]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/events/core.c
Revert "perf/core: Drop kernel samples even though :u is specified"
[karo-tx-linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         WARN_ON_ONCE(!irqs_disabled());
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         WARN_ON_ONCE(!irqs_disabled());
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE         100000
410 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423         u64 tmp = perf_sample_period_ns;
424
425         tmp *= sysctl_perf_cpu_time_max_percent;
426         tmp = div_u64(tmp, 100);
427         if (!tmp)
428                 tmp = 1;
429
430         WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436                 void __user *buffer, size_t *lenp,
437                 loff_t *ppos)
438 {
439         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441         if (ret || !write)
442                 return ret;
443
444         /*
445          * If throttling is disabled don't allow the write:
446          */
447         if (sysctl_perf_cpu_time_max_percent == 100 ||
448             sysctl_perf_cpu_time_max_percent == 0)
449                 return -EINVAL;
450
451         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453         update_perf_cpu_limits();
454
455         return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461                                 void __user *buffer, size_t *lenp,
462                                 loff_t *ppos)
463 {
464         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466         if (ret || !write)
467                 return ret;
468
469         if (sysctl_perf_cpu_time_max_percent == 100 ||
470             sysctl_perf_cpu_time_max_percent == 0) {
471                 printk(KERN_WARNING
472                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473                 WRITE_ONCE(perf_sample_allowed_ns, 0);
474         } else {
475                 update_perf_cpu_limits();
476         }
477
478         return 0;
479 }
480
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495         printk_ratelimited(KERN_INFO
496                 "perf: interrupt took too long (%lld > %lld), lowering "
497                 "kernel.perf_event_max_sample_rate to %d\n",
498                 __report_avg, __report_allowed,
499                 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507         u64 running_len;
508         u64 avg_len;
509         u32 max;
510
511         if (max_len == 0)
512                 return;
513
514         /* Decay the counter by 1 average sample. */
515         running_len = __this_cpu_read(running_sample_length);
516         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517         running_len += sample_len_ns;
518         __this_cpu_write(running_sample_length, running_len);
519
520         /*
521          * Note: this will be biased artifically low until we have
522          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523          * from having to maintain a count.
524          */
525         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526         if (avg_len <= max_len)
527                 return;
528
529         __report_avg = avg_len;
530         __report_allowed = max_len;
531
532         /*
533          * Compute a throttle threshold 25% below the current duration.
534          */
535         avg_len += avg_len / 4;
536         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537         if (avg_len < max)
538                 max /= (u32)avg_len;
539         else
540                 max = 1;
541
542         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543         WRITE_ONCE(max_samples_per_tick, max);
544
545         sysctl_perf_event_sample_rate = max * HZ;
546         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548         if (!irq_work_queue(&perf_duration_work)) {
549                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550                              "kernel.perf_event_max_sample_rate to %d\n",
551                              __report_avg, __report_allowed,
552                              sysctl_perf_event_sample_rate);
553         }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559                               enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562                              enum event_type_t event_type,
563                              struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void)        { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572         return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577         return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582         return event->clock();
583 }
584
585 #ifdef CONFIG_CGROUP_PERF
586
587 static inline bool
588 perf_cgroup_match(struct perf_event *event)
589 {
590         struct perf_event_context *ctx = event->ctx;
591         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592
593         /* @event doesn't care about cgroup */
594         if (!event->cgrp)
595                 return true;
596
597         /* wants specific cgroup scope but @cpuctx isn't associated with any */
598         if (!cpuctx->cgrp)
599                 return false;
600
601         /*
602          * Cgroup scoping is recursive.  An event enabled for a cgroup is
603          * also enabled for all its descendant cgroups.  If @cpuctx's
604          * cgroup is a descendant of @event's (the test covers identity
605          * case), it's a match.
606          */
607         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608                                     event->cgrp->css.cgroup);
609 }
610
611 static inline void perf_detach_cgroup(struct perf_event *event)
612 {
613         css_put(&event->cgrp->css);
614         event->cgrp = NULL;
615 }
616
617 static inline int is_cgroup_event(struct perf_event *event)
618 {
619         return event->cgrp != NULL;
620 }
621
622 static inline u64 perf_cgroup_event_time(struct perf_event *event)
623 {
624         struct perf_cgroup_info *t;
625
626         t = per_cpu_ptr(event->cgrp->info, event->cpu);
627         return t->time;
628 }
629
630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631 {
632         struct perf_cgroup_info *info;
633         u64 now;
634
635         now = perf_clock();
636
637         info = this_cpu_ptr(cgrp->info);
638
639         info->time += now - info->timestamp;
640         info->timestamp = now;
641 }
642
643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644 {
645         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646         if (cgrp_out)
647                 __update_cgrp_time(cgrp_out);
648 }
649
650 static inline void update_cgrp_time_from_event(struct perf_event *event)
651 {
652         struct perf_cgroup *cgrp;
653
654         /*
655          * ensure we access cgroup data only when needed and
656          * when we know the cgroup is pinned (css_get)
657          */
658         if (!is_cgroup_event(event))
659                 return;
660
661         cgrp = perf_cgroup_from_task(current, event->ctx);
662         /*
663          * Do not update time when cgroup is not active
664          */
665         if (cgrp == event->cgrp)
666                 __update_cgrp_time(event->cgrp);
667 }
668
669 static inline void
670 perf_cgroup_set_timestamp(struct task_struct *task,
671                           struct perf_event_context *ctx)
672 {
673         struct perf_cgroup *cgrp;
674         struct perf_cgroup_info *info;
675
676         /*
677          * ctx->lock held by caller
678          * ensure we do not access cgroup data
679          * unless we have the cgroup pinned (css_get)
680          */
681         if (!task || !ctx->nr_cgroups)
682                 return;
683
684         cgrp = perf_cgroup_from_task(task, ctx);
685         info = this_cpu_ptr(cgrp->info);
686         info->timestamp = ctx->timestamp;
687 }
688
689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690
691 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
692 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
693
694 /*
695  * reschedule events based on the cgroup constraint of task.
696  *
697  * mode SWOUT : schedule out everything
698  * mode SWIN : schedule in based on cgroup for next
699  */
700 static void perf_cgroup_switch(struct task_struct *task, int mode)
701 {
702         struct perf_cpu_context *cpuctx;
703         struct list_head *list;
704         unsigned long flags;
705
706         /*
707          * Disable interrupts and preemption to avoid this CPU's
708          * cgrp_cpuctx_entry to change under us.
709          */
710         local_irq_save(flags);
711
712         list = this_cpu_ptr(&cgrp_cpuctx_list);
713         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
715
716                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717                 perf_pmu_disable(cpuctx->ctx.pmu);
718
719                 if (mode & PERF_CGROUP_SWOUT) {
720                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721                         /*
722                          * must not be done before ctxswout due
723                          * to event_filter_match() in event_sched_out()
724                          */
725                         cpuctx->cgrp = NULL;
726                 }
727
728                 if (mode & PERF_CGROUP_SWIN) {
729                         WARN_ON_ONCE(cpuctx->cgrp);
730                         /*
731                          * set cgrp before ctxsw in to allow
732                          * event_filter_match() to not have to pass
733                          * task around
734                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
735                          * because cgorup events are only per-cpu
736                          */
737                         cpuctx->cgrp = perf_cgroup_from_task(task,
738                                                              &cpuctx->ctx);
739                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
740                 }
741                 perf_pmu_enable(cpuctx->ctx.pmu);
742                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
743         }
744
745         local_irq_restore(flags);
746 }
747
748 static inline void perf_cgroup_sched_out(struct task_struct *task,
749                                          struct task_struct *next)
750 {
751         struct perf_cgroup *cgrp1;
752         struct perf_cgroup *cgrp2 = NULL;
753
754         rcu_read_lock();
755         /*
756          * we come here when we know perf_cgroup_events > 0
757          * we do not need to pass the ctx here because we know
758          * we are holding the rcu lock
759          */
760         cgrp1 = perf_cgroup_from_task(task, NULL);
761         cgrp2 = perf_cgroup_from_task(next, NULL);
762
763         /*
764          * only schedule out current cgroup events if we know
765          * that we are switching to a different cgroup. Otherwise,
766          * do no touch the cgroup events.
767          */
768         if (cgrp1 != cgrp2)
769                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
770
771         rcu_read_unlock();
772 }
773
774 static inline void perf_cgroup_sched_in(struct task_struct *prev,
775                                         struct task_struct *task)
776 {
777         struct perf_cgroup *cgrp1;
778         struct perf_cgroup *cgrp2 = NULL;
779
780         rcu_read_lock();
781         /*
782          * we come here when we know perf_cgroup_events > 0
783          * we do not need to pass the ctx here because we know
784          * we are holding the rcu lock
785          */
786         cgrp1 = perf_cgroup_from_task(task, NULL);
787         cgrp2 = perf_cgroup_from_task(prev, NULL);
788
789         /*
790          * only need to schedule in cgroup events if we are changing
791          * cgroup during ctxsw. Cgroup events were not scheduled
792          * out of ctxsw out if that was not the case.
793          */
794         if (cgrp1 != cgrp2)
795                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
796
797         rcu_read_unlock();
798 }
799
800 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801                                       struct perf_event_attr *attr,
802                                       struct perf_event *group_leader)
803 {
804         struct perf_cgroup *cgrp;
805         struct cgroup_subsys_state *css;
806         struct fd f = fdget(fd);
807         int ret = 0;
808
809         if (!f.file)
810                 return -EBADF;
811
812         css = css_tryget_online_from_dir(f.file->f_path.dentry,
813                                          &perf_event_cgrp_subsys);
814         if (IS_ERR(css)) {
815                 ret = PTR_ERR(css);
816                 goto out;
817         }
818
819         cgrp = container_of(css, struct perf_cgroup, css);
820         event->cgrp = cgrp;
821
822         /*
823          * all events in a group must monitor
824          * the same cgroup because a task belongs
825          * to only one perf cgroup at a time
826          */
827         if (group_leader && group_leader->cgrp != cgrp) {
828                 perf_detach_cgroup(event);
829                 ret = -EINVAL;
830         }
831 out:
832         fdput(f);
833         return ret;
834 }
835
836 static inline void
837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838 {
839         struct perf_cgroup_info *t;
840         t = per_cpu_ptr(event->cgrp->info, event->cpu);
841         event->shadow_ctx_time = now - t->timestamp;
842 }
843
844 static inline void
845 perf_cgroup_defer_enabled(struct perf_event *event)
846 {
847         /*
848          * when the current task's perf cgroup does not match
849          * the event's, we need to remember to call the
850          * perf_mark_enable() function the first time a task with
851          * a matching perf cgroup is scheduled in.
852          */
853         if (is_cgroup_event(event) && !perf_cgroup_match(event))
854                 event->cgrp_defer_enabled = 1;
855 }
856
857 static inline void
858 perf_cgroup_mark_enabled(struct perf_event *event,
859                          struct perf_event_context *ctx)
860 {
861         struct perf_event *sub;
862         u64 tstamp = perf_event_time(event);
863
864         if (!event->cgrp_defer_enabled)
865                 return;
866
867         event->cgrp_defer_enabled = 0;
868
869         event->tstamp_enabled = tstamp - event->total_time_enabled;
870         list_for_each_entry(sub, &event->sibling_list, group_entry) {
871                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873                         sub->cgrp_defer_enabled = 0;
874                 }
875         }
876 }
877
878 /*
879  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880  * cleared when last cgroup event is removed.
881  */
882 static inline void
883 list_update_cgroup_event(struct perf_event *event,
884                          struct perf_event_context *ctx, bool add)
885 {
886         struct perf_cpu_context *cpuctx;
887         struct list_head *cpuctx_entry;
888
889         if (!is_cgroup_event(event))
890                 return;
891
892         if (add && ctx->nr_cgroups++)
893                 return;
894         else if (!add && --ctx->nr_cgroups)
895                 return;
896         /*
897          * Because cgroup events are always per-cpu events,
898          * this will always be called from the right CPU.
899          */
900         cpuctx = __get_cpu_context(ctx);
901         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902         /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903         if (add) {
904                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
905                 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
906                         cpuctx->cgrp = event->cgrp;
907         } else {
908                 list_del(cpuctx_entry);
909                 cpuctx->cgrp = NULL;
910         }
911 }
912
913 #else /* !CONFIG_CGROUP_PERF */
914
915 static inline bool
916 perf_cgroup_match(struct perf_event *event)
917 {
918         return true;
919 }
920
921 static inline void perf_detach_cgroup(struct perf_event *event)
922 {}
923
924 static inline int is_cgroup_event(struct perf_event *event)
925 {
926         return 0;
927 }
928
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938                                          struct task_struct *next)
939 {
940 }
941
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943                                         struct task_struct *task)
944 {
945 }
946
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948                                       struct perf_event_attr *attr,
949                                       struct perf_event *group_leader)
950 {
951         return -EINVAL;
952 }
953
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956                           struct perf_event_context *ctx)
957 {
958 }
959
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972         return 0;
973 }
974
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982                          struct perf_event_context *ctx)
983 {
984 }
985
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988                          struct perf_event_context *ctx, bool add)
989 {
990 }
991
992 #endif
993
994 /*
995  * set default to be dependent on timer tick just
996  * like original code
997  */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000  * function must be called with interrupts disabled
1001  */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004         struct perf_cpu_context *cpuctx;
1005         int rotations = 0;
1006
1007         WARN_ON(!irqs_disabled());
1008
1009         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010         rotations = perf_rotate_context(cpuctx);
1011
1012         raw_spin_lock(&cpuctx->hrtimer_lock);
1013         if (rotations)
1014                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015         else
1016                 cpuctx->hrtimer_active = 0;
1017         raw_spin_unlock(&cpuctx->hrtimer_lock);
1018
1019         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024         struct hrtimer *timer = &cpuctx->hrtimer;
1025         struct pmu *pmu = cpuctx->ctx.pmu;
1026         u64 interval;
1027
1028         /* no multiplexing needed for SW PMU */
1029         if (pmu->task_ctx_nr == perf_sw_context)
1030                 return;
1031
1032         /*
1033          * check default is sane, if not set then force to
1034          * default interval (1/tick)
1035          */
1036         interval = pmu->hrtimer_interval_ms;
1037         if (interval < 1)
1038                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039
1040         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041
1042         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044         timer->function = perf_mux_hrtimer_handler;
1045 }
1046
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049         struct hrtimer *timer = &cpuctx->hrtimer;
1050         struct pmu *pmu = cpuctx->ctx.pmu;
1051         unsigned long flags;
1052
1053         /* not for SW PMU */
1054         if (pmu->task_ctx_nr == perf_sw_context)
1055                 return 0;
1056
1057         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058         if (!cpuctx->hrtimer_active) {
1059                 cpuctx->hrtimer_active = 1;
1060                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062         }
1063         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064
1065         return 0;
1066 }
1067
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071         if (!(*count)++)
1072                 pmu->pmu_disable(pmu);
1073 }
1074
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078         if (!--(*count))
1079                 pmu->pmu_enable(pmu);
1080 }
1081
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083
1084 /*
1085  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086  * perf_event_task_tick() are fully serialized because they're strictly cpu
1087  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088  * disabled, while perf_event_task_tick is called from IRQ context.
1089  */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093
1094         WARN_ON(!irqs_disabled());
1095
1096         WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098         list_add(&ctx->active_ctx_list, head);
1099 }
1100
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103         WARN_ON(!irqs_disabled());
1104
1105         WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107         list_del_init(&ctx->active_ctx_list);
1108 }
1109
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117         struct perf_event_context *ctx;
1118
1119         ctx = container_of(head, struct perf_event_context, rcu_head);
1120         kfree(ctx->task_ctx_data);
1121         kfree(ctx);
1122 }
1123
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126         if (atomic_dec_and_test(&ctx->refcount)) {
1127                 if (ctx->parent_ctx)
1128                         put_ctx(ctx->parent_ctx);
1129                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130                         put_task_struct(ctx->task);
1131                 call_rcu(&ctx->rcu_head, free_ctx);
1132         }
1133 }
1134
1135 /*
1136  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137  * perf_pmu_migrate_context() we need some magic.
1138  *
1139  * Those places that change perf_event::ctx will hold both
1140  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141  *
1142  * Lock ordering is by mutex address. There are two other sites where
1143  * perf_event_context::mutex nests and those are:
1144  *
1145  *  - perf_event_exit_task_context()    [ child , 0 ]
1146  *      perf_event_exit_event()
1147  *        put_event()                   [ parent, 1 ]
1148  *
1149  *  - perf_event_init_context()         [ parent, 0 ]
1150  *      inherit_task_group()
1151  *        inherit_group()
1152  *          inherit_event()
1153  *            perf_event_alloc()
1154  *              perf_init_event()
1155  *                perf_try_init_event() [ child , 1 ]
1156  *
1157  * While it appears there is an obvious deadlock here -- the parent and child
1158  * nesting levels are inverted between the two. This is in fact safe because
1159  * life-time rules separate them. That is an exiting task cannot fork, and a
1160  * spawning task cannot (yet) exit.
1161  *
1162  * But remember that that these are parent<->child context relations, and
1163  * migration does not affect children, therefore these two orderings should not
1164  * interact.
1165  *
1166  * The change in perf_event::ctx does not affect children (as claimed above)
1167  * because the sys_perf_event_open() case will install a new event and break
1168  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169  * concerned with cpuctx and that doesn't have children.
1170  *
1171  * The places that change perf_event::ctx will issue:
1172  *
1173  *   perf_remove_from_context();
1174  *   synchronize_rcu();
1175  *   perf_install_in_context();
1176  *
1177  * to affect the change. The remove_from_context() + synchronize_rcu() should
1178  * quiesce the event, after which we can install it in the new location. This
1179  * means that only external vectors (perf_fops, prctl) can perturb the event
1180  * while in transit. Therefore all such accessors should also acquire
1181  * perf_event_context::mutex to serialize against this.
1182  *
1183  * However; because event->ctx can change while we're waiting to acquire
1184  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185  * function.
1186  *
1187  * Lock order:
1188  *    cred_guard_mutex
1189  *      task_struct::perf_event_mutex
1190  *        perf_event_context::mutex
1191  *          perf_event::child_mutex;
1192  *            perf_event_context::lock
1193  *          perf_event::mmap_mutex
1194  *          mmap_sem
1195  */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199         struct perf_event_context *ctx;
1200
1201 again:
1202         rcu_read_lock();
1203         ctx = ACCESS_ONCE(event->ctx);
1204         if (!atomic_inc_not_zero(&ctx->refcount)) {
1205                 rcu_read_unlock();
1206                 goto again;
1207         }
1208         rcu_read_unlock();
1209
1210         mutex_lock_nested(&ctx->mutex, nesting);
1211         if (event->ctx != ctx) {
1212                 mutex_unlock(&ctx->mutex);
1213                 put_ctx(ctx);
1214                 goto again;
1215         }
1216
1217         return ctx;
1218 }
1219
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223         return perf_event_ctx_lock_nested(event, 0);
1224 }
1225
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227                                   struct perf_event_context *ctx)
1228 {
1229         mutex_unlock(&ctx->mutex);
1230         put_ctx(ctx);
1231 }
1232
1233 /*
1234  * This must be done under the ctx->lock, such as to serialize against
1235  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236  * calling scheduler related locks and ctx->lock nests inside those.
1237  */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243         lockdep_assert_held(&ctx->lock);
1244
1245         if (parent_ctx)
1246                 ctx->parent_ctx = NULL;
1247         ctx->generation++;
1248
1249         return parent_ctx;
1250 }
1251
1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253 {
1254         /*
1255          * only top level events have the pid namespace they were created in
1256          */
1257         if (event->parent)
1258                 event = event->parent;
1259
1260         return task_tgid_nr_ns(p, event->ns);
1261 }
1262
1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264 {
1265         /*
1266          * only top level events have the pid namespace they were created in
1267          */
1268         if (event->parent)
1269                 event = event->parent;
1270
1271         return task_pid_nr_ns(p, event->ns);
1272 }
1273
1274 /*
1275  * If we inherit events we want to return the parent event id
1276  * to userspace.
1277  */
1278 static u64 primary_event_id(struct perf_event *event)
1279 {
1280         u64 id = event->id;
1281
1282         if (event->parent)
1283                 id = event->parent->id;
1284
1285         return id;
1286 }
1287
1288 /*
1289  * Get the perf_event_context for a task and lock it.
1290  *
1291  * This has to cope with with the fact that until it is locked,
1292  * the context could get moved to another task.
1293  */
1294 static struct perf_event_context *
1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296 {
1297         struct perf_event_context *ctx;
1298
1299 retry:
1300         /*
1301          * One of the few rules of preemptible RCU is that one cannot do
1302          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303          * part of the read side critical section was irqs-enabled -- see
1304          * rcu_read_unlock_special().
1305          *
1306          * Since ctx->lock nests under rq->lock we must ensure the entire read
1307          * side critical section has interrupts disabled.
1308          */
1309         local_irq_save(*flags);
1310         rcu_read_lock();
1311         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312         if (ctx) {
1313                 /*
1314                  * If this context is a clone of another, it might
1315                  * get swapped for another underneath us by
1316                  * perf_event_task_sched_out, though the
1317                  * rcu_read_lock() protects us from any context
1318                  * getting freed.  Lock the context and check if it
1319                  * got swapped before we could get the lock, and retry
1320                  * if so.  If we locked the right context, then it
1321                  * can't get swapped on us any more.
1322                  */
1323                 raw_spin_lock(&ctx->lock);
1324                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325                         raw_spin_unlock(&ctx->lock);
1326                         rcu_read_unlock();
1327                         local_irq_restore(*flags);
1328                         goto retry;
1329                 }
1330
1331                 if (ctx->task == TASK_TOMBSTONE ||
1332                     !atomic_inc_not_zero(&ctx->refcount)) {
1333                         raw_spin_unlock(&ctx->lock);
1334                         ctx = NULL;
1335                 } else {
1336                         WARN_ON_ONCE(ctx->task != task);
1337                 }
1338         }
1339         rcu_read_unlock();
1340         if (!ctx)
1341                 local_irq_restore(*flags);
1342         return ctx;
1343 }
1344
1345 /*
1346  * Get the context for a task and increment its pin_count so it
1347  * can't get swapped to another task.  This also increments its
1348  * reference count so that the context can't get freed.
1349  */
1350 static struct perf_event_context *
1351 perf_pin_task_context(struct task_struct *task, int ctxn)
1352 {
1353         struct perf_event_context *ctx;
1354         unsigned long flags;
1355
1356         ctx = perf_lock_task_context(task, ctxn, &flags);
1357         if (ctx) {
1358                 ++ctx->pin_count;
1359                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360         }
1361         return ctx;
1362 }
1363
1364 static void perf_unpin_context(struct perf_event_context *ctx)
1365 {
1366         unsigned long flags;
1367
1368         raw_spin_lock_irqsave(&ctx->lock, flags);
1369         --ctx->pin_count;
1370         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 }
1372
1373 /*
1374  * Update the record of the current time in a context.
1375  */
1376 static void update_context_time(struct perf_event_context *ctx)
1377 {
1378         u64 now = perf_clock();
1379
1380         ctx->time += now - ctx->timestamp;
1381         ctx->timestamp = now;
1382 }
1383
1384 static u64 perf_event_time(struct perf_event *event)
1385 {
1386         struct perf_event_context *ctx = event->ctx;
1387
1388         if (is_cgroup_event(event))
1389                 return perf_cgroup_event_time(event);
1390
1391         return ctx ? ctx->time : 0;
1392 }
1393
1394 /*
1395  * Update the total_time_enabled and total_time_running fields for a event.
1396  */
1397 static void update_event_times(struct perf_event *event)
1398 {
1399         struct perf_event_context *ctx = event->ctx;
1400         u64 run_end;
1401
1402         lockdep_assert_held(&ctx->lock);
1403
1404         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406                 return;
1407
1408         /*
1409          * in cgroup mode, time_enabled represents
1410          * the time the event was enabled AND active
1411          * tasks were in the monitored cgroup. This is
1412          * independent of the activity of the context as
1413          * there may be a mix of cgroup and non-cgroup events.
1414          *
1415          * That is why we treat cgroup events differently
1416          * here.
1417          */
1418         if (is_cgroup_event(event))
1419                 run_end = perf_cgroup_event_time(event);
1420         else if (ctx->is_active)
1421                 run_end = ctx->time;
1422         else
1423                 run_end = event->tstamp_stopped;
1424
1425         event->total_time_enabled = run_end - event->tstamp_enabled;
1426
1427         if (event->state == PERF_EVENT_STATE_INACTIVE)
1428                 run_end = event->tstamp_stopped;
1429         else
1430                 run_end = perf_event_time(event);
1431
1432         event->total_time_running = run_end - event->tstamp_running;
1433
1434 }
1435
1436 /*
1437  * Update total_time_enabled and total_time_running for all events in a group.
1438  */
1439 static void update_group_times(struct perf_event *leader)
1440 {
1441         struct perf_event *event;
1442
1443         update_event_times(leader);
1444         list_for_each_entry(event, &leader->sibling_list, group_entry)
1445                 update_event_times(event);
1446 }
1447
1448 static enum event_type_t get_event_type(struct perf_event *event)
1449 {
1450         struct perf_event_context *ctx = event->ctx;
1451         enum event_type_t event_type;
1452
1453         lockdep_assert_held(&ctx->lock);
1454
1455         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1456         if (!ctx->task)
1457                 event_type |= EVENT_CPU;
1458
1459         return event_type;
1460 }
1461
1462 static struct list_head *
1463 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1464 {
1465         if (event->attr.pinned)
1466                 return &ctx->pinned_groups;
1467         else
1468                 return &ctx->flexible_groups;
1469 }
1470
1471 /*
1472  * Add a event from the lists for its context.
1473  * Must be called with ctx->mutex and ctx->lock held.
1474  */
1475 static void
1476 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1477 {
1478         lockdep_assert_held(&ctx->lock);
1479
1480         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1481         event->attach_state |= PERF_ATTACH_CONTEXT;
1482
1483         /*
1484          * If we're a stand alone event or group leader, we go to the context
1485          * list, group events are kept attached to the group so that
1486          * perf_group_detach can, at all times, locate all siblings.
1487          */
1488         if (event->group_leader == event) {
1489                 struct list_head *list;
1490
1491                 event->group_caps = event->event_caps;
1492
1493                 list = ctx_group_list(event, ctx);
1494                 list_add_tail(&event->group_entry, list);
1495         }
1496
1497         list_update_cgroup_event(event, ctx, true);
1498
1499         list_add_rcu(&event->event_entry, &ctx->event_list);
1500         ctx->nr_events++;
1501         if (event->attr.inherit_stat)
1502                 ctx->nr_stat++;
1503
1504         ctx->generation++;
1505 }
1506
1507 /*
1508  * Initialize event state based on the perf_event_attr::disabled.
1509  */
1510 static inline void perf_event__state_init(struct perf_event *event)
1511 {
1512         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1513                                               PERF_EVENT_STATE_INACTIVE;
1514 }
1515
1516 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1517 {
1518         int entry = sizeof(u64); /* value */
1519         int size = 0;
1520         int nr = 1;
1521
1522         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1523                 size += sizeof(u64);
1524
1525         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1526                 size += sizeof(u64);
1527
1528         if (event->attr.read_format & PERF_FORMAT_ID)
1529                 entry += sizeof(u64);
1530
1531         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1532                 nr += nr_siblings;
1533                 size += sizeof(u64);
1534         }
1535
1536         size += entry * nr;
1537         event->read_size = size;
1538 }
1539
1540 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1541 {
1542         struct perf_sample_data *data;
1543         u16 size = 0;
1544
1545         if (sample_type & PERF_SAMPLE_IP)
1546                 size += sizeof(data->ip);
1547
1548         if (sample_type & PERF_SAMPLE_ADDR)
1549                 size += sizeof(data->addr);
1550
1551         if (sample_type & PERF_SAMPLE_PERIOD)
1552                 size += sizeof(data->period);
1553
1554         if (sample_type & PERF_SAMPLE_WEIGHT)
1555                 size += sizeof(data->weight);
1556
1557         if (sample_type & PERF_SAMPLE_READ)
1558                 size += event->read_size;
1559
1560         if (sample_type & PERF_SAMPLE_DATA_SRC)
1561                 size += sizeof(data->data_src.val);
1562
1563         if (sample_type & PERF_SAMPLE_TRANSACTION)
1564                 size += sizeof(data->txn);
1565
1566         event->header_size = size;
1567 }
1568
1569 /*
1570  * Called at perf_event creation and when events are attached/detached from a
1571  * group.
1572  */
1573 static void perf_event__header_size(struct perf_event *event)
1574 {
1575         __perf_event_read_size(event,
1576                                event->group_leader->nr_siblings);
1577         __perf_event_header_size(event, event->attr.sample_type);
1578 }
1579
1580 static void perf_event__id_header_size(struct perf_event *event)
1581 {
1582         struct perf_sample_data *data;
1583         u64 sample_type = event->attr.sample_type;
1584         u16 size = 0;
1585
1586         if (sample_type & PERF_SAMPLE_TID)
1587                 size += sizeof(data->tid_entry);
1588
1589         if (sample_type & PERF_SAMPLE_TIME)
1590                 size += sizeof(data->time);
1591
1592         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1593                 size += sizeof(data->id);
1594
1595         if (sample_type & PERF_SAMPLE_ID)
1596                 size += sizeof(data->id);
1597
1598         if (sample_type & PERF_SAMPLE_STREAM_ID)
1599                 size += sizeof(data->stream_id);
1600
1601         if (sample_type & PERF_SAMPLE_CPU)
1602                 size += sizeof(data->cpu_entry);
1603
1604         event->id_header_size = size;
1605 }
1606
1607 static bool perf_event_validate_size(struct perf_event *event)
1608 {
1609         /*
1610          * The values computed here will be over-written when we actually
1611          * attach the event.
