]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/events/core.c
perf/core: Remove unused perf_cgroup_event_cgrp_time() function
[karo-tx-linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         WARN_ON_ONCE(!irqs_disabled());
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         WARN_ON_ONCE(!irqs_disabled());
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392
393 /*
394  * perf event paranoia level:
395  *  -1 - not paranoid at all
396  *   0 - disallow raw tracepoint access for unpriv
397  *   1 - disallow cpu events for unpriv
398  *   2 - disallow kernel profiling for unpriv
399  */
400 int sysctl_perf_event_paranoid __read_mostly = 2;
401
402 /* Minimum for 512 kiB + 1 user control page */
403 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
404
405 /*
406  * max perf event sample rate
407  */
408 #define DEFAULT_MAX_SAMPLE_RATE         100000
409 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
410 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
411
412 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
413
414 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
415 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
416
417 static int perf_sample_allowed_ns __read_mostly =
418         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
419
420 static void update_perf_cpu_limits(void)
421 {
422         u64 tmp = perf_sample_period_ns;
423
424         tmp *= sysctl_perf_cpu_time_max_percent;
425         tmp = div_u64(tmp, 100);
426         if (!tmp)
427                 tmp = 1;
428
429         WRITE_ONCE(perf_sample_allowed_ns, tmp);
430 }
431
432 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
433
434 int perf_proc_update_handler(struct ctl_table *table, int write,
435                 void __user *buffer, size_t *lenp,
436                 loff_t *ppos)
437 {
438         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
439
440         if (ret || !write)
441                 return ret;
442
443         /*
444          * If throttling is disabled don't allow the write:
445          */
446         if (sysctl_perf_cpu_time_max_percent == 100 ||
447             sysctl_perf_cpu_time_max_percent == 0)
448                 return -EINVAL;
449
450         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
451         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
452         update_perf_cpu_limits();
453
454         return 0;
455 }
456
457 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
458
459 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
460                                 void __user *buffer, size_t *lenp,
461                                 loff_t *ppos)
462 {
463         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464
465         if (ret || !write)
466                 return ret;
467
468         if (sysctl_perf_cpu_time_max_percent == 100 ||
469             sysctl_perf_cpu_time_max_percent == 0) {
470                 printk(KERN_WARNING
471                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
472                 WRITE_ONCE(perf_sample_allowed_ns, 0);
473         } else {
474                 update_perf_cpu_limits();
475         }
476
477         return 0;
478 }
479
480 /*
481  * perf samples are done in some very critical code paths (NMIs).
482  * If they take too much CPU time, the system can lock up and not
483  * get any real work done.  This will drop the sample rate when
484  * we detect that events are taking too long.
485  */
486 #define NR_ACCUMULATED_SAMPLES 128
487 static DEFINE_PER_CPU(u64, running_sample_length);
488
489 static u64 __report_avg;
490 static u64 __report_allowed;
491
492 static void perf_duration_warn(struct irq_work *w)
493 {
494         printk_ratelimited(KERN_INFO
495                 "perf: interrupt took too long (%lld > %lld), lowering "
496                 "kernel.perf_event_max_sample_rate to %d\n",
497                 __report_avg, __report_allowed,
498                 sysctl_perf_event_sample_rate);
499 }
500
501 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
502
503 void perf_sample_event_took(u64 sample_len_ns)
504 {
505         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
506         u64 running_len;
507         u64 avg_len;
508         u32 max;
509
510         if (max_len == 0)
511                 return;
512
513         /* Decay the counter by 1 average sample. */
514         running_len = __this_cpu_read(running_sample_length);
515         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
516         running_len += sample_len_ns;
517         __this_cpu_write(running_sample_length, running_len);
518
519         /*
520          * Note: this will be biased artifically low until we have
521          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
522          * from having to maintain a count.
523          */
524         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
525         if (avg_len <= max_len)
526                 return;
527
528         __report_avg = avg_len;
529         __report_allowed = max_len;
530
531         /*
532          * Compute a throttle threshold 25% below the current duration.
533          */
534         avg_len += avg_len / 4;
535         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
536         if (avg_len < max)
537                 max /= (u32)avg_len;
538         else
539                 max = 1;
540
541         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
542         WRITE_ONCE(max_samples_per_tick, max);
543
544         sysctl_perf_event_sample_rate = max * HZ;
545         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
546
547         if (!irq_work_queue(&perf_duration_work)) {
548                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
549                              "kernel.perf_event_max_sample_rate to %d\n",
550                              __report_avg, __report_allowed,
551                              sysctl_perf_event_sample_rate);
552         }
553 }
554
555 static atomic64_t perf_event_id;
556
557 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
558                               enum event_type_t event_type);
559
560 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
561                              enum event_type_t event_type,
562                              struct task_struct *task);
563
564 static void update_context_time(struct perf_event_context *ctx);
565 static u64 perf_event_time(struct perf_event *event);
566
567 void __weak perf_event_print_debug(void)        { }
568
569 extern __weak const char *perf_pmu_name(void)
570 {
571         return "pmu";
572 }
573
574 static inline u64 perf_clock(void)
575 {
576         return local_clock();
577 }
578
579 static inline u64 perf_event_clock(struct perf_event *event)
580 {
581         return event->clock();
582 }
583
584 #ifdef CONFIG_CGROUP_PERF
585
586 static inline bool
587 perf_cgroup_match(struct perf_event *event)
588 {
589         struct perf_event_context *ctx = event->ctx;
590         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
591
592         /* @event doesn't care about cgroup */
593         if (!event->cgrp)
594                 return true;
595
596         /* wants specific cgroup scope but @cpuctx isn't associated with any */
597         if (!cpuctx->cgrp)
598                 return false;
599
600         /*
601          * Cgroup scoping is recursive.  An event enabled for a cgroup is
602          * also enabled for all its descendant cgroups.  If @cpuctx's
603          * cgroup is a descendant of @event's (the test covers identity
604          * case), it's a match.
605          */
606         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
607                                     event->cgrp->css.cgroup);
608 }
609
610 static inline void perf_detach_cgroup(struct perf_event *event)
611 {
612         css_put(&event->cgrp->css);
613         event->cgrp = NULL;
614 }
615
616 static inline int is_cgroup_event(struct perf_event *event)
617 {
618         return event->cgrp != NULL;
619 }
620
621 static inline u64 perf_cgroup_event_time(struct perf_event *event)
622 {
623         struct perf_cgroup_info *t;
624
625         t = per_cpu_ptr(event->cgrp->info, event->cpu);
626         return t->time;
627 }
628
629 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
630 {
631         struct perf_cgroup_info *info;
632         u64 now;
633
634         now = perf_clock();
635
636         info = this_cpu_ptr(cgrp->info);
637
638         info->time += now - info->timestamp;
639         info->timestamp = now;
640 }
641
642 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
643 {
644         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
645         if (cgrp_out)
646                 __update_cgrp_time(cgrp_out);
647 }
648
649 static inline void update_cgrp_time_from_event(struct perf_event *event)
650 {
651         struct perf_cgroup *cgrp;
652
653         /*
654          * ensure we access cgroup data only when needed and
655          * when we know the cgroup is pinned (css_get)
656          */
657         if (!is_cgroup_event(event))
658                 return;
659
660         cgrp = perf_cgroup_from_task(current, event->ctx);
661         /*
662          * Do not update time when cgroup is not active
663          */
664         if (cgrp == event->cgrp)
665                 __update_cgrp_time(event->cgrp);
666 }
667
668 static inline void
669 perf_cgroup_set_timestamp(struct task_struct *task,
670                           struct perf_event_context *ctx)
671 {
672         struct perf_cgroup *cgrp;
673         struct perf_cgroup_info *info;
674
675         /*
676          * ctx->lock held by caller
677          * ensure we do not access cgroup data
678          * unless we have the cgroup pinned (css_get)
679          */
680         if (!task || !ctx->nr_cgroups)
681                 return;
682
683         cgrp = perf_cgroup_from_task(task, ctx);
684         info = this_cpu_ptr(cgrp->info);
685         info->timestamp = ctx->timestamp;
686 }
687
688 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
689
690 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
691 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
692
693 /*
694  * reschedule events based on the cgroup constraint of task.
695  *
696  * mode SWOUT : schedule out everything
697  * mode SWIN : schedule in based on cgroup for next
698  */
699 static void perf_cgroup_switch(struct task_struct *task, int mode)
700 {
701         struct perf_cpu_context *cpuctx;
702         struct list_head *list;
703         unsigned long flags;
704
705         /*
706          * Disable interrupts and preemption to avoid this CPU's
707          * cgrp_cpuctx_entry to change under us.
708          */
709         local_irq_save(flags);
710
711         list = this_cpu_ptr(&cgrp_cpuctx_list);
712         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
713                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
714
715                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
716                 perf_pmu_disable(cpuctx->ctx.pmu);
717
718                 if (mode & PERF_CGROUP_SWOUT) {
719                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
720                         /*
721                          * must not be done before ctxswout due
722                          * to event_filter_match() in event_sched_out()
723                          */
724                         cpuctx->cgrp = NULL;
725                 }
726
727                 if (mode & PERF_CGROUP_SWIN) {
728                         WARN_ON_ONCE(cpuctx->cgrp);
729                         /*
730                          * set cgrp before ctxsw in to allow
731                          * event_filter_match() to not have to pass
732                          * task around
733                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
734                          * because cgorup events are only per-cpu
735                          */
736                         cpuctx->cgrp = perf_cgroup_from_task(task,
737                                                              &cpuctx->ctx);
738                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
739                 }
740                 perf_pmu_enable(cpuctx->ctx.pmu);
741                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
742         }
743
744         local_irq_restore(flags);
745 }
746
747 static inline void perf_cgroup_sched_out(struct task_struct *task,
748                                          struct task_struct *next)
749 {
750         struct perf_cgroup *cgrp1;
751         struct perf_cgroup *cgrp2 = NULL;
752
753         rcu_read_lock();
754         /*
755          * we come here when we know perf_cgroup_events > 0
756          * we do not need to pass the ctx here because we know
757          * we are holding the rcu lock
758          */
759         cgrp1 = perf_cgroup_from_task(task, NULL);
760         cgrp2 = perf_cgroup_from_task(next, NULL);
761
762         /*
763          * only schedule out current cgroup events if we know
764          * that we are switching to a different cgroup. Otherwise,
765          * do no touch the cgroup events.
766          */
767         if (cgrp1 != cgrp2)
768                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
769
770         rcu_read_unlock();
771 }
772
773 static inline void perf_cgroup_sched_in(struct task_struct *prev,
774                                         struct task_struct *task)
775 {
776         struct perf_cgroup *cgrp1;
777         struct perf_cgroup *cgrp2 = NULL;
778
779         rcu_read_lock();
780         /*
781          * we come here when we know perf_cgroup_events > 0
782          * we do not need to pass the ctx here because we know
783          * we are holding the rcu lock
784          */
785         cgrp1 = perf_cgroup_from_task(task, NULL);
786         cgrp2 = perf_cgroup_from_task(prev, NULL);
787
788         /*
789          * only need to schedule in cgroup events if we are changing
790          * cgroup during ctxsw. Cgroup events were not scheduled
791          * out of ctxsw out if that was not the case.
792          */
793         if (cgrp1 != cgrp2)
794                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
795
796         rcu_read_unlock();
797 }
798
799 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
800                                       struct perf_event_attr *attr,
801                                       struct perf_event *group_leader)
802 {
803         struct perf_cgroup *cgrp;
804         struct cgroup_subsys_state *css;
805         struct fd f = fdget(fd);
806         int ret = 0;
807
808         if (!f.file)
809                 return -EBADF;
810
811         css = css_tryget_online_from_dir(f.file->f_path.dentry,
812                                          &perf_event_cgrp_subsys);
813         if (IS_ERR(css)) {
814                 ret = PTR_ERR(css);
815                 goto out;
816         }
817
818         cgrp = container_of(css, struct perf_cgroup, css);
819         event->cgrp = cgrp;
820
821         /*
822          * all events in a group must monitor
823          * the same cgroup because a task belongs
824          * to only one perf cgroup at a time
825          */
826         if (group_leader && group_leader->cgrp != cgrp) {
827                 perf_detach_cgroup(event);
828                 ret = -EINVAL;
829         }
830 out:
831         fdput(f);
832         return ret;
833 }
834
835 static inline void
836 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
837 {
838         struct perf_cgroup_info *t;
839         t = per_cpu_ptr(event->cgrp->info, event->cpu);
840         event->shadow_ctx_time = now - t->timestamp;
841 }
842
843 static inline void
844 perf_cgroup_defer_enabled(struct perf_event *event)
845 {
846         /*
847          * when the current task's perf cgroup does not match
848          * the event's, we need to remember to call the
849          * perf_mark_enable() function the first time a task with
850          * a matching perf cgroup is scheduled in.
851          */
852         if (is_cgroup_event(event) && !perf_cgroup_match(event))
853                 event->cgrp_defer_enabled = 1;
854 }
855
856 static inline void
857 perf_cgroup_mark_enabled(struct perf_event *event,
858                          struct perf_event_context *ctx)
859 {
860         struct perf_event *sub;
861         u64 tstamp = perf_event_time(event);
862
863         if (!event->cgrp_defer_enabled)
864                 return;
865
866         event->cgrp_defer_enabled = 0;
867
868         event->tstamp_enabled = tstamp - event->total_time_enabled;
869         list_for_each_entry(sub, &event->sibling_list, group_entry) {
870                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
871                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
872                         sub->cgrp_defer_enabled = 0;
873                 }
874         }
875 }
876
877 /*
878  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
879  * cleared when last cgroup event is removed.
880  */
881 static inline void
882 list_update_cgroup_event(struct perf_event *event,
883                          struct perf_event_context *ctx, bool add)
884 {
885         struct perf_cpu_context *cpuctx;
886         struct list_head *cpuctx_entry;
887
888         if (!is_cgroup_event(event))
889                 return;
890
891         if (add && ctx->nr_cgroups++)
892                 return;
893         else if (!add && --ctx->nr_cgroups)
894                 return;
895         /*
896          * Because cgroup events are always per-cpu events,
897          * this will always be called from the right CPU.
898          */
899         cpuctx = __get_cpu_context(ctx);
900         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
901         /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
902         if (add) {
903                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
904                 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
905                         cpuctx->cgrp = event->cgrp;
906         } else {
907                 list_del(cpuctx_entry);
908                 cpuctx->cgrp = NULL;
909         }
910 }
911
912 #else /* !CONFIG_CGROUP_PERF */
913
914 static inline bool
915 perf_cgroup_match(struct perf_event *event)
916 {
917         return true;
918 }
919
920 static inline void perf_detach_cgroup(struct perf_event *event)
921 {}
922
923 static inline int is_cgroup_event(struct perf_event *event)
924 {
925         return 0;
926 }
927
928 static inline void update_cgrp_time_from_event(struct perf_event *event)
929 {
930 }
931
932 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
933 {
934 }
935
936 static inline void perf_cgroup_sched_out(struct task_struct *task,
937                                          struct task_struct *next)
938 {
939 }
940
941 static inline void perf_cgroup_sched_in(struct task_struct *prev,
942                                         struct task_struct *task)
943 {
944 }
945
946 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
947                                       struct perf_event_attr *attr,
948                                       struct perf_event *group_leader)
949 {
950         return -EINVAL;
951 }
952
953 static inline void
954 perf_cgroup_set_timestamp(struct task_struct *task,
955                           struct perf_event_context *ctx)
956 {
957 }
958
959 void
960 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
961 {
962 }
963
964 static inline void
965 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
966 {
967 }
968
969 static inline u64 perf_cgroup_event_time(struct perf_event *event)
970 {
971         return 0;
972 }
973
974 static inline void
975 perf_cgroup_defer_enabled(struct perf_event *event)
976 {
977 }
978
979 static inline void
980 perf_cgroup_mark_enabled(struct perf_event *event,
981                          struct perf_event_context *ctx)
982 {
983 }
984
985 static inline void
986 list_update_cgroup_event(struct perf_event *event,
987                          struct perf_event_context *ctx, bool add)
988 {
989 }
990
991 #endif
992
993 /*
994  * set default to be dependent on timer tick just
995  * like original code
996  */
997 #define PERF_CPU_HRTIMER (1000 / HZ)
998 /*
999  * function must be called with interrupts disabled
1000  */
1001 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1002 {
1003         struct perf_cpu_context *cpuctx;
1004         int rotations = 0;
1005
1006         WARN_ON(!irqs_disabled());
1007
1008         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1009         rotations = perf_rotate_context(cpuctx);
1010
1011         raw_spin_lock(&cpuctx->hrtimer_lock);
1012         if (rotations)
1013                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1014         else
1015                 cpuctx->hrtimer_active = 0;
1016         raw_spin_unlock(&cpuctx->hrtimer_lock);
1017
1018         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1019 }
1020
1021 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1022 {
1023         struct hrtimer *timer = &cpuctx->hrtimer;
1024         struct pmu *pmu = cpuctx->ctx.pmu;
1025         u64 interval;
1026
1027         /* no multiplexing needed for SW PMU */
1028         if (pmu->task_ctx_nr == perf_sw_context)
1029                 return;
1030
1031         /*
1032          * check default is sane, if not set then force to
1033          * default interval (1/tick)
1034          */
1035         interval = pmu->hrtimer_interval_ms;
1036         if (interval < 1)
1037                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1038
1039         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1040
1041         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1042         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1043         timer->function = perf_mux_hrtimer_handler;
1044 }
1045
1046 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1047 {
1048         struct hrtimer *timer = &cpuctx->hrtimer;
1049         struct pmu *pmu = cpuctx->ctx.pmu;
1050         unsigned long flags;
1051
1052         /* not for SW PMU */
1053         if (pmu->task_ctx_nr == perf_sw_context)
1054                 return 0;
1055
1056         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1057         if (!cpuctx->hrtimer_active) {
1058                 cpuctx->hrtimer_active = 1;
1059                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1060                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1061         }
1062         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1063
1064         return 0;
1065 }
1066
1067 void perf_pmu_disable(struct pmu *pmu)
1068 {
1069         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1070         if (!(*count)++)
1071                 pmu->pmu_disable(pmu);
1072 }
1073
1074 void perf_pmu_enable(struct pmu *pmu)
1075 {
1076         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1077         if (!--(*count))
1078                 pmu->pmu_enable(pmu);
1079 }
1080
1081 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1082
1083 /*
1084  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1085  * perf_event_task_tick() are fully serialized because they're strictly cpu
1086  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1087  * disabled, while perf_event_task_tick is called from IRQ context.
1088  */
1089 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1090 {
1091         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1092
1093         WARN_ON(!irqs_disabled());
1094
1095         WARN_ON(!list_empty(&ctx->active_ctx_list));
1096
1097         list_add(&ctx->active_ctx_list, head);
1098 }
1099
1100 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1101 {
1102         WARN_ON(!irqs_disabled());
1103
1104         WARN_ON(list_empty(&ctx->active_ctx_list));
1105
1106         list_del_init(&ctx->active_ctx_list);
1107 }
1108
1109 static void get_ctx(struct perf_event_context *ctx)
1110 {
1111         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1112 }
1113
1114 static void free_ctx(struct rcu_head *head)
1115 {
1116         struct perf_event_context *ctx;
1117
1118         ctx = container_of(head, struct perf_event_context, rcu_head);
1119         kfree(ctx->task_ctx_data);
1120         kfree(ctx);
1121 }
1122
1123 static void put_ctx(struct perf_event_context *ctx)
1124 {
1125         if (atomic_dec_and_test(&ctx->refcount)) {
1126                 if (ctx->parent_ctx)
1127                         put_ctx(ctx->parent_ctx);
1128                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1129                         put_task_struct(ctx->task);
1130                 call_rcu(&ctx->rcu_head, free_ctx);
1131         }
1132 }
1133
1134 /*
1135  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1136  * perf_pmu_migrate_context() we need some magic.
1137  *
1138  * Those places that change perf_event::ctx will hold both
1139  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1140  *
1141  * Lock ordering is by mutex address. There are two other sites where
1142  * perf_event_context::mutex nests and those are:
1143  *
1144  *  - perf_event_exit_task_context()    [ child , 0 ]
1145  *      perf_event_exit_event()
1146  *        put_event()                   [ parent, 1 ]
1147  *
1148  *  - perf_event_init_context()         [ parent, 0 ]
1149  *      inherit_task_group()
1150  *        inherit_group()
1151  *          inherit_event()
1152  *            perf_event_alloc()
1153  *              perf_init_event()
1154  *                perf_try_init_event() [ child , 1 ]
1155  *
1156  * While it appears there is an obvious deadlock here -- the parent and child
1157  * nesting levels are inverted between the two. This is in fact safe because
1158  * life-time rules separate them. That is an exiting task cannot fork, and a
1159  * spawning task cannot (yet) exit.
1160  *
1161  * But remember that that these are parent<->child context relations, and
1162  * migration does not affect children, therefore these two orderings should not
1163  * interact.
1164  *
1165  * The change in perf_event::ctx does not affect children (as claimed above)
1166  * because the sys_perf_event_open() case will install a new event and break
1167  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1168  * concerned with cpuctx and that doesn't have children.
1169  *
1170  * The places that change perf_event::ctx will issue:
1171  *
1172  *   perf_remove_from_context();
1173  *   synchronize_rcu();
1174  *   perf_install_in_context();
1175  *
1176  * to affect the change. The remove_from_context() + synchronize_rcu() should
1177  * quiesce the event, after which we can install it in the new location. This
1178  * means that only external vectors (perf_fops, prctl) can perturb the event
1179  * while in transit. Therefore all such accessors should also acquire
1180  * perf_event_context::mutex to serialize against this.
1181  *
1182  * However; because event->ctx can change while we're waiting to acquire
1183  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1184  * function.
1185  *
1186  * Lock order:
1187  *    cred_guard_mutex
1188  *      task_struct::perf_event_mutex
1189  *        perf_event_context::mutex
1190  *          perf_event::child_mutex;
1191  *            perf_event_context::lock
1192  *          perf_event::mmap_mutex
1193  *          mmap_sem
1194  */
1195 static struct perf_event_context *
1196 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1197 {
1198         struct perf_event_context *ctx;
1199
1200 again:
1201         rcu_read_lock();
1202         ctx = ACCESS_ONCE(event->ctx);
1203         if (!atomic_inc_not_zero(&ctx->refcount)) {
1204                 rcu_read_unlock();
1205                 goto again;
1206         }
1207         rcu_read_unlock();
1208
1209         mutex_lock_nested(&ctx->mutex, nesting);
1210         if (event->ctx != ctx) {
1211                 mutex_unlock(&ctx->mutex);
1212                 put_ctx(ctx);
1213                 goto again;
1214         }
1215
1216         return ctx;
1217 }
1218
1219 static inline struct perf_event_context *
1220 perf_event_ctx_lock(struct perf_event *event)
1221 {
1222         return perf_event_ctx_lock_nested(event, 0);
1223 }
1224
1225 static void perf_event_ctx_unlock(struct perf_event *event,
1226                                   struct perf_event_context *ctx)
1227 {
1228         mutex_unlock(&ctx->mutex);
1229         put_ctx(ctx);
1230 }
1231
1232 /*
1233  * This must be done under the ctx->lock, such as to serialize against
1234  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1235  * calling scheduler related locks and ctx->lock nests inside those.
1236  */
1237 static __must_check struct perf_event_context *
1238 unclone_ctx(struct perf_event_context *ctx)
1239 {
1240         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1241
1242         lockdep_assert_held(&ctx->lock);
1243
1244         if (parent_ctx)
1245                 ctx->parent_ctx = NULL;
1246         ctx->generation++;
1247
1248         return parent_ctx;
1249 }
1250
1251 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1252 {
1253         /*
1254          * only top level events have the pid namespace they were created in
1255          */
1256         if (event->parent)
1257                 event = event->parent;
1258
1259         return task_tgid_nr_ns(p, event->ns);
1260 }
1261
1262 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1263 {
1264         /*
1265          * only top level events have the pid namespace they were created in
1266          */
1267         if (event->parent)
1268                 event = event->parent;
1269
1270         return task_pid_nr_ns(p, event->ns);
1271 }
1272
1273 /*
1274  * If we inherit events we want to return the parent event id
1275  * to userspace.
1276  */
1277 static u64 primary_event_id(struct perf_event *event)
1278 {
1279         u64 id = event->id;
1280
1281         if (event->parent)
1282                 id = event->parent->id;
1283
1284         return id;
1285 }
1286
1287 /*
1288  * Get the perf_event_context for a task and lock it.
1289  *
1290  * This has to cope with with the fact that until it is locked,
1291  * the context could get moved to another task.
1292  */
1293 static struct perf_event_context *
1294 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1295 {
1296         struct perf_event_context *ctx;
1297
1298 retry:
1299         /*
1300          * One of the few rules of preemptible RCU is that one cannot do
1301          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1302          * part of the read side critical section was irqs-enabled -- see
1303          * rcu_read_unlock_special().
1304          *
1305          * Since ctx->lock nests under rq->lock we must ensure the entire read
1306          * side critical section has interrupts disabled.
1307          */
1308         local_irq_save(*flags);
1309         rcu_read_lock();
1310         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1311         if (ctx) {
1312                 /*
1313                  * If this context is a clone of another, it might
1314                  * get swapped for another underneath us by
1315                  * perf_event_task_sched_out, though the
1316                  * rcu_read_lock() protects us from any context
1317                  * getting freed.  Lock the context and check if it
1318                  * got swapped before we could get the lock, and retry
1319                  * if so.  If we locked the right context, then it
1320                  * can't get swapped on us any more.
1321                  */
1322                 raw_spin_lock(&ctx->lock);
1323                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1324                         raw_spin_unlock(&ctx->lock);
1325                         rcu_read_unlock();
1326                         local_irq_restore(*flags);
1327                         goto retry;
1328                 }
1329
1330                 if (ctx->task == TASK_TOMBSTONE ||
1331                     !atomic_inc_not_zero(&ctx->refcount)) {
1332                         raw_spin_unlock(&ctx->lock);
1333                         ctx = NULL;
1334                 } else {
1335                         WARN_ON_ONCE(ctx->task != task);
1336                 }
1337         }
1338         rcu_read_unlock();
1339         if (!ctx)
1340                 local_irq_restore(*flags);
1341         return ctx;
1342 }
1343
1344 /*
1345  * Get the context for a task and increment its pin_count so it
1346  * can't get swapped to another task.  This also increments its
1347  * reference count so that the context can't get freed.
1348  */
1349 static struct perf_event_context *
1350 perf_pin_task_context(struct task_struct *task, int ctxn)
1351 {
1352         struct perf_event_context *ctx;
1353         unsigned long flags;
1354
1355         ctx = perf_lock_task_context(task, ctxn, &flags);
1356         if (ctx) {
1357                 ++ctx->pin_count;
1358                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1359         }
1360         return ctx;
1361 }
1362
1363 static void perf_unpin_context(struct perf_event_context *ctx)
1364 {
1365         unsigned long flags;
1366
1367         raw_spin_lock_irqsave(&ctx->lock, flags);
1368         --ctx->pin_count;
1369         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1370 }
1371
1372 /*
1373  * Update the record of the current time in a context.
1374  */
1375 static void update_context_time(struct perf_event_context *ctx)
1376 {
1377         u64 now = perf_clock();
1378
1379         ctx->time += now - ctx->timestamp;
1380         ctx->timestamp = now;
1381 }
1382
1383 static u64 perf_event_time(struct perf_event *event)
1384 {
1385         struct perf_event_context *ctx = event->ctx;
1386
1387         if (is_cgroup_event(event))
1388                 return perf_cgroup_event_time(event);
1389
1390         return ctx ? ctx->time : 0;
1391 }
1392
1393 /*
1394  * Update the total_time_enabled and total_time_running fields for a event.
1395  */
1396 static void update_event_times(struct perf_event *event)
1397 {
1398         struct perf_event_context *ctx = event->ctx;
1399         u64 run_end;
1400
1401         lockdep_assert_held(&ctx->lock);
1402
1403         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1404             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1405                 return;
1406
1407         /*
1408          * in cgroup mode, time_enabled represents
1409          * the time the event was enabled AND active
1410          * tasks were in the monitored cgroup. This is
1411          * independent of the activity of the context as
1412          * there may be a mix of cgroup and non-cgroup events.
1413          *
1414          * That is why we treat cgroup events differently
1415          * here.
1416          */
1417         if (is_cgroup_event(event))
1418                 run_end = perf_cgroup_event_time(event);
1419         else if (ctx->is_active)
1420                 run_end = ctx->time;
1421         else
1422                 run_end = event->tstamp_stopped;
1423
1424         event->total_time_enabled = run_end - event->tstamp_enabled;
1425
1426         if (event->state == PERF_EVENT_STATE_INACTIVE)
1427                 run_end = event->tstamp_stopped;
1428         else
1429                 run_end = perf_event_time(event);
1430
1431         event->total_time_running = run_end - event->tstamp_running;
1432
1433 }
1434
1435 /*
1436  * Update total_time_enabled and total_time_running for all events in a group.
1437  */
1438 static void update_group_times(struct perf_event *leader)
1439 {
1440         struct perf_event *event;
1441
1442         update_event_times(leader);
1443         list_for_each_entry(event, &leader->sibling_list, group_entry)
1444                 update_event_times(event);
1445 }
1446
1447 static enum event_type_t get_event_type(struct perf_event *event)
1448 {
1449         struct perf_event_context *ctx = event->ctx;
1450         enum event_type_t event_type;
1451
1452         lockdep_assert_held(&ctx->lock);
1453
1454         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1455         if (!ctx->task)
1456                 event_type |= EVENT_CPU;
1457
1458         return event_type;
1459 }
1460
1461 static struct list_head *
1462 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1463 {
1464         if (event->attr.pinned)
1465                 return &ctx->pinned_groups;
1466         else
1467                 return &ctx->flexible_groups;
1468 }
1469
1470 /*
1471  * Add a event from the lists for its context.
1472  * Must be called with ctx->mutex and ctx->lock held.
1473  */
1474 static void
1475 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1476 {
1477         lockdep_assert_held(&ctx->lock);
1478
1479         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1480         event->attach_state |= PERF_ATTACH_CONTEXT;
1481
1482         /*
1483          * If we're a stand alone event or group leader, we go to the context
1484          * list, group events are kept attached to the group so that
1485          * perf_group_detach can, at all times, locate all siblings.
1486          */
1487         if (event->group_leader == event) {
1488                 struct list_head *list;
1489
1490                 event->group_caps = event->event_caps;
1491
1492                 list = ctx_group_list(event, ctx);
1493                 list_add_tail(&event->group_entry, list);
1494         }
1495
1496         list_update_cgroup_event(event, ctx, true);
1497
1498         list_add_rcu(&event->event_entry, &ctx->event_list);
1499         ctx->nr_events++;
1500         if (event->attr.inherit_stat)
1501                 ctx->nr_stat++;
1502
1503         ctx->generation++;
1504 }
1505
1506 /*
1507  * Initialize event state based on the perf_event_attr::disabled.
1508  */
1509 static inline void perf_event__state_init(struct perf_event *event)
1510 {
1511         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1512                                               PERF_EVENT_STATE_INACTIVE;
1513 }
1514
1515 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1516 {
1517         int entry = sizeof(u64); /* value */
1518         int size = 0;
1519         int nr = 1;
1520
1521         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1522                 size += sizeof(u64);
1523
1524         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1525                 size += sizeof(u64);
1526
1527         if (event->attr.read_format & PERF_FORMAT_ID)
1528                 entry += sizeof(u64);
1529
1530         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1531                 nr += nr_siblings;
1532                 size += sizeof(u64);
1533         }
1534
1535         size += entry * nr;
1536         event->read_size = size;
1537 }
1538
1539 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1540 {
1541         struct perf_sample_data *data;
1542         u16 size = 0;
1543
1544         if (sample_type & PERF_SAMPLE_IP)
1545                 size += sizeof(data->ip);
1546
1547         if (sample_type & PERF_SAMPLE_ADDR)
1548                 size += sizeof(data->addr);
1549
1550         if (sample_type & PERF_SAMPLE_PERIOD)
1551                 size += sizeof(data->period);
1552
1553         if (sample_type & PERF_SAMPLE_WEIGHT)
1554                 size += sizeof(data->weight);
1555
1556         if (sample_type & PERF_SAMPLE_READ)
1557                 size += event->read_size;
1558
1559         if (sample_type & PERF_SAMPLE_DATA_SRC)
1560                 size += sizeof(data->data_src.val);
1561
1562         if (sample_type & PERF_SAMPLE_TRANSACTION)
1563                 size += sizeof(data->txn);
1564
1565         event->header_size = size;
1566 }
1567
1568 /*
1569  * Called at perf_event creation and when events are attached/detached from a
1570  * group.
1571  */
1572 static void perf_event__header_size(struct perf_event *event)
1573 {
1574         __perf_event_read_size(event,
1575                                event->group_leader->nr_siblings);
1576         __perf_event_header_size(event, event->attr.sample_type);
1577 }
1578
1579 static void perf_event__id_header_size(struct perf_event *event)
1580 {
1581         struct perf_sample_data *data;
1582         u64 sample_type = event->attr.sample_type;
1583         u16 size = 0;
1584
1585         if (sample_type & PERF_SAMPLE_TID)
1586                 size += sizeof(data->tid_entry);
1587
1588         if (sample_type & PERF_SAMPLE_TIME)
1589                 size += sizeof(data->time);
1590
1591         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1592                 size += sizeof(data->id);
1593
1594         if (sample_type & PERF_SAMPLE_ID)
1595                 size += sizeof(data->id);
1596
1597         if (sample_type & PERF_SAMPLE_STREAM_ID)
1598                 size += sizeof(data->stream_id);
1599
1600         if (sample_type & PERF_SAMPLE_CPU)
1601                 size += sizeof(data->cpu_entry);
1602
1603         event->id_header_size = size;
1604 }
1605
1606 static bool perf_event_validate_size(struct perf_event *event)
1607 {
1608         /*
1609          * The values computed here will be over-written when we actually
1610          * attach the event.
1611          */
1612         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1613         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1614         perf_event__id_header_size(event);
1615
1616         /*
1617          * Sum the lot; should not exceed the 64k limit we have on records.
1618          * Conservative limit to allow for callchains and other variable fields.
1619          */
1620         if (event->read_size + event->header_size +
1621             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1622                 return false;
1623
1624         return true;
1625 }
1626
1627 static void perf_group_attach(struct perf_event *event)
1628 {
1629         struct perf_event *group_leader = event->group_leader, *pos;
1630
1631         lockdep_assert_held(&event->ctx->lock);
1632
1633         /*
1634          * We can have double attach due to group movement in perf_event_open.
1635          */
1636         if (event->attach_state & PERF_ATTACH_GROUP)
1637                 return;
1638
1639         event->attach_state |= PERF_ATTACH_GROUP;
1640
1641         if (group_leader == event)
1642                 return;
1643
1644         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1645
1646         group_leader->group_caps &= event->event_caps;
1647
1648         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1649         group_leader->nr_siblings++;
1650
1651         perf_event__header_size(group_leader);
1652
1653         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1654                 perf_event__header_size(pos);
1655 }
1656
1657 /*
1658  * Remove a event from the lists for its context.
1659  * Must be called with ctx->mutex and ctx->lock held.
1660  */
1661 static void
1662 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1663 {
1664         WARN_ON_ONCE(event->ctx != ctx);
1665         lockdep_assert_held(&ctx->lock);
1666
1667         /*
1668          * We can have double detach due to exit/hot-unplug + close.
1669          */
1670         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1671                 return;
1672
1673         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1674
1675         list_update_cgroup_event(event, ctx, false);
1676
1677         ctx->nr_events--;
1678         if (event->attr.inherit_stat)
1679                 ctx->nr_stat--;
1680
1681         list_del_rcu(&event->event_entry);
1682
1683         if (event->group_leader == event)
1684                 list_del_init(&event->group_entry);
1685
1686         update_group_times(event);
1687
1688         /*
1689          * If event was in error state, then keep it
1690          * that way, otherwise bogus counts will be
1691          * returned on read(). The only way to get out
1692          * of error state is by explicit re-enabling
1693          * of the event
1694          */
1695         if (event->state > PERF_EVENT_STATE_OFF)
1696                 event->state = PERF_EVENT_STATE_OFF;
1697
1698         ctx->generation++;
1699 }
1700
1701 static void perf_group_detach(struct perf_event *event)
1702 {
1703         struct perf_event *sibling, *tmp;
1704         struct list_head *list = NULL;
1705
1706         lockdep_assert_held(&event->ctx->lock);
1707
1708         /*
1709          * We can have double detach due to exit/hot-unplug + close.
1710          */
1711         if (!(event->attach_state & PERF_ATTACH_GROUP))
1712                 return;
1713
1714         event->attach_state &= ~PERF_ATTACH_GROUP;
1715
1716         /*
1717          * If this is a sibling, remove it from its group.
1718          */
1719         if (event->group_leader != event) {
1720                 list_del_init(&event->group_entry);
1721                 event->group_leader->nr_siblings--;
1722                 goto out;
1723         }
1724
1725         if (!list_empty(&event->group_entry))
1726                 list = &event->group_entry;
1727
1728         /*
1729          * If this was a group event with sibling events then
1730          * upgrade the siblings to singleton events by adding them
1731          * to whatever list we are on.
