading.
8055  */
8056 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8057                                             struct mm_struct *mm)
8058 {
8059         struct vm_area_struct *vma;
8060
8061         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8062                 struct file *file = vma->vm_file;
8063                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8064                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8065
8066                 if (!file)
8067                         continue;
8068
8069                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8070                         continue;
8071
8072                 return vma->vm_start;
8073         }
8074
8075         return 0;
8076 }
8077
8078 /*
8079  * Update event's address range filters based on the
8080  * task's existing mappings, if any.
8081  */
8082 static void perf_event_addr_filters_apply(struct perf_event *event)
8083 {
8084         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8085         struct task_struct *task = READ_ONCE(event->ctx->task);
8086         struct perf_addr_filter *filter;
8087         struct mm_struct *mm = NULL;
8088         unsigned int count = 0;
8089         unsigned long flags;
8090
8091         /*
8092          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8093          * will stop on the parent's child_mutex that our caller is also holding
8094          */
8095         if (task == TASK_TOMBSTONE)
8096                 return;
8097
8098         if (!ifh->nr_file_filters)
8099                 return;
8100
8101         mm = get_task_mm(event->ctx->task);
8102         if (!mm)
8103                 goto restart;
8104
8105         down_read(&mm->mmap_sem);
8106
8107         raw_spin_lock_irqsave(&ifh->lock, flags);
8108         list_for_each_entry(filter, &ifh->list, entry) {
8109                 event->addr_filters_offs[count] = 0;
8110
8111                 /*
8112                  * Adjust base offset if the filter is associated to a binary
8113                  * that needs to be mapped:
8114                  */
8115                 if (filter->inode)
8116                         event->addr_filters_offs[count] =
8117                                 perf_addr_filter_apply(filter, mm);
8118
8119                 count++;
8120         }
8121
8122         event->addr_filters_gen++;
8123         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8124
8125         up_read(&mm->mmap_sem);
8126
8127         mmput(mm);
8128
8129 restart:
8130         perf_event_stop(event, 1);
8131 }
8132
8133 /*
8134  * Address range filtering: limiting the data to certain
8135  * instruction address ranges. Filters are ioctl()ed to us from
8136  * userspace as ascii strings.
8137  *
8138  * Filter string format:
8139  *
8140  * ACTION RANGE_SPEC
8141  * where ACTION is one of the
8142  *  * "filter": limit the trace to this region
8143  *  * "start": start tracing from this address
8144  *  * "stop": stop tracing at this address/region;
8145  * RANGE_SPEC is
8146  *  * for kernel addresses: <start address>[/<size>]
8147  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8148  *
8149  * if <size> is not specified, the range is treated as a single address.
8150  */
8151 enum {
8152         IF_ACT_NONE = -1,
8153         IF_ACT_FILTER,
8154         IF_ACT_START,
8155         IF_ACT_STOP,
8156         IF_SRC_FILE,
8157         IF_SRC_KERNEL,
8158         IF_SRC_FILEADDR,
8159         IF_SRC_KERNELADDR,
8160 };
8161
8162 enum {
8163         IF_STATE_ACTION = 0,
8164         IF_STATE_SOURCE,
8165         IF_STATE_END,
8166 };
8167
8168 static const match_table_t if_tokens = {
8169         { IF_ACT_FILTER,        "filter" },
8170         { IF_ACT_START,         "start" },
8171         { IF_ACT_STOP,          "stop" },
8172         { IF_SRC_FILE,          "%u/%u@%s" },
8173         { IF_SRC_KERNEL,        "%u/%u" },
8174         { IF_SRC_FILEADDR,      "%u@%s" },
8175         { IF_SRC_KERNELADDR,    "%u" },
8176         { IF_ACT_NONE,          NULL },
8177 };
8178
8179 /*
8180  * Address filter string parser
8181  */
8182 static int
8183 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8184                              struct list_head *filters)
8185 {
8186         struct perf_addr_filter *filter = NULL;
8187         char *start, *orig, *filename = NULL;
8188         struct path path;
8189         substring_t args[MAX_OPT_ARGS];
8190         int state = IF_STATE_ACTION, token;
8191         unsigned int kernel = 0;
8192         int ret = -EINVAL;
8193
8194         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8195         if (!fstr)
8196                 return -ENOMEM;
8197
8198         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8199                 ret = -EINVAL;
8200
8201                 if (!*start)
8202                         continue;
8203
8204                 /* filter definition begins */
8205                 if (state == IF_STATE_ACTION) {
8206                         filter = perf_addr_filter_new(event, filters);
8207                         if (!filter)
8208                                 goto fail;
8209                 }
8210
8211                 token = match_token(start, if_tokens, args);
8212                 switch (token) {
8213                 case IF_ACT_FILTER:
8214                 case IF_ACT_START:
8215                         filter->filter = 1;
8216
8217                 case IF_ACT_STOP:
8218                         if (state != IF_STATE_ACTION)
8219                                 goto fail;
8220
8221                         state = IF_STATE_SOURCE;
8222                         break;
8223
8224                 case IF_SRC_KERNELADDR:
8225                 case IF_SRC_KERNEL:
8226                         kernel = 1;
8227
8228                 case IF_SRC_FILEADDR:
8229                 case IF_SRC_FILE:
8230                         if (state != IF_STATE_SOURCE)
8231                                 goto fail;
8232
8233                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8234                                 filter->range = 1;
8235
8236                         *args[0].to = 0;
8237                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8238                         if (ret)
8239                                 goto fail;
8240
8241                         if (filter->range) {
8242                                 *args[1].to = 0;
8243                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8244                                 if (ret)
8245                                         goto fail;
8246                         }
8247
8248                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8249                                 int fpos = filter->range ? 2 : 1;
8250
8251                                 filename = match_strdup(&args[fpos]);
8252                                 if (!filename) {
8253                                         ret = -ENOMEM;
8254                                         goto fail;
8255                                 }
8256                         }
8257
8258                         state = IF_STATE_END;
8259                         break;
8260
8261                 default:
8262                         goto fail;
8263                 }
8264
8265                 /*
8266                  * Filter definition is fully parsed, validate and install it.
8267                  * Make sure that it doesn't contradict itself or the event's
8268                  * attribute.
8269                  */
8270                 if (state == IF_STATE_END) {
8271                         ret = -EINVAL;
8272                         if (kernel && event->attr.exclude_kernel)
8273                                 goto fail;
8274
8275                         if (!kernel) {
8276                                 if (!filename)
8277                                         goto fail;
8278
8279                                 /*
8280                                  * For now, we only support file-based filters
8281                                  * in per-task events; doing so for CPU-wide
8282                                  * events requires additional context switching
8283                                  * trickery, since same object code will be
8284                                  * mapped at different virtual addresses in
8285                                  * different processes.
8286                                  */
8287                                 ret = -EOPNOTSUPP;
8288                                 if (!event->ctx->task)
8289                                         goto fail_free_name;
8290
8291                                 /* look up the path and grab its inode */
8292                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8293                                 if (ret)
8294                                         goto fail_free_name;
8295
8296                                 filter->inode = igrab(d_inode(path.dentry));
8297                                 path_put(&path);
8298                                 kfree(filename);
8299                                 filename = NULL;
8300
8301                                 ret = -EINVAL;
8302                                 if (!filter->inode ||
8303                                     !S_ISREG(filter->inode->i_mode))
8304                                         /* free_filters_list() will iput() */
8305                                         goto fail;
8306
8307                                 event->addr_filters.nr_file_filters++;
8308                         }
8309
8310                         /* ready to consume more filters */
8311                         state = IF_STATE_ACTION;
8312                         filter = NULL;
8313                 }
8314         }
8315
8316         if (state != IF_STATE_ACTION)
8317                 goto fail;
8318
8319         kfree(orig);
8320
8321         return 0;
8322
8323 fail_free_name:
8324         kfree(filename);
8325 fail:
8326         free_filters_list(filters);
8327         kfree(orig);
8328
8329         return ret;
8330 }
8331
8332 static int
8333 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8334 {
8335         LIST_HEAD(filters);
8336         int ret;
8337
8338         /*
8339          * Since this is called in perf_ioctl() path, we're already holding
8340          * ctx::mutex.
8341          */
8342         lockdep_assert_held(&event->ctx->mutex);
8343
8344         if (WARN_ON_ONCE(event->parent))
8345                 return -EINVAL;
8346
8347         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8348         if (ret)
8349                 goto fail_clear_files;
8350
8351         ret = event->pmu->addr_filters_validate(&filters);
8352         if (ret)
8353                 goto fail_free_filters;
8354
8355         /* remove existing filters, if any */
8356         perf_addr_filters_splice(event, &filters);
8357
8358         /* install new filters */
8359         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8360
8361         return ret;
8362
8363 fail_free_filters:
8364         free_filters_list(&filters);
8365
8366 fail_clear_files:
8367         event->addr_filters.nr_file_filters = 0;
8368
8369         return ret;
8370 }
8371
8372 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8373 {
8374         char *filter_str;
8375         int ret = -EINVAL;
8376
8377         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8378             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8379             !has_addr_filter(event))
8380                 return -EINVAL;
8381
8382         filter_str = strndup_user(arg, PAGE_SIZE);
8383         if (IS_ERR(filter_str))
8384                 return PTR_ERR(filter_str);
8385
8386         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8387             event->attr.type == PERF_TYPE_TRACEPOINT)
8388                 ret = ftrace_profile_set_filter(event, event->attr.config,
8389                                                 filter_str);
8390         else if (has_addr_filter(event))
8391                 ret = perf_event_set_addr_filter(event, filter_str);
8392
8393         kfree(filter_str);
8394         return ret;
8395 }
8396
8397 /*
8398  * hrtimer based swevent callback
8399  */
8400
8401 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8402 {
8403         enum hrtimer_restart ret = HRTIMER_RESTART;
8404         struct perf_sample_data data;
8405         struct pt_regs *regs;
8406         struct perf_event *event;
8407         u64 period;
8408
8409         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8410
8411         if (event->state != PERF_EVENT_STATE_ACTIVE)
8412                 return HRTIMER_NORESTART;
8413
8414         event->pmu->read(event);
8415
8416         perf_sample_data_init(&data, 0, event->hw.last_period);
8417         regs = get_irq_regs();
8418
8419         if (regs && !perf_exclude_event(event, regs)) {
8420                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8421                         if (__perf_event_overflow(event, 1, &data, regs))
8422                                 ret = HRTIMER_NORESTART;
8423         }
8424
8425         period = max_t(u64, 10000, event->hw.sample_period);
8426         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8427
8428         return ret;
8429 }
8430
8431 static void perf_swevent_start_hrtimer(struct perf_event *event)
8432 {
8433         struct hw_perf_event *hwc = &event->hw;
8434         s64 period;
8435
8436         if (!is_sampling_event(event))
8437                 return;
8438
8439         period = local64_read(&hwc->period_left);
8440         if (period) {
8441                 if (period < 0)
8442                         period = 10000;
8443
8444                 local64_set(&hwc->period_left, 0);
8445         } else {
8446                 period = max_t(u64, 10000, hwc->sample_period);
8447         }
8448         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8449                       HRTIMER_MODE_REL_PINNED);
8450 }
8451
8452 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8453 {
8454         struct hw_perf_event *hwc = &event->hw;
8455
8456         if (is_sampling_event(event)) {
8457                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8458                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8459
8460                 hrtimer_cancel(&hwc->hrtimer);
8461         }
8462 }
8463
8464 static void perf_swevent_init_hrtimer(struct perf_event *event)
8465 {
8466         struct hw_perf_event *hwc = &event->hw;
8467
8468         if (!is_sampling_event(event))
8469                 return;
8470
8471         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8472         hwc->hrtimer.function = perf_swevent_hrtimer;
8473
8474         /*
8475          * Since hrtimers have a fixed rate, we can do a static freq->period
8476          * mapping and avoid the whole period adjust feedback stuff.