1612          */
1613         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1614         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1615         perf_event__id_header_size(event);
1616
1617         /*
1618          * Sum the lot; should not exceed the 64k limit we have on records.
1619          * Conservative limit to allow for callchains and other variable fields.
1620          */
1621         if (event->read_size + event->header_size +
1622             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1623                 return false;
1624
1625         return true;
1626 }
1627
1628 static void perf_group_attach(struct perf_event *event)
1629 {
1630         struct perf_event *group_leader = event->group_leader, *pos;
1631
1632         lockdep_assert_held(&event->ctx->lock);
1633
1634         /*
1635          * We can have double attach due to group movement in perf_event_open.
1636          */
1637         if (event->attach_state & PERF_ATTACH_GROUP)
1638                 return;
1639
1640         event->attach_state |= PERF_ATTACH_GROUP;
1641
1642         if (group_leader == event)
1643                 return;
1644
1645         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1646
1647         group_leader->group_caps &= event->event_caps;
1648
1649         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1650         group_leader->nr_siblings++;
1651
1652         perf_event__header_size(group_leader);
1653
1654         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1655                 perf_event__header_size(pos);
1656 }
1657
1658 /*
1659  * Remove a event from the lists for its context.
1660  * Must be called with ctx->mutex and ctx->lock held.
1661  */
1662 static void
1663 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1664 {
1665         WARN_ON_ONCE(event->ctx != ctx);
1666         lockdep_assert_held(&ctx->lock);
1667
1668         /*
1669          * We can have double detach due to exit/hot-unplug + close.
1670          */
1671         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1672                 return;
1673
1674         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1675
1676         list_update_cgroup_event(event, ctx, false);
1677
1678         ctx->nr_events--;
1679         if (event->attr.inherit_stat)
1680                 ctx->nr_stat--;
1681
1682         list_del_rcu(&event->event_entry);
1683
1684         if (event->group_leader == event)
1685                 list_del_init(&event->group_entry);
1686
1687         update_group_times(event);
1688
1689         /*
1690          * If event was in error state, then keep it
1691          * that way, otherwise bogus counts will be
1692          * returned on read(). The only way to get out
1693          * of error state is by explicit re-enabling
1694          * of the event
1695          */
1696         if (event->state > PERF_EVENT_STATE_OFF)
1697                 event->state = PERF_EVENT_STATE_OFF;
1698
1699         ctx->generation++;
1700 }
1701
1702 static void perf_group_detach(struct perf_event *event)
1703 {
1704         struct perf_event *sibling, *tmp;
1705         struct list_head *list = NULL;
1706
1707         lockdep_assert_held(&event->ctx->lock);
1708
1709         /*
1710          * We can have double detach due to exit/hot-unplug + close.
1711          */
1712         if (!(event->attach_state & PERF_ATTACH_GROUP))
1713                 return;
1714
1715         event->attach_state &= ~PERF_ATTACH_GROUP;
1716
1717         /*
1718          * If this is a sibling, remove it from its group.
1719          */
1720         if (event->group_leader != event) {
1721                 list_del_init(&event->group_entry);
1722                 event->group_leader->nr_siblings--;
1723                 goto out;
1724         }
1725
1726         if (!list_empty(&event->group_entry))
1727                 list = &event->group_entry;
1728
1729         /*
1730          * If this was a group event with sibling events then
1731          * upgrade the siblings to singleton events by adding them
1732          * to whatever list we are on.
1733          */
1734         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1735                 if (list)
1736                         list_move_tail(&sibling->group_entry, list);
1737                 sibling->group_leader = sibling;
1738
1739                 /* Inherit group flags from the previous leader */
1740                 sibling->group_caps = event->group_caps;
1741
1742                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1743         }
1744
1745 out:
1746         perf_event__header_size(event->group_leader);
1747
1748         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1749                 perf_event__header_size(tmp);
1750 }
1751
1752 static bool is_orphaned_event(struct perf_event *event)
1753 {
1754         return event->state == PERF_EVENT_STATE_DEAD;
1755 }
1756
1757 static inline int __pmu_filter_match(struct perf_event *event)
1758 {
1759         struct pmu *pmu = event->pmu;
1760         return pmu->filter_match ? pmu->filter_match(event) : 1;
1761 }
1762
1763 /*
1764  * Check whether we should attempt to schedule an event group based on
1765  * PMU-specific filtering. An event group can consist of HW and SW events,
1766  * potentially with a SW leader, so we must check all the filters, to
1767  * determine whether a group is schedulable:
1768  */
1769 static inline int pmu_filter_match(struct perf_event *event)
1770 {
1771         struct perf_event *child;
1772
1773         if (!__pmu_filter_match(event))
1774                 return 0;
1775
1776         list_for_each_entry(child, &event->sibling_list, group_entry) {
1777                 if (!__pmu_filter_match(child))
1778                         return 0;
1779         }
1780
1781         return 1;
1782 }
1783
1784 static inline int
1785 event_filter_match(struct perf_event *event)
1786 {
1787         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1788                perf_cgroup_match(event) && pmu_filter_match(event);
1789 }
1790
1791 static void
1792 event_sched_out(struct perf_event *event,
1793                   struct perf_cpu_context *cpuctx,
1794                   struct perf_event_context *ctx)
1795 {
1796         u64 tstamp = perf_event_time(event);
1797         u64 delta;
1798
1799         WARN_ON_ONCE(event->ctx != ctx);
1800         lockdep_assert_held(&ctx->lock);
1801
1802         /*
1803          * An event which could not be activated because of
1804          * filter mismatch still needs to have its timings
1805          * maintained, otherwise bogus information is return
1806          * via read() for time_enabled, time_running:
1807          */
1808         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1809             !event_filter_match(event)) {
1810                 delta = tstamp - event->tstamp_stopped;
1811                 event->tstamp_running += delta;
1812                 event->tstamp_stopped = tstamp;
1813         }
1814
1815         if (event->state != PERF_EVENT_STATE_ACTIVE)
1816                 return;
1817
1818         perf_pmu_disable(event->pmu);
1819
1820         event->tstamp_stopped = tstamp;
1821         event->pmu->del(event, 0);
1822         event->oncpu = -1;
1823         event->state = PERF_EVENT_STATE_INACTIVE;
1824         if (event->pending_disable) {
1825                 event->pending_disable = 0;
1826                 event->state = PERF_EVENT_STATE_OFF;
1827         }
1828
1829         if (!is_software_event(event))
1830                 cpuctx->active_oncpu--;
1831         if (!--ctx->nr_active)
1832                 perf_event_ctx_deactivate(ctx);
1833         if (event->attr.freq && event->attr.sample_freq)
1834                 ctx->nr_freq--;
1835         if (event->attr.exclusive || !cpuctx->active_oncpu)
1836                 cpuctx->exclusive = 0;
1837
1838         perf_pmu_enable(event->pmu);
1839 }
1840
1841 static void
1842 group_sched_out(struct perf_event *group_event,
1843                 struct perf_cpu_context *cpuctx,
1844                 struct perf_event_context *ctx)
1845 {
1846         struct perf_event *event;
1847         int state = group_event->state;
1848
1849         perf_pmu_disable(ctx->pmu);
1850
1851         event_sched_out(group_event, cpuctx, ctx);
1852
1853         /*
1854          * Schedule out siblings (if any):
1855          */
1856         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1857                 event_sched_out(event, cpuctx, ctx);
1858
1859         perf_pmu_enable(ctx->pmu);
1860
1861         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1862                 cpuctx->exclusive = 0;
1863 }
1864
1865 #define DETACH_GROUP    0x01UL
1866
1867 /*
1868  * Cross CPU call to remove a performance event
1869  *
1870  * We disable the event on the hardware level first. After that we
1871  * remove it from the context list.
1872  */
1873 static void
1874 __perf_remove_from_context(struct perf_event *event,
1875                            struct perf_cpu_context *cpuctx,
1876                            struct perf_event_context *ctx,
1877                            void *info)
1878 {
1879         unsigned long flags = (unsigned long)info;
1880
1881         event_sched_out(event, cpuctx, ctx);
1882         if (flags & DETACH_GROUP)
1883                 perf_group_detach(event);
1884         list_del_event(event, ctx);
1885
1886         if (!ctx->nr_events && ctx->is_active) {
1887                 ctx->is_active = 0;
1888                 if (ctx->task) {
1889                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1890                         cpuctx->task_ctx = NULL;
1891                 }
1892         }
1893 }
1894
1895 /*
1896  * Remove the event from a task's (or a CPU's) list of events.
1897  *
1898  * If event->ctx is a cloned context, callers must make sure that
1899  * every task struct that event->ctx->task could possibly point to
1900  * remains valid.  This is OK when called from perf_release since
1901  * that only calls us on the top-level context, which can't be a clone.
1902  * When called from perf_event_exit_task, it's OK because the
1903  * context has been detached from its task.
1904  */
1905 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1906 {
1907         struct perf_event_context *ctx = event->ctx;
1908
1909         lockdep_assert_held(&ctx->mutex);
1910
1911         event_function_call(event, __perf_remove_from_context, (void *)flags);
1912
1913         /*
1914          * The above event_function_call() can NO-OP when it hits
1915          * TASK_TOMBSTONE. In that case we must already have been detached
1916          * from the context (by perf_event_exit_event()) but the grouping
1917          * might still be in-tact.
1918          */
1919         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1920         if ((flags & DETACH_GROUP) &&
1921             (event->attach_state & PERF_ATTACH_GROUP)) {
1922                 /*
1923                  * Since in that case we cannot possibly be scheduled, simply
1924                  * detach now.
1925                  */
1926                 raw_spin_lock_irq(&ctx->lock);
1927                 perf_group_detach(event);
1928                 raw_spin_unlock_irq(&ctx->lock);
1929         }
1930 }
1931
1932 /*
1933  * Cross CPU call to disable a performance event
1934  */
1935 static void __perf_event_disable(struct perf_event *event,
1936                                  struct perf_cpu_context *cpuctx,
1937                                  struct perf_event_context *ctx,
1938                                  void *info)
1939 {
1940         if (event->state < PERF_EVENT_STATE_INACTIVE)
1941                 return;
1942
1943         update_context_time(ctx);
1944         update_cgrp_time_from_event(event);
1945         update_group_times(event);
1946         if (event == event->group_leader)
1947                 group_sched_out(event, cpuctx, ctx);
1948         else
1949                 event_sched_out(event, cpuctx, ctx);
1950         event->state = PERF_EVENT_STATE_OFF;
1951 }
1952
1953 /*
1954  * Disable a event.
1955  *
1956  * If event->ctx is a cloned context, callers must make sure that
1957  * every task struct that event->ctx->task could possibly point to
1958  * remains valid.  This condition is satisifed when called through
1959  * perf_event_for_each_child or perf_event_for_each because they
1960  * hold the top-level event's child_mutex, so any descendant that
1961  * goes to exit will block in perf_event_exit_event().
1962  *
1963  * When called from perf_pending_event it's OK because event->ctx
1964  * is the current context on this CPU and preemption is disabled,
1965  * hence we can't get into perf_event_task_sched_out for this context.
1966  */
1967 static void _perf_event_disable(struct perf_event *event)
1968 {
1969         struct perf_event_context *ctx = event->ctx;
1970
1971         raw_spin_lock_irq(&ctx->lock);
1972         if (event->state <= PERF_EVENT_STATE_OFF) {
1973                 raw_spin_unlock_irq(&ctx->lock);
1974                 return;
1975         }
1976         raw_spin_unlock_irq(&ctx->lock);
1977
1978         event_function_call(event, __perf_event_disable, NULL);
1979 }
1980
1981 void perf_event_disable_local(struct perf_event *event)
1982 {
1983         event_function_local(event, __perf_event_disable, NULL);
1984 }
1985
1986 /*
1987  * Strictly speaking kernel users cannot create groups and therefore this
1988  * interface does not need the perf_event_ctx_lock() magic.
1989  */
1990 void perf_event_disable(struct perf_event *event)
1991 {
1992         struct perf_event_context *ctx;
1993
1994         ctx = perf_event_ctx_lock(event);
1995         _perf_event_disable(event);
1996         perf_event_ctx_unlock(event, ctx);
1997 }
1998 EXPORT_SYMBOL_GPL(perf_event_disable);
1999
2000 void perf_event_disable_inatomic(struct perf_event *event)
2001 {
2002         event->pending_disable = 1;
2003         irq_work_queue(&event->pending);
2004 }
2005
2006 static void perf_set_shadow_time(struct perf_event *event,
2007                                  struct perf_event_context *ctx,
2008                                  u64 tstamp)
2009 {
2010         /*
2011          * use the correct time source for the time snapshot
2012          *
2013          * We could get by without this by leveraging the
2014          * fact that to get to this function, the caller
2015          * has most likely already called update_context_time()
2016          * and update_cgrp_time_xx() and thus both timestamp
2017          * are identical (or very close). Given that tstamp is,
2018          * already adjusted for cgroup, we could say that:
2019          *    tstamp - ctx->timestamp
2020          * is equivalent to
2021          *    tstamp - cgrp->timestamp.
2022          *
2023          * Then, in perf_output_read(), the calculation would
2024          * work with no changes because:
2025          * - event is guaranteed scheduled in
2026          * - no scheduled out in between
2027          * - thus the timestamp would be the same
2028          *
2029          * But this is a bit hairy.
2030          *
2031          * So instead, we have an explicit cgroup call to remain
2032          * within the time time source all along. We believe it
2033          * is cleaner and simpler to understand.
2034          */
2035         if (is_cgroup_event(event))
2036                 perf_cgroup_set_shadow_time(event, tstamp);
2037         else
2038                 event->shadow_ctx_time = tstamp - ctx->timestamp;
2039 }
2040
2041 #define MAX_INTERRUPTS (~0ULL)
2042
2043 static void perf_log_throttle(struct perf_event *event, int enable);
2044 static void perf_log_itrace_start(struct perf_event *event);
2045
2046 static int
2047 event_sched_in(struct perf_event *event,
2048                  struct perf_cpu_context *cpuctx,
2049                  struct perf_event_context *ctx)
2050 {
2051         u64 tstamp = perf_event_time(event);
2052         int ret = 0;
2053
2054         lockdep_assert_held(&ctx->lock);
2055
2056         if (event->state <= PERF_EVENT_STATE_OFF)
2057                 return 0;
2058
2059         WRITE_ONCE(event->oncpu, smp_processor_id());
2060         /*
2061          * Order event::oncpu write to happen before the ACTIVE state
2062          * is visible.
2063          */
2064         smp_wmb();
2065         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2066
2067         /*
2068          * Unthrottle events, since we scheduled we might have missed several
2069          * ticks already, also for a heavily scheduling task there is little
2070          * guarantee it'll get a tick in a timely manner.
2071          */
2072         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2073                 perf_log_throttle(event, 1);
2074                 event->hw.interrupts = 0;
2075         }
2076
2077         /*
2078          * The new state must be visible before we turn it on in the hardware:
2079          */
2080         smp_wmb();
2081
2082         perf_pmu_disable(event->pmu);
2083
2084         perf_set_shadow_time(event, ctx, tstamp);
2085
2086         perf_log_itrace_start(event);
2087
2088         if (event->pmu->add(event, PERF_EF_START)) {
2089                 event->state = PERF_EVENT_STATE_INACTIVE;
2090                 event->oncpu = -1;
2091                 ret = -EAGAIN;
2092                 goto out;
2093         }
2094
2095         event->tstamp_running += tstamp - event->tstamp_stopped;
2096
2097         if (!is_software_event(event))
2098                 cpuctx->active_oncpu++;
2099         if (!ctx->nr_active++)
2100                 perf_event_ctx_activate(ctx);
2101         if (event->attr.freq && event->attr.sample_freq)
2102                 ctx->nr_freq++;
2103
2104         if (event->attr.exclusive)
2105                 cpuctx->exclusive = 1;
2106
2107 out:
2108         perf_pmu_enable(event->pmu);
2109
2110         return ret;
2111 }
2112
2113 static int
2114 group_sched_in(struct perf_event *group_event,
2115                struct perf_cpu_context *cpuctx,
2116                struct perf_event_context *ctx)
2117 {
2118         struct perf_event *event, *partial_group = NULL;
2119         struct pmu *pmu = ctx->pmu;
2120         u64 now = ctx->time;
2121         bool simulate = false;
2122
2123         if (group_event->state == PERF_EVENT_STATE_OFF)
2124                 return 0;
2125
2126         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2127
2128         if (event_sched_in(group_event, cpuctx, ctx)) {
2129                 pmu->cancel_txn(pmu);
2130                 perf_mux_hrtimer_restart(cpuctx);
2131                 return -EAGAIN;
2132         }
2133
2134         /*
2135          * Schedule in siblings as one group (if any):
2136          */
2137         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2138                 if (event_sched_in(event, cpuctx, ctx)) {
2139                         partial_group = event;
2140                         goto group_error;
2141                 }
2142         }
2143
2144         if (!pmu->commit_txn(pmu))
2145                 return 0;
2146
2147 group_error:
2148         /*
2149          * Groups can be scheduled in as one unit only, so undo any
2150          * partial group before returning:
2151          * The events up to the failed event are scheduled out normally,
2152          * tstamp_stopped will be updated.
2153          *
2154          * The failed events and the remaining siblings need to have
2155          * their timings updated as if they had gone thru event_sched_in()
2156          * and event_sched_out(). This is required to get consistent timings
2157          * across the group. This also takes care of the case where the group
2158          * could never be scheduled by ensuring tstamp_stopped is set to mark
2159          * the time the event was actually stopped, such that time delta
2160          * calculation in update_event_times() is correct.
2161          */
2162         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2163                 if (event == partial_group)
2164                         simulate = true;
2165
2166                 if (simulate) {
2167                         event->tstamp_running += now - event->tstamp_stopped;
2168                         event->tstamp_stopped = now;
2169                 } else {
2170                         event_sched_out(event, cpuctx, ctx);
2171                 }
2172         }
2173         event_sched_out(group_event, cpuctx, ctx);
2174
2175         pmu->cancel_txn(pmu);
2176
2177         perf_mux_hrtimer_restart(cpuctx);
2178
2179         return -EAGAIN;
2180 }
2181
2182 /*
2183  * Work out whether we can put this event group on the CPU now.
2184  */
2185 static int group_can_go_on(struct perf_event *event,
2186                            struct perf_cpu_context *cpuctx,
2187                            int can_add_hw)
2188 {
2189         /*
2190          * Groups consisting entirely of software events can always go on.
2191          */
2192         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2193                 return 1;
2194         /*
2195          * If an exclusive group is already on, no other hardware
2196          * events can go on.
2197          */
2198         if (cpuctx->exclusive)
2199                 return 0;
2200         /*
2201          * If this group is exclusive and there are already
2202          * events on the CPU, it can't go on.
2203          */
2204         if (event->attr.exclusive && cpuctx->active_oncpu)
2205                 return 0;
2206         /*
2207          * Otherwise, try to add it if all previous groups were able
2208          * to go on.
2209          */
2210         return can_add_hw;
2211 }
2212
2213 static void add_event_to_ctx(struct perf_event *event,
2214                                struct perf_event_context *ctx)
2215 {
2216         u64 tstamp = perf_event_time(event);
2217
2218         list_add_event(event, ctx);
2219         perf_group_attach(event);
2220         event->tstamp_enabled = tstamp;
2221         event->tstamp_running = tstamp;
2222         event->tstamp_stopped = tstamp;
2223 }
2224
2225 static void ctx_sched_out(struct perf_event_context *ctx,
2226                           struct perf_cpu_context *cpuctx,
2227                           enum event_type_t event_type);
2228 static void
2229 ctx_sched_in(struct perf_event_context *ctx,
2230              struct perf_cpu_context *cpuctx,
2231              enum event_type_t event_type,
2232              struct task_struct *task);
2233
2234 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2235                                struct perf_event_context *ctx,
2236                                enum event_type_t event_type)
2237 {
2238         if (!cpuctx->task_ctx)
2239                 return;
2240
2241         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2242                 return;
2243
2244         ctx_sched_out(ctx, cpuctx, event_type);
2245 }
2246
2247 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2248                                 struct perf_event_context *ctx,
2249                                 struct task_struct *task)
2250 {
2251         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2252         if (ctx)
2253                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2254         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2255         if (ctx)
2256                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2257 }
2258
2259 /*
2260  * We want to maintain the following priority of scheduling:
2261  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2262  *  - task pinned (EVENT_PINNED)
2263  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2264  *  - task flexible (EVENT_FLEXIBLE).
2265  *
2266  * In order to avoid unscheduling and scheduling back in everything every
2267  * time an event is added, only do it for the groups of equal priority and
2268  * below.
2269  *
2270  * This can be called after a batch operation on task events, in which case
2271  * event_type is a bit mask of the types of events involved. For CPU events,
2272  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2273  */
2274 static void ctx_resched(struct perf_cpu_context *cpuctx,
2275                         struct perf_event_context *task_ctx,
2276                         enum event_type_t event_type)
2277 {
2278         enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2279         bool cpu_event = !!(event_type & EVENT_CPU);
2280
2281         /*
2282          * If pinned groups are involved, flexible groups also need to be
2283          * scheduled out.
2284          */
2285         if (event_type & EVENT_PINNED)
2286                 event_type |= EVENT_FLEXIBLE;
2287
2288         perf_pmu_disable(cpuctx->ctx.pmu);
2289         if (task_ctx)
2290                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2291
2292         /*
2293          * Decide which cpu ctx groups to schedule out based on the types
2294          * of events that caused rescheduling:
2295          *  - EVENT_CPU: schedule out corresponding groups;
2296          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2297          *  - otherwise, do nothing more.
2298          */
2299         if (cpu_event)
2300                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2301         else if (ctx_event_type & EVENT_PINNED)
2302                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2303
2304         perf_event_sched_in(cpuctx, task_ctx, current);
2305         perf_pmu_enable(cpuctx->ctx.pmu);
2306 }
2307
2308 /*
2309  * Cross CPU call to install and enable a performance event
2310  *
2311  * Very similar to remote_function() + event_function() but cannot assume that
2312  * things like ctx->is_active and cpuctx->task_ctx are set.
2313  */
2314 static int  __perf_install_in_context(void *info)
2315 {
2316         struct perf_event *event = info;
2317         struct perf_event_context *ctx = event->ctx;
2318         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2319         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2320         bool reprogram = true;
2321         int ret = 0;
2322
2323         raw_spin_lock(&cpuctx->ctx.lock);
2324         if (ctx->task) {
2325                 raw_spin_lock(&ctx->lock);
2326                 task_ctx = ctx;
2327
2328                 reprogram = (ctx->task == current);
2329
2330                 /*
2331                  * If the task is running, it must be running on this CPU,
2332                  * otherwise we cannot reprogram things.
2333                  *
2334                  * If its not running, we don't care, ctx->lock will
2335                  * serialize against it becoming runnable.
2336                  */
2337                 if (task_curr(ctx->task) && !reprogram) {
2338                         ret = -ESRCH;
2339                         goto unlock;
2340                 }
2341
2342                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2343         } else if (task_ctx) {
2344                 raw_spin_lock(&task_ctx->lock);
2345         }
2346
2347         if (reprogram) {
2348                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2349                 add_event_to_ctx(event, ctx);
2350                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2351         } else {
2352                 add_event_to_ctx(event, ctx);
2353         }
2354
2355 unlock:
2356         perf_ctx_unlock(cpuctx, task_ctx);
2357
2358         return ret;
2359 }
2360
2361 /*
2362  * Attach a performance event to a context.
2363  *
2364  * Very similar to event_function_call, see comment there.
2365  */
2366 static void
2367 perf_install_in_context(struct perf_event_context *ctx,
2368                         struct perf_event *event,
2369                         int cpu)
2370 {
2371         struct task_struct *task = READ_ONCE(ctx->task);
2372
2373         lockdep_assert_held(&ctx->mutex);
2374
2375         if (event->cpu != -1)
2376                 event->cpu = cpu;
2377
2378         /*
2379          * Ensures that if we can observe event->ctx, both the event and ctx
2380          * will be 'complete'. See perf_iterate_sb_cpu().
2381          */
2382         smp_store_release(&event->ctx, ctx);
2383
2384         if (!task) {
2385                 cpu_function_call(cpu, __perf_install_in_context, event);
2386                 return;
2387         }
2388
2389         /*
2390          * Should not happen, we validate the ctx is still alive before calling.
2391          */
2392         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2393                 return;
2394
2395         /*
2396          * Installing events is tricky because we cannot rely on ctx->is_active
2397          * to be set in case this is the nr_events 0 -> 1 transition.
2398          *
2399          * Instead we use task_curr(), which tells us if the task is running.
2400          * However, since we use task_curr() outside of rq::lock, we can race
2401          * against the actual state. This means the result can be wrong.
2402          *
2403          * If we get a false positive, we retry, this is harmless.
2404          *
2405          * If we get a false negative, things are complicated. If we are after
2406          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2407          * value must be correct. If we're before, it doesn't matter since
2408          * perf_event_context_sched_in() will program the counter.
2409          *
2410          * However, this hinges on the remote context switch having observed
2411          * our task->perf_event_ctxp[] store, such that it will in fact take
2412          * ctx::lock in perf_event_context_sched_in().
2413          *
2414          * We do this by task_function_call(), if the IPI fails to hit the task
2415          * we know any future context switch of task must see the
2416          * perf_event_ctpx[] store.
2417          */
2418
2419         /*
2420          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2421          * task_cpu() load, such that if the IPI then does not find the task
2422          * running, a future context switch of that task must observe the
2423          * store.
2424          */
2425         smp_mb();
2426 again:
2427         if (!task_function_call(task, __perf_install_in_context, event))
2428                 return;
2429
2430         raw_spin_lock_irq(&ctx->lock);
2431         task = ctx->task;
2432         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2433                 /*
2434                  * Cannot happen because we already checked above (which also
2435                  * cannot happen), and we hold ctx->mutex, which serializes us
2436                  * against perf_event_exit_task_context().
2437                  */
2438                 raw_spin_unlock_irq(&ctx->lock);
2439                 return;
2440         }
2441         /*
2442          * If the task is not running, ctx->lock will avoid it becoming so,
2443          * thus we can safely install the event.
2444          */
2445         if (task_curr(task)) {
2446                 raw_spin_unlock_irq(&ctx->lock);
2447                 goto again;
2448         }
2449         add_event_to_ctx(event, ctx);
2450         raw_spin_unlock_irq(&ctx->lock);
2451 }
2452
2453 /*
2454  * Put a event into inactive state and update time fields.
2455  * Enabling the leader of a group effectively enables all
2456  * the group members that aren't explicitly disabled, so we
2457  * have to update their ->tstamp_enabled also.
2458  * Note: this works for group members as well as group leaders
2459  * since the non-leader members' sibling_lists will be empty.
2460  */
2461 static void __perf_event_mark_enabled(struct perf_event *event)
2462 {
2463         struct perf_event *sub;
2464         u64 tstamp = perf_event_time(event);
2465
2466         event->state = PERF_EVENT_STATE_INACTIVE;
2467         event->tstamp_enabled = tstamp - event->total_time_enabled;
2468         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2469                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2470                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2471         }
2472 }
2473
2474 /*
2475  * Cross CPU call to enable a performance event
2476  */
2477 static void __perf_event_enable(struct perf_event *event,
2478                                 struct perf_cpu_context *cpuctx,
2479                                 struct perf_event_context *ctx,
2480                                 void *info)
2481 {
2482         struct perf_event *leader = event->group_leader;
2483         struct perf_event_context *task_ctx;
2484
2485         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2486             event->state <= PERF_EVENT_STATE_ERROR)
2487                 return;
2488
2489         if (ctx->is_active)
2490                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2491
2492         __perf_event_mark_enabled(event);
2493
2494         if (!ctx->is_active)
2495                 return;
2496
2497         if (!event_filter_match(event)) {
2498                 if (is_cgroup_event(event))
2499                         perf_cgroup_defer_enabled(event);
2500                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2501                 return;
2502         }
2503
2504         /*
2505          * If the event is in a group and isn't the group leader,
2506          * then don't put it on unless the group is on.
2507          */
2508         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2509                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2510                 return;
2511         }
2512
2513         task_ctx = cpuctx->task_ctx;
2514         if (ctx->task)
2515                 WARN_ON_ONCE(task_ctx != ctx);
2516
2517         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2518 }
2519
2520 /*
2521  * Enable a event.
2522  *
2523  * If event->ctx is a cloned context, callers must make sure that
2524  * every task struct that event->ctx->task could possibly point to
2525  * remains valid.  This condition is satisfied when called through
2526  * perf_event_for_each_child or perf_event_for_each as described
2527  * for perf_event_disable.