1732          */
1733         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1734                 if (list)
1735                         list_move_tail(&sibling->group_entry, list);
1736                 sibling->group_leader = sibling;
1737
1738                 /* Inherit group flags from the previous leader */
1739                 sibling->group_caps = event->group_caps;
1740
1741                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1742         }
1743
1744 out:
1745         perf_event__header_size(event->group_leader);
1746
1747         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1748                 perf_event__header_size(tmp);
1749 }
1750
1751 static bool is_orphaned_event(struct perf_event *event)
1752 {
1753         return event->state == PERF_EVENT_STATE_DEAD;
1754 }
1755
1756 static inline int __pmu_filter_match(struct perf_event *event)
1757 {
1758         struct pmu *pmu = event->pmu;
1759         return pmu->filter_match ? pmu->filter_match(event) : 1;
1760 }
1761
1762 /*
1763  * Check whether we should attempt to schedule an event group based on
1764  * PMU-specific filtering. An event group can consist of HW and SW events,
1765  * potentially with a SW leader, so we must check all the filters, to
1766  * determine whether a group is schedulable:
1767  */
1768 static inline int pmu_filter_match(struct perf_event *event)
1769 {
1770         struct perf_event *child;
1771
1772         if (!__pmu_filter_match(event))
1773                 return 0;
1774
1775         list_for_each_entry(child, &event->sibling_list, group_entry) {
1776                 if (!__pmu_filter_match(child))
1777                         return 0;
1778         }
1779
1780         return 1;
1781 }
1782
1783 static inline int
1784 event_filter_match(struct perf_event *event)
1785 {
1786         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1787                perf_cgroup_match(event) && pmu_filter_match(event);
1788 }
1789
1790 static void
1791 event_sched_out(struct perf_event *event,
1792                   struct perf_cpu_context *cpuctx,
1793                   struct perf_event_context *ctx)
1794 {
1795         u64 tstamp = perf_event_time(event);
1796         u64 delta;
1797
1798         WARN_ON_ONCE(event->ctx != ctx);
1799         lockdep_assert_held(&ctx->lock);
1800
1801         /*
1802          * An event which could not be activated because of
1803          * filter mismatch still needs to have its timings
1804          * maintained, otherwise bogus information is return
1805          * via read() for time_enabled, time_running:
1806          */
1807         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1808             !event_filter_match(event)) {
1809                 delta = tstamp - event->tstamp_stopped;
1810                 event->tstamp_running += delta;
1811                 event->tstamp_stopped = tstamp;
1812         }
1813
1814         if (event->state != PERF_EVENT_STATE_ACTIVE)
1815                 return;
1816
1817         perf_pmu_disable(event->pmu);
1818
1819         event->tstamp_stopped = tstamp;
1820         event->pmu->del(event, 0);
1821         event->oncpu = -1;
1822         event->state = PERF_EVENT_STATE_INACTIVE;
1823         if (event->pending_disable) {
1824                 event->pending_disable = 0;
1825                 event->state = PERF_EVENT_STATE_OFF;
1826         }
1827
1828         if (!is_software_event(event))
1829                 cpuctx->active_oncpu--;
1830         if (!--ctx->nr_active)
1831                 perf_event_ctx_deactivate(ctx);
1832         if (event->attr.freq && event->attr.sample_freq)
1833                 ctx->nr_freq--;
1834         if (event->attr.exclusive || !cpuctx->active_oncpu)
1835                 cpuctx->exclusive = 0;
1836
1837         perf_pmu_enable(event->pmu);
1838 }
1839
1840 static void
1841 group_sched_out(struct perf_event *group_event,
1842                 struct perf_cpu_context *cpuctx,
1843                 struct perf_event_context *ctx)
1844 {
1845         struct perf_event *event;
1846         int state = group_event->state;
1847
1848         perf_pmu_disable(ctx->pmu);
1849
1850         event_sched_out(group_event, cpuctx, ctx);
1851
1852         /*
1853          * Schedule out siblings (if any):
1854          */
1855         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1856                 event_sched_out(event, cpuctx, ctx);
1857
1858         perf_pmu_enable(ctx->pmu);
1859
1860         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1861                 cpuctx->exclusive = 0;
1862 }
1863
1864 #define DETACH_GROUP    0x01UL
1865
1866 /*
1867  * Cross CPU call to remove a performance event
1868  *
1869  * We disable the event on the hardware level first. After that we
1870  * remove it from the context list.
1871  */
1872 static void
1873 __perf_remove_from_context(struct perf_event *event,
1874                            struct perf_cpu_context *cpuctx,
1875                            struct perf_event_context *ctx,
1876                            void *info)
1877 {
1878         unsigned long flags = (unsigned long)info;
1879
1880         event_sched_out(event, cpuctx, ctx);
1881         if (flags & DETACH_GROUP)
1882                 perf_group_detach(event);
1883         list_del_event(event, ctx);
1884
1885         if (!ctx->nr_events && ctx->is_active) {
1886                 ctx->is_active = 0;
1887                 if (ctx->task) {
1888                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1889                         cpuctx->task_ctx = NULL;
1890                 }
1891         }
1892 }
1893
1894 /*
1895  * Remove the event from a task's (or a CPU's) list of events.
1896  *
1897  * If event->ctx is a cloned context, callers must make sure that
1898  * every task struct that event->ctx->task could possibly point to
1899  * remains valid.  This is OK when called from perf_release since
1900  * that only calls us on the top-level context, which can't be a clone.
1901  * When called from perf_event_exit_task, it's OK because the
1902  * context has been detached from its task.
1903  */
1904 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1905 {
1906         struct perf_event_context *ctx = event->ctx;
1907
1908         lockdep_assert_held(&ctx->mutex);
1909
1910         event_function_call(event, __perf_remove_from_context, (void *)flags);
1911
1912         /*
1913          * The above event_function_call() can NO-OP when it hits
1914          * TASK_TOMBSTONE. In that case we must already have been detached
1915          * from the context (by perf_event_exit_event()) but the grouping
1916          * might still be in-tact.
1917          */
1918         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1919         if ((flags & DETACH_GROUP) &&
1920             (event->attach_state & PERF_ATTACH_GROUP)) {
1921                 /*
1922                  * Since in that case we cannot possibly be scheduled, simply
1923                  * detach now.
1924                  */
1925                 raw_spin_lock_irq(&ctx->lock);
1926                 perf_group_detach(event);
1927                 raw_spin_unlock_irq(&ctx->lock);
1928         }
1929 }
1930
1931 /*
1932  * Cross CPU call to disable a performance event
1933  */
1934 static void __perf_event_disable(struct perf_event *event,
1935                                  struct perf_cpu_context *cpuctx,
1936                                  struct perf_event_context *ctx,
1937                                  void *info)
1938 {
1939         if (event->state < PERF_EVENT_STATE_INACTIVE)
1940                 return;
1941
1942         update_context_time(ctx);
1943         update_cgrp_time_from_event(event);
1944         update_group_times(event);
1945         if (event == event->group_leader)
1946                 group_sched_out(event, cpuctx, ctx);
1947         else
1948                 event_sched_out(event, cpuctx, ctx);
1949         event->state = PERF_EVENT_STATE_OFF;
1950 }
1951
1952 /*
1953  * Disable a event.
1954  *
1955  * If event->ctx is a cloned context, callers must make sure that
1956  * every task struct that event->ctx->task could possibly point to
1957  * remains valid.  This condition is satisifed when called through
1958  * perf_event_for_each_child or perf_event_for_each because they
1959  * hold the top-level event's child_mutex, so any descendant that
1960  * goes to exit will block in perf_event_exit_event().
1961  *
1962  * When called from perf_pending_event it's OK because event->ctx
1963  * is the current context on this CPU and preemption is disabled,
1964  * hence we can't get into perf_event_task_sched_out for this context.
1965  */
1966 static void _perf_event_disable(struct perf_event *event)
1967 {
1968         struct perf_event_context *ctx = event->ctx;
1969
1970         raw_spin_lock_irq(&ctx->lock);
1971         if (event->state <= PERF_EVENT_STATE_OFF) {
1972                 raw_spin_unlock_irq(&ctx->lock);
1973                 return;
1974         }
1975         raw_spin_unlock_irq(&ctx->lock);
1976
1977         event_function_call(event, __perf_event_disable, NULL);
1978 }
1979
1980 void perf_event_disable_local(struct perf_event *event)
1981 {
1982         event_function_local(event, __perf_event_disable, NULL);
1983 }
1984
1985 /*
1986  * Strictly speaking kernel users cannot create groups and therefore this
1987  * interface does not need the perf_event_ctx_lock() magic.
1988  */
1989 void perf_event_disable(struct perf_event *event)
1990 {
1991         struct perf_event_context *ctx;
1992
1993         ctx = perf_event_ctx_lock(event);
1994         _perf_event_disable(event);
1995         perf_event_ctx_unlock(event, ctx);
1996 }
1997 EXPORT_SYMBOL_GPL(perf_event_disable);
1998
1999 void perf_event_disable_inatomic(struct perf_event *event)
2000 {
2001         event->pending_disable = 1;
2002         irq_work_queue(&event->pending);
2003 }
2004
2005 static void perf_set_shadow_time(struct perf_event *event,
2006                                  struct perf_event_context *ctx,
2007                                  u64 tstamp)
2008 {
2009         /*
2010          * use the correct time source for the time snapshot
2011          *
2012          * We could get by without this by leveraging the
2013          * fact that to get to this function, the caller
2014          * has most likely already called update_context_time()
2015          * and update_cgrp_time_xx() and thus both timestamp
2016          * are identical (or very close). Given that tstamp is,
2017          * already adjusted for cgroup, we could say that:
2018          *    tstamp - ctx->timestamp
2019          * is equivalent to
2020          *    tstamp - cgrp->timestamp.
2021          *
2022          * Then, in perf_output_read(), the calculation would
2023          * work with no changes because:
2024          * - event is guaranteed scheduled in
2025          * - no scheduled out in between
2026          * - thus the timestamp would be the same
2027          *
2028          * But this is a bit hairy.
2029          *
2030          * So instead, we have an explicit cgroup call to remain
2031          * within the time time source all along. We believe it
2032          * is cleaner and simpler to understand.
2033          */
2034         if (is_cgroup_event(event))
2035                 perf_cgroup_set_shadow_time(event, tstamp);
2036         else
2037                 event->shadow_ctx_time = tstamp - ctx->timestamp;
2038 }
2039
2040 #define MAX_INTERRUPTS (~0ULL)
2041
2042 static void perf_log_throttle(struct perf_event *event, int enable);
2043 static void perf_log_itrace_start(struct perf_event *event);
2044
2045 static int
2046 event_sched_in(struct perf_event *event,
2047                  struct perf_cpu_context *cpuctx,
2048                  struct perf_event_context *ctx)
2049 {
2050         u64 tstamp = perf_event_time(event);
2051         int ret = 0;
2052
2053         lockdep_assert_held(&ctx->lock);
2054
2055         if (event->state <= PERF_EVENT_STATE_OFF)
2056                 return 0;
2057
2058         WRITE_ONCE(event->oncpu, smp_processor_id());
2059         /*
2060          * Order event::oncpu write to happen before the ACTIVE state
2061          * is visible.
2062          */
2063         smp_wmb();
2064         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2065
2066         /*
2067          * Unthrottle events, since we scheduled we might have missed several
2068          * ticks already, also for a heavily scheduling task there is little
2069          * guarantee it'll get a tick in a timely manner.
2070          */
2071         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2072                 perf_log_throttle(event, 1);
2073                 event->hw.interrupts = 0;
2074         }
2075
2076         /*
2077          * The new state must be visible before we turn it on in the hardware:
2078          */
2079         smp_wmb();
2080
2081         perf_pmu_disable(event->pmu);
2082
2083         perf_set_shadow_time(event, ctx, tstamp);
2084
2085         perf_log_itrace_start(event);
2086
2087         if (event->pmu->add(event, PERF_EF_START)) {
2088                 event->state = PERF_EVENT_STATE_INACTIVE;
2089                 event->oncpu = -1;
2090                 ret = -EAGAIN;
2091                 goto out;
2092         }
2093
2094         event->tstamp_running += tstamp - event->tstamp_stopped;
2095
2096         if (!is_software_event(event))
2097                 cpuctx->active_oncpu++;
2098         if (!ctx->nr_active++)
2099                 perf_event_ctx_activate(ctx);
2100         if (event->attr.freq && event->attr.sample_freq)
2101                 ctx->nr_freq++;
2102
2103         if (event->attr.exclusive)
2104                 cpuctx->exclusive = 1;
2105
2106 out:
2107         perf_pmu_enable(event->pmu);
2108
2109         return ret;
2110 }
2111
2112 static int
2113 group_sched_in(struct perf_event *group_event,
2114                struct perf_cpu_context *cpuctx,
2115                struct perf_event_context *ctx)
2116 {
2117         struct perf_event *event, *partial_group = NULL;
2118         struct pmu *pmu = ctx->pmu;
2119         u64 now = ctx->time;
2120         bool simulate = false;
2121
2122         if (group_event->state == PERF_EVENT_STATE_OFF)
2123                 return 0;
2124
2125         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2126
2127         if (event_sched_in(group_event, cpuctx, ctx)) {
2128                 pmu->cancel_txn(pmu);
2129                 perf_mux_hrtimer_restart(cpuctx);
2130                 return -EAGAIN;
2131         }
2132
2133         /*
2134          * Schedule in siblings as one group (if any):
2135          */
2136         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2137                 if (event_sched_in(event, cpuctx, ctx)) {
2138                         partial_group = event;
2139                         goto group_error;
2140                 }
2141         }
2142
2143         if (!pmu->commit_txn(pmu))
2144                 return 0;
2145
2146 group_error:
2147         /*
2148          * Groups can be scheduled in as one unit only, so undo any
2149          * partial group before returning:
2150          * The events up to the failed event are scheduled out normally,
2151          * tstamp_stopped will be updated.
2152          *
2153          * The failed events and the remaining siblings need to have
2154          * their timings updated as if they had gone thru event_sched_in()
2155          * and event_sched_out(). This is required to get consistent timings
2156          * across the group. This also takes care of the case where the group
2157          * could never be scheduled by ensuring tstamp_stopped is set to mark
2158          * the time the event was actually stopped, such that time delta
2159          * calculation in update_event_times() is correct.
2160          */
2161         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2162                 if (event == partial_group)
2163                         simulate = true;
2164
2165                 if (simulate) {
2166                         event->tstamp_running += now - event->tstamp_stopped;
2167                         event->tstamp_stopped = now;
2168                 } else {
2169                         event_sched_out(event, cpuctx, ctx);
2170                 }
2171         }
2172         event_sched_out(group_event, cpuctx, ctx);
2173
2174         pmu->cancel_txn(pmu);
2175
2176         perf_mux_hrtimer_restart(cpuctx);
2177
2178         return -EAGAIN;
2179 }
2180
2181 /*
2182  * Work out whether we can put this event group on the CPU now.
2183  */
2184 static int group_can_go_on(struct perf_event *event,
2185                            struct perf_cpu_context *cpuctx,
2186                            int can_add_hw)
2187 {
2188         /*
2189          * Groups consisting entirely of software events can always go on.
2190          */
2191         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2192                 return 1;
2193         /*
2194          * If an exclusive group is already on, no other hardware
2195          * events can go on.
2196          */
2197         if (cpuctx->exclusive)
2198                 return 0;
2199         /*
2200          * If this group is exclusive and there are already
2201          * events on the CPU, it can't go on.
2202          */
2203         if (event->attr.exclusive && cpuctx->active_oncpu)
2204                 return 0;
2205         /*
2206          * Otherwise, try to add it if all previous groups were able
2207          * to go on.
2208          */
2209         return can_add_hw;
2210 }
2211
2212 static void add_event_to_ctx(struct perf_event *event,
2213                                struct perf_event_context *ctx)
2214 {
2215         u64 tstamp = perf_event_time(event);
2216
2217         list_add_event(event, ctx);
2218         perf_group_attach(event);
2219         event->tstamp_enabled = tstamp;
2220         event->tstamp_running = tstamp;
2221         event->tstamp_stopped = tstamp;
2222 }
2223
2224 static void ctx_sched_out(struct perf_event_context *ctx,
2225                           struct perf_cpu_context *cpuctx,
2226                           enum event_type_t event_type);
2227 static void
2228 ctx_sched_in(struct perf_event_context *ctx,
2229              struct perf_cpu_context *cpuctx,
2230              enum event_type_t event_type,
2231              struct task_struct *task);
2232
2233 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2234                                struct perf_event_context *ctx,
2235                                enum event_type_t event_type)
2236 {
2237         if (!cpuctx->task_ctx)
2238                 return;
2239
2240         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2241                 return;
2242
2243         ctx_sched_out(ctx, cpuctx, event_type);
2244 }
2245
2246 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2247                                 struct perf_event_context *ctx,
2248                                 struct task_struct *task)
2249 {
2250         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2251         if (ctx)
2252                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2253         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2254         if (ctx)
2255                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2256 }
2257
2258 /*
2259  * We want to maintain the following priority of scheduling:
2260  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2261  *  - task pinned (EVENT_PINNED)
2262  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2263  *  - task flexible (EVENT_FLEXIBLE).
2264  *
2265  * In order to avoid unscheduling and scheduling back in everything every
2266  * time an event is added, only do it for the groups of equal priority and
2267  * below.
2268  *
2269  * This can be called after a batch operation on task events, in which case
2270  * event_type is a bit mask of the types of events involved. For CPU events,
2271  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2272  */
2273 static void ctx_resched(struct perf_cpu_context *cpuctx,
2274                         struct perf_event_context *task_ctx,
2275                         enum event_type_t event_type)
2276 {
2277         enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2278         bool cpu_event = !!(event_type & EVENT_CPU);
2279
2280         /*
2281          * If pinned groups are involved, flexible groups also need to be
2282          * scheduled out.
2283          */
2284         if (event_type & EVENT_PINNED)
2285                 event_type |= EVENT_FLEXIBLE;
2286
2287         perf_pmu_disable(cpuctx->ctx.pmu);
2288         if (task_ctx)
2289                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2290
2291         /*
2292          * Decide which cpu ctx groups to schedule out based on the types
2293          * of events that caused rescheduling:
2294          *  - EVENT_CPU: schedule out corresponding groups;
2295          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2296          *  - otherwise, do nothing more.
2297          */
2298         if (cpu_event)
2299                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2300         else if (ctx_event_type & EVENT_PINNED)
2301                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2302
2303         perf_event_sched_in(cpuctx, task_ctx, current);
2304         perf_pmu_enable(cpuctx->ctx.pmu);
2305 }
2306
2307 /*
2308  * Cross CPU call to install and enable a performance event
2309  *
2310  * Very similar to remote_function() + event_function() but cannot assume that
2311  * things like ctx->is_active and cpuctx->task_ctx are set.
2312  */
2313 static int  __perf_install_in_context(void *info)
2314 {
2315         struct perf_event *event = info;
2316         struct perf_event_context *ctx = event->ctx;
2317         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2318         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2319         bool reprogram = true;
2320         int ret = 0;
2321
2322         raw_spin_lock(&cpuctx->ctx.lock);
2323         if (ctx->task) {
2324                 raw_spin_lock(&ctx->lock);
2325                 task_ctx = ctx;
2326
2327                 reprogram = (ctx->task == current);
2328
2329                 /*
2330                  * If the task is running, it must be running on this CPU,
2331                  * otherwise we cannot reprogram things.
2332                  *
2333                  * If its not running, we don't care, ctx->lock will
2334                  * serialize against it becoming runnable.
2335                  */
2336                 if (task_curr(ctx->task) && !reprogram) {
2337                         ret = -ESRCH;
2338                         goto unlock;
2339                 }
2340
2341                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2342         } else if (task_ctx) {
2343                 raw_spin_lock(&task_ctx->lock);
2344         }
2345
2346         if (reprogram) {
2347                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2348                 add_event_to_ctx(event, ctx);
2349                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2350         } else {
2351                 add_event_to_ctx(event, ctx);
2352         }
2353
2354 unlock:
2355         perf_ctx_unlock(cpuctx, task_ctx);
2356
2357         return ret;
2358 }
2359
2360 /*
2361  * Attach a performance event to a context.
2362  *
2363  * Very similar to event_function_call, see comment there.
2364  */
2365 static void
2366 perf_install_in_context(struct perf_event_context *ctx,
2367                         struct perf_event *event,
2368                         int cpu)
2369 {
2370         struct task_struct *task = READ_ONCE(ctx->task);
2371
2372         lockdep_assert_held(&ctx->mutex);
2373
2374         if (event->cpu != -1)
2375                 event->cpu = cpu;
2376
2377         /*
2378          * Ensures that if we can observe event->ctx, both the event and ctx
2379          * will be 'complete'. See perf_iterate_sb_cpu().
2380          */
2381         smp_store_release(&event->ctx, ctx);
2382
2383         if (!task) {
2384                 cpu_function_call(cpu, __perf_install_in_context, event);
2385                 return;
2386         }
2387
2388         /*
2389          * Should not happen, we validate the ctx is still alive before calling.
2390          */
2391         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2392                 return;
2393
2394         /*
2395          * Installing events is tricky because we cannot rely on ctx->is_active
2396          * to be set in case this is the nr_events 0 -> 1 transition.
2397          *
2398          * Instead we use task_curr(), which tells us if the task is running.
2399          * However, since we use task_curr() outside of rq::lock, we can race
2400          * against the actual state. This means the result can be wrong.
2401          *
2402          * If we get a false positive, we retry, this is harmless.
2403          *
2404          * If we get a false negative, things are complicated. If we are after
2405          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2406          * value must be correct. If we're before, it doesn't matter since
2407          * perf_event_context_sched_in() will program the counter.
2408          *
2409          * However, this hinges on the remote context switch having observed
2410          * our task->perf_event_ctxp[] store, such that it will in fact take
2411          * ctx::lock in perf_event_context_sched_in().
2412          *
2413          * We do this by task_function_call(), if the IPI fails to hit the task
2414          * we know any future context switch of task must see the
2415          * perf_event_ctpx[] store.
2416          */
2417
2418         /*
2419          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2420          * task_cpu() load, such that if the IPI then does not find the task
2421          * running, a future context switch of that task must observe the
2422          * store.
2423          */
2424         smp_mb();
2425 again:
2426         if (!task_function_call(task, __perf_install_in_context, event))
2427                 return;
2428
2429         raw_spin_lock_irq(&ctx->lock);
2430         task = ctx->task;
2431         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2432                 /*
2433                  * Cannot happen because we already checked above (which also
2434                  * cannot happen), and we hold ctx->mutex, which serializes us
2435                  * against perf_event_exit_task_context().
2436                  */
2437                 raw_spin_unlock_irq(&ctx->lock);
2438                 return;
2439         }
2440         /*
2441          * If the task is not running, ctx->lock will avoid it becoming so,
2442          * thus we can safely install the event.
2443          */
2444         if (task_curr(task)) {
2445                 raw_spin_unlock_irq(&ctx->lock);
2446                 goto again;
2447         }
2448         add_event_to_ctx(event, ctx);
2449         raw_spin_unlock_irq(&ctx->lock);
2450 }
2451
2452 /*
2453  * Put a event into inactive state and update time fields.
2454  * Enabling the leader of a group effectively enables all
2455  * the group members that aren't explicitly disabled, so we
2456  * have to update their ->tstamp_enabled also.
2457  * Note: this works for group members as well as group leaders
2458  * since the non-leader members' sibling_lists will be empty.
2459  */
2460 static void __perf_event_mark_enabled(struct perf_event *event)
2461 {
2462         struct perf_event *sub;
2463         u64 tstamp = perf_event_time(event);
2464
2465         event->state = PERF_EVENT_STATE_INACTIVE;
2466         event->tstamp_enabled = tstamp - event->total_time_enabled;
2467         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2468                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2469                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2470         }
2471 }
2472
2473 /*
2474  * Cross CPU call to enable a performance event
2475  */
2476 static void __perf_event_enable(struct perf_event *event,
2477                                 struct perf_cpu_context *cpuctx,
2478                                 struct perf_event_context *ctx,
2479                                 void *info)
2480 {
2481         struct perf_event *leader = event->group_leader;
2482         struct perf_event_context *task_ctx;
2483
2484         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2485             event->state <= PERF_EVENT_STATE_ERROR)
2486                 return;
2487
2488         if (ctx->is_active)
2489                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2490
2491         __perf_event_mark_enabled(event);
2492
2493         if (!ctx->is_active)
2494                 return;
2495
2496         if (!event_filter_match(event)) {
2497                 if (is_cgroup_event(event))
2498                         perf_cgroup_defer_enabled(event);
2499                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2500                 return;
2501         }
2502
2503         /*
2504          * If the event is in a group and isn't the group leader,
2505          * then don't put it on unless the group is on.
2506          */
2507         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2508                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2509                 return;
2510         }
2511
2512         task_ctx = cpuctx->task_ctx;
2513         if (ctx->task)
2514                 WARN_ON_ONCE(task_ctx != ctx);
2515
2516         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2517 }
2518
2519 /*
2520  * Enable a event.
2521  *
2522  * If event->ctx is a cloned context, callers must make sure that
2523  * every task struct that event->ctx->task could possibly point to
2524  * remains valid.  This condition is satisfied when called through
2525  * perf_event_for_each_child or perf_event_for_each as described
2526  * for perf_event_disable.
2527  */
2528 static void _perf_event_enable(struct perf_event *event)
2529 {
2530         struct perf_event_context *ctx = event->ctx;
2531
2532         raw_spin_lock_irq(&ctx->lock);
2533         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2534             event->state <  PERF_EVENT_STATE_ERROR) {
2535                 raw_spin_unlock_irq(&ctx->lock);
2536                 return;
2537         }
2538
2539         /*
2540          * If the event is in error state, clear that first.
2541          *
2542          * That way, if we see the event in error state below, we know that it
2543          * has gone back into error state, as distinct from the task having
2544          * been scheduled away before the cross-call arrived.
2545          */
2546         if (event->state == PERF_EVENT_STATE_ERROR)
2547                 event->state = PERF_EVENT_STATE_OFF;
2548         raw_spin_unlock_irq(&ctx->lock);
2549
2550         event_function_call(event, __perf_event_enable, NULL);
2551 }
2552
2553 /*
2554  * See perf_event_disable();
2555  */
2556 void perf_event_enable(struct perf_event *event)
2557 {
2558         struct perf_event_context *ctx;
2559
2560         ctx = perf_event_ctx_lock(event);
2561         _perf_event_enable(event);
2562         perf_event_ctx_unlock(event, ctx);
2563 }
2564 EXPORT_SYMBOL_GPL(perf_event_enable);
2565
2566 struct stop_event_data {
2567         struct perf_event       *event;
2568         unsigned int            restart;
2569 };
2570
2571 static int __perf_event_stop(void *info)
2572 {
2573         struct stop_event_data *sd = info;
2574         struct perf_event *event = sd->event;
2575
2576         /* if it's already INACTIVE, do nothing */
2577         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2578                 return 0;
2579
2580         /* matches smp_wmb() in event_sched_in() */
2581         smp_rmb();
2582
2583         /*
2584          * There is a window with interrupts enabled before we get here,
2585          * so we need to check again lest we try to stop another CPU's event.
2586          */
2587         if (READ_ONCE(event->oncpu) != smp_processor_id())
2588                 return -EAGAIN;
2589
2590         event->pmu->stop(event, PERF_EF_UPDATE);
2591
2592         /*
2593          * May race with the actual stop (through perf_pmu_output_stop()),
2594          * but it is only used for events with AUX ring buffer, and such
2595          * events will refuse to restart because of rb::aux_mmap_count==0,
2596          * see comments in perf_aux_output_begin().
2597          *
2598          * Since this is happening on a event-local CPU, no trace is lost
2599          * while restarting.
2600          */
2601         if (sd->restart)
2602                 event->pmu->start(event, 0);
2603
2604         return 0;
2605 }
2606
2607 static int perf_event_stop(struct perf_event *event, int restart)
2608 {
2609         struct stop_event_data sd = {
2610                 .event          = event,
2611                 .restart        = restart,
2612         };
2613         int ret = 0;
2614
2615         do {
2616                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2617                         return 0;
2618
2619                 /* matches smp_wmb() in event_sched_in() */
2620                 smp_rmb();
2621
2622                 /*
2623                  * We only want to restart ACTIVE events, so if the event goes
2624                  * inactive here (event->oncpu==-1), there's nothing more to do;
2625                  * fall through with ret==-ENXIO.
2626                  */
2627                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2628                                         __perf_event_stop, &sd);
2629         } while (ret == -EAGAIN);
2630
2631         return ret;
2632 }
2633
2634 /*
2635  * In order to contain the amount of racy and tricky in the address filter
2636  * configuration management, it is a two part process:
2637  *
2638  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2639  *      we update the addresses of corresponding vmas in
2640  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2641  * (p2) when an event is scheduled in (pmu::add), it calls
2642  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2643  *      if the generation has changed since the previous call.
2644  *
2645  * If (p1) happens while the event is active, we restart it to force (p2).
2646  *
2647  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2648  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2649  *     ioctl;
2650  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2651  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2652  *     for reading;
2653  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2654  *     of exec.
2655  */
2656 void perf_event_addr_filters_sync(struct perf_event *event)
2657 {
2658         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2659
2660         if (!has_addr_filter(event))
2661                 return;
2662
2663         raw_spin_lock(&ifh->lock);
2664         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2665                 event->pmu->addr_filters_sync(event);
2666                 event->hw.addr_filters_gen = event->addr_filters_gen;
2667         }
2668         raw_spin_unlock(&ifh->lock);
2669 }
2670 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2671
2672 static int _perf_event_refresh(struct perf_event *event, int refresh)
2673 {
2674         /*
2675          * not supported on inherited events
2676          */
2677         if (event->attr.inherit || !is_sampling_event(event))
2678                 return -EINVAL;
2679
2680         atomic_add(refresh, &event->event_limit);
2681         _perf_event_enable(event);
2682
2683         return 0;
2684 }
2685
2686 /*
2687  * See perf_event_disable()
2688  */
2689 int perf_event_refresh(struct perf_event *event, int refresh)
2690 {
2691         struct perf_event_context *ctx;
2692         int ret;
2693
2694         ctx = perf_event_ctx_lock(event);
2695         ret = _perf_event_refresh(event, refresh);
2696         perf_event_ctx_unlock(event, ctx);
2697
2698         return ret;
2699 }
2700 EXPORT_SYMBOL_GPL(perf_event_refresh);
2701
2702 static void ctx_sched_out(struct perf_event_context *ctx,
2703                           struct perf_cpu_context *cpuctx,
2704                           enum event_type_t event_type)
2705 {
2706         int is_active = ctx->is_active;
2707         struct perf_event *event;
2708
2709         lockdep_assert_held(&ctx->lock);
2710
2711         if (likely(!ctx->nr_events)) {
2712                 /*
2713                  * See __perf_remove_from_context().
2714                  */
2715                 WARN_ON_ONCE(ctx->is_active);
2716                 if (ctx->task)
2717                         WARN_ON_ONCE(cpuctx->task_ctx);
2718                 return;
2719         }
2720
2721         ctx->is_active &= ~event_type;
2722         if (!(ctx->is_active & EVENT_ALL))
2723                 ctx->is_active = 0;
2724
2725         if (ctx->task) {
2726                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2727                 if (!ctx->is_active)
2728                         cpuctx->task_ctx = NULL;
2729         }
2730
2731         /*
2732          * Always update time if it was set; not only when it changes.
2733          * Otherwise we can 'forget' to update time for any but the last
2734          * context we sched out. For example:
2735          *
2736          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2737          *   ctx_sched_out(.event_type = EVENT_PINNED)
2738          *
2739          * would only update time for the pinned events.
2740          */
2741         if (is_active & EVENT_TIME) {
2742                 /* update (and stop) ctx time */
2743                 update_context_time(ctx);
2744                 update_cgrp_time_from_cpuctx(cpuctx);
2745         }
2746
2747         is_active ^= ctx->is_active; /* changed bits */
2748
2749         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2750                 return;
2751
2752         perf_pmu_disable(ctx->pmu);
2753         if (is_active & EVENT_PINNED) {
2754                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2755                         group_sched_out(event, cpuctx, ctx);
2756         }
2757
2758         if (is_active & EVENT_FLEXIBLE) {
2759                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2760                         group_sched_out(event, cpuctx, ctx);
2761         }
2762         perf_pmu_enable(ctx->pmu);
2763 }
2764
2765 /*
2766  * Test whether two contexts are equivalent, i.e. whether they have both been
2767  * cloned from the same version of the same context.
2768  *
2769  * Equivalence is measured using a generation number in the context that is
2770  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2771  * and list_del_event().
2772  */
2773 static int context_equiv(struct perf_event_context *ctx1,
2774                          struct perf_event_context *ctx2)
2775 {
2776         lockdep_assert_held(&ctx1->lock);
2777         lockdep_assert_held(&ctx2->lock);
2778
2779         /* Pinning disables the swap optimization */
2780         if (ctx1->pin_count || ctx2->pin_count)
2781                 return 0;
2782
2783         /* If ctx1 is the parent of ctx2 */
2784         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2785                 return 1;
2786
2787         /* If ctx2 is the parent of ctx1 */
2788         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2789                 return 1;
2790
2791         /*
2792          * If ctx1 and ctx2 have the same parent; we flatten the parent
2793          * hierarchy, see perf_event_init_context().
2794          */
2795         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2796                         ctx1->parent_gen == ctx2->parent_gen)
2797                 return 1;
2798
2799         /* Unmatched */
2800         return 0;
2801 }
2802
2803 static void __perf_event_sync_stat(struct perf_event *event,
2804                                      struct perf_event *next_event)
2805 {
2806         u64 value;
2807
2808         if (!event->attr.inherit_stat)
2809                 return;
2810
2811         /*
2812          * Update the event value, we cannot use perf_event_read()
2813          * because we're in the middle of a context switch and have IRQs
2814          * disabled, which upsets smp_call_function_single(), however
2815          * we know the event must be on the current CPU, therefore we
2816          * don't need to use it.
2817          */
2818         switch (event->state) {
2819         case PERF_EVENT_STATE_ACTIVE:
2820                 event->pmu->read(event);
2821                 /* fall-through */
2822
2823         case PERF_EVENT_STATE_INACTIVE:
2824                 update_event_times(event);
2825                 break;
2826
2827         default:
2828                 break;
2829         }
2830
2831         /*
2832          * In order to keep per-task stats reliable we need to flip the event
2833          * values when we flip the contexts.
2834          */
2835         value = local64_read(&next_event->count);
2836         value = local64_xchg(&event->count, value);
2837         local64_set(&next_event->count, value);
2838
2839         swap(event->total_time_enabled, next_event->total_time_enabled);
2840         swap(event->total_time_running, next_event->total_time_running);
2841
2842         /*
2843          * Since we swizzled the values, update the user visible data too.
2844          */
2845         perf_event_update_userpage(event);
2846         perf_event_update_userpage(next_event);
2847 }
2848
2849 static void perf_event_sync_stat(struct perf_event_context *ctx,
2850                                    struct perf_event_context *next_ctx)
2851 {
2852         struct perf_event *event, *next_event;
2853
2854         if (!ctx->nr_stat)
2855                 return;
2856
2857         update_context_time(ctx);
2858
2859         event = list_first_entry(&ctx->event_list,
2860                                    struct perf_event, event_entry);
2861
2862         next_event = list_first_entry(&next_ctx->event_list,
2863                                         struct perf_event, event_entry);
2864
2865         while (&event->event_entry != &ctx->event_list &&
2866                &next_event->event_entry != &next_ctx->event_list) {
2867
2868                 __perf_event_sync_stat(event, next_event);
2869
2870                 event = list_next_entry(event, event_entry);
2871                 next_event = list_next_entry(next_event, event_entry);
2872         }
2873 }
2874
2875 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2876                                          struct task_struct *next)
2877 {
2878         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2879         struct perf_event_context *next_ctx;
2880         struct perf_event_context *parent, *next_parent;
2881         struct perf_cpu_context *cpuctx;
2882         int do_switch = 1;
2883
2884         if (likely(!ctx))
2885                 return;
2886
2887         cpuctx = __get_cpu_context(ctx);
2888         if (!cpuctx->task_ctx)
2889                 return;
2890
2891         rcu_read_lock();
2892         next_ctx = next->perf_event_ctxp[ctxn];
2893         if (!next_ctx)
2894                 goto unlock;
2895
2896         parent = rcu_dereference(ctx->parent_ctx);
2897         next_parent = rcu_dereference(next_ctx->parent_ctx);
2898
2899         /* If neither context have a parent context; they cannot be clones. */
2900         if (!parent && !next_parent)
2901                 goto unlock;
2902
2903         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2904                 /*
2905                  * Looks like the two contexts are clones, so we might be
2906                  * able to optimize the context switch.  We lock both
2907                  * contexts and check that they are clones under the
2908                  * lock (including re-checking that neither has been
2909                  * uncloned in the meantime).  It doesn't matter which
2910                  * order we take the locks because no other cpu could
2911                  * be trying to lock both of these tasks.
2912                  */
2913                 raw_spin_lock(&ctx->lock);
2914                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2915                 if (context_equiv(ctx, next_ctx)) {
2916                         WRITE_ONCE(ctx->task, next);
2917                         WRITE_ONCE(next_ctx->task, task);
2918
2919                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2920
2921                         /*
2922                          * RCU_INIT_POINTER here is safe because we've not
2923                          * modified the ctx and the above modification of
2924                          * ctx->task and ctx->task_ctx_data are immaterial
2925                          * since those values are always verified under
2926                          * ctx->lock which we're now holding.
2927                          */
2928                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2929                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2930
2931                         do_switch = 0;
2932
2933                         perf_event_sync_stat(ctx, next_ctx);
2934                 }
2935                 raw_spin_unlock(&next_ctx->lock);
2936                 raw_spin_unlock(&ctx->lock);
2937         }
2938 unlock:
2939         rcu_read_unlock();
2940
2941         if (do_switch) {
2942                 raw_spin_lock(&ctx->lock);
2943                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2944                 raw_spin_unlock(&ctx->lock);
2945         }
2946 }
2947
2948 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2949
2950 void perf_sched_cb_dec(struct pmu *pmu)
2951 {
2952         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2953
2954         this_cpu_dec(perf_sched_cb_usages);
2955
2956         if (!--cpuctx->sched_cb_usage)
2957                 list_del(&cpuctx->sched_cb_entry);
2958 }
2959
2960
2961 void perf_sched_cb_inc(struct pmu *pmu)
2962 {
2963         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2964
2965         if (!cpuctx->sched_cb_usage++)
2966                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2967
2968         this_cpu_inc(perf_sched_cb_usages);
2969 }
2970
2971 /*
2972  * This function provides the context switch callback to the lower code
2973  * layer. It is invoked ONLY when the context switch callback is enabled.
2974  *
2975  * This callback is relevant even to per-cpu events; for example multi event
2976  * PEBS requires this to provide PID/TID information. This requires we flush
2977  * all queued PEBS records before we context switch to a new task.
2978  */
2979 static void perf_pmu_sched_task(struct task_struct *prev,
2980                                 struct task_struct *next,
2981                                 bool sched_in)
2982 {
2983         struct perf_cpu_context *cpuctx;
2984         struct pmu *pmu;
2985
2986         if (prev == next)
2987                 return;
2988
2989         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2990                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2991
2992                 if (WARN_ON_ONCE(!pmu->sched_task))
2993                         continue;
2994
2995                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2996                 perf_pmu_disable(pmu);
2997
2998                 pmu->sched_task(cpuctx->task_ctx, sched_in);
2999
3000                 perf_pmu_enable(pmu);
3001                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3002         }
3003 }
3004
3005 static void perf_event_switch(struct task_struct *task,
3006                               struct task_struct *next_prev, bool sched_in);
3007
3008 #define for_each_task_context_nr(ctxn)                                  \
3009         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3010
3011 /*
3012  * Called from scheduler to remove the events of the current task,
3013  * with interrupts disabled.
3014  *
3015  * We stop each event and update the event value in event->count.
3016  *
3017  * This does not protect us against NMI, but disable()
3018  * sets the disabled bit in the control field of event _before_
3019  * accessing the event control register. If a NMI hits, then it will
3020  * not restart the event.
3021  */
3022 void __perf_event_task_sched_out(struct task_struct *task,
3023                                  struct task_struct *next)
3024 {
3025         int ctxn;
3026
3027         if (__this_cpu_read(perf_sched_cb_usages))
3028                 perf_pmu_sched_task(task, next, false);
3029
3030         if (atomic_read(&nr_switch_events))
3031                 perf_event_switch(task, next, false);
3032
3033         for_each_task_context_nr(ctxn)
3034                 perf_event_context_sched_out(task, ctxn, next);
3035
3036         /*
3037          * if cgroup events exist on this CPU, then we need
3038          * to check if we have to switch out PMU state.
3039          * cgroup event are system-wide mode only
3040          */
3041         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3042                 perf_cgroup_sched_out(task, next);
3043 }
3044
3045 /*
3046  * Called with IRQs disabled
3047  */
3048 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3049                               enum event_type_t event_type)
3050 {
3051         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3052 }
3053
3054 static void
3055 ctx_pinned_sched_in(struct perf_event_context *ctx,
3056                     struct perf_cpu_context *cpuctx)
3057 {
3058         struct perf_event *event;
3059
3060         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3061                 if (event->state <= PERF_EVENT_STATE_OFF)
3062                         continue;
3063                 if (!event_filter_match(event))
3064                         continue;
3065
3066                 /* may need to reset tstamp_enabled */
3067                 if (is_cgroup_event(event))
3068                         perf_cgroup_mark_enabled(event, ctx);
3069
3070                 if (group_can_go_on(event, cpuctx, 1))
3071                         group_sched_in(event, cpuctx, ctx);
3072
3073                 /*
3074                  * If this pinned group hasn't been scheduled,
3075                  * put it in error state.