8477          */
8478         if (event->attr.freq) {
8479                 long freq = event->attr.sample_freq;
8480
8481                 event->attr.sample_period = NSEC_PER_SEC / freq;
8482                 hwc->sample_period = event->attr.sample_period;
8483                 local64_set(&hwc->period_left, hwc->sample_period);
8484                 hwc->last_period = hwc->sample_period;
8485                 event->attr.freq = 0;
8486         }
8487 }
8488
8489 /*
8490  * Software event: cpu wall time clock
8491  */
8492
8493 static void cpu_clock_event_update(struct perf_event *event)
8494 {
8495         s64 prev;
8496         u64 now;
8497
8498         now = local_clock();
8499         prev = local64_xchg(&event->hw.prev_count, now);
8500         local64_add(now - prev, &event->count);
8501 }
8502
8503 static void cpu_clock_event_start(struct perf_event *event, int flags)
8504 {
8505         local64_set(&event->hw.prev_count, local_clock());
8506         perf_swevent_start_hrtimer(event);
8507 }
8508
8509 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8510 {
8511         perf_swevent_cancel_hrtimer(event);
8512         cpu_clock_event_update(event);
8513 }
8514
8515 static int cpu_clock_event_add(struct perf_event *event, int flags)
8516 {
8517         if (flags & PERF_EF_START)
8518                 cpu_clock_event_start(event, flags);
8519         perf_event_update_userpage(event);
8520
8521         return 0;
8522 }
8523
8524 static void cpu_clock_event_del(struct perf_event *event, int flags)
8525 {
8526         cpu_clock_event_stop(event, flags);
8527 }
8528
8529 static void cpu_clock_event_read(struct perf_event *event)
8530 {
8531         cpu_clock_event_update(event);
8532 }
8533
8534 static int cpu_clock_event_init(struct perf_event *event)
8535 {
8536         if (event->attr.type != PERF_TYPE_SOFTWARE)
8537                 return -ENOENT;
8538
8539         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8540                 return -ENOENT;
8541
8542         /*
8543          * no branch sampling for software events
8544          */
8545         if (has_branch_stack(event))
8546                 return -EOPNOTSUPP;
8547
8548         perf_swevent_init_hrtimer(event);
8549
8550         return 0;
8551 }
8552
8553 static struct pmu perf_cpu_clock = {
8554         .task_ctx_nr    = perf_sw_context,
8555
8556         .capabilities   = PERF_PMU_CAP_NO_NMI,
8557
8558         .event_init     = cpu_clock_event_init,
8559         .add            = cpu_clock_event_add,
8560         .del            = cpu_clock_event_del,
8561         .start          = cpu_clock_event_start,
8562         .stop           = cpu_clock_event_stop,
8563         .read           = cpu_clock_event_read,
8564 };
8565
8566 /*
8567  * Software event: task time clock
8568  */
8569
8570 static void task_clock_event_update(struct perf_event *event, u64 now)
8571 {
8572         u64 prev;
8573         s64 delta;
8574
8575         prev = local64_xchg(&event->hw.prev_count, now);
8576         delta = now - prev;
8577         local64_add(delta, &event->count);
8578 }
8579
8580 static void task_clock_event_start(struct perf_event *event, int flags)
8581 {
8582         local64_set(&event->hw.prev_count, event->ctx->time);
8583         perf_swevent_start_hrtimer(event);
8584 }
8585
8586 static void task_clock_event_stop(struct perf_event *event, int flags)
8587 {
8588         perf_swevent_cancel_hrtimer(event);
8589         task_clock_event_update(event, event->ctx->time);
8590 }
8591
8592 static int task_clock_event_add(struct perf_event *event, int flags)
8593 {
8594         if (flags & PERF_EF_START)
8595                 task_clock_event_start(event, flags);
8596         perf_event_update_userpage(event);
8597
8598         return 0;
8599 }
8600
8601 static void task_clock_event_del(struct perf_event *event, int flags)
8602 {
8603         task_clock_event_stop(event, PERF_EF_UPDATE);
8604 }
8605
8606 static void task_clock_event_read(struct perf_event *event)
8607 {
8608         u64 now = perf_clock();
8609         u64 delta = now - event->ctx->timestamp;
8610         u64 time = event->ctx->time + delta;
8611
8612         task_clock_event_update(event, time);
8613 }
8614
8615 static int task_clock_event_init(struct perf_event *event)
8616 {
8617         if (event->attr.type != PERF_TYPE_SOFTWARE)
8618                 return -ENOENT;
8619
8620         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8621                 return -ENOENT;
8622
8623         /*
8624          * no branch sampling for software events
8625          */
8626         if (has_branch_stack(event))
8627                 return -EOPNOTSUPP;
8628
8629         perf_swevent_init_hrtimer(event);
8630
8631         return 0;
8632 }
8633
8634 static struct pmu perf_task_clock = {
8635         .task_ctx_nr    = perf_sw_context,
8636
8637         .capabilities   = PERF_PMU_CAP_NO_NMI,
8638
8639         .event_init     = task_clock_event_init,
8640         .add            = task_clock_event_add,
8641         .del            = task_clock_event_del,
8642         .start          = task_clock_event_start,
8643         .stop           = task_clock_event_stop,
8644         .read           = task_clock_event_read,
8645 };
8646
8647 static void perf_pmu_nop_void(struct pmu *pmu)
8648 {
8649 }
8650
8651 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8652 {
8653 }
8654
8655 static int perf_pmu_nop_int(struct pmu *pmu)
8656 {
8657         return 0;
8658 }
8659
8660 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8661
8662 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8663 {
8664         __this_cpu_write(nop_txn_flags, flags);
8665
8666         if (flags & ~PERF_PMU_TXN_ADD)
8667                 return;
8668
8669         perf_pmu_disable(pmu);
8670 }
8671
8672 static int perf_pmu_commit_txn(struct pmu *pmu)
8673 {
8674         unsigned int flags = __this_cpu_read(nop_txn_flags);
8675
8676         __this_cpu_write(nop_txn_flags, 0);
8677
8678         if (flags & ~PERF_PMU_TXN_ADD)
8679                 return 0;
8680
8681         perf_pmu_enable(pmu);
8682         return 0;
8683 }
8684
8685 static void perf_pmu_cancel_txn(struct pmu *pmu)
8686 {
8687         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8688
8689         __this_cpu_write(nop_txn_flags, 0);
8690
8691         if (flags & ~PERF_PMU_TXN_ADD)
8692                 return;
8693
8694         perf_pmu_enable(pmu);
8695 }
8696
8697 static int perf_event_idx_default(struct perf_event *event)
8698 {
8699         return 0;
8700 }
8701
8702 /*
8703  * Ensures all contexts with the same task_ctx_nr have the same
8704  * pmu_cpu_context too.
8705  */
8706 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8707 {
8708         struct pmu *pmu;
8709
8710         if (ctxn < 0)
8711                 return NULL;
8712
8713         list_for_each_entry(pmu, &pmus, entry) {
8714                 if (pmu->task_ctx_nr == ctxn)
8715                         return pmu->pmu_cpu_context;
8716         }
8717
8718         return NULL;
8719 }
8720
8721 static void free_pmu_context(struct pmu *pmu)
8722 {
8723         mutex_lock(&pmus_lock);
8724         free_percpu(pmu->pmu_cpu_context);
8725         mutex_unlock(&pmus_lock);
8726 }
8727
8728 /*
8729  * Let userspace know that this PMU supports address range filtering:
8730  */
8731 static ssize_t nr_addr_filters_show(struct device *dev,
8732                                     struct device_attribute *attr,
8733                                     char *page)
8734 {
8735         struct pmu *pmu = dev_get_drvdata(dev);
8736
8737         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8738 }
8739 DEVICE_ATTR_RO(nr_addr_filters);
8740
8741 static struct idr pmu_idr;
8742
8743 static ssize_t
8744 type_show(struct device *dev, struct device_attribute *attr, char *page)
8745 {
8746         struct pmu *pmu = dev_get_drvdata(dev);
8747
8748         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8749 }
8750 static DEVICE_ATTR_RO(type);
8751
8752 static ssize_t
8753 perf_event_mux_interval_ms_show(struct device *dev,
8754                                 struct device_attribute *attr,
8755                                 char *page)
8756 {
8757         struct pmu *pmu = dev_get_drvdata(dev);
8758
8759         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8760 }
8761
8762 static DEFINE_MUTEX(mux_interval_mutex);
8763
8764 static ssize_t
8765 perf_event_mux_interval_ms_store(struct device *dev,
8766                                  struct device_attribute *attr,
8767                                  const char *buf, size_t count)
8768 {
8769         struct pmu *pmu = dev_get_drvdata(dev);
8770         int timer, cpu, ret;
8771
8772         ret = kstrtoint(buf, 0, &timer);
8773         if (ret)
8774                 return ret;
8775
8776         if (timer < 1)
8777                 return -EINVAL;
8778
8779         /* same value, noting to do */
8780         if (timer == pmu->hrtimer_interval_ms)
8781                 return count;
8782
8783         mutex_lock(&mux_interval_mutex);
8784         pmu->hrtimer_interval_ms = timer;
8785
8786         /* update all cpuctx for this PMU */
8787         get_online_cpus();
8788         for_each_online_cpu(cpu) {
8789                 struct perf_cpu_context *cpuctx;
8790                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8791                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8792
8793                 cpu_function_call(cpu,
8794                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8795         }
8796         put_online_cpus();
8797         mutex_unlock(&mux_interval_mutex);
8798
8799         return count;
8800 }
8801 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8802
8803 static struct attribute *pmu_dev_attrs[] = {
8804         &dev_attr_type.attr,
8805         &dev_attr_perf_event_mux_interval_ms.attr,
8806         NULL,
8807 };
8808 ATTRIBUTE_GROUPS(pmu_dev);
8809
8810 static int pmu_bus_running;
8811 static struct bus_type pmu_bus = {
8812         .name           = "event_source",
8813         .dev_groups     = pmu_dev_groups,
8814 };
8815
8816 static void pmu_dev_release(struct device *dev)
8817 {
8818         kfree(dev);
8819 }
8820
8821 static int pmu_dev_alloc(struct pmu *pmu)
8822 {
8823         int ret = -ENOMEM;
8824
8825         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8826         if (!pmu->dev)
8827                 goto out;
8828
8829         pmu->dev->groups = pmu->attr_groups;
8830         device_initialize(pmu->dev);
8831         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8832         if (ret)
8833                 goto free_dev;
8834
8835         dev_set_drvdata(pmu->dev, pmu);
8836         pmu->dev->bus = &pmu_bus;
8837         pmu->dev->release = pmu_dev_release;
8838         ret = device_add(pmu->dev);
8839         if (ret)
8840                 goto free_dev;
8841
8842         /* For PMUs with address filters, throw in an extra attribute: */
8843         if (pmu->nr_addr_filters)
8844                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8845
8846         if (ret)
8847                 goto del_dev;
8848
8849 out:
8850         return ret;
8851
8852 del_dev:
8853         device_del(pmu->dev);
8854
8855 free_dev:
8856         put_device(pmu->dev);
8857         goto out;
8858 }
8859
8860 static struct lock_class_key cpuctx_mutex;
8861 static struct lock_class_key cpuctx_lock;
8862
8863 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8864 {
8865         int cpu, ret;
8866
8867         mutex_lock(&pmus_lock);
8868         ret = -ENOMEM;
8869         pmu->pmu_disable_count = alloc_percpu(int);
8870         if (!pmu->pmu_disable_count)
8871                 goto unlock;
8872
8873         pmu->type = -1;
8874         if (!name)
8875                 goto skip_type;
8876         pmu->name = name;
8877
8878         if (type < 0) {
8879                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8880                 if (type < 0) {
8881                         ret = type;
8882                         goto free_pdc;
8883                 }
8884         }
8885         pmu->type = type;
8886
8887         if (pmu_bus_running) {
8888                 ret = pmu_dev_alloc(pmu);
8889                 if (ret)
8890                         goto free_idr;
8891         }
8892
8893 skip_type:
8894         if (pmu->task_ctx_nr == perf_hw_context) {
8895                 static int hw_context_taken = 0;
8896
8897                 /*
8898                  * Other than systems with heterogeneous CPUs, it never makes
8899                  * sense for two PMUs to share perf_hw_context. PMUs which are
8900                  * uncore must use perf_invalid_context.