2528  */
2529 static void _perf_event_enable(struct perf_event *event)
2530 {
2531         struct perf_event_context *ctx = event->ctx;
2532
2533         raw_spin_lock_irq(&ctx->lock);
2534         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2535             event->state <  PERF_EVENT_STATE_ERROR) {
2536                 raw_spin_unlock_irq(&ctx->lock);
2537                 return;
2538         }
2539
2540         /*
2541          * If the event is in error state, clear that first.
2542          *
2543          * That way, if we see the event in error state below, we know that it
2544          * has gone back into error state, as distinct from the task having
2545          * been scheduled away before the cross-call arrived.
2546          */
2547         if (event->state == PERF_EVENT_STATE_ERROR)
2548                 event->state = PERF_EVENT_STATE_OFF;
2549         raw_spin_unlock_irq(&ctx->lock);
2550
2551         event_function_call(event, __perf_event_enable, NULL);
2552 }
2553
2554 /*
2555  * See perf_event_disable();
2556  */
2557 void perf_event_enable(struct perf_event *event)
2558 {
2559         struct perf_event_context *ctx;
2560
2561         ctx = perf_event_ctx_lock(event);
2562         _perf_event_enable(event);
2563         perf_event_ctx_unlock(event, ctx);
2564 }
2565 EXPORT_SYMBOL_GPL(perf_event_enable);
2566
2567 struct stop_event_data {
2568         struct perf_event       *event;
2569         unsigned int            restart;
2570 };
2571
2572 static int __perf_event_stop(void *info)
2573 {
2574         struct stop_event_data *sd = info;
2575         struct perf_event *event = sd->event;
2576
2577         /* if it's already INACTIVE, do nothing */
2578         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2579                 return 0;
2580
2581         /* matches smp_wmb() in event_sched_in() */
2582         smp_rmb();
2583
2584         /*
2585          * There is a window with interrupts enabled before we get here,
2586          * so we need to check again lest we try to stop another CPU's event.
2587          */
2588         if (READ_ONCE(event->oncpu) != smp_processor_id())
2589                 return -EAGAIN;
2590
2591         event->pmu->stop(event, PERF_EF_UPDATE);
2592
2593         /*
2594          * May race with the actual stop (through perf_pmu_output_stop()),
2595          * but it is only used for events with AUX ring buffer, and such
2596          * events will refuse to restart because of rb::aux_mmap_count==0,
2597          * see comments in perf_aux_output_begin().
2598          *
2599          * Since this is happening on a event-local CPU, no trace is lost
2600          * while restarting.
2601          */
2602         if (sd->restart)
2603                 event->pmu->start(event, 0);
2604
2605         return 0;
2606 }
2607
2608 static int perf_event_stop(struct perf_event *event, int restart)
2609 {
2610         struct stop_event_data sd = {
2611                 .event          = event,
2612                 .restart        = restart,
2613         };
2614         int ret = 0;
2615
2616         do {
2617                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2618                         return 0;
2619
2620                 /* matches smp_wmb() in event_sched_in() */
2621                 smp_rmb();
2622
2623                 /*
2624                  * We only want to restart ACTIVE events, so if the event goes
2625                  * inactive here (event->oncpu==-1), there's nothing more to do;
2626                  * fall through with ret==-ENXIO.
2627                  */
2628                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2629                                         __perf_event_stop, &sd);
2630         } while (ret == -EAGAIN);
2631
2632         return ret;
2633 }
2634
2635 /*
2636  * In order to contain the amount of racy and tricky in the address filter
2637  * configuration management, it is a two part process:
2638  *
2639  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2640  *      we update the addresses of corresponding vmas in
2641  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2642  * (p2) when an event is scheduled in (pmu::add), it calls
2643  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2644  *      if the generation has changed since the previous call.
2645  *
2646  * If (p1) happens while the event is active, we restart it to force (p2).
2647  *
2648  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2649  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2650  *     ioctl;
2651  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2652  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2653  *     for reading;
2654  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2655  *     of exec.
2656  */
2657 void perf_event_addr_filters_sync(struct perf_event *event)
2658 {
2659         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2660
2661         if (!has_addr_filter(event))
2662                 return;
2663
2664         raw_spin_lock(&ifh->lock);
2665         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2666                 event->pmu->addr_filters_sync(event);
2667                 event->hw.addr_filters_gen = event->addr_filters_gen;
2668         }
2669         raw_spin_unlock(&ifh->lock);
2670 }
2671 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2672
2673 static int _perf_event_refresh(struct perf_event *event, int refresh)
2674 {
2675         /*
2676          * not supported on inherited events
2677          */
2678         if (event->attr.inherit || !is_sampling_event(event))
2679                 return -EINVAL;
2680
2681         atomic_add(refresh, &event->event_limit);
2682         _perf_event_enable(event);
2683
2684         return 0;
2685 }
2686
2687 /*
2688  * See perf_event_disable()
2689  */
2690 int perf_event_refresh(struct perf_event *event, int refresh)
2691 {
2692         struct perf_event_context *ctx;
2693         int ret;
2694
2695         ctx = perf_event_ctx_lock(event);
2696         ret = _perf_event_refresh(event, refresh);
2697         perf_event_ctx_unlock(event, ctx);
2698
2699         return ret;
2700 }
2701 EXPORT_SYMBOL_GPL(perf_event_refresh);
2702
2703 static void ctx_sched_out(struct perf_event_context *ctx,
2704                           struct perf_cpu_context *cpuctx,
2705                           enum event_type_t event_type)
2706 {
2707         int is_active = ctx->is_active;
2708         struct perf_event *event;
2709
2710         lockdep_assert_held(&ctx->lock);
2711
2712         if (likely(!ctx->nr_events)) {
2713                 /*
2714                  * See __perf_remove_from_context().
2715                  */
2716                 WARN_ON_ONCE(ctx->is_active);
2717                 if (ctx->task)
2718                         WARN_ON_ONCE(cpuctx->task_ctx);
2719                 return;
2720         }
2721
2722         ctx->is_active &= ~event_type;
2723         if (!(ctx->is_active & EVENT_ALL))
2724                 ctx->is_active = 0;
2725
2726         if (ctx->task) {
2727                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2728                 if (!ctx->is_active)
2729                         cpuctx->task_ctx = NULL;
2730         }
2731
2732         /*
2733          * Always update time if it was set; not only when it changes.
2734          * Otherwise we can 'forget' to update time for any but the last
2735          * context we sched out. For example:
2736          *
2737          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2738          *   ctx_sched_out(.event_type = EVENT_PINNED)
2739          *
2740          * would only update time for the pinned events.
2741          */
2742         if (is_active & EVENT_TIME) {
2743                 /* update (and stop) ctx time */
2744                 update_context_time(ctx);
2745                 update_cgrp_time_from_cpuctx(cpuctx);
2746         }
2747
2748         is_active ^= ctx->is_active; /* changed bits */
2749
2750         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2751                 return;
2752
2753         perf_pmu_disable(ctx->pmu);
2754         if (is_active & EVENT_PINNED) {
2755                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2756                         group_sched_out(event, cpuctx, ctx);
2757         }
2758
2759         if (is_active & EVENT_FLEXIBLE) {
2760                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2761                         group_sched_out(event, cpuctx, ctx);
2762         }
2763         perf_pmu_enable(ctx->pmu);
2764 }
2765
2766 /*
2767  * Test whether two contexts are equivalent, i.e. whether they have both been
2768  * cloned from the same version of the same context.
2769  *
2770  * Equivalence is measured using a generation number in the context that is
2771  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2772  * and list_del_event().
2773  */
2774 static int context_equiv(struct perf_event_context *ctx1,
2775                          struct perf_event_context *ctx2)
2776 {
2777         lockdep_assert_held(&ctx1->lock);
2778         lockdep_assert_held(&ctx2->lock);
2779
2780         /* Pinning disables the swap optimization */
2781         if (ctx1->pin_count || ctx2->pin_count)
2782                 return 0;
2783
2784         /* If ctx1 is the parent of ctx2 */
2785         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2786                 return 1;
2787
2788         /* If ctx2 is the parent of ctx1 */
2789         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2790                 return 1;
2791
2792         /*
2793          * If ctx1 and ctx2 have the same parent; we flatten the parent
2794          * hierarchy, see perf_event_init_context().
2795          */
2796         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2797                         ctx1->parent_gen == ctx2->parent_gen)
2798                 return 1;
2799
2800         /* Unmatched */
2801         return 0;
2802 }
2803
2804 static void __perf_event_sync_stat(struct perf_event *event,
2805                                      struct perf_event *next_event)
2806 {
2807         u64 value;
2808
2809         if (!event->attr.inherit_stat)
2810                 return;
2811
2812         /*
2813          * Update the event value, we cannot use perf_event_read()
2814          * because we're in the middle of a context switch and have IRQs
2815          * disabled, which upsets smp_call_function_single(), however
2816          * we know the event must be on the current CPU, therefore we
2817          * don't need to use it.
2818          */
2819         switch (event->state) {
2820         case PERF_EVENT_STATE_ACTIVE:
2821                 event->pmu->read(event);
2822                 /* fall-through */
2823
2824         case PERF_EVENT_STATE_INACTIVE:
2825                 update_event_times(event);
2826                 break;
2827
2828         default:
2829                 break;
2830         }
2831
2832         /*
2833          * In order to keep per-task stats reliable we need to flip the event
2834          * values when we flip the contexts.
2835          */
2836         value = local64_read(&next_event->count);
2837         value = local64_xchg(&event->count, value);
2838         local64_set(&next_event->count, value);
2839
2840         swap(event->total_time_enabled, next_event->total_time_enabled);
2841         swap(event->total_time_running, next_event->total_time_running);
2842
2843         /*
2844          * Since we swizzled the values, update the user visible data too.
2845          */
2846         perf_event_update_userpage(event);
2847         perf_event_update_userpage(next_event);
2848 }
2849
2850 static void perf_event_sync_stat(struct perf_event_context *ctx,
2851                                    struct perf_event_context *next_ctx)
2852 {
2853         struct perf_event *event, *next_event;
2854
2855         if (!ctx->nr_stat)
2856                 return;
2857
2858         update_context_time(ctx);
2859
2860         event = list_first_entry(&ctx->event_list,
2861                                    struct perf_event, event_entry);
2862
2863         next_event = list_first_entry(&next_ctx->event_list,
2864                                         struct perf_event, event_entry);
2865
2866         while (&event->event_entry != &ctx->event_list &&
2867                &next_event->event_entry != &next_ctx->event_list) {
2868
2869                 __perf_event_sync_stat(event, next_event);
2870
2871                 event = list_next_entry(event, event_entry);
2872                 next_event = list_next_entry(next_event, event_entry);
2873         }
2874 }
2875
2876 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2877                                          struct task_struct *next)
2878 {
2879         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2880         struct perf_event_context *next_ctx;
2881         struct perf_event_context *parent, *next_parent;
2882         struct perf_cpu_context *cpuctx;
2883         int do_switch = 1;
2884
2885         if (likely(!ctx))
2886                 return;
2887
2888         cpuctx = __get_cpu_context(ctx);
2889         if (!cpuctx->task_ctx)
2890                 return;
2891
2892         rcu_read_lock();
2893         next_ctx = next->perf_event_ctxp[ctxn];
2894         if (!next_ctx)
2895                 goto unlock;
2896
2897         parent = rcu_dereference(ctx->parent_ctx);
2898         next_parent = rcu_dereference(next_ctx->parent_ctx);
2899
2900         /* If neither context have a parent context; they cannot be clones. */
2901         if (!parent && !next_parent)
2902                 goto unlock;
2903
2904         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2905                 /*
2906                  * Looks like the two contexts are clones, so we might be
2907                  * able to optimize the context switch.  We lock both
2908                  * contexts and check that they are clones under the
2909                  * lock (including re-checking that neither has been
2910                  * uncloned in the meantime).  It doesn't matter which
2911                  * order we take the locks because no other cpu could
2912                  * be trying to lock both of these tasks.
2913                  */
2914                 raw_spin_lock(&ctx->lock);
2915                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2916                 if (context_equiv(ctx, next_ctx)) {
2917                         WRITE_ONCE(ctx->task, next);
2918                         WRITE_ONCE(next_ctx->task, task);
2919
2920                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2921
2922                         /*
2923                          * RCU_INIT_POINTER here is safe because we've not
2924                          * modified the ctx and the above modification of
2925                          * ctx->task and ctx->task_ctx_data are immaterial
2926                          * since those values are always verified under
2927                          * ctx->lock which we're now holding.
2928                          */
2929                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2930                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2931
2932                         do_switch = 0;
2933
2934                         perf_event_sync_stat(ctx, next_ctx);
2935                 }
2936                 raw_spin_unlock(&next_ctx->lock);
2937                 raw_spin_unlock(&ctx->lock);
2938         }
2939 unlock:
2940         rcu_read_unlock();
2941
2942         if (do_switch) {
2943                 raw_spin_lock(&ctx->lock);
2944                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2945                 raw_spin_unlock(&ctx->lock);
2946         }
2947 }
2948
2949 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2950
2951 void perf_sched_cb_dec(struct pmu *pmu)
2952 {
2953         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2954
2955         this_cpu_dec(perf_sched_cb_usages);
2956
2957         if (!--cpuctx->sched_cb_usage)
2958                 list_del(&cpuctx->sched_cb_entry);
2959 }
2960
2961
2962 void perf_sched_cb_inc(struct pmu *pmu)
2963 {
2964         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2965
2966         if (!cpuctx->sched_cb_usage++)
2967                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2968
2969         this_cpu_inc(perf_sched_cb_usages);
2970 }
2971
2972 /*
2973  * This function provides the context switch callback to the lower code
2974  * layer. It is invoked ONLY when the context switch callback is enabled.
2975  *
2976  * This callback is relevant even to per-cpu events; for example multi event
2977  * PEBS requires this to provide PID/TID information. This requires we flush
2978  * all queued PEBS records before we context switch to a new task.
2979  */
2980 static void perf_pmu_sched_task(struct task_struct *prev,
2981                                 struct task_struct *next,
2982                                 bool sched_in)
2983 {
2984         struct perf_cpu_context *cpuctx;
2985         struct pmu *pmu;
2986
2987         if (prev == next)
2988                 return;
2989
2990         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2991                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2992
2993                 if (WARN_ON_ONCE(!pmu->sched_task))
2994                         continue;
2995
2996                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2997                 perf_pmu_disable(pmu);
2998
2999                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3000
3001                 perf_pmu_enable(pmu);
3002                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3003         }
3004 }
3005
3006 static void perf_event_switch(struct task_struct *task,
3007                               struct task_struct *next_prev, bool sched_in);
3008
3009 #define for_each_task_context_nr(ctxn)                                  \
3010         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3011
3012 /*
3013  * Called from scheduler to remove the events of the current task,
3014  * with interrupts disabled.
3015  *
3016  * We stop each event and update the event value in event->count.
3017  *
3018  * This does not protect us against NMI, but disable()
3019  * sets the disabled bit in the control field of event _before_
3020  * accessing the event control register. If a NMI hits, then it will
3021  * not restart the event.
3022  */
3023 void __perf_event_task_sched_out(struct task_struct *task,
3024                                  struct task_struct *next)
3025 {
3026         int ctxn;
3027
3028         if (__this_cpu_read(perf_sched_cb_usages))
3029                 perf_pmu_sched_task(task, next, false);
3030
3031         if (atomic_read(&nr_switch_events))
3032                 perf_event_switch(task, next, false);
3033
3034         for_each_task_context_nr(ctxn)
3035                 perf_event_context_sched_out(task, ctxn, next);
3036
3037         /*
3038          * if cgroup events exist on this CPU, then we need
3039          * to check if we have to switch out PMU state.
3040          * cgroup event are system-wide mode only
3041          */
3042         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3043                 perf_cgroup_sched_out(task, next);
3044 }
3045
3046 /*
3047  * Called with IRQs disabled
3048  */
3049 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3050                               enum event_type_t event_type)
3051 {
3052         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3053 }
3054
3055 static void
3056 ctx_pinned_sched_in(struct perf_event_context *ctx,
3057                     struct perf_cpu_context *cpuctx)
3058 {
3059         struct perf_event *event;
3060
3061         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3062                 if (event->state <= PERF_EVENT_STATE_OFF)
3063                         continue;
3064                 if (!event_filter_match(event))
3065                         continue;
3066
3067                 /* may need to reset tstamp_enabled */
3068                 if (is_cgroup_event(event))
3069                         perf_cgroup_mark_enabled(event, ctx);
3070
3071                 if (group_can_go_on(event, cpuctx, 1))
3072                         group_sched_in(event, cpuctx, ctx);
3073
3074                 /*
3075                  * If this pinned group hasn't been scheduled,
3076                  * put it in error state.
3077                  */
3078                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3079                         update_group_times(event);
3080                         event->state = PERF_EVENT_STATE_ERROR;
3081                 }
3082         }
3083 }
3084
3085 static void
3086 ctx_flexible_sched_in(struct perf_event_context *ctx,
3087                       struct perf_cpu_context *cpuctx)
3088 {
3089         struct perf_event *event;
3090         int can_add_hw = 1;
3091
3092         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3093                 /* Ignore events in OFF or ERROR state */
3094                 if (event->state <= PERF_EVENT_STATE_OFF)
3095                         continue;
3096                 /*
3097                  * Listen to the 'cpu' scheduling filter constraint
3098                  * of events:
3099                  */
3100                 if (!event_filter_match(event))
3101                         continue;
3102
3103                 /* may need to reset tstamp_enabled */
3104                 if (is_cgroup_event(event))
3105                         perf_cgroup_mark_enabled(event, ctx);
3106
3107                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3108                         if (group_sched_in(event, cpuctx, ctx))
3109                                 can_add_hw = 0;
3110                 }
3111         }
3112 }
3113
3114 static void
3115 ctx_sched_in(struct perf_event_context *ctx,
3116              struct perf_cpu_context *cpuctx,
3117              enum event_type_t event_type,
3118              struct task_struct *task)
3119 {
3120         int is_active = ctx->is_active;
3121         u64 now;
3122
3123         lockdep_assert_held(&ctx->lock);
3124
3125         if (likely(!ctx->nr_events))
3126                 return;
3127
3128         ctx->is_active |= (event_type | EVENT_TIME);
3129         if (ctx->task) {
3130                 if (!is_active)
3131                         cpuctx->task_ctx = ctx;
3132                 else
3133                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3134         }
3135
3136         is_active ^= ctx->is_active; /* changed bits */
3137
3138         if (is_active & EVENT_TIME) {
3139                 /* start ctx time */
3140                 now = perf_clock();
3141                 ctx->timestamp = now;
3142                 perf_cgroup_set_timestamp(task, ctx);
3143         }
3144
3145         /*
3146          * First go through the list and put on any pinned groups
3147          * in order to give them the best chance of going on.
3148          */
3149         if (is_active & EVENT_PINNED)
3150                 ctx_pinned_sched_in(ctx, cpuctx);
3151
3152         /* Then walk through the lower prio flexible groups */
3153         if (is_active & EVENT_FLEXIBLE)
3154                 ctx_flexible_sched_in(ctx, cpuctx);
3155 }
3156
3157 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3158                              enum event_type_t event_type,
3159                              struct task_struct *task)
3160 {
3161         struct perf_event_context *ctx = &cpuctx->ctx;
3162
3163         ctx_sched_in(ctx, cpuctx, event_type, task);
3164 }
3165
3166 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3167                                         struct task_struct *task)
3168 {
3169         struct perf_cpu_context *cpuctx;
3170
3171         cpuctx = __get_cpu_context(ctx);
3172         if (cpuctx->task_ctx == ctx)
3173                 return;
3174
3175         perf_ctx_lock(cpuctx, ctx);
3176         perf_pmu_disable(ctx->pmu);
3177         /*
3178          * We want to keep the following priority order:
3179          * cpu pinned (that don't need to move), task pinned,
3180          * cpu flexible, task flexible.
3181          *
3182          * However, if task's ctx is not carrying any pinned
3183          * events, no need to flip the cpuctx's events around.
3184          */
3185         if (!list_empty(&ctx->pinned_groups))
3186                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3187         perf_event_sched_in(cpuctx, ctx, task);
3188         perf_pmu_enable(ctx->pmu);
3189         perf_ctx_unlock(cpuctx, ctx);
3190 }
3191
3192 /*
3193  * Called from scheduler to add the events of the current task
3194  * with interrupts disabled.
3195  *
3196  * We restore the event value and then enable it.
3197  *
3198  * This does not protect us against NMI, but enable()
3199  * sets the enabled bit in the control field of event _before_
3200  * accessing the event control register. If a NMI hits, then it will
3201  * keep the event running.
3202  */
3203 void __perf_event_task_sched_in(struct task_struct *prev,
3204                                 struct task_struct *task)
3205 {
3206         struct perf_event_context *ctx;
3207         int ctxn;
3208
3209         /*
3210          * If cgroup events exist on this CPU, then we need to check if we have
3211          * to switch in PMU state; cgroup event are system-wide mode only.
3212          *
3213          * Since cgroup events are CPU events, we must schedule these in before
3214          * we schedule in the task events.
3215          */
3216         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3217                 perf_cgroup_sched_in(prev, task);
3218
3219         for_each_task_context_nr(ctxn) {
3220                 ctx = task->perf_event_ctxp[ctxn];
3221                 if (likely(!ctx))
3222                         continue;
3223
3224                 perf_event_context_sched_in(ctx, task);
3225         }
3226
3227         if (atomic_read(&nr_switch_events))
3228                 perf_event_switch(task, prev, true);
3229
3230         if (__this_cpu_read(perf_sched_cb_usages))
3231                 perf_pmu_sched_task(prev, task, true);
3232 }
3233
3234 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3235 {
3236         u64 frequency = event->attr.sample_freq;
3237         u64 sec = NSEC_PER_SEC;
3238         u64 divisor, dividend;
3239
3240         int count_fls, nsec_fls, frequency_fls, sec_fls;
3241
3242         count_fls = fls64(count);
3243         nsec_fls = fls64(nsec);
3244         frequency_fls = fls64(frequency);
3245         sec_fls = 30;
3246
3247         /*
3248          * We got @count in @nsec, with a target of sample_freq HZ
3249          * the target period becomes:
3250          *
3251          *             @count * 10^9
3252          * period = -------------------
3253          *          @nsec * sample_freq
3254          *
3255          */
3256
3257         /*
3258          * Reduce accuracy by one bit such that @a and @b converge
3259          * to a similar magnitude.
3260          */
3261 #define REDUCE_FLS(a, b)                \
3262 do {                                    \
3263         if (a##_fls > b##_fls) {        \
3264                 a >>= 1;                \
3265                 a##_fls--;              \
3266         } else {                        \
3267                 b >>= 1;                \
3268                 b##_fls--;              \
3269         }                               \
3270 } while (0)
3271
3272         /*
3273          * Reduce accuracy until either term fits in a u64, then proceed with
3274          * the other, so that finally we can do a u64/u64 division.
3275          */
3276         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3277                 REDUCE_FLS(nsec, frequency);
3278                 REDUCE_FLS(sec, count);
3279         }
3280
3281         if (count_fls + sec_fls > 64) {
3282                 divisor = nsec * frequency;
3283
3284                 while (count_fls + sec_fls > 64) {
3285                         REDUCE_FLS(count, sec);
3286                         divisor >>= 1;
3287                 }
3288
3289                 dividend = count * sec;
3290         } else {
3291                 dividend = count * sec;
3292
3293                 while (nsec_fls + frequency_fls > 64) {
3294                         REDUCE_FLS(nsec, frequency);
3295                         dividend >>= 1;
3296                 }
3297
3298                 divisor = nsec * frequency;
3299         }
3300
3301         if (!divisor)
3302                 return dividend;
3303
3304         return div64_u64(dividend, divisor);
3305 }
3306
3307 static DEFINE_PER_CPU(int, perf_throttled_count);
3308 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3309
3310 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3311 {
3312         struct hw_perf_event *hwc = &event->hw;
3313         s64 period, sample_period;
3314         s64 delta;
3315
3316         period = perf_calculate_period(event, nsec, count);
3317
3318         delta = (s64)(period - hwc->sample_period);
3319         delta = (delta + 7) / 8; /* low pass filter */
3320
3321         sample_period = hwc->sample_period + delta;
3322
3323         if (!sample_period)
3324                 sample_period = 1;
3325
3326         hwc->sample_period = sample_period;
3327
3328         if (local64_read(&hwc->period_left) > 8*sample_period) {
3329                 if (disable)
3330                         event->pmu->stop(event, PERF_EF_UPDATE);
3331
3332                 local64_set(&hwc->period_left, 0);
3333
3334                 if (disable)
3335                         event->pmu->start(event, PERF_EF_RELOAD);
3336         }
3337 }
3338
3339 /*
3340  * combine freq adjustment with unthrottling to avoid two passes over the
3341  * events. At the same time, make sure, having freq events does not change
3342  * the rate of unthrottling as that would introduce bias.
3343  */
3344 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3345                                            int needs_unthr)
3346 {
3347         struct perf_event *event;
3348         struct hw_perf_event *hwc;
3349         u64 now, period = TICK_NSEC;
3350         s64 delta;
3351
3352         /*
3353          * only need to iterate over all events iff:
3354          * - context have events in frequency mode (needs freq adjust)
3355          * - there are events to unthrottle on this cpu
3356          */
3357         if (!(ctx->nr_freq || needs_unthr))
3358                 return;
3359
3360         raw_spin_lock(&ctx->lock);
3361         perf_pmu_disable(ctx->pmu);
3362
3363         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3364                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3365                         continue;
3366
3367                 if (!event_filter_match(event))
3368                         continue;
3369
3370                 perf_pmu_disable(event->pmu);
3371
3372                 hwc = &event->hw;
3373
3374                 if (hwc->interrupts == MAX_INTERRUPTS) {
3375                         hwc->interrupts = 0;
3376                         perf_log_throttle(event, 1);
3377                         event->pmu->start(event, 0);
3378                 }
3379
3380                 if (!event->attr.freq || !event->attr.sample_freq)
3381                         goto next;
3382
3383                 /*
3384                  * stop the event and update event->count
3385                  */
3386                 event->pmu->stop(event, PERF_EF_UPDATE);
3387
3388                 now = local64_read(&event->count);
3389                 delta = now - hwc->freq_count_stamp;
3390                 hwc->freq_count_stamp = now;
3391
3392                 /*
3393                  * restart the event
3394                  * reload only if value has changed
3395                  * we have stopped the event so tell that
3396                  * to perf_adjust_period() to avoid stopping it
3397                  * twice.
3398                  */
3399                 if (delta > 0)
3400                         perf_adjust_period(event, period, delta, false);
3401
3402                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3403         next:
3404                 perf_pmu_enable(event->pmu);
3405         }
3406
3407         perf_pmu_enable(ctx->pmu);
3408         raw_spin_unlock(&ctx->lock);
3409 }
3410
3411 /*
3412  * Round-robin a context's events:
3413  */
3414 static void rotate_ctx(struct perf_event_context *ctx)
3415 {
3416         /*
3417          * Rotate the first entry last of non-pinned groups. Rotation might be
3418          * disabled by the inheritance code.
3419          */
3420         if (!ctx->rotate_disable)
3421                 list_rotate_left(&ctx->flexible_groups);
3422 }
3423
3424 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3425 {
3426         struct perf_event_context *ctx = NULL;
3427         int rotate = 0;
3428
3429         if (cpuctx->ctx.nr_events) {
3430                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3431                         rotate = 1;
3432         }
3433
3434         ctx = cpuctx->task_ctx;
3435         if (ctx && ctx->nr_events) {
3436                 if (ctx->nr_events != ctx->nr_active)
3437                         rotate = 1;
3438         }
3439
3440         if (!rotate)
3441                 goto done;
3442
3443         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3444         perf_pmu_disable(cpuctx->ctx.pmu);
3445
3446         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3447         if (ctx)
3448                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3449
3450         rotate_ctx(&cpuctx->ctx);
3451         if (ctx)
3452                 rotate_ctx(ctx);
3453
3454         perf_event_sched_in(cpuctx, ctx, current);
3455
3456         perf_pmu_enable(cpuctx->ctx.pmu);
3457         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3458 done:
3459
3460         return rotate;
3461 }
3462
3463 void perf_event_task_tick(void)
3464 {
3465         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3466         struct perf_event_context *ctx, *tmp;
3467         int throttled;
3468
3469         WARN_ON(!irqs_disabled());
3470
3471         __this_cpu_inc(perf_throttled_seq);
3472         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3473         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3474
3475         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3476                 perf_adjust_freq_unthr_context(ctx, throttled);
3477 }
3478
3479 static int event_enable_on_exec(struct perf_event *event,
3480                                 struct perf_event_context *ctx)
3481 {
3482         if (!event->attr.enable_on_exec)
3483                 return 0;
3484
3485         event->attr.enable_on_exec = 0;
3486         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3487                 return 0;
3488
3489         __perf_event_mark_enabled(event);
3490
3491         return 1;
3492 }
3493
3494 /*
3495  * Enable all of a task's events that have been marked enable-on-exec.
3496  * This expects task == current.