3076                  */
3077                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3078                         update_group_times(event);
3079                         event->state = PERF_EVENT_STATE_ERROR;
3080                 }
3081         }
3082 }
3083
3084 static void
3085 ctx_flexible_sched_in(struct perf_event_context *ctx,
3086                       struct perf_cpu_context *cpuctx)
3087 {
3088         struct perf_event *event;
3089         int can_add_hw = 1;
3090
3091         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3092                 /* Ignore events in OFF or ERROR state */
3093                 if (event->state <= PERF_EVENT_STATE_OFF)
3094                         continue;
3095                 /*
3096                  * Listen to the 'cpu' scheduling filter constraint
3097                  * of events:
3098                  */
3099                 if (!event_filter_match(event))
3100                         continue;
3101
3102                 /* may need to reset tstamp_enabled */
3103                 if (is_cgroup_event(event))
3104                         perf_cgroup_mark_enabled(event, ctx);
3105
3106                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3107                         if (group_sched_in(event, cpuctx, ctx))
3108                                 can_add_hw = 0;
3109                 }
3110         }
3111 }
3112
3113 static void
3114 ctx_sched_in(struct perf_event_context *ctx,
3115              struct perf_cpu_context *cpuctx,
3116              enum event_type_t event_type,
3117              struct task_struct *task)
3118 {
3119         int is_active = ctx->is_active;
3120         u64 now;
3121
3122         lockdep_assert_held(&ctx->lock);
3123
3124         if (likely(!ctx->nr_events))
3125                 return;
3126
3127         ctx->is_active |= (event_type | EVENT_TIME);
3128         if (ctx->task) {
3129                 if (!is_active)
3130                         cpuctx->task_ctx = ctx;
3131                 else
3132                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3133         }
3134
3135         is_active ^= ctx->is_active; /* changed bits */
3136
3137         if (is_active & EVENT_TIME) {
3138                 /* start ctx time */
3139                 now = perf_clock();
3140                 ctx->timestamp = now;
3141                 perf_cgroup_set_timestamp(task, ctx);
3142         }
3143
3144         /*
3145          * First go through the list and put on any pinned groups
3146          * in order to give them the best chance of going on.
3147          */
3148         if (is_active & EVENT_PINNED)
3149                 ctx_pinned_sched_in(ctx, cpuctx);
3150
3151         /* Then walk through the lower prio flexible groups */
3152         if (is_active & EVENT_FLEXIBLE)
3153                 ctx_flexible_sched_in(ctx, cpuctx);
3154 }
3155
3156 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3157                              enum event_type_t event_type,
3158                              struct task_struct *task)
3159 {
3160         struct perf_event_context *ctx = &cpuctx->ctx;
3161
3162         ctx_sched_in(ctx, cpuctx, event_type, task);
3163 }
3164
3165 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3166                                         struct task_struct *task)
3167 {
3168         struct perf_cpu_context *cpuctx;
3169
3170         cpuctx = __get_cpu_context(ctx);
3171         if (cpuctx->task_ctx == ctx)
3172                 return;
3173
3174         perf_ctx_lock(cpuctx, ctx);
3175         perf_pmu_disable(ctx->pmu);
3176         /*
3177          * We want to keep the following priority order:
3178          * cpu pinned (that don't need to move), task pinned,
3179          * cpu flexible, task flexible.
3180          *
3181          * However, if task's ctx is not carrying any pinned
3182          * events, no need to flip the cpuctx's events around.
3183          */
3184         if (!list_empty(&ctx->pinned_groups))
3185                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3186         perf_event_sched_in(cpuctx, ctx, task);
3187         perf_pmu_enable(ctx->pmu);
3188         perf_ctx_unlock(cpuctx, ctx);
3189 }
3190
3191 /*
3192  * Called from scheduler to add the events of the current task
3193  * with interrupts disabled.
3194  *
3195  * We restore the event value and then enable it.
3196  *
3197  * This does not protect us against NMI, but enable()
3198  * sets the enabled bit in the control field of event _before_
3199  * accessing the event control register. If a NMI hits, then it will
3200  * keep the event running.
3201  */
3202 void __perf_event_task_sched_in(struct task_struct *prev,
3203                                 struct task_struct *task)
3204 {
3205         struct perf_event_context *ctx;
3206         int ctxn;
3207
3208         /*
3209          * If cgroup events exist on this CPU, then we need to check if we have
3210          * to switch in PMU state; cgroup event are system-wide mode only.
3211          *
3212          * Since cgroup events are CPU events, we must schedule these in before
3213          * we schedule in the task events.
3214          */
3215         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3216                 perf_cgroup_sched_in(prev, task);
3217
3218         for_each_task_context_nr(ctxn) {
3219                 ctx = task->perf_event_ctxp[ctxn];
3220                 if (likely(!ctx))
3221                         continue;
3222
3223                 perf_event_context_sched_in(ctx, task);
3224         }
3225
3226         if (atomic_read(&nr_switch_events))
3227                 perf_event_switch(task, prev, true);
3228
3229         if (__this_cpu_read(perf_sched_cb_usages))
3230                 perf_pmu_sched_task(prev, task, true);
3231 }
3232
3233 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3234 {
3235         u64 frequency = event->attr.sample_freq;
3236         u64 sec = NSEC_PER_SEC;
3237         u64 divisor, dividend;
3238
3239         int count_fls, nsec_fls, frequency_fls, sec_fls;
3240
3241         count_fls = fls64(count);
3242         nsec_fls = fls64(nsec);
3243         frequency_fls = fls64(frequency);
3244         sec_fls = 30;
3245
3246         /*
3247          * We got @count in @nsec, with a target of sample_freq HZ
3248          * the target period becomes:
3249          *
3250          *             @count * 10^9
3251          * period = -------------------
3252          *          @nsec * sample_freq
3253          *
3254          */
3255
3256         /*
3257          * Reduce accuracy by one bit such that @a and @b converge
3258          * to a similar magnitude.
3259          */
3260 #define REDUCE_FLS(a, b)                \
3261 do {                                    \
3262         if (a##_fls > b##_fls) {        \
3263                 a >>= 1;                \
3264                 a##_fls--;              \
3265         } else {                        \
3266                 b >>= 1;                \
3267                 b##_fls--;              \
3268         }                               \
3269 } while (0)
3270
3271         /*
3272          * Reduce accuracy until either term fits in a u64, then proceed with
3273          * the other, so that finally we can do a u64/u64 division.
3274          */
3275         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3276                 REDUCE_FLS(nsec, frequency);
3277                 REDUCE_FLS(sec, count);
3278         }
3279
3280         if (count_fls + sec_fls > 64) {
3281                 divisor = nsec * frequency;
3282
3283                 while (count_fls + sec_fls > 64) {
3284                         REDUCE_FLS(count, sec);
3285                         divisor >>= 1;
3286                 }
3287
3288                 dividend = count * sec;
3289         } else {
3290                 dividend = count * sec;
3291
3292                 while (nsec_fls + frequency_fls > 64) {
3293                         REDUCE_FLS(nsec, frequency);
3294                         dividend >>= 1;
3295                 }
3296
3297                 divisor = nsec * frequency;
3298         }
3299
3300         if (!divisor)
3301                 return dividend;
3302
3303         return div64_u64(dividend, divisor);
3304 }
3305
3306 static DEFINE_PER_CPU(int, perf_throttled_count);
3307 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3308
3309 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3310 {
3311         struct hw_perf_event *hwc = &event->hw;
3312         s64 period, sample_period;
3313         s64 delta;
3314
3315         period = perf_calculate_period(event, nsec, count);
3316
3317         delta = (s64)(period - hwc->sample_period);
3318         delta = (delta + 7) / 8; /* low pass filter */
3319
3320         sample_period = hwc->sample_period + delta;
3321
3322         if (!sample_period)
3323                 sample_period = 1;
3324
3325         hwc->sample_period = sample_period;
3326
3327         if (local64_read(&hwc->period_left) > 8*sample_period) {
3328                 if (disable)
3329                         event->pmu->stop(event, PERF_EF_UPDATE);
3330
3331                 local64_set(&hwc->period_left, 0);
3332
3333                 if (disable)
3334                         event->pmu->start(event, PERF_EF_RELOAD);
3335         }
3336 }
3337
3338 /*
3339  * combine freq adjustment with unthrottling to avoid two passes over the
3340  * events. At the same time, make sure, having freq events does not change
3341  * the rate of unthrottling as that would introduce bias.
3342  */
3343 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3344                                            int needs_unthr)
3345 {
3346         struct perf_event *event;
3347         struct hw_perf_event *hwc;
3348         u64 now, period = TICK_NSEC;
3349         s64 delta;
3350
3351         /*
3352          * only need to iterate over all events iff:
3353          * - context have events in frequency mode (needs freq adjust)
3354          * - there are events to unthrottle on this cpu
3355          */
3356         if (!(ctx->nr_freq || needs_unthr))
3357                 return;
3358
3359         raw_spin_lock(&ctx->lock);
3360         perf_pmu_disable(ctx->pmu);
3361
3362         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3363                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3364                         continue;
3365
3366                 if (!event_filter_match(event))
3367                         continue;
3368
3369                 perf_pmu_disable(event->pmu);
3370
3371                 hwc = &event->hw;
3372
3373                 if (hwc->interrupts == MAX_INTERRUPTS) {
3374                         hwc->interrupts = 0;
3375                         perf_log_throttle(event, 1);
3376                         event->pmu->start(event, 0);
3377                 }
3378
3379                 if (!event->attr.freq || !event->attr.sample_freq)
3380                         goto next;
3381
3382                 /*
3383                  * stop the event and update event->count
3384                  */
3385                 event->pmu->stop(event, PERF_EF_UPDATE);
3386
3387                 now = local64_read(&event->count);
3388                 delta = now - hwc->freq_count_stamp;
3389                 hwc->freq_count_stamp = now;
3390
3391                 /*
3392                  * restart the event
3393                  * reload only if value has changed
3394                  * we have stopped the event so tell that
3395                  * to perf_adjust_period() to avoid stopping it
3396                  * twice.
3397                  */
3398                 if (delta > 0)
3399                         perf_adjust_period(event, period, delta, false);
3400
3401                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3402         next:
3403                 perf_pmu_enable(event->pmu);
3404         }
3405
3406         perf_pmu_enable(ctx->pmu);
3407         raw_spin_unlock(&ctx->lock);
3408 }
3409
3410 /*
3411  * Round-robin a context's events:
3412  */
3413 static void rotate_ctx(struct perf_event_context *ctx)
3414 {
3415         /*
3416          * Rotate the first entry last of non-pinned groups. Rotation might be
3417          * disabled by the inheritance code.
3418          */
3419         if (!ctx->rotate_disable)
3420                 list_rotate_left(&ctx->flexible_groups);
3421 }
3422
3423 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3424 {
3425         struct perf_event_context *ctx = NULL;
3426         int rotate = 0;
3427
3428         if (cpuctx->ctx.nr_events) {
3429                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3430                         rotate = 1;
3431         }
3432
3433         ctx = cpuctx->task_ctx;
3434         if (ctx && ctx->nr_events) {
3435                 if (ctx->nr_events != ctx->nr_active)
3436                         rotate = 1;
3437         }
3438
3439         if (!rotate)
3440                 goto done;
3441
3442         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3443         perf_pmu_disable(cpuctx->ctx.pmu);
3444
3445         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3446         if (ctx)
3447                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3448
3449         rotate_ctx(&cpuctx->ctx);
3450         if (ctx)
3451                 rotate_ctx(ctx);
3452
3453         perf_event_sched_in(cpuctx, ctx, current);
3454
3455         perf_pmu_enable(cpuctx->ctx.pmu);
3456         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3457 done:
3458
3459         return rotate;
3460 }
3461
3462 void perf_event_task_tick(void)
3463 {
3464         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3465         struct perf_event_context *ctx, *tmp;
3466         int throttled;
3467
3468         WARN_ON(!irqs_disabled());
3469
3470         __this_cpu_inc(perf_throttled_seq);
3471         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3472         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3473
3474         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3475                 perf_adjust_freq_unthr_context(ctx, throttled);
3476 }
3477
3478 static int event_enable_on_exec(struct perf_event *event,
3479                                 struct perf_event_context *ctx)
3480 {
3481         if (!event->attr.enable_on_exec)
3482                 return 0;
3483
3484         event->attr.enable_on_exec = 0;
3485         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3486                 return 0;
3487
3488         __perf_event_mark_enabled(event);
3489
3490         return 1;
3491 }
3492
3493 /*
3494  * Enable all of a task's events that have been marked enable-on-exec.
3495  * This expects task == current.
3496  */
3497 static void perf_event_enable_on_exec(int ctxn)
3498 {
3499         struct perf_event_context *ctx, *clone_ctx = NULL;
3500         enum event_type_t event_type = 0;
3501         struct perf_cpu_context *cpuctx;
3502         struct perf_event *event;
3503         unsigned long flags;
3504         int enabled = 0;
3505
3506         local_irq_save(flags);
3507         ctx = current->perf_event_ctxp[ctxn];
3508         if (!ctx || !ctx->nr_events)
3509                 goto out;
3510
3511         cpuctx = __get_cpu_context(ctx);
3512         perf_ctx_lock(cpuctx, ctx);
3513         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3514         list_for_each_entry(event, &ctx->event_list, event_entry) {
3515                 enabled |= event_enable_on_exec(event, ctx);
3516                 event_type |= get_event_type(event);
3517         }
3518
3519         /*
3520          * Unclone and reschedule this context if we enabled any event.
3521          */
3522         if (enabled) {
3523                 clone_ctx = unclone_ctx(ctx);
3524                 ctx_resched(cpuctx, ctx, event_type);
3525         } else {
3526                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3527         }
3528         perf_ctx_unlock(cpuctx, ctx);
3529
3530 out:
3531         local_irq_restore(flags);
3532
3533         if (clone_ctx)
3534                 put_ctx(clone_ctx);
3535 }
3536
3537 struct perf_read_data {
3538         struct perf_event *event;
3539         bool group;
3540         int ret;
3541 };
3542
3543 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3544 {
3545         u16 local_pkg, event_pkg;
3546
3547         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3548                 int local_cpu = smp_processor_id();
3549
3550                 event_pkg = topology_physical_package_id(event_cpu);
3551                 local_pkg = topology_physical_package_id(local_cpu);
3552
3553                 if (event_pkg == local_pkg)
3554                         return local_cpu;
3555         }
3556
3557         return event_cpu;
3558 }
3559
3560 /*
3561  * Cross CPU call to read the hardware event
3562  */
3563 static void __perf_event_read(void *info)
3564 {
3565         struct perf_read_data *data = info;
3566         struct perf_event *sub, *event = data->event;
3567         struct perf_event_context *ctx = event->ctx;
3568         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3569         struct pmu *pmu = event->pmu;
3570
3571         /*
3572          * If this is a task context, we need to check whether it is
3573          * the current task context of this cpu.  If not it has been
3574          * scheduled out before the smp call arrived.  In that case
3575          * event->count would have been updated to a recent sample
3576          * when the event was scheduled out.
3577          */
3578         if (ctx->task && cpuctx->task_ctx != ctx)
3579                 return;
3580
3581         raw_spin_lock(&ctx->lock);
3582         if (ctx->is_active) {
3583                 update_context_time(ctx);
3584                 update_cgrp_time_from_event(event);
3585         }
3586
3587         update_event_times(event);
3588         if (event->state != PERF_EVENT_STATE_ACTIVE)
3589                 goto unlock;
3590
3591         if (!data->group) {
3592                 pmu->read(event);
3593                 data->ret = 0;
3594                 goto unlock;
3595         }
3596
3597         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3598
3599         pmu->read(event);
3600
3601         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3602                 update_event_times(sub);
3603                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3604                         /*
3605                          * Use sibling's PMU rather than @event's since
3606                          * sibling could be on different (eg: software) PMU.
3607                          */
3608                         sub->pmu->read(sub);
3609                 }
3610         }
3611
3612         data->ret = pmu->commit_txn(pmu);
3613
3614 unlock:
3615         raw_spin_unlock(&ctx->lock);
3616 }
3617
3618 static inline u64 perf_event_count(struct perf_event *event)
3619 {
3620         if (event->pmu->count)
3621                 return event->pmu->count(event);
3622
3623         return __perf_event_count(event);
3624 }
3625
3626 /*
3627  * NMI-safe method to read a local event, that is an event that
3628  * is:
3629  *   - either for the current task, or for this CPU
3630  *   - does not have inherit set, for inherited task events
3631  *     will not be local and we cannot read them atomically
3632  *   - must not have a pmu::count method
3633  */
3634 u64 perf_event_read_local(struct perf_event *event)
3635 {
3636         unsigned long flags;
3637         u64 val;
3638
3639         /*
3640          * Disabling interrupts avoids all counter scheduling (context
3641          * switches, timer based rotation and IPIs).
3642          */
3643         local_irq_save(flags);
3644
3645         /* If this is a per-task event, it must be for current */
3646         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3647                      event->hw.target != current);
3648
3649         /* If this is a per-CPU event, it must be for this CPU */
3650         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3651                      event->cpu != smp_processor_id());
3652
3653         /*
3654          * It must not be an event with inherit set, we cannot read
3655          * all child counters from atomic context.
3656          */
3657         WARN_ON_ONCE(event->attr.inherit);
3658
3659         /*
3660          * It must not have a pmu::count method, those are not
3661          * NMI safe.
3662          */
3663         WARN_ON_ONCE(event->pmu->count);
3664
3665         /*
3666          * If the event is currently on this CPU, its either a per-task event,
3667          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3668          * oncpu == -1).
3669          */
3670         if (event->oncpu == smp_processor_id())
3671                 event->pmu->read(event);
3672
3673         val = local64_read(&event->count);
3674         local_irq_restore(flags);
3675
3676         return val;
3677 }
3678
3679 static int perf_event_read(struct perf_event *event, bool group)
3680 {
3681         int event_cpu, ret = 0;
3682
3683         /*
3684          * If event is enabled and currently active on a CPU, update the
3685          * value in the event structure:
3686          */
3687         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3688                 struct perf_read_data data = {
3689                         .event = event,
3690                         .group = group,
3691                         .ret = 0,
3692                 };
3693
3694                 event_cpu = READ_ONCE(event->oncpu);
3695                 if ((unsigned)event_cpu >= nr_cpu_ids)
3696                         return 0;
3697
3698                 preempt_disable();
3699                 event_cpu = __perf_event_read_cpu(event, event_cpu);
3700
3701                 /*
3702                  * Purposely ignore the smp_call_function_single() return
3703                  * value.
3704                  *
3705                  * If event_cpu isn't a valid CPU it means the event got
3706                  * scheduled out and that will have updated the event count.
3707                  *
3708                  * Therefore, either way, we'll have an up-to-date event count
3709                  * after this.
3710                  */
3711                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3712                 preempt_enable();
3713                 ret = data.ret;
3714         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3715                 struct perf_event_context *ctx = event->ctx;
3716                 unsigned long flags;
3717
3718                 raw_spin_lock_irqsave(&ctx->lock, flags);
3719                 /*
3720                  * may read while context is not active
3721                  * (e.g., thread is blocked), in that case
3722                  * we cannot update context time
3723                  */
3724                 if (ctx->is_active) {
3725                         update_context_time(ctx);
3726                         update_cgrp_time_from_event(event);
3727                 }
3728                 if (group)
3729                         update_group_times(event);
3730                 else
3731                         update_event_times(event);
3732                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3733         }
3734
3735         return ret;
3736 }
3737
3738 /*
3739  * Initialize the perf_event context in a task_struct:
3740  */
3741 static void __perf_event_init_context(struct perf_event_context *ctx)
3742 {
3743         raw_spin_lock_init(&ctx->lock);
3744         mutex_init(&ctx->mutex);
3745         INIT_LIST_HEAD(&ctx->active_ctx_list);
3746         INIT_LIST_HEAD(&ctx->pinned_groups);
3747         INIT_LIST_HEAD(&ctx->flexible_groups);
3748         INIT_LIST_HEAD(&ctx->event_list);
3749         atomic_set(&ctx->refcount, 1);
3750 }
3751
3752 static struct perf_event_context *
3753 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3754 {
3755         struct perf_event_context *ctx;
3756
3757         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3758         if (!ctx)
3759                 return NULL;
3760
3761         __perf_event_init_context(ctx);
3762         if (task) {
3763                 ctx->task = task;
3764                 get_task_struct(task);
3765         }
3766         ctx->pmu = pmu;
3767
3768         return ctx;
3769 }
3770
3771 static struct task_struct *
3772 find_lively_task_by_vpid(pid_t vpid)
3773 {
3774         struct task_struct *task;
3775
3776         rcu_read_lock();
3777         if (!vpid)
3778                 task = current;
3779         else
3780                 task = find_task_by_vpid(vpid);
3781         if (task)
3782                 get_task_struct(task);
3783         rcu_read_unlock();
3784
3785         if (!task)
3786                 return ERR_PTR(-ESRCH);
3787
3788         return task;
3789 }
3790
3791 /*
3792  * Returns a matching context with refcount and pincount.
3793  */
3794 static struct perf_event_context *
3795 find_get_context(struct pmu *pmu, struct task_struct *task,
3796                 struct perf_event *event)
3797 {
3798         struct perf_event_context *ctx, *clone_ctx = NULL;
3799         struct perf_cpu_context *cpuctx;
3800         void *task_ctx_data = NULL;
3801         unsigned long flags;
3802         int ctxn, err;
3803         int cpu = event->cpu;
3804
3805         if (!task) {
3806                 /* Must be root to operate on a CPU event: */
3807                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3808                         return ERR_PTR(-EACCES);
3809
3810                 /*
3811                  * We could be clever and allow to attach a event to an
3812                  * offline CPU and activate it when the CPU comes up, but
3813                  * that's for later.
3814                  */
3815                 if (!cpu_online(cpu))
3816                         return ERR_PTR(-ENODEV);
3817
3818                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3819                 ctx = &cpuctx->ctx;
3820                 get_ctx(ctx);
3821                 ++ctx->pin_count;
3822
3823                 return ctx;
3824         }
3825
3826         err = -EINVAL;
3827         ctxn = pmu->task_ctx_nr;
3828         if (ctxn < 0)
3829                 goto errout;
3830
3831         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3832                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3833                 if (!task_ctx_data) {
3834                         err = -ENOMEM;
3835                         goto errout;
3836                 }
3837         }
3838
3839 retry:
3840         ctx = perf_lock_task_context(task, ctxn, &flags);
3841         if (ctx) {
3842                 clone_ctx = unclone_ctx(ctx);
3843                 ++ctx->pin_count;
3844
3845                 if (task_ctx_data && !ctx->task_ctx_data) {
3846                         ctx->task_ctx_data = task_ctx_data;
3847                         task_ctx_data = NULL;
3848                 }
3849                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3850
3851                 if (clone_ctx)
3852                         put_ctx(clone_ctx);
3853         } else {
3854                 ctx = alloc_perf_context(pmu, task);
3855                 err = -ENOMEM;
3856                 if (!ctx)
3857                         goto errout;
3858
3859                 if (task_ctx_data) {
3860                         ctx->task_ctx_data = task_ctx_data;
3861                         task_ctx_data = NULL;
3862                 }
3863
3864                 err = 0;
3865                 mutex_lock(&task->perf_event_mutex);
3866                 /*
3867                  * If it has already passed perf_event_exit_task().
3868                  * we must see PF_EXITING, it takes this mutex too.
3869                  */
3870                 if (task->flags & PF_EXITING)
3871                         err = -ESRCH;
3872                 else if (task->perf_event_ctxp[ctxn])
3873                         err = -EAGAIN;
3874                 else {
3875                         get_ctx(ctx);
3876                         ++ctx->pin_count;
3877                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3878                 }
3879                 mutex_unlock(&task->perf_event_mutex);
3880
3881                 if (unlikely(err)) {
3882                         put_ctx(ctx);
3883
3884                         if (err == -EAGAIN)
3885                                 goto retry;
3886                         goto errout;
3887                 }
3888         }
3889
3890         kfree(task_ctx_data);
3891         return ctx;
3892
3893 errout:
3894         kfree(task_ctx_data);
3895         return ERR_PTR(err);
3896 }
3897
3898 static void perf_event_free_filter(struct perf_event *event);
3899 static void perf_event_free_bpf_prog(struct perf_event *event);
3900
3901 static void free_event_rcu(struct rcu_head *head)
3902 {
3903         struct perf_event *event;
3904
3905         event = container_of(head, struct perf_event, rcu_head);
3906         if (event->ns)
3907                 put_pid_ns(event->ns);
3908         perf_event_free_filter(event);
3909         kfree(event);
3910 }
3911
3912 static void ring_buffer_attach(struct perf_event *event,
3913                                struct ring_buffer *rb);
3914
3915 static void detach_sb_event(struct perf_event *event)
3916 {
3917         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3918
3919         raw_spin_lock(&pel->lock);
3920         list_del_rcu(&event->sb_list);
3921         raw_spin_unlock(&pel->lock);
3922 }
3923
3924 static bool is_sb_event(struct perf_event *event)
3925 {
3926         struct perf_event_attr *attr = &event->attr;
3927
3928         if (event->parent)
3929                 return false;
3930
3931         if (event->attach_state & PERF_ATTACH_TASK)
3932                 return false;
3933
3934         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3935             attr->comm || attr->comm_exec ||
3936             attr->task ||
3937             attr->context_switch)
3938                 return true;
3939         return false;
3940 }
3941
3942 static void unaccount_pmu_sb_event(struct perf_event *event)
3943 {
3944         if (is_sb_event(event))
3945                 detach_sb_event(event);
3946 }
3947
3948 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3949 {
3950         if (event->parent)
3951                 return;
3952
3953         if (is_cgroup_event(event))
3954                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3955 }
3956
3957 #ifdef CONFIG_NO_HZ_FULL
3958 static DEFINE_SPINLOCK(nr_freq_lock);
3959 #endif
3960
3961 static void unaccount_freq_event_nohz(void)
3962 {
3963 #ifdef CONFIG_NO_HZ_FULL
3964         spin_lock(&nr_freq_lock);
3965         if (atomic_dec_and_test(&nr_freq_events))
3966                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3967         spin_unlock(&nr_freq_lock);
3968 #endif
3969 }
3970
3971 static void unaccount_freq_event(void)
3972 {
3973         if (tick_nohz_full_enabled())
3974                 unaccount_freq_event_nohz();
3975         else
3976                 atomic_dec(&nr_freq_events);
3977 }
3978
3979 static void unaccount_event(struct perf_event *event)
3980 {
3981         bool dec = false;
3982
3983         if (event->parent)
3984                 return;
3985
3986         if (event->attach_state & PERF_ATTACH_TASK)
3987                 dec = true;
3988         if (event->attr.mmap || event->attr.mmap_data)
3989                 atomic_dec(&nr_mmap_events);
3990         if (event->attr.comm)
3991                 atomic_dec(&nr_comm_events);
3992         if (event->attr.namespaces)
3993                 atomic_dec(&nr_namespaces_events);
3994         if (event->attr.task)
3995                 atomic_dec(&nr_task_events);
3996         if (event->attr.freq)
3997                 unaccount_freq_event();
3998         if (event->attr.context_switch) {
3999                 dec = true;
4000                 atomic_dec(&nr_switch_events);
4001         }
4002         if (is_cgroup_event(event))
4003                 dec = true;
4004         if (has_branch_stack(event))
4005                 dec = true;
4006
4007         if (dec) {
4008                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4009                         schedule_delayed_work(&perf_sched_work, HZ);
4010         }
4011
4012         unaccount_event_cpu(event, event->cpu);
4013
4014         unaccount_pmu_sb_event(event);
4015 }
4016
4017 static void perf_sched_delayed(struct work_struct *work)
4018 {
4019         mutex_lock(&perf_sched_mutex);
4020         if (atomic_dec_and_test(&perf_sched_count))
4021                 static_branch_disable(&perf_sched_events);
4022         mutex_unlock(&perf_sched_mutex);
4023 }
4024
4025 /*
4026  * The following implement mutual exclusion of events on "exclusive" pmus
4027  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4028  * at a time, so we disallow creating events that might conflict, namely:
4029  *
4030  *  1) cpu-wide events in the presence of per-task events,
4031  *  2) per-task events in the presence of cpu-wide events,
4032  *  3) two matching events on the same context.
4033  *
4034  * The former two cases are handled in the allocation path (perf_event_alloc(),
4035  * _free_event()), the latter -- before the first perf_install_in_context().
4036  */
4037 static int exclusive_event_init(struct perf_event *event)
4038 {
4039         struct pmu *pmu = event->pmu;
4040
4041         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4042                 return 0;
4043
4044         /*
4045          * Prevent co-existence of per-task and cpu-wide events on the
4046          * same exclusive pmu.
4047          *
4048          * Negative pmu::exclusive_cnt means there are cpu-wide
4049          * events on this "exclusive" pmu, positive means there are
4050          * per-task events.
4051          *
4052          * Since this is called in perf_event_alloc() path, event::ctx
4053          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4054          * to mean "per-task event", because unlike other attach states it
4055          * never gets cleared.
4056          */
4057         if (event->attach_state & PERF_ATTACH_TASK) {
4058                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4059                         return -EBUSY;
4060         } else {
4061                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4062                         return -EBUSY;
4063         }
4064
4065         return 0;
4066 }
4067
4068 static void exclusive_event_destroy(struct perf_event *event)
4069 {
4070         struct pmu *pmu = event->pmu;
4071
4072         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4073                 return;
4074
4075         /* see comment in exclusive_event_init() */
4076         if (event->attach_state & PERF_ATTACH_TASK)
4077                 atomic_dec(&pmu->exclusive_cnt);
4078         else
4079                 atomic_inc(&pmu->exclusive_cnt);
4080 }
4081
4082 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4083 {
4084         if ((e1->pmu == e2->pmu) &&
4085             (e1->cpu == e2->cpu ||
4086              e1->cpu == -1 ||
4087              e2->cpu == -1))
4088                 return true;
4089         return false;
4090 }
4091
4092 /* Called under the same ctx::mutex as perf_install_in_context() */
4093 static bool exclusive_event_installable(struct perf_event *event,
4094                                         struct perf_event_context *ctx)
4095 {
4096         struct perf_event *iter_event;
4097         struct pmu *pmu = event->pmu;
4098
4099         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4100                 return true;
4101
4102         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4103                 if (exclusive_event_match(iter_event, event))
4104                         return false;
4105         }
4106
4107         return true;
4108 }
4109
4110 static void perf_addr_filters_splice(struct perf_event *event,
4111                                        struct list_head *head);
4112
4113 static void _free_event(struct perf_event *event)
4114 {
4115         irq_work_sync(&event->pending);
4116
4117         unaccount_event(event);
4118
4119         if (event->rb) {
4120                 /*
4121                  * Can happen when we close an event with re-directed output.
4122                  *
4123                  * Since we have a 0 refcount, perf_mmap_close() will skip
4124                  * over us; possibly making our ring_buffer_put() the last.
4125                  */
4126                 mutex_lock(&event->mmap_mutex);
4127                 ring_buffer_attach(event, NULL);
4128                 mutex_unlock(&event->mmap_mutex);
4129         }
4130
4131         if (is_cgroup_event(event))
4132                 perf_detach_cgroup(event);
4133
4134         if (!event->parent) {
4135                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4136                         put_callchain_buffers();
4137         }
4138
4139         perf_event_free_bpf_prog(event);
4140         perf_addr_filters_splice(event, NULL);
4141         kfree(event->addr_filters_offs);
4142
4143         if (event->destroy)
4144                 event->destroy(event);
4145
4146         if (event->ctx)
4147                 put_ctx(event->ctx);
4148
4149         exclusive_event_destroy(event);
4150         module_put(event->pmu->module);
4151
4152         call_rcu(&event->rcu_head, free_event_rcu);
4153 }
4154
4155 /*
4156  * Used to free events which have a known refcount of 1, such as in error paths
4157  * where the event isn't exposed yet and inherited events.
4158  */
4159 static void free_event(struct perf_event *event)
4160 {
4161         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4162                                 "unexpected event refcount: %ld; ptr=%p\n",
4163                                 atomic_long_read(&event->refcount), event)) {
4164                 /* leak to avoid use-after-free */
4165                 return;
4166         }
4167
4168         _free_event(event);
4169 }
4170
4171 /*
4172  * Remove user event from the owner task.
4173  */
4174 static void perf_remove_from_owner(struct perf_event *event)
4175 {
4176         struct task_struct *owner;
4177
4178         rcu_read_lock();
4179         /*
4180          * Matches the smp_store_release() in perf_event_exit_task(). If we
4181          * observe !owner it means the list deletion is complete and we can
4182          * indeed free this event, otherwise we need to serialize on
4183          * owner->perf_event_mutex.
4184          */
4185         owner = lockless_dereference(event->owner);
4186         if (owner) {
4187                 /*
4188                  * Since delayed_put_task_struct() also drops the last
4189                  * task reference we can safely take a new reference
4190                  * while holding the rcu_read_lock().
4191                  */
4192                 get_task_struct(owner);
4193         }
4194         rcu_read_unlock();
4195
4196         if (owner) {
4197                 /*
4198                  * If we're here through perf_event_exit_task() we're already
4199                  * holding ctx->mutex which would be an inversion wrt. the
4200                  * normal lock order.
4201                  *
4202                  * However we can safely take this lock because its the child
4203                  * ctx->mutex.
4204                  */
4205                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4206
4207                 /*
4208                  * We have to re-check the event->owner field, if it is cleared
4209                  * we raced with perf_event_exit_task(), acquiring the mutex
4210                  * ensured they're done, and we can proceed with freeing the
4211                  * event.
4212                  */
4213                 if (event->owner) {
4214                         list_del_init(&event->owner_entry);
4215                         smp_store_release(&event->owner, NULL);
4216                 }
4217                 mutex_unlock(&owner->perf_event_mutex);
4218                 put_task_struct(owner);
4219         }
4220 }
4221
4222 static void put_event(struct perf_event *event)
4223 {
4224         if (!atomic_long_dec_and_test(&event->refcount))
4225                 return;
4226
4227         _free_event(event);
4228 }
4229
4230 /*
4231  * Kill an event dead; while event:refcount will preserve the event
4232  * object, it will not preserve its functionality. Once the last 'user'
4233  * gives up the object, we'll destroy the thing.
4234  */
4235 int perf_event_release_kernel(struct perf_event *event)
4236 {
4237         struct perf_event_context *ctx = event->ctx;
4238         struct perf_event *child, *tmp;
4239
4240         /*
4241          * If we got here through err_file: fput(event_file); we will not have
4242          * attached to a context yet.
4243          */
4244         if (!ctx) {
4245                 WARN_ON_ONCE(event->attach_state &
4246                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4247                 goto no_ctx;
4248         }
4249
4250         if (!is_kernel_event(event))
4251                 perf_remove_from_owner(event);
4252
4253         ctx = perf_event_ctx_lock(event);
4254         WARN_ON_ONCE(ctx->parent_ctx);
4255         perf_remove_from_context(event, DETACH_GROUP);
4256
4257         raw_spin_lock_irq(&ctx->lock);
4258         /*
4259          * Mark this event as STATE_DEAD, there is no external reference to it
4260          * anymore.
4261          *
4262          * Anybody acquiring event->child_mutex after the below loop _must_
4263          * also see this, most importantly inherit_event() which will avoid
4264          * placing more children on the list.
4265          *
4266          * Thus this guarantees that we will in fact observe and kill _ALL_
4267          * child events.
4268          */
4269         event->state = PERF_EVENT_STATE_DEAD;
4270         raw_spin_unlock_irq(&ctx->lock);
4271
4272         perf_event_ctx_unlock(event, ctx);
4273
4274 again:
4275         mutex_lock(&event->child_mutex);
4276         list_for_each_entry(child, &event->child_list, child_list) {
4277
4278                 /*
4279                  * Cannot change, child events are not migrated, see the
4280                  * comment with perf_event_ctx_lock_nested().
4281                  */
4282                 ctx = lockless_dereference(child->ctx);
4283                 /*
4284                  * Since child_mutex nests inside ctx::mutex, we must jump
4285                  * through hoops. We start by grabbing a reference on the ctx.
4286                  *
4287                  * Since the event cannot get freed while we hold the
4288                  * child_mutex, the context must also exist and have a !0
4289                  * reference count.
4290                  */
4291                 get_ctx(ctx);
4292
4293                 /*
4294                  * Now that we have a ctx ref, we can drop child_mutex, and
4295                  * acquire ctx::mutex without fear of it going away. Then we
4296                  * can re-acquire child_mutex.
4297                  */
4298                 mutex_unlock(&event->child_mutex);
4299                 mutex_lock(&ctx->mutex);
4300                 mutex_lock(&event->child_mutex);
4301
4302                 /*
4303                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4304                  * state, if child is still the first entry, it didn't get freed
4305                  * and we can continue doing so.
4306                  */
4307                 tmp = list_first_entry_or_null(&event->child_list,
4308                                                struct perf_event, child_list);
4309                 if (tmp == child) {
4310                         perf_remove_from_context(child, DETACH_GROUP);
4311                         list_del(&child->child_list);
4312                         free_event(child);
4313                         /*
4314                          * This matches the refcount bump in inherit_event();
4315                          * this can't be the last reference.
4316                          */
4317                         put_event(event);
4318                 }
4319
4320                 mutex_unlock(&event->child_mutex);
4321                 mutex_unlock(&ctx->mutex);
4322                 put_ctx(ctx);
4323                 goto again;
4324         }
4325         mutex_unlock(&event->child_mutex);
4326
4327 no_ctx:
4328         put_event(event); /* Must be the 'last' reference */
4329         return 0;
4330 }
4331 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4332
4333 /*
4334  * Called when the last reference to the file is gone.
4335  */
4336 static int perf_release(struct inode *inode, struct file *file)
4337 {
4338         perf_event_release_kernel(file->private_data);
4339         return 0;
4340 }
4341
4342 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4343 {
4344         struct perf_event *child;
4345         u64 total = 0;
4346
4347         *enabled = 0;
4348         *running = 0;
4349
4350         mutex_lock(&event->child_mutex);
4351
4352         (void)perf_event_read(event, false);
4353         total += perf_event_count(event);
4354
4355         *enabled += event->total_time_enabled +
4356                         atomic64_read(&event->child_total_time_enabled);
4357         *running += event->total_time_running +
4358                         atomic64_read(&event->child_total_time_running);
4359
4360         list_for_each_entry(child, &event->child_list, child_list) {
4361                 (void)perf_event_read(child, false);
4362                 total += perf_event_count(child);
4363                 *enabled += child->total_time_enabled;
4364                 *running += child->total_time_running;
4365         }
4366         mutex_unlock(&event->child_mutex);
4367
4368         return total;
4369 }
4370 EXPORT_SYMBOL_GPL(perf_event_read_value);
4371
4372 static int __perf_read_group_add(struct perf_event *leader,
4373                                         u64 read_format, u64 *values)
4374 {
4375         struct perf_event *sub;
4376         int n = 1; /* skip @nr */
4377         int ret;
4378
4379         ret = perf_event_read(leader, true);
4380         if (ret)
4381                 return ret;
4382
4383         /*
4384          * Since we co-schedule groups, {enabled,running} times of siblings
4385          * will be identical to those of the leader, so we only publish one
4386          * set.