8901                  */
8902                 if (WARN_ON_ONCE(hw_context_taken &&
8903                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8904                         pmu->task_ctx_nr = perf_invalid_context;
8905
8906                 hw_context_taken = 1;
8907         }
8908
8909         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8910         if (pmu->pmu_cpu_context)
8911                 goto got_cpu_context;
8912
8913         ret = -ENOMEM;
8914         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8915         if (!pmu->pmu_cpu_context)
8916                 goto free_dev;
8917
8918         for_each_possible_cpu(cpu) {
8919                 struct perf_cpu_context *cpuctx;
8920
8921                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8922                 __perf_event_init_context(&cpuctx->ctx);
8923                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8924                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8925                 cpuctx->ctx.pmu = pmu;
8926
8927                 __perf_mux_hrtimer_init(cpuctx, cpu);
8928         }
8929
8930 got_cpu_context:
8931         if (!pmu->start_txn) {
8932                 if (pmu->pmu_enable) {
8933                         /*
8934                          * If we have pmu_enable/pmu_disable calls, install
8935                          * transaction stubs that use that to try and batch
8936                          * hardware accesses.
8937                          */
8938                         pmu->start_txn  = perf_pmu_start_txn;
8939                         pmu->commit_txn = perf_pmu_commit_txn;
8940                         pmu->cancel_txn = perf_pmu_cancel_txn;
8941                 } else {
8942                         pmu->start_txn  = perf_pmu_nop_txn;
8943                         pmu->commit_txn = perf_pmu_nop_int;
8944                         pmu->cancel_txn = perf_pmu_nop_void;
8945                 }
8946         }
8947
8948         if (!pmu->pmu_enable) {
8949                 pmu->pmu_enable  = perf_pmu_nop_void;
8950                 pmu->pmu_disable = perf_pmu_nop_void;
8951         }
8952
8953         if (!pmu->event_idx)
8954                 pmu->event_idx = perf_event_idx_default;
8955
8956         list_add_rcu(&pmu->entry, &pmus);
8957         atomic_set(&pmu->exclusive_cnt, 0);
8958         ret = 0;
8959 unlock:
8960         mutex_unlock(&pmus_lock);
8961
8962         return ret;
8963
8964 free_dev:
8965         device_del(pmu->dev);
8966         put_device(pmu->dev);
8967
8968 free_idr:
8969         if (pmu->type >= PERF_TYPE_MAX)
8970                 idr_remove(&pmu_idr, pmu->type);
8971
8972 free_pdc:
8973         free_percpu(pmu->pmu_disable_count);
8974         goto unlock;
8975 }
8976 EXPORT_SYMBOL_GPL(perf_pmu_register);
8977
8978 void perf_pmu_unregister(struct pmu *pmu)
8979 {
8980         int remove_device;
8981
8982         mutex_lock(&pmus_lock);
8983         remove_device = pmu_bus_running;
8984         list_del_rcu(&pmu->entry);
8985         mutex_unlock(&pmus_lock);
8986
8987         /*
8988          * We dereference the pmu list under both SRCU and regular RCU, so
8989          * synchronize against both of those.
8990          */
8991         synchronize_srcu(&pmus_srcu);
8992         synchronize_rcu();
8993
8994         free_percpu(pmu->pmu_disable_count);
8995         if (pmu->type >= PERF_TYPE_MAX)
8996                 idr_remove(&pmu_idr, pmu->type);
8997         if (remove_device) {
8998                 if (pmu->nr_addr_filters)
8999                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9000                 device_del(pmu->dev);
9001                 put_device(pmu->dev);
9002         }
9003         free_pmu_context(pmu);
9004 }
9005 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9006
9007 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9008 {
9009         struct perf_event_context *ctx = NULL;
9010         int ret;
9011
9012         if (!try_module_get(pmu->module))
9013                 return -ENODEV;
9014
9015         if (event->group_leader != event) {
9016                 /*
9017                  * This ctx->mutex can nest when we're called through
9018                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9019                  */
9020                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9021                                                  SINGLE_DEPTH_NESTING);
9022                 BUG_ON(!ctx);
9023         }
9024
9025         event->pmu = pmu;
9026         ret = pmu->event_init(event);
9027
9028         if (ctx)
9029                 perf_event_ctx_unlock(event->group_leader, ctx);
9030
9031         if (ret)
9032                 module_put(pmu->module);
9033
9034         return ret;
9035 }
9036
9037 static struct pmu *perf_init_event(struct perf_event *event)
9038 {
9039         struct pmu *pmu = NULL;
9040         int idx;
9041         int ret;
9042
9043         idx = srcu_read_lock(&pmus_srcu);
9044
9045         /* Try parent's PMU first: */
9046         if (event->parent && event->parent->pmu) {
9047                 pmu = event->parent->pmu;
9048                 ret = perf_try_init_event(pmu, event);
9049                 if (!ret)
9050                         goto unlock;
9051         }
9052
9053         rcu_read_lock();
9054         pmu = idr_find(&pmu_idr, event->attr.type);
9055         rcu_read_unlock();
9056         if (pmu) {
9057                 ret = perf_try_init_event(pmu, event);
9058                 if (ret)
9059                         pmu = ERR_PTR(ret);
9060                 goto unlock;
9061         }
9062
9063         list_for_each_entry_rcu(pmu, &pmus, entry) {
9064                 ret = perf_try_init_event(pmu, event);
9065                 if (!ret)
9066                         goto unlock;
9067
9068                 if (ret != -ENOENT) {
9069                         pmu = ERR_PTR(ret);
9070                         goto unlock;
9071                 }
9072         }
9073         pmu = ERR_PTR(-ENOENT);
9074 unlock:
9075         srcu_read_unlock(&pmus_srcu, idx);
9076
9077         return pmu;
9078 }
9079
9080 static void attach_sb_event(struct perf_event *event)
9081 {
9082         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9083
9084         raw_spin_lock(&pel->lock);
9085         list_add_rcu(&event->sb_list, &pel->list);
9086         raw_spin_unlock(&pel->lock);
9087 }
9088
9089 /*
9090  * We keep a list of all !task (and therefore per-cpu) events
9091  * that need to receive side-band records.
9092  *
9093  * This avoids having to scan all the various PMU per-cpu contexts
9094  * looking for them.
9095  */
9096 static void account_pmu_sb_event(struct perf_event *event)
9097 {
9098         if (is_sb_event(event))
9099                 attach_sb_event(event);
9100 }
9101
9102 static void account_event_cpu(struct perf_event *event, int cpu)
9103 {
9104         if (event->parent)
9105                 return;
9106
9107         if (is_cgroup_event(event))
9108                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9109 }
9110
9111 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9112 static void account_freq_event_nohz(void)
9113 {
9114 #ifdef CONFIG_NO_HZ_FULL
9115         /* Lock so we don't race with concurrent unaccount */
9116         spin_lock(&nr_freq_lock);
9117         if (atomic_inc_return(&nr_freq_events) == 1)
9118                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9119         spin_unlock(&nr_freq_lock);
9120 #endif
9121 }
9122
9123 static void account_freq_event(void)
9124 {
9125         if (tick_nohz_full_enabled())
9126                 account_freq_event_nohz();
9127         else
9128                 atomic_inc(&nr_freq_events);
9129 }
9130
9131
9132 static void account_event(struct perf_event *event)
9133 {
9134         bool inc = false;
9135
9136         if (event->parent)
9137                 return;
9138
9139         if (event->attach_state & PERF_ATTACH_TASK)
9140                 inc = true;
9141         if (event->attr.mmap || event->attr.mmap_data)
9142                 atomic_inc(&nr_mmap_events);
9143         if (event->attr.comm)
9144                 atomic_inc(&nr_comm_events);
9145         if (event->attr.task)
9146                 atomic_inc(&nr_task_events);
9147         if (event->attr.freq)
9148                 account_freq_event();
9149         if (event->attr.context_switch) {
9150                 atomic_inc(&nr_switch_events);
9151                 inc = true;
9152         }
9153         if (has_branch_stack(event))
9154                 inc = true;
9155         if (is_cgroup_event(event))
9156                 inc = true;
9157
9158         if (inc) {
9159                 if (atomic_inc_not_zero(&perf_sched_count))
9160                         goto enabled;
9161
9162                 mutex_lock(&perf_sched_mutex);
9163                 if (!atomic_read(&perf_sched_count)) {
9164                         static_branch_enable(&perf_sched_events);
9165                         /*
9166                          * Guarantee that all CPUs observe they key change and
9167                          * call the perf scheduling hooks before proceeding to
9168                          * install events that need them.