3497  */
3498 static void perf_event_enable_on_exec(int ctxn)
3499 {
3500         struct perf_event_context *ctx, *clone_ctx = NULL;
3501         enum event_type_t event_type = 0;
3502         struct perf_cpu_context *cpuctx;
3503         struct perf_event *event;
3504         unsigned long flags;
3505         int enabled = 0;
3506
3507         local_irq_save(flags);
3508         ctx = current->perf_event_ctxp[ctxn];
3509         if (!ctx || !ctx->nr_events)
3510                 goto out;
3511
3512         cpuctx = __get_cpu_context(ctx);
3513         perf_ctx_lock(cpuctx, ctx);
3514         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3515         list_for_each_entry(event, &ctx->event_list, event_entry) {
3516                 enabled |= event_enable_on_exec(event, ctx);
3517                 event_type |= get_event_type(event);
3518         }
3519
3520         /*
3521          * Unclone and reschedule this context if we enabled any event.
3522          */
3523         if (enabled) {
3524                 clone_ctx = unclone_ctx(ctx);
3525                 ctx_resched(cpuctx, ctx, event_type);
3526         } else {
3527                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3528         }
3529         perf_ctx_unlock(cpuctx, ctx);
3530
3531 out:
3532         local_irq_restore(flags);
3533
3534         if (clone_ctx)
3535                 put_ctx(clone_ctx);
3536 }
3537
3538 struct perf_read_data {
3539         struct perf_event *event;
3540         bool group;
3541         int ret;
3542 };
3543
3544 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3545 {
3546         u16 local_pkg, event_pkg;
3547
3548         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3549                 int local_cpu = smp_processor_id();
3550
3551                 event_pkg = topology_physical_package_id(event_cpu);
3552                 local_pkg = topology_physical_package_id(local_cpu);
3553
3554                 if (event_pkg == local_pkg)
3555                         return local_cpu;
3556         }
3557
3558         return event_cpu;
3559 }
3560
3561 /*
3562  * Cross CPU call to read the hardware event
3563  */
3564 static void __perf_event_read(void *info)
3565 {
3566         struct perf_read_data *data = info;
3567         struct perf_event *sub, *event = data->event;
3568         struct perf_event_context *ctx = event->ctx;
3569         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3570         struct pmu *pmu = event->pmu;
3571
3572         /*
3573          * If this is a task context, we need to check whether it is
3574          * the current task context of this cpu.  If not it has been
3575          * scheduled out before the smp call arrived.  In that case
3576          * event->count would have been updated to a recent sample
3577          * when the event was scheduled out.
3578          */
3579         if (ctx->task && cpuctx->task_ctx != ctx)
3580                 return;
3581
3582         raw_spin_lock(&ctx->lock);
3583         if (ctx->is_active) {
3584                 update_context_time(ctx);
3585                 update_cgrp_time_from_event(event);
3586         }
3587
3588         update_event_times(event);
3589         if (event->state != PERF_EVENT_STATE_ACTIVE)
3590                 goto unlock;
3591
3592         if (!data->group) {
3593                 pmu->read(event);
3594                 data->ret = 0;
3595                 goto unlock;
3596         }
3597
3598         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3599
3600         pmu->read(event);
3601
3602         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3603                 update_event_times(sub);
3604                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3605                         /*
3606                          * Use sibling's PMU rather than @event's since
3607                          * sibling could be on different (eg: software) PMU.
3608                          */
3609                         sub->pmu->read(sub);
3610                 }
3611         }
3612
3613         data->ret = pmu->commit_txn(pmu);
3614
3615 unlock:
3616         raw_spin_unlock(&ctx->lock);
3617 }
3618
3619 static inline u64 perf_event_count(struct perf_event *event)
3620 {
3621         if (event->pmu->count)
3622                 return event->pmu->count(event);
3623
3624         return __perf_event_count(event);
3625 }
3626
3627 /*
3628  * NMI-safe method to read a local event, that is an event that
3629  * is:
3630  *   - either for the current task, or for this CPU
3631  *   - does not have inherit set, for inherited task events
3632  *     will not be local and we cannot read them atomically
3633  *   - must not have a pmu::count method
3634  */
3635 u64 perf_event_read_local(struct perf_event *event)
3636 {
3637         unsigned long flags;
3638         u64 val;
3639
3640         /*
3641          * Disabling interrupts avoids all counter scheduling (context
3642          * switches, timer based rotation and IPIs).
3643          */
3644         local_irq_save(flags);
3645
3646         /* If this is a per-task event, it must be for current */
3647         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3648                      event->hw.target != current);
3649
3650         /* If this is a per-CPU event, it must be for this CPU */
3651         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3652                      event->cpu != smp_processor_id());
3653
3654         /*
3655          * It must not be an event with inherit set, we cannot read
3656          * all child counters from atomic context.
3657          */
3658         WARN_ON_ONCE(event->attr.inherit);
3659
3660         /*
3661          * It must not have a pmu::count method, those are not
3662          * NMI safe.
3663          */
3664         WARN_ON_ONCE(event->pmu->count);
3665
3666         /*
3667          * If the event is currently on this CPU, its either a per-task event,
3668          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3669          * oncpu == -1).
3670          */
3671         if (event->oncpu == smp_processor_id())
3672                 event->pmu->read(event);
3673
3674         val = local64_read(&event->count);
3675         local_irq_restore(flags);
3676
3677         return val;
3678 }
3679
3680 static int perf_event_read(struct perf_event *event, bool group)
3681 {
3682         int event_cpu, ret = 0;
3683
3684         /*
3685          * If event is enabled and currently active on a CPU, update the
3686          * value in the event structure:
3687          */
3688         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3689                 struct perf_read_data data = {
3690                         .event = event,
3691                         .group = group,
3692                         .ret = 0,
3693                 };
3694
3695                 event_cpu = READ_ONCE(event->oncpu);
3696                 if ((unsigned)event_cpu >= nr_cpu_ids)
3697                         return 0;
3698
3699                 preempt_disable();
3700                 event_cpu = __perf_event_read_cpu(event, event_cpu);
3701
3702                 /*
3703                  * Purposely ignore the smp_call_function_single() return
3704                  * value.
3705                  *
3706                  * If event_cpu isn't a valid CPU it means the event got
3707                  * scheduled out and that will have updated the event count.
3708                  *
3709                  * Therefore, either way, we'll have an up-to-date event count
3710                  * after this.
3711                  */
3712                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3713                 preempt_enable();
3714                 ret = data.ret;
3715         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3716                 struct perf_event_context *ctx = event->ctx;
3717                 unsigned long flags;
3718
3719                 raw_spin_lock_irqsave(&ctx->lock, flags);
3720                 /*
3721                  * may read while context is not active
3722                  * (e.g., thread is blocked), in that case
3723                  * we cannot update context time
3724                  */
3725                 if (ctx->is_active) {
3726                         update_context_time(ctx);
3727                         update_cgrp_time_from_event(event);
3728                 }
3729                 if (group)
3730                         update_group_times(event);
3731                 else
3732                         update_event_times(event);
3733                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3734         }
3735
3736         return ret;
3737 }
3738
3739 /*
3740  * Initialize the perf_event context in a task_struct:
3741  */
3742 static void __perf_event_init_context(struct perf_event_context *ctx)
3743 {
3744         raw_spin_lock_init(&ctx->lock);
3745         mutex_init(&ctx->mutex);
3746         INIT_LIST_HEAD(&ctx->active_ctx_list);
3747         INIT_LIST_HEAD(&ctx->pinned_groups);
3748         INIT_LIST_HEAD(&ctx->flexible_groups);
3749         INIT_LIST_HEAD(&ctx->event_list);
3750         atomic_set(&ctx->refcount, 1);
3751 }
3752
3753 static struct perf_event_context *
3754 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3755 {
3756         struct perf_event_context *ctx;
3757
3758         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3759         if (!ctx)
3760                 return NULL;
3761
3762         __perf_event_init_context(ctx);
3763         if (task) {
3764                 ctx->task = task;
3765                 get_task_struct(task);
3766         }
3767         ctx->pmu = pmu;
3768
3769         return ctx;
3770 }
3771
3772 static struct task_struct *
3773 find_lively_task_by_vpid(pid_t vpid)
3774 {
3775         struct task_struct *task;
3776
3777         rcu_read_lock();
3778         if (!vpid)
3779                 task = current;
3780         else
3781                 task = find_task_by_vpid(vpid);
3782         if (task)
3783                 get_task_struct(task);
3784         rcu_read_unlock();
3785
3786         if (!task)
3787                 return ERR_PTR(-ESRCH);
3788
3789         return task;
3790 }
3791
3792 /*
3793  * Returns a matching context with refcount and pincount.
3794  */
3795 static struct perf_event_context *
3796 find_get_context(struct pmu *pmu, struct task_struct *task,
3797                 struct perf_event *event)
3798 {
3799         struct perf_event_context *ctx, *clone_ctx = NULL;
3800         struct perf_cpu_context *cpuctx;
3801         void *task_ctx_data = NULL;
3802         unsigned long flags;
3803         int ctxn, err;
3804         int cpu = event->cpu;
3805
3806         if (!task) {
3807                 /* Must be root to operate on a CPU event: */
3808                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3809                         return ERR_PTR(-EACCES);
3810
3811                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3812                 ctx = &cpuctx->ctx;
3813                 get_ctx(ctx);
3814                 ++ctx->pin_count;
3815
3816                 return ctx;
3817         }
3818
3819         err = -EINVAL;
3820         ctxn = pmu->task_ctx_nr;
3821         if (ctxn < 0)
3822                 goto errout;
3823
3824         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3825                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3826                 if (!task_ctx_data) {
3827                         err = -ENOMEM;
3828                         goto errout;
3829                 }
3830         }
3831
3832 retry:
3833         ctx = perf_lock_task_context(task, ctxn, &flags);
3834         if (ctx) {
3835                 clone_ctx = unclone_ctx(ctx);
3836                 ++ctx->pin_count;
3837
3838                 if (task_ctx_data && !ctx->task_ctx_data) {
3839                         ctx->task_ctx_data = task_ctx_data;
3840                         task_ctx_data = NULL;
3841                 }
3842                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3843
3844                 if (clone_ctx)
3845                         put_ctx(clone_ctx);
3846         } else {
3847                 ctx = alloc_perf_context(pmu, task);
3848                 err = -ENOMEM;
3849                 if (!ctx)
3850                         goto errout;
3851
3852                 if (task_ctx_data) {
3853                         ctx->task_ctx_data = task_ctx_data;
3854                         task_ctx_data = NULL;
3855                 }
3856
3857                 err = 0;
3858                 mutex_lock(&task->perf_event_mutex);
3859                 /*
3860                  * If it has already passed perf_event_exit_task().
3861                  * we must see PF_EXITING, it takes this mutex too.
3862                  */
3863                 if (task->flags & PF_EXITING)
3864                         err = -ESRCH;
3865                 else if (task->perf_event_ctxp[ctxn])
3866                         err = -EAGAIN;
3867                 else {
3868                         get_ctx(ctx);
3869                         ++ctx->pin_count;
3870                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3871                 }
3872                 mutex_unlock(&task->perf_event_mutex);
3873
3874                 if (unlikely(err)) {
3875                         put_ctx(ctx);
3876
3877                         if (err == -EAGAIN)
3878                                 goto retry;
3879                         goto errout;
3880                 }
3881         }
3882
3883         kfree(task_ctx_data);
3884         return ctx;
3885
3886 errout:
3887         kfree(task_ctx_data);
3888         return ERR_PTR(err);
3889 }
3890
3891 static void perf_event_free_filter(struct perf_event *event);
3892 static void perf_event_free_bpf_prog(struct perf_event *event);
3893
3894 static void free_event_rcu(struct rcu_head *head)
3895 {
3896         struct perf_event *event;
3897
3898         event = container_of(head, struct perf_event, rcu_head);
3899         if (event->ns)
3900                 put_pid_ns(event->ns);
3901         perf_event_free_filter(event);
3902         kfree(event);
3903 }
3904
3905 static void ring_buffer_attach(struct perf_event *event,
3906                                struct ring_buffer *rb);
3907
3908 static void detach_sb_event(struct perf_event *event)
3909 {
3910         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3911
3912         raw_spin_lock(&pel->lock);
3913         list_del_rcu(&event->sb_list);
3914         raw_spin_unlock(&pel->lock);
3915 }
3916
3917 static bool is_sb_event(struct perf_event *event)
3918 {
3919         struct perf_event_attr *attr = &event->attr;
3920
3921         if (event->parent)
3922                 return false;
3923
3924         if (event->attach_state & PERF_ATTACH_TASK)
3925                 return false;
3926
3927         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3928             attr->comm || attr->comm_exec ||
3929             attr->task ||
3930             attr->context_switch)
3931                 return true;
3932         return false;
3933 }
3934
3935 static void unaccount_pmu_sb_event(struct perf_event *event)
3936 {
3937         if (is_sb_event(event))
3938                 detach_sb_event(event);
3939 }
3940
3941 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3942 {
3943         if (event->parent)
3944                 return;
3945
3946         if (is_cgroup_event(event))
3947                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3948 }
3949
3950 #ifdef CONFIG_NO_HZ_FULL
3951 static DEFINE_SPINLOCK(nr_freq_lock);
3952 #endif
3953
3954 static void unaccount_freq_event_nohz(void)
3955 {
3956 #ifdef CONFIG_NO_HZ_FULL
3957         spin_lock(&nr_freq_lock);
3958         if (atomic_dec_and_test(&nr_freq_events))
3959                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3960         spin_unlock(&nr_freq_lock);
3961 #endif
3962 }
3963
3964 static void unaccount_freq_event(void)
3965 {
3966         if (tick_nohz_full_enabled())
3967                 unaccount_freq_event_nohz();
3968         else
3969                 atomic_dec(&nr_freq_events);
3970 }
3971
3972 static void unaccount_event(struct perf_event *event)
3973 {
3974         bool dec = false;
3975
3976         if (event->parent)
3977                 return;
3978
3979         if (event->attach_state & PERF_ATTACH_TASK)
3980                 dec = true;
3981         if (event->attr.mmap || event->attr.mmap_data)
3982                 atomic_dec(&nr_mmap_events);
3983         if (event->attr.comm)
3984                 atomic_dec(&nr_comm_events);
3985         if (event->attr.namespaces)
3986                 atomic_dec(&nr_namespaces_events);
3987         if (event->attr.task)
3988                 atomic_dec(&nr_task_events);
3989         if (event->attr.freq)
3990                 unaccount_freq_event();
3991         if (event->attr.context_switch) {
3992                 dec = true;
3993                 atomic_dec(&nr_switch_events);
3994         }
3995         if (is_cgroup_event(event))
3996                 dec = true;
3997         if (has_branch_stack(event))
3998                 dec = true;
3999
4000         if (dec) {
4001                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4002                         schedule_delayed_work(&perf_sched_work, HZ);
4003         }
4004
4005         unaccount_event_cpu(event, event->cpu);
4006
4007         unaccount_pmu_sb_event(event);
4008 }
4009
4010 static void perf_sched_delayed(struct work_struct *work)
4011 {
4012         mutex_lock(&perf_sched_mutex);
4013         if (atomic_dec_and_test(&perf_sched_count))
4014                 static_branch_disable(&perf_sched_events);
4015         mutex_unlock(&perf_sched_mutex);
4016 }
4017
4018 /*
4019  * The following implement mutual exclusion of events on "exclusive" pmus
4020  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4021  * at a time, so we disallow creating events that might conflict, namely:
4022  *
4023  *  1) cpu-wide events in the presence of per-task events,
4024  *  2) per-task events in the presence of cpu-wide events,
4025  *  3) two matching events on the same context.
4026  *
4027  * The former two cases are handled in the allocation path (perf_event_alloc(),
4028  * _free_event()), the latter -- before the first perf_install_in_context().
4029  */
4030 static int exclusive_event_init(struct perf_event *event)
4031 {
4032         struct pmu *pmu = event->pmu;
4033
4034         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4035                 return 0;
4036
4037         /*
4038          * Prevent co-existence of per-task and cpu-wide events on the
4039          * same exclusive pmu.
4040          *
4041          * Negative pmu::exclusive_cnt means there are cpu-wide
4042          * events on this "exclusive" pmu, positive means there are
4043          * per-task events.
4044          *
4045          * Since this is called in perf_event_alloc() path, event::ctx
4046          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4047          * to mean "per-task event", because unlike other attach states it
4048          * never gets cleared.
4049          */
4050         if (event->attach_state & PERF_ATTACH_TASK) {
4051                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4052                         return -EBUSY;
4053         } else {
4054                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4055                         return -EBUSY;
4056         }
4057
4058         return 0;
4059 }
4060
4061 static void exclusive_event_destroy(struct perf_event *event)
4062 {
4063         struct pmu *pmu = event->pmu;
4064
4065         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4066                 return;
4067
4068         /* see comment in exclusive_event_init() */
4069         if (event->attach_state & PERF_ATTACH_TASK)
4070                 atomic_dec(&pmu->exclusive_cnt);
4071         else
4072                 atomic_inc(&pmu->exclusive_cnt);
4073 }
4074
4075 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4076 {
4077         if ((e1->pmu == e2->pmu) &&
4078             (e1->cpu == e2->cpu ||
4079              e1->cpu == -1 ||
4080              e2->cpu == -1))
4081                 return true;
4082         return false;
4083 }
4084
4085 /* Called under the same ctx::mutex as perf_install_in_context() */
4086 static bool exclusive_event_installable(struct perf_event *event,
4087                                         struct perf_event_context *ctx)
4088 {
4089         struct perf_event *iter_event;
4090         struct pmu *pmu = event->pmu;
4091
4092         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4093                 return true;
4094
4095         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4096                 if (exclusive_event_match(iter_event, event))
4097                         return false;
4098         }
4099
4100         return true;
4101 }
4102
4103 static void perf_addr_filters_splice(struct perf_event *event,
4104                                        struct list_head *head);
4105
4106 static void _free_event(struct perf_event *event)
4107 {
4108         irq_work_sync(&event->pending);
4109
4110         unaccount_event(event);
4111
4112         if (event->rb) {
4113                 /*
4114                  * Can happen when we close an event with re-directed output.
4115                  *
4116                  * Since we have a 0 refcount, perf_mmap_close() will skip
4117                  * over us; possibly making our ring_buffer_put() the last.
4118                  */
4119                 mutex_lock(&event->mmap_mutex);
4120                 ring_buffer_attach(event, NULL);
4121                 mutex_unlock(&event->mmap_mutex);
4122         }
4123
4124         if (is_cgroup_event(event))
4125                 perf_detach_cgroup(event);
4126
4127         if (!event->parent) {
4128                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4129                         put_callchain_buffers();
4130         }
4131
4132         perf_event_free_bpf_prog(event);
4133         perf_addr_filters_splice(event, NULL);
4134         kfree(event->addr_filters_offs);
4135
4136         if (event->destroy)
4137                 event->destroy(event);
4138
4139         if (event->ctx)
4140                 put_ctx(event->ctx);
4141
4142         exclusive_event_destroy(event);
4143         module_put(event->pmu->module);
4144
4145         call_rcu(&event->rcu_head, free_event_rcu);
4146 }
4147
4148 /*
4149  * Used to free events which have a known refcount of 1, such as in error paths
4150  * where the event isn't exposed yet and inherited events.
4151  */
4152 static void free_event(struct perf_event *event)
4153 {
4154         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4155                                 "unexpected event refcount: %ld; ptr=%p\n",
4156                                 atomic_long_read(&event->refcount), event)) {
4157                 /* leak to avoid use-after-free */
4158                 return;
4159         }
4160
4161         _free_event(event);
4162 }
4163
4164 /*
4165  * Remove user event from the owner task.
4166  */
4167 static void perf_remove_from_owner(struct perf_event *event)
4168 {
4169         struct task_struct *owner;
4170
4171         rcu_read_lock();
4172         /*
4173          * Matches the smp_store_release() in perf_event_exit_task(). If we
4174          * observe !owner it means the list deletion is complete and we can
4175          * indeed free this event, otherwise we need to serialize on
4176          * owner->perf_event_mutex.
4177          */
4178         owner = lockless_dereference(event->owner);
4179         if (owner) {
4180                 /*
4181                  * Since delayed_put_task_struct() also drops the last
4182                  * task reference we can safely take a new reference
4183                  * while holding the rcu_read_lock().
4184                  */
4185                 get_task_struct(owner);
4186         }
4187         rcu_read_unlock();
4188
4189         if (owner) {
4190                 /*
4191                  * If we're here through perf_event_exit_task() we're already
4192                  * holding ctx->mutex which would be an inversion wrt. the
4193                  * normal lock order.
4194                  *
4195                  * However we can safely take this lock because its the child
4196                  * ctx->mutex.
4197                  */
4198                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4199
4200                 /*
4201                  * We have to re-check the event->owner field, if it is cleared
4202                  * we raced with perf_event_exit_task(), acquiring the mutex
4203                  * ensured they're done, and we can proceed with freeing the
4204                  * event.
4205                  */
4206                 if (event->owner) {
4207                         list_del_init(&event->owner_entry);
4208                         smp_store_release(&event->owner, NULL);
4209                 }
4210                 mutex_unlock(&owner->perf_event_mutex);
4211                 put_task_struct(owner);
4212         }
4213 }
4214
4215 static void put_event(struct perf_event *event)
4216 {
4217         if (!atomic_long_dec_and_test(&event->refcount))
4218                 return;
4219
4220         _free_event(event);
4221 }
4222
4223 /*
4224  * Kill an event dead; while event:refcount will preserve the event
4225  * object, it will not preserve its functionality. Once the last 'user'
4226  * gives up the object, we'll destroy the thing.
4227  */
4228 int perf_event_release_kernel(struct perf_event *event)
4229 {
4230         struct perf_event_context *ctx = event->ctx;
4231         struct perf_event *child, *tmp;
4232
4233         /*
4234          * If we got here through err_file: fput(event_file); we will not have
4235          * attached to a context yet.
4236          */
4237         if (!ctx) {
4238                 WARN_ON_ONCE(event->attach_state &
4239                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4240                 goto no_ctx;
4241         }
4242
4243         if (!is_kernel_event(event))
4244                 perf_remove_from_owner(event);
4245
4246         ctx = perf_event_ctx_lock(event);
4247         WARN_ON_ONCE(ctx->parent_ctx);
4248         perf_remove_from_context(event, DETACH_GROUP);
4249
4250         raw_spin_lock_irq(&ctx->lock);
4251         /*
4252          * Mark this event as STATE_DEAD, there is no external reference to it
4253          * anymore.
4254          *
4255          * Anybody acquiring event->child_mutex after the below loop _must_
4256          * also see this, most importantly inherit_event() which will avoid
4257          * placing more children on the list.
4258          *
4259          * Thus this guarantees that we will in fact observe and kill _ALL_
4260          * child events.
4261          */
4262         event->state = PERF_EVENT_STATE_DEAD;
4263         raw_spin_unlock_irq(&ctx->lock);
4264
4265         perf_event_ctx_unlock(event, ctx);
4266
4267 again:
4268         mutex_lock(&event->child_mutex);
4269         list_for_each_entry(child, &event->child_list, child_list) {
4270
4271                 /*
4272                  * Cannot change, child events are not migrated, see the
4273                  * comment with perf_event_ctx_lock_nested().
4274                  */
4275                 ctx = lockless_dereference(child->ctx);
4276                 /*
4277                  * Since child_mutex nests inside ctx::mutex, we must jump
4278                  * through hoops. We start by grabbing a reference on the ctx.
4279                  *
4280                  * Since the event cannot get freed while we hold the
4281                  * child_mutex, the context must also exist and have a !0
4282                  * reference count.
4283                  */
4284                 get_ctx(ctx);
4285
4286                 /*
4287                  * Now that we have a ctx ref, we can drop child_mutex, and
4288                  * acquire ctx::mutex without fear of it going away. Then we
4289                  * can re-acquire child_mutex.
4290                  */
4291                 mutex_unlock(&event->child_mutex);
4292                 mutex_lock(&ctx->mutex);
4293                 mutex_lock(&event->child_mutex);
4294
4295                 /*
4296                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4297                  * state, if child is still the first entry, it didn't get freed
4298                  * and we can continue doing so.
4299                  */
4300                 tmp = list_first_entry_or_null(&event->child_list,
4301                                                struct perf_event, child_list);
4302                 if (tmp == child) {
4303                         perf_remove_from_context(child, DETACH_GROUP);
4304                         list_del(&child->child_list);
4305                         free_event(child);
4306                         /*
4307                          * This matches the refcount bump in inherit_event();
4308                          * this can't be the last reference.
4309                          */
4310                         put_event(event);
4311                 }
4312
4313                 mutex_unlock(&event->child_mutex);
4314                 mutex_unlock(&ctx->mutex);
4315                 put_ctx(ctx);
4316                 goto again;
4317         }
4318         mutex_unlock(&event->child_mutex);
4319
4320 no_ctx:
4321         put_event(event); /* Must be the 'last' reference */
4322         return 0;
4323 }
4324 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4325
4326 /*
4327  * Called when the last reference to the file is gone.
4328  */
4329 static int perf_release(struct inode *inode, struct file *file)
4330 {
4331         perf_event_release_kernel(file->private_data);
4332         return 0;
4333 }
4334
4335 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4336 {
4337         struct perf_event *child;
4338         u64 total = 0;
4339
4340         *enabled = 0;
4341         *running = 0;
4342
4343         mutex_lock(&event->child_mutex);
4344
4345         (void)perf_event_read(event, false);
4346         total += perf_event_count(event);
4347
4348         *enabled += event->total_time_enabled +
4349                         atomic64_read(&event->child_total_time_enabled);
4350         *running += event->total_time_running +
4351                         atomic64_read(&event->child_total_time_running);
4352
4353         list_for_each_entry(child, &event->child_list, child_list) {
4354                 (void)perf_event_read(child, false);
4355                 total += perf_event_count(child);
4356                 *enabled += child->total_time_enabled;
4357                 *running += child->total_time_running;
4358         }
4359         mutex_unlock(&event->child_mutex);
4360
4361         return total;
4362 }
4363 EXPORT_SYMBOL_GPL(perf_event_read_value);
4364
4365 static int __perf_read_group_add(struct perf_event *leader,
4366                                         u64 read_format, u64 *values)
4367 {
4368         struct perf_event *sub;
4369         int n = 1; /* skip @nr */
4370         int ret;
4371
4372         ret = perf_event_read(leader, true);
4373         if (ret)
4374                 return ret;
4375
4376         /*
4377          * Since we co-schedule groups, {enabled,running} times of siblings
4378          * will be identical to those of the leader, so we only publish one
4379          * set.
4380          */
4381         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4382                 values[n++] += leader->total_time_enabled +
4383                         atomic64_read(&leader->child_total_time_enabled);
4384         }
4385
4386         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4387                 values[n++] += leader->total_time_running +
4388                         atomic64_read(&leader->child_total_time_running);
4389         }
4390
4391         /*
4392          * Write {count,id} tuples for every sibling.
4393          */
4394         values[n++] += perf_event_count(leader);
4395         if (read_format & PERF_FORMAT_ID)
4396                 values[n++] = primary_event_id(leader);
4397
4398         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4399                 values[n++] += perf_event_count(sub);
4400                 if (read_format & PERF_FORMAT_ID)
4401                         values[n++] = primary_event_id(sub);
4402         }
4403
4404         return 0;
4405 }
4406
4407 static int perf_read_group(struct perf_event *event,
4408                                    u64 read_format, char __user *buf)
4409 {
4410         struct perf_event *leader = event->group_leader, *child;
4411         struct perf_event_context *ctx = leader->ctx;
4412         int ret;
4413         u64 *values;
4414
4415         lockdep_assert_held(&ctx->mutex);
4416
4417         values = kzalloc(event->read_size, GFP_KERNEL);
4418         if (!values)
4419                 return -ENOMEM;
4420
4421         values[0] = 1 + leader->nr_siblings;
4422
4423         /*
4424          * By locking the child_mutex of the leader we effectively
4425          * lock the child list of all siblings.. XXX explain how.
4426          */
4427         mutex_lock(&leader->child_mutex);
4428
4429         ret = __perf_read_group_add(leader, read_format, values);
4430         if (ret)
4431                 goto unlock;
4432
4433         list_for_each_entry(child, &leader->child_list, child_list) {
4434                 ret = __perf_read_group_add(child, read_format, values);
4435                 if (ret)
4436                         goto unlock;
4437         }
4438
4439         mutex_unlock(&leader->child_mutex);
4440
4441         ret = event->read_size;
4442         if (copy_to_user(buf, values, event->read_size))
4443                 ret = -EFAULT;
4444         goto out;
4445
4446 unlock:
4447         mutex_unlock(&leader->child_mutex);
4448 out:
4449         kfree(values);
4450         return ret;
4451 }
4452
4453 static int perf_read_one(struct perf_event *event,
4454                                  u64 read_format, char __user *buf)
4455 {
4456         u64 enabled, running;
4457         u64 values[4];
4458         int n = 0;
4459
4460         values[n++] = perf_event_read_value(event, &enabled, &running);
4461         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4462                 values[n++] = enabled;
4463         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4464                 values[n++] = running;
4465         if (read_format & PERF_FORMAT_ID)
4466                 values[n++] = primary_event_id(event);
4467
4468         if (copy_to_user(buf, values, n * sizeof(u64)))
4469                 return -EFAULT;
4470
4471         return n * sizeof(u64);
4472 }
4473
4474 static bool is_event_hup(struct perf_event *event)
4475 {
4476         bool no_children;
4477
4478         if (event->state > PERF_EVENT_STATE_EXIT)
4479                 return false;
4480
4481         mutex_lock(&event->child_mutex);
4482         no_children = list_empty(&event->child_list);
4483         mutex_unlock(&event->child_mutex);
4484         return no_children;
4485 }
4486
4487 /*
4488  * Read the performance event - simple non blocking version for now
4489  */
4490 static ssize_t
4491 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4492 {
4493         u64 read_format = event->attr.read_format;
4494         int ret;
4495
4496         /*
4497          * Return end-of-file for a read on a event that is in
4498          * error state (i.e. because it was pinned but it couldn't be
4499          * scheduled on to the CPU at some point).