4387          */
4388         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4389                 values[n++] += leader->total_time_enabled +
4390                         atomic64_read(&leader->child_total_time_enabled);
4391         }
4392
4393         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4394                 values[n++] += leader->total_time_running +
4395                         atomic64_read(&leader->child_total_time_running);
4396         }
4397
4398         /*
4399          * Write {count,id} tuples for every sibling.
4400          */
4401         values[n++] += perf_event_count(leader);
4402         if (read_format & PERF_FORMAT_ID)
4403                 values[n++] = primary_event_id(leader);
4404
4405         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4406                 values[n++] += perf_event_count(sub);
4407                 if (read_format & PERF_FORMAT_ID)
4408                         values[n++] = primary_event_id(sub);
4409         }
4410
4411         return 0;
4412 }
4413
4414 static int perf_read_group(struct perf_event *event,
4415                                    u64 read_format, char __user *buf)
4416 {
4417         struct perf_event *leader = event->group_leader, *child;
4418         struct perf_event_context *ctx = leader->ctx;
4419         int ret;
4420         u64 *values;
4421
4422         lockdep_assert_held(&ctx->mutex);
4423
4424         values = kzalloc(event->read_size, GFP_KERNEL);
4425         if (!values)
4426                 return -ENOMEM;
4427
4428         values[0] = 1 + leader->nr_siblings;
4429
4430         /*
4431          * By locking the child_mutex of the leader we effectively
4432          * lock the child list of all siblings.. XXX explain how.
4433          */
4434         mutex_lock(&leader->child_mutex);
4435
4436         ret = __perf_read_group_add(leader, read_format, values);
4437         if (ret)
4438                 goto unlock;
4439
4440         list_for_each_entry(child, &leader->child_list, child_list) {
4441                 ret = __perf_read_group_add(child, read_format, values);
4442                 if (ret)
4443                         goto unlock;
4444         }
4445
4446         mutex_unlock(&leader->child_mutex);
4447
4448         ret = event->read_size;
4449         if (copy_to_user(buf, values, event->read_size))
4450                 ret = -EFAULT;
4451         goto out;
4452
4453 unlock:
4454         mutex_unlock(&leader->child_mutex);
4455 out:
4456         kfree(values);
4457         return ret;
4458 }
4459
4460 static int perf_read_one(struct perf_event *event,
4461                                  u64 read_format, char __user *buf)
4462 {
4463         u64 enabled, running;
4464         u64 values[4];
4465         int n = 0;
4466
4467         values[n++] = perf_event_read_value(event, &enabled, &running);
4468         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4469                 values[n++] = enabled;
4470         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4471                 values[n++] = running;
4472         if (read_format & PERF_FORMAT_ID)
4473                 values[n++] = primary_event_id(event);
4474
4475         if (copy_to_user(buf, values, n * sizeof(u64)))
4476                 return -EFAULT;
4477
4478         return n * sizeof(u64);
4479 }
4480
4481 static bool is_event_hup(struct perf_event *event)
4482 {
4483         bool no_children;
4484
4485         if (event->state > PERF_EVENT_STATE_EXIT)
4486                 return false;
4487
4488         mutex_lock(&event->child_mutex);
4489         no_children = list_empty(&event->child_list);
4490         mutex_unlock(&event->child_mutex);
4491         return no_children;
4492 }
4493
4494 /*
4495  * Read the performance event - simple non blocking version for now
4496  */
4497 static ssize_t
4498 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4499 {
4500         u64 read_format = event->attr.read_format;
4501         int ret;
4502
4503         /*
4504          * Return end-of-file for a read on a event that is in
4505          * error state (i.e. because it was pinned but it couldn't be
4506          * scheduled on to the CPU at some point).
4507          */
4508         if (event->state == PERF_EVENT_STATE_ERROR)
4509                 return 0;
4510
4511         if (count < event->read_size)
4512                 return -ENOSPC;
4513
4514         WARN_ON_ONCE(event->ctx->parent_ctx);
4515         if (read_format & PERF_FORMAT_GROUP)
4516                 ret = perf_read_group(event, read_format, buf);
4517         else
4518                 ret = perf_read_one(event, read_format, buf);
4519
4520         return ret;
4521 }
4522
4523 static ssize_t
4524 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4525 {
4526         struct perf_event *event = file->private_data;
4527         struct perf_event_context *ctx;
4528         int ret;
4529
4530         ctx = perf_event_ctx_lock(event);
4531         ret = __perf_read(event, buf, count);
4532         perf_event_ctx_unlock(event, ctx);
4533
4534         return ret;
4535 }
4536
4537 static unsigned int perf_poll(struct file *file, poll_table *wait)
4538 {
4539         struct perf_event *event = file->private_data;
4540         struct ring_buffer *rb;
4541         unsigned int events = POLLHUP;
4542
4543         poll_wait(file, &event->waitq, wait);
4544
4545         if (is_event_hup(event))
4546                 return events;
4547
4548         /*
4549          * Pin the event->rb by taking event->mmap_mutex; otherwise
4550          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4551          */
4552         mutex_lock(&event->mmap_mutex);
4553         rb = event->rb;
4554         if (rb)
4555                 events = atomic_xchg(&rb->poll, 0);
4556         mutex_unlock(&event->mmap_mutex);
4557         return events;
4558 }
4559
4560 static void _perf_event_reset(struct perf_event *event)
4561 {
4562         (void)perf_event_read(event, false);
4563         local64_set(&event->count, 0);
4564         perf_event_update_userpage(event);
4565 }
4566
4567 /*
4568  * Holding the top-level event's child_mutex means that any
4569  * descendant process that has inherited this event will block
4570  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4571  * task existence requirements of perf_event_enable/disable.
4572  */
4573 static void perf_event_for_each_child(struct perf_event *event,
4574                                         void (*func)(struct perf_event *))
4575 {
4576         struct perf_event *child;
4577
4578         WARN_ON_ONCE(event->ctx->parent_ctx);
4579
4580         mutex_lock(&event->child_mutex);
4581         func(event);
4582         list_for_each_entry(child, &event->child_list, child_list)
4583                 func(child);
4584         mutex_unlock(&event->child_mutex);
4585 }
4586
4587 static void perf_event_for_each(struct perf_event *event,
4588                                   void (*func)(struct perf_event *))
4589 {
4590         struct perf_event_context *ctx = event->ctx;
4591         struct perf_event *sibling;
4592
4593         lockdep_assert_held(&ctx->mutex);
4594
4595         event = event->group_leader;
4596
4597         perf_event_for_each_child(event, func);
4598         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4599                 perf_event_for_each_child(sibling, func);
4600 }
4601
4602 static void __perf_event_period(struct perf_event *event,
4603                                 struct perf_cpu_context *cpuctx,
4604                                 struct perf_event_context *ctx,
4605                                 void *info)
4606 {
4607         u64 value = *((u64 *)info);
4608         bool active;
4609
4610         if (event->attr.freq) {
4611                 event->attr.sample_freq = value;
4612         } else {
4613                 event->attr.sample_period = value;
4614                 event->hw.sample_period = value;
4615         }
4616
4617         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4618         if (active) {
4619                 perf_pmu_disable(ctx->pmu);
4620                 /*
4621                  * We could be throttled; unthrottle now to avoid the tick
4622                  * trying to unthrottle while we already re-started the event.
4623                  */
4624                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4625                         event->hw.interrupts = 0;
4626                         perf_log_throttle(event, 1);
4627                 }
4628                 event->pmu->stop(event, PERF_EF_UPDATE);
4629         }
4630
4631         local64_set(&event->hw.period_left, 0);
4632
4633         if (active) {
4634                 event->pmu->start(event, PERF_EF_RELOAD);
4635                 perf_pmu_enable(ctx->pmu);
4636         }
4637 }
4638
4639 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4640 {
4641         u64 value;
4642
4643         if (!is_sampling_event(event))
4644                 return -EINVAL;
4645
4646         if (copy_from_user(&value, arg, sizeof(value)))
4647                 return -EFAULT;
4648
4649         if (!value)
4650                 return -EINVAL;
4651
4652         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4653                 return -EINVAL;
4654
4655         event_function_call(event, __perf_event_period, &value);
4656
4657         return 0;
4658 }
4659
4660 static const struct file_operations perf_fops;
4661
4662 static inline int perf_fget_light(int fd, struct fd *p)
4663 {
4664         struct fd f = fdget(fd);
4665         if (!f.file)
4666                 return -EBADF;
4667
4668         if (f.file->f_op != &perf_fops) {
4669                 fdput(f);
4670                 return -EBADF;
4671         }
4672         *p = f;
4673         return 0;
4674 }
4675
4676 static int perf_event_set_output(struct perf_event *event,
4677                                  struct perf_event *output_event);
4678 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4679 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4680
4681 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4682 {
4683         void (*func)(struct perf_event *);
4684         u32 flags = arg;
4685
4686         switch (cmd) {
4687         case PERF_EVENT_IOC_ENABLE:
4688                 func = _perf_event_enable;
4689                 break;
4690         case PERF_EVENT_IOC_DISABLE:
4691                 func = _perf_event_disable;
4692                 break;
4693         case PERF_EVENT_IOC_RESET:
4694                 func = _perf_event_reset;
4695                 break;
4696
4697         case PERF_EVENT_IOC_REFRESH:
4698                 return _perf_event_refresh(event, arg);
4699
4700         case PERF_EVENT_IOC_PERIOD:
4701                 return perf_event_period(event, (u64 __user *)arg);
4702
4703         case PERF_EVENT_IOC_ID:
4704         {
4705                 u64 id = primary_event_id(event);
4706
4707                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4708                         return -EFAULT;
4709                 return 0;
4710         }
4711
4712         case PERF_EVENT_IOC_SET_OUTPUT:
4713         {
4714                 int ret;
4715                 if (arg != -1) {
4716                         struct perf_event *output_event;
4717                         struct fd output;
4718                         ret = perf_fget_light(arg, &output);
4719                         if (ret)
4720                                 return ret;
4721                         output_event = output.file->private_data;
4722                         ret = perf_event_set_output(event, output_event);
4723                         fdput(output);
4724                 } else {
4725                         ret = perf_event_set_output(event, NULL);
4726                 }
4727                 return ret;
4728         }
4729
4730         case PERF_EVENT_IOC_SET_FILTER:
4731                 return perf_event_set_filter(event, (void __user *)arg);
4732
4733         case PERF_EVENT_IOC_SET_BPF:
4734                 return perf_event_set_bpf_prog(event, arg);
4735
4736         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4737                 struct ring_buffer *rb;
4738
4739                 rcu_read_lock();
4740                 rb = rcu_dereference(event->rb);
4741                 if (!rb || !rb->nr_pages) {
4742                         rcu_read_unlock();
4743                         return -EINVAL;
4744                 }
4745                 rb_toggle_paused(rb, !!arg);
4746                 rcu_read_unlock();
4747                 return 0;
4748         }
4749         default:
4750                 return -ENOTTY;
4751         }
4752
4753         if (flags & PERF_IOC_FLAG_GROUP)
4754                 perf_event_for_each(event, func);
4755         else
4756                 perf_event_for_each_child(event, func);
4757
4758         return 0;
4759 }
4760
4761 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4762 {
4763         struct perf_event *event = file->private_data;
4764         struct perf_event_context *ctx;
4765         long ret;
4766
4767         ctx = perf_event_ctx_lock(event);
4768         ret = _perf_ioctl(event, cmd, arg);
4769         perf_event_ctx_unlock(event, ctx);
4770
4771         return ret;
4772 }
4773
4774 #ifdef CONFIG_COMPAT
4775 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4776                                 unsigned long arg)
4777 {
4778         switch (_IOC_NR(cmd)) {
4779         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4780         case _IOC_NR(PERF_EVENT_IOC_ID):
4781                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4782                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4783                         cmd &= ~IOCSIZE_MASK;
4784                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4785                 }
4786                 break;
4787         }
4788         return perf_ioctl(file, cmd, arg);
4789 }
4790 #else
4791 # define perf_compat_ioctl NULL
4792 #endif
4793
4794 int perf_event_task_enable(void)
4795 {
4796         struct perf_event_context *ctx;
4797         struct perf_event *event;
4798
4799         mutex_lock(&current->perf_event_mutex);
4800         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4801                 ctx = perf_event_ctx_lock(event);
4802                 perf_event_for_each_child(event, _perf_event_enable);
4803                 perf_event_ctx_unlock(event, ctx);
4804         }
4805         mutex_unlock(&current->perf_event_mutex);
4806
4807         return 0;
4808 }
4809
4810 int perf_event_task_disable(void)
4811 {
4812         struct perf_event_context *ctx;
4813         struct perf_event *event;
4814
4815         mutex_lock(&current->perf_event_mutex);
4816         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4817                 ctx = perf_event_ctx_lock(event);
4818                 perf_event_for_each_child(event, _perf_event_disable);
4819                 perf_event_ctx_unlock(event, ctx);
4820         }
4821         mutex_unlock(&current->perf_event_mutex);
4822
4823         return 0;
4824 }
4825
4826 static int perf_event_index(struct perf_event *event)
4827 {
4828         if (event->hw.state & PERF_HES_STOPPED)
4829                 return 0;
4830
4831         if (event->state != PERF_EVENT_STATE_ACTIVE)
4832                 return 0;
4833
4834         return event->pmu->event_idx(event);
4835 }
4836
4837 static void calc_timer_values(struct perf_event *event,
4838                                 u64 *now,
4839                                 u64 *enabled,
4840                                 u64 *running)
4841 {
4842         u64 ctx_time;
4843
4844         *now = perf_clock();
4845         ctx_time = event->shadow_ctx_time + *now;
4846         *enabled = ctx_time - event->tstamp_enabled;
4847         *running = ctx_time - event->tstamp_running;
4848 }
4849
4850 static void perf_event_init_userpage(struct perf_event *event)
4851 {
4852         struct perf_event_mmap_page *userpg;
4853         struct ring_buffer *rb;
4854
4855         rcu_read_lock();
4856         rb = rcu_dereference(event->rb);
4857         if (!rb)
4858                 goto unlock;
4859
4860         userpg = rb->user_page;
4861
4862         /* Allow new userspace to detect that bit 0 is deprecated */
4863         userpg->cap_bit0_is_deprecated = 1;
4864         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4865         userpg->data_offset = PAGE_SIZE;
4866         userpg->data_size = perf_data_size(rb);
4867
4868 unlock:
4869         rcu_read_unlock();
4870 }
4871
4872 void __weak arch_perf_update_userpage(
4873         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4874 {
4875 }
4876
4877 /*
4878  * Callers need to ensure there can be no nesting of this function, otherwise
4879  * the seqlock logic goes bad. We can not serialize this because the arch
4880  * code calls this from NMI context.
4881  */
4882 void perf_event_update_userpage(struct perf_event *event)
4883 {
4884         struct perf_event_mmap_page *userpg;
4885         struct ring_buffer *rb;
4886         u64 enabled, running, now;
4887
4888         rcu_read_lock();
4889         rb = rcu_dereference(event->rb);
4890         if (!rb)
4891                 goto unlock;
4892
4893         /*
4894          * compute total_time_enabled, total_time_running
4895          * based on snapshot values taken when the event
4896          * was last scheduled in.
4897          *
4898          * we cannot simply called update_context_time()
4899          * because of locking issue as we can be called in
4900          * NMI context
4901          */
4902         calc_timer_values(event, &now, &enabled, &running);
4903
4904         userpg = rb->user_page;
4905         /*
4906          * Disable preemption so as to not let the corresponding user-space
4907          * spin too long if we get preempted.
4908          */
4909         preempt_disable();
4910         ++userpg->lock;
4911         barrier();
4912         userpg->index = perf_event_index(event);
4913         userpg->offset = perf_event_count(event);
4914         if (userpg->index)
4915                 userpg->offset -= local64_read(&event->hw.prev_count);
4916
4917         userpg->time_enabled = enabled +
4918                         atomic64_read(&event->child_total_time_enabled);
4919
4920         userpg->time_running = running +
4921                         atomic64_read(&event->child_total_time_running);
4922
4923         arch_perf_update_userpage(event, userpg, now);
4924
4925         barrier();
4926         ++userpg->lock;
4927         preempt_enable();
4928 unlock:
4929         rcu_read_unlock();
4930 }
4931
4932 static int perf_mmap_fault(struct vm_fault *vmf)
4933 {
4934         struct perf_event *event = vmf->vma->vm_file->private_data;
4935         struct ring_buffer *rb;
4936         int ret = VM_FAULT_SIGBUS;
4937
4938         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4939                 if (vmf->pgoff == 0)
4940                         ret = 0;
4941                 return ret;
4942         }
4943
4944         rcu_read_lock();
4945         rb = rcu_dereference(event->rb);
4946         if (!rb)
4947                 goto unlock;
4948
4949         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4950                 goto unlock;
4951
4952         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4953         if (!vmf->page)
4954                 goto unlock;
4955
4956         get_page(vmf->page);
4957         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4958         vmf->page->index   = vmf->pgoff;
4959
4960         ret = 0;
4961 unlock:
4962         rcu_read_unlock();
4963
4964         return ret;
4965 }
4966
4967 static void ring_buffer_attach(struct perf_event *event,
4968                                struct ring_buffer *rb)
4969 {
4970         struct ring_buffer *old_rb = NULL;
4971         unsigned long flags;
4972
4973         if (event->rb) {
4974                 /*
4975                  * Should be impossible, we set this when removing
4976                  * event->rb_entry and wait/clear when adding event->rb_entry.
4977                  */
4978                 WARN_ON_ONCE(event->rcu_pending);
4979
4980                 old_rb = event->rb;
4981                 spin_lock_irqsave(&old_rb->event_lock, flags);
4982                 list_del_rcu(&event->rb_entry);
4983                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4984
4985                 event->rcu_batches = get_state_synchronize_rcu();
4986                 event->rcu_pending = 1;
4987         }
4988
4989         if (rb) {
4990                 if (event->rcu_pending) {
4991                         cond_synchronize_rcu(event->rcu_batches);
4992                         event->rcu_pending = 0;
4993                 }
4994
4995                 spin_lock_irqsave(&rb->event_lock, flags);
4996                 list_add_rcu(&event->rb_entry, &rb->event_list);
4997                 spin_unlock_irqrestore(&rb->event_lock, flags);
4998         }
4999
5000         /*
5001          * Avoid racing with perf_mmap_close(AUX): stop the event
5002          * before swizzling the event::rb pointer; if it's getting
5003          * unmapped, its aux_mmap_count will be 0 and it won't
5004          * restart. See the comment in __perf_pmu_output_stop().
5005          *
5006          * Data will inevitably be lost when set_output is done in
5007          * mid-air, but then again, whoever does it like this is
5008          * not in for the data anyway.
5009          */
5010         if (has_aux(event))
5011                 perf_event_stop(event, 0);
5012
5013         rcu_assign_pointer(event->rb, rb);
5014
5015         if (old_rb) {
5016                 ring_buffer_put(old_rb);
5017                 /*
5018                  * Since we detached before setting the new rb, so that we
5019                  * could attach the new rb, we could have missed a wakeup.
5020                  * Provide it now.
5021                  */
5022                 wake_up_all(&event->waitq);
5023         }
5024 }
5025
5026 static void ring_buffer_wakeup(struct perf_event *event)
5027 {
5028         struct ring_buffer *rb;
5029
5030         rcu_read_lock();
5031         rb = rcu_dereference(event->rb);
5032         if (rb) {
5033                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5034                         wake_up_all(&event->waitq);
5035         }
5036         rcu_read_unlock();
5037 }
5038
5039 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5040 {
5041         struct ring_buffer *rb;
5042
5043         rcu_read_lock();
5044         rb = rcu_dereference(event->rb);
5045         if (rb) {
5046                 if (!atomic_inc_not_zero(&rb->refcount))
5047                         rb = NULL;
5048         }
5049         rcu_read_unlock();
5050
5051         return rb;
5052 }
5053
5054 void ring_buffer_put(struct ring_buffer *rb)
5055 {
5056         if (!atomic_dec_and_test(&rb->refcount))
5057                 return;
5058
5059         WARN_ON_ONCE(!list_empty(&rb->event_list));
5060
5061         call_rcu(&rb->rcu_head, rb_free_rcu);
5062 }
5063
5064 static void perf_mmap_open(struct vm_area_struct *vma)
5065 {
5066         struct perf_event *event = vma->vm_file->private_data;
5067
5068         atomic_inc(&event->mmap_count);
5069         atomic_inc(&event->rb->mmap_count);
5070
5071         if (vma->vm_pgoff)
5072                 atomic_inc(&event->rb->aux_mmap_count);
5073
5074         if (event->pmu->event_mapped)
5075                 event->pmu->event_mapped(event);
5076 }
5077
5078 static void perf_pmu_output_stop(struct perf_event *event);
5079
5080 /*
5081  * A buffer can be mmap()ed multiple times; either directly through the same
5082  * event, or through other events by use of perf_event_set_output().
5083  *
5084  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5085  * the buffer here, where we still have a VM context. This means we need
5086  * to detach all events redirecting to us.
5087  */
5088 static void perf_mmap_close(struct vm_area_struct *vma)
5089 {
5090         struct perf_event *event = vma->vm_file->private_data;
5091
5092         struct ring_buffer *rb = ring_buffer_get(event);
5093         struct user_struct *mmap_user = rb->mmap_user;
5094         int mmap_locked = rb->mmap_locked;
5095         unsigned long size = perf_data_size(rb);
5096
5097         if (event->pmu->event_unmapped)
5098                 event->pmu->event_unmapped(event);
5099
5100         /*
5101          * rb->aux_mmap_count will always drop before rb->mmap_count and
5102          * event->mmap_count, so it is ok to use event->mmap_mutex to
5103          * serialize with perf_mmap here.
5104          */
5105         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5106             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5107                 /*
5108                  * Stop all AUX events that are writing to this buffer,
5109                  * so that we can free its AUX pages and corresponding PMU
5110                  * data. Note that after rb::aux_mmap_count dropped to zero,
5111                  * they won't start any more (see perf_aux_output_begin()).
5112                  */
5113                 perf_pmu_output_stop(event);
5114
5115                 /* now it's safe to free the pages */
5116                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5117                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5118
5119                 /* this has to be the last one */
5120                 rb_free_aux(rb);
5121                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5122
5123                 mutex_unlock(&event->mmap_mutex);
5124         }
5125
5126         atomic_dec(&rb->mmap_count);
5127
5128         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5129                 goto out_put;
5130
5131         ring_buffer_attach(event, NULL);
5132         mutex_unlock(&event->mmap_mutex);
5133
5134         /* If there's still other mmap()s of this buffer, we're done. */
5135         if (atomic_read(&rb->mmap_count))
5136                 goto out_put;
5137
5138         /*
5139          * No other mmap()s, detach from all other events that might redirect
5140          * into the now unreachable buffer. Somewhat complicated by the
5141          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5142          */
5143 again:
5144         rcu_read_lock();
5145         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5146                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5147                         /*
5148                          * This event is en-route to free_event() which will
5149                          * detach it and remove it from the list.
5150                          */
5151                         continue;
5152                 }
5153                 rcu_read_unlock();
5154
5155                 mutex_lock(&event->mmap_mutex);
5156                 /*
5157                  * Check we didn't race with perf_event_set_output() which can
5158                  * swizzle the rb from under us while we were waiting to
5159                  * acquire mmap_mutex.
5160                  *
5161                  * If we find a different rb; ignore this event, a next
5162                  * iteration will no longer find it on the list. We have to
5163                  * still restart the iteration to make sure we're not now
5164                  * iterating the wrong list.
5165                  */
5166                 if (event->rb == rb)
5167                         ring_buffer_attach(event, NULL);
5168
5169                 mutex_unlock(&event->mmap_mutex);
5170                 put_event(event);
5171
5172                 /*
5173                  * Restart the iteration; either we're on the wrong list or
5174                  * destroyed its integrity by doing a deletion.
5175                  */
5176                 goto again;
5177         }
5178         rcu_read_unlock();
5179
5180         /*
5181          * It could be there's still a few 0-ref events on the list; they'll
5182          * get cleaned up by free_event() -- they'll also still have their
5183          * ref on the rb and will free it whenever they are done with it.
5184          *
5185          * Aside from that, this buffer is 'fully' detached and unmapped,
5186          * undo the VM accounting.
5187          */
5188
5189         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5190         vma->vm_mm->pinned_vm -= mmap_locked;
5191         free_uid(mmap_user);
5192
5193 out_put:
5194         ring_buffer_put(rb); /* could be last */
5195 }
5196
5197 static const struct vm_operations_struct perf_mmap_vmops = {
5198         .open           = perf_mmap_open,
5199         .close          = perf_mmap_close, /* non mergable */
5200         .fault          = perf_mmap_fault,
5201         .page_mkwrite   = perf_mmap_fault,
5202 };
5203
5204 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5205 {
5206         struct perf_event *event = file->private_data;
5207         unsigned long user_locked, user_lock_limit;
5208         struct user_struct *user = current_user();
5209         unsigned long locked, lock_limit;
5210         struct ring_buffer *rb = NULL;
5211         unsigned long vma_size;
5212         unsigned long nr_pages;
5213         long user_extra = 0, extra = 0;
5214         int ret = 0, flags = 0;
5215
5216         /*
5217          * Don't allow mmap() of inherited per-task counters. This would
5218          * create a performance issue due to all children writing to the
5219          * same rb.
5220          */
5221         if (event->cpu == -1 && event->attr.inherit)
5222                 return -EINVAL;
5223
5224         if (!(vma->vm_flags & VM_SHARED))
5225                 return -EINVAL;
5226
5227         vma_size = vma->vm_end - vma->vm_start;
5228
5229         if (vma->vm_pgoff == 0) {
5230                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5231         } else {
5232                 /*
5233                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5234                  * mapped, all subsequent mappings should have the same size
5235                  * and offset. Must be above the normal perf buffer.
5236                  */
5237                 u64 aux_offset, aux_size;
5238
5239                 if (!event->rb)
5240                         return -EINVAL;
5241
5242                 nr_pages = vma_size / PAGE_SIZE;
5243
5244                 mutex_lock(&event->mmap_mutex);
5245                 ret = -EINVAL;
5246
5247                 rb = event->rb;
5248                 if (!rb)
5249                         goto aux_unlock;
5250
5251                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5252                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5253
5254                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5255                         goto aux_unlock;
5256
5257                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5258                         goto aux_unlock;
5259
5260                 /* already mapped with a different offset */
5261                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5262                         goto aux_unlock;
5263
5264                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5265                         goto aux_unlock;
5266
5267                 /* already mapped with a different size */
5268                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5269                         goto aux_unlock;
5270
5271                 if (!is_power_of_2(nr_pages))
5272                         goto aux_unlock;
5273
5274                 if (!atomic_inc_not_zero(&rb->mmap_count))
5275                         goto aux_unlock;
5276
5277                 if (rb_has_aux(rb)) {
5278                         atomic_inc(&rb->aux_mmap_count);
5279                         ret = 0;
5280                         goto unlock;
5281                 }
5282
5283                 atomic_set(&rb->aux_mmap_count, 1);
5284                 user_extra = nr_pages;
5285
5286                 goto accounting;
5287         }
5288
5289         /*
5290          * If we have rb pages ensure they're a power-of-two number, so we
5291          * can do bitmasks instead of modulo.
5292          */
5293         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5294                 return -EINVAL;
5295
5296         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5297                 return -EINVAL;
5298
5299         WARN_ON_ONCE(event->ctx->parent_ctx);
5300 again:
5301         mutex_lock(&event->mmap_mutex);
5302         if (event->rb) {
5303                 if (event->rb->nr_pages != nr_pages) {
5304                         ret = -EINVAL;
5305                         goto unlock;
5306                 }
5307
5308                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5309                         /*
5310                          * Raced against perf_mmap_close() through
5311                          * perf_event_set_output(). Try again, hope for better
5312                          * luck.
5313                          */
5314                         mutex_unlock(&event->mmap_mutex);
5315                         goto again;
5316                 }
5317
5318                 goto unlock;
5319         }
5320
5321         user_extra = nr_pages + 1;
5322
5323 accounting:
5324         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5325
5326         /*
5327          * Increase the limit linearly with more CPUs:
5328          */
5329         user_lock_limit *= num_online_cpus();
5330
5331         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5332
5333         if (user_locked > user_lock_limit)
5334                 extra = user_locked - user_lock_limit;
5335
5336         lock_limit = rlimit(RLIMIT_MEMLOCK);
5337         lock_limit >>= PAGE_SHIFT;
5338         locked = vma->vm_mm->pinned_vm + extra;
5339
5340         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5341                 !capable(CAP_IPC_LOCK)) {
5342                 ret = -EPERM;
5343                 goto unlock;
5344         }
5345
5346         WARN_ON(!rb && event->rb);
5347
5348         if (vma->vm_flags & VM_WRITE)
5349                 flags |= RING_BUFFER_WRITABLE;
5350
5351         if (!rb) {
5352                 rb = rb_alloc(nr_pages,
5353                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5354                               event->cpu, flags);
5355
5356                 if (!rb) {
5357                         ret = -ENOMEM;
5358                         goto unlock;
5359                 }
5360
5361                 atomic_set(&rb->mmap_count, 1);
5362                 rb->mmap_user = get_current_user();
5363                 rb->mmap_locked = extra;
5364
5365                 ring_buffer_attach(event, rb);
5366
5367                 perf_event_init_userpage(event);
5368                 perf_event_update_userpage(event);
5369         } else {
5370                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5371                                    event->attr.aux_watermark, flags);
5372                 if (!ret)
5373                         rb->aux_mmap_locked = extra;
5374         }
5375
5376 unlock:
5377         if (!ret) {
5378                 atomic_long_add(user_extra, &user->locked_vm);
5379                 vma->vm_mm->pinned_vm += extra;
5380
5381                 atomic_inc(&event->mmap_count);
5382         } else if (rb) {
5383                 atomic_dec(&rb->mmap_count);
5384         }
5385 aux_unlock:
5386         mutex_unlock(&event->mmap_mutex);
5387
5388         /*
5389          * Since pinned accounting is per vm we cannot allow fork() to copy our
5390          * vma.
5391          */
5392         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5393         vma->vm_ops = &perf_mmap_vmops;
5394
5395         if (event->pmu->event_mapped)
5396                 event->pmu->event_mapped(event);
5397
5398         return ret;
5399 }
5400
5401 static int perf_fasync(int fd, struct file *filp, int on)
5402 {
5403         struct inode *inode = file_inode(filp);
5404         struct perf_event *event = filp->private_data;
5405         int retval;
5406
5407         inode_lock(inode);
5408         retval = fasync_helper(fd, filp, on, &event->fasync);
5409         inode_unlock(inode);
5410
5411         if (retval < 0)
5412                 return retval;
5413
5414         return 0;
5415 }
5416
5417 static const struct file_operations perf_fops = {
5418         .llseek                 = no_llseek,
5419         .release                = perf_release,
5420         .read                   = perf_read,
5421         .poll                   = perf_poll,
5422         .unlocked_ioctl         = perf_ioctl,
5423         .compat_ioctl           = perf_compat_ioctl,
5424         .mmap                   = perf_mmap,
5425         .fasync                 = perf_fasync,
5426 };
5427
5428 /*
5429  * Perf event wakeup
5430  *
5431  * If there's data, ensure we set the poll() state and publish everything
5432  * to user-space before waking everybody up.
5433  */
5434
5435 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5436 {
5437         /* only the parent has fasync state */
5438         if (event->parent)
5439                 event = event->parent;
5440         return &event->fasync;
5441 }
5442
5443 void perf_event_wakeup(struct perf_event *event)
5444 {
5445         ring_buffer_wakeup(event);
5446
5447         if (event->pending_kill) {
5448                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5449                 event->pending_kill = 0;
5450         }
5451 }
5452
5453 static void perf_pending_event(struct irq_work *entry)
5454 {
5455         struct perf_event *event = container_of(entry,
5456                         struct perf_event, pending);
5457         int rctx;
5458
5459         rctx = perf_swevent_get_recursion_context();
5460         /*
5461          * If we 'fail' here, that's OK, it means recursion is already disabled
5462          * and we won't recurse 'further'.
5463          */
5464
5465         if (event->pending_disable) {
5466                 event->pending_disable = 0;
5467                 perf_event_disable_local(event);
5468         }
5469
5470         if (event->pending_wakeup) {
5471                 event->pending_wakeup = 0;
5472                 perf_event_wakeup(event);
5473         }
5474
5475         if (rctx >= 0)
5476                 perf_swevent_put_recursion_context(rctx);
5477 }
5478
5479 /*
5480  * We assume there is only KVM supporting the callbacks.
5481  * Later on, we might change it to a list if there is
5482  * another virtualization implementation supporting the callbacks.
5483  */
5484 struct perf_guest_info_callbacks *perf_guest_cbs;
5485
5486 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5487 {
5488         perf_guest_cbs = cbs;
5489         return 0;
5490 }
5491 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5492
5493 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5494 {
5495         perf_guest_cbs = NULL;
5496         return 0;
5497 }
5498 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5499
5500 static void
5501 perf_output_sample_regs(struct perf_output_handle *handle,
5502                         struct pt_regs *regs, u64 mask)
5503 {
5504         int bit;
5505         DECLARE_BITMAP(_mask, 64);
5506
5507         bitmap_from_u64(_mask, mask);
5508         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5509                 u64 val;
5510
5511                 val = perf_reg_value(regs, bit);
5512                 perf_output_put(handle, val);
5513         }
5514 }
5515
5516 static void perf_sample_regs_user(struct perf_regs *regs_user,
5517                                   struct pt_regs *regs,
5518                                   struct pt_regs *regs_user_copy)
5519 {
5520         if (user_mode(regs)) {
5521                 regs_user->abi = perf_reg_abi(current);
5522                 regs_user->regs = regs;
5523         } else if (current->mm) {
5524                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5525         } else {
5526                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5527                 regs_user->regs = NULL;
5528         }
5529 }
5530
5531 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5532                                   struct pt_regs *regs)
5533 {
5534         regs_intr->regs = regs;
5535         regs_intr->abi  = perf_reg_abi(current);
5536 }
5537
5538
5539 /*
5540  * Get remaining task size from user stack pointer.
5541  *
5542  * It'd be better to take stack vma map and limit this more
5543  * precisly, but there's no way to get it safely under interrupt,
5544  * so using TASK_SIZE as limit.
5545  */
5546 static u64 perf_ustack_task_size(struct pt_regs *regs)
5547 {
5548         unsigned long addr = perf_user_stack_pointer(regs);
5549
5550         if (!addr || addr >= TASK_SIZE)
5551                 return 0;
5552
5553         return TASK_SIZE - addr;
5554 }
5555
5556 static u16
5557 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5558                         struct pt_regs *regs)
5559 {
5560         u64 task_size;
5561
5562         /* No regs, no stack pointer, no dump. */
5563         if (!regs)
5564                 return 0;
5565
5566         /*
5567          * Check if we fit in with the requested stack size into the:
5568          * - TASK_SIZE
5569          *   If we don't, we limit the size to the TASK_SIZE.
5570          *
5571          * - remaining sample size
5572          *   If we don't, we customize the stack size to
5573          *   fit in to the remaining sample size.
5574          */
5575
5576         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5577         stack_size = min(stack_size, (u16) task_size);
5578
5579         /* Current header size plus static size and dynamic size. */
5580         header_size += 2 * sizeof(u64);
5581
5582         /* Do we fit in with the current stack dump size? */
5583         if ((u16) (header_size + stack_size) < header_size) {
5584                 /*
5585                  * If we overflow the maximum size for the sample,
5586                  * we customize the stack dump size to fit in.
5587                  */
5588                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5589                 stack_size = round_up(stack_size, sizeof(u64));
5590         }
5591
5592         return stack_size;
5593 }
5594
5595 static void
5596 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5597                           struct pt_regs *regs)
5598 {
5599         /* Case of a kernel thread, nothing to dump */
5600         if (!regs) {
5601                 u64 size = 0;
5602                 perf_output_put(handle, size);
5603         } else {
5604                 unsigned long sp;
5605                 unsigned int rem;
5606                 u64 dyn_size;
5607
5608                 /*
5609                  * We dump:
5610                  * static size
5611                  *   - the size requested by user or the best one we can fit
5612                  *     in to the sample max size
5613                  * data
5614                  *   - user stack dump data
5615                  * dynamic size
5616                  *   - the actual dumped size
5617                  */
5618
5619                 /* Static size. */
5620                 perf_output_put(handle, dump_size);
5621
5622                 /* Data. */
5623                 sp = perf_user_stack_pointer(regs);
5624                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5625                 dyn_size = dump_size - rem;
5626
5627                 perf_output_skip(handle, rem);
5628
5629                 /* Dynamic size. */
5630                 perf_output_put(handle, dyn_size);
5631         }
5632 }
5633
5634 static void __perf_event_header__init_id(struct perf_event_header *header,
5635                                          struct perf_sample_data *data,
5636                                          struct perf_event *event)
5637 {
5638         u64 sample_type = event->attr.sample_type;
5639
5640         data->type = sample_type;
5641         header->size += event->id_header_size;
5642
5643         if (sample_type & PERF_SAMPLE_TID) {
5644                 /* namespace issues */
5645                 data->tid_entry.pid = perf_event_pid(event, current);
5646                 data->tid_entry.tid = perf_event_tid(event, current);
5647         }
5648
5649         if (sample_type & PERF_SAMPLE_TIME)
5650                 data->time = perf_event_clock(event);
5651
5652         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5653                 data->id = primary_event_id(event);
5654
5655         if (sample_type & PERF_SAMPLE_STREAM_ID)
5656                 data->stream_id = event->id;
5657
5658         if (sample_type & PERF_SAMPLE_CPU) {
5659                 data->cpu_entry.cpu      = raw_smp_processor_id();
5660                 data->cpu_entry.reserved = 0;
5661         }
5662 }
5663
5664 void perf_event_header__init_id(struct perf_event_header *header,
5665                                 struct perf_sample_data *data,
5666                                 struct perf_event *event)
5667 {
5668         if (event->attr.sample_id_all)
5669                 __perf_event_header__init_id(header, data, event);
5670 }
5671
5672 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5673                                            struct perf_sample_data *data)
5674 {
5675         u64 sample_type = data->type;
5676
5677         if (sample_type & PERF_SAMPLE_TID)
5678                 perf_output_put(handle, data->tid_entry);
5679
5680         if (sample_type & PERF_SAMPLE_TIME)
5681                 perf_output_put(handle, data->time);
5682
5683         if (sample_type & PERF_SAMPLE_ID)
5684                 perf_output_put(handle, data->id);
5685
5686         if (sample_type & PERF_SAMPLE_STREAM_ID)
5687                 perf_output_put(handle, data->stream_id);
5688
5689         if (sample_type & PERF_SAMPLE_CPU)
5690                 perf_output_put(handle, data->cpu_entry);
5691
5692         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5693                 perf_output_put(handle, data->id);
5694 }
5695
5696 void perf_event__output_id_sample(struct perf_event *event,
5697                                   struct perf_output_handle *handle,
5698                                   struct perf_sample_data *sample)
5699 {
5700         if (event->attr.sample_id_all)
5701                 __perf_event__output_id_sample(handle, sample);
5702 }
5703
5704 static void perf_output_read_one(struct perf_output_handle *handle,
5705                                  struct perf_event *event,
5706                                  u64 enabled, u64 running)
5707 {
5708         u64 read_format = event->attr.read_format;
5709         u64 values[4];
5710         int n = 0;
5711
5712         values[n++] = perf_event_count(event);
5713         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5714                 values[n++] = enabled +
5715                         atomic64_read(&event->child_total_time_enabled);
5716         }
5717         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5718                 values[n++] = running +
5719                         atomic64_read(&event->child_total_time_running);
5720         }
5721         if (read_format & PERF_FORMAT_ID)
5722                 values[n++] = primary_event_id(event);
5723
5724         __output_copy(handle, values, n * sizeof(u64));
5725 }
5726
5727 static void perf_output_read_group(struct perf_output_handle *handle,
5728                             struct perf_event *event,
5729                             u64 enabled, u64 running)
5730 {
5731         struct perf_event *leader = event->group_leader, *sub;
5732         u64 read_format = event->attr.read_format;
5733         u64 values[5];
5734         int n = 0;
5735
5736         values[n++] = 1 + leader->nr_siblings;
5737
5738         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5739                 values[n++] = enabled;
5740
5741         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5742                 values[n++] = running;
5743
5744         if (leader != event)
5745                 leader->pmu->read(leader);
5746
5747         values[n++] = perf_event_count(leader);
5748         if (read_format & PERF_FORMAT_ID)
5749                 values[n++] = primary_event_id(leader);
5750
5751         __output_copy(handle, values, n * sizeof(u64));
5752
5753         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5754                 n = 0;
5755
5756                 if ((sub != event) &&
5757                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5758                         sub->pmu->read(sub);
5759
5760                 values[n++] = perf_event_count(sub);
5761                 if (read_format & PERF_FORMAT_ID)
5762                         values[n++] = primary_event_id(sub);
5763
5764                 __output_copy(handle, values, n * sizeof(u64));
5765         }
5766 }
5767
5768 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5769                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5770
5771 /*
5772  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5773  *
5774  * The problem is that its both hard and excessively expensive to iterate the
5775  * child list, not to mention that its impossible to IPI the children running
5776  * on another CPU, from interrupt/NMI context.