9169                          */
9170                         synchronize_sched();
9171                 }
9172                 /*
9173                  * Now that we have waited for the sync_sched(), allow further
9174                  * increments to by-pass the mutex.
9175                  */
9176                 atomic_inc(&perf_sched_count);
9177                 mutex_unlock(&perf_sched_mutex);
9178         }
9179 enabled:
9180
9181         account_event_cpu(event, event->cpu);
9182
9183         account_pmu_sb_event(event);
9184 }
9185
9186 /*
9187  * Allocate and initialize a event structure
9188  */
9189 static struct perf_event *
9190 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9191                  struct task_struct *task,
9192                  struct perf_event *group_leader,
9193                  struct perf_event *parent_event,
9194                  perf_overflow_handler_t overflow_handler,
9195                  void *context, int cgroup_fd)
9196 {
9197         struct pmu *pmu;
9198         struct perf_event *event;
9199         struct hw_perf_event *hwc;
9200         long err = -EINVAL;
9201
9202         if ((unsigned)cpu >= nr_cpu_ids) {
9203                 if (!task || cpu != -1)
9204                         return ERR_PTR(-EINVAL);
9205         }
9206
9207         event = kzalloc(sizeof(*event), GFP_KERNEL);
9208         if (!event)
9209                 return ERR_PTR(-ENOMEM);
9210
9211         /*
9212          * Single events are their own group leaders, with an
9213          * empty sibling list:
9214          */
9215         if (!group_leader)
9216                 group_leader = event;
9217
9218         mutex_init(&event->child_mutex);
9219         INIT_LIST_HEAD(&event->child_list);
9220
9221         INIT_LIST_HEAD(&event->group_entry);
9222         INIT_LIST_HEAD(&event->event_entry);
9223         INIT_LIST_HEAD(&event->sibling_list);
9224         INIT_LIST_HEAD(&event->rb_entry);
9225         INIT_LIST_HEAD(&event->active_entry);
9226         INIT_LIST_HEAD(&event->addr_filters.list);
9227         INIT_HLIST_NODE(&event->hlist_entry);
9228
9229
9230         init_waitqueue_head(&event->waitq);
9231         init_irq_work(&event->pending, perf_pending_event);
9232
9233         mutex_init(&event->mmap_mutex);
9234         raw_spin_lock_init(&event->addr_filters.lock);
9235
9236         atomic_long_set(&event->refcount, 1);
9237         event->cpu              = cpu;
9238         event->attr             = *attr;
9239         event->group_leader     = group_leader;
9240         event->pmu              = NULL;
9241         event->oncpu            = -1;
9242
9243         event->parent           = parent_event;
9244
9245         event->ns               = get_pid_ns(task_active_pid_ns(current));
9246         event->id               = atomic64_inc_return(&perf_event_id);
9247
9248         event->state            = PERF_EVENT_STATE_INACTIVE;
9249
9250         if (task) {
9251                 event->attach_state = PERF_ATTACH_TASK;
9252                 /*
9253                  * XXX pmu::event_init needs to know what task to account to
9254                  * and we cannot use the ctx information because we need the
9255                  * pmu before we get a ctx.
9256                  */
9257                 event->hw.target = task;
9258         }
9259
9260         event->clock = &local_clock;
9261         if (parent_event)
9262                 event->clock = parent_event->clock;
9263
9264         if (!overflow_handler && parent_event) {
9265                 overflow_handler = parent_event->overflow_handler;
9266                 context = parent_event->overflow_handler_context;
9267 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9268                 if (overflow_handler == bpf_overflow_handler) {
9269                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9270
9271                         if (IS_ERR(prog)) {
9272                                 err = PTR_ERR(prog);
9273                                 goto err_ns;
9274                         }
9275                         event->prog = prog;
9276                         event->orig_overflow_handler =
9277                                 parent_event->orig_overflow_handler;
9278                 }
9279 #endif
9280         }
9281
9282         if (overflow_handler) {
9283                 event->overflow_handler = overflow_handler;
9284                 event->overflow_handler_context = context;
9285         } else if (is_write_backward(event)){
9286                 event->overflow_handler = perf_event_output_backward;
9287                 event->overflow_handler_context = NULL;
9288         } else {
9289                 event->overflow_handler = perf_event_output_forward;
9290                 event->overflow_handler_context = NULL;
9291         }
9292
9293         perf_event__state_init(event);
9294
9295         pmu = NULL;
9296
9297         hwc = &event->hw;
9298         hwc->sample_period = attr->sample_period;
9299         if (attr->freq && attr->sample_freq)
9300                 hwc->sample_period = 1;
9301         hwc->last_period = hwc->sample_period;
9302
9303         local64_set(&hwc->period_left, hwc->sample_period);
9304
9305         /*
9306          * we currently do not support PERF_FORMAT_GROUP on inherited events
9307          */
9308         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9309                 goto err_ns;
9310
9311         if (!has_branch_stack(event))
9312                 event->attr.branch_sample_type = 0;
9313
9314         if (cgroup_fd != -1) {
9315                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9316                 if (err)
9317                         goto err_ns;
9318         }
9319
9320         pmu = perf_init_event(event);
9321         if (!pmu)
9322                 goto err_ns;
9323         else if (IS_ERR(pmu)) {
9324                 err = PTR_ERR(pmu);
9325                 goto err_ns;
9326         }
9327
9328         err = exclusive_event_init(event);
9329         if (err)
9330                 goto err_pmu;
9331
9332         if (has_addr_filter(event)) {
9333                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9334                                                    sizeof(unsigned long),
9335                                                    GFP_KERNEL);
9336                 if (!event->addr_filters_offs)
9337                         goto err_per_task;
9338
9339                 /* force hw sync on the address filters */
9340                 event->addr_filters_gen = 1;
9341         }
9342
9343         if (!event->parent) {
9344                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9345                         err = get_callchain_buffers(attr->sample_max_stack);
9346                         if (err)
9347                                 goto err_addr_filters;
9348                 }
9349         }
9350
9351         /* symmetric to unaccount_event() in _free_event() */
9352         account_event(event);
9353
9354         return event;
9355
9356 err_addr_filters:
9357         kfree(event->addr_filters_offs);
9358
9359 err_per_task:
9360         exclusive_event_destroy(event);
9361
9362 err_pmu:
9363         if (event->destroy)
9364                 event->destroy(event);
9365         module_put(pmu->module);
9366 err_ns:
9367         if (is_cgroup_event(event))
9368                 perf_detach_cgroup(event);
9369         if (event->ns)
9370                 put_pid_ns(event->ns);
9371         kfree(event);
9372
9373         return ERR_PTR(err);
9374 }
9375
9376 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9377                           struct perf_event_attr *attr)
9378 {
9379         u32 size;
9380         int ret;
9381
9382         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9383                 return -EFAULT;
9384
9385         /*
9386          * zero the full structure, so that a short copy will be nice.
9387          */
9388         memset(attr, 0, sizeof(*attr));
9389
9390         ret = get_user(size, &uattr->size);
9391         if (ret)
9392                 return ret;
9393
9394         if (size > PAGE_SIZE)   /* silly large */
9395                 goto err_size;
9396
9397         if (!size)              /* abi compat */
9398                 size = PERF_ATTR_SIZE_VER0;
9399
9400         if (size < PERF_ATTR_SIZE_VER0)
9401                 goto err_size;
9402
9403         /*
9404          * If we're handed a bigger struct than we know of,
9405          * ensure all the unknown bits are 0 - i.e. new
9406          * user-space does not rely on any kernel feature
9407          * extensions we dont know about yet.
9408          */
9409         if (size > sizeof(*attr)) {
9410                 unsigned char __user *addr;
9411                 unsigned char __user *end;
9412                 unsigned char val;
9413
9414                 addr = (void __user *)uattr + sizeof(*attr);
9415                 end  = (void __user *)uattr + size;
9416
9417                 for (; addr < end; addr++) {
9418                         ret = get_user(val, addr);
9419                         if (ret)
9420                                 return ret;
9421                         if (val)
9422                                 goto err_size;
9423                 }
9424                 size = sizeof(*attr);
9425         }
9426
9427         ret = copy_from_user(attr, uattr, size);
9428         if (ret)
9429                 return -EFAULT;
9430
9431         if (attr->__reserved_1)
9432                 return -EINVAL;
9433
9434         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9435                 return -EINVAL;
9436
9437         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9438                 return -EINVAL;
9439
9440         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9441                 u64 mask = attr->branch_sample_type;
9442
9443                 /* only using defined bits */
9444                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9445                         return -EINVAL;
9446
9447                 /* at least one branch bit must be set */
9448                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9449                         return -EINVAL;
9450
9451                 /* propagate priv level, when not set for branch */
9452                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9453
9454                         /* exclude_kernel checked on syscall entry */
9455                         if (!attr->exclude_kernel)
9456                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9457
9458                         if (!attr->exclude_user)
9459                                 mask |= PERF_SAMPLE_BRANCH_USER;
9460
9461                         if (!attr->exclude_hv)
9462                                 mask |= PERF_SAMPLE_BRANCH_HV;
9463                         /*
9464                          * adjust user setting (for HW filter setup)
9465                          */
9466                         attr->branch_sample_type = mask;
9467                 }
9468                 /* privileged levels capture (kernel, hv): check permissions */
9469                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9470                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9471                         return -EACCES;
9472         }
9473
9474         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9475                 ret = perf_reg_validate(attr->sample_regs_user);
9476                 if (ret)
9477                         return ret;
9478         }
9479
9480         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9481                 if (!arch_perf_have_user_stack_dump())
9482                         return -ENOSYS;
9483
9484                 /*
9485                  * We have __u32 type for the size, but so far
9486                  * we can only use __u16 as maximum due to the
9487                  * __u16 sample size limit.
9488                  */
9489                 if (attr->sample_stack_user >= USHRT_MAX)
9490                         ret = -EINVAL;
9491                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9492                         ret = -EINVAL;
9493         }
9494
9495         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9496                 ret = perf_reg_validate(attr->sample_regs_intr);
9497 out:
9498         return ret;
9499
9500 err_size:
9501         put_user(sizeof(*attr), &uattr->size);
9502         ret = -E2BIG;
9503         goto out;
9504 }
9505
9506 static int
9507 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9508 {
9509         struct ring_buffer *rb = NULL;
9510         int ret = -EINVAL;
9511
9512         if (!output_event)
9513                 goto set;
9514
9515         /* don't allow circular references */
9516         if (event == output_event)
9517                 goto out;
9518
9519         /*
9520          * Don't allow cross-cpu buffers
9521          */
9522         if (output_event->cpu != event->cpu)
9523                 goto out;
9524
9525         /*
9526          * If its not a per-cpu rb, it must be the same task.