4500          */
4501         if (event->state == PERF_EVENT_STATE_ERROR)
4502                 return 0;
4503
4504         if (count < event->read_size)
4505                 return -ENOSPC;
4506
4507         WARN_ON_ONCE(event->ctx->parent_ctx);
4508         if (read_format & PERF_FORMAT_GROUP)
4509                 ret = perf_read_group(event, read_format, buf);
4510         else
4511                 ret = perf_read_one(event, read_format, buf);
4512
4513         return ret;
4514 }
4515
4516 static ssize_t
4517 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4518 {
4519         struct perf_event *event = file->private_data;
4520         struct perf_event_context *ctx;
4521         int ret;
4522
4523         ctx = perf_event_ctx_lock(event);
4524         ret = __perf_read(event, buf, count);
4525         perf_event_ctx_unlock(event, ctx);
4526
4527         return ret;
4528 }
4529
4530 static unsigned int perf_poll(struct file *file, poll_table *wait)
4531 {
4532         struct perf_event *event = file->private_data;
4533         struct ring_buffer *rb;
4534         unsigned int events = POLLHUP;
4535
4536         poll_wait(file, &event->waitq, wait);
4537
4538         if (is_event_hup(event))
4539                 return events;
4540
4541         /*
4542          * Pin the event->rb by taking event->mmap_mutex; otherwise
4543          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4544          */
4545         mutex_lock(&event->mmap_mutex);
4546         rb = event->rb;
4547         if (rb)
4548                 events = atomic_xchg(&rb->poll, 0);
4549         mutex_unlock(&event->mmap_mutex);
4550         return events;
4551 }
4552
4553 static void _perf_event_reset(struct perf_event *event)
4554 {
4555         (void)perf_event_read(event, false);
4556         local64_set(&event->count, 0);
4557         perf_event_update_userpage(event);
4558 }
4559
4560 /*
4561  * Holding the top-level event's child_mutex means that any
4562  * descendant process that has inherited this event will block
4563  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4564  * task existence requirements of perf_event_enable/disable.
4565  */
4566 static void perf_event_for_each_child(struct perf_event *event,
4567                                         void (*func)(struct perf_event *))
4568 {
4569         struct perf_event *child;
4570
4571         WARN_ON_ONCE(event->ctx->parent_ctx);
4572
4573         mutex_lock(&event->child_mutex);
4574         func(event);
4575         list_for_each_entry(child, &event->child_list, child_list)
4576                 func(child);
4577         mutex_unlock(&event->child_mutex);
4578 }
4579
4580 static void perf_event_for_each(struct perf_event *event,
4581                                   void (*func)(struct perf_event *))
4582 {
4583         struct perf_event_context *ctx = event->ctx;
4584         struct perf_event *sibling;
4585
4586         lockdep_assert_held(&ctx->mutex);
4587
4588         event = event->group_leader;
4589
4590         perf_event_for_each_child(event, func);
4591         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4592                 perf_event_for_each_child(sibling, func);
4593 }
4594
4595 static void __perf_event_period(struct perf_event *event,
4596                                 struct perf_cpu_context *cpuctx,
4597                                 struct perf_event_context *ctx,
4598                                 void *info)
4599 {
4600         u64 value = *((u64 *)info);
4601         bool active;
4602
4603         if (event->attr.freq) {
4604                 event->attr.sample_freq = value;
4605         } else {
4606                 event->attr.sample_period = value;
4607                 event->hw.sample_period = value;
4608         }
4609
4610         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4611         if (active) {
4612                 perf_pmu_disable(ctx->pmu);
4613                 /*
4614                  * We could be throttled; unthrottle now to avoid the tick
4615                  * trying to unthrottle while we already re-started the event.
4616                  */
4617                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4618                         event->hw.interrupts = 0;
4619                         perf_log_throttle(event, 1);
4620                 }
4621                 event->pmu->stop(event, PERF_EF_UPDATE);
4622         }
4623
4624         local64_set(&event->hw.period_left, 0);
4625
4626         if (active) {
4627                 event->pmu->start(event, PERF_EF_RELOAD);
4628                 perf_pmu_enable(ctx->pmu);
4629         }
4630 }
4631
4632 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4633 {
4634         u64 value;
4635
4636         if (!is_sampling_event(event))
4637                 return -EINVAL;
4638
4639         if (copy_from_user(&value, arg, sizeof(value)))
4640                 return -EFAULT;
4641
4642         if (!value)
4643                 return -EINVAL;
4644
4645         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4646                 return -EINVAL;
4647
4648         event_function_call(event, __perf_event_period, &value);
4649
4650         return 0;
4651 }
4652
4653 static const struct file_operations perf_fops;
4654
4655 static inline int perf_fget_light(int fd, struct fd *p)
4656 {
4657         struct fd f = fdget(fd);
4658         if (!f.file)
4659                 return -EBADF;
4660
4661         if (f.file->f_op != &perf_fops) {
4662                 fdput(f);
4663                 return -EBADF;
4664         }
4665         *p = f;
4666         return 0;
4667 }
4668
4669 static int perf_event_set_output(struct perf_event *event,
4670                                  struct perf_event *output_event);
4671 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4672 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4673
4674 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4675 {
4676         void (*func)(struct perf_event *);
4677         u32 flags = arg;
4678
4679         switch (cmd) {
4680         case PERF_EVENT_IOC_ENABLE:
4681                 func = _perf_event_enable;
4682                 break;
4683         case PERF_EVENT_IOC_DISABLE:
4684                 func = _perf_event_disable;
4685                 break;
4686         case PERF_EVENT_IOC_RESET:
4687                 func = _perf_event_reset;
4688                 break;
4689
4690         case PERF_EVENT_IOC_REFRESH:
4691                 return _perf_event_refresh(event, arg);
4692
4693         case PERF_EVENT_IOC_PERIOD:
4694                 return perf_event_period(event, (u64 __user *)arg);
4695
4696         case PERF_EVENT_IOC_ID:
4697         {
4698                 u64 id = primary_event_id(event);
4699
4700                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4701                         return -EFAULT;
4702                 return 0;
4703         }
4704
4705         case PERF_EVENT_IOC_SET_OUTPUT:
4706         {
4707                 int ret;
4708                 if (arg != -1) {
4709                         struct perf_event *output_event;
4710                         struct fd output;
4711                         ret = perf_fget_light(arg, &output);
4712                         if (ret)
4713                                 return ret;
4714                         output_event = output.file->private_data;
4715                         ret = perf_event_set_output(event, output_event);
4716                         fdput(output);
4717                 } else {
4718                         ret = perf_event_set_output(event, NULL);
4719                 }
4720                 return ret;
4721         }
4722
4723         case PERF_EVENT_IOC_SET_FILTER:
4724                 return perf_event_set_filter(event, (void __user *)arg);
4725
4726         case PERF_EVENT_IOC_SET_BPF:
4727                 return perf_event_set_bpf_prog(event, arg);
4728
4729         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4730                 struct ring_buffer *rb;
4731
4732                 rcu_read_lock();
4733                 rb = rcu_dereference(event->rb);
4734                 if (!rb || !rb->nr_pages) {
4735                         rcu_read_unlock();
4736                         return -EINVAL;
4737                 }
4738                 rb_toggle_paused(rb, !!arg);
4739                 rcu_read_unlock();
4740                 return 0;
4741         }
4742         default:
4743                 return -ENOTTY;
4744         }
4745
4746         if (flags & PERF_IOC_FLAG_GROUP)
4747                 perf_event_for_each(event, func);
4748         else
4749                 perf_event_for_each_child(event, func);
4750
4751         return 0;
4752 }
4753
4754 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4755 {
4756         struct perf_event *event = file->private_data;
4757         struct perf_event_context *ctx;
4758         long ret;
4759
4760         ctx = perf_event_ctx_lock(event);
4761         ret = _perf_ioctl(event, cmd, arg);
4762         perf_event_ctx_unlock(event, ctx);
4763
4764         return ret;
4765 }
4766
4767 #ifdef CONFIG_COMPAT
4768 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4769                                 unsigned long arg)
4770 {
4771         switch (_IOC_NR(cmd)) {
4772         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4773         case _IOC_NR(PERF_EVENT_IOC_ID):
4774                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4775                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4776                         cmd &= ~IOCSIZE_MASK;
4777                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4778                 }
4779                 break;
4780         }
4781         return perf_ioctl(file, cmd, arg);
4782 }
4783 #else
4784 # define perf_compat_ioctl NULL
4785 #endif
4786
4787 int perf_event_task_enable(void)
4788 {
4789         struct perf_event_context *ctx;
4790         struct perf_event *event;
4791
4792         mutex_lock(&current->perf_event_mutex);
4793         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4794                 ctx = perf_event_ctx_lock(event);
4795                 perf_event_for_each_child(event, _perf_event_enable);
4796                 perf_event_ctx_unlock(event, ctx);
4797         }
4798         mutex_unlock(&current->perf_event_mutex);
4799
4800         return 0;
4801 }
4802
4803 int perf_event_task_disable(void)
4804 {
4805         struct perf_event_context *ctx;
4806         struct perf_event *event;
4807
4808         mutex_lock(&current->perf_event_mutex);
4809         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4810                 ctx = perf_event_ctx_lock(event);
4811                 perf_event_for_each_child(event, _perf_event_disable);
4812                 perf_event_ctx_unlock(event, ctx);
4813         }
4814         mutex_unlock(&current->perf_event_mutex);
4815
4816         return 0;
4817 }
4818
4819 static int perf_event_index(struct perf_event *event)
4820 {
4821         if (event->hw.state & PERF_HES_STOPPED)
4822                 return 0;
4823
4824         if (event->state != PERF_EVENT_STATE_ACTIVE)
4825                 return 0;
4826
4827         return event->pmu->event_idx(event);
4828 }
4829
4830 static void calc_timer_values(struct perf_event *event,
4831                                 u64 *now,
4832                                 u64 *enabled,
4833                                 u64 *running)
4834 {
4835         u64 ctx_time;
4836
4837         *now = perf_clock();
4838         ctx_time = event->shadow_ctx_time + *now;
4839         *enabled = ctx_time - event->tstamp_enabled;
4840         *running = ctx_time - event->tstamp_running;
4841 }
4842
4843 static void perf_event_init_userpage(struct perf_event *event)
4844 {
4845         struct perf_event_mmap_page *userpg;
4846         struct ring_buffer *rb;
4847
4848         rcu_read_lock();
4849         rb = rcu_dereference(event->rb);
4850         if (!rb)
4851                 goto unlock;
4852
4853         userpg = rb->user_page;
4854
4855         /* Allow new userspace to detect that bit 0 is deprecated */
4856         userpg->cap_bit0_is_deprecated = 1;
4857         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4858         userpg->data_offset = PAGE_SIZE;
4859         userpg->data_size = perf_data_size(rb);
4860
4861 unlock:
4862         rcu_read_unlock();
4863 }
4864
4865 void __weak arch_perf_update_userpage(
4866         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4867 {
4868 }
4869
4870 /*
4871  * Callers need to ensure there can be no nesting of this function, otherwise
4872  * the seqlock logic goes bad. We can not serialize this because the arch
4873  * code calls this from NMI context.
4874  */
4875 void perf_event_update_userpage(struct perf_event *event)
4876 {
4877         struct perf_event_mmap_page *userpg;
4878         struct ring_buffer *rb;
4879         u64 enabled, running, now;
4880
4881         rcu_read_lock();
4882         rb = rcu_dereference(event->rb);
4883         if (!rb)
4884                 goto unlock;
4885
4886         /*
4887          * compute total_time_enabled, total_time_running
4888          * based on snapshot values taken when the event
4889          * was last scheduled in.
4890          *
4891          * we cannot simply called update_context_time()
4892          * because of locking issue as we can be called in
4893          * NMI context
4894          */
4895         calc_timer_values(event, &now, &enabled, &running);
4896
4897         userpg = rb->user_page;
4898         /*
4899          * Disable preemption so as to not let the corresponding user-space
4900          * spin too long if we get preempted.
4901          */
4902         preempt_disable();
4903         ++userpg->lock;
4904         barrier();
4905         userpg->index = perf_event_index(event);
4906         userpg->offset = perf_event_count(event);
4907         if (userpg->index)
4908                 userpg->offset -= local64_read(&event->hw.prev_count);
4909
4910         userpg->time_enabled = enabled +
4911                         atomic64_read(&event->child_total_time_enabled);
4912
4913         userpg->time_running = running +
4914                         atomic64_read(&event->child_total_time_running);
4915
4916         arch_perf_update_userpage(event, userpg, now);
4917
4918         barrier();
4919         ++userpg->lock;
4920         preempt_enable();
4921 unlock:
4922         rcu_read_unlock();
4923 }
4924
4925 static int perf_mmap_fault(struct vm_fault *vmf)
4926 {
4927         struct perf_event *event = vmf->vma->vm_file->private_data;
4928         struct ring_buffer *rb;
4929         int ret = VM_FAULT_SIGBUS;
4930
4931         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4932                 if (vmf->pgoff == 0)
4933                         ret = 0;
4934                 return ret;
4935         }
4936
4937         rcu_read_lock();
4938         rb = rcu_dereference(event->rb);
4939         if (!rb)
4940                 goto unlock;
4941
4942         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4943                 goto unlock;
4944
4945         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4946         if (!vmf->page)
4947                 goto unlock;
4948
4949         get_page(vmf->page);
4950         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4951         vmf->page->index   = vmf->pgoff;
4952
4953         ret = 0;
4954 unlock:
4955         rcu_read_unlock();
4956
4957         return ret;
4958 }
4959
4960 static void ring_buffer_attach(struct perf_event *event,
4961                                struct ring_buffer *rb)
4962 {
4963         struct ring_buffer *old_rb = NULL;
4964         unsigned long flags;
4965
4966         if (event->rb) {
4967                 /*
4968                  * Should be impossible, we set this when removing
4969                  * event->rb_entry and wait/clear when adding event->rb_entry.
4970                  */
4971                 WARN_ON_ONCE(event->rcu_pending);
4972
4973                 old_rb = event->rb;
4974                 spin_lock_irqsave(&old_rb->event_lock, flags);
4975                 list_del_rcu(&event->rb_entry);
4976                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4977
4978                 event->rcu_batches = get_state_synchronize_rcu();
4979                 event->rcu_pending = 1;
4980         }
4981
4982         if (rb) {
4983                 if (event->rcu_pending) {
4984                         cond_synchronize_rcu(event->rcu_batches);
4985                         event->rcu_pending = 0;
4986                 }
4987
4988                 spin_lock_irqsave(&rb->event_lock, flags);
4989                 list_add_rcu(&event->rb_entry, &rb->event_list);
4990                 spin_unlock_irqrestore(&rb->event_lock, flags);
4991         }
4992
4993         /*
4994          * Avoid racing with perf_mmap_close(AUX): stop the event
4995          * before swizzling the event::rb pointer; if it's getting
4996          * unmapped, its aux_mmap_count will be 0 and it won't
4997          * restart. See the comment in __perf_pmu_output_stop().
4998          *
4999          * Data will inevitably be lost when set_output is done in
5000          * mid-air, but then again, whoever does it like this is
5001          * not in for the data anyway.
5002          */
5003         if (has_aux(event))
5004                 perf_event_stop(event, 0);
5005
5006         rcu_assign_pointer(event->rb, rb);
5007
5008         if (old_rb) {
5009                 ring_buffer_put(old_rb);
5010                 /*
5011                  * Since we detached before setting the new rb, so that we
5012                  * could attach the new rb, we could have missed a wakeup.
5013                  * Provide it now.
5014                  */
5015                 wake_up_all(&event->waitq);
5016         }
5017 }
5018
5019 static void ring_buffer_wakeup(struct perf_event *event)
5020 {
5021         struct ring_buffer *rb;
5022
5023         rcu_read_lock();
5024         rb = rcu_dereference(event->rb);
5025         if (rb) {
5026                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5027                         wake_up_all(&event->waitq);
5028         }
5029         rcu_read_unlock();
5030 }
5031
5032 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5033 {
5034         struct ring_buffer *rb;
5035
5036         rcu_read_lock();
5037         rb = rcu_dereference(event->rb);
5038         if (rb) {
5039                 if (!atomic_inc_not_zero(&rb->refcount))
5040                         rb = NULL;
5041         }
5042         rcu_read_unlock();
5043
5044         return rb;
5045 }
5046
5047 void ring_buffer_put(struct ring_buffer *rb)
5048 {
5049         if (!atomic_dec_and_test(&rb->refcount))
5050                 return;
5051
5052         WARN_ON_ONCE(!list_empty(&rb->event_list));
5053
5054         call_rcu(&rb->rcu_head, rb_free_rcu);
5055 }
5056
5057 static void perf_mmap_open(struct vm_area_struct *vma)
5058 {
5059         struct perf_event *event = vma->vm_file->private_data;
5060
5061         atomic_inc(&event->mmap_count);
5062         atomic_inc(&event->rb->mmap_count);
5063
5064         if (vma->vm_pgoff)
5065                 atomic_inc(&event->rb->aux_mmap_count);
5066
5067         if (event->pmu->event_mapped)
5068                 event->pmu->event_mapped(event);
5069 }
5070
5071 static void perf_pmu_output_stop(struct perf_event *event);
5072
5073 /*
5074  * A buffer can be mmap()ed multiple times; either directly through the same
5075  * event, or through other events by use of perf_event_set_output().
5076  *
5077  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5078  * the buffer here, where we still have a VM context. This means we need
5079  * to detach all events redirecting to us.
5080  */
5081 static void perf_mmap_close(struct vm_area_struct *vma)
5082 {
5083         struct perf_event *event = vma->vm_file->private_data;
5084
5085         struct ring_buffer *rb = ring_buffer_get(event);
5086         struct user_struct *mmap_user = rb->mmap_user;
5087         int mmap_locked = rb->mmap_locked;
5088         unsigned long size = perf_data_size(rb);
5089
5090         if (event->pmu->event_unmapped)
5091                 event->pmu->event_unmapped(event);
5092
5093         /*
5094          * rb->aux_mmap_count will always drop before rb->mmap_count and
5095          * event->mmap_count, so it is ok to use event->mmap_mutex to
5096          * serialize with perf_mmap here.
5097          */
5098         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5099             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5100                 /*
5101                  * Stop all AUX events that are writing to this buffer,
5102                  * so that we can free its AUX pages and corresponding PMU
5103                  * data. Note that after rb::aux_mmap_count dropped to zero,
5104                  * they won't start any more (see perf_aux_output_begin()).
5105                  */
5106                 perf_pmu_output_stop(event);
5107
5108                 /* now it's safe to free the pages */
5109                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5110                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5111
5112                 /* this has to be the last one */
5113                 rb_free_aux(rb);
5114                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5115
5116                 mutex_unlock(&event->mmap_mutex);
5117         }
5118
5119         atomic_dec(&rb->mmap_count);
5120
5121         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5122                 goto out_put;
5123
5124         ring_buffer_attach(event, NULL);
5125         mutex_unlock(&event->mmap_mutex);
5126
5127         /* If there's still other mmap()s of this buffer, we're done. */
5128         if (atomic_read(&rb->mmap_count))
5129                 goto out_put;
5130
5131         /*
5132          * No other mmap()s, detach from all other events that might redirect
5133          * into the now unreachable buffer. Somewhat complicated by the
5134          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5135          */
5136 again:
5137         rcu_read_lock();
5138         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5139                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5140                         /*
5141                          * This event is en-route to free_event() which will
5142                          * detach it and remove it from the list.
5143                          */
5144                         continue;
5145                 }
5146                 rcu_read_unlock();
5147
5148                 mutex_lock(&event->mmap_mutex);
5149                 /*
5150                  * Check we didn't race with perf_event_set_output() which can
5151                  * swizzle the rb from under us while we were waiting to
5152                  * acquire mmap_mutex.
5153                  *
5154                  * If we find a different rb; ignore this event, a next
5155                  * iteration will no longer find it on the list. We have to
5156                  * still restart the iteration to make sure we're not now
5157                  * iterating the wrong list.
5158                  */
5159                 if (event->rb == rb)
5160                         ring_buffer_attach(event, NULL);
5161
5162                 mutex_unlock(&event->mmap_mutex);
5163                 put_event(event);
5164
5165                 /*
5166                  * Restart the iteration; either we're on the wrong list or
5167                  * destroyed its integrity by doing a deletion.
5168                  */
5169                 goto again;
5170         }
5171         rcu_read_unlock();
5172
5173         /*
5174          * It could be there's still a few 0-ref events on the list; they'll
5175          * get cleaned up by free_event() -- they'll also still have their
5176          * ref on the rb and will free it whenever they are done with it.
5177          *
5178          * Aside from that, this buffer is 'fully' detached and unmapped,
5179          * undo the VM accounting.
5180          */
5181
5182         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5183         vma->vm_mm->pinned_vm -= mmap_locked;
5184         free_uid(mmap_user);
5185
5186 out_put:
5187         ring_buffer_put(rb); /* could be last */
5188 }
5189
5190 static const struct vm_operations_struct perf_mmap_vmops = {
5191         .open           = perf_mmap_open,
5192         .close          = perf_mmap_close, /* non mergable */
5193         .fault          = perf_mmap_fault,
5194         .page_mkwrite   = perf_mmap_fault,
5195 };
5196
5197 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5198 {
5199         struct perf_event *event = file->private_data;
5200         unsigned long user_locked, user_lock_limit;
5201         struct user_struct *user = current_user();
5202         unsigned long locked, lock_limit;
5203         struct ring_buffer *rb = NULL;
5204         unsigned long vma_size;
5205         unsigned long nr_pages;
5206         long user_extra = 0, extra = 0;
5207         int ret = 0, flags = 0;
5208
5209         /*
5210          * Don't allow mmap() of inherited per-task counters. This would
5211          * create a performance issue due to all children writing to the
5212          * same rb.
5213          */
5214         if (event->cpu == -1 && event->attr.inherit)
5215                 return -EINVAL;
5216
5217         if (!(vma->vm_flags & VM_SHARED))
5218                 return -EINVAL;
5219
5220         vma_size = vma->vm_end - vma->vm_start;
5221
5222         if (vma->vm_pgoff == 0) {
5223                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5224         } else {
5225                 /*
5226                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5227                  * mapped, all subsequent mappings should have the same size
5228                  * and offset. Must be above the normal perf buffer.
5229                  */
5230                 u64 aux_offset, aux_size;
5231
5232                 if (!event->rb)
5233                         return -EINVAL;
5234
5235                 nr_pages = vma_size / PAGE_SIZE;
5236
5237                 mutex_lock(&event->mmap_mutex);
5238                 ret = -EINVAL;
5239
5240                 rb = event->rb;
5241                 if (!rb)
5242                         goto aux_unlock;
5243
5244                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5245                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5246
5247                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5248                         goto aux_unlock;
5249
5250                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5251                         goto aux_unlock;
5252
5253                 /* already mapped with a different offset */
5254                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5255                         goto aux_unlock;
5256
5257                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5258                         goto aux_unlock;
5259
5260                 /* already mapped with a different size */
5261                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5262                         goto aux_unlock;
5263
5264                 if (!is_power_of_2(nr_pages))
5265                         goto aux_unlock;
5266
5267                 if (!atomic_inc_not_zero(&rb->mmap_count))
5268                         goto aux_unlock;
5269
5270                 if (rb_has_aux(rb)) {
5271                         atomic_inc(&rb->aux_mmap_count);
5272                         ret = 0;
5273                         goto unlock;
5274                 }
5275
5276                 atomic_set(&rb->aux_mmap_count, 1);
5277                 user_extra = nr_pages;
5278
5279                 goto accounting;
5280         }
5281
5282         /*
5283          * If we have rb pages ensure they're a power-of-two number, so we
5284          * can do bitmasks instead of modulo.
5285          */
5286         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5287                 return -EINVAL;
5288
5289         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5290                 return -EINVAL;
5291
5292         WARN_ON_ONCE(event->ctx->parent_ctx);
5293 again:
5294         mutex_lock(&event->mmap_mutex);
5295         if (event->rb) {
5296                 if (event->rb->nr_pages != nr_pages) {
5297                         ret = -EINVAL;
5298                         goto unlock;
5299                 }
5300
5301                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5302                         /*
5303                          * Raced against perf_mmap_close() through
5304                          * perf_event_set_output(). Try again, hope for better
5305                          * luck.
5306                          */
5307                         mutex_unlock(&event->mmap_mutex);
5308                         goto again;
5309                 }
5310
5311                 goto unlock;
5312         }
5313
5314         user_extra = nr_pages + 1;
5315
5316 accounting:
5317         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5318
5319         /*
5320          * Increase the limit linearly with more CPUs:
5321          */
5322         user_lock_limit *= num_online_cpus();
5323
5324         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5325
5326         if (user_locked > user_lock_limit)
5327                 extra = user_locked - user_lock_limit;
5328
5329         lock_limit = rlimit(RLIMIT_MEMLOCK);
5330         lock_limit >>= PAGE_SHIFT;
5331         locked = vma->vm_mm->pinned_vm + extra;
5332
5333         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5334                 !capable(CAP_IPC_LOCK)) {
5335                 ret = -EPERM;
5336                 goto unlock;
5337         }
5338
5339         WARN_ON(!rb && event->rb);
5340
5341         if (vma->vm_flags & VM_WRITE)
5342                 flags |= RING_BUFFER_WRITABLE;
5343
5344         if (!rb) {
5345                 rb = rb_alloc(nr_pages,
5346                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5347                               event->cpu, flags);
5348
5349                 if (!rb) {
5350                         ret = -ENOMEM;
5351                         goto unlock;
5352                 }
5353
5354                 atomic_set(&rb->mmap_count, 1);
5355                 rb->mmap_user = get_current_user();
5356                 rb->mmap_locked = extra;
5357
5358                 ring_buffer_attach(event, rb);
5359
5360                 perf_event_init_userpage(event);
5361                 perf_event_update_userpage(event);
5362         } else {
5363                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5364                                    event->attr.aux_watermark, flags);
5365                 if (!ret)
5366                         rb->aux_mmap_locked = extra;
5367         }
5368
5369 unlock:
5370         if (!ret) {
5371                 atomic_long_add(user_extra, &user->locked_vm);
5372                 vma->vm_mm->pinned_vm += extra;
5373
5374                 atomic_inc(&event->mmap_count);
5375         } else if (rb) {
5376                 atomic_dec(&rb->mmap_count);
5377         }
5378 aux_unlock:
5379         mutex_unlock(&event->mmap_mutex);
5380
5381         /*
5382          * Since pinned accounting is per vm we cannot allow fork() to copy our
5383          * vma.
5384          */
5385         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5386         vma->vm_ops = &perf_mmap_vmops;
5387
5388         if (event->pmu->event_mapped)
5389                 event->pmu->event_mapped(event);
5390
5391         return ret;
5392 }
5393
5394 static int perf_fasync(int fd, struct file *filp, int on)
5395 {
5396         struct inode *inode = file_inode(filp);
5397         struct perf_event *event = filp->private_data;
5398         int retval;
5399
5400         inode_lock(inode);
5401         retval = fasync_helper(fd, filp, on, &event->fasync);
5402         inode_unlock(inode);
5403
5404         if (retval < 0)
5405                 return retval;
5406
5407         return 0;
5408 }
5409
5410 static const struct file_operations perf_fops = {
5411         .llseek                 = no_llseek,
5412         .release                = perf_release,
5413         .read                   = perf_read,
5414         .poll                   = perf_poll,
5415         .unlocked_ioctl         = perf_ioctl,
5416         .compat_ioctl           = perf_compat_ioctl,
5417         .mmap                   = perf_mmap,
5418         .fasync                 = perf_fasync,
5419 };
5420
5421 /*
5422  * Perf event wakeup
5423  *
5424  * If there's data, ensure we set the poll() state and publish everything
5425  * to user-space before waking everybody up.
5426  */
5427
5428 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5429 {
5430         /* only the parent has fasync state */
5431         if (event->parent)
5432                 event = event->parent;
5433         return &event->fasync;
5434 }
5435
5436 void perf_event_wakeup(struct perf_event *event)
5437 {
5438         ring_buffer_wakeup(event);
5439
5440         if (event->pending_kill) {
5441                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5442                 event->pending_kill = 0;
5443         }
5444 }
5445
5446 static void perf_pending_event(struct irq_work *entry)
5447 {
5448         struct perf_event *event = container_of(entry,
5449                         struct perf_event, pending);
5450         int rctx;
5451
5452         rctx = perf_swevent_get_recursion_context();
5453         /*
5454          * If we 'fail' here, that's OK, it means recursion is already disabled
5455          * and we won't recurse 'further'.
5456          */
5457
5458         if (event->pending_disable) {
5459                 event->pending_disable = 0;
5460                 perf_event_disable_local(event);
5461         }
5462
5463         if (event->pending_wakeup) {
5464                 event->pending_wakeup = 0;
5465                 perf_event_wakeup(event);
5466         }
5467
5468         if (rctx >= 0)
5469                 perf_swevent_put_recursion_context(rctx);
5470 }
5471
5472 /*
5473  * We assume there is only KVM supporting the callbacks.