5777  */
5778 static void perf_output_read(struct perf_output_handle *handle,
5779                              struct perf_event *event)
5780 {
5781         u64 enabled = 0, running = 0, now;
5782         u64 read_format = event->attr.read_format;
5783
5784         /*
5785          * compute total_time_enabled, total_time_running
5786          * based on snapshot values taken when the event
5787          * was last scheduled in.
5788          *
5789          * we cannot simply called update_context_time()
5790          * because of locking issue as we are called in
5791          * NMI context
5792          */
5793         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5794                 calc_timer_values(event, &now, &enabled, &running);
5795
5796         if (event->attr.read_format & PERF_FORMAT_GROUP)
5797                 perf_output_read_group(handle, event, enabled, running);
5798         else
5799                 perf_output_read_one(handle, event, enabled, running);
5800 }
5801
5802 void perf_output_sample(struct perf_output_handle *handle,
5803                         struct perf_event_header *header,
5804                         struct perf_sample_data *data,
5805                         struct perf_event *event)
5806 {
5807         u64 sample_type = data->type;
5808
5809         perf_output_put(handle, *header);
5810
5811         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5812                 perf_output_put(handle, data->id);
5813
5814         if (sample_type & PERF_SAMPLE_IP)
5815                 perf_output_put(handle, data->ip);
5816
5817         if (sample_type & PERF_SAMPLE_TID)
5818                 perf_output_put(handle, data->tid_entry);
5819
5820         if (sample_type & PERF_SAMPLE_TIME)
5821                 perf_output_put(handle, data->time);
5822
5823         if (sample_type & PERF_SAMPLE_ADDR)
5824                 perf_output_put(handle, data->addr);
5825
5826         if (sample_type & PERF_SAMPLE_ID)
5827                 perf_output_put(handle, data->id);
5828
5829         if (sample_type & PERF_SAMPLE_STREAM_ID)
5830                 perf_output_put(handle, data->stream_id);
5831
5832         if (sample_type & PERF_SAMPLE_CPU)
5833                 perf_output_put(handle, data->cpu_entry);
5834
5835         if (sample_type & PERF_SAMPLE_PERIOD)
5836                 perf_output_put(handle, data->period);
5837
5838         if (sample_type & PERF_SAMPLE_READ)
5839                 perf_output_read(handle, event);
5840
5841         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5842                 if (data->callchain) {
5843                         int size = 1;
5844
5845                         if (data->callchain)
5846                                 size += data->callchain->nr;
5847
5848                         size *= sizeof(u64);
5849
5850                         __output_copy(handle, data->callchain, size);
5851                 } else {
5852                         u64 nr = 0;
5853                         perf_output_put(handle, nr);
5854                 }
5855         }
5856
5857         if (sample_type & PERF_SAMPLE_RAW) {
5858                 struct perf_raw_record *raw = data->raw;
5859
5860                 if (raw) {
5861                         struct perf_raw_frag *frag = &raw->frag;
5862
5863                         perf_output_put(handle, raw->size);
5864                         do {
5865                                 if (frag->copy) {
5866                                         __output_custom(handle, frag->copy,
5867                                                         frag->data, frag->size);
5868                                 } else {
5869                                         __output_copy(handle, frag->data,
5870                                                       frag->size);
5871                                 }
5872                                 if (perf_raw_frag_last(frag))
5873                                         break;
5874                                 frag = frag->next;
5875                         } while (1);
5876                         if (frag->pad)
5877                                 __output_skip(handle, NULL, frag->pad);
5878                 } else {
5879                         struct {
5880                                 u32     size;
5881                                 u32     data;
5882                         } raw = {
5883                                 .size = sizeof(u32),
5884                                 .data = 0,
5885                         };
5886                         perf_output_put(handle, raw);
5887                 }
5888         }
5889
5890         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5891                 if (data->br_stack) {
5892                         size_t size;
5893
5894                         size = data->br_stack->nr
5895                              * sizeof(struct perf_branch_entry);
5896
5897                         perf_output_put(handle, data->br_stack->nr);
5898                         perf_output_copy(handle, data->br_stack->entries, size);
5899                 } else {
5900                         /*
5901                          * we always store at least the value of nr
5902                          */
5903                         u64 nr = 0;
5904                         perf_output_put(handle, nr);
5905                 }
5906         }
5907
5908         if (sample_type & PERF_SAMPLE_REGS_USER) {
5909                 u64 abi = data->regs_user.abi;
5910
5911                 /*
5912                  * If there are no regs to dump, notice it through
5913                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5914                  */
5915                 perf_output_put(handle, abi);
5916
5917                 if (abi) {
5918                         u64 mask = event->attr.sample_regs_user;
5919                         perf_output_sample_regs(handle,
5920                                                 data->regs_user.regs,
5921                                                 mask);
5922                 }
5923         }
5924
5925         if (sample_type & PERF_SAMPLE_STACK_USER) {
5926                 perf_output_sample_ustack(handle,
5927                                           data->stack_user_size,
5928                                           data->regs_user.regs);
5929         }
5930
5931         if (sample_type & PERF_SAMPLE_WEIGHT)
5932                 perf_output_put(handle, data->weight);
5933
5934         if (sample_type & PERF_SAMPLE_DATA_SRC)
5935                 perf_output_put(handle, data->data_src.val);
5936
5937         if (sample_type & PERF_SAMPLE_TRANSACTION)
5938                 perf_output_put(handle, data->txn);
5939
5940         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5941                 u64 abi = data->regs_intr.abi;
5942                 /*
5943                  * If there are no regs to dump, notice it through
5944                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5945                  */
5946                 perf_output_put(handle, abi);
5947
5948                 if (abi) {
5949                         u64 mask = event->attr.sample_regs_intr;
5950
5951                         perf_output_sample_regs(handle,
5952                                                 data->regs_intr.regs,
5953                                                 mask);
5954                 }
5955         }
5956
5957         if (!event->attr.watermark) {
5958                 int wakeup_events = event->attr.wakeup_events;
5959
5960                 if (wakeup_events) {
5961                         struct ring_buffer *rb = handle->rb;
5962                         int events = local_inc_return(&rb->events);
5963
5964                         if (events >= wakeup_events) {
5965                                 local_sub(wakeup_events, &rb->events);
5966                                 local_inc(&rb->wakeup);
5967                         }
5968                 }
5969         }
5970 }
5971
5972 void perf_prepare_sample(struct perf_event_header *header,
5973                          struct perf_sample_data *data,
5974                          struct perf_event *event,
5975                          struct pt_regs *regs)
5976 {
5977         u64 sample_type = event->attr.sample_type;
5978
5979         header->type = PERF_RECORD_SAMPLE;
5980         header->size = sizeof(*header) + event->header_size;
5981
5982         header->misc = 0;
5983         header->misc |= perf_misc_flags(regs);
5984
5985         __perf_event_header__init_id(header, data, event);
5986
5987         if (sample_type & PERF_SAMPLE_IP)
5988                 data->ip = perf_instruction_pointer(regs);
5989
5990         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5991                 int size = 1;
5992
5993                 data->callchain = perf_callchain(event, regs);
5994
5995                 if (data->callchain)
5996                         size += data->callchain->nr;
5997
5998                 header->size += size * sizeof(u64);
5999         }
6000
6001         if (sample_type & PERF_SAMPLE_RAW) {
6002                 struct perf_raw_record *raw = data->raw;
6003                 int size;
6004
6005                 if (raw) {
6006                         struct perf_raw_frag *frag = &raw->frag;
6007                         u32 sum = 0;
6008
6009                         do {
6010                                 sum += frag->size;
6011                                 if (perf_raw_frag_last(frag))
6012                                         break;
6013                                 frag = frag->next;
6014                         } while (1);
6015
6016                         size = round_up(sum + sizeof(u32), sizeof(u64));
6017                         raw->size = size - sizeof(u32);
6018                         frag->pad = raw->size - sum;
6019                 } else {
6020                         size = sizeof(u64);
6021                 }
6022
6023                 header->size += size;
6024         }
6025
6026         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6027                 int size = sizeof(u64); /* nr */
6028                 if (data->br_stack) {
6029                         size += data->br_stack->nr
6030                               * sizeof(struct perf_branch_entry);
6031                 }
6032                 header->size += size;
6033         }
6034
6035         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6036                 perf_sample_regs_user(&data->regs_user, regs,
6037                                       &data->regs_user_copy);
6038
6039         if (sample_type & PERF_SAMPLE_REGS_USER) {
6040                 /* regs dump ABI info */
6041                 int size = sizeof(u64);
6042
6043                 if (data->regs_user.regs) {
6044                         u64 mask = event->attr.sample_regs_user;
6045                         size += hweight64(mask) * sizeof(u64);
6046                 }
6047
6048                 header->size += size;
6049         }
6050
6051         if (sample_type & PERF_SAMPLE_STACK_USER) {
6052                 /*
6053                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6054                  * processed as the last one or have additional check added
6055                  * in case new sample type is added, because we could eat
6056                  * up the rest of the sample size.
6057                  */
6058                 u16 stack_size = event->attr.sample_stack_user;
6059                 u16 size = sizeof(u64);
6060
6061                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6062                                                      data->regs_user.regs);
6063
6064                 /*
6065                  * If there is something to dump, add space for the dump
6066                  * itself and for the field that tells the dynamic size,
6067                  * which is how many have been actually dumped.
6068                  */
6069                 if (stack_size)
6070                         size += sizeof(u64) + stack_size;
6071
6072                 data->stack_user_size = stack_size;
6073                 header->size += size;
6074         }
6075
6076         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6077                 /* regs dump ABI info */
6078                 int size = sizeof(u64);
6079
6080                 perf_sample_regs_intr(&data->regs_intr, regs);
6081
6082                 if (data->regs_intr.regs) {
6083                         u64 mask = event->attr.sample_regs_intr;
6084
6085                         size += hweight64(mask) * sizeof(u64);
6086                 }
6087
6088                 header->size += size;
6089         }
6090 }
6091
6092 static void __always_inline
6093 __perf_event_output(struct perf_event *event,
6094                     struct perf_sample_data *data,
6095                     struct pt_regs *regs,
6096                     int (*output_begin)(struct perf_output_handle *,
6097                                         struct perf_event *,
6098                                         unsigned int))
6099 {
6100         struct perf_output_handle handle;
6101         struct perf_event_header header;
6102
6103         /* protect the callchain buffers */
6104         rcu_read_lock();
6105
6106         perf_prepare_sample(&header, data, event, regs);
6107
6108         if (output_begin(&handle, event, header.size))
6109                 goto exit;
6110
6111         perf_output_sample(&handle, &header, data, event);
6112
6113         perf_output_end(&handle);
6114
6115 exit:
6116         rcu_read_unlock();
6117 }
6118
6119 void
6120 perf_event_output_forward(struct perf_event *event,
6121                          struct perf_sample_data *data,
6122                          struct pt_regs *regs)
6123 {
6124         __perf_event_output(event, data, regs, perf_output_begin_forward);
6125 }
6126
6127 void
6128 perf_event_output_backward(struct perf_event *event,
6129                            struct perf_sample_data *data,
6130                            struct pt_regs *regs)
6131 {
6132         __perf_event_output(event, data, regs, perf_output_begin_backward);
6133 }
6134
6135 void
6136 perf_event_output(struct perf_event *event,
6137                   struct perf_sample_data *data,
6138                   struct pt_regs *regs)
6139 {
6140         __perf_event_output(event, data, regs, perf_output_begin);
6141 }
6142
6143 /*
6144  * read event_id
6145  */
6146
6147 struct perf_read_event {
6148         struct perf_event_header        header;
6149
6150         u32                             pid;
6151         u32                             tid;
6152 };
6153
6154 static void
6155 perf_event_read_event(struct perf_event *event,
6156                         struct task_struct *task)
6157 {
6158         struct perf_output_handle handle;
6159         struct perf_sample_data sample;
6160         struct perf_read_event read_event = {
6161                 .header = {
6162                         .type = PERF_RECORD_READ,
6163                         .misc = 0,
6164                         .size = sizeof(read_event) + event->read_size,
6165                 },
6166                 .pid = perf_event_pid(event, task),
6167                 .tid = perf_event_tid(event, task),
6168         };
6169         int ret;
6170
6171         perf_event_header__init_id(&read_event.header, &sample, event);
6172         ret = perf_output_begin(&handle, event, read_event.header.size);
6173         if (ret)
6174                 return;
6175
6176         perf_output_put(&handle, read_event);
6177         perf_output_read(&handle, event);
6178         perf_event__output_id_sample(event, &handle, &sample);
6179
6180         perf_output_end(&handle);
6181 }
6182
6183 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6184
6185 static void
6186 perf_iterate_ctx(struct perf_event_context *ctx,
6187                    perf_iterate_f output,
6188                    void *data, bool all)
6189 {
6190         struct perf_event *event;
6191
6192         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6193                 if (!all) {
6194                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6195                                 continue;
6196                         if (!event_filter_match(event))
6197                                 continue;
6198                 }
6199
6200                 output(event, data);
6201         }
6202 }
6203
6204 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6205 {
6206         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6207         struct perf_event *event;
6208
6209         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6210                 /*
6211                  * Skip events that are not fully formed yet; ensure that
6212                  * if we observe event->ctx, both event and ctx will be
6213                  * complete enough. See perf_install_in_context().
6214                  */
6215                 if (!smp_load_acquire(&event->ctx))
6216                         continue;
6217
6218                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6219                         continue;
6220                 if (!event_filter_match(event))
6221                         continue;
6222                 output(event, data);
6223         }
6224 }
6225
6226 /*
6227  * Iterate all events that need to receive side-band events.
6228  *
6229  * For new callers; ensure that account_pmu_sb_event() includes
6230  * your event, otherwise it might not get delivered.
6231  */
6232 static void
6233 perf_iterate_sb(perf_iterate_f output, void *data,
6234                struct perf_event_context *task_ctx)
6235 {
6236         struct perf_event_context *ctx;
6237         int ctxn;
6238
6239         rcu_read_lock();
6240         preempt_disable();
6241
6242         /*
6243          * If we have task_ctx != NULL we only notify the task context itself.
6244          * The task_ctx is set only for EXIT events before releasing task
6245          * context.
6246          */
6247         if (task_ctx) {
6248                 perf_iterate_ctx(task_ctx, output, data, false);
6249                 goto done;
6250         }
6251
6252         perf_iterate_sb_cpu(output, data);
6253
6254         for_each_task_context_nr(ctxn) {
6255                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6256                 if (ctx)
6257                         perf_iterate_ctx(ctx, output, data, false);
6258         }
6259 done:
6260         preempt_enable();
6261         rcu_read_unlock();
6262 }
6263
6264 /*
6265  * Clear all file-based filters at exec, they'll have to be
6266  * re-instated when/if these objects are mmapped again.
6267  */
6268 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6269 {
6270         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6271         struct perf_addr_filter *filter;
6272         unsigned int restart = 0, count = 0;
6273         unsigned long flags;
6274
6275         if (!has_addr_filter(event))
6276                 return;
6277
6278         raw_spin_lock_irqsave(&ifh->lock, flags);
6279         list_for_each_entry(filter, &ifh->list, entry) {
6280                 if (filter->inode) {
6281                         event->addr_filters_offs[count] = 0;
6282                         restart++;
6283                 }
6284
6285                 count++;
6286         }
6287
6288         if (restart)
6289                 event->addr_filters_gen++;
6290         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6291
6292         if (restart)
6293                 perf_event_stop(event, 1);
6294 }
6295
6296 void perf_event_exec(void)
6297 {
6298         struct perf_event_context *ctx;
6299         int ctxn;
6300
6301         rcu_read_lock();
6302         for_each_task_context_nr(ctxn) {
6303                 ctx = current->perf_event_ctxp[ctxn];
6304                 if (!ctx)
6305                         continue;
6306
6307                 perf_event_enable_on_exec(ctxn);
6308
6309                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6310                                    true);
6311         }
6312         rcu_read_unlock();
6313 }
6314
6315 struct remote_output {
6316         struct ring_buffer      *rb;
6317         int                     err;
6318 };
6319
6320 static void __perf_event_output_stop(struct perf_event *event, void *data)
6321 {
6322         struct perf_event *parent = event->parent;
6323         struct remote_output *ro = data;
6324         struct ring_buffer *rb = ro->rb;
6325         struct stop_event_data sd = {
6326                 .event  = event,
6327         };
6328
6329         if (!has_aux(event))
6330                 return;
6331
6332         if (!parent)
6333                 parent = event;
6334
6335         /*
6336          * In case of inheritance, it will be the parent that links to the
6337          * ring-buffer, but it will be the child that's actually using it.
6338          *
6339          * We are using event::rb to determine if the event should be stopped,
6340          * however this may race with ring_buffer_attach() (through set_output),
6341          * which will make us skip the event that actually needs to be stopped.
6342          * So ring_buffer_attach() has to stop an aux event before re-assigning
6343          * its rb pointer.
6344          */
6345         if (rcu_dereference(parent->rb) == rb)
6346                 ro->err = __perf_event_stop(&sd);
6347 }
6348
6349 static int __perf_pmu_output_stop(void *info)
6350 {
6351         struct perf_event *event = info;
6352         struct pmu *pmu = event->pmu;
6353         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6354         struct remote_output ro = {
6355                 .rb     = event->rb,
6356         };
6357
6358         rcu_read_lock();
6359         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6360         if (cpuctx->task_ctx)
6361                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6362                                    &ro, false);
6363         rcu_read_unlock();
6364
6365         return ro.err;
6366 }
6367
6368 static void perf_pmu_output_stop(struct perf_event *event)
6369 {
6370         struct perf_event *iter;
6371         int err, cpu;
6372
6373 restart:
6374         rcu_read_lock();
6375         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6376                 /*
6377                  * For per-CPU events, we need to make sure that neither they
6378                  * nor their children are running; for cpu==-1 events it's
6379                  * sufficient to stop the event itself if it's active, since
6380                  * it can't have children.
6381                  */
6382                 cpu = iter->cpu;
6383                 if (cpu == -1)
6384                         cpu = READ_ONCE(iter->oncpu);
6385
6386                 if (cpu == -1)
6387                         continue;
6388
6389                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6390                 if (err == -EAGAIN) {
6391                         rcu_read_unlock();
6392                         goto restart;
6393                 }
6394         }
6395         rcu_read_unlock();
6396 }
6397
6398 /*
6399  * task tracking -- fork/exit
6400  *
6401  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6402  */
6403
6404 struct perf_task_event {
6405         struct task_struct              *task;
6406         struct perf_event_context       *task_ctx;
6407
6408         struct {
6409                 struct perf_event_header        header;
6410
6411                 u32                             pid;
6412                 u32                             ppid;
6413                 u32                             tid;
6414                 u32                             ptid;
6415                 u64                             time;
6416         } event_id;
6417 };
6418
6419 static int perf_event_task_match(struct perf_event *event)
6420 {
6421         return event->attr.comm  || event->attr.mmap ||
6422                event->attr.mmap2 || event->attr.mmap_data ||
6423                event->attr.task;
6424 }
6425
6426 static void perf_event_task_output(struct perf_event *event,
6427                                    void *data)
6428 {
6429         struct perf_task_event *task_event = data;
6430         struct perf_output_handle handle;
6431         struct perf_sample_data sample;
6432         struct task_struct *task = task_event->task;
6433         int ret, size = task_event->event_id.header.size;
6434
6435         if (!perf_event_task_match(event))
6436                 return;
6437
6438         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6439
6440         ret = perf_output_begin(&handle, event,
6441                                 task_event->event_id.header.size);
6442         if (ret)
6443                 goto out;
6444
6445         task_event->event_id.pid = perf_event_pid(event, task);
6446         task_event->event_id.ppid = perf_event_pid(event, current);
6447
6448         task_event->event_id.tid = perf_event_tid(event, task);
6449         task_event->event_id.ptid = perf_event_tid(event, current);
6450
6451         task_event->event_id.time = perf_event_clock(event);
6452
6453         perf_output_put(&handle, task_event->event_id);
6454
6455         perf_event__output_id_sample(event, &handle, &sample);
6456
6457         perf_output_end(&handle);
6458 out:
6459         task_event->event_id.header.size = size;
6460 }
6461
6462 static void perf_event_task(struct task_struct *task,
6463                               struct perf_event_context *task_ctx,
6464                               int new)
6465 {
6466         struct perf_task_event task_event;
6467
6468         if (!atomic_read(&nr_comm_events) &&
6469             !atomic_read(&nr_mmap_events) &&
6470             !atomic_read(&nr_task_events))
6471                 return;
6472
6473         task_event = (struct perf_task_event){
6474                 .task     = task,
6475                 .task_ctx = task_ctx,
6476                 .event_id    = {
6477                         .header = {
6478                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6479                                 .misc = 0,
6480                                 .size = sizeof(task_event.event_id),
6481                         },
6482                         /* .pid  */
6483                         /* .ppid */
6484                         /* .tid  */
6485                         /* .ptid */
6486                         /* .time */
6487                 },
6488         };
6489
6490         perf_iterate_sb(perf_event_task_output,
6491                        &task_event,
6492                        task_ctx);
6493 }
6494
6495 void perf_event_fork(struct task_struct *task)
6496 {
6497         perf_event_task(task, NULL, 1);
6498         perf_event_namespaces(task);
6499 }
6500
6501 /*
6502  * comm tracking
6503  */
6504
6505 struct perf_comm_event {
6506         struct task_struct      *task;
6507         char                    *comm;
6508         int                     comm_size;
6509
6510         struct {
6511                 struct perf_event_header        header;
6512
6513                 u32                             pid;
6514                 u32                             tid;
6515         } event_id;
6516 };
6517
6518 static int perf_event_comm_match(struct perf_event *event)
6519 {
6520         return event->attr.comm;
6521 }
6522
6523 static void perf_event_comm_output(struct perf_event *event,
6524                                    void *data)
6525 {
6526         struct perf_comm_event *comm_event = data;
6527         struct perf_output_handle handle;
6528         struct perf_sample_data sample;
6529         int size = comm_event->event_id.header.size;
6530         int ret;
6531
6532         if (!perf_event_comm_match(event))
6533                 return;
6534
6535         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6536         ret = perf_output_begin(&handle, event,
6537                                 comm_event->event_id.header.size);
6538
6539         if (ret)
6540                 goto out;
6541
6542         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6543         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6544
6545         perf_output_put(&handle, comm_event->event_id);
6546         __output_copy(&handle, comm_event->comm,
6547                                    comm_event->comm_size);
6548
6549         perf_event__output_id_sample(event, &handle, &sample);
6550
6551         perf_output_end(&handle);
6552 out:
6553         comm_event->event_id.header.size = size;
6554 }
6555
6556 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6557 {
6558         char comm[TASK_COMM_LEN];
6559         unsigned int size;
6560
6561         memset(comm, 0, sizeof(comm));
6562         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6563         size = ALIGN(strlen(comm)+1, sizeof(u64));
6564
6565         comm_event->comm = comm;
6566         comm_event->comm_size = size;
6567
6568         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6569
6570         perf_iterate_sb(perf_event_comm_output,
6571                        comm_event,
6572                        NULL);
6573 }
6574
6575 void perf_event_comm(struct task_struct *task, bool exec)
6576 {
6577         struct perf_comm_event comm_event;
6578
6579         if (!atomic_read(&nr_comm_events))
6580                 return;
6581
6582         comm_event = (struct perf_comm_event){
6583                 .task   = task,
6584                 /* .comm      */
6585                 /* .comm_size */
6586                 .event_id  = {
6587                         .header = {
6588                                 .type = PERF_RECORD_COMM,
6589                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6590                                 /* .size */
6591                         },
6592                         /* .pid */
6593                         /* .tid */
6594                 },
6595         };
6596
6597         perf_event_comm_event(&comm_event);
6598 }
6599
6600 /*
6601  * namespaces tracking
6602  */
6603
6604 struct perf_namespaces_event {
6605         struct task_struct              *task;
6606
6607         struct {
6608                 struct perf_event_header        header;
6609
6610                 u32                             pid;
6611                 u32                             tid;
6612                 u64                             nr_namespaces;
6613                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
6614         } event_id;
6615 };
6616
6617 static int perf_event_namespaces_match(struct perf_event *event)
6618 {
6619         return event->attr.namespaces;
6620 }
6621
6622 static void perf_event_namespaces_output(struct perf_event *event,
6623                                          void *data)
6624 {
6625         struct perf_namespaces_event *namespaces_event = data;
6626         struct perf_output_handle handle;
6627         struct perf_sample_data sample;
6628         int ret;
6629
6630         if (!perf_event_namespaces_match(event))
6631                 return;
6632
6633         perf_event_header__init_id(&namespaces_event->event_id.header,
6634                                    &sample, event);
6635         ret = perf_output_begin(&handle, event,
6636                                 namespaces_event->event_id.header.size);
6637         if (ret)
6638                 return;
6639
6640         namespaces_event->event_id.pid = perf_event_pid(event,
6641                                                         namespaces_event->task);
6642         namespaces_event->event_id.tid = perf_event_tid(event,
6643                                                         namespaces_event->task);
6644
6645         perf_output_put(&handle, namespaces_event->event_id);
6646
6647         perf_event__output_id_sample(event, &handle, &sample);
6648
6649         perf_output_end(&handle);
6650 }
6651
6652 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6653                                    struct task_struct *task,
6654                                    const struct proc_ns_operations *ns_ops)
6655 {
6656         struct path ns_path;
6657         struct inode *ns_inode;
6658         void *error;
6659
6660         error = ns_get_path(&ns_path, task, ns_ops);
6661         if (!error) {
6662                 ns_inode = ns_path.dentry->d_inode;
6663                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6664                 ns_link_info->ino = ns_inode->i_ino;
6665         }
6666 }
6667
6668 void perf_event_namespaces(struct task_struct *task)
6669 {
6670         struct perf_namespaces_event namespaces_event;
6671         struct perf_ns_link_info *ns_link_info;
6672
6673         if (!atomic_read(&nr_namespaces_events))
6674                 return;
6675
6676         namespaces_event = (struct perf_namespaces_event){
6677                 .task   = task,
6678                 .event_id  = {
6679                         .header = {
6680                                 .type = PERF_RECORD_NAMESPACES,
6681                                 .misc = 0,
6682                                 .size = sizeof(namespaces_event.event_id),
6683                         },
6684                         /* .pid */
6685                         /* .tid */
6686                         .nr_namespaces = NR_NAMESPACES,
6687                         /* .link_info[NR_NAMESPACES] */
6688                 },
6689         };
6690
6691         ns_link_info = namespaces_event.event_id.link_info;
6692
6693         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6694                                task, &mntns_operations);
6695
6696 #ifdef CONFIG_USER_NS
6697         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6698                                task, &userns_operations);
6699 #endif
6700 #ifdef CONFIG_NET_NS
6701         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6702                                task, &netns_operations);
6703 #endif
6704 #ifdef CONFIG_UTS_NS
6705         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6706                                task, &utsns_operations);
6707 #endif
6708 #ifdef CONFIG_IPC_NS
6709         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6710                                task, &ipcns_operations);
6711 #endif
6712 #ifdef CONFIG_PID_NS
6713         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6714                                task, &pidns_operations);
6715 #endif
6716 #ifdef CONFIG_CGROUPS
6717         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6718                                task, &cgroupns_operations);
6719 #endif
6720
6721         perf_iterate_sb(perf_event_namespaces_output,
6722                         &namespaces_event,
6723                         NULL);
6724 }
6725
6726 /*
6727  * mmap tracking
6728  */
6729
6730 struct perf_mmap_event {
6731         struct vm_area_struct   *vma;
6732
6733         const char              *file_name;
6734         int                     file_size;
6735         int                     maj, min;
6736         u64                     ino;
6737         u64                     ino_generation;
6738         u32                     prot, flags;
6739
6740         struct {
6741                 struct perf_event_header        header;
6742
6743                 u32                             pid;
6744                 u32                             tid;
6745                 u64                             start;
6746                 u64                             len;
6747                 u64                             pgoff;
6748         } event_id;
6749 };
6750
6751 static int perf_event_mmap_match(struct perf_event *event,
6752                                  void *data)
6753 {
6754         struct perf_mmap_event *mmap_event = data;
6755         struct vm_area_struct *vma = mmap_event->vma;
6756         int executable = vma->vm_flags & VM_EXEC;
6757
6758         return (!executable && event->attr.mmap_data) ||
6759                (executable && (event->attr.mmap || event->attr.mmap2));
6760 }
6761
6762 static void perf_event_mmap_output(struct perf_event *event,
6763                                    void *data)
6764 {
6765         struct perf_mmap_event *mmap_event = data;
6766         struct perf_output_handle handle;
6767         struct perf_sample_data sample;
6768         int size = mmap_event->event_id.header.size;
6769         int ret;
6770
6771         if (!perf_event_mmap_match(event, data))
6772                 return;
6773
6774         if (event->attr.mmap2) {
6775                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6776                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6777                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6778                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6779                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6780                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6781                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6782         }
6783
6784         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6785         ret = perf_output_begin(&handle, event,
6786                                 mmap_event->event_id.header.size);
6787         if (ret)
6788                 goto out;
6789
6790         mmap_event->event_id.pid = perf_event_pid(event, current);
6791         mmap_event->event_id.tid = perf_event_tid(event, current);
6792
6793         perf_output_put(&handle, mmap_event->event_id);
6794
6795         if (event->attr.mmap2) {
6796                 perf_output_put(&handle, mmap_event->maj);
6797                 perf_output_put(&handle, mmap_event->min);
6798                 perf_output_put(&handle, mmap_event->ino);
6799                 perf_output_put(&handle, mmap_event->ino_generation);
6800                 perf_output_put(&handle, mmap_event->prot);
6801                 perf_output_put(&handle, mmap_event->flags);
6802         }
6803
6804         __output_copy(&handle, mmap_event->file_name,
6805                                    mmap_event->file_size);
6806
6807         perf_event__output_id_sample(event, &handle, &sample);
6808
6809         perf_output_end(&handle);
6810 out:
6811         mmap_event->event_id.header.size = size;
6812 }
6813
6814 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6815 {
6816         struct vm_area_struct *vma = mmap_event->vma;
6817         struct file *file = vma->vm_file;
6818         int maj = 0, min = 0;
6819         u64 ino = 0, gen = 0;
6820         u32 prot = 0, flags = 0;
6821         unsigned int size;
6822         char tmp[16];
6823         char *buf = NULL;
6824         char *name;
6825
6826         if (vma->vm_flags & VM_READ)
6827                 prot |= PROT_READ;
6828         if (vma->vm_flags & VM_WRITE)
6829                 prot |= PROT_WRITE;
6830         if (vma->vm_flags & VM_EXEC)
6831                 prot |= PROT_EXEC;
6832
6833         if (vma->vm_flags & VM_MAYSHARE)
6834                 flags = MAP_SHARED;
6835         else
6836                 flags = MAP_PRIVATE;
6837
6838         if (vma->vm_flags & VM_DENYWRITE)
6839                 flags |= MAP_DENYWRITE;
6840         if (vma->vm_flags & VM_MAYEXEC)
6841                 flags |= MAP_EXECUTABLE;
6842         if (vma->vm_flags & VM_LOCKED)
6843                 flags |= MAP_LOCKED;
6844         if (vma->vm_flags & VM_HUGETLB)
6845                 flags |= MAP_HUGETLB;
6846
6847         if (file) {
6848                 struct inode *inode;
6849                 dev_t dev;
6850
6851                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6852                 if (!buf) {
6853                         name = "//enomem";
6854                         goto cpy_name;
6855                 }
6856                 /*
6857                  * d_path() works from the end of the rb backwards, so we
6858                  * need to add enough zero bytes after the string to handle
6859                  * the 64bit alignment we do later.
6860                  */
6861                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6862                 if (IS_ERR(name)) {
6863                         name = "//toolong";
6864                         goto cpy_name;
6865                 }
6866                 inode = file_inode(vma->vm_file);
6867                 dev = inode->i_sb->s_dev;
6868                 ino = inode->i_ino;
6869                 gen = inode->i_generation;
6870                 maj = MAJOR(dev);
6871                 min = MINOR(dev);
6872
6873                 goto got_name;
6874         } else {
6875                 if (vma->vm_ops && vma->vm_ops->name) {
6876                         name = (char *) vma->vm_ops->name(vma);
6877                         if (name)
6878                                 goto cpy_name;
6879                 }
6880
6881                 name = (char *)arch_vma_name(vma);
6882                 if (name)
6883                         goto cpy_name;
6884
6885                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6886                                 vma->vm_end >= vma->vm_mm->brk) {
6887                         name = "[heap]";
6888                         goto cpy_name;
6889                 }
6890                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6891                                 vma->vm_end >= vma->vm_mm->start_stack) {
6892                         name = "[stack]";
6893                         goto cpy_name;
6894                 }
6895
6896                 name = "//anon";
6897                 goto cpy_name;
6898         }
6899
6900 cpy_name:
6901         strlcpy(tmp, name, sizeof(tmp));
6902         name = tmp;
6903 got_name:
6904         /*
6905          * Since our buffer works in 8 byte units we need to align our string
6906          * size to a multiple of 8. However, we must guarantee the tail end is
6907          * zero'd out to avoid leaking random bits to userspace.
6908          */
6909         size = strlen(name)+1;
6910         while (!IS_ALIGNED(size, sizeof(u64)))
6911                 name[size++] = '\0';
6912
6913         mmap_event->file_name = name;
6914         mmap_event->file_size = size;
6915         mmap_event->maj = maj;
6916         mmap_event->min = min;
6917         mmap_event->ino = ino;
6918         mmap_event->ino_generation = gen;
6919         mmap_event->prot = prot;
6920         mmap_event->flags = flags;
6921
6922         if (!(vma->vm_flags & VM_EXEC))
6923                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6924
6925         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6926
6927         perf_iterate_sb(perf_event_mmap_output,
6928                        mmap_event,
6929                        NULL);
6930
6931         kfree(buf);
6932 }
6933
6934 /*
6935  * Check whether inode and address range match filter criteria.