9527          */
9528         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9529                 goto out;
9530
9531         /*
9532          * Mixing clocks in the same buffer is trouble you don't need.
9533          */
9534         if (output_event->clock != event->clock)
9535                 goto out;
9536
9537         /*
9538          * Either writing ring buffer from beginning or from end.
9539          * Mixing is not allowed.
9540          */
9541         if (is_write_backward(output_event) != is_write_backward(event))
9542                 goto out;
9543
9544         /*
9545          * If both events generate aux data, they must be on the same PMU
9546          */
9547         if (has_aux(event) && has_aux(output_event) &&
9548             event->pmu != output_event->pmu)
9549                 goto out;
9550
9551 set:
9552         mutex_lock(&event->mmap_mutex);
9553         /* Can't redirect output if we've got an active mmap() */
9554         if (atomic_read(&event->mmap_count))
9555                 goto unlock;
9556
9557         if (output_event) {
9558                 /* get the rb we want to redirect to */
9559                 rb = ring_buffer_get(output_event);
9560                 if (!rb)
9561                         goto unlock;
9562         }
9563
9564         ring_buffer_attach(event, rb);
9565
9566         ret = 0;
9567 unlock:
9568         mutex_unlock(&event->mmap_mutex);
9569
9570 out:
9571         return ret;
9572 }
9573
9574 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9575 {
9576         if (b < a)
9577                 swap(a, b);
9578
9579         mutex_lock(a);
9580         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9581 }
9582
9583 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9584 {
9585         bool nmi_safe = false;
9586
9587         switch (clk_id) {
9588         case CLOCK_MONOTONIC:
9589                 event->clock = &ktime_get_mono_fast_ns;
9590                 nmi_safe = true;
9591                 break;
9592
9593         case CLOCK_MONOTONIC_RAW:
9594                 event->clock = &ktime_get_raw_fast_ns;
9595                 nmi_safe = true;
9596                 break;
9597
9598         case CLOCK_REALTIME:
9599                 event->clock = &ktime_get_real_ns;
9600                 break;
9601
9602         case CLOCK_BOOTTIME:
9603                 event->clock = &ktime_get_boot_ns;
9604                 break;
9605
9606         case CLOCK_TAI:
9607                 event->clock = &ktime_get_tai_ns;
9608                 break;
9609
9610         default:
9611                 return -EINVAL;
9612         }
9613
9614         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9615                 return -EINVAL;
9616
9617         return 0;
9618 }
9619
9620 /*
9621  * Variation on perf_event_ctx_lock_nested(), except we take two context
9622  * mutexes.
9623  */
9624 static struct perf_event_context *
9625 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9626                              struct perf_event_context *ctx)
9627 {
9628         struct perf_event_context *gctx;
9629
9630 again:
9631         rcu_read_lock();
9632         gctx = READ_ONCE(group_leader->ctx);
9633         if (!atomic_inc_not_zero(&gctx->refcount)) {
9634                 rcu_read_unlock();
9635                 goto again;
9636         }
9637         rcu_read_unlock();
9638
9639         mutex_lock_double(&gctx->mutex, &ctx->mutex);
9640
9641         if (group_leader->ctx != gctx) {
9642                 mutex_unlock(&ctx->mutex);
9643                 mutex_unlock(&gctx->mutex);
9644                 put_ctx(gctx);
9645                 goto again;
9646         }
9647
9648         return gctx;
9649 }
9650
9651 /**
9652  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9653  *
9654  * @attr_uptr:  event_id type attributes for monitoring/sampling
9655  * @pid:                target pid
9656  * @cpu:                target cpu
9657  * @group_fd:           group leader event fd
9658  */
9659 SYSCALL_DEFINE5(perf_event_open,
9660                 struct perf_event_attr __user *, attr_uptr,
9661                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9662 {
9663         struct perf_event *group_leader = NULL, *output_event = NULL;
9664         struct perf_event *event, *sibling;
9665         struct perf_event_attr attr;
9666         struct perf_event_context *ctx, *uninitialized_var(gctx);
9667         struct file *event_file = NULL;
9668         struct fd group = {NULL, 0};
9669         struct task_struct *task = NULL;
9670         struct pmu *pmu;
9671         int event_fd;
9672         int move_group = 0;
9673         int err;
9674         int f_flags = O_RDWR;
9675         int cgroup_fd = -1;
9676
9677         /* for future expandability... */
9678         if (flags & ~PERF_FLAG_ALL)
9679                 return -EINVAL;
9680
9681         err = perf_copy_attr(attr_uptr, &attr);
9682         if (err)
9683                 return err;
9684
9685         if (!attr.exclude_kernel) {
9686                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9687                         return -EACCES;
9688         }
9689
9690         if (attr.freq) {
9691                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9692                         return -EINVAL;
9693         } else {
9694                 if (attr.sample_period & (1ULL << 63))
9695                         return -EINVAL;
9696         }
9697
9698         if (!attr.sample_max_stack)
9699                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9700
9701         /*
9702          * In cgroup mode, the pid argument is used to pass the fd
9703          * opened to the cgroup directory in cgroupfs. The cpu argument
9704          * designates the cpu on which to monitor threads from that
9705          * cgroup.
9706          */
9707         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9708                 return -EINVAL;
9709
9710         if (flags & PERF_FLAG_FD_CLOEXEC)
9711                 f_flags |= O_CLOEXEC;
9712
9713         event_fd = get_unused_fd_flags(f_flags);
9714         if (event_fd < 0)
9715                 return event_fd;
9716
9717         if (group_fd != -1) {
9718                 err = perf_fget_light(group_fd, &group);
9719                 if (err)
9720                         goto err_fd;
9721                 group_leader = group.file->private_data;
9722                 if (flags & PERF_FLAG_FD_OUTPUT)
9723                         output_event = group_leader;
9724                 if (flags & PERF_FLAG_FD_NO_GROUP)
9725                         group_leader = NULL;
9726         }
9727
9728         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9729                 task = find_lively_task_by_vpid(pid);
9730                 if (IS_ERR(task)) {
9731                         err = PTR_ERR(task);
9732                         goto err_group_fd;
9733                 }
9734         }
9735
9736         if (task && group_leader &&
9737             group_leader->attr.inherit != attr.inherit) {
9738                 err = -EINVAL;
9739                 goto err_task;
9740         }
9741
9742         get_online_cpus();
9743
9744         if (task) {
9745                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9746                 if (err)
9747                         goto err_cpus;
9748
9749                 /*
9750                  * Reuse ptrace permission checks for now.
9751                  *
9752                  * We must hold cred_guard_mutex across this and any potential
9753                  * perf_install_in_context() call for this new event to
9754                  * serialize against exec() altering our credentials (and the
9755                  * perf_event_exit_task() that could imply).
9756                  */
9757                 err = -EACCES;
9758                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9759                         goto err_cred;
9760         }
9761
9762         if (flags & PERF_FLAG_PID_CGROUP)
9763                 cgroup_fd = pid;
9764
9765         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9766                                  NULL, NULL, cgroup_fd);
9767         if (IS_ERR(event)) {
9768                 err = PTR_ERR(event);
9769                 goto err_cred;
9770         }
9771
9772         if (is_sampling_event(event)) {
9773                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9774                         err = -EOPNOTSUPP;
9775                         goto err_alloc;
9776                 }
9777         }
9778
9779         /*
9780          * Special case software events and allow them to be part of
9781          * any hardware group.
9782          */
9783         pmu = event->pmu;
9784
9785         if (attr.use_clockid) {
9786                 err = perf_event_set_clock(event, attr.clockid);
9787                 if (err)
9788                         goto err_alloc;
9789         }
9790
9791         if (pmu->task_ctx_nr == perf_sw_context)
9792                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9793
9794         if (group_leader &&
9795             (is_software_event(event) != is_software_event(group_leader))) {
9796                 if (is_software_event(event)) {
9797                         /*
9798                          * If event and group_leader are not both a software
9799                          * event, and event is, then group leader is not.
9800                          *
9801                          * Allow the addition of software events to !software
9802                          * groups, this is safe because software events never
9803                          * fail to schedule.
9804                          */
9805                         pmu = group_leader->pmu;
9806                 } else if (is_software_event(group_leader) &&
9807                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9808                         /*
9809                          * In case the group is a pure software group, and we
9810                          * try to add a hardware event, move the whole group to
9811                          * the hardware context.
9812                          */
9813                         move_group = 1;
9814                 }
9815         }
9816
9817         /*
9818          * Get the target context (task or percpu):
9819          */
9820         ctx = find_get_context(pmu, task, event);
9821         if (IS_ERR(ctx)) {
9822                 err = PTR_ERR(ctx);
9823                 goto err_alloc;
9824         }
9825
9826         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9827                 err = -EBUSY;
9828                 goto err_context;
9829         }
9830
9831         /*
9832          * Look up the group leader (we will attach this event to it):
9833          */
9834         if (group_leader) {
9835                 err = -EINVAL;
9836
9837                 /*
9838                  * Do not allow a recursive hierarchy (this new sibling
9839                  * becoming part of another group-sibling):
9840                  */
9841                 if (group_leader->group_leader != group_leader)
9842                         goto err_context;
9843
9844                 /* All events in a group should have the same clock */
9845                 if (group_leader->clock != event->clock)
9846                         goto err_context;
9847
9848                 /*
9849                  * Do not allow to attach to a group in a different
9850                  * task or CPU context:
9851                  */
9852                 if (move_group) {
9853                         /*
9854                          * Make sure we're both on the same task, or both
9855                          * per-cpu events.
9856                          */
9857                         if (group_leader->ctx->task != ctx->task)
9858                                 goto err_context;
9859
9860                         /*
9861                          * Make sure we're both events for the same CPU;
9862                          * grouping events for different CPUs is broken; since
9863                          * you can never concurrently schedule them anyhow.
9864                          */
9865                         if (group_leader->cpu != event->cpu)
9866                                 goto err_context;
9867                 } else {
9868                         if (group_leader->ctx != ctx)
9869                                 goto err_context;
9870                 }
9871
9872                 /*
9873                  * Only a group leader can be exclusive or pinned
9874                  */
9875                 if (attr.exclusive || attr.pinned)
9876                         goto err_context;
9877         }
9878
9879         if (output_event) {
9880                 err = perf_event_set_output(event, output_event);
9881                 if (err)
9882                         goto err_context;
9883         }
9884
9885         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9886                                         f_flags);
9887         if (IS_ERR(event_file)) {
9888                 err = PTR_ERR(event_file);
9889                 event_file = NULL;
9890                 goto err_context;
9891         }
9892
9893         if (move_group) {
9894                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9895
9896                 if (gctx->task == TASK_TOMBSTONE) {
9897                         err = -ESRCH;
9898                         goto err_locked;
9899                 }
9900
9901                 /*
9902                  * Check if we raced against another sys_perf_event_open() call
9903                  * moving the software group underneath us.