5474  * Later on, we might change it to a list if there is
5475  * another virtualization implementation supporting the callbacks.
5476  */
5477 struct perf_guest_info_callbacks *perf_guest_cbs;
5478
5479 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5480 {
5481         perf_guest_cbs = cbs;
5482         return 0;
5483 }
5484 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5485
5486 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5487 {
5488         perf_guest_cbs = NULL;
5489         return 0;
5490 }
5491 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5492
5493 static void
5494 perf_output_sample_regs(struct perf_output_handle *handle,
5495                         struct pt_regs *regs, u64 mask)
5496 {
5497         int bit;
5498         DECLARE_BITMAP(_mask, 64);
5499
5500         bitmap_from_u64(_mask, mask);
5501         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5502                 u64 val;
5503
5504                 val = perf_reg_value(regs, bit);
5505                 perf_output_put(handle, val);
5506         }
5507 }
5508
5509 static void perf_sample_regs_user(struct perf_regs *regs_user,
5510                                   struct pt_regs *regs,
5511                                   struct pt_regs *regs_user_copy)
5512 {
5513         if (user_mode(regs)) {
5514                 regs_user->abi = perf_reg_abi(current);
5515                 regs_user->regs = regs;
5516         } else if (current->mm) {
5517                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5518         } else {
5519                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5520                 regs_user->regs = NULL;
5521         }
5522 }
5523
5524 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5525                                   struct pt_regs *regs)
5526 {
5527         regs_intr->regs = regs;
5528         regs_intr->abi  = perf_reg_abi(current);
5529 }
5530
5531
5532 /*
5533  * Get remaining task size from user stack pointer.
5534  *
5535  * It'd be better to take stack vma map and limit this more
5536  * precisly, but there's no way to get it safely under interrupt,
5537  * so using TASK_SIZE as limit.
5538  */
5539 static u64 perf_ustack_task_size(struct pt_regs *regs)
5540 {
5541         unsigned long addr = perf_user_stack_pointer(regs);
5542
5543         if (!addr || addr >= TASK_SIZE)
5544                 return 0;
5545
5546         return TASK_SIZE - addr;
5547 }
5548
5549 static u16
5550 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5551                         struct pt_regs *regs)
5552 {
5553         u64 task_size;
5554
5555         /* No regs, no stack pointer, no dump. */
5556         if (!regs)
5557                 return 0;
5558
5559         /*
5560          * Check if we fit in with the requested stack size into the:
5561          * - TASK_SIZE
5562          *   If we don't, we limit the size to the TASK_SIZE.
5563          *
5564          * - remaining sample size
5565          *   If we don't, we customize the stack size to
5566          *   fit in to the remaining sample size.
5567          */
5568
5569         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5570         stack_size = min(stack_size, (u16) task_size);
5571
5572         /* Current header size plus static size and dynamic size. */
5573         header_size += 2 * sizeof(u64);
5574
5575         /* Do we fit in with the current stack dump size? */
5576         if ((u16) (header_size + stack_size) < header_size) {
5577                 /*
5578                  * If we overflow the maximum size for the sample,
5579                  * we customize the stack dump size to fit in.
5580                  */
5581                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5582                 stack_size = round_up(stack_size, sizeof(u64));
5583         }
5584
5585         return stack_size;
5586 }
5587
5588 static void
5589 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5590                           struct pt_regs *regs)
5591 {
5592         /* Case of a kernel thread, nothing to dump */
5593         if (!regs) {
5594                 u64 size = 0;
5595                 perf_output_put(handle, size);
5596         } else {
5597                 unsigned long sp;
5598                 unsigned int rem;
5599                 u64 dyn_size;
5600
5601                 /*
5602                  * We dump:
5603                  * static size
5604                  *   - the size requested by user or the best one we can fit
5605                  *     in to the sample max size
5606                  * data
5607                  *   - user stack dump data
5608                  * dynamic size
5609                  *   - the actual dumped size
5610                  */
5611
5612                 /* Static size. */
5613                 perf_output_put(handle, dump_size);
5614
5615                 /* Data. */
5616                 sp = perf_user_stack_pointer(regs);
5617                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5618                 dyn_size = dump_size - rem;
5619
5620                 perf_output_skip(handle, rem);
5621
5622                 /* Dynamic size. */
5623                 perf_output_put(handle, dyn_size);
5624         }
5625 }
5626
5627 static void __perf_event_header__init_id(struct perf_event_header *header,
5628                                          struct perf_sample_data *data,
5629                                          struct perf_event *event)
5630 {
5631         u64 sample_type = event->attr.sample_type;
5632
5633         data->type = sample_type;
5634         header->size += event->id_header_size;
5635
5636         if (sample_type & PERF_SAMPLE_TID) {
5637                 /* namespace issues */
5638                 data->tid_entry.pid = perf_event_pid(event, current);
5639                 data->tid_entry.tid = perf_event_tid(event, current);
5640         }
5641
5642         if (sample_type & PERF_SAMPLE_TIME)
5643                 data->time = perf_event_clock(event);
5644
5645         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5646                 data->id = primary_event_id(event);
5647
5648         if (sample_type & PERF_SAMPLE_STREAM_ID)
5649                 data->stream_id = event->id;
5650
5651         if (sample_type & PERF_SAMPLE_CPU) {
5652                 data->cpu_entry.cpu      = raw_smp_processor_id();
5653                 data->cpu_entry.reserved = 0;
5654         }
5655 }
5656
5657 void perf_event_header__init_id(struct perf_event_header *header,
5658                                 struct perf_sample_data *data,
5659                                 struct perf_event *event)
5660 {
5661         if (event->attr.sample_id_all)
5662                 __perf_event_header__init_id(header, data, event);
5663 }
5664
5665 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5666                                            struct perf_sample_data *data)
5667 {
5668         u64 sample_type = data->type;
5669
5670         if (sample_type & PERF_SAMPLE_TID)
5671                 perf_output_put(handle, data->tid_entry);
5672
5673         if (sample_type & PERF_SAMPLE_TIME)
5674                 perf_output_put(handle, data->time);
5675
5676         if (sample_type & PERF_SAMPLE_ID)
5677                 perf_output_put(handle, data->id);
5678
5679         if (sample_type & PERF_SAMPLE_STREAM_ID)
5680                 perf_output_put(handle, data->stream_id);
5681
5682         if (sample_type & PERF_SAMPLE_CPU)
5683                 perf_output_put(handle, data->cpu_entry);
5684
5685         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5686                 perf_output_put(handle, data->id);
5687 }
5688
5689 void perf_event__output_id_sample(struct perf_event *event,
5690                                   struct perf_output_handle *handle,
5691                                   struct perf_sample_data *sample)
5692 {
5693         if (event->attr.sample_id_all)
5694                 __perf_event__output_id_sample(handle, sample);
5695 }
5696
5697 static void perf_output_read_one(struct perf_output_handle *handle,
5698                                  struct perf_event *event,
5699                                  u64 enabled, u64 running)
5700 {
5701         u64 read_format = event->attr.read_format;
5702         u64 values[4];
5703         int n = 0;
5704
5705         values[n++] = perf_event_count(event);
5706         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5707                 values[n++] = enabled +
5708                         atomic64_read(&event->child_total_time_enabled);
5709         }
5710         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5711                 values[n++] = running +
5712                         atomic64_read(&event->child_total_time_running);
5713         }
5714         if (read_format & PERF_FORMAT_ID)
5715                 values[n++] = primary_event_id(event);
5716
5717         __output_copy(handle, values, n * sizeof(u64));
5718 }
5719
5720 static void perf_output_read_group(struct perf_output_handle *handle,
5721                             struct perf_event *event,
5722                             u64 enabled, u64 running)
5723 {
5724         struct perf_event *leader = event->group_leader, *sub;
5725         u64 read_format = event->attr.read_format;
5726         u64 values[5];
5727         int n = 0;
5728
5729         values[n++] = 1 + leader->nr_siblings;
5730
5731         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5732                 values[n++] = enabled;
5733
5734         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5735                 values[n++] = running;
5736
5737         if (leader != event)
5738                 leader->pmu->read(leader);
5739
5740         values[n++] = perf_event_count(leader);
5741         if (read_format & PERF_FORMAT_ID)
5742                 values[n++] = primary_event_id(leader);
5743
5744         __output_copy(handle, values, n * sizeof(u64));
5745
5746         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5747                 n = 0;
5748
5749                 if ((sub != event) &&
5750                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5751                         sub->pmu->read(sub);
5752
5753                 values[n++] = perf_event_count(sub);
5754                 if (read_format & PERF_FORMAT_ID)
5755                         values[n++] = primary_event_id(sub);
5756
5757                 __output_copy(handle, values, n * sizeof(u64));
5758         }
5759 }
5760
5761 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5762                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5763
5764 /*
5765  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5766  *
5767  * The problem is that its both hard and excessively expensive to iterate the
5768  * child list, not to mention that its impossible to IPI the children running
5769  * on another CPU, from interrupt/NMI context.
5770  */
5771 static void perf_output_read(struct perf_output_handle *handle,
5772                              struct perf_event *event)
5773 {
5774         u64 enabled = 0, running = 0, now;
5775         u64 read_format = event->attr.read_format;
5776
5777         /*
5778          * compute total_time_enabled, total_time_running
5779          * based on snapshot values taken when the event
5780          * was last scheduled in.
5781          *
5782          * we cannot simply called update_context_time()
5783          * because of locking issue as we are called in
5784          * NMI context
5785          */
5786         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5787                 calc_timer_values(event, &now, &enabled, &running);
5788
5789         if (event->attr.read_format & PERF_FORMAT_GROUP)
5790                 perf_output_read_group(handle, event, enabled, running);
5791         else
5792                 perf_output_read_one(handle, event, enabled, running);
5793 }
5794
5795 void perf_output_sample(struct perf_output_handle *handle,
5796                         struct perf_event_header *header,
5797                         struct perf_sample_data *data,
5798                         struct perf_event *event)
5799 {
5800         u64 sample_type = data->type;
5801
5802         perf_output_put(handle, *header);
5803
5804         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5805                 perf_output_put(handle, data->id);
5806
5807         if (sample_type & PERF_SAMPLE_IP)
5808                 perf_output_put(handle, data->ip);
5809
5810         if (sample_type & PERF_SAMPLE_TID)
5811                 perf_output_put(handle, data->tid_entry);
5812
5813         if (sample_type & PERF_SAMPLE_TIME)
5814                 perf_output_put(handle, data->time);
5815
5816         if (sample_type & PERF_SAMPLE_ADDR)
5817                 perf_output_put(handle, data->addr);
5818
5819         if (sample_type & PERF_SAMPLE_ID)
5820                 perf_output_put(handle, data->id);
5821
5822         if (sample_type & PERF_SAMPLE_STREAM_ID)
5823                 perf_output_put(handle, data->stream_id);
5824
5825         if (sample_type & PERF_SAMPLE_CPU)
5826                 perf_output_put(handle, data->cpu_entry);
5827
5828         if (sample_type & PERF_SAMPLE_PERIOD)
5829                 perf_output_put(handle, data->period);
5830
5831         if (sample_type & PERF_SAMPLE_READ)
5832                 perf_output_read(handle, event);
5833
5834         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5835                 if (data->callchain) {
5836                         int size = 1;
5837
5838                         if (data->callchain)
5839                                 size += data->callchain->nr;
5840
5841                         size *= sizeof(u64);
5842
5843                         __output_copy(handle, data->callchain, size);
5844                 } else {
5845                         u64 nr = 0;
5846                         perf_output_put(handle, nr);
5847                 }
5848         }
5849
5850         if (sample_type & PERF_SAMPLE_RAW) {
5851                 struct perf_raw_record *raw = data->raw;
5852
5853                 if (raw) {
5854                         struct perf_raw_frag *frag = &raw->frag;
5855
5856                         perf_output_put(handle, raw->size);
5857                         do {
5858                                 if (frag->copy) {
5859                                         __output_custom(handle, frag->copy,
5860                                                         frag->data, frag->size);
5861                                 } else {
5862                                         __output_copy(handle, frag->data,
5863                                                       frag->size);
5864                                 }
5865                                 if (perf_raw_frag_last(frag))
5866                                         break;
5867                                 frag = frag->next;
5868                         } while (1);
5869                         if (frag->pad)
5870                                 __output_skip(handle, NULL, frag->pad);
5871                 } else {
5872                         struct {
5873                                 u32     size;
5874                                 u32     data;
5875                         } raw = {
5876                                 .size = sizeof(u32),
5877                                 .data = 0,
5878                         };
5879                         perf_output_put(handle, raw);
5880                 }
5881         }
5882
5883         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5884                 if (data->br_stack) {
5885                         size_t size;
5886
5887                         size = data->br_stack->nr
5888                              * sizeof(struct perf_branch_entry);
5889
5890                         perf_output_put(handle, data->br_stack->nr);
5891                         perf_output_copy(handle, data->br_stack->entries, size);
5892                 } else {
5893                         /*
5894                          * we always store at least the value of nr
5895                          */
5896                         u64 nr = 0;
5897                         perf_output_put(handle, nr);
5898                 }
5899         }
5900
5901         if (sample_type & PERF_SAMPLE_REGS_USER) {
5902                 u64 abi = data->regs_user.abi;
5903
5904                 /*
5905                  * If there are no regs to dump, notice it through
5906                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5907                  */
5908                 perf_output_put(handle, abi);
5909
5910                 if (abi) {
5911                         u64 mask = event->attr.sample_regs_user;
5912                         perf_output_sample_regs(handle,
5913                                                 data->regs_user.regs,
5914                                                 mask);
5915                 }
5916         }
5917
5918         if (sample_type & PERF_SAMPLE_STACK_USER) {
5919                 perf_output_sample_ustack(handle,
5920                                           data->stack_user_size,
5921                                           data->regs_user.regs);
5922         }
5923
5924         if (sample_type & PERF_SAMPLE_WEIGHT)
5925                 perf_output_put(handle, data->weight);
5926
5927         if (sample_type & PERF_SAMPLE_DATA_SRC)
5928                 perf_output_put(handle, data->data_src.val);
5929
5930         if (sample_type & PERF_SAMPLE_TRANSACTION)
5931                 perf_output_put(handle, data->txn);
5932
5933         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5934                 u64 abi = data->regs_intr.abi;
5935                 /*
5936                  * If there are no regs to dump, notice it through
5937                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5938                  */
5939                 perf_output_put(handle, abi);
5940
5941                 if (abi) {
5942                         u64 mask = event->attr.sample_regs_intr;
5943
5944                         perf_output_sample_regs(handle,
5945                                                 data->regs_intr.regs,
5946                                                 mask);
5947                 }
5948         }
5949
5950         if (!event->attr.watermark) {
5951                 int wakeup_events = event->attr.wakeup_events;
5952
5953                 if (wakeup_events) {
5954                         struct ring_buffer *rb = handle->rb;
5955                         int events = local_inc_return(&rb->events);
5956
5957                         if (events >= wakeup_events) {
5958                                 local_sub(wakeup_events, &rb->events);
5959                                 local_inc(&rb->wakeup);
5960                         }
5961                 }
5962         }
5963 }
5964
5965 void perf_prepare_sample(struct perf_event_header *header,
5966                          struct perf_sample_data *data,
5967                          struct perf_event *event,
5968                          struct pt_regs *regs)
5969 {
5970         u64 sample_type = event->attr.sample_type;
5971
5972         header->type = PERF_RECORD_SAMPLE;
5973         header->size = sizeof(*header) + event->header_size;
5974
5975         header->misc = 0;
5976         header->misc |= perf_misc_flags(regs);
5977
5978         __perf_event_header__init_id(header, data, event);
5979
5980         if (sample_type & PERF_SAMPLE_IP)
5981                 data->ip = perf_instruction_pointer(regs);
5982
5983         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5984                 int size = 1;
5985
5986                 data->callchain = perf_callchain(event, regs);
5987
5988                 if (data->callchain)
5989                         size += data->callchain->nr;
5990
5991                 header->size += size * sizeof(u64);
5992         }
5993
5994         if (sample_type & PERF_SAMPLE_RAW) {
5995                 struct perf_raw_record *raw = data->raw;
5996                 int size;
5997
5998                 if (raw) {
5999                         struct perf_raw_frag *frag = &raw->frag;
6000                         u32 sum = 0;
6001
6002                         do {
6003                                 sum += frag->size;
6004                                 if (perf_raw_frag_last(frag))
6005                                         break;
6006                                 frag = frag->next;
6007                         } while (1);
6008
6009                         size = round_up(sum + sizeof(u32), sizeof(u64));
6010                         raw->size = size - sizeof(u32);
6011                         frag->pad = raw->size - sum;
6012                 } else {
6013                         size = sizeof(u64);
6014                 }
6015
6016                 header->size += size;
6017         }
6018
6019         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6020                 int size = sizeof(u64); /* nr */
6021                 if (data->br_stack) {
6022                         size += data->br_stack->nr
6023                               * sizeof(struct perf_branch_entry);
6024                 }
6025                 header->size += size;
6026         }
6027
6028         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6029                 perf_sample_regs_user(&data->regs_user, regs,
6030                                       &data->regs_user_copy);
6031
6032         if (sample_type & PERF_SAMPLE_REGS_USER) {
6033                 /* regs dump ABI info */
6034                 int size = sizeof(u64);
6035
6036                 if (data->regs_user.regs) {
6037                         u64 mask = event->attr.sample_regs_user;
6038                         size += hweight64(mask) * sizeof(u64);
6039                 }
6040
6041                 header->size += size;
6042         }
6043
6044         if (sample_type & PERF_SAMPLE_STACK_USER) {
6045                 /*
6046                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6047                  * processed as the last one or have additional check added
6048                  * in case new sample type is added, because we could eat
6049                  * up the rest of the sample size.
6050                  */
6051                 u16 stack_size = event->attr.sample_stack_user;
6052                 u16 size = sizeof(u64);
6053
6054                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6055                                                      data->regs_user.regs);
6056
6057                 /*
6058                  * If there is something to dump, add space for the dump
6059                  * itself and for the field that tells the dynamic size,
6060                  * which is how many have been actually dumped.
6061                  */
6062                 if (stack_size)
6063                         size += sizeof(u64) + stack_size;
6064
6065                 data->stack_user_size = stack_size;
6066                 header->size += size;
6067         }
6068
6069         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6070                 /* regs dump ABI info */
6071                 int size = sizeof(u64);
6072
6073                 perf_sample_regs_intr(&data->regs_intr, regs);
6074
6075                 if (data->regs_intr.regs) {
6076                         u64 mask = event->attr.sample_regs_intr;
6077
6078                         size += hweight64(mask) * sizeof(u64);
6079                 }
6080
6081                 header->size += size;
6082         }
6083 }
6084
6085 static void __always_inline
6086 __perf_event_output(struct perf_event *event,
6087                     struct perf_sample_data *data,
6088                     struct pt_regs *regs,
6089                     int (*output_begin)(struct perf_output_handle *,
6090                                         struct perf_event *,
6091                                         unsigned int))
6092 {
6093         struct perf_output_handle handle;
6094         struct perf_event_header header;
6095
6096         /* protect the callchain buffers */
6097         rcu_read_lock();
6098
6099         perf_prepare_sample(&header, data, event, regs);
6100
6101         if (output_begin(&handle, event, header.size))
6102                 goto exit;
6103
6104         perf_output_sample(&handle, &header, data, event);
6105
6106         perf_output_end(&handle);
6107
6108 exit:
6109         rcu_read_unlock();
6110 }
6111
6112 void
6113 perf_event_output_forward(struct perf_event *event,
6114                          struct perf_sample_data *data,
6115                          struct pt_regs *regs)
6116 {
6117         __perf_event_output(event, data, regs, perf_output_begin_forward);
6118 }
6119
6120 void
6121 perf_event_output_backward(struct perf_event *event,
6122                            struct perf_sample_data *data,
6123                            struct pt_regs *regs)
6124 {
6125         __perf_event_output(event, data, regs, perf_output_begin_backward);
6126 }
6127
6128 void
6129 perf_event_output(struct perf_event *event,
6130                   struct perf_sample_data *data,
6131                   struct pt_regs *regs)
6132 {
6133         __perf_event_output(event, data, regs, perf_output_begin);
6134 }
6135
6136 /*
6137  * read event_id
6138  */
6139
6140 struct perf_read_event {
6141         struct perf_event_header        header;
6142
6143         u32                             pid;
6144         u32                             tid;
6145 };
6146
6147 static void
6148 perf_event_read_event(struct perf_event *event,
6149                         struct task_struct *task)
6150 {
6151         struct perf_output_handle handle;
6152         struct perf_sample_data sample;
6153         struct perf_read_event read_event = {
6154                 .header = {
6155                         .type = PERF_RECORD_READ,
6156                         .misc = 0,
6157                         .size = sizeof(read_event) + event->read_size,
6158                 },
6159                 .pid = perf_event_pid(event, task),
6160                 .tid = perf_event_tid(event, task),
6161         };
6162         int ret;
6163
6164         perf_event_header__init_id(&read_event.header, &sample, event);
6165         ret = perf_output_begin(&handle, event, read_event.header.size);
6166         if (ret)
6167                 return;
6168
6169         perf_output_put(&handle, read_event);
6170         perf_output_read(&handle, event);
6171         perf_event__output_id_sample(event, &handle, &sample);
6172
6173         perf_output_end(&handle);
6174 }
6175
6176 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6177
6178 static void
6179 perf_iterate_ctx(struct perf_event_context *ctx,
6180                    perf_iterate_f output,
6181                    void *data, bool all)
6182 {
6183         struct perf_event *event;
6184
6185         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6186                 if (!all) {
6187                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6188                                 continue;
6189                         if (!event_filter_match(event))
6190                                 continue;
6191                 }
6192
6193                 output(event, data);
6194         }
6195 }
6196
6197 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6198 {
6199         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6200         struct perf_event *event;
6201
6202         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6203                 /*
6204                  * Skip events that are not fully formed yet; ensure that
6205                  * if we observe event->ctx, both event and ctx will be
6206                  * complete enough. See perf_install_in_context().
6207                  */
6208                 if (!smp_load_acquire(&event->ctx))
6209                         continue;
6210
6211                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6212                         continue;
6213                 if (!event_filter_match(event))
6214                         continue;
6215                 output(event, data);
6216         }
6217 }
6218
6219 /*
6220  * Iterate all events that need to receive side-band events.
6221  *
6222  * For new callers; ensure that account_pmu_sb_event() includes
6223  * your event, otherwise it might not get delivered.
6224  */
6225 static void
6226 perf_iterate_sb(perf_iterate_f output, void *data,
6227                struct perf_event_context *task_ctx)
6228 {
6229         struct perf_event_context *ctx;
6230         int ctxn;
6231
6232         rcu_read_lock();
6233         preempt_disable();
6234
6235         /*
6236          * If we have task_ctx != NULL we only notify the task context itself.
6237          * The task_ctx is set only for EXIT events before releasing task
6238          * context.
6239          */
6240         if (task_ctx) {
6241                 perf_iterate_ctx(task_ctx, output, data, false);
6242                 goto done;
6243         }
6244
6245         perf_iterate_sb_cpu(output, data);
6246
6247         for_each_task_context_nr(ctxn) {
6248                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6249                 if (ctx)
6250                         perf_iterate_ctx(ctx, output, data, false);
6251         }
6252 done:
6253         preempt_enable();
6254         rcu_read_unlock();
6255 }
6256
6257 /*
6258  * Clear all file-based filters at exec, they'll have to be
6259  * re-instated when/if these objects are mmapped again.
6260  */
6261 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6262 {
6263         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6264         struct perf_addr_filter *filter;
6265         unsigned int restart = 0, count = 0;
6266         unsigned long flags;
6267
6268         if (!has_addr_filter(event))
6269                 return;
6270
6271         raw_spin_lock_irqsave(&ifh->lock, flags);
6272         list_for_each_entry(filter, &ifh->list, entry) {
6273                 if (filter->inode) {
6274                         event->addr_filters_offs[count] = 0;
6275                         restart++;
6276                 }
6277
6278                 count++;
6279         }
6280
6281         if (restart)
6282                 event->addr_filters_gen++;
6283         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6284
6285         if (restart)
6286                 perf_event_stop(event, 1);
6287 }
6288
6289 void perf_event_exec(void)
6290 {
6291         struct perf_event_context *ctx;
6292         int ctxn;
6293
6294         rcu_read_lock();
6295         for_each_task_context_nr(ctxn) {
6296                 ctx = current->perf_event_ctxp[ctxn];
6297                 if (!ctx)
6298                         continue;
6299
6300                 perf_event_enable_on_exec(ctxn);
6301
6302                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6303                                    true);
6304         }
6305         rcu_read_unlock();
6306 }
6307
6308 struct remote_output {
6309         struct ring_buffer      *rb;
6310         int                     err;
6311 };
6312
6313 static void __perf_event_output_stop(struct perf_event *event, void *data)
6314 {
6315         struct perf_event *parent = event->parent;
6316         struct remote_output *ro = data;
6317         struct ring_buffer *rb = ro->rb;
6318         struct stop_event_data sd = {
6319                 .event  = event,
6320         };
6321
6322         if (!has_aux(event))
6323                 return;
6324
6325         if (!parent)
6326                 parent = event;
6327
6328         /*
6329          * In case of inheritance, it will be the parent that links to the
6330          * ring-buffer, but it will be the child that's actually using it.
6331          *
6332          * We are using event::rb to determine if the event should be stopped,
6333          * however this may race with ring_buffer_attach() (through set_output),
6334          * which will make us skip the event that actually needs to be stopped.
6335          * So ring_buffer_attach() has to stop an aux event before re-assigning
6336          * its rb pointer.
6337          */
6338         if (rcu_dereference(parent->rb) == rb)
6339                 ro->err = __perf_event_stop(&sd);
6340 }
6341
6342 static int __perf_pmu_output_stop(void *info)
6343 {
6344         struct perf_event *event = info;
6345         struct pmu *pmu = event->pmu;
6346         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6347         struct remote_output ro = {
6348                 .rb     = event->rb,
6349         };
6350
6351         rcu_read_lock();
6352         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6353         if (cpuctx->task_ctx)
6354                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6355                                    &ro, false);
6356         rcu_read_unlock();
6357
6358         return ro.err;
6359 }
6360
6361 static void perf_pmu_output_stop(struct perf_event *event)
6362 {
6363         struct perf_event *iter;
6364         int err, cpu;
6365
6366 restart:
6367         rcu_read_lock();
6368         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6369                 /*
6370                  * For per-CPU events, we need to make sure that neither they
6371                  * nor their children are running; for cpu==-1 events it's
6372                  * sufficient to stop the event itself if it's active, since
6373                  * it can't have children.