6936  */
6937 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6938                                      struct file *file, unsigned long offset,
6939                                      unsigned long size)
6940 {
6941         if (filter->inode != file_inode(file))
6942                 return false;
6943
6944         if (filter->offset > offset + size)
6945                 return false;
6946
6947         if (filter->offset + filter->size < offset)
6948                 return false;
6949
6950         return true;
6951 }
6952
6953 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6954 {
6955         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6956         struct vm_area_struct *vma = data;
6957         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6958         struct file *file = vma->vm_file;
6959         struct perf_addr_filter *filter;
6960         unsigned int restart = 0, count = 0;
6961
6962         if (!has_addr_filter(event))
6963                 return;
6964
6965         if (!file)
6966                 return;
6967
6968         raw_spin_lock_irqsave(&ifh->lock, flags);
6969         list_for_each_entry(filter, &ifh->list, entry) {
6970                 if (perf_addr_filter_match(filter, file, off,
6971                                              vma->vm_end - vma->vm_start)) {
6972                         event->addr_filters_offs[count] = vma->vm_start;
6973                         restart++;
6974                 }
6975
6976                 count++;
6977         }
6978
6979         if (restart)
6980                 event->addr_filters_gen++;
6981         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6982
6983         if (restart)
6984                 perf_event_stop(event, 1);
6985 }
6986
6987 /*
6988  * Adjust all task's events' filters to the new vma
6989  */
6990 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6991 {
6992         struct perf_event_context *ctx;
6993         int ctxn;
6994
6995         /*
6996          * Data tracing isn't supported yet and as such there is no need
6997          * to keep track of anything that isn't related to executable code:
6998          */
6999         if (!(vma->vm_flags & VM_EXEC))
7000                 return;
7001
7002         rcu_read_lock();
7003         for_each_task_context_nr(ctxn) {
7004                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7005                 if (!ctx)
7006                         continue;
7007
7008                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7009         }
7010         rcu_read_unlock();
7011 }
7012
7013 void perf_event_mmap(struct vm_area_struct *vma)
7014 {
7015         struct perf_mmap_event mmap_event;
7016
7017         if (!atomic_read(&nr_mmap_events))
7018                 return;
7019
7020         mmap_event = (struct perf_mmap_event){
7021                 .vma    = vma,
7022                 /* .file_name */
7023                 /* .file_size */
7024                 .event_id  = {
7025                         .header = {
7026                                 .type = PERF_RECORD_MMAP,
7027                                 .misc = PERF_RECORD_MISC_USER,
7028                                 /* .size */
7029                         },
7030                         /* .pid */
7031                         /* .tid */
7032                         .start  = vma->vm_start,
7033                         .len    = vma->vm_end - vma->vm_start,
7034                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7035                 },
7036                 /* .maj (attr_mmap2 only) */
7037                 /* .min (attr_mmap2 only) */
7038                 /* .ino (attr_mmap2 only) */
7039                 /* .ino_generation (attr_mmap2 only) */
7040                 /* .prot (attr_mmap2 only) */
7041                 /* .flags (attr_mmap2 only) */
7042         };
7043
7044         perf_addr_filters_adjust(vma);
7045         perf_event_mmap_event(&mmap_event);
7046 }
7047
7048 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7049                           unsigned long size, u64 flags)
7050 {
7051         struct perf_output_handle handle;
7052         struct perf_sample_data sample;
7053         struct perf_aux_event {
7054                 struct perf_event_header        header;
7055                 u64                             offset;
7056                 u64                             size;
7057                 u64                             flags;
7058         } rec = {
7059                 .header = {
7060                         .type = PERF_RECORD_AUX,
7061                         .misc = 0,
7062                         .size = sizeof(rec),
7063                 },
7064                 .offset         = head,
7065                 .size           = size,
7066                 .flags          = flags,
7067         };
7068         int ret;
7069
7070         perf_event_header__init_id(&rec.header, &sample, event);
7071         ret = perf_output_begin(&handle, event, rec.header.size);
7072
7073         if (ret)
7074                 return;
7075
7076         perf_output_put(&handle, rec);
7077         perf_event__output_id_sample(event, &handle, &sample);
7078
7079         perf_output_end(&handle);
7080 }
7081
7082 /*
7083  * Lost/dropped samples logging
7084  */
7085 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7086 {
7087         struct perf_output_handle handle;
7088         struct perf_sample_data sample;
7089         int ret;
7090
7091         struct {
7092                 struct perf_event_header        header;
7093                 u64                             lost;
7094         } lost_samples_event = {
7095                 .header = {
7096                         .type = PERF_RECORD_LOST_SAMPLES,
7097                         .misc = 0,
7098                         .size = sizeof(lost_samples_event),
7099                 },
7100                 .lost           = lost,
7101         };
7102
7103         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7104
7105         ret = perf_output_begin(&handle, event,
7106                                 lost_samples_event.header.size);
7107         if (ret)
7108                 return;
7109
7110         perf_output_put(&handle, lost_samples_event);
7111         perf_event__output_id_sample(event, &handle, &sample);
7112         perf_output_end(&handle);
7113 }
7114
7115 /*
7116  * context_switch tracking
7117  */
7118
7119 struct perf_switch_event {
7120         struct task_struct      *task;
7121         struct task_struct      *next_prev;
7122
7123         struct {
7124                 struct perf_event_header        header;
7125                 u32                             next_prev_pid;
7126                 u32                             next_prev_tid;
7127         } event_id;
7128 };
7129
7130 static int perf_event_switch_match(struct perf_event *event)
7131 {
7132         return event->attr.context_switch;
7133 }
7134
7135 static void perf_event_switch_output(struct perf_event *event, void *data)
7136 {
7137         struct perf_switch_event *se = data;
7138         struct perf_output_handle handle;
7139         struct perf_sample_data sample;
7140         int ret;
7141
7142         if (!perf_event_switch_match(event))
7143                 return;
7144
7145         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7146         if (event->ctx->task) {
7147                 se->event_id.header.type = PERF_RECORD_SWITCH;
7148                 se->event_id.header.size = sizeof(se->event_id.header);
7149         } else {
7150                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7151                 se->event_id.header.size = sizeof(se->event_id);
7152                 se->event_id.next_prev_pid =
7153                                         perf_event_pid(event, se->next_prev);
7154                 se->event_id.next_prev_tid =
7155                                         perf_event_tid(event, se->next_prev);
7156         }
7157
7158         perf_event_header__init_id(&se->event_id.header, &sample, event);
7159
7160         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7161         if (ret)
7162                 return;
7163
7164         if (event->ctx->task)
7165                 perf_output_put(&handle, se->event_id.header);
7166         else
7167                 perf_output_put(&handle, se->event_id);
7168
7169         perf_event__output_id_sample(event, &handle, &sample);
7170
7171         perf_output_end(&handle);
7172 }
7173
7174 static void perf_event_switch(struct task_struct *task,
7175                               struct task_struct *next_prev, bool sched_in)
7176 {
7177         struct perf_switch_event switch_event;
7178
7179         /* N.B. caller checks nr_switch_events != 0 */
7180
7181         switch_event = (struct perf_switch_event){
7182                 .task           = task,
7183                 .next_prev      = next_prev,
7184                 .event_id       = {
7185                         .header = {
7186                                 /* .type */
7187                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7188                                 /* .size */
7189                         },
7190                         /* .next_prev_pid */
7191                         /* .next_prev_tid */
7192                 },
7193         };
7194
7195         perf_iterate_sb(perf_event_switch_output,
7196                        &switch_event,
7197                        NULL);
7198 }
7199
7200 /*
7201  * IRQ throttle logging
7202  */
7203
7204 static void perf_log_throttle(struct perf_event *event, int enable)
7205 {
7206         struct perf_output_handle handle;
7207         struct perf_sample_data sample;
7208         int ret;
7209
7210         struct {
7211                 struct perf_event_header        header;
7212                 u64                             time;
7213                 u64                             id;
7214                 u64                             stream_id;
7215         } throttle_event = {
7216                 .header = {
7217                         .type = PERF_RECORD_THROTTLE,
7218                         .misc = 0,
7219                         .size = sizeof(throttle_event),
7220                 },
7221                 .time           = perf_event_clock(event),
7222                 .id             = primary_event_id(event),
7223                 .stream_id      = event->id,
7224         };
7225
7226         if (enable)
7227                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7228
7229         perf_event_header__init_id(&throttle_event.header, &sample, event);
7230
7231         ret = perf_output_begin(&handle, event,
7232                                 throttle_event.header.size);
7233         if (ret)
7234                 return;
7235
7236         perf_output_put(&handle, throttle_event);
7237         perf_event__output_id_sample(event, &handle, &sample);
7238         perf_output_end(&handle);
7239 }
7240
7241 static void perf_log_itrace_start(struct perf_event *event)
7242 {
7243         struct perf_output_handle handle;
7244         struct perf_sample_data sample;
7245         struct perf_aux_event {
7246                 struct perf_event_header        header;
7247                 u32                             pid;
7248                 u32                             tid;
7249         } rec;
7250         int ret;
7251
7252         if (event->parent)
7253                 event = event->parent;
7254
7255         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7256             event->hw.itrace_started)
7257                 return;
7258
7259         rec.header.type = PERF_RECORD_ITRACE_START;
7260         rec.header.misc = 0;
7261         rec.header.size = sizeof(rec);
7262         rec.pid = perf_event_pid(event, current);
7263         rec.tid = perf_event_tid(event, current);
7264
7265         perf_event_header__init_id(&rec.header, &sample, event);
7266         ret = perf_output_begin(&handle, event, rec.header.size);
7267
7268         if (ret)
7269                 return;
7270
7271         perf_output_put(&handle, rec);
7272         perf_event__output_id_sample(event, &handle, &sample);
7273
7274         perf_output_end(&handle);
7275 }
7276
7277 static int
7278 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7279 {
7280         struct hw_perf_event *hwc = &event->hw;
7281         int ret = 0;
7282         u64 seq;
7283
7284         seq = __this_cpu_read(perf_throttled_seq);
7285         if (seq != hwc->interrupts_seq) {
7286                 hwc->interrupts_seq = seq;
7287                 hwc->interrupts = 1;
7288         } else {
7289                 hwc->interrupts++;
7290                 if (unlikely(throttle
7291                              && hwc->interrupts >= max_samples_per_tick)) {
7292                         __this_cpu_inc(perf_throttled_count);
7293                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7294                         hwc->interrupts = MAX_INTERRUPTS;
7295                         perf_log_throttle(event, 0);
7296                         ret = 1;
7297                 }
7298         }
7299
7300         if (event->attr.freq) {
7301                 u64 now = perf_clock();
7302                 s64 delta = now - hwc->freq_time_stamp;
7303
7304                 hwc->freq_time_stamp = now;
7305
7306                 if (delta > 0 && delta < 2*TICK_NSEC)
7307                         perf_adjust_period(event, delta, hwc->last_period, true);
7308         }
7309
7310         return ret;
7311 }
7312
7313 int perf_event_account_interrupt(struct perf_event *event)
7314 {
7315         return __perf_event_account_interrupt(event, 1);
7316 }
7317
7318 static bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
7319 {
7320         /*
7321          * Due to interrupt latency (AKA "skid"), we may enter the
7322          * kernel before taking an overflow, even if the PMU is only
7323          * counting user events.
7324          * To avoid leaking information to userspace, we must always
7325          * reject kernel samples when exclude_kernel is set.
7326          */
7327         if (event->attr.exclude_kernel && !user_mode(regs))
7328                 return false;
7329
7330         return true;
7331 }
7332
7333 /*
7334  * Generic event overflow handling, sampling.
7335  */
7336
7337 static int __perf_event_overflow(struct perf_event *event,
7338                                    int throttle, struct perf_sample_data *data,
7339                                    struct pt_regs *regs)
7340 {
7341         int events = atomic_read(&event->event_limit);
7342         int ret = 0;
7343
7344         /*
7345          * Non-sampling counters might still use the PMI to fold short
7346          * hardware counters, ignore those.
7347          */
7348         if (unlikely(!is_sampling_event(event)))
7349                 return 0;
7350
7351         ret = __perf_event_account_interrupt(event, throttle);
7352
7353         /*
7354          * For security, drop the skid kernel samples if necessary.
7355          */
7356         if (!sample_is_allowed(event, regs))
7357                 return ret;
7358
7359         /*
7360          * XXX event_limit might not quite work as expected on inherited
7361          * events
7362          */
7363
7364         event->pending_kill = POLL_IN;
7365         if (events && atomic_dec_and_test(&event->event_limit)) {
7366                 ret = 1;
7367                 event->pending_kill = POLL_HUP;
7368
7369                 perf_event_disable_inatomic(event);
7370         }
7371
7372         READ_ONCE(event->overflow_handler)(event, data, regs);
7373
7374         if (*perf_event_fasync(event) && event->pending_kill) {
7375                 event->pending_wakeup = 1;
7376                 irq_work_queue(&event->pending);
7377         }
7378
7379         return ret;
7380 }
7381
7382 int perf_event_overflow(struct perf_event *event,
7383                           struct perf_sample_data *data,
7384                           struct pt_regs *regs)
7385 {
7386         return __perf_event_overflow(event, 1, data, regs);
7387 }
7388
7389 /*
7390  * Generic software event infrastructure
7391  */
7392
7393 struct swevent_htable {
7394         struct swevent_hlist            *swevent_hlist;
7395         struct mutex                    hlist_mutex;
7396         int                             hlist_refcount;
7397
7398         /* Recursion avoidance in each contexts */
7399         int                             recursion[PERF_NR_CONTEXTS];
7400 };
7401
7402 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7403
7404 /*
7405  * We directly increment event->count and keep a second value in
7406  * event->hw.period_left to count intervals. This period event
7407  * is kept in the range [-sample_period, 0] so that we can use the
7408  * sign as trigger.
7409  */
7410
7411 u64 perf_swevent_set_period(struct perf_event *event)
7412 {
7413         struct hw_perf_event *hwc = &event->hw;
7414         u64 period = hwc->last_period;
7415         u64 nr, offset;
7416         s64 old, val;
7417
7418         hwc->last_period = hwc->sample_period;
7419
7420 again:
7421         old = val = local64_read(&hwc->period_left);
7422         if (val < 0)
7423                 return 0;
7424
7425         nr = div64_u64(period + val, period);
7426         offset = nr * period;
7427         val -= offset;
7428         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7429                 goto again;
7430
7431         return nr;
7432 }
7433
7434 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7435                                     struct perf_sample_data *data,
7436                                     struct pt_regs *regs)
7437 {
7438         struct hw_perf_event *hwc = &event->hw;
7439         int throttle = 0;
7440
7441         if (!overflow)
7442                 overflow = perf_swevent_set_period(event);
7443
7444         if (hwc->interrupts == MAX_INTERRUPTS)
7445                 return;
7446
7447         for (; overflow; overflow--) {
7448                 if (__perf_event_overflow(event, throttle,
7449                                             data, regs)) {
7450                         /*
7451                          * We inhibit the overflow from happening when
7452                          * hwc->interrupts == MAX_INTERRUPTS.
7453                          */
7454                         break;
7455                 }
7456                 throttle = 1;
7457         }
7458 }
7459
7460 static void perf_swevent_event(struct perf_event *event, u64 nr,
7461                                struct perf_sample_data *data,
7462                                struct pt_regs *regs)
7463 {
7464         struct hw_perf_event *hwc = &event->hw;
7465
7466         local64_add(nr, &event->count);
7467
7468         if (!regs)
7469                 return;
7470
7471         if (!is_sampling_event(event))
7472                 return;
7473
7474         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7475                 data->period = nr;
7476                 return perf_swevent_overflow(event, 1, data, regs);
7477         } else
7478                 data->period = event->hw.last_period;
7479
7480         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7481                 return perf_swevent_overflow(event, 1, data, regs);
7482
7483         if (local64_add_negative(nr, &hwc->period_left))
7484                 return;
7485
7486         perf_swevent_overflow(event, 0, data, regs);
7487 }
7488
7489 static int perf_exclude_event(struct perf_event *event,
7490                               struct pt_regs *regs)
7491 {
7492         if (event->hw.state & PERF_HES_STOPPED)
7493                 return 1;
7494
7495         if (regs) {
7496                 if (event->attr.exclude_user && user_mode(regs))
7497                         return 1;
7498
7499                 if (event->attr.exclude_kernel && !user_mode(regs))
7500                         return 1;
7501         }
7502
7503         return 0;
7504 }
7505
7506 static int perf_swevent_match(struct perf_event *event,
7507                                 enum perf_type_id type,
7508                                 u32 event_id,
7509                                 struct perf_sample_data *data,
7510                                 struct pt_regs *regs)
7511 {
7512         if (event->attr.type != type)
7513                 return 0;
7514
7515         if (event->attr.config != event_id)
7516                 return 0;
7517
7518         if (perf_exclude_event(event, regs))
7519                 return 0;
7520
7521         return 1;
7522 }
7523
7524 static inline u64 swevent_hash(u64 type, u32 event_id)
7525 {
7526         u64 val = event_id | (type << 32);
7527
7528         return hash_64(val, SWEVENT_HLIST_BITS);
7529 }
7530
7531 static inline struct hlist_head *
7532 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7533 {
7534         u64 hash = swevent_hash(type, event_id);
7535
7536         return &hlist->heads[hash];
7537 }
7538
7539 /* For the read side: events when they trigger */
7540 static inline struct hlist_head *
7541 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7542 {
7543         struct swevent_hlist *hlist;
7544
7545         hlist = rcu_dereference(swhash->swevent_hlist);
7546         if (!hlist)
7547                 return NULL;
7548
7549         return __find_swevent_head(hlist, type, event_id);
7550 }
7551
7552 /* For the event head insertion and removal in the hlist */
7553 static inline struct hlist_head *
7554 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7555 {
7556         struct swevent_hlist *hlist;
7557         u32 event_id = event->attr.config;
7558         u64 type = event->attr.type;
7559
7560         /*
7561          * Event scheduling is always serialized against hlist allocation
7562          * and release. Which makes the protected version suitable here.
7563          * The context lock guarantees that.
7564          */
7565         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7566                                           lockdep_is_held(&event->ctx->lock));
7567         if (!hlist)
7568                 return NULL;
7569
7570         return __find_swevent_head(hlist, type, event_id);
7571 }
7572
7573 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7574                                     u64 nr,
7575                                     struct perf_sample_data *data,
7576                                     struct pt_regs *regs)
7577 {
7578         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7579         struct perf_event *event;
7580         struct hlist_head *head;
7581
7582         rcu_read_lock();
7583         head = find_swevent_head_rcu(swhash, type, event_id);
7584         if (!head)
7585                 goto end;
7586
7587         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7588                 if (perf_swevent_match(event, type, event_id, data, regs))
7589                         perf_swevent_event(event, nr, data, regs);
7590         }
7591 end:
7592         rcu_read_unlock();
7593 }
7594
7595 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7596
7597 int perf_swevent_get_recursion_context(void)
7598 {
7599         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7600
7601         return get_recursion_context(swhash->recursion);
7602 }
7603 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7604
7605 void perf_swevent_put_recursion_context(int rctx)
7606 {
7607         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7608
7609         put_recursion_context(swhash->recursion, rctx);
7610 }
7611
7612 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7613 {
7614         struct perf_sample_data data;
7615
7616         if (WARN_ON_ONCE(!regs))
7617                 return;
7618
7619         perf_sample_data_init(&data, addr, 0);
7620         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7621 }
7622
7623 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7624 {
7625         int rctx;
7626
7627         preempt_disable_notrace();
7628         rctx = perf_swevent_get_recursion_context();
7629         if (unlikely(rctx < 0))
7630                 goto fail;
7631
7632         ___perf_sw_event(event_id, nr, regs, addr);
7633
7634         perf_swevent_put_recursion_context(rctx);
7635 fail:
7636         preempt_enable_notrace();
7637 }
7638
7639 static void perf_swevent_read(struct perf_event *event)
7640 {
7641 }
7642
7643 static int perf_swevent_add(struct perf_event *event, int flags)
7644 {
7645         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7646         struct hw_perf_event *hwc = &event->hw;
7647         struct hlist_head *head;
7648
7649         if (is_sampling_event(event)) {
7650                 hwc->last_period = hwc->sample_period;
7651                 perf_swevent_set_period(event);
7652         }
7653
7654         hwc->state = !(flags & PERF_EF_START);
7655
7656         head = find_swevent_head(swhash, event);
7657         if (WARN_ON_ONCE(!head))
7658                 return -EINVAL;
7659
7660         hlist_add_head_rcu(&event->hlist_entry, head);
7661         perf_event_update_userpage(event);
7662
7663         return 0;
7664 }
7665
7666 static void perf_swevent_del(struct perf_event *event, int flags)
7667 {
7668         hlist_del_rcu(&event->hlist_entry);
7669 }
7670
7671 static void perf_swevent_start(struct perf_event *event, int flags)
7672 {
7673         event->hw.state = 0;
7674 }
7675
7676 static void perf_swevent_stop(struct perf_event *event, int flags)
7677 {
7678         event->hw.state = PERF_HES_STOPPED;
7679 }
7680
7681 /* Deref the hlist from the update side */
7682 static inline struct swevent_hlist *
7683 swevent_hlist_deref(struct swevent_htable *swhash)
7684 {
7685         return rcu_dereference_protected(swhash->swevent_hlist,
7686                                          lockdep_is_held(&swhash->hlist_mutex));
7687 }
7688
7689 static void swevent_hlist_release(struct swevent_htable *swhash)
7690 {
7691         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7692
7693         if (!hlist)
7694                 return;
7695
7696         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7697         kfree_rcu(hlist, rcu_head);
7698 }
7699
7700 static void swevent_hlist_put_cpu(int cpu)
7701 {
7702         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7703
7704         mutex_lock(&swhash->hlist_mutex);
7705
7706         if (!--swhash->hlist_refcount)
7707                 swevent_hlist_release(swhash);
7708
7709         mutex_unlock(&swhash->hlist_mutex);
7710 }
7711
7712 static void swevent_hlist_put(void)
7713 {
7714         int cpu;
7715
7716         for_each_possible_cpu(cpu)
7717                 swevent_hlist_put_cpu(cpu);
7718 }
7719
7720 static int swevent_hlist_get_cpu(int cpu)
7721 {
7722         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7723         int err = 0;
7724
7725         mutex_lock(&swhash->hlist_mutex);
7726         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7727                 struct swevent_hlist *hlist;
7728
7729                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7730                 if (!hlist) {
7731                         err = -ENOMEM;
7732                         goto exit;
7733                 }
7734                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7735         }
7736         swhash->hlist_refcount++;
7737 exit:
7738         mutex_unlock(&swhash->hlist_mutex);
7739
7740         return err;
7741 }
7742
7743 static int swevent_hlist_get(void)
7744 {
7745         int err, cpu, failed_cpu;
7746
7747         get_online_cpus();
7748         for_each_possible_cpu(cpu) {
7749                 err = swevent_hlist_get_cpu(cpu);
7750                 if (err) {
7751                         failed_cpu = cpu;
7752                         goto fail;
7753                 }
7754         }
7755         put_online_cpus();
7756
7757         return 0;
7758 fail:
7759         for_each_possible_cpu(cpu) {
7760                 if (cpu == failed_cpu)
7761                         break;
7762                 swevent_hlist_put_cpu(cpu);
7763         }
7764
7765         put_online_cpus();
7766         return err;
7767 }
7768
7769 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7770
7771 static void sw_perf_event_destroy(struct perf_event *event)
7772 {
7773         u64 event_id = event->attr.config;
7774
7775         WARN_ON(event->parent);
7776
7777         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7778         swevent_hlist_put();
7779 }
7780
7781 static int perf_swevent_init(struct perf_event *event)
7782 {
7783         u64 event_id = event->attr.config;
7784
7785         if (event->attr.type != PERF_TYPE_SOFTWARE)
7786                 return -ENOENT;
7787
7788         /*
7789          * no branch sampling for software events
7790          */
7791         if (has_branch_stack(event))
7792                 return -EOPNOTSUPP;
7793
7794         switch (event_id) {
7795         case PERF_COUNT_SW_CPU_CLOCK:
7796         case PERF_COUNT_SW_TASK_CLOCK:
7797                 return -ENOENT;
7798
7799         default:
7800                 break;
7801         }
7802
7803         if (event_id >= PERF_COUNT_SW_MAX)
7804                 return -ENOENT;
7805
7806         if (!event->parent) {
7807                 int err;
7808
7809                 err = swevent_hlist_get();
7810                 if (err)
7811                         return err;
7812
7813                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7814                 event->destroy = sw_perf_event_destroy;
7815         }
7816
7817         return 0;
7818 }
7819
7820 static struct pmu perf_swevent = {
7821         .task_ctx_nr    = perf_sw_context,
7822
7823         .capabilities   = PERF_PMU_CAP_NO_NMI,
7824
7825         .event_init     = perf_swevent_init,
7826         .add            = perf_swevent_add,
7827         .del            = perf_swevent_del,
7828         .start          = perf_swevent_start,
7829         .stop           = perf_swevent_stop,
7830         .read           = perf_swevent_read,
7831 };
7832
7833 #ifdef CONFIG_EVENT_TRACING
7834
7835 static int perf_tp_filter_match(struct perf_event *event,
7836                                 struct perf_sample_data *data)
7837 {
7838         void *record = data->raw->frag.data;
7839
7840         /* only top level events have filters set */
7841         if (event->parent)
7842                 event = event->parent;
7843
7844         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7845                 return 1;
7846         return 0;
7847 }
7848
7849 static int perf_tp_event_match(struct perf_event *event,
7850                                 struct perf_sample_data *data,
7851                                 struct pt_regs *regs)
7852 {
7853         if (event->hw.state & PERF_HES_STOPPED)
7854                 return 0;
7855         /*
7856          * All tracepoints are from kernel-space.
7857          */
7858         if (event->attr.exclude_kernel)
7859                 return 0;
7860
7861         if (!perf_tp_filter_match(event, data))
7862                 return 0;
7863
7864         return 1;
7865 }
7866
7867 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7868                                struct trace_event_call *call, u64 count,
7869                                struct pt_regs *regs, struct hlist_head *head,
7870                                struct task_struct *task)
7871 {
7872         struct bpf_prog *prog = call->prog;
7873
7874         if (prog) {
7875                 *(struct pt_regs **)raw_data = regs;
7876                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7877                         perf_swevent_put_recursion_context(rctx);
7878                         return;
7879                 }
7880         }
7881         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7882                       rctx, task);
7883 }
7884 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7885
7886 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7887                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7888                    struct task_struct *task)
7889 {
7890         struct perf_sample_data data;
7891         struct perf_event *event;
7892
7893         struct perf_raw_record raw = {
7894                 .frag = {
7895                         .size = entry_size,
7896                         .data = record,
7897                 },
7898         };
7899
7900         perf_sample_data_init(&data, 0, 0);
7901         data.raw = &raw;
7902
7903         perf_trace_buf_update(record, event_type);
7904
7905         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7906                 if (perf_tp_event_match(event, &data, regs))
7907                         perf_swevent_event(event, count, &data, regs);
7908         }
7909
7910         /*
7911          * If we got specified a target task, also iterate its context and
7912          * deliver this event there too.
7913          */
7914         if (task && task != current) {
7915                 struct perf_event_context *ctx;
7916                 struct trace_entry *entry = record;
7917
7918                 rcu_read_lock();
7919                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7920                 if (!ctx)
7921                         goto unlock;
7922
7923                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7924                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7925                                 continue;
7926                         if (event->attr.config != entry->type)
7927                                 continue;
7928                         if (perf_tp_event_match(event, &data, regs))
7929                                 perf_swevent_event(event, count, &data, regs);
7930                 }
7931 unlock:
7932                 rcu_read_unlock();
7933         }
7934
7935         perf_swevent_put_recursion_context(rctx);
7936 }
7937 EXPORT_SYMBOL_GPL(perf_tp_event);
7938
7939 static void tp_perf_event_destroy(struct perf_event *event)
7940 {
7941         perf_trace_destroy(event);
7942 }
7943
7944 static int perf_tp_event_init(struct perf_event *event)
7945 {
7946         int err;
7947
7948         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7949                 return -ENOENT;
7950
7951         /*
7952          * no branch sampling for tracepoint events
7953          */
7954         if (has_branch_stack(event))
7955                 return -EOPNOTSUPP;
7956
7957         err = perf_trace_init(event);
7958         if (err)
7959                 return err;
7960
7961         event->destroy = tp_perf_event_destroy;
7962
7963         return 0;
7964 }
7965
7966 static struct pmu perf_tracepoint = {
7967         .task_ctx_nr    = perf_sw_context,
7968
7969         .event_init     = perf_tp_event_init,
7970         .add            = perf_trace_add,
7971         .del            = perf_trace_del,
7972         .start          = perf_swevent_start,
7973         .stop           = perf_swevent_stop,
7974         .read           = perf_swevent_read,
7975 };
7976
7977 static inline void perf_tp_register(void)
7978 {
7979         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7980 }
7981
7982 static void perf_event_free_filter(struct perf_event *event)
7983 {
7984         ftrace_profile_free_filter(event);
7985 }
7986
7987 #ifdef CONFIG_BPF_SYSCALL
7988 static void bpf_overflow_handler(struct perf_event *event,
7989                                  struct perf_sample_data *data,
7990                                  struct pt_regs *regs)
7991 {
7992         struct bpf_perf_event_data_kern ctx = {
7993                 .data = data,
7994                 .regs = regs,
7995         };
7996         int ret = 0;
7997
7998         preempt_disable();
7999         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8000                 goto out;
8001         rcu_read_lock();
8002         ret = BPF_PROG_RUN(event->prog, &ctx);
8003         rcu_read_unlock();
8004 out:
8005         __this_cpu_dec(bpf_prog_active);
8006         preempt_enable();
8007         if (!ret)
8008                 return;
8009
8010         event->orig_overflow_handler(event, data, regs);
8011 }
8012
8013 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8014 {
8015         struct bpf_prog *prog;
8016
8017         if (event->overflow_handler_context)
8018                 /* hw breakpoint or kernel counter */
8019                 return -EINVAL;
8020
8021         if (event->prog)
8022                 return -EEXIST;
8023
8024         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8025         if (IS_ERR(prog))
8026                 return PTR_ERR(prog);
8027
8028         event->prog = prog;
8029         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8030         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8031         return 0;
8032 }
8033
8034 static void perf_event_free_bpf_handler(struct perf_event *event)
8035 {
8036         struct bpf_prog *prog = event->prog;
8037
8038         if (!prog)
8039                 return;
8040
8041         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8042         event->prog = NULL;
8043         bpf_prog_put(prog);
8044 }
8045 #else
8046 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8047 {
8048         return -EOPNOTSUPP;
8049 }
8050 static void perf_event_free_bpf_handler(struct perf_event *event)
8051 {
8052 }
8053 #endif
8054
8055 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8056 {
8057         bool is_kprobe, is_tracepoint;
8058         struct bpf_prog *prog;
8059
8060         if (event->attr.type == PERF_TYPE_HARDWARE ||
8061             event->attr.type == PERF_TYPE_SOFTWARE)
8062                 return perf_event_set_bpf_handler(event, prog_fd);
8063
8064         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8065                 return -EINVAL;
8066
8067         if (event->tp_event->prog)
8068                 return -EEXIST;
8069
8070         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8071         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8072         if (!is_kprobe && !is_tracepoint)
8073                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8074                 return -EINVAL;
8075
8076         prog = bpf_prog_get(prog_fd);
8077         if (IS_ERR(prog))
8078                 return PTR_ERR(prog);
8079
8080         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8081             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8082                 /* valid fd, but invalid bpf program type */
8083                 bpf_prog_put(prog);
8084                 return -EINVAL;
8085         }
8086
8087         if (is_tracepoint) {
8088                 int off = trace_event_get_offsets(event->tp_event);
8089
8090                 if (prog->aux->max_ctx_offset > off) {
8091                         bpf_prog_put(prog);
8092                         return -EACCES;
8093                 }
8094         }
8095         event->tp_event->prog = prog;
8096
8097         return 0;
8098 }
8099
8100 static void perf_event_free_bpf_prog(struct perf_event *event)
8101 {
8102         struct bpf_prog *prog;
8103
8104         perf_event_free_bpf_handler(event);
8105
8106         if (!event->tp_event)
8107                 return;
8108
8109         prog = event->tp_event->prog;
8110         if (prog) {
8111                 event->tp_event->prog = NULL;
8112                 bpf_prog_put(prog);
8113         }
8114 }
8115
8116 #else
8117
8118 static inline void perf_tp_register(void)
8119 {
8120 }
8121
8122 static void perf_event_free_filter(struct perf_event *event)
8123 {
8124 }
8125
8126 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8127 {
8128         return -ENOENT;
8129 }
8130
8131 static void perf_event_free_bpf_prog(struct perf_event *event)
8132 {
8133 }
8134 #endif /* CONFIG_EVENT_TRACING */
8135
8136 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8137 void perf_bp_event(struct perf_event *bp, void *data)
8138 {
8139         struct perf_sample_data sample;
8140         struct pt_regs *regs = data;
8141
8142         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8143
8144         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8145                 perf_swevent_event(bp, 1, &sample, regs);
8146 }
8147 #endif
8148
8149 /*
8150  * Allocate a new address filter
8151  */
8152 static struct perf_addr_filter *
8153 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8154 {
8155         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8156         struct perf_addr_filter *filter;
8157
8158         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8159         if (!filter)
8160                 return NULL;
8161
8162         INIT_LIST_HEAD(&filter->entry);
8163         list_add_tail(&filter->entry, filters);
8164
8165         return filter;
8166 }
8167
8168 static void free_filters_list(struct list_head *filters)
8169 {
8170         struct perf_addr_filter *filter, *iter;
8171
8172         list_for_each_entry_safe(filter, iter, filters, entry) {
8173                 if (filter->inode)
8174                         iput(filter->inode);
8175                 list_del(&filter->entry);
8176                 kfree(filter);
8177         }
8178 }
8179
8180 /*
8181  * Free existing address filters and optionally install new ones
8182  */
8183 static void perf_addr_filters_splice(struct perf_event *event,
8184                                      struct list_head *head)
8185 {
8186         unsigned long flags;
8187         LIST_HEAD(list);
8188
8189         if (!has_addr_filter(event))
8190                 return;
8191
8192         /* don't bother with children, they don't have their own filters */
8193         if (event->parent)
8194                 return;
8195
8196         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8197
8198         list_splice_init(&event->addr_filters.list, &list);
8199         if (head)
8200                 list_splice(head, &event->addr_filters.list);
8201
8202         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8203
8204         free_filters_list(&list);
8205 }
8206
8207 /*
8208  * Scan through mm's vmas and see if one of them matches the
8209  * @filter; if so, adjust filter's address range.
8210  * Called with mm::mmap_sem down for reading.
8211  */
8212 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8213                                             struct mm_struct *mm)
8214 {
8215         struct vm_area_struct *vma;
8216
8217         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8218                 struct file *file = vma->vm_file;
8219                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8220                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8221
8222                 if (!file)
8223                         continue;
8224
8225                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8226                         continue;
8227
8228                 return vma->vm_start;
8229         }
8230
8231         return 0;
8232 }
8233
8234 /*
8235  * Update event's address range filters based on the
8236  * task's existing mappings, if any.
8237  */
8238 static void perf_event_addr_filters_apply(struct perf_event *event)
8239 {
8240         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8241         struct task_struct *task = READ_ONCE(event->ctx->task);
8242         struct perf_addr_filter *filter;
8243         struct mm_struct *mm = NULL;
8244         unsigned int count = 0;
8245         unsigned long flags;
8246
8247         /*
8248          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8249          * will stop on the parent's child_mutex that our caller is also holding
8250          */
8251         if (task == TASK_TOMBSTONE)
8252                 return;
8253
8254         if (!ifh->nr_file_filters)
8255                 return;
8256
8257         mm = get_task_mm(event->ctx->task);
8258         if (!mm)
8259                 goto restart;
8260
8261         down_read(&mm->mmap_sem);
8262
8263         raw_spin_lock_irqsave(&ifh->lock, flags);
8264         list_for_each_entry(filter, &ifh->list, entry) {
8265                 event->addr_filters_offs[count] = 0;
8266
8267                 /*
8268                  * Adjust base offset if the filter is associated to a binary
8269                  * that needs to be mapped:
8270                  */
8271                 if (filter->inode)
8272                         event->addr_filters_offs[count] =
8273                                 perf_addr_filter_apply(filter, mm);
8274
8275                 count++;
8276         }
8277
8278         event->addr_filters_gen++;
8279         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8280
8281         up_read(&mm->mmap_sem);
8282
8283         mmput(mm);
8284
8285 restart:
8286         perf_event_stop(event, 1);
8287 }
8288
8289 /*
8290  * Address range filtering: limiting the data to certain
8291  * instruction address ranges. Filters are ioctl()ed to us from
8292  * userspace as ascii strings.
8293  *
8294  * Filter string format:
8295  *
8296  * ACTION RANGE_SPEC
8297  * where ACTION is one of the
8298  *  * "filter": limit the trace to this region
8299  *  * "start": start tracing from this address
8300  *  * "stop": stop tracing at this address/region;
8301  * RANGE_SPEC is
8302  *  * for kernel addresses: <start address>[/<size>]
8303  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8304  *
8305  * if <size> is not specified, the range is treated as a single address.
8306  */
8307 enum {
8308         IF_ACT_NONE = -1,
8309         IF_ACT_FILTER,
8310         IF_ACT_START,
8311         IF_ACT_STOP,
8312         IF_SRC_FILE,
8313         IF_SRC_KERNEL,
8314         IF_SRC_FILEADDR,
8315         IF_SRC_KERNELADDR,
8316 };
8317
8318 enum {
8319         IF_STATE_ACTION = 0,
8320         IF_STATE_SOURCE,
8321         IF_STATE_END,
8322 };
8323
8324 static const match_table_t if_tokens = {
8325         { IF_ACT_FILTER,        "filter" },
8326         { IF_ACT_START,         "start" },
8327         { IF_ACT_STOP,          "stop" },
8328         { IF_SRC_FILE,          "%u/%u@%s" },
8329         { IF_SRC_KERNEL,        "%u/%u" },
8330         { IF_SRC_FILEADDR,      "%u@%s" },
8331         { IF_SRC_KERNELADDR,    "%u" },
8332         { IF_ACT_NONE,          NULL },
8333 };
8334
8335 /*
8336  * Address filter string parser
8337  */
8338 static int
8339 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8340                              struct list_head *filters)
8341 {
8342         struct perf_addr_filter *filter = NULL;
8343         char *start, *orig, *filename = NULL;
8344         struct path path;
8345         substring_t args[MAX_OPT_ARGS];
8346         int state = IF_STATE_ACTION, token;
8347         unsigned int kernel = 0;
8348         int ret = -EINVAL;
8349
8350         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8351         if (!fstr)
8352                 return -ENOMEM;
8353
8354         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8355                 ret = -EINVAL;
8356
8357                 if (!*start)
8358                         continue;
8359
8360                 /* filter definition begins */
8361                 if (state == IF_STATE_ACTION) {
8362                         filter = perf_addr_filter_new(event, filters);
8363                         if (!filter)
8364                                 goto fail;
8365                 }
8366
8367                 token = match_token(start, if_tokens, args);
8368                 switch (token) {
8369                 case IF_ACT_FILTER:
8370                 case IF_ACT_START:
8371                         filter->filter = 1;
8372
8373                 case IF_ACT_STOP:
8374                         if (state != IF_STATE_ACTION)
8375                                 goto fail;
8376
8377                         state = IF_STATE_SOURCE;
8378                         break;
8379
8380                 case IF_SRC_KERNELADDR:
8381                 case IF_SRC_KERNEL:
8382                         kernel = 1;
8383
8384                 case IF_SRC_FILEADDR:
8385                 case IF_SRC_FILE:
8386                         if (state != IF_STATE_SOURCE)
8387                                 goto fail;
8388
8389                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8390                                 filter->range = 1;
8391
8392                         *args[0].to = 0;
8393                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8394                         if (ret)
8395                                 goto fail;
8396
8397                         if (filter->range) {
8398                                 *args[1].to = 0;
8399                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8400                                 if (ret)
8401                                         goto fail;
8402                         }
8403
8404                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8405                                 int fpos = filter->range ? 2 : 1;
8406
8407                                 filename = match_strdup(&args[fpos]);
8408                                 if (!filename) {
8409                                         ret = -ENOMEM;
8410                                         goto fail;
8411                                 }
8412                         }
8413
8414                         state = IF_STATE_END;
8415                         break;
8416
8417                 default:
8418                         goto fail;
8419                 }
8420
8421                 /*
8422                  * Filter definition is fully parsed, validate and install it.
8423                  * Make sure that it doesn't contradict itself or the event's
8424                  * attribute.
8425                  */
8426                 if (state == IF_STATE_END) {
8427                         ret = -EINVAL;
8428                         if (kernel && event->attr.exclude_kernel)
8429                                 goto fail;
8430
8431                         if (!kernel) {
8432                                 if (!filename)
8433                                         goto fail;
8434
8435                                 /*
8436                                  * For now, we only support file-based filters
8437                                  * in per-task events; doing so for CPU-wide
8438                                  * events requires additional context switching
8439                                  * trickery, since same object code will be
8440                                  * mapped at different virtual addresses in
8441                                  * different processes.
8442                                  */
8443                                 ret = -EOPNOTSUPP;
8444                                 if (!event->ctx->task)
8445                                         goto fail_free_name;
8446
8447                                 /* look up the path and grab its inode */
8448                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8449                                 if (ret)
8450                                         goto fail_free_name;
8451
8452                                 filter->inode = igrab(d_inode(path.dentry));
8453                                 path_put(&path);
8454                                 kfree(filename);
8455                                 filename = NULL;
8456
8457                                 ret = -EINVAL;
8458                                 if (!filter->inode ||
8459                                     !S_ISREG(filter->inode->i_mode))
8460                                         /* free_filters_list() will iput() */
8461                                         goto fail;
8462
8463                                 event->addr_filters.nr_file_filters++;
8464                         }
8465
8466                         /* ready to consume more filters */
8467                         state = IF_STATE_ACTION;
8468                         filter = NULL;
8469                 }
8470         }
8471
8472         if (state != IF_STATE_ACTION)
8473                 goto fail;
8474
8475         kfree(orig);
8476
8477         return 0;
8478
8479 fail_free_name:
8480         kfree(filename);
8481 fail:
8482         free_filters_list(filters);
8483         kfree(orig);
8484
8485         return ret;
8486 }
8487
8488 static int
8489 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8490 {
8491         LIST_HEAD(filters);
8492         int ret;
8493
8494         /*
8495          * Since this is called in perf_ioctl() path, we're already holding
8496          * ctx::mutex.