9904                  */
9905                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9906                         /*
9907                          * If someone moved the group out from under us, check
9908                          * if this new event wound up on the same ctx, if so
9909                          * its the regular !move_group case, otherwise fail.
9910                          */
9911                         if (gctx != ctx) {
9912                                 err = -EINVAL;
9913                                 goto err_locked;
9914                         } else {
9915                                 perf_event_ctx_unlock(group_leader, gctx);
9916                                 move_group = 0;
9917                         }
9918                 }
9919         } else {
9920                 mutex_lock(&ctx->mutex);
9921         }
9922
9923         if (ctx->task == TASK_TOMBSTONE) {
9924                 err = -ESRCH;
9925                 goto err_locked;
9926         }
9927
9928         if (!perf_event_validate_size(event)) {
9929                 err = -E2BIG;
9930                 goto err_locked;
9931         }
9932
9933         /*
9934          * Must be under the same ctx::mutex as perf_install_in_context(),
9935          * because we need to serialize with concurrent event creation.
9936          */
9937         if (!exclusive_event_installable(event, ctx)) {
9938                 /* exclusive and group stuff are assumed mutually exclusive */
9939                 WARN_ON_ONCE(move_group);
9940
9941                 err = -EBUSY;
9942                 goto err_locked;
9943         }
9944
9945         WARN_ON_ONCE(ctx->parent_ctx);
9946
9947         /*
9948          * This is the point on no return; we cannot fail hereafter. This is
9949          * where we start modifying current state.
9950          */
9951
9952         if (move_group) {
9953                 /*
9954                  * See perf_event_ctx_lock() for comments on the details
9955                  * of swizzling perf_event::ctx.
9956                  */
9957                 perf_remove_from_context(group_leader, 0);
9958
9959                 list_for_each_entry(sibling, &group_leader->sibling_list,
9960                                     group_entry) {
9961                         perf_remove_from_context(sibling, 0);
9962                         put_ctx(gctx);
9963                 }
9964
9965                 /*
9966                  * Wait for everybody to stop referencing the events through
9967                  * the old lists, before installing it on new lists.
9968                  */
9969                 synchronize_rcu();
9970
9971                 /*
9972                  * Install the group siblings before the group leader.
9973                  *
9974                  * Because a group leader will try and install the entire group
9975                  * (through the sibling list, which is still in-tact), we can
9976                  * end up with siblings installed in the wrong context.
9977                  *
9978                  * By installing siblings first we NO-OP because they're not
9979                  * reachable through the group lists.
9980                  */
9981                 list_for_each_entry(sibling, &group_leader->sibling_list,
9982                                     group_entry) {
9983                         perf_event__state_init(sibling);
9984                         perf_install_in_context(ctx, sibling, sibling->cpu);
9985                         get_ctx(ctx);
9986                 }
9987
9988                 /*
9989                  * Removing from the context ends up with disabled
9990                  * event. What we want here is event in the initial
9991                  * startup state, ready to be add into new context.
9992                  */
9993                 perf_event__state_init(group_leader);
9994                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9995                 get_ctx(ctx);
9996
9997                 /*
9998                  * Now that all events are installed in @ctx, nothing
9999                  * references @gctx anymore, so drop the last reference we have
10000                  * on it.
10001                  */
10002                 put_ctx(gctx);
10003         }
10004
10005         /*
10006          * Precalculate sample_data sizes; do while holding ctx::mutex such
10007          * that we're serialized against further additions and before
10008          * perf_install_in_context() which is the point the event is active and
10009          * can use these values.
10010          */
10011         perf_event__header_size(event);
10012         perf_event__id_header_size(event);
10013
10014         event->owner = current;
10015
10016         perf_install_in_context(ctx, event, event->cpu);
10017         perf_unpin_context(ctx);
10018
10019         if (move_group)
10020                 perf_event_ctx_unlock(group_leader, gctx);
10021         mutex_unlock(&ctx->mutex);
10022
10023         if (task) {
10024                 mutex_unlock(&task->signal->cred_guard_mutex);
10025                 put_task_struct(task);
10026         }
10027
10028         put_online_cpus();
10029
10030         mutex_lock(&current->perf_event_mutex);
10031         list_add_tail(&event->owner_entry, &current->perf_event_list);
10032         mutex_unlock(&current->perf_event_mutex);
10033
10034         /*
10035          * Drop the reference on the group_event after placing the
10036          * new event on the sibling_list. This ensures destruction
10037          * of the group leader will find the pointer to itself in
10038          * perf_group_detach().
10039          */
10040         fdput(group);
10041         fd_install(event_fd, event_file);
10042         return event_fd;
10043
10044 err_locked:
10045         if (move_group)
10046                 perf_event_ctx_unlock(group_leader, gctx);
10047         mutex_unlock(&ctx->mutex);
10048 /* err_file: */
10049         fput(event_file);
10050 err_context:
10051         perf_unpin_context(ctx);
10052         put_ctx(ctx);
10053 err_alloc:
10054         /*
10055          * If event_file is set, the fput() above will have called ->release()
10056          * and that will take care of freeing the event.
10057          */
10058         if (!event_file)
10059                 free_event(event);
10060 err_cred:
10061         if (task)
10062                 mutex_unlock(&task->signal->cred_guard_mutex);
10063 err_cpus:
10064         put_online_cpus();
10065 err_task:
10066         if (task)
10067                 put_task_struct(task);
10068 err_group_fd:
10069         fdput(group);
10070 err_fd:
10071         put_unused_fd(event_fd);
10072         return err;
10073 }
10074
10075 /**
10076  * perf_event_create_kernel_counter
10077  *
10078  * @attr: attributes of the counter to create
10079  * @cpu: cpu in which the counter is bound
10080  * @task: task to profile (NULL for percpu)
10081  */
10082 struct perf_event *
10083 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10084                                  struct task_struct *task,
10085                                  perf_overflow_handler_t overflow_handler,
10086                                  void *context)
10087 {
10088         struct perf_event_context *ctx;
10089         struct perf_event *event;
10090         int err;
10091
10092         /*
10093          * Get the target context (task or percpu):
10094          */
10095
10096         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10097                                  overflow_handler, context, -1);
10098         if (IS_ERR(event)) {
10099                 err = PTR_ERR(event);
10100                 goto err;
10101         }
10102
10103         /* Mark owner so we could distinguish it from user events. */
10104         event->owner = TASK_TOMBSTONE;
10105
10106         ctx = find_get_context(event->pmu, task, event);
10107         if (IS_ERR(ctx)) {
10108                 err = PTR_ERR(ctx);
10109                 goto err_free;
10110         }
10111
10112         WARN_ON_ONCE(ctx->parent_ctx);
10113         mutex_lock(&ctx->mutex);
10114         if (ctx->task == TASK_TOMBSTONE) {
10115                 err = -ESRCH;
10116                 goto err_unlock;
10117         }
10118
10119         if (!exclusive_event_installable(event, ctx)) {
10120                 err = -EBUSY;
10121                 goto err_unlock;
10122         }
10123
10124         perf_install_in_context(ctx, event, cpu);
10125         perf_unpin_context(ctx);
10126         mutex_unlock(&ctx->mutex);
10127
10128         return event;
10129
10130 err_unlock:
10131         mutex_unlock(&ctx->mutex);
10132         perf_unpin_context(ctx);
10133         put_ctx(ctx);
10134 err_free:
10135         free_event(event);
10136 err:
10137         return ERR_PTR(err);
10138 }
10139 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10140
10141 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10142 {
10143         struct perf_event_context *src_ctx;
10144         struct perf_event_context *dst_ctx;
10145         struct perf_event *event, *tmp;
10146         LIST_HEAD(events);
10147
10148         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10149         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10150
10151         /*
10152          * See perf_event_ctx_lock() for comments on the details
10153          * of swizzling perf_event::ctx.
10154          */
10155         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10156         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10157                                  event_entry) {
10158                 perf_remove_from_context(event, 0);
10159                 unaccount_event_cpu(event, src_cpu);
10160                 put_ctx(src_ctx);
10161                 list_add(&event->migrate_entry, &events);
10162         }
10163
10164         /*
10165          * Wait for the events to quiesce before re-instating them.
10166          */
10167         synchronize_rcu();
10168
10169         /*
10170          * Re-instate events in 2 passes.
10171          *
10172          * Skip over group leaders and only install siblings on this first
10173          * pass, siblings will not get enabled without a leader, however a
10174          * leader will enable its siblings, even if those are still on the old
10175          * context.
10176          */
10177         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10178                 if (event->group_leader == event)
10179                         continue;
10180
10181                 list_del(&event->migrate_entry);
10182                 if (event->state >= PERF_EVENT_STATE_OFF)
10183                         event->state = PERF_EVENT_STATE_INACTIVE;
10184                 account_event_cpu(event, dst_cpu);
10185                 perf_install_in_context(dst_ctx, event, dst_cpu);
10186                 get_ctx(dst_ctx);
10187         }
10188
10189         /*
10190          * Once all the siblings are setup properly, install the group leaders
10191          * to make it go.
10192          */
10193         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10194                 list_del(&event->migrate_entry);
10195                 if (event->state >= PERF_EVENT_STATE_OFF)
10196                         event->state = PERF_EVENT_STATE_INACTIVE;
10197                 account_event_cpu(event, dst_cpu);
10198                 perf_install_in_context(dst_ctx, event, dst_cpu);
10199                 get_ctx(dst_ctx);
10200         }
10201         mutex_unlock(&dst_ctx->mutex);
10202         mutex_unlock(&src_ctx->mutex);
10203 }
10204 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10205
10206 static void sync_child_event(struct perf_event *child_event,
10207                                struct task_struct *child)
10208 {
10209         struct perf_event *parent_event = child_event->parent;
10210         u64 child_val;
10211
10212         if (child_event->attr.inherit_stat)
10213                 perf_event_read_event(child_event, child);
10214
10215         child_val = perf_event_count(child_event);
10216
10217         /*
10218          * Add back the child's count to the parent's count:
10219          */
10220         atomic64_add(child_val, &parent_event->child_count);
10221         atomic64_add(child_event->total_time_enabled,
10222                      &parent_event->child_total_time_enabled);
10223         atomic64_add(child_event->total_time_running,
10224                      &parent_event->child_total_time_running);
10225 }
10226
10227 static void
10228 perf_event_exit_event(struct perf_event *child_event,
10229                       struct perf_event_context *child_ctx,
10230                       struct task_struct *child)
10231 {
10232         struct perf_event *parent_event = child_event->parent;
10233
10234         /*
10235          * Do not destroy the 'original' grouping; because of the context
10236          * switch optimization the original events could've ended up in a
10237          * random child task.
10238          *
10239          * If we were to destroy the original group, all group related
10240          * operations would cease to function properly after this random
10241          * child dies.