6374                  */
6375                 cpu = iter->cpu;
6376                 if (cpu == -1)
6377                         cpu = READ_ONCE(iter->oncpu);
6378
6379                 if (cpu == -1)
6380                         continue;
6381
6382                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6383                 if (err == -EAGAIN) {
6384                         rcu_read_unlock();
6385                         goto restart;
6386                 }
6387         }
6388         rcu_read_unlock();
6389 }
6390
6391 /*
6392  * task tracking -- fork/exit
6393  *
6394  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6395  */
6396
6397 struct perf_task_event {
6398         struct task_struct              *task;
6399         struct perf_event_context       *task_ctx;
6400
6401         struct {
6402                 struct perf_event_header        header;
6403
6404                 u32                             pid;
6405                 u32                             ppid;
6406                 u32                             tid;
6407                 u32                             ptid;
6408                 u64                             time;
6409         } event_id;
6410 };
6411
6412 static int perf_event_task_match(struct perf_event *event)
6413 {
6414         return event->attr.comm  || event->attr.mmap ||
6415                event->attr.mmap2 || event->attr.mmap_data ||
6416                event->attr.task;
6417 }
6418
6419 static void perf_event_task_output(struct perf_event *event,
6420                                    void *data)
6421 {
6422         struct perf_task_event *task_event = data;
6423         struct perf_output_handle handle;
6424         struct perf_sample_data sample;
6425         struct task_struct *task = task_event->task;
6426         int ret, size = task_event->event_id.header.size;
6427
6428         if (!perf_event_task_match(event))
6429                 return;
6430
6431         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6432
6433         ret = perf_output_begin(&handle, event,
6434                                 task_event->event_id.header.size);
6435         if (ret)
6436                 goto out;
6437
6438         task_event->event_id.pid = perf_event_pid(event, task);
6439         task_event->event_id.ppid = perf_event_pid(event, current);
6440
6441         task_event->event_id.tid = perf_event_tid(event, task);
6442         task_event->event_id.ptid = perf_event_tid(event, current);
6443
6444         task_event->event_id.time = perf_event_clock(event);
6445
6446         perf_output_put(&handle, task_event->event_id);
6447
6448         perf_event__output_id_sample(event, &handle, &sample);
6449
6450         perf_output_end(&handle);
6451 out:
6452         task_event->event_id.header.size = size;
6453 }
6454
6455 static void perf_event_task(struct task_struct *task,
6456                               struct perf_event_context *task_ctx,
6457                               int new)
6458 {
6459         struct perf_task_event task_event;
6460
6461         if (!atomic_read(&nr_comm_events) &&
6462             !atomic_read(&nr_mmap_events) &&
6463             !atomic_read(&nr_task_events))
6464                 return;
6465
6466         task_event = (struct perf_task_event){
6467                 .task     = task,
6468                 .task_ctx = task_ctx,
6469                 .event_id    = {
6470                         .header = {
6471                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6472                                 .misc = 0,
6473                                 .size = sizeof(task_event.event_id),
6474                         },
6475                         /* .pid  */
6476                         /* .ppid */
6477                         /* .tid  */
6478                         /* .ptid */
6479                         /* .time */
6480                 },
6481         };
6482
6483         perf_iterate_sb(perf_event_task_output,
6484                        &task_event,
6485                        task_ctx);
6486 }
6487
6488 void perf_event_fork(struct task_struct *task)
6489 {
6490         perf_event_task(task, NULL, 1);
6491         perf_event_namespaces(task);
6492 }
6493
6494 /*
6495  * comm tracking
6496  */
6497
6498 struct perf_comm_event {
6499         struct task_struct      *task;
6500         char                    *comm;
6501         int                     comm_size;
6502
6503         struct {
6504                 struct perf_event_header        header;
6505
6506                 u32                             pid;
6507                 u32                             tid;
6508         } event_id;
6509 };
6510
6511 static int perf_event_comm_match(struct perf_event *event)
6512 {
6513         return event->attr.comm;
6514 }
6515
6516 static void perf_event_comm_output(struct perf_event *event,
6517                                    void *data)
6518 {
6519         struct perf_comm_event *comm_event = data;
6520         struct perf_output_handle handle;
6521         struct perf_sample_data sample;
6522         int size = comm_event->event_id.header.size;
6523         int ret;
6524
6525         if (!perf_event_comm_match(event))
6526                 return;
6527
6528         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6529         ret = perf_output_begin(&handle, event,
6530                                 comm_event->event_id.header.size);
6531
6532         if (ret)
6533                 goto out;
6534
6535         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6536         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6537
6538         perf_output_put(&handle, comm_event->event_id);
6539         __output_copy(&handle, comm_event->comm,
6540                                    comm_event->comm_size);
6541
6542         perf_event__output_id_sample(event, &handle, &sample);
6543
6544         perf_output_end(&handle);
6545 out:
6546         comm_event->event_id.header.size = size;
6547 }
6548
6549 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6550 {
6551         char comm[TASK_COMM_LEN];
6552         unsigned int size;
6553
6554         memset(comm, 0, sizeof(comm));
6555         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6556         size = ALIGN(strlen(comm)+1, sizeof(u64));
6557
6558         comm_event->comm = comm;
6559         comm_event->comm_size = size;
6560
6561         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6562
6563         perf_iterate_sb(perf_event_comm_output,
6564                        comm_event,
6565                        NULL);
6566 }
6567
6568 void perf_event_comm(struct task_struct *task, bool exec)
6569 {
6570         struct perf_comm_event comm_event;
6571
6572         if (!atomic_read(&nr_comm_events))
6573                 return;
6574
6575         comm_event = (struct perf_comm_event){
6576                 .task   = task,
6577                 /* .comm      */
6578                 /* .comm_size */
6579                 .event_id  = {
6580                         .header = {
6581                                 .type = PERF_RECORD_COMM,
6582                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6583                                 /* .size */
6584                         },
6585                         /* .pid */
6586                         /* .tid */
6587                 },
6588         };
6589
6590         perf_event_comm_event(&comm_event);
6591 }
6592
6593 /*
6594  * namespaces tracking
6595  */
6596
6597 struct perf_namespaces_event {
6598         struct task_struct              *task;
6599
6600         struct {
6601                 struct perf_event_header        header;
6602
6603                 u32                             pid;
6604                 u32                             tid;
6605                 u64                             nr_namespaces;
6606                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
6607         } event_id;
6608 };
6609
6610 static int perf_event_namespaces_match(struct perf_event *event)
6611 {
6612         return event->attr.namespaces;
6613 }
6614
6615 static void perf_event_namespaces_output(struct perf_event *event,
6616                                          void *data)
6617 {
6618         struct perf_namespaces_event *namespaces_event = data;
6619         struct perf_output_handle handle;
6620         struct perf_sample_data sample;
6621         int ret;
6622
6623         if (!perf_event_namespaces_match(event))
6624                 return;
6625
6626         perf_event_header__init_id(&namespaces_event->event_id.header,
6627                                    &sample, event);
6628         ret = perf_output_begin(&handle, event,
6629                                 namespaces_event->event_id.header.size);
6630         if (ret)
6631                 return;
6632
6633         namespaces_event->event_id.pid = perf_event_pid(event,
6634                                                         namespaces_event->task);
6635         namespaces_event->event_id.tid = perf_event_tid(event,
6636                                                         namespaces_event->task);
6637
6638         perf_output_put(&handle, namespaces_event->event_id);
6639
6640         perf_event__output_id_sample(event, &handle, &sample);
6641
6642         perf_output_end(&handle);
6643 }
6644
6645 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6646                                    struct task_struct *task,
6647                                    const struct proc_ns_operations *ns_ops)
6648 {
6649         struct path ns_path;
6650         struct inode *ns_inode;
6651         void *error;
6652
6653         error = ns_get_path(&ns_path, task, ns_ops);
6654         if (!error) {
6655                 ns_inode = ns_path.dentry->d_inode;
6656                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6657                 ns_link_info->ino = ns_inode->i_ino;
6658         }
6659 }
6660
6661 void perf_event_namespaces(struct task_struct *task)
6662 {
6663         struct perf_namespaces_event namespaces_event;
6664         struct perf_ns_link_info *ns_link_info;
6665
6666         if (!atomic_read(&nr_namespaces_events))
6667                 return;
6668
6669         namespaces_event = (struct perf_namespaces_event){
6670                 .task   = task,
6671                 .event_id  = {
6672                         .header = {
6673                                 .type = PERF_RECORD_NAMESPACES,
6674                                 .misc = 0,
6675                                 .size = sizeof(namespaces_event.event_id),
6676                         },
6677                         /* .pid */
6678                         /* .tid */
6679                         .nr_namespaces = NR_NAMESPACES,
6680                         /* .link_info[NR_NAMESPACES] */
6681                 },
6682         };
6683
6684         ns_link_info = namespaces_event.event_id.link_info;
6685
6686         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6687                                task, &mntns_operations);
6688
6689 #ifdef CONFIG_USER_NS
6690         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6691                                task, &userns_operations);
6692 #endif
6693 #ifdef CONFIG_NET_NS
6694         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6695                                task, &netns_operations);
6696 #endif
6697 #ifdef CONFIG_UTS_NS
6698         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6699                                task, &utsns_operations);
6700 #endif
6701 #ifdef CONFIG_IPC_NS
6702         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6703                                task, &ipcns_operations);
6704 #endif
6705 #ifdef CONFIG_PID_NS
6706         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6707                                task, &pidns_operations);
6708 #endif
6709 #ifdef CONFIG_CGROUPS
6710         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6711                                task, &cgroupns_operations);
6712 #endif
6713
6714         perf_iterate_sb(perf_event_namespaces_output,
6715                         &namespaces_event,
6716                         NULL);
6717 }
6718
6719 /*
6720  * mmap tracking
6721  */
6722
6723 struct perf_mmap_event {
6724         struct vm_area_struct   *vma;
6725
6726         const char              *file_name;
6727         int                     file_size;
6728         int                     maj, min;
6729         u64                     ino;
6730         u64                     ino_generation;
6731         u32                     prot, flags;
6732
6733         struct {
6734                 struct perf_event_header        header;
6735
6736                 u32                             pid;
6737                 u32                             tid;
6738                 u64                             start;
6739                 u64                             len;
6740                 u64                             pgoff;
6741         } event_id;
6742 };
6743
6744 static int perf_event_mmap_match(struct perf_event *event,
6745                                  void *data)
6746 {
6747         struct perf_mmap_event *mmap_event = data;
6748         struct vm_area_struct *vma = mmap_event->vma;
6749         int executable = vma->vm_flags & VM_EXEC;
6750
6751         return (!executable && event->attr.mmap_data) ||
6752                (executable && (event->attr.mmap || event->attr.mmap2));
6753 }
6754
6755 static void perf_event_mmap_output(struct perf_event *event,
6756                                    void *data)
6757 {
6758         struct perf_mmap_event *mmap_event = data;
6759         struct perf_output_handle handle;
6760         struct perf_sample_data sample;
6761         int size = mmap_event->event_id.header.size;
6762         int ret;
6763
6764         if (!perf_event_mmap_match(event, data))
6765                 return;
6766
6767         if (event->attr.mmap2) {
6768                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6769                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6770                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6771                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6772                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6773                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6774                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6775         }
6776
6777         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6778         ret = perf_output_begin(&handle, event,
6779                                 mmap_event->event_id.header.size);
6780         if (ret)
6781                 goto out;
6782
6783         mmap_event->event_id.pid = perf_event_pid(event, current);
6784         mmap_event->event_id.tid = perf_event_tid(event, current);
6785
6786         perf_output_put(&handle, mmap_event->event_id);
6787
6788         if (event->attr.mmap2) {
6789                 perf_output_put(&handle, mmap_event->maj);
6790                 perf_output_put(&handle, mmap_event->min);
6791                 perf_output_put(&handle, mmap_event->ino);
6792                 perf_output_put(&handle, mmap_event->ino_generation);
6793                 perf_output_put(&handle, mmap_event->prot);
6794                 perf_output_put(&handle, mmap_event->flags);
6795         }
6796
6797         __output_copy(&handle, mmap_event->file_name,
6798                                    mmap_event->file_size);
6799
6800         perf_event__output_id_sample(event, &handle, &sample);
6801
6802         perf_output_end(&handle);
6803 out:
6804         mmap_event->event_id.header.size = size;
6805 }
6806
6807 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6808 {
6809         struct vm_area_struct *vma = mmap_event->vma;
6810         struct file *file = vma->vm_file;
6811         int maj = 0, min = 0;
6812         u64 ino = 0, gen = 0;
6813         u32 prot = 0, flags = 0;
6814         unsigned int size;
6815         char tmp[16];
6816         char *buf = NULL;
6817         char *name;
6818
6819         if (vma->vm_flags & VM_READ)
6820                 prot |= PROT_READ;
6821         if (vma->vm_flags & VM_WRITE)
6822                 prot |= PROT_WRITE;
6823         if (vma->vm_flags & VM_EXEC)
6824                 prot |= PROT_EXEC;
6825
6826         if (vma->vm_flags & VM_MAYSHARE)
6827                 flags = MAP_SHARED;
6828         else
6829                 flags = MAP_PRIVATE;
6830
6831         if (vma->vm_flags & VM_DENYWRITE)
6832                 flags |= MAP_DENYWRITE;
6833         if (vma->vm_flags & VM_MAYEXEC)
6834                 flags |= MAP_EXECUTABLE;
6835         if (vma->vm_flags & VM_LOCKED)
6836                 flags |= MAP_LOCKED;
6837         if (vma->vm_flags & VM_HUGETLB)
6838                 flags |= MAP_HUGETLB;
6839
6840         if (file) {
6841                 struct inode *inode;
6842                 dev_t dev;
6843
6844                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6845                 if (!buf) {
6846                         name = "//enomem";
6847                         goto cpy_name;
6848                 }
6849                 /*
6850                  * d_path() works from the end of the rb backwards, so we
6851                  * need to add enough zero bytes after the string to handle
6852                  * the 64bit alignment we do later.
6853                  */
6854                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6855                 if (IS_ERR(name)) {
6856                         name = "//toolong";
6857                         goto cpy_name;
6858                 }
6859                 inode = file_inode(vma->vm_file);
6860                 dev = inode->i_sb->s_dev;
6861                 ino = inode->i_ino;
6862                 gen = inode->i_generation;
6863                 maj = MAJOR(dev);
6864                 min = MINOR(dev);
6865
6866                 goto got_name;
6867         } else {
6868                 if (vma->vm_ops && vma->vm_ops->name) {
6869                         name = (char *) vma->vm_ops->name(vma);
6870                         if (name)
6871                                 goto cpy_name;
6872                 }
6873
6874                 name = (char *)arch_vma_name(vma);
6875                 if (name)
6876                         goto cpy_name;
6877
6878                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6879                                 vma->vm_end >= vma->vm_mm->brk) {
6880                         name = "[heap]";
6881                         goto cpy_name;
6882                 }
6883                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6884                                 vma->vm_end >= vma->vm_mm->start_stack) {
6885                         name = "[stack]";
6886                         goto cpy_name;
6887                 }
6888
6889                 name = "//anon";
6890                 goto cpy_name;
6891         }
6892
6893 cpy_name:
6894         strlcpy(tmp, name, sizeof(tmp));
6895         name = tmp;
6896 got_name:
6897         /*
6898          * Since our buffer works in 8 byte units we need to align our string
6899          * size to a multiple of 8. However, we must guarantee the tail end is
6900          * zero'd out to avoid leaking random bits to userspace.
6901          */
6902         size = strlen(name)+1;
6903         while (!IS_ALIGNED(size, sizeof(u64)))
6904                 name[size++] = '\0';
6905
6906         mmap_event->file_name = name;
6907         mmap_event->file_size = size;
6908         mmap_event->maj = maj;
6909         mmap_event->min = min;
6910         mmap_event->ino = ino;
6911         mmap_event->ino_generation = gen;
6912         mmap_event->prot = prot;
6913         mmap_event->flags = flags;
6914
6915         if (!(vma->vm_flags & VM_EXEC))
6916                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6917
6918         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6919
6920         perf_iterate_sb(perf_event_mmap_output,
6921                        mmap_event,
6922                        NULL);
6923
6924         kfree(buf);
6925 }
6926
6927 /*
6928  * Check whether inode and address range match filter criteria.
6929  */
6930 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6931                                      struct file *file, unsigned long offset,
6932                                      unsigned long size)
6933 {
6934         if (filter->inode != file_inode(file))
6935                 return false;
6936
6937         if (filter->offset > offset + size)
6938                 return false;
6939
6940         if (filter->offset + filter->size < offset)
6941                 return false;
6942
6943         return true;
6944 }
6945
6946 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6947 {
6948         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6949         struct vm_area_struct *vma = data;
6950         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6951         struct file *file = vma->vm_file;
6952         struct perf_addr_filter *filter;
6953         unsigned int restart = 0, count = 0;
6954
6955         if (!has_addr_filter(event))
6956                 return;
6957
6958         if (!file)
6959                 return;
6960
6961         raw_spin_lock_irqsave(&ifh->lock, flags);
6962         list_for_each_entry(filter, &ifh->list, entry) {
6963                 if (perf_addr_filter_match(filter, file, off,
6964                                              vma->vm_end - vma->vm_start)) {
6965                         event->addr_filters_offs[count] = vma->vm_start;
6966                         restart++;
6967                 }
6968
6969                 count++;
6970         }
6971
6972         if (restart)
6973                 event->addr_filters_gen++;
6974         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6975
6976         if (restart)
6977                 perf_event_stop(event, 1);
6978 }
6979
6980 /*
6981  * Adjust all task's events' filters to the new vma
6982  */
6983 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6984 {
6985         struct perf_event_context *ctx;
6986         int ctxn;
6987
6988         /*
6989          * Data tracing isn't supported yet and as such there is no need
6990          * to keep track of anything that isn't related to executable code:
6991          */
6992         if (!(vma->vm_flags & VM_EXEC))
6993                 return;
6994
6995         rcu_read_lock();
6996         for_each_task_context_nr(ctxn) {
6997                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6998                 if (!ctx)
6999                         continue;
7000
7001                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7002         }
7003         rcu_read_unlock();
7004 }
7005
7006 void perf_event_mmap(struct vm_area_struct *vma)
7007 {
7008         struct perf_mmap_event mmap_event;
7009
7010         if (!atomic_read(&nr_mmap_events))
7011                 return;
7012
7013         mmap_event = (struct perf_mmap_event){
7014                 .vma    = vma,
7015                 /* .file_name */
7016                 /* .file_size */
7017                 .event_id  = {
7018                         .header = {
7019                                 .type = PERF_RECORD_MMAP,
7020                                 .misc = PERF_RECORD_MISC_USER,
7021                                 /* .size */
7022                         },
7023                         /* .pid */
7024                         /* .tid */
7025                         .start  = vma->vm_start,
7026                         .len    = vma->vm_end - vma->vm_start,
7027                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7028                 },
7029                 /* .maj (attr_mmap2 only) */
7030                 /* .min (attr_mmap2 only) */
7031                 /* .ino (attr_mmap2 only) */
7032                 /* .ino_generation (attr_mmap2 only) */
7033                 /* .prot (attr_mmap2 only) */
7034                 /* .flags (attr_mmap2 only) */
7035         };
7036
7037         perf_addr_filters_adjust(vma);
7038         perf_event_mmap_event(&mmap_event);
7039 }
7040
7041 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7042                           unsigned long size, u64 flags)
7043 {
7044         struct perf_output_handle handle;
7045         struct perf_sample_data sample;
7046         struct perf_aux_event {
7047                 struct perf_event_header        header;
7048                 u64                             offset;
7049                 u64                             size;
7050                 u64                             flags;
7051         } rec = {
7052                 .header = {
7053                         .type = PERF_RECORD_AUX,
7054                         .misc = 0,
7055                         .size = sizeof(rec),
7056                 },
7057                 .offset         = head,
7058                 .size           = size,
7059                 .flags          = flags,
7060         };
7061         int ret;
7062
7063         perf_event_header__init_id(&rec.header, &sample, event);
7064         ret = perf_output_begin(&handle, event, rec.header.size);
7065
7066         if (ret)
7067                 return;
7068
7069         perf_output_put(&handle, rec);
7070         perf_event__output_id_sample(event, &handle, &sample);
7071
7072         perf_output_end(&handle);
7073 }
7074
7075 /*
7076  * Lost/dropped samples logging
7077  */
7078 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7079 {
7080         struct perf_output_handle handle;
7081         struct perf_sample_data sample;
7082         int ret;
7083
7084         struct {
7085                 struct perf_event_header        header;
7086                 u64                             lost;
7087         } lost_samples_event = {
7088                 .header = {
7089                         .type = PERF_RECORD_LOST_SAMPLES,
7090                         .misc = 0,
7091                         .size = sizeof(lost_samples_event),
7092                 },
7093                 .lost           = lost,
7094         };
7095
7096         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7097
7098         ret = perf_output_begin(&handle, event,
7099                                 lost_samples_event.header.size);
7100         if (ret)
7101                 return;
7102
7103         perf_output_put(&handle, lost_samples_event);
7104         perf_event__output_id_sample(event, &handle, &sample);
7105         perf_output_end(&handle);
7106 }
7107
7108 /*
7109  * context_switch tracking
7110  */
7111
7112 struct perf_switch_event {
7113         struct task_struct      *task;
7114         struct task_struct      *next_prev;
7115
7116         struct {
7117                 struct perf_event_header        header;
7118                 u32                             next_prev_pid;
7119                 u32                             next_prev_tid;
7120         } event_id;
7121 };
7122
7123 static int perf_event_switch_match(struct perf_event *event)
7124 {
7125         return event->attr.context_switch;
7126 }
7127
7128 static void perf_event_switch_output(struct perf_event *event, void *data)
7129 {
7130         struct perf_switch_event *se = data;
7131         struct perf_output_handle handle;
7132         struct perf_sample_data sample;
7133         int ret;
7134
7135         if (!perf_event_switch_match(event))
7136                 return;
7137
7138         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7139         if (event->ctx->task) {
7140                 se->event_id.header.type = PERF_RECORD_SWITCH;
7141                 se->event_id.header.size = sizeof(se->event_id.header);
7142         } else {
7143                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7144                 se->event_id.header.size = sizeof(se->event_id);
7145                 se->event_id.next_prev_pid =
7146                                         perf_event_pid(event, se->next_prev);
7147                 se->event_id.next_prev_tid =
7148                                         perf_event_tid(event, se->next_prev);
7149         }
7150
7151         perf_event_header__init_id(&se->event_id.header, &sample, event);
7152
7153         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7154         if (ret)
7155                 return;
7156
7157         if (event->ctx->task)
7158                 perf_output_put(&handle, se->event_id.header);
7159         else
7160                 perf_output_put(&handle, se->event_id);
7161
7162         perf_event__output_id_sample(event, &handle, &sample);
7163
7164         perf_output_end(&handle);
7165 }
7166
7167 static void perf_event_switch(struct task_struct *task,
7168                               struct task_struct *next_prev, bool sched_in)
7169 {
7170         struct perf_switch_event switch_event;
7171
7172         /* N.B. caller checks nr_switch_events != 0 */
7173
7174         switch_event = (struct perf_switch_event){
7175                 .task           = task,
7176                 .next_prev      = next_prev,
7177                 .event_id       = {
7178                         .header = {
7179                                 /* .type */
7180                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7181                                 /* .size */
7182                         },
7183                         /* .next_prev_pid */
7184                         /* .next_prev_tid */
7185                 },
7186         };
7187
7188         perf_iterate_sb(perf_event_switch_output,
7189                        &switch_event,
7190                        NULL);
7191 }
7192
7193 /*
7194  * IRQ throttle logging
7195  */
7196
7197 static void perf_log_throttle(struct perf_event *event, int enable)
7198 {
7199         struct perf_output_handle handle;
7200         struct perf_sample_data sample;
7201         int ret;
7202
7203         struct {
7204                 struct perf_event_header        header;
7205                 u64                             time;
7206                 u64                             id;
7207                 u64                             stream_id;
7208         } throttle_event = {
7209                 .header = {
7210                         .type = PERF_RECORD_THROTTLE,
7211                         .misc = 0,
7212                         .size = sizeof(throttle_event),
7213                 },
7214                 .time           = perf_event_clock(event),
7215                 .id             = primary_event_id(event),
7216                 .stream_id      = event->id,
7217         };
7218
7219         if (enable)
7220                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7221
7222         perf_event_header__init_id(&throttle_event.header, &sample, event);
7223
7224         ret = perf_output_begin(&handle, event,
7225                                 throttle_event.header.size);
7226         if (ret)
7227                 return;
7228
7229         perf_output_put(&handle, throttle_event);
7230         perf_event__output_id_sample(event, &handle, &sample);
7231         perf_output_end(&handle);
7232 }
7233
7234 static void perf_log_itrace_start(struct perf_event *event)
7235 {
7236         struct perf_output_handle handle;
7237         struct perf_sample_data sample;
7238         struct perf_aux_event {
7239                 struct perf_event_header        header;
7240                 u32                             pid;
7241                 u32                             tid;
7242         } rec;
7243         int ret;
7244
7245         if (event->parent)
7246                 event = event->parent;
7247
7248         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7249             event->hw.itrace_started)
7250                 return;
7251
7252         rec.header.type = PERF_RECORD_ITRACE_START;
7253         rec.header.misc = 0;
7254         rec.header.size = sizeof(rec);
7255         rec.pid = perf_event_pid(event, current);
7256         rec.tid = perf_event_tid(event, current);
7257
7258         perf_event_header__init_id(&rec.header, &sample, event);
7259         ret = perf_output_begin(&handle, event, rec.header.size);
7260
7261         if (ret)
7262                 return;
7263
7264         perf_output_put(&handle, rec);
7265         perf_event__output_id_sample(event, &handle, &sample);
7266
7267         perf_output_end(&handle);
7268 }
7269
7270 static int
7271 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7272 {
7273         struct hw_perf_event *hwc = &event->hw;
7274         int ret = 0;
7275         u64 seq;
7276
7277         seq = __this_cpu_read(perf_throttled_seq);
7278         if (seq != hwc->interrupts_seq) {
7279                 hwc->interrupts_seq = seq;
7280                 hwc->interrupts = 1;
7281         } else {
7282                 hwc->interrupts++;
7283                 if (unlikely(throttle
7284                              && hwc->interrupts >= max_samples_per_tick)) {
7285                         __this_cpu_inc(perf_throttled_count);
7286                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7287                         hwc->interrupts = MAX_INTERRUPTS;
7288                         perf_log_throttle(event, 0);
7289                         ret = 1;
7290                 }
7291         }
7292
7293         if (event->attr.freq) {
7294                 u64 now = perf_clock();
7295                 s64 delta = now - hwc->freq_time_stamp;
7296
7297                 hwc->freq_time_stamp = now;
7298
7299                 if (delta > 0 && delta < 2*TICK_NSEC)
7300                         perf_adjust_period(event, delta, hwc->last_period, true);
7301         }
7302
7303         return ret;
7304 }
7305
7306 int perf_event_account_interrupt(struct perf_event *event)
7307 {
7308         return __perf_event_account_interrupt(event, 1);
7309 }
7310
7311 /*
7312  * Generic event overflow handling, sampling.
7313  */
7314
7315 static int __perf_event_overflow(struct perf_event *event,
7316                                    int throttle, struct perf_sample_data *data,
7317                                    struct pt_regs *regs)
7318 {
7319         int events = atomic_read(&event->event_limit);
7320         int ret = 0;
7321
7322         /*
7323          * Non-sampling counters might still use the PMI to fold short
7324          * hardware counters, ignore those.
7325          */
7326         if (unlikely(!is_sampling_event(event)))
7327                 return 0;
7328
7329         ret = __perf_event_account_interrupt(event, throttle);
7330
7331         /*
7332          * XXX event_limit might not quite work as expected on inherited
7333          * events
7334          */
7335
7336         event->pending_kill = POLL_IN;
7337         if (events && atomic_dec_and_test(&event->event_limit)) {
7338                 ret = 1;
7339                 event->pending_kill = POLL_HUP;
7340
7341                 perf_event_disable_inatomic(event);
7342         }
7343
7344         READ_ONCE(event->overflow_handler)(event, data, regs);
7345
7346         if (*perf_event_fasync(event) && event->pending_kill) {
7347                 event->pending_wakeup = 1;
7348                 irq_work_queue(&event->pending);
7349         }
7350
7351         return ret;
7352 }
7353
7354 int perf_event_overflow(struct perf_event *event,
7355                           struct perf_sample_data *data,
7356                           struct pt_regs *regs)
7357 {
7358         return __perf_event_overflow(event, 1, data, regs);
7359 }
7360
7361 /*
7362  * Generic software event infrastructure
7363  */
7364
7365 struct swevent_htable {
7366         struct swevent_hlist            *swevent_hlist;
7367         struct mutex                    hlist_mutex;
7368         int                             hlist_refcount;
7369
7370         /* Recursion avoidance in each contexts */
7371         int                             recursion[PERF_NR_CONTEXTS];
7372 };
7373
7374 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7375
7376 /*
7377  * We directly increment event->count and keep a second value in
7378  * event->hw.period_left to count intervals. This period event
7379  * is kept in the range [-sample_period, 0] so that we can use the
7380  * sign as trigger.
7381  */
7382
7383 u64 perf_swevent_set_period(struct perf_event *event)
7384 {
7385         struct hw_perf_event *hwc = &event->hw;
7386         u64 period = hwc->last_period;
7387         u64 nr, offset;
7388         s64 old, val;
7389
7390         hwc->last_period = hwc->sample_period;
7391
7392 again:
7393         old = val = local64_read(&hwc->period_left);
7394         if (val < 0)
7395                 return 0;
7396
7397         nr = div64_u64(period + val, period);
7398         offset = nr * period;
7399         val -= offset;
7400         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7401                 goto again;
7402
7403         return nr;
7404 }
7405
7406 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7407                                     struct perf_sample_data *data,
7408                                     struct pt_regs *regs)
7409 {
7410         struct hw_perf_event *hwc = &event->hw;
7411         int throttle = 0;
7412
7413         if (!overflow)
7414                 overflow = perf_swevent_set_period(event);
7415
7416         if (hwc->interrupts == MAX_INTERRUPTS)
7417                 return;
7418
7419         for (; overflow; overflow--) {
7420                 if (__perf_event_overflow(event, throttle,
7421                                             data, regs)) {
7422                         /*
7423                          * We inhibit the overflow from happening when
7424                          * hwc->interrupts == MAX_INTERRUPTS.