8497          */
8498         lockdep_assert_held(&event->ctx->mutex);
8499
8500         if (WARN_ON_ONCE(event->parent))
8501                 return -EINVAL;
8502
8503         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8504         if (ret)
8505                 goto fail_clear_files;
8506
8507         ret = event->pmu->addr_filters_validate(&filters);
8508         if (ret)
8509                 goto fail_free_filters;
8510
8511         /* remove existing filters, if any */
8512         perf_addr_filters_splice(event, &filters);
8513
8514         /* install new filters */
8515         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8516
8517         return ret;
8518
8519 fail_free_filters:
8520         free_filters_list(&filters);
8521
8522 fail_clear_files:
8523         event->addr_filters.nr_file_filters = 0;
8524
8525         return ret;
8526 }
8527
8528 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8529 {
8530         char *filter_str;
8531         int ret = -EINVAL;
8532
8533         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8534             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8535             !has_addr_filter(event))
8536                 return -EINVAL;
8537
8538         filter_str = strndup_user(arg, PAGE_SIZE);
8539         if (IS_ERR(filter_str))
8540                 return PTR_ERR(filter_str);
8541
8542         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8543             event->attr.type == PERF_TYPE_TRACEPOINT)
8544                 ret = ftrace_profile_set_filter(event, event->attr.config,
8545                                                 filter_str);
8546         else if (has_addr_filter(event))
8547                 ret = perf_event_set_addr_filter(event, filter_str);
8548
8549         kfree(filter_str);
8550         return ret;
8551 }
8552
8553 /*
8554  * hrtimer based swevent callback
8555  */
8556
8557 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8558 {
8559         enum hrtimer_restart ret = HRTIMER_RESTART;
8560         struct perf_sample_data data;
8561         struct pt_regs *regs;
8562         struct perf_event *event;
8563         u64 period;
8564
8565         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8566
8567         if (event->state != PERF_EVENT_STATE_ACTIVE)
8568                 return HRTIMER_NORESTART;
8569
8570         event->pmu->read(event);
8571
8572         perf_sample_data_init(&data, 0, event->hw.last_period);
8573         regs = get_irq_regs();
8574
8575         if (regs && !perf_exclude_event(event, regs)) {
8576                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8577                         if (__perf_event_overflow(event, 1, &data, regs))
8578                                 ret = HRTIMER_NORESTART;
8579         }
8580
8581         period = max_t(u64, 10000, event->hw.sample_period);
8582         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8583
8584         return ret;
8585 }
8586
8587 static void perf_swevent_start_hrtimer(struct perf_event *event)
8588 {
8589         struct hw_perf_event *hwc = &event->hw;
8590         s64 period;
8591
8592         if (!is_sampling_event(event))
8593                 return;
8594
8595         period = local64_read(&hwc->period_left);
8596         if (period) {
8597                 if (period < 0)
8598                         period = 10000;
8599
8600                 local64_set(&hwc->period_left, 0);
8601         } else {
8602                 period = max_t(u64, 10000, hwc->sample_period);
8603         }
8604         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8605                       HRTIMER_MODE_REL_PINNED);
8606 }
8607
8608 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8609 {
8610         struct hw_perf_event *hwc = &event->hw;
8611
8612         if (is_sampling_event(event)) {
8613                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8614                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8615
8616                 hrtimer_cancel(&hwc->hrtimer);
8617         }
8618 }
8619
8620 static void perf_swevent_init_hrtimer(struct perf_event *event)
8621 {
8622         struct hw_perf_event *hwc = &event->hw;
8623
8624         if (!is_sampling_event(event))
8625                 return;
8626
8627         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8628         hwc->hrtimer.function = perf_swevent_hrtimer;
8629
8630         /*
8631          * Since hrtimers have a fixed rate, we can do a static freq->period
8632          * mapping and avoid the whole period adjust feedback stuff.
8633          */
8634         if (event->attr.freq) {
8635                 long freq = event->attr.sample_freq;
8636
8637                 event->attr.sample_period = NSEC_PER_SEC / freq;
8638                 hwc->sample_period = event->attr.sample_period;
8639                 local64_set(&hwc->period_left, hwc->sample_period);
8640                 hwc->last_period = hwc->sample_period;
8641                 event->attr.freq = 0;
8642         }
8643 }
8644
8645 /*
8646  * Software event: cpu wall time clock
8647  */
8648
8649 static void cpu_clock_event_update(struct perf_event *event)
8650 {
8651         s64 prev;
8652         u64 now;
8653
8654         now = local_clock();
8655         prev = local64_xchg(&event->hw.prev_count, now);
8656         local64_add(now - prev, &event->count);
8657 }
8658
8659 static void cpu_clock_event_start(struct perf_event *event, int flags)
8660 {
8661         local64_set(&event->hw.prev_count, local_clock());
8662         perf_swevent_start_hrtimer(event);
8663 }
8664
8665 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8666 {
8667         perf_swevent_cancel_hrtimer(event);
8668         cpu_clock_event_update(event);
8669 }
8670
8671 static int cpu_clock_event_add(struct perf_event *event, int flags)
8672 {
8673         if (flags & PERF_EF_START)
8674                 cpu_clock_event_start(event, flags);
8675         perf_event_update_userpage(event);
8676
8677         return 0;
8678 }
8679
8680 static void cpu_clock_event_del(struct perf_event *event, int flags)
8681 {
8682         cpu_clock_event_stop(event, flags);
8683 }
8684
8685 static void cpu_clock_event_read(struct perf_event *event)
8686 {
8687         cpu_clock_event_update(event);
8688 }
8689
8690 static int cpu_clock_event_init(struct perf_event *event)
8691 {
8692         if (event->attr.type != PERF_TYPE_SOFTWARE)
8693                 return -ENOENT;
8694
8695         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8696                 return -ENOENT;
8697
8698         /*
8699          * no branch sampling for software events
8700          */
8701         if (has_branch_stack(event))
8702                 return -EOPNOTSUPP;
8703
8704         perf_swevent_init_hrtimer(event);
8705
8706         return 0;
8707 }
8708
8709 static struct pmu perf_cpu_clock = {
8710         .task_ctx_nr    = perf_sw_context,
8711
8712         .capabilities   = PERF_PMU_CAP_NO_NMI,
8713
8714         .event_init     = cpu_clock_event_init,
8715         .add            = cpu_clock_event_add,
8716         .del            = cpu_clock_event_del,
8717         .start          = cpu_clock_event_start,
8718         .stop           = cpu_clock_event_stop,
8719         .read           = cpu_clock_event_read,
8720 };
8721
8722 /*
8723  * Software event: task time clock
8724  */
8725
8726 static void task_clock_event_update(struct perf_event *event, u64 now)
8727 {
8728         u64 prev;
8729         s64 delta;
8730
8731         prev = local64_xchg(&event->hw.prev_count, now);
8732         delta = now - prev;
8733         local64_add(delta, &event->count);
8734 }
8735
8736 static void task_clock_event_start(struct perf_event *event, int flags)
8737 {
8738         local64_set(&event->hw.prev_count, event->ctx->time);
8739         perf_swevent_start_hrtimer(event);
8740 }
8741
8742 static void task_clock_event_stop(struct perf_event *event, int flags)
8743 {
8744         perf_swevent_cancel_hrtimer(event);
8745         task_clock_event_update(event, event->ctx->time);
8746 }
8747
8748 static int task_clock_event_add(struct perf_event *event, int flags)
8749 {
8750         if (flags & PERF_EF_START)
8751                 task_clock_event_start(event, flags);
8752         perf_event_update_userpage(event);
8753
8754         return 0;
8755 }
8756
8757 static void task_clock_event_del(struct perf_event *event, int flags)
8758 {
8759         task_clock_event_stop(event, PERF_EF_UPDATE);
8760 }
8761
8762 static void task_clock_event_read(struct perf_event *event)
8763 {
8764         u64 now = perf_clock();
8765         u64 delta = now - event->ctx->timestamp;
8766         u64 time = event->ctx->time + delta;
8767
8768         task_clock_event_update(event, time);
8769 }
8770
8771 static int task_clock_event_init(struct perf_event *event)
8772 {
8773         if (event->attr.type != PERF_TYPE_SOFTWARE)
8774                 return -ENOENT;
8775
8776         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8777                 return -ENOENT;
8778
8779         /*
8780          * no branch sampling for software events
8781          */
8782         if (has_branch_stack(event))
8783                 return -EOPNOTSUPP;
8784
8785         perf_swevent_init_hrtimer(event);
8786
8787         return 0;
8788 }
8789
8790 static struct pmu perf_task_clock = {
8791         .task_ctx_nr    = perf_sw_context,
8792
8793         .capabilities   = PERF_PMU_CAP_NO_NMI,
8794
8795         .event_init     = task_clock_event_init,
8796         .add            = task_clock_event_add,
8797         .del            = task_clock_event_del,
8798         .start          = task_clock_event_start,
8799         .stop           = task_clock_event_stop,
8800         .read           = task_clock_event_read,
8801 };
8802
8803 static void perf_pmu_nop_void(struct pmu *pmu)
8804 {
8805 }
8806
8807 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8808 {
8809 }
8810
8811 static int perf_pmu_nop_int(struct pmu *pmu)
8812 {
8813         return 0;
8814 }
8815
8816 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8817
8818 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8819 {
8820         __this_cpu_write(nop_txn_flags, flags);
8821
8822         if (flags & ~PERF_PMU_TXN_ADD)
8823                 return;
8824
8825         perf_pmu_disable(pmu);
8826 }
8827
8828 static int perf_pmu_commit_txn(struct pmu *pmu)
8829 {
8830         unsigned int flags = __this_cpu_read(nop_txn_flags);
8831
8832         __this_cpu_write(nop_txn_flags, 0);
8833
8834         if (flags & ~PERF_PMU_TXN_ADD)
8835                 return 0;
8836
8837         perf_pmu_enable(pmu);
8838         return 0;
8839 }
8840
8841 static void perf_pmu_cancel_txn(struct pmu *pmu)
8842 {
8843         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8844
8845         __this_cpu_write(nop_txn_flags, 0);
8846
8847         if (flags & ~PERF_PMU_TXN_ADD)
8848                 return;
8849
8850         perf_pmu_enable(pmu);
8851 }
8852
8853 static int perf_event_idx_default(struct perf_event *event)
8854 {
8855         return 0;
8856 }
8857
8858 /*
8859  * Ensures all contexts with the same task_ctx_nr have the same
8860  * pmu_cpu_context too.
8861  */
8862 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8863 {
8864         struct pmu *pmu;
8865
8866         if (ctxn < 0)
8867                 return NULL;
8868
8869         list_for_each_entry(pmu, &pmus, entry) {
8870                 if (pmu->task_ctx_nr == ctxn)
8871                         return pmu->pmu_cpu_context;
8872         }
8873
8874         return NULL;
8875 }
8876
8877 static void free_pmu_context(struct pmu *pmu)
8878 {
8879         mutex_lock(&pmus_lock);
8880         free_percpu(pmu->pmu_cpu_context);
8881         mutex_unlock(&pmus_lock);
8882 }
8883
8884 /*
8885  * Let userspace know that this PMU supports address range filtering:
8886  */
8887 static ssize_t nr_addr_filters_show(struct device *dev,
8888                                     struct device_attribute *attr,
8889                                     char *page)
8890 {
8891         struct pmu *pmu = dev_get_drvdata(dev);
8892
8893         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8894 }
8895 DEVICE_ATTR_RO(nr_addr_filters);
8896
8897 static struct idr pmu_idr;
8898
8899 static ssize_t
8900 type_show(struct device *dev, struct device_attribute *attr, char *page)
8901 {
8902         struct pmu *pmu = dev_get_drvdata(dev);
8903
8904         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8905 }
8906 static DEVICE_ATTR_RO(type);
8907
8908 static ssize_t
8909 perf_event_mux_interval_ms_show(struct device *dev,
8910                                 struct device_attribute *attr,
8911                                 char *page)
8912 {
8913         struct pmu *pmu = dev_get_drvdata(dev);
8914
8915         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8916 }
8917
8918 static DEFINE_MUTEX(mux_interval_mutex);
8919
8920 static ssize_t
8921 perf_event_mux_interval_ms_store(struct device *dev,
8922                                  struct device_attribute *attr,
8923                                  const char *buf, size_t count)
8924 {
8925         struct pmu *pmu = dev_get_drvdata(dev);
8926         int timer, cpu, ret;
8927
8928         ret = kstrtoint(buf, 0, &timer);
8929         if (ret)
8930                 return ret;
8931
8932         if (timer < 1)
8933                 return -EINVAL;
8934
8935         /* same value, noting to do */
8936         if (timer == pmu->hrtimer_interval_ms)
8937                 return count;
8938
8939         mutex_lock(&mux_interval_mutex);
8940         pmu->hrtimer_interval_ms = timer;
8941
8942         /* update all cpuctx for this PMU */
8943         get_online_cpus();
8944         for_each_online_cpu(cpu) {
8945                 struct perf_cpu_context *cpuctx;
8946                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8947                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8948
8949                 cpu_function_call(cpu,
8950                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8951         }
8952         put_online_cpus();
8953         mutex_unlock(&mux_interval_mutex);
8954
8955         return count;
8956 }
8957 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8958
8959 static struct attribute *pmu_dev_attrs[] = {
8960         &dev_attr_type.attr,
8961         &dev_attr_perf_event_mux_interval_ms.attr,
8962         NULL,
8963 };
8964 ATTRIBUTE_GROUPS(pmu_dev);
8965
8966 static int pmu_bus_running;
8967 static struct bus_type pmu_bus = {
8968         .name           = "event_source",
8969         .dev_groups     = pmu_dev_groups,
8970 };
8971
8972 static void pmu_dev_release(struct device *dev)
8973 {
8974         kfree(dev);
8975 }
8976
8977 static int pmu_dev_alloc(struct pmu *pmu)
8978 {
8979         int ret = -ENOMEM;
8980
8981         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8982         if (!pmu->dev)
8983                 goto out;
8984
8985         pmu->dev->groups = pmu->attr_groups;
8986         device_initialize(pmu->dev);
8987         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8988         if (ret)
8989                 goto free_dev;
8990
8991         dev_set_drvdata(pmu->dev, pmu);
8992         pmu->dev->bus = &pmu_bus;
8993         pmu->dev->release = pmu_dev_release;
8994         ret = device_add(pmu->dev);
8995         if (ret)
8996                 goto free_dev;
8997
8998         /* For PMUs with address filters, throw in an extra attribute: */
8999         if (pmu->nr_addr_filters)
9000                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9001
9002         if (ret)
9003                 goto del_dev;
9004
9005 out:
9006         return ret;
9007
9008 del_dev:
9009         device_del(pmu->dev);
9010
9011 free_dev:
9012         put_device(pmu->dev);
9013         goto out;
9014 }
9015
9016 static struct lock_class_key cpuctx_mutex;
9017 static struct lock_class_key cpuctx_lock;
9018
9019 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9020 {
9021         int cpu, ret;
9022
9023         mutex_lock(&pmus_lock);
9024         ret = -ENOMEM;
9025         pmu->pmu_disable_count = alloc_percpu(int);
9026         if (!pmu->pmu_disable_count)
9027                 goto unlock;
9028
9029         pmu->type = -1;
9030         if (!name)
9031                 goto skip_type;
9032         pmu->name = name;
9033
9034         if (type < 0) {
9035                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9036                 if (type < 0) {
9037                         ret = type;
9038                         goto free_pdc;
9039                 }
9040         }
9041         pmu->type = type;
9042
9043         if (pmu_bus_running) {
9044                 ret = pmu_dev_alloc(pmu);
9045                 if (ret)
9046                         goto free_idr;
9047         }
9048
9049 skip_type:
9050         if (pmu->task_ctx_nr == perf_hw_context) {
9051                 static int hw_context_taken = 0;
9052
9053                 /*
9054                  * Other than systems with heterogeneous CPUs, it never makes
9055                  * sense for two PMUs to share perf_hw_context. PMUs which are
9056                  * uncore must use perf_invalid_context.
9057                  */
9058                 if (WARN_ON_ONCE(hw_context_taken &&
9059                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9060                         pmu->task_ctx_nr = perf_invalid_context;
9061
9062                 hw_context_taken = 1;
9063         }
9064
9065         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9066         if (pmu->pmu_cpu_context)
9067                 goto got_cpu_context;
9068
9069         ret = -ENOMEM;
9070         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9071         if (!pmu->pmu_cpu_context)
9072                 goto free_dev;
9073
9074         for_each_possible_cpu(cpu) {
9075                 struct perf_cpu_context *cpuctx;
9076
9077                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9078                 __perf_event_init_context(&cpuctx->ctx);
9079                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9080                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9081                 cpuctx->ctx.pmu = pmu;
9082
9083                 __perf_mux_hrtimer_init(cpuctx, cpu);
9084         }
9085
9086 got_cpu_context:
9087         if (!pmu->start_txn) {
9088                 if (pmu->pmu_enable) {
9089                         /*
9090                          * If we have pmu_enable/pmu_disable calls, install
9091                          * transaction stubs that use that to try and batch
9092                          * hardware accesses.
9093                          */
9094                         pmu->start_txn  = perf_pmu_start_txn;
9095                         pmu->commit_txn = perf_pmu_commit_txn;
9096                         pmu->cancel_txn = perf_pmu_cancel_txn;
9097                 } else {
9098                         pmu->start_txn  = perf_pmu_nop_txn;
9099                         pmu->commit_txn = perf_pmu_nop_int;
9100                         pmu->cancel_txn = perf_pmu_nop_void;
9101                 }
9102         }
9103
9104         if (!pmu->pmu_enable) {
9105                 pmu->pmu_enable  = perf_pmu_nop_void;
9106                 pmu->pmu_disable = perf_pmu_nop_void;
9107         }
9108
9109         if (!pmu->event_idx)
9110                 pmu->event_idx = perf_event_idx_default;
9111
9112         list_add_rcu(&pmu->entry, &pmus);
9113         atomic_set(&pmu->exclusive_cnt, 0);
9114         ret = 0;
9115 unlock:
9116         mutex_unlock(&pmus_lock);
9117
9118         return ret;
9119
9120 free_dev:
9121         device_del(pmu->dev);
9122         put_device(pmu->dev);
9123
9124 free_idr:
9125         if (pmu->type >= PERF_TYPE_MAX)
9126                 idr_remove(&pmu_idr, pmu->type);
9127
9128 free_pdc:
9129         free_percpu(pmu->pmu_disable_count);
9130         goto unlock;
9131 }
9132 EXPORT_SYMBOL_GPL(perf_pmu_register);
9133
9134 void perf_pmu_unregister(struct pmu *pmu)
9135 {
9136         int remove_device;
9137
9138         mutex_lock(&pmus_lock);
9139         remove_device = pmu_bus_running;
9140         list_del_rcu(&pmu->entry);
9141         mutex_unlock(&pmus_lock);
9142
9143         /*
9144          * We dereference the pmu list under both SRCU and regular RCU, so
9145          * synchronize against both of those.
9146          */
9147         synchronize_srcu(&pmus_srcu);
9148         synchronize_rcu();
9149
9150         free_percpu(pmu->pmu_disable_count);
9151         if (pmu->type >= PERF_TYPE_MAX)
9152                 idr_remove(&pmu_idr, pmu->type);
9153         if (remove_device) {
9154                 if (pmu->nr_addr_filters)
9155                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9156                 device_del(pmu->dev);
9157                 put_device(pmu->dev);
9158         }
9159         free_pmu_context(pmu);
9160 }
9161 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9162
9163 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9164 {
9165         struct perf_event_context *ctx = NULL;
9166         int ret;
9167
9168         if (!try_module_get(pmu->module))
9169                 return -ENODEV;
9170
9171         if (event->group_leader != event) {
9172                 /*
9173                  * This ctx->mutex can nest when we're called through
9174                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9175                  */
9176                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9177                                                  SINGLE_DEPTH_NESTING);
9178                 BUG_ON(!ctx);
9179         }
9180
9181         event->pmu = pmu;
9182         ret = pmu->event_init(event);
9183
9184         if (ctx)
9185                 perf_event_ctx_unlock(event->group_leader, ctx);
9186
9187         if (ret)
9188                 module_put(pmu->module);
9189
9190         return ret;
9191 }
9192
9193 static struct pmu *perf_init_event(struct perf_event *event)
9194 {
9195         struct pmu *pmu;
9196         int idx;
9197         int ret;
9198
9199         idx = srcu_read_lock(&pmus_srcu);
9200
9201         /* Try parent's PMU first: */
9202         if (event->parent && event->parent->pmu) {
9203                 pmu = event->parent->pmu;
9204                 ret = perf_try_init_event(pmu, event);
9205                 if (!ret)
9206                         goto unlock;
9207         }
9208
9209         rcu_read_lock();
9210         pmu = idr_find(&pmu_idr, event->attr.type);
9211         rcu_read_unlock();
9212         if (pmu) {
9213                 ret = perf_try_init_event(pmu, event);
9214                 if (ret)
9215                         pmu = ERR_PTR(ret);
9216                 goto unlock;
9217         }
9218
9219         list_for_each_entry_rcu(pmu, &pmus, entry) {
9220                 ret = perf_try_init_event(pmu, event);
9221                 if (!ret)
9222                         goto unlock;
9223
9224                 if (ret != -ENOENT) {
9225                         pmu = ERR_PTR(ret);
9226                         goto unlock;
9227                 }
9228         }
9229         pmu = ERR_PTR(-ENOENT);
9230 unlock:
9231         srcu_read_unlock(&pmus_srcu, idx);
9232
9233         return pmu;
9234 }
9235
9236 static void attach_sb_event(struct perf_event *event)
9237 {
9238         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9239
9240         raw_spin_lock(&pel->lock);
9241         list_add_rcu(&event->sb_list, &pel->list);
9242         raw_spin_unlock(&pel->lock);
9243 }
9244
9245 /*
9246  * We keep a list of all !task (and therefore per-cpu) events
9247  * that need to receive side-band records.
9248  *
9249  * This avoids having to scan all the various PMU per-cpu contexts
9250  * looking for them.
9251  */
9252 static void account_pmu_sb_event(struct perf_event *event)
9253 {
9254         if (is_sb_event(event))
9255                 attach_sb_event(event);
9256 }
9257
9258 static void account_event_cpu(struct perf_event *event, int cpu)
9259 {
9260         if (event->parent)
9261                 return;
9262
9263         if (is_cgroup_event(event))
9264                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9265 }
9266
9267 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9268 static void account_freq_event_nohz(void)
9269 {
9270 #ifdef CONFIG_NO_HZ_FULL
9271         /* Lock so we don't race with concurrent unaccount */
9272         spin_lock(&nr_freq_lock);
9273         if (atomic_inc_return(&nr_freq_events) == 1)
9274                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9275         spin_unlock(&nr_freq_lock);
9276 #endif
9277 }
9278
9279 static void account_freq_event(void)
9280 {
9281         if (tick_nohz_full_enabled())
9282                 account_freq_event_nohz();
9283         else
9284                 atomic_inc(&nr_freq_events);
9285 }
9286
9287
9288 static void account_event(struct perf_event *event)
9289 {
9290         bool inc = false;
9291
9292         if (event->parent)
9293                 return;
9294
9295         if (event->attach_state & PERF_ATTACH_TASK)
9296                 inc = true;
9297         if (event->attr.mmap || event->attr.mmap_data)
9298                 atomic_inc(&nr_mmap_events);
9299         if (event->attr.comm)
9300                 atomic_inc(&nr_comm_events);
9301         if (event->attr.namespaces)
9302                 atomic_inc(&nr_namespaces_events);
9303         if (event->attr.task)
9304                 atomic_inc(&nr_task_events);
9305         if (event->attr.freq)
9306                 account_freq_event();
9307         if (event->attr.context_switch) {
9308                 atomic_inc(&nr_switch_events);
9309                 inc = true;
9310         }
9311         if (has_branch_stack(event))
9312                 inc = true;
9313         if (is_cgroup_event(event))
9314                 inc = true;
9315
9316         if (inc) {
9317                 if (atomic_inc_not_zero(&perf_sched_count))
9318                         goto enabled;
9319
9320                 mutex_lock(&perf_sched_mutex);
9321                 if (!atomic_read(&perf_sched_count)) {
9322                         static_branch_enable(&perf_sched_events);
9323                         /*
9324                          * Guarantee that all CPUs observe they key change and
9325                          * call the perf scheduling hooks before proceeding to
9326                          * install events that need them.
9327                          */
9328                         synchronize_sched();
9329                 }
9330                 /*
9331                  * Now that we have waited for the sync_sched(), allow further
9332                  * increments to by-pass the mutex.
9333                  */
9334                 atomic_inc(&perf_sched_count);
9335                 mutex_unlock(&perf_sched_mutex);
9336         }
9337 enabled:
9338
9339         account_event_cpu(event, event->cpu);
9340
9341         account_pmu_sb_event(event);
9342 }
9343
9344 /*
9345  * Allocate and initialize a event structure
9346  */
9347 static struct perf_event *
9348 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9349                  struct task_struct *task,
9350                  struct perf_event *group_leader,
9351                  struct perf_event *parent_event,
9352                  perf_overflow_handler_t overflow_handler,
9353                  void *context, int cgroup_fd)
9354 {
9355         struct pmu *pmu;
9356         struct perf_event *event;
9357         struct hw_perf_event *hwc;
9358         long err = -EINVAL;
9359
9360         if ((unsigned)cpu >= nr_cpu_ids) {
9361                 if (!task || cpu != -1)
9362                         return ERR_PTR(-EINVAL);
9363         }
9364
9365         event = kzalloc(sizeof(*event), GFP_KERNEL);
9366         if (!event)
9367                 return ERR_PTR(-ENOMEM);
9368
9369         /*
9370          * Single events are their own group leaders, with an
9371          * empty sibling list:
9372          */
9373         if (!group_leader)
9374                 group_leader = event;
9375
9376         mutex_init(&event->child_mutex);
9377         INIT_LIST_HEAD(&event->child_list);
9378
9379         INIT_LIST_HEAD(&event->group_entry);
9380         INIT_LIST_HEAD(&event->event_entry);
9381         INIT_LIST_HEAD(&event->sibling_list);
9382         INIT_LIST_HEAD(&event->rb_entry);
9383         INIT_LIST_HEAD(&event->active_entry);
9384         INIT_LIST_HEAD(&event->addr_filters.list);
9385         INIT_HLIST_NODE(&event->hlist_entry);
9386
9387
9388         init_waitqueue_head(&event->waitq);
9389         init_irq_work(&event->pending, perf_pending_event);
9390
9391         mutex_init(&event->mmap_mutex);
9392         raw_spin_lock_init(&event->addr_filters.lock);
9393
9394         atomic_long_set(&event->refcount, 1);
9395         event->cpu              = cpu;
9396         event->attr             = *attr;
9397         event->group_leader     = group_leader;
9398         event->pmu              = NULL;
9399         event->oncpu            = -1;
9400
9401         event->parent           = parent_event;
9402
9403         event->ns               = get_pid_ns(task_active_pid_ns(current));
9404         event->id               = atomic64_inc_return(&perf_event_id);
9405
9406         event->state            = PERF_EVENT_STATE_INACTIVE;
9407
9408         if (task) {
9409                 event->attach_state = PERF_ATTACH_TASK;
9410                 /*
9411                  * XXX pmu::event_init needs to know what task to account to
9412                  * and we cannot use the ctx information because we need the
9413                  * pmu before we get a ctx.
9414                  */
9415                 event->hw.target = task;
9416         }
9417
9418         event->clock = &local_clock;
9419         if (parent_event)
9420                 event->clock = parent_event->clock;
9421
9422         if (!overflow_handler && parent_event) {
9423                 overflow_handler = parent_event->overflow_handler;
9424                 context = parent_event->overflow_handler_context;
9425 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9426                 if (overflow_handler == bpf_overflow_handler) {
9427                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9428
9429                         if (IS_ERR(prog)) {
9430                                 err = PTR_ERR(prog);
9431                                 goto err_ns;
9432                         }
9433                         event->prog = prog;
9434                         event->orig_overflow_handler =
9435                                 parent_event->orig_overflow_handler;
9436                 }
9437 #endif
9438         }
9439
9440         if (overflow_handler) {
9441                 event->overflow_handler = overflow_handler;
9442                 event->overflow_handler_context = context;
9443         } else if (is_write_backward(event)){
9444                 event->overflow_handler = perf_event_output_backward;
9445                 event->overflow_handler_context = NULL;
9446         } else {
9447                 event->overflow_handler = perf_event_output_forward;
9448                 event->overflow_handler_context = NULL;
9449         }
9450
9451         perf_event__state_init(event);
9452
9453         pmu = NULL;
9454
9455         hwc = &event->hw;
9456         hwc->sample_period = attr->sample_period;
9457         if (attr->freq && attr->sample_freq)
9458                 hwc->sample_period = 1;
9459         hwc->last_period = hwc->sample_period;
9460
9461         local64_set(&hwc->period_left, hwc->sample_period);
9462
9463         /*
9464          * We currently do not support PERF_SAMPLE_READ on inherited events.
9465          * See perf_output_read().
9466          */
9467         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9468                 goto err_ns;
9469
9470         if (!has_branch_stack(event))
9471                 event->attr.branch_sample_type = 0;
9472
9473         if (cgroup_fd != -1) {
9474                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9475                 if (err)
9476                         goto err_ns;
9477         }
9478
9479         pmu = perf_init_event(event);
9480         if (IS_ERR(pmu)) {
9481                 err = PTR_ERR(pmu);
9482                 goto err_ns;
9483         }
9484
9485         err = exclusive_event_init(event);
9486         if (err)
9487                 goto err_pmu;
9488
9489         if (has_addr_filter(event)) {
9490                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9491                                                    sizeof(unsigned long),
9492                                                    GFP_KERNEL);
9493                 if (!event->addr_filters_offs) {
9494                         err = -ENOMEM;
9495                         goto err_per_task;
9496                 }
9497
9498                 /* force hw sync on the address filters */
9499                 event->addr_filters_gen = 1;
9500         }
9501
9502         if (!event->parent) {
9503                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9504                         err = get_callchain_buffers(attr->sample_max_stack);
9505                         if (err)
9506                                 goto err_addr_filters;
9507                 }
9508         }
9509
9510         /* symmetric to unaccount_event() in _free_event() */
9511         account_event(event);
9512
9513         return event;
9514
9515 err_addr_filters:
9516         kfree(event->addr_filters_offs);
9517
9518 err_per_task:
9519         exclusive_event_destroy(event);
9520
9521 err_pmu:
9522         if (event->destroy)
9523                 event->destroy(event);
9524         module_put(pmu->module);
9525 err_ns:
9526         if (is_cgroup_event(event))
9527                 perf_detach_cgroup(event);
9528         if (event->ns)
9529                 put_pid_ns(event->ns);
9530         kfree(event);
9531
9532         return ERR_PTR(err);
9533 }
9534
9535 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9536                           struct perf_event_attr *attr)
9537 {
9538         u32 size;
9539         int ret;
9540
9541         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9542                 return -EFAULT;
9543
9544         /*
9545          * zero the full structure, so that a short copy will be nice.
9546          */
9547         memset(attr, 0, sizeof(*attr));
9548
9549         ret = get_user(size, &uattr->size);
9550         if (ret)
9551                 return ret;
9552
9553         if (size > PAGE_SIZE)   /* silly large */
9554                 goto err_size;
9555
9556         if (!size)              /* abi compat */
9557                 size = PERF_ATTR_SIZE_VER0;
9558
9559         if (size < PERF_ATTR_SIZE_VER0)
9560                 goto err_size;
9561
9562         /*
9563          * If we're handed a bigger struct than we know of,
9564          * ensure all the unknown bits are 0 - i.e. new
9565          * user-space does not rely on any kernel feature
9566          * extensions we dont know about yet.
9567          */
9568         if (size > sizeof(*attr)) {
9569                 unsigned char __user *addr;
9570                 unsigned char __user *end;
9571                 unsigned char val;
9572
9573                 addr = (void __user *)uattr + sizeof(*attr);
9574                 end  = (void __user *)uattr + size;
9575
9576                 for (; addr < end; addr++) {
9577                         ret = get_user(val, addr);
9578                         if (ret)
9579                                 return ret;
9580                         if (val)
9581                                 goto err_size;
9582                 }
9583                 size = sizeof(*attr);
9584         }
9585
9586         ret = copy_from_user(attr, uattr, size);
9587         if (ret)
9588                 return -EFAULT;
9589
9590         if (attr->__reserved_1)
9591                 return -EINVAL;
9592
9593         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9594                 return -EINVAL;
9595
9596         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9597                 return -EINVAL;
9598
9599         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9600                 u64 mask = attr->branch_sample_type;
9601
9602                 /* only using defined bits */
9603                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9604                         return -EINVAL;
9605
9606                 /* at least one branch bit must be set */
9607                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9608                         return -EINVAL;
9609
9610                 /* propagate priv level, when not set for branch */
9611                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9612
9613                         /* exclude_kernel checked on syscall entry */
9614                         if (!attr->exclude_kernel)
9615                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9616
9617                         if (!attr->exclude_user)
9618                                 mask |= PERF_SAMPLE_BRANCH_USER;
9619
9620                         if (!attr->exclude_hv)
9621                                 mask |= PERF_SAMPLE_BRANCH_HV;
9622                         /*
9623                          * adjust user setting (for HW filter setup)
9624                          */
9625                         attr->branch_sample_type = mask;
9626                 }
9627                 /* privileged levels capture (kernel, hv): check permissions */
9628                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9629                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9630                         return -EACCES;
9631         }
9632
9633         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9634                 ret = perf_reg_validate(attr->sample_regs_user);
9635                 if (ret)
9636                         return ret;
9637         }
9638
9639         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9640                 if (!arch_perf_have_user_stack_dump())
9641                         return -ENOSYS;
9642
9643                 /*
9644                  * We have __u32 type for the size, but so far
9645                  * we can only use __u16 as maximum due to the
9646                  * __u16 sample size limit.
9647                  */
9648                 if (attr->sample_stack_user >= USHRT_MAX)
9649                         ret = -EINVAL;
9650                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9651                         ret = -EINVAL;
9652         }
9653
9654         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9655                 ret = perf_reg_validate(attr->sample_regs_intr);
9656 out:
9657         return ret;
9658
9659 err_size:
9660         put_user(sizeof(*attr), &uattr->size);
9661         ret = -E2BIG;
9662         goto out;
9663 }
9664
9665 static int
9666 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9667 {
9668         struct ring_buffer *rb = NULL;
9669         int ret = -EINVAL;
9670
9671         if (!output_event)
9672                 goto set;
9673
9674         /* don't allow circular references */
9675         if (event == output_event)
9676                 goto out;
9677
9678         /*
9679          * Don't allow cross-cpu buffers
9680          */
9681         if (output_event->cpu != event->cpu)
9682                 goto out;
9683
9684         /*
9685          * If its not a per-cpu rb, it must be the same task.
9686          */
9687         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9688                 goto out;
9689
9690         /*
9691          * Mixing clocks in the same buffer is trouble you don't need.
9692          */
9693         if (output_event->clock != event->clock)
9694                 goto out;
9695
9696         /*
9697          * Either writing ring buffer from beginning or from end.
9698          * Mixing is not allowed.
9699          */
9700         if (is_write_backward(output_event) != is_write_backward(event))
9701                 goto out;
9702
9703         /*
9704          * If both events generate aux data, they must be on the same PMU
9705          */
9706         if (has_aux(event) && has_aux(output_event) &&
9707             event->pmu != output_event->pmu)
9708                 goto out;
9709
9710 set:
9711         mutex_lock(&event->mmap_mutex);
9712         /* Can't redirect output if we've got an active mmap() */
9713         if (atomic_read(&event->mmap_count))
9714                 goto unlock;
9715
9716         if (output_event) {
9717                 /* get the rb we want to redirect to */
9718                 rb = ring_buffer_get(output_event);
9719                 if (!rb)
9720                         goto unlock;
9721         }
9722
9723         ring_buffer_attach(event, rb);
9724
9725         ret = 0;
9726 unlock:
9727         mutex_unlock(&event->mmap_mutex);
9728
9729 out:
9730         return ret;
9731 }
9732
9733 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9734 {
9735         if (b < a)
9736                 swap(a, b);
9737
9738         mutex_lock(a);
9739         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9740 }
9741
9742 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9743 {
9744         bool nmi_safe = false;
9745
9746         switch (clk_id) {
9747         case CLOCK_MONOTONIC:
9748                 event->clock = &ktime_get_mono_fast_ns;
9749                 nmi_safe = true;
9750                 break;
9751
9752         case CLOCK_MONOTONIC_RAW:
9753                 event->clock = &ktime_get_raw_fast_ns;
9754                 nmi_safe = true;
9755                 break;
9756
9757         case CLOCK_REALTIME:
9758                 event->clock = &ktime_get_real_ns;
9759                 break;
9760
9761         case CLOCK_BOOTTIME:
9762                 event->clock = &ktime_get_boot_ns;
9763                 break;
9764
9765         case CLOCK_TAI:
9766                 event->clock = &ktime_get_tai_ns;
9767                 break;
9768
9769         default:
9770                 return -EINVAL;
9771         }
9772
9773         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9774                 return -EINVAL;
9775
9776         return 0;
9777 }
9778
9779 /*
9780  * Variation on perf_event_ctx_lock_nested(), except we take two context
9781  * mutexes.
9782  */
9783 static struct perf_event_context *
9784 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9785                              struct perf_event_context *ctx)
9786 {
9787         struct perf_event_context *gctx;
9788
9789 again:
9790         rcu_read_lock();
9791         gctx = READ_ONCE(group_leader->ctx);
9792         if (!atomic_inc_not_zero(&gctx->refcount)) {
9793                 rcu_read_unlock();
9794                 goto again;
9795         }
9796         rcu_read_unlock();
9797
9798         mutex_lock_double(&gctx->mutex, &ctx->mutex);
9799
9800         if (group_leader->ctx != gctx) {
9801                 mutex_unlock(&ctx->mutex);
9802                 mutex_unlock(&gctx->mutex);
9803                 put_ctx(gctx);
9804                 goto again;
9805         }
9806
9807         return gctx;
9808 }
9809
9810 /**
9811  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9812  *
9813  * @attr_uptr:  event_id type attributes for monitoring/sampling
9814  * @pid:                target pid
9815  * @cpu:                target cpu
9816  * @group_fd:           group leader event fd
9817  */
9818 SYSCALL_DEFINE5(perf_event_open,
9819                 struct perf_event_attr __user *, attr_uptr,
9820                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9821 {
9822         struct perf_event *group_leader = NULL, *output_event = NULL;
9823         struct perf_event *event, *sibling;
9824         struct perf_event_attr attr;
9825         struct perf_event_context *ctx, *uninitialized_var(gctx);
9826         struct file *event_file = NULL;
9827         struct fd group = {NULL, 0};
9828         struct task_struct *task = NULL;
9829         struct pmu *pmu;
9830         int event_fd;
9831         int move_group = 0;
9832         int err;
9833         int f_flags = O_RDWR;
9834         int cgroup_fd = -1;
9835
9836         /* for future expandability... */
9837         if (flags & ~PERF_FLAG_ALL)
9838                 return -EINVAL;
9839
9840         err = perf_copy_attr(attr_uptr, &attr);
9841         if (err)
9842                 return err;
9843
9844         if (!attr.exclude_kernel) {
9845                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9846                         return -EACCES;
9847         }
9848
9849         if (attr.namespaces) {
9850                 if (!capable(CAP_SYS_ADMIN))
9851                         return -EACCES;
9852         }
9853
9854         if (attr.freq) {
9855                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9856                         return -EINVAL;
9857         } else {
9858                 if (attr.sample_period & (1ULL << 63))
9859                         return -EINVAL;
9860         }
9861
9862         if (!attr.sample_max_stack)
9863                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9864
9865         /*
9866          * In cgroup mode, the pid argument is used to pass the fd
9867          * opened to the cgroup directory in cgroupfs. The cpu argument
9868          * designates the cpu on which to monitor threads from that
9869          * cgroup.