10242          *
10243          * Do destroy all inherited groups, we don't care about those
10244          * and being thorough is better.
10245          */
10246         raw_spin_lock_irq(&child_ctx->lock);
10247         WARN_ON_ONCE(child_ctx->is_active);
10248
10249         if (parent_event)
10250                 perf_group_detach(child_event);
10251         list_del_event(child_event, child_ctx);
10252         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10253         raw_spin_unlock_irq(&child_ctx->lock);
10254
10255         /*
10256          * Parent events are governed by their filedesc, retain them.
10257          */
10258         if (!parent_event) {
10259                 perf_event_wakeup(child_event);
10260                 return;
10261         }
10262         /*
10263          * Child events can be cleaned up.
10264          */
10265
10266         sync_child_event(child_event, child);
10267
10268         /*
10269          * Remove this event from the parent's list
10270          */
10271         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10272         mutex_lock(&parent_event->child_mutex);
10273         list_del_init(&child_event->child_list);
10274         mutex_unlock(&parent_event->child_mutex);
10275
10276         /*
10277          * Kick perf_poll() for is_event_hup().
10278          */
10279         perf_event_wakeup(parent_event);
10280         free_event(child_event);
10281         put_event(parent_event);
10282 }
10283
10284 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10285 {
10286         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10287         struct perf_event *child_event, *next;
10288
10289         WARN_ON_ONCE(child != current);
10290
10291         child_ctx = perf_pin_task_context(child, ctxn);
10292         if (!child_ctx)
10293                 return;
10294
10295         /*
10296          * In order to reduce the amount of tricky in ctx tear-down, we hold
10297          * ctx::mutex over the entire thing. This serializes against almost
10298          * everything that wants to access the ctx.
10299          *
10300          * The exception is sys_perf_event_open() /
10301          * perf_event_create_kernel_count() which does find_get_context()
10302          * without ctx::mutex (it cannot because of the move_group double mutex
10303          * lock thing). See the comments in perf_install_in_context().
10304          */
10305         mutex_lock(&child_ctx->mutex);
10306
10307         /*
10308          * In a single ctx::lock section, de-schedule the events and detach the
10309          * context from the task such that we cannot ever get it scheduled back
10310          * in.
10311          */
10312         raw_spin_lock_irq(&child_ctx->lock);
10313         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10314
10315         /*
10316          * Now that the context is inactive, destroy the task <-> ctx relation
10317          * and mark the context dead.
10318          */
10319         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10320         put_ctx(child_ctx); /* cannot be last */
10321         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10322         put_task_struct(current); /* cannot be last */
10323
10324         clone_ctx = unclone_ctx(child_ctx);
10325         raw_spin_unlock_irq(&child_ctx->lock);
10326
10327         if (clone_ctx)
10328                 put_ctx(clone_ctx);
10329
10330         /*
10331          * Report the task dead after unscheduling the events so that we
10332          * won't get any samples after PERF_RECORD_EXIT. We can however still
10333          * get a few PERF_RECORD_READ events.
10334          */
10335         perf_event_task(child, child_ctx, 0);
10336
10337         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10338                 perf_event_exit_event(child_event, child_ctx, child);
10339
10340         mutex_unlock(&child_ctx->mutex);
10341
10342         put_ctx(child_ctx);
10343 }
10344
10345 /*
10346  * When a child task exits, feed back event values to parent events.
10347  *
10348  * Can be called with cred_guard_mutex held when called from
10349  * install_exec_creds().
10350  */
10351 void perf_event_exit_task(struct task_struct *child)
10352 {
10353         struct perf_event *event, *tmp;
10354         int ctxn;
10355
10356         mutex_lock(&child->perf_event_mutex);
10357         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10358                                  owner_entry) {
10359                 list_del_init(&event->owner_entry);
10360
10361                 /*
10362                  * Ensure the list deletion is visible before we clear
10363                  * the owner, closes a race against perf_release() where
10364                  * we need to serialize on the owner->perf_event_mutex.
10365                  */
10366                 smp_store_release(&event->owner, NULL);
10367         }
10368         mutex_unlock(&child->perf_event_mutex);
10369
10370         for_each_task_context_nr(ctxn)
10371                 perf_event_exit_task_context(child, ctxn);
10372
10373         /*
10374          * The perf_event_exit_task_context calls perf_event_task
10375          * with child's task_ctx, which generates EXIT events for
10376          * child contexts and sets child->perf_event_ctxp[] to NULL.
10377          * At this point we need to send EXIT events to cpu contexts.
10378          */
10379         perf_event_task(child, NULL, 0);
10380 }
10381
10382 static void perf_free_event(struct perf_event *event,
10383                             struct perf_event_context *ctx)
10384 {
10385         struct perf_event *parent = event->parent;
10386
10387         if (WARN_ON_ONCE(!parent))
10388                 return;
10389
10390         mutex_lock(&parent->child_mutex);
10391         list_del_init(&event->child_list);
10392         mutex_unlock(&parent->child_mutex);
10393
10394         put_event(parent);
10395
10396         raw_spin_lock_irq(&ctx->lock);
10397         perf_group_detach(event);
10398         list_del_event(event, ctx);
10399         raw_spin_unlock_irq(&ctx->lock);
10400         free_event(event);
10401 }
10402
10403 /*
10404  * Free an unexposed, unused context as created by inheritance by
10405  * perf_event_init_task below, used by fork() in case of fail.
10406  *
10407  * Not all locks are strictly required, but take them anyway to be nice and
10408  * help out with the lockdep assertions.
10409  */
10410 void perf_event_free_task(struct task_struct *task)
10411 {
10412         struct perf_event_context *ctx;
10413         struct perf_event *event, *tmp;
10414         int ctxn;
10415
10416         for_each_task_context_nr(ctxn) {
10417                 ctx = task->perf_event_ctxp[ctxn];
10418                 if (!ctx)
10419                         continue;
10420
10421                 mutex_lock(&ctx->mutex);
10422 again:
10423                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10424                                 group_entry)
10425                         perf_free_event(event, ctx);
10426
10427                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10428                                 group_entry)
10429                         perf_free_event(event, ctx);
10430
10431                 if (!list_empty(&ctx->pinned_groups) ||
10432                                 !list_empty(&ctx->flexible_groups))
10433                         goto again;
10434
10435                 mutex_unlock(&ctx->mutex);
10436
10437                 put_ctx(ctx);
10438         }
10439 }
10440
10441 void perf_event_delayed_put(struct task_struct *task)
10442 {
10443         int ctxn;
10444
10445         for_each_task_context_nr(ctxn)
10446                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10447 }
10448
10449 struct file *perf_event_get(unsigned int fd)
10450 {
10451         struct file *file;
10452
10453         file = fget_raw(fd);
10454         if (!file)
10455                 return ERR_PTR(-EBADF);
10456
10457         if (file->f_op != &perf_fops) {
10458                 fput(file);
10459                 return ERR_PTR(-EBADF);
10460         }
10461
10462         return file;
10463 }
10464
10465 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10466 {
10467         if (!event)
10468                 return ERR_PTR(-EINVAL);
10469
10470         return &event->attr;
10471 }
10472
10473 /*
10474  * inherit a event from parent task to child task:
10475  */
10476 static struct perf_event *
10477 inherit_event(struct perf_event *parent_event,
10478               struct task_struct *parent,
10479               struct perf_event_context *parent_ctx,
10480               struct task_struct *child,
10481               struct perf_event *group_leader,
10482               struct perf_event_context *child_ctx)
10483 {
10484         enum perf_event_active_state parent_state = parent_event->state;
10485         struct perf_event *child_event;
10486         unsigned long flags;
10487
10488         /*
10489          * Instead of creating recursive hierarchies of events,
10490          * we link inherited events back to the original parent,
10491          * which has a filp for sure, which we use as the reference
10492          * count:
10493          */
10494         if (parent_event->parent)
10495                 parent_event = parent_event->parent;
10496
10497         child_event = perf_event_alloc(&parent_event->attr,
10498                                            parent_event->cpu,
10499                                            child,
10500                                            group_leader, parent_event,
10501                                            NULL, NULL, -1);
10502         if (IS_ERR(child_event))
10503                 return child_event;
10504
10505         /*
10506          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10507          * must be under the same lock in order to serialize against
10508          * perf_event_release_kernel(), such that either we must observe
10509          * is_orphaned_event() or they will observe us on the child_list.
10510          */
10511         mutex_lock(&parent_event->child_mutex);
10512         if (is_orphaned_event(parent_event) ||
10513             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10514                 mutex_unlock(&parent_event->child_mutex);
10515                 free_event(child_event);
10516                 return NULL;
10517         }
10518
10519         get_ctx(child_ctx);
10520
10521         /*
10522          * Make the child state follow the state of the parent event,
10523          * not its attr.disabled bit.  We hold the parent's mutex,
10524          * so we won't race with perf_event_{en, dis}able_family.
10525          */
10526         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10527                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10528         else
10529                 child_event->state = PERF_EVENT_STATE_OFF;
10530
10531         if (parent_event->attr.freq) {
10532                 u64 sample_period = parent_event->hw.sample_period;
10533                 struct hw_perf_event *hwc = &child_event->hw;
10534
10535                 hwc->sample_period = sample_period;
10536                 hwc->last_period   = sample_period;
10537
10538                 local64_set(&hwc->period_left, sample_period);
10539         }
10540
10541         child_event->ctx = child_ctx;
10542         child_event->overflow_handler = parent_event->overflow_handler;
10543         child_event->overflow_handler_context
10544                 = parent_event->overflow_handler_context;
10545
10546         /*
10547          * Precalculate sample_data sizes
10548          */
10549         perf_event__header_size(child_event);
10550         perf_event__id_header_size(child_event);
10551
10552         /*
10553          * Link it up in the child's context:
10554          */
10555         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10556         add_event_to_ctx(child_event, child_ctx);
10557         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10558
10559         /*
10560          * Link this into the parent event's child list
10561          */
10562         list_add_tail(&child_event->child_list, &parent_event->child_list);
10563         mutex_unlock(&parent_event->child_mutex);
10564
10565         return child_event;
10566 }
10567
10568 static int inherit_group(struct perf_event *parent_event,
10569               struct task_struct *parent,
10570               struct perf_event_context *parent_ctx,
10571               struct task_struct *child,
10572               struct perf_event_context *child_ctx)
10573 {
10574         struct perf_event *leader;
10575         struct perf_event *sub;
10576         struct perf_event *child_ctr;
10577
10578         leader = inherit_event(parent_event, parent, parent_ctx,
10579                                  child, NULL, child_ctx);
10580         if (IS_ERR(leader))
10581                 return PTR_ERR(leader);
10582         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10583                 child_ctr = inherit_event(sub, parent, parent_ctx,
10584                                             child, leader, child_ctx);
10585                 if (IS_ERR(child_ctr))
10586                         return PTR_ERR(child_ctr);
10587         }
10588         return 0;
10589 }
10590
10591 static int
10592 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10593                    struct perf_event_context *parent_ctx,
10594                    struct task_struct *child, int ctxn,
10595                    int *inherited_all)
10596 {
10597         int ret;
10598         struct perf_event_context *child_ctx;
10599
10600         if (!event->attr.inherit) {
10601                 *inherited_all = 0;
10602                 return 0;
10603         }
10604
10605         child_ctx = child->perf_event_ctxp[ctxn];
10606         if (!child_ctx) {
10607                 /*
10608                  * This is executed from the parent task context, so
10609                  * inherit events that have been marked for cloning.
10610                  * First allocate and initialize a context for the
10611                  * child.
10612                  */
10613
10614                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10615                 if (!child_ctx)
10616                         return -ENOMEM;
10617
10618                 child->perf_event_ctxp[ctxn] = child_ctx;
10619         }
10620
10621         ret = inherit_group(event, parent, parent_ctx,
10622                             child, child_ctx);
10623
10624         if (ret)
10625                 *inherited_all = 0;
10626
10627         return ret;
10628 }
10629
10630 /*
10631  * Initialize the perf_event context in task_struct
10632  */
10633 static int perf_event_init_context(struct task_struct *child, int ctxn)
10634 {
10635         struct perf_event_context *child_ctx, *parent_ctx;
10636         struct perf_event_context *cloned_ctx;
10637         struct perf_event *event;
10638         struct task_struct *parent = current;
10639         int inherited_all = 1;
10640         unsigned long flags;
10641         int ret = 0;
10642
10643         if (likely(!parent->perf_event_ctxp[ctxn]))
10644                 return 0;
10645
10646         /*
10647          * If the parent's context is a clone, pin it so it won't get
10648          * swapped under us.
10649          */
10650         parent_ctx = perf_pin_task_context(parent, ctxn);
10651         if (!parent_ctx)
10652                 return 0;
10653
10654         /*
10655          * No need to check if parent_ctx != NULL here; since we saw
10656          * it non-NULL earlier, the only reason for it to become NULL
10657          * is if we exit, and since we're currently in the middle of
10658          * a fork we can't be exiting at the same time.
10659          */
10660
10661         /*
10662          * Lock the parent list. No need to lock the child - not PID
10663          * hashed yet and not running, so nobody can access it.
10664          */
10665         mutex_lock(&parent_ctx->mutex);
10666
10667         /*
10668          * We dont have to disable NMIs - we are only looking at
10669          * the list, not manipulating it:
10670          */
10671         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10672                 ret = inherit_task_group(event, parent, parent_ctx,
10673                                          child, ctxn, &inherited_all);
10674                 if (ret)
10675                         break;
10676         }
10677
10678         /*
10679          * We can't hold ctx->lock when iterating the ->flexible_group list due
10680          * to allocations, but we need to prevent rotation because
10681          * rotate_ctx() will change the list from interrupt context.
10682          */
10683         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10684         parent_ctx->rotate_disable = 1;
10685         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10686
10687         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10688                 ret = inherit_task_group(event, parent, parent_ctx,
10689                                          child, ctxn, &inherited_all);
10690                 if (ret)
10691                         break;
10692         }
10693
10694         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10695         parent_ctx->rotate_disable = 0;
10696
10697         child_ctx = child->perf_event_ctxp[ctxn];
10698
10699         if (child_ctx && inherited_all) {
10700                 /*
10701                  * Mark the child context as a clone of the parent
10702                  * context, or of whatever the parent is a clone of.
10703                  *
10704                  * Note that if the parent is a clone, the holding of
10705                  * parent_ctx->lock avoids it from being uncloned.
10706                  */
10707                 cloned_ctx = parent_ctx->parent_ctx;
10708                 if (cloned_ctx) {
10709                         child_ctx->parent_ctx = cloned_ctx;
10710                         child_ctx->parent_gen = parent_ctx->parent_gen;
10711                 } else {
10712                         child_ctx->parent_ctx = parent_ctx;
10713                         child_ctx->parent_gen = parent_ctx->generation;
10714                 }
10715                 get_ctx(child_ctx->parent_ctx);
10716         }
10717
10718         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10719         mutex_unlock(&parent_ctx->mutex);
10720
10721         perf_unpin_context(parent_ctx);
10722         put_ctx(parent_ctx);
10723
10724         return ret;
10725 }
10726
10727 /*
10728  * Initialize the perf_event context in task_struct
10729  */
10730 int perf_event_init_task(struct task_struct *child)
10731 {
10732         int ctxn, ret;
10733
10734         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10735         mutex_init(&child->perf_event_mutex);
10736         INIT_LIST_HEAD(&child->perf_event_list);
10737
10738         for_each_task_context_nr(ctxn) {
10739                 ret = perf_event_init_context(child, ctxn);
10740                 if (ret) {
10741                         perf_event_free_task(child);
10742                         return ret;
10743                 }
10744         }
10745
10746         return 0;
10747 }
10748
10749 static void __init perf_event_init_all_cpus(void)
10750 {
10751         struct swevent_htable *swhash;
10752         int cpu;
10753
10754         for_each_possible_cpu(cpu) {
10755                 swhash = &per_cpu(swevent_htable, cpu);
10756                 mutex_init(&swhash->hlist_mutex);
10757                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10758
10759                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10760                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10761
10762 #ifdef CONFIG_CGROUP_PERF
10763                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10764 #endif
10765                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10766         }
10767 }
10768
10769 int perf_event_init_cpu(unsigned int cpu)
10770 {
10771         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10772
10773         mutex_lock(&swhash->hlist_mutex);
10774         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10775                 struct swevent_hlist *hlist;
10776
10777                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10778                 WARN_ON(!hlist);
10779                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10780         }
10781         mutex_unlock(&swhash->hlist_mutex);
10782         return 0;
10783 }
10784
10785 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10786 static void __perf_event_exit_context(void *__info)
10787 {
10788         struct perf_event_context *ctx = __info;
10789         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10790         struct perf_event *event;
10791
10792         raw_spin_lock(&ctx->lock);
10793         list_for_each_entry(event, &ctx->event_list, event_entry)
10794                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10795         raw_spin_unlock(&ctx->lock);
10796 }
10797
10798 static void perf_event_exit_cpu_context(int cpu)
10799 {
10800         struct perf_event_context *ctx;
10801         struct pmu *pmu;
10802         int idx;
10803
10804         idx = srcu_read_lock(&pmus_srcu);
10805         list_for_each_entry_rcu(pmu, &pmus, entry) {
10806                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10807
10808                 mutex_lock(&ctx->mutex);
10809                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10810                 mutex_unlock(&ctx->mutex);
10811         }
10812         srcu_read_unlock(&pmus_srcu, idx);
10813 }
10814 #else
10815
10816 static void perf_event_exit_cpu_context(int cpu) { }
10817
10818 #endif
10819
10820 int perf_event_exit_cpu(unsigned int cpu)
10821 {
10822         perf_event_exit_cpu_context(cpu);
10823         return 0;
10824 }
10825
10826 static int
10827 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10828 {
10829         int cpu;
10830
10831         for_each_online_cpu(cpu)
10832                 perf_event_exit_cpu(cpu);
10833
10834         return NOTIFY_OK;
10835 }
10836
10837 /*
10838  * Run the perf reboot notifier at the very last possible moment so that
10839  * the generic watchdog code runs as long as possible.
10840  */
10841 static struct notifier_block perf_reboot_notifier = {
10842         .notifier_call = perf_reboot,
10843         .priority = INT_MIN,
10844 };
10845
10846 void __init perf_event_init(void)
10847 {
10848         int ret;
10849
10850         idr_init(&pmu_idr);
10851
10852         perf_event_init_all_cpus();
10853         init_srcu_struct(&pmus_srcu);
10854         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10855         perf_pmu_register(&perf_cpu_clock, NULL, -1);
10856         perf_pmu_register(&perf_task_clock, NULL, -1);
10857         perf_tp_register();
10858         perf_event_init_cpu(smp_processor_id());
10859         register_reboot_notifier(&perf_reboot_notifier);
10860
10861         ret = init_hw_breakpoint();
10862         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10863
10864         /*
10865          * Build time assertion that we keep the data_head at the intended
10866          * location.  IOW, validation we got the __reserved[] size right.
10867          */
10868         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10869                      != 1024);
10870 }
10871
10872 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10873                               char *page)
10874 {
10875         struct perf_pmu_events_attr *pmu_attr =
10876                 container_of(attr, struct perf_pmu_events_attr, attr);
10877
10878         if (pmu_attr->event_str)
10879                 return sprintf(page, "%s\n", pmu_attr->event_str);
10880
10881         return 0;
10882 }
10883 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10884
10885 static int __init perf_event_sysfs_init(void)
10886 {
10887         struct pmu *pmu;
10888         int ret;
10889
10890         mutex_lock(&pmus_lock);
10891
10892         ret = bus_register(&pmu_bus);
10893         if (ret)
10894                 goto unlock;
10895
10896         list_for_each_entry(pmu, &pmus, entry) {
10897                 if (!pmu->name || pmu->type < 0)
10898                         continue;
10899
10900                 ret = pmu_dev_alloc(pmu);
10901                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10902         }
10903         pmu_bus_running = 1;
10904         ret = 0;
10905
10906 unlock:
10907         mutex_unlock(&pmus_lock);
10908
10909         return ret;
10910 }
10911 device_initcall(perf_event_sysfs_init);
10912
10913 #ifdef CONFIG_CGROUP_PERF
10914 static struct cgroup_subsys_state *
10915 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10916 {
10917         struct perf_cgroup *jc;
10918
10919         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10920         if (!jc)
10921                 return ERR_PTR(-ENOMEM);
10922
10923         jc->info = alloc_percpu(struct perf_cgroup_info);
10924         if (!jc->info) {
10925                 kfree(jc);
10926                 return ERR_PTR(-ENOMEM);
10927         }
10928
10929         return &jc->css;
10930 }
10931
10932 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10933 {
10934         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10935
10936         free_percpu(jc->info);
10937         kfree(jc);
10938 }
10939
10940 static int __perf_cgroup_move(void *info)
10941 {
10942         struct task_struct *task = info;
10943         rcu_read_lock();
10944         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10945         rcu_read_unlock();
10946         return 0;
10947 }
10948
10949 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10950 {
10951         struct task_struct *task;
10952         struct cgroup_subsys_state *css;
10953
10954         cgroup_taskset_for_each(task, css, tset)
10955                 task_function_call(task, __perf_cgroup_move, task);
10956 }
10957
10958 struct cgroup_subsys perf_event_cgrp_subsys = {
10959         .css_alloc      = perf_cgroup_css_alloc,
10960         .css_free       = perf_cgroup_css_free,
10961         .attach         = perf_cgroup_attach,
10962 };
10963 #endif /* CONFIG_CGROUP_PERF */