9870          */
9871         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9872                 return -EINVAL;
9873
9874         if (flags & PERF_FLAG_FD_CLOEXEC)
9875                 f_flags |= O_CLOEXEC;
9876
9877         event_fd = get_unused_fd_flags(f_flags);
9878         if (event_fd < 0)
9879                 return event_fd;
9880
9881         if (group_fd != -1) {
9882                 err = perf_fget_light(group_fd, &group);
9883                 if (err)
9884                         goto err_fd;
9885                 group_leader = group.file->private_data;
9886                 if (flags & PERF_FLAG_FD_OUTPUT)
9887                         output_event = group_leader;
9888                 if (flags & PERF_FLAG_FD_NO_GROUP)
9889                         group_leader = NULL;
9890         }
9891
9892         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9893                 task = find_lively_task_by_vpid(pid);
9894                 if (IS_ERR(task)) {
9895                         err = PTR_ERR(task);
9896                         goto err_group_fd;
9897                 }
9898         }
9899
9900         if (task && group_leader &&
9901             group_leader->attr.inherit != attr.inherit) {
9902                 err = -EINVAL;
9903                 goto err_task;
9904         }
9905
9906         get_online_cpus();
9907
9908         if (task) {
9909                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9910                 if (err)
9911                         goto err_cpus;
9912
9913                 /*
9914                  * Reuse ptrace permission checks for now.
9915                  *
9916                  * We must hold cred_guard_mutex across this and any potential
9917                  * perf_install_in_context() call for this new event to
9918                  * serialize against exec() altering our credentials (and the
9919                  * perf_event_exit_task() that could imply).
9920                  */
9921                 err = -EACCES;
9922                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9923                         goto err_cred;
9924         }
9925
9926         if (flags & PERF_FLAG_PID_CGROUP)
9927                 cgroup_fd = pid;
9928
9929         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9930                                  NULL, NULL, cgroup_fd);
9931         if (IS_ERR(event)) {
9932                 err = PTR_ERR(event);
9933                 goto err_cred;
9934         }
9935
9936         if (is_sampling_event(event)) {
9937                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9938                         err = -EOPNOTSUPP;
9939                         goto err_alloc;
9940                 }
9941         }
9942
9943         /*
9944          * Special case software events and allow them to be part of
9945          * any hardware group.
9946          */
9947         pmu = event->pmu;
9948
9949         if (attr.use_clockid) {
9950                 err = perf_event_set_clock(event, attr.clockid);
9951                 if (err)
9952                         goto err_alloc;
9953         }
9954
9955         if (pmu->task_ctx_nr == perf_sw_context)
9956                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9957
9958         if (group_leader &&
9959             (is_software_event(event) != is_software_event(group_leader))) {
9960                 if (is_software_event(event)) {
9961                         /*
9962                          * If event and group_leader are not both a software
9963                          * event, and event is, then group leader is not.
9964                          *
9965                          * Allow the addition of software events to !software
9966                          * groups, this is safe because software events never
9967                          * fail to schedule.
9968                          */
9969                         pmu = group_leader->pmu;
9970                 } else if (is_software_event(group_leader) &&
9971                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9972                         /*
9973                          * In case the group is a pure software group, and we
9974                          * try to add a hardware event, move the whole group to
9975                          * the hardware context.
9976                          */
9977                         move_group = 1;
9978                 }
9979         }
9980
9981         /*
9982          * Get the target context (task or percpu):
9983          */
9984         ctx = find_get_context(pmu, task, event);
9985         if (IS_ERR(ctx)) {
9986                 err = PTR_ERR(ctx);
9987                 goto err_alloc;
9988         }
9989
9990         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9991                 err = -EBUSY;
9992                 goto err_context;
9993         }
9994
9995         /*
9996          * Look up the group leader (we will attach this event to it):
9997          */
9998         if (group_leader) {
9999                 err = -EINVAL;
10000
10001                 /*
10002                  * Do not allow a recursive hierarchy (this new sibling
10003                  * becoming part of another group-sibling):
10004                  */
10005                 if (group_leader->group_leader != group_leader)
10006                         goto err_context;
10007
10008                 /* All events in a group should have the same clock */
10009                 if (group_leader->clock != event->clock)
10010                         goto err_context;
10011
10012                 /*
10013                  * Do not allow to attach to a group in a different
10014                  * task or CPU context:
10015                  */
10016                 if (move_group) {
10017                         /*
10018                          * Make sure we're both on the same task, or both
10019                          * per-cpu events.
10020                          */
10021                         if (group_leader->ctx->task != ctx->task)
10022                                 goto err_context;
10023
10024                         /*
10025                          * Make sure we're both events for the same CPU;
10026                          * grouping events for different CPUs is broken; since
10027                          * you can never concurrently schedule them anyhow.
10028                          */
10029                         if (group_leader->cpu != event->cpu)
10030                                 goto err_context;
10031                 } else {
10032                         if (group_leader->ctx != ctx)
10033                                 goto err_context;
10034                 }
10035
10036                 /*
10037                  * Only a group leader can be exclusive or pinned
10038                  */
10039                 if (attr.exclusive || attr.pinned)
10040                         goto err_context;
10041         }
10042
10043         if (output_event) {
10044                 err = perf_event_set_output(event, output_event);
10045                 if (err)
10046                         goto err_context;
10047         }
10048
10049         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10050                                         f_flags);
10051         if (IS_ERR(event_file)) {
10052                 err = PTR_ERR(event_file);
10053                 event_file = NULL;
10054                 goto err_context;
10055         }
10056
10057         if (move_group) {
10058                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10059
10060                 if (gctx->task == TASK_TOMBSTONE) {
10061                         err = -ESRCH;
10062                         goto err_locked;
10063                 }
10064
10065                 /*
10066                  * Check if we raced against another sys_perf_event_open() call
10067                  * moving the software group underneath us.
10068                  */
10069                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10070                         /*
10071                          * If someone moved the group out from under us, check
10072                          * if this new event wound up on the same ctx, if so
10073                          * its the regular !move_group case, otherwise fail.
10074                          */
10075                         if (gctx != ctx) {
10076                                 err = -EINVAL;
10077                                 goto err_locked;
10078                         } else {
10079                                 perf_event_ctx_unlock(group_leader, gctx);
10080                                 move_group = 0;
10081                         }
10082                 }
10083         } else {
10084                 mutex_lock(&ctx->mutex);
10085         }
10086
10087         if (ctx->task == TASK_TOMBSTONE) {
10088                 err = -ESRCH;
10089                 goto err_locked;
10090         }
10091
10092         if (!perf_event_validate_size(event)) {
10093                 err = -E2BIG;
10094                 goto err_locked;
10095         }
10096
10097         /*
10098          * Must be under the same ctx::mutex as perf_install_in_context(),
10099          * because we need to serialize with concurrent event creation.
10100          */
10101         if (!exclusive_event_installable(event, ctx)) {
10102                 /* exclusive and group stuff are assumed mutually exclusive */
10103                 WARN_ON_ONCE(move_group);
10104
10105                 err = -EBUSY;
10106                 goto err_locked;
10107         }
10108
10109         WARN_ON_ONCE(ctx->parent_ctx);
10110
10111         /*
10112          * This is the point on no return; we cannot fail hereafter. This is
10113          * where we start modifying current state.
10114          */
10115
10116         if (move_group) {
10117                 /*
10118                  * See perf_event_ctx_lock() for comments on the details
10119                  * of swizzling perf_event::ctx.
10120                  */
10121                 perf_remove_from_context(group_leader, 0);
10122                 put_ctx(gctx);
10123
10124                 list_for_each_entry(sibling, &group_leader->sibling_list,
10125                                     group_entry) {
10126                         perf_remove_from_context(sibling, 0);
10127                         put_ctx(gctx);
10128                 }
10129
10130                 /*
10131                  * Wait for everybody to stop referencing the events through
10132                  * the old lists, before installing it on new lists.
10133                  */
10134                 synchronize_rcu();
10135
10136                 /*
10137                  * Install the group siblings before the group leader.
10138                  *
10139                  * Because a group leader will try and install the entire group
10140                  * (through the sibling list, which is still in-tact), we can
10141                  * end up with siblings installed in the wrong context.
10142                  *
10143                  * By installing siblings first we NO-OP because they're not
10144                  * reachable through the group lists.
10145                  */
10146                 list_for_each_entry(sibling, &group_leader->sibling_list,
10147                                     group_entry) {
10148                         perf_event__state_init(sibling);
10149                         perf_install_in_context(ctx, sibling, sibling->cpu);
10150                         get_ctx(ctx);
10151                 }
10152
10153                 /*
10154                  * Removing from the context ends up with disabled
10155                  * event. What we want here is event in the initial
10156                  * startup state, ready to be add into new context.
10157                  */
10158                 perf_event__state_init(group_leader);
10159                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10160                 get_ctx(ctx);
10161         }
10162
10163         /*
10164          * Precalculate sample_data sizes; do while holding ctx::mutex such
10165          * that we're serialized against further additions and before
10166          * perf_install_in_context() which is the point the event is active and
10167          * can use these values.
10168          */
10169         perf_event__header_size(event);
10170         perf_event__id_header_size(event);
10171
10172         event->owner = current;
10173
10174         perf_install_in_context(ctx, event, event->cpu);
10175         perf_unpin_context(ctx);
10176
10177         if (move_group)
10178                 perf_event_ctx_unlock(group_leader, gctx);
10179         mutex_unlock(&ctx->mutex);
10180
10181         if (task) {
10182                 mutex_unlock(&task->signal->cred_guard_mutex);
10183                 put_task_struct(task);
10184         }
10185
10186         put_online_cpus();
10187
10188         mutex_lock(&current->perf_event_mutex);
10189         list_add_tail(&event->owner_entry, &current->perf_event_list);
10190         mutex_unlock(&current->perf_event_mutex);
10191
10192         /*
10193          * Drop the reference on the group_event after placing the
10194          * new event on the sibling_list. This ensures destruction
10195          * of the group leader will find the pointer to itself in
10196          * perf_group_detach().
10197          */
10198         fdput(group);
10199         fd_install(event_fd, event_file);
10200         return event_fd;
10201
10202 err_locked:
10203         if (move_group)
10204                 perf_event_ctx_unlock(group_leader, gctx);
10205         mutex_unlock(&ctx->mutex);
10206 /* err_file: */
10207         fput(event_file);
10208 err_context:
10209         perf_unpin_context(ctx);
10210         put_ctx(ctx);
10211 err_alloc:
10212         /*
10213          * If event_file is set, the fput() above will have called ->release()
10214          * and that will take care of freeing the event.
10215          */
10216         if (!event_file)
10217                 free_event(event);
10218 err_cred:
10219         if (task)
10220                 mutex_unlock(&task->signal->cred_guard_mutex);
10221 err_cpus:
10222         put_online_cpus();
10223 err_task:
10224         if (task)
10225                 put_task_struct(task);
10226 err_group_fd:
10227         fdput(group);
10228 err_fd:
10229         put_unused_fd(event_fd);
10230         return err;
10231 }
10232
10233 /**
10234  * perf_event_create_kernel_counter
10235  *
10236  * @attr: attributes of the counter to create
10237  * @cpu: cpu in which the counter is bound
10238  * @task: task to profile (NULL for percpu)
10239  */
10240 struct perf_event *
10241 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10242                                  struct task_struct *task,
10243                                  perf_overflow_handler_t overflow_handler,
10244                                  void *context)
10245 {
10246         struct perf_event_context *ctx;
10247         struct perf_event *event;
10248         int err;
10249
10250         /*
10251          * Get the target context (task or percpu):
10252          */
10253
10254         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10255                                  overflow_handler, context, -1);
10256         if (IS_ERR(event)) {
10257                 err = PTR_ERR(event);
10258                 goto err;
10259         }
10260
10261         /* Mark owner so we could distinguish it from user events. */
10262         event->owner = TASK_TOMBSTONE;
10263
10264         ctx = find_get_context(event->pmu, task, event);
10265         if (IS_ERR(ctx)) {
10266                 err = PTR_ERR(ctx);
10267                 goto err_free;
10268         }
10269
10270         WARN_ON_ONCE(ctx->parent_ctx);
10271         mutex_lock(&ctx->mutex);
10272         if (ctx->task == TASK_TOMBSTONE) {
10273                 err = -ESRCH;
10274                 goto err_unlock;
10275         }
10276
10277         if (!exclusive_event_installable(event, ctx)) {
10278                 err = -EBUSY;
10279                 goto err_unlock;
10280         }
10281
10282         perf_install_in_context(ctx, event, cpu);
10283         perf_unpin_context(ctx);
10284         mutex_unlock(&ctx->mutex);
10285
10286         return event;
10287
10288 err_unlock:
10289         mutex_unlock(&ctx->mutex);
10290         perf_unpin_context(ctx);
10291         put_ctx(ctx);
10292 err_free:
10293         free_event(event);
10294 err:
10295         return ERR_PTR(err);
10296 }
10297 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10298
10299 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10300 {
10301         struct perf_event_context *src_ctx;
10302         struct perf_event_context *dst_ctx;
10303         struct perf_event *event, *tmp;
10304         LIST_HEAD(events);
10305
10306         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10307         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10308
10309         /*
10310          * See perf_event_ctx_lock() for comments on the details
10311          * of swizzling perf_event::ctx.
10312          */
10313         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10314         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10315                                  event_entry) {
10316                 perf_remove_from_context(event, 0);
10317                 unaccount_event_cpu(event, src_cpu);
10318                 put_ctx(src_ctx);
10319                 list_add(&event->migrate_entry, &events);
10320         }
10321
10322         /*
10323          * Wait for the events to quiesce before re-instating them.
10324          */
10325         synchronize_rcu();
10326
10327         /*
10328          * Re-instate events in 2 passes.
10329          *
10330          * Skip over group leaders and only install siblings on this first
10331          * pass, siblings will not get enabled without a leader, however a
10332          * leader will enable its siblings, even if those are still on the old
10333          * context.
10334          */
10335         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10336                 if (event->group_leader == event)
10337                         continue;
10338
10339                 list_del(&event->migrate_entry);
10340                 if (event->state >= PERF_EVENT_STATE_OFF)
10341                         event->state = PERF_EVENT_STATE_INACTIVE;
10342                 account_event_cpu(event, dst_cpu);
10343                 perf_install_in_context(dst_ctx, event, dst_cpu);
10344                 get_ctx(dst_ctx);
10345         }
10346
10347         /*
10348          * Once all the siblings are setup properly, install the group leaders
10349          * to make it go.
10350          */
10351         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10352                 list_del(&event->migrate_entry);
10353                 if (event->state >= PERF_EVENT_STATE_OFF)
10354                         event->state = PERF_EVENT_STATE_INACTIVE;
10355                 account_event_cpu(event, dst_cpu);
10356                 perf_install_in_context(dst_ctx, event, dst_cpu);
10357                 get_ctx(dst_ctx);
10358         }
10359         mutex_unlock(&dst_ctx->mutex);
10360         mutex_unlock(&src_ctx->mutex);
10361 }
10362 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10363
10364 static void sync_child_event(struct perf_event *child_event,
10365                                struct task_struct *child)
10366 {
10367         struct perf_event *parent_event = child_event->parent;
10368         u64 child_val;
10369
10370         if (child_event->attr.inherit_stat)
10371                 perf_event_read_event(child_event, child);
10372
10373         child_val = perf_event_count(child_event);
10374
10375         /*
10376          * Add back the child's count to the parent's count:
10377          */
10378         atomic64_add(child_val, &parent_event->child_count);
10379         atomic64_add(child_event->total_time_enabled,
10380                      &parent_event->child_total_time_enabled);
10381         atomic64_add(child_event->total_time_running,
10382                      &parent_event->child_total_time_running);
10383 }
10384
10385 static void
10386 perf_event_exit_event(struct perf_event *child_event,
10387                       struct perf_event_context *child_ctx,
10388                       struct task_struct *child)
10389 {
10390         struct perf_event *parent_event = child_event->parent;
10391
10392         /*
10393          * Do not destroy the 'original' grouping; because of the context
10394          * switch optimization the original events could've ended up in a
10395          * random child task.
10396          *
10397          * If we were to destroy the original group, all group related
10398          * operations would cease to function properly after this random
10399          * child dies.
10400          *
10401          * Do destroy all inherited groups, we don't care about those
10402          * and being thorough is better.
10403          */
10404         raw_spin_lock_irq(&child_ctx->lock);
10405         WARN_ON_ONCE(child_ctx->is_active);
10406
10407         if (parent_event)
10408                 perf_group_detach(child_event);
10409         list_del_event(child_event, child_ctx);
10410         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10411         raw_spin_unlock_irq(&child_ctx->lock);
10412
10413         /*
10414          * Parent events are governed by their filedesc, retain them.
10415          */
10416         if (!parent_event) {
10417                 perf_event_wakeup(child_event);
10418                 return;
10419         }
10420         /*
10421          * Child events can be cleaned up.
10422          */
10423
10424         sync_child_event(child_event, child);
10425
10426         /*
10427          * Remove this event from the parent's list
10428          */
10429         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10430         mutex_lock(&parent_event->child_mutex);
10431         list_del_init(&child_event->child_list);
10432         mutex_unlock(&parent_event->child_mutex);
10433
10434         /*
10435          * Kick perf_poll() for is_event_hup().
10436          */
10437         perf_event_wakeup(parent_event);
10438         free_event(child_event);
10439         put_event(parent_event);
10440 }
10441
10442 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10443 {
10444         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10445         struct perf_event *child_event, *next;
10446
10447         WARN_ON_ONCE(child != current);
10448
10449         child_ctx = perf_pin_task_context(child, ctxn);
10450         if (!child_ctx)
10451                 return;
10452
10453         /*
10454          * In order to reduce the amount of tricky in ctx tear-down, we hold
10455          * ctx::mutex over the entire thing. This serializes against almost
10456          * everything that wants to access the ctx.
10457          *
10458          * The exception is sys_perf_event_open() /
10459          * perf_event_create_kernel_count() which does find_get_context()
10460          * without ctx::mutex (it cannot because of the move_group double mutex
10461          * lock thing). See the comments in perf_install_in_context().
10462          */
10463         mutex_lock(&child_ctx->mutex);
10464
10465         /*
10466          * In a single ctx::lock section, de-schedule the events and detach the
10467          * context from the task such that we cannot ever get it scheduled back
10468          * in.
10469          */
10470         raw_spin_lock_irq(&child_ctx->lock);
10471         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10472
10473         /*
10474          * Now that the context is inactive, destroy the task <-> ctx relation
10475          * and mark the context dead.
10476          */
10477         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10478         put_ctx(child_ctx); /* cannot be last */
10479         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10480         put_task_struct(current); /* cannot be last */
10481
10482         clone_ctx = unclone_ctx(child_ctx);
10483         raw_spin_unlock_irq(&child_ctx->lock);
10484
10485         if (clone_ctx)
10486                 put_ctx(clone_ctx);
10487
10488         /*
10489          * Report the task dead after unscheduling the events so that we
10490          * won't get any samples after PERF_RECORD_EXIT. We can however still
10491          * get a few PERF_RECORD_READ events.
10492          */
10493         perf_event_task(child, child_ctx, 0);
10494
10495         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10496                 perf_event_exit_event(child_event, child_ctx, child);
10497
10498         mutex_unlock(&child_ctx->mutex);
10499
10500         put_ctx(child_ctx);
10501 }
10502
10503 /*
10504  * When a child task exits, feed back event values to parent events.
10505  *
10506  * Can be called with cred_guard_mutex held when called from
10507  * install_exec_creds().
10508  */
10509 void perf_event_exit_task(struct task_struct *child)
10510 {
10511         struct perf_event *event, *tmp;
10512         int ctxn;
10513
10514         mutex_lock(&child->perf_event_mutex);
10515         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10516                                  owner_entry) {
10517                 list_del_init(&event->owner_entry);
10518
10519                 /*
10520                  * Ensure the list deletion is visible before we clear
10521                  * the owner, closes a race against perf_release() where
10522                  * we need to serialize on the owner->perf_event_mutex.
10523                  */
10524                 smp_store_release(&event->owner, NULL);
10525         }
10526         mutex_unlock(&child->perf_event_mutex);
10527
10528         for_each_task_context_nr(ctxn)
10529                 perf_event_exit_task_context(child, ctxn);
10530
10531         /*
10532          * The perf_event_exit_task_context calls perf_event_task
10533          * with child's task_ctx, which generates EXIT events for
10534          * child contexts and sets child->perf_event_ctxp[] to NULL.
10535          * At this point we need to send EXIT events to cpu contexts.
10536          */
10537         perf_event_task(child, NULL, 0);
10538 }
10539
10540 static void perf_free_event(struct perf_event *event,
10541                             struct perf_event_context *ctx)
10542 {
10543         struct perf_event *parent = event->parent;
10544
10545         if (WARN_ON_ONCE(!parent))
10546                 return;
10547
10548         mutex_lock(&parent->child_mutex);
10549         list_del_init(&event->child_list);
10550         mutex_unlock(&parent->child_mutex);
10551
10552         put_event(parent);
10553
10554         raw_spin_lock_irq(&ctx->lock);
10555         perf_group_detach(event);
10556         list_del_event(event, ctx);
10557         raw_spin_unlock_irq(&ctx->lock);
10558         free_event(event);
10559 }
10560
10561 /*
10562  * Free an unexposed, unused context as created by inheritance by
10563  * perf_event_init_task below, used by fork() in case of fail.
10564  *
10565  * Not all locks are strictly required, but take them anyway to be nice and
10566  * help out with the lockdep assertions.
10567  */
10568 void perf_event_free_task(struct task_struct *task)
10569 {
10570         struct perf_event_context *ctx;
10571         struct perf_event *event, *tmp;
10572         int ctxn;
10573
10574         for_each_task_context_nr(ctxn) {
10575                 ctx = task->perf_event_ctxp[ctxn];
10576                 if (!ctx)
10577                         continue;
10578
10579                 mutex_lock(&ctx->mutex);
10580                 raw_spin_lock_irq(&ctx->lock);
10581                 /*
10582                  * Destroy the task <-> ctx relation and mark the context dead.
10583                  *
10584                  * This is important because even though the task hasn't been
10585                  * exposed yet the context has been (through child_list).
10586                  */
10587                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10588                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10589                 put_task_struct(task); /* cannot be last */
10590                 raw_spin_unlock_irq(&ctx->lock);
10591
10592                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10593                         perf_free_event(event, ctx);
10594
10595                 mutex_unlock(&ctx->mutex);
10596                 put_ctx(ctx);
10597         }
10598 }
10599
10600 void perf_event_delayed_put(struct task_struct *task)
10601 {
10602         int ctxn;
10603
10604         for_each_task_context_nr(ctxn)
10605                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10606 }
10607
10608 struct file *perf_event_get(unsigned int fd)
10609 {
10610         struct file *file;
10611
10612         file = fget_raw(fd);
10613         if (!file)
10614                 return ERR_PTR(-EBADF);
10615
10616         if (file->f_op != &perf_fops) {
10617                 fput(file);
10618                 return ERR_PTR(-EBADF);
10619         }
10620
10621         return file;
10622 }
10623
10624 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10625 {
10626         if (!event)
10627                 return ERR_PTR(-EINVAL);
10628
10629         return &event->attr;
10630 }
10631
10632 /*
10633  * Inherit a event from parent task to child task.
10634  *
10635  * Returns:
10636  *  - valid pointer on success
10637  *  - NULL for orphaned events
10638  *  - IS_ERR() on error
10639  */
10640 static struct perf_event *
10641 inherit_event(struct perf_event *parent_event,
10642               struct task_struct *parent,
10643               struct perf_event_context *parent_ctx,
10644               struct task_struct *child,
10645               struct perf_event *group_leader,
10646               struct perf_event_context *child_ctx)
10647 {
10648         enum perf_event_active_state parent_state = parent_event->state;
10649         struct perf_event *child_event;
10650         unsigned long flags;
10651
10652         /*
10653          * Instead of creating recursive hierarchies of events,
10654          * we link inherited events back to the original parent,
10655          * which has a filp for sure, which we use as the reference
10656          * count:
10657          */
10658         if (parent_event->parent)
10659                 parent_event = parent_event->parent;
10660
10661         child_event = perf_event_alloc(&parent_event->attr,
10662                                            parent_event->cpu,
10663                                            child,
10664                                            group_leader, parent_event,
10665                                            NULL, NULL, -1);
10666         if (IS_ERR(child_event))
10667                 return child_event;
10668
10669         /*
10670          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10671          * must be under the same lock in order to serialize against
10672          * perf_event_release_kernel(), such that either we must observe
10673          * is_orphaned_event() or they will observe us on the child_list.
10674          */
10675         mutex_lock(&parent_event->child_mutex);
10676         if (is_orphaned_event(parent_event) ||
10677             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10678                 mutex_unlock(&parent_event->child_mutex);
10679                 free_event(child_event);
10680                 return NULL;
10681         }
10682
10683         get_ctx(child_ctx);
10684
10685         /*
10686          * Make the child state follow the state of the parent event,
10687          * not its attr.disabled bit.  We hold the parent's mutex,
10688          * so we won't race with perf_event_{en, dis}able_family.
10689          */
10690         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10691                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10692         else
10693                 child_event->state = PERF_EVENT_STATE_OFF;
10694
10695         if (parent_event->attr.freq) {
10696                 u64 sample_period = parent_event->hw.sample_period;
10697                 struct hw_perf_event *hwc = &child_event->hw;
10698
10699                 hwc->sample_period = sample_period;
10700                 hwc->last_period   = sample_period;
10701
10702                 local64_set(&hwc->period_left, sample_period);
10703         }
10704
10705         child_event->ctx = child_ctx;
10706         child_event->overflow_handler = parent_event->overflow_handler;
10707         child_event->overflow_handler_context
10708                 = parent_event->overflow_handler_context;
10709
10710         /*
10711          * Precalculate sample_data sizes
10712          */
10713         perf_event__header_size(child_event);
10714         perf_event__id_header_size(child_event);
10715
10716         /*
10717          * Link it up in the child's context:
10718          */
10719         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10720         add_event_to_ctx(child_event, child_ctx);
10721         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10722
10723         /*
10724          * Link this into the parent event's child list
10725          */
10726         list_add_tail(&child_event->child_list, &parent_event->child_list);
10727         mutex_unlock(&parent_event->child_mutex);
10728
10729         return child_event;
10730 }
10731
10732 /*
10733  * Inherits an event group.
10734  *
10735  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10736  * This matches with perf_event_release_kernel() removing all child events.
10737  *
10738  * Returns:
10739  *  - 0 on success
10740  *  - <0 on error
10741  */
10742 static int inherit_group(struct perf_event *parent_event,
10743               struct task_struct *parent,
10744               struct perf_event_context *parent_ctx,
10745               struct task_struct *child,
10746               struct perf_event_context *child_ctx)
10747 {
10748         struct perf_event *leader;
10749         struct perf_event *sub;
10750         struct perf_event *child_ctr;
10751
10752         leader = inherit_event(parent_event, parent, parent_ctx,
10753                                  child, NULL, child_ctx);
10754         if (IS_ERR(leader))
10755                 return PTR_ERR(leader);
10756         /*
10757          * @leader can be NULL here because of is_orphaned_event(). In this
10758          * case inherit_event() will create individual events, similar to what
10759          * perf_group_detach() would do anyway.
10760          */
10761         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10762                 child_ctr = inherit_event(sub, parent, parent_ctx,
10763                                             child, leader, child_ctx);
10764                 if (IS_ERR(child_ctr))
10765                         return PTR_ERR(child_ctr);
10766         }
10767         return 0;
10768 }
10769
10770 /*
10771  * Creates the child task context and tries to inherit the event-group.
10772  *
10773  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10774  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10775  * consistent with perf_event_release_kernel() removing all child events.
10776  *
10777  * Returns:
10778  *  - 0 on success
10779  *  - <0 on error
10780  */
10781 static int
10782 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10783                    struct perf_event_context *parent_ctx,
10784                    struct task_struct *child, int ctxn,
10785                    int *inherited_all)
10786 {
10787         int ret;
10788         struct perf_event_context *child_ctx;
10789
10790         if (!event->attr.inherit) {
10791                 *inherited_all = 0;
10792                 return 0;
10793         }
10794
10795         child_ctx = child->perf_event_ctxp[ctxn];
10796         if (!child_ctx) {
10797                 /*
10798                  * This is executed from the parent task context, so
10799                  * inherit events that have been marked for cloning.
10800                  * First allocate and initialize a context for the
10801                  * child.
10802                  */
10803                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10804                 if (!child_ctx)
10805                         return -ENOMEM;
10806
10807                 child->perf_event_ctxp[ctxn] = child_ctx;
10808         }
10809
10810         ret = inherit_group(event, parent, parent_ctx,
10811                             child, child_ctx);
10812
10813         if (ret)
10814                 *inherited_all = 0;
10815
10816         return ret;
10817 }
10818
10819 /*
10820  * Initialize the perf_event context in task_struct
10821  */
10822 static int perf_event_init_context(struct task_struct *child, int ctxn)
10823 {
10824         struct perf_event_context *child_ctx, *parent_ctx;
10825         struct perf_event_context *cloned_ctx;
10826         struct perf_event *event;
10827         struct task_struct *parent = current;
10828         int inherited_all = 1;
10829         unsigned long flags;
10830         int ret = 0;
10831
10832         if (likely(!parent->perf_event_ctxp[ctxn]))
10833                 return 0;
10834
10835         /*
10836          * If the parent's context is a clone, pin it so it won't get
10837          * swapped under us.
10838          */
10839         parent_ctx = perf_pin_task_context(parent, ctxn);
10840         if (!parent_ctx)
10841                 return 0;
10842
10843         /*
10844          * No need to check if parent_ctx != NULL here; since we saw
10845          * it non-NULL earlier, the only reason for it to become NULL
10846          * is if we exit, and since we're currently in the middle of
10847          * a fork we can't be exiting at the same time.
10848          */
10849
10850         /*
10851          * Lock the parent list. No need to lock the child - not PID
10852          * hashed yet and not running, so nobody can access it.
10853          */
10854         mutex_lock(&parent_ctx->mutex);
10855
10856         /*
10857          * We dont have to disable NMIs - we are only looking at
10858          * the list, not manipulating it:
10859          */
10860         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10861                 ret = inherit_task_group(event, parent, parent_ctx,
10862                                          child, ctxn, &inherited_all);
10863                 if (ret)
10864                         goto out_unlock;
10865         }
10866
10867         /*
10868          * We can't hold ctx->lock when iterating the ->flexible_group list due
10869          * to allocations, but we need to prevent rotation because
10870          * rotate_ctx() will change the list from interrupt context.
10871          */
10872         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10873         parent_ctx->rotate_disable = 1;
10874         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10875
10876         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10877                 ret = inherit_task_group(event, parent, parent_ctx,
10878                                          child, ctxn, &inherited_all);
10879                 if (ret)
10880                         goto out_unlock;
10881         }
10882
10883         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10884         parent_ctx->rotate_disable = 0;
10885
10886         child_ctx = child->perf_event_ctxp[ctxn];
10887
10888         if (child_ctx && inherited_all) {
10889                 /*
10890                  * Mark the child context as a clone of the parent
10891                  * context, or of whatever the parent is a clone of.
10892                  *
10893                  * Note that if the parent is a clone, the holding of
10894                  * parent_ctx->lock avoids it from being uncloned.
10895                  */
10896                 cloned_ctx = parent_ctx->parent_ctx;
10897                 if (cloned_ctx) {
10898                         child_ctx->parent_ctx = cloned_ctx;
10899                         child_ctx->parent_gen = parent_ctx->parent_gen;
10900                 } else {
10901                         child_ctx->parent_ctx = parent_ctx;
10902                         child_ctx->parent_gen = parent_ctx->generation;
10903                 }
10904                 get_ctx(child_ctx->parent_ctx);
10905         }
10906
10907         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10908 out_unlock:
10909         mutex_unlock(&parent_ctx->mutex);
10910
10911         perf_unpin_context(parent_ctx);
10912         put_ctx(parent_ctx);
10913
10914         return ret;
10915 }
10916
10917 /*
10918  * Initialize the perf_event context in task_struct
10919  */
10920 int perf_event_init_task(struct task_struct *child)
10921 {
10922         int ctxn, ret;
10923
10924         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10925         mutex_init(&child->perf_event_mutex);
10926         INIT_LIST_HEAD(&child->perf_event_list);
10927
10928         for_each_task_context_nr(ctxn) {
10929                 ret = perf_event_init_context(child, ctxn);
10930                 if (ret) {
10931                         perf_event_free_task(child);
10932                         return ret;
10933                 }
10934         }
10935
10936         return 0;
10937 }
10938
10939 static void __init perf_event_init_all_cpus(void)
10940 {
10941         struct swevent_htable *swhash;
10942         int cpu;
10943
10944         for_each_possible_cpu(cpu) {
10945                 swhash = &per_cpu(swevent_htable, cpu);
10946                 mutex_init(&swhash->hlist_mutex);
10947                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10948
10949                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10950                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10951
10952 #ifdef CONFIG_CGROUP_PERF
10953                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10954 #endif
10955                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10956         }
10957 }
10958
10959 int perf_event_init_cpu(unsigned int cpu)
10960 {
10961         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10962
10963         mutex_lock(&swhash->hlist_mutex);
10964         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10965                 struct swevent_hlist *hlist;
10966
10967                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10968                 WARN_ON(!hlist);
10969                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10970         }
10971         mutex_unlock(&swhash->hlist_mutex);
10972         return 0;
10973 }
10974
10975 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10976 static void __perf_event_exit_context(void *__info)
10977 {
10978         struct perf_event_context *ctx = __info;
10979         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10980         struct perf_event *event;
10981
10982         raw_spin_lock(&ctx->lock);
10983         list_for_each_entry(event, &ctx->event_list, event_entry)
10984                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10985         raw_spin_unlock(&ctx->lock);
10986 }
10987
10988 static void perf_event_exit_cpu_context(int cpu)
10989 {
10990         struct perf_event_context *ctx;
10991         struct pmu *pmu;
10992         int idx;
10993
10994         idx = srcu_read_lock(&pmus_srcu);
10995         list_for_each_entry_rcu(pmu, &pmus, entry) {
10996                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10997
10998                 mutex_lock(&ctx->mutex);
10999                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11000                 mutex_unlock(&ctx->mutex);
11001         }
11002         srcu_read_unlock(&pmus_srcu, idx);
11003 }
11004 #else
11005
11006 static void perf_event_exit_cpu_context(int cpu) { }
11007
11008 #endif
11009
11010 int perf_event_exit_cpu(unsigned int cpu)
11011 {
11012         perf_event_exit_cpu_context(cpu);
11013         return 0;
11014 }
11015
11016 static int
11017 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11018 {
11019         int cpu;
11020
11021         for_each_online_cpu(cpu)
11022                 perf_event_exit_cpu(cpu);
11023
11024         return NOTIFY_OK;
11025 }
11026
11027 /*
11028  * Run the perf reboot notifier at the very last possible moment so that
11029  * the generic watchdog code runs as long as possible.
11030  */
11031 static struct notifier_block perf_reboot_notifier = {
11032         .notifier_call = perf_reboot,
11033         .priority = INT_MIN,
11034 };
11035
11036 void __init perf_event_init(void)
11037 {
11038         int ret;
11039
11040         idr_init(&pmu_idr);
11041
11042         perf_event_init_all_cpus();
11043         init_srcu_struct(&pmus_srcu);
11044         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11045         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11046         perf_pmu_register(&perf_task_clock, NULL, -1);
11047         perf_tp_register();
11048         perf_event_init_cpu(smp_processor_id());
11049         register_reboot_notifier(&perf_reboot_notifier);
11050
11051         ret = init_hw_breakpoint();
11052         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11053
11054         /*
11055          * Build time assertion that we keep the data_head at the intended
11056          * location.  IOW, validation we got the __reserved[] size right.
11057          */
11058         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11059                      != 1024);
11060 }
11061
11062 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11063                               char *page)
11064 {
11065         struct perf_pmu_events_attr *pmu_attr =
11066                 container_of(attr, struct perf_pmu_events_attr, attr);
11067
11068         if (pmu_attr->event_str)
11069                 return sprintf(page, "%s\n", pmu_attr->event_str);
11070
11071         return 0;
11072 }
11073 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11074
11075 static int __init perf_event_sysfs_init(void)
11076 {
11077         struct pmu *pmu;
11078         int ret;
11079
11080         mutex_lock(&pmus_lock);
11081
11082         ret = bus_register(&pmu_bus);
11083         if (ret)
11084                 goto unlock;
11085
11086         list_for_each_entry(pmu, &pmus, entry) {
11087                 if (!pmu->name || pmu->type < 0)
11088                         continue;
11089
11090                 ret = pmu_dev_alloc(pmu);
11091                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11092         }
11093         pmu_bus_running = 1;
11094         ret = 0;
11095
11096 unlock:
11097         mutex_unlock(&pmus_lock);
11098
11099         return ret;
11100 }
11101 device_initcall(perf_event_sysfs_init);
11102
11103 #ifdef CONFIG_CGROUP_PERF
11104 static struct cgroup_subsys_state *
11105 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11106 {
11107         struct perf_cgroup *jc;
11108
11109         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11110         if (!jc)
11111                 return ERR_PTR(-ENOMEM);
11112
11113         jc->info = alloc_percpu(struct perf_cgroup_info);
11114         if (!jc->info) {
11115                 kfree(jc);
11116                 return ERR_PTR(-ENOMEM);
11117         }
11118
11119         return &jc->css;
11120 }
11121
11122 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11123 {
11124         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11125
11126         free_percpu(jc->info);
11127         kfree(jc);
11128 }
11129
11130 static int __perf_cgroup_move(void *info)
11131 {
11132         struct task_struct *task = info;
11133         rcu_read_lock();
11134         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11135         rcu_read_unlock();
11136         return 0;
11137 }
11138
11139 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11140 {
11141         struct task_struct *task;
11142         struct cgroup_subsys_state *css;
11143
11144         cgroup_taskset_for_each(task, css, tset)
11145                 task_function_call(task, __perf_cgroup_move, task);
11146 }
11147
11148 struct cgroup_subsys perf_event_cgrp_subsys = {
11149         .css_alloc      = perf_cgroup_css_alloc,
11150         .css_free       = perf_cgroup_css_free,
11151         .attach         = perf_cgroup_attach,
11152         /*
11153          * Implicitly enable on dfl hierarchy so that perf events can
11154          * always be filtered by cgroup2 path as long as perf_event
11155          * controller is not mounted on a legacy hierarchy.
11156          */
11157         .implicit_on_dfl = true,
11158 };
11159 #endif /* CONFIG_CGROUP_PERF */