7425                          */
7426                         break;
7427                 }
7428                 throttle = 1;
7429         }
7430 }
7431
7432 static void perf_swevent_event(struct perf_event *event, u64 nr,
7433                                struct perf_sample_data *data,
7434                                struct pt_regs *regs)
7435 {
7436         struct hw_perf_event *hwc = &event->hw;
7437
7438         local64_add(nr, &event->count);
7439
7440         if (!regs)
7441                 return;
7442
7443         if (!is_sampling_event(event))
7444                 return;
7445
7446         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7447                 data->period = nr;
7448                 return perf_swevent_overflow(event, 1, data, regs);
7449         } else
7450                 data->period = event->hw.last_period;
7451
7452         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7453                 return perf_swevent_overflow(event, 1, data, regs);
7454
7455         if (local64_add_negative(nr, &hwc->period_left))
7456                 return;
7457
7458         perf_swevent_overflow(event, 0, data, regs);
7459 }
7460
7461 static int perf_exclude_event(struct perf_event *event,
7462                               struct pt_regs *regs)
7463 {
7464         if (event->hw.state & PERF_HES_STOPPED)
7465                 return 1;
7466
7467         if (regs) {
7468                 if (event->attr.exclude_user && user_mode(regs))
7469                         return 1;
7470
7471                 if (event->attr.exclude_kernel && !user_mode(regs))
7472                         return 1;
7473         }
7474
7475         return 0;
7476 }
7477
7478 static int perf_swevent_match(struct perf_event *event,
7479                                 enum perf_type_id type,
7480                                 u32 event_id,
7481                                 struct perf_sample_data *data,
7482                                 struct pt_regs *regs)
7483 {
7484         if (event->attr.type != type)
7485                 return 0;
7486
7487         if (event->attr.config != event_id)
7488                 return 0;
7489
7490         if (perf_exclude_event(event, regs))
7491                 return 0;
7492
7493         return 1;
7494 }
7495
7496 static inline u64 swevent_hash(u64 type, u32 event_id)
7497 {
7498         u64 val = event_id | (type << 32);
7499
7500         return hash_64(val, SWEVENT_HLIST_BITS);
7501 }
7502
7503 static inline struct hlist_head *
7504 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7505 {
7506         u64 hash = swevent_hash(type, event_id);
7507
7508         return &hlist->heads[hash];
7509 }
7510
7511 /* For the read side: events when they trigger */
7512 static inline struct hlist_head *
7513 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7514 {
7515         struct swevent_hlist *hlist;
7516
7517         hlist = rcu_dereference(swhash->swevent_hlist);
7518         if (!hlist)
7519                 return NULL;
7520
7521         return __find_swevent_head(hlist, type, event_id);
7522 }
7523
7524 /* For the event head insertion and removal in the hlist */
7525 static inline struct hlist_head *
7526 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7527 {
7528         struct swevent_hlist *hlist;
7529         u32 event_id = event->attr.config;
7530         u64 type = event->attr.type;
7531
7532         /*
7533          * Event scheduling is always serialized against hlist allocation
7534          * and release. Which makes the protected version suitable here.
7535          * The context lock guarantees that.
7536          */
7537         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7538                                           lockdep_is_held(&event->ctx->lock));
7539         if (!hlist)
7540                 return NULL;
7541
7542         return __find_swevent_head(hlist, type, event_id);
7543 }
7544
7545 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7546                                     u64 nr,
7547                                     struct perf_sample_data *data,
7548                                     struct pt_regs *regs)
7549 {
7550         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7551         struct perf_event *event;
7552         struct hlist_head *head;
7553
7554         rcu_read_lock();
7555         head = find_swevent_head_rcu(swhash, type, event_id);
7556         if (!head)
7557                 goto end;
7558
7559         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7560                 if (perf_swevent_match(event, type, event_id, data, regs))
7561                         perf_swevent_event(event, nr, data, regs);
7562         }
7563 end:
7564         rcu_read_unlock();
7565 }
7566
7567 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7568
7569 int perf_swevent_get_recursion_context(void)
7570 {
7571         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7572
7573         return get_recursion_context(swhash->recursion);
7574 }
7575 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7576
7577 void perf_swevent_put_recursion_context(int rctx)
7578 {
7579         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7580
7581         put_recursion_context(swhash->recursion, rctx);
7582 }
7583
7584 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7585 {
7586         struct perf_sample_data data;
7587
7588         if (WARN_ON_ONCE(!regs))
7589                 return;
7590
7591         perf_sample_data_init(&data, addr, 0);
7592         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7593 }
7594
7595 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7596 {
7597         int rctx;
7598
7599         preempt_disable_notrace();
7600         rctx = perf_swevent_get_recursion_context();
7601         if (unlikely(rctx < 0))
7602                 goto fail;
7603
7604         ___perf_sw_event(event_id, nr, regs, addr);
7605
7606         perf_swevent_put_recursion_context(rctx);
7607 fail:
7608         preempt_enable_notrace();
7609 }
7610
7611 static void perf_swevent_read(struct perf_event *event)
7612 {
7613 }
7614
7615 static int perf_swevent_add(struct perf_event *event, int flags)
7616 {
7617         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7618         struct hw_perf_event *hwc = &event->hw;
7619         struct hlist_head *head;
7620
7621         if (is_sampling_event(event)) {
7622                 hwc->last_period = hwc->sample_period;
7623                 perf_swevent_set_period(event);
7624         }
7625
7626         hwc->state = !(flags & PERF_EF_START);
7627
7628         head = find_swevent_head(swhash, event);
7629         if (WARN_ON_ONCE(!head))
7630                 return -EINVAL;
7631
7632         hlist_add_head_rcu(&event->hlist_entry, head);
7633         perf_event_update_userpage(event);
7634
7635         return 0;
7636 }
7637
7638 static void perf_swevent_del(struct perf_event *event, int flags)
7639 {
7640         hlist_del_rcu(&event->hlist_entry);
7641 }
7642
7643 static void perf_swevent_start(struct perf_event *event, int flags)
7644 {
7645         event->hw.state = 0;
7646 }
7647
7648 static void perf_swevent_stop(struct perf_event *event, int flags)
7649 {
7650         event->hw.state = PERF_HES_STOPPED;
7651 }
7652
7653 /* Deref the hlist from the update side */
7654 static inline struct swevent_hlist *
7655 swevent_hlist_deref(struct swevent_htable *swhash)
7656 {
7657         return rcu_dereference_protected(swhash->swevent_hlist,
7658                                          lockdep_is_held(&swhash->hlist_mutex));
7659 }
7660
7661 static void swevent_hlist_release(struct swevent_htable *swhash)
7662 {
7663         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7664
7665         if (!hlist)
7666                 return;
7667
7668         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7669         kfree_rcu(hlist, rcu_head);
7670 }
7671
7672 static void swevent_hlist_put_cpu(int cpu)
7673 {
7674         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7675
7676         mutex_lock(&swhash->hlist_mutex);
7677
7678         if (!--swhash->hlist_refcount)
7679                 swevent_hlist_release(swhash);
7680
7681         mutex_unlock(&swhash->hlist_mutex);
7682 }
7683
7684 static void swevent_hlist_put(void)
7685 {
7686         int cpu;
7687
7688         for_each_possible_cpu(cpu)
7689                 swevent_hlist_put_cpu(cpu);
7690 }
7691
7692 static int swevent_hlist_get_cpu(int cpu)
7693 {
7694         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7695         int err = 0;
7696
7697         mutex_lock(&swhash->hlist_mutex);
7698         if (!swevent_hlist_deref(swhash) &&
7699             cpumask_test_cpu(cpu, perf_online_mask)) {
7700                 struct swevent_hlist *hlist;
7701
7702                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7703                 if (!hlist) {
7704                         err = -ENOMEM;
7705                         goto exit;
7706                 }
7707                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7708         }
7709         swhash->hlist_refcount++;
7710 exit:
7711         mutex_unlock(&swhash->hlist_mutex);
7712
7713         return err;
7714 }
7715
7716 static int swevent_hlist_get(void)
7717 {
7718         int err, cpu, failed_cpu;
7719
7720         mutex_lock(&pmus_lock);
7721         for_each_possible_cpu(cpu) {
7722                 err = swevent_hlist_get_cpu(cpu);
7723                 if (err) {
7724                         failed_cpu = cpu;
7725                         goto fail;
7726                 }
7727         }
7728         mutex_unlock(&pmus_lock);
7729         return 0;
7730 fail:
7731         for_each_possible_cpu(cpu) {
7732                 if (cpu == failed_cpu)
7733                         break;
7734                 swevent_hlist_put_cpu(cpu);
7735         }
7736         mutex_unlock(&pmus_lock);
7737         return err;
7738 }
7739
7740 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7741
7742 static void sw_perf_event_destroy(struct perf_event *event)
7743 {
7744         u64 event_id = event->attr.config;
7745
7746         WARN_ON(event->parent);
7747
7748         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7749         swevent_hlist_put();
7750 }
7751
7752 static int perf_swevent_init(struct perf_event *event)
7753 {
7754         u64 event_id = event->attr.config;
7755
7756         if (event->attr.type != PERF_TYPE_SOFTWARE)
7757                 return -ENOENT;
7758
7759         /*
7760          * no branch sampling for software events
7761          */
7762         if (has_branch_stack(event))
7763                 return -EOPNOTSUPP;
7764
7765         switch (event_id) {
7766         case PERF_COUNT_SW_CPU_CLOCK:
7767         case PERF_COUNT_SW_TASK_CLOCK:
7768                 return -ENOENT;
7769
7770         default:
7771                 break;
7772         }
7773
7774         if (event_id >= PERF_COUNT_SW_MAX)
7775                 return -ENOENT;
7776
7777         if (!event->parent) {
7778                 int err;
7779
7780                 err = swevent_hlist_get();
7781                 if (err)
7782                         return err;
7783
7784                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7785                 event->destroy = sw_perf_event_destroy;
7786         }
7787
7788         return 0;
7789 }
7790
7791 static struct pmu perf_swevent = {
7792         .task_ctx_nr    = perf_sw_context,
7793
7794         .capabilities   = PERF_PMU_CAP_NO_NMI,
7795
7796         .event_init     = perf_swevent_init,
7797         .add            = perf_swevent_add,
7798         .del            = perf_swevent_del,
7799         .start          = perf_swevent_start,
7800         .stop           = perf_swevent_stop,
7801         .read           = perf_swevent_read,
7802 };
7803
7804 #ifdef CONFIG_EVENT_TRACING
7805
7806 static int perf_tp_filter_match(struct perf_event *event,
7807                                 struct perf_sample_data *data)
7808 {
7809         void *record = data->raw->frag.data;
7810
7811         /* only top level events have filters set */
7812         if (event->parent)
7813                 event = event->parent;
7814
7815         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7816                 return 1;
7817         return 0;
7818 }
7819
7820 static int perf_tp_event_match(struct perf_event *event,
7821                                 struct perf_sample_data *data,
7822                                 struct pt_regs *regs)
7823 {
7824         if (event->hw.state & PERF_HES_STOPPED)
7825                 return 0;
7826         /*
7827          * All tracepoints are from kernel-space.
7828          */
7829         if (event->attr.exclude_kernel)
7830                 return 0;
7831
7832         if (!perf_tp_filter_match(event, data))
7833                 return 0;
7834
7835         return 1;
7836 }
7837
7838 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7839                                struct trace_event_call *call, u64 count,
7840                                struct pt_regs *regs, struct hlist_head *head,
7841                                struct task_struct *task)
7842 {
7843         struct bpf_prog *prog = call->prog;
7844
7845         if (prog) {
7846                 *(struct pt_regs **)raw_data = regs;
7847                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7848                         perf_swevent_put_recursion_context(rctx);
7849                         return;
7850                 }
7851         }
7852         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7853                       rctx, task);
7854 }
7855 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7856
7857 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7858                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7859                    struct task_struct *task)
7860 {
7861         struct perf_sample_data data;
7862         struct perf_event *event;
7863
7864         struct perf_raw_record raw = {
7865                 .frag = {
7866                         .size = entry_size,
7867                         .data = record,
7868                 },
7869         };
7870
7871         perf_sample_data_init(&data, 0, 0);
7872         data.raw = &raw;
7873
7874         perf_trace_buf_update(record, event_type);
7875
7876         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7877                 if (perf_tp_event_match(event, &data, regs))
7878                         perf_swevent_event(event, count, &data, regs);
7879         }
7880
7881         /*
7882          * If we got specified a target task, also iterate its context and
7883          * deliver this event there too.
7884          */
7885         if (task && task != current) {
7886                 struct perf_event_context *ctx;
7887                 struct trace_entry *entry = record;
7888
7889                 rcu_read_lock();
7890                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7891                 if (!ctx)
7892                         goto unlock;
7893
7894                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7895                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7896                                 continue;
7897                         if (event->attr.config != entry->type)
7898                                 continue;
7899                         if (perf_tp_event_match(event, &data, regs))
7900                                 perf_swevent_event(event, count, &data, regs);
7901                 }
7902 unlock:
7903                 rcu_read_unlock();
7904         }
7905
7906         perf_swevent_put_recursion_context(rctx);
7907 }
7908 EXPORT_SYMBOL_GPL(perf_tp_event);
7909
7910 static void tp_perf_event_destroy(struct perf_event *event)
7911 {
7912         perf_trace_destroy(event);
7913 }
7914
7915 static int perf_tp_event_init(struct perf_event *event)
7916 {
7917         int err;
7918
7919         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7920                 return -ENOENT;
7921
7922         /*
7923          * no branch sampling for tracepoint events
7924          */
7925         if (has_branch_stack(event))
7926                 return -EOPNOTSUPP;
7927
7928         err = perf_trace_init(event);
7929         if (err)
7930                 return err;
7931
7932         event->destroy = tp_perf_event_destroy;
7933
7934         return 0;
7935 }
7936
7937 static struct pmu perf_tracepoint = {
7938         .task_ctx_nr    = perf_sw_context,
7939
7940         .event_init     = perf_tp_event_init,
7941         .add            = perf_trace_add,
7942         .del            = perf_trace_del,
7943         .start          = perf_swevent_start,
7944         .stop           = perf_swevent_stop,
7945         .read           = perf_swevent_read,
7946 };
7947
7948 static inline void perf_tp_register(void)
7949 {
7950         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7951 }
7952
7953 static void perf_event_free_filter(struct perf_event *event)
7954 {
7955         ftrace_profile_free_filter(event);
7956 }
7957
7958 #ifdef CONFIG_BPF_SYSCALL
7959 static void bpf_overflow_handler(struct perf_event *event,
7960                                  struct perf_sample_data *data,
7961                                  struct pt_regs *regs)
7962 {
7963         struct bpf_perf_event_data_kern ctx = {
7964                 .data = data,
7965                 .regs = regs,
7966         };
7967         int ret = 0;
7968
7969         preempt_disable();
7970         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7971                 goto out;
7972         rcu_read_lock();
7973         ret = BPF_PROG_RUN(event->prog, &ctx);
7974         rcu_read_unlock();
7975 out:
7976         __this_cpu_dec(bpf_prog_active);
7977         preempt_enable();
7978         if (!ret)
7979                 return;
7980
7981         event->orig_overflow_handler(event, data, regs);
7982 }
7983
7984 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7985 {
7986         struct bpf_prog *prog;
7987
7988         if (event->overflow_handler_context)
7989                 /* hw breakpoint or kernel counter */
7990                 return -EINVAL;
7991
7992         if (event->prog)
7993                 return -EEXIST;
7994
7995         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7996         if (IS_ERR(prog))
7997                 return PTR_ERR(prog);
7998
7999         event->prog = prog;
8000         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8001         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8002         return 0;
8003 }
8004
8005 static void perf_event_free_bpf_handler(struct perf_event *event)
8006 {
8007         struct bpf_prog *prog = event->prog;
8008
8009         if (!prog)
8010                 return;
8011
8012         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8013         event->prog = NULL;
8014         bpf_prog_put(prog);
8015 }
8016 #else
8017 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8018 {
8019         return -EOPNOTSUPP;
8020 }
8021 static void perf_event_free_bpf_handler(struct perf_event *event)
8022 {
8023 }
8024 #endif
8025
8026 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8027 {
8028         bool is_kprobe, is_tracepoint;
8029         struct bpf_prog *prog;
8030
8031         if (event->attr.type == PERF_TYPE_HARDWARE ||
8032             event->attr.type == PERF_TYPE_SOFTWARE)
8033                 return perf_event_set_bpf_handler(event, prog_fd);
8034
8035         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8036                 return -EINVAL;
8037
8038         if (event->tp_event->prog)
8039                 return -EEXIST;
8040
8041         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8042         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8043         if (!is_kprobe && !is_tracepoint)
8044                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8045                 return -EINVAL;
8046
8047         prog = bpf_prog_get(prog_fd);
8048         if (IS_ERR(prog))
8049                 return PTR_ERR(prog);
8050
8051         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8052             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8053                 /* valid fd, but invalid bpf program type */
8054                 bpf_prog_put(prog);
8055                 return -EINVAL;
8056         }
8057
8058         if (is_tracepoint) {
8059                 int off = trace_event_get_offsets(event->tp_event);
8060
8061                 if (prog->aux->max_ctx_offset > off) {
8062                         bpf_prog_put(prog);
8063                         return -EACCES;
8064                 }
8065         }
8066         event->tp_event->prog = prog;
8067
8068         return 0;
8069 }
8070
8071 static void perf_event_free_bpf_prog(struct perf_event *event)
8072 {
8073         struct bpf_prog *prog;
8074
8075         perf_event_free_bpf_handler(event);
8076
8077         if (!event->tp_event)
8078                 return;
8079
8080         prog = event->tp_event->prog;
8081         if (prog) {
8082                 event->tp_event->prog = NULL;
8083                 bpf_prog_put(prog);
8084         }
8085 }
8086
8087 #else
8088
8089 static inline void perf_tp_register(void)
8090 {
8091 }
8092
8093 static void perf_event_free_filter(struct perf_event *event)
8094 {
8095 }
8096
8097 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8098 {
8099         return -ENOENT;
8100 }
8101
8102 static void perf_event_free_bpf_prog(struct perf_event *event)
8103 {
8104 }
8105 #endif /* CONFIG_EVENT_TRACING */
8106
8107 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8108 void perf_bp_event(struct perf_event *bp, void *data)
8109 {
8110         struct perf_sample_data sample;
8111         struct pt_regs *regs = data;
8112
8113         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8114
8115         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8116                 perf_swevent_event(bp, 1, &sample, regs);
8117 }
8118 #endif
8119
8120 /*
8121  * Allocate a new address filter
8122  */
8123 static struct perf_addr_filter *
8124 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8125 {
8126         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8127         struct perf_addr_filter *filter;
8128
8129         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8130         if (!filter)
8131                 return NULL;
8132
8133         INIT_LIST_HEAD(&filter->entry);
8134         list_add_tail(&filter->entry, filters);
8135
8136         return filter;
8137 }
8138
8139 static void free_filters_list(struct list_head *filters)
8140 {
8141         struct perf_addr_filter *filter, *iter;
8142
8143         list_for_each_entry_safe(filter, iter, filters, entry) {
8144                 if (filter->inode)
8145                         iput(filter->inode);
8146                 list_del(&filter->entry);
8147                 kfree(filter);
8148         }
8149 }
8150
8151 /*
8152  * Free existing address filters and optionally install new ones
8153  */
8154 static void perf_addr_filters_splice(struct perf_event *event,
8155                                      struct list_head *head)
8156 {
8157         unsigned long flags;
8158         LIST_HEAD(list);
8159
8160         if (!has_addr_filter(event))
8161                 return;
8162
8163         /* don't bother with children, they don't have their own filters */
8164         if (event->parent)
8165                 return;
8166
8167         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8168
8169         list_splice_init(&event->addr_filters.list, &list);
8170         if (head)
8171                 list_splice(head, &event->addr_filters.list);
8172
8173         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8174
8175         free_filters_list(&list);
8176 }
8177
8178 /*
8179  * Scan through mm's vmas and see if one of them matches the
8180  * @filter; if so, adjust filter's address range.
8181  * Called with mm::mmap_sem down for reading.
8182  */
8183 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8184                                             struct mm_struct *mm)
8185 {
8186         struct vm_area_struct *vma;
8187
8188         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8189                 struct file *file = vma->vm_file;
8190                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8191                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8192
8193                 if (!file)
8194                         continue;
8195
8196                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8197                         continue;
8198
8199                 return vma->vm_start;
8200         }
8201
8202         return 0;
8203 }
8204
8205 /*
8206  * Update event's address range filters based on the
8207  * task's existing mappings, if any.
8208  */
8209 static void perf_event_addr_filters_apply(struct perf_event *event)
8210 {
8211         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8212         struct task_struct *task = READ_ONCE(event->ctx->task);
8213         struct perf_addr_filter *filter;
8214         struct mm_struct *mm = NULL;
8215         unsigned int count = 0;
8216         unsigned long flags;
8217
8218         /*
8219          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8220          * will stop on the parent's child_mutex that our caller is also holding
8221          */
8222         if (task == TASK_TOMBSTONE)
8223                 return;
8224
8225         if (!ifh->nr_file_filters)
8226                 return;
8227
8228         mm = get_task_mm(event->ctx->task);
8229         if (!mm)
8230                 goto restart;
8231
8232         down_read(&mm->mmap_sem);
8233
8234         raw_spin_lock_irqsave(&ifh->lock, flags);
8235         list_for_each_entry(filter, &ifh->list, entry) {
8236                 event->addr_filters_offs[count] = 0;
8237
8238                 /*
8239                  * Adjust base offset if the filter is associated to a binary
8240                  * that needs to be mapped:
8241                  */
8242                 if (filter->inode)
8243                         event->addr_filters_offs[count] =
8244                                 perf_addr_filter_apply(filter, mm);
8245
8246                 count++;
8247         }
8248
8249         event->addr_filters_gen++;
8250         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8251
8252         up_read(&mm->mmap_sem);
8253
8254         mmput(mm);
8255
8256 restart:
8257         perf_event_stop(event, 1);
8258 }
8259
8260 /*
8261  * Address range filtering: limiting the data to certain
8262  * instruction address ranges. Filters are ioctl()ed to us from
8263  * userspace as ascii strings.
8264  *
8265  * Filter string format:
8266  *
8267  * ACTION RANGE_SPEC
8268  * where ACTION is one of the
8269  *  * "filter": limit the trace to this region
8270  *  * "start": start tracing from this address
8271  *  * "stop": stop tracing at this address/region;
8272  * RANGE_SPEC is
8273  *  * for kernel addresses: <start address>[/<size>]
8274  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8275  *
8276  * if <size> is not specified, the range is treated as a single address.
8277  */
8278 enum {
8279         IF_ACT_NONE = -1,
8280         IF_ACT_FILTER,
8281         IF_ACT_START,
8282         IF_ACT_STOP,
8283         IF_SRC_FILE,
8284         IF_SRC_KERNEL,
8285         IF_SRC_FILEADDR,
8286         IF_SRC_KERNELADDR,
8287 };
8288
8289 enum {
8290         IF_STATE_ACTION = 0,
8291         IF_STATE_SOURCE,
8292         IF_STATE_END,
8293 };
8294
8295 static const match_table_t if_tokens = {
8296         { IF_ACT_FILTER,        "filter" },
8297         { IF_ACT_START,         "start" },
8298         { IF_ACT_STOP,          "stop" },
8299         { IF_SRC_FILE,          "%u/%u@%s" },
8300         { IF_SRC_KERNEL,        "%u/%u" },
8301         { IF_SRC_FILEADDR,      "%u@%s" },
8302         { IF_SRC_KERNELADDR,    "%u" },
8303         { IF_ACT_NONE,          NULL },
8304 };
8305
8306 /*
8307  * Address filter string parser
8308  */
8309 static int
8310 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8311                              struct list_head *filters)
8312 {
8313         struct perf_addr_filter *filter = NULL;
8314         char *start, *orig, *filename = NULL;
8315         struct path path;
8316         substring_t args[MAX_OPT_ARGS];
8317         int state = IF_STATE_ACTION, token;
8318         unsigned int kernel = 0;
8319         int ret = -EINVAL;
8320
8321         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8322         if (!fstr)
8323                 return -ENOMEM;
8324
8325         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8326                 ret = -EINVAL;
8327
8328                 if (!*start)
8329                         continue;
8330
8331                 /* filter definition begins */
8332                 if (state == IF_STATE_ACTION) {
8333                         filter = perf_addr_filter_new(event, filters);
8334                         if (!filter)
8335                                 goto fail;
8336                 }
8337
8338                 token = match_token(start, if_tokens, args);
8339                 switch (token) {
8340                 case IF_ACT_FILTER:
8341                 case IF_ACT_START:
8342                         filter->filter = 1;
8343
8344                 case IF_ACT_STOP:
8345                         if (state != IF_STATE_ACTION)
8346                                 goto fail;
8347
8348                         state = IF_STATE_SOURCE;
8349                         break;
8350
8351                 case IF_SRC_KERNELADDR:
8352                 case IF_SRC_KERNEL:
8353                         kernel = 1;
8354
8355                 case IF_SRC_FILEADDR:
8356                 case IF_SRC_FILE:
8357                         if (state != IF_STATE_SOURCE)
8358                                 goto fail;
8359
8360                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8361                                 filter->range = 1;
8362
8363                         *args[0].to = 0;
8364                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8365                         if (ret)
8366                                 goto fail;
8367
8368                         if (filter->range) {
8369                                 *args[1].to = 0;
8370                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8371                                 if (ret)
8372                                         goto fail;
8373                         }
8374
8375                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8376                                 int fpos = filter->range ? 2 : 1;
8377
8378                                 filename = match_strdup(&args[fpos]);
8379                                 if (!filename) {
8380                                         ret = -ENOMEM;
8381                                         goto fail;
8382                                 }
8383                         }
8384
8385                         state = IF_STATE_END;
8386                         break;
8387
8388                 default:
8389                         goto fail;
8390                 }
8391
8392                 /*
8393                  * Filter definition is fully parsed, validate and install it.
8394                  * Make sure that it doesn't contradict itself or the event's
8395                  * attribute.
8396                  */
8397                 if (state == IF_STATE_END) {
8398                         ret = -EINVAL;
8399                         if (kernel && event->attr.exclude_kernel)
8400                                 goto fail;
8401
8402                         if (!kernel) {
8403                                 if (!filename)
8404                                         goto fail;
8405
8406                                 /*
8407                                  * For now, we only support file-based filters
8408                                  * in per-task events; doing so for CPU-wide
8409                                  * events requires additional context switching
8410                                  * trickery, since same object code will be
8411                                  * mapped at different virtual addresses in
8412                                  * different processes.
8413                                  */
8414                                 ret = -EOPNOTSUPP;
8415                                 if (!event->ctx->task)
8416                                         goto fail_free_name;
8417
8418                                 /* look up the path and grab its inode */
8419                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8420                                 if (ret)
8421                                         goto fail_free_name;
8422
8423                                 filter->inode = igrab(d_inode(path.dentry));
8424                                 path_put(&path);
8425                                 kfree(filename);
8426                                 filename = NULL;
8427
8428                                 ret = -EINVAL;
8429                                 if (!filter->inode ||
8430                                     !S_ISREG(filter->inode->i_mode))
8431                                         /* free_filters_list() will iput() */
8432                                         goto fail;
8433
8434                                 event->addr_filters.nr_file_filters++;
8435                         }
8436
8437                         /* ready to consume more filters */
8438                         state = IF_STATE_ACTION;
8439                         filter = NULL;
8440                 }
8441         }
8442
8443         if (state != IF_STATE_ACTION)
8444                 goto fail;
8445
8446         kfree(orig);
8447
8448         return 0;
8449
8450 fail_free_name:
8451         kfree(filename);
8452 fail:
8453         free_filters_list(filters);
8454         kfree(orig);
8455
8456         return ret;
8457 }
8458
8459 static int
8460 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8461 {
8462         LIST_HEAD(filters);
8463         int ret;
8464
8465         /*
8466          * Since this is called in perf_ioctl() path, we're already holding
8467          * ctx::mutex.
8468          */
8469         lockdep_assert_held(&event->ctx->mutex);
8470
8471         if (WARN_ON_ONCE(event->parent))
8472                 return -EINVAL;
8473
8474         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8475         if (ret)
8476                 goto fail_clear_files;
8477
8478         ret = event->pmu->addr_filters_validate(&filters);
8479         if (ret)
8480                 goto fail_free_filters;
8481
8482         /* remove existing filters, if any */
8483         perf_addr_filters_splice(event, &filters);
8484
8485         /* install new filters */
8486         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8487
8488         return ret;
8489
8490 fail_free_filters:
8491         free_filters_list(&filters);
8492
8493 fail_clear_files:
8494         event->addr_filters.nr_file_filters = 0;
8495
8496         return ret;
8497 }
8498
8499 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8500 {
8501         char *filter_str;
8502         int ret = -EINVAL;
8503
8504         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8505             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8506             !has_addr_filter(event))
8507                 return -EINVAL;
8508
8509         filter_str = strndup_user(arg, PAGE_SIZE);
8510         if (IS_ERR(filter_str))
8511                 return PTR_ERR(filter_str);
8512
8513         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8514             event->attr.type == PERF_TYPE_TRACEPOINT)
8515                 ret = ftrace_profile_set_filter(event, event->attr.config,
8516                                                 filter_str);
8517         else if (has_addr_filter(event))
8518                 ret = perf_event_set_addr_filter(event, filter_str);
8519
8520         kfree(filter_str);
8521         return ret;
8522 }
8523
8524 /*
8525  * hrtimer based swevent callback
8526  */
8527
8528 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8529 {
8530         enum hrtimer_restart ret = HRTIMER_RESTART;
8531         struct perf_sample_data data;
8532         struct pt_regs *regs;
8533         struct perf_event *event;
8534         u64 period;
8535
8536         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8537
8538         if (event->state != PERF_EVENT_STATE_ACTIVE)
8539                 return HRTIMER_NORESTART;
8540
8541         event->pmu->read(event);
8542
8543         perf_sample_data_init(&data, 0, event->hw.last_period);
8544         regs = get_irq_regs();
8545
8546         if (regs && !perf_exclude_event(event, regs)) {
8547                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8548                         if (__perf_event_overflow(event, 1, &data, regs))
8549                                 ret = HRTIMER_NORESTART;
8550         }
8551
8552         period = max_t(u64, 10000, event->hw.sample_period);
8553         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8554
8555         return ret;
8556 }
8557
8558 static void perf_swevent_start_hrtimer(struct perf_event *event)
8559 {
8560         struct hw_perf_event *hwc = &event->hw;
8561         s64 period;
8562
8563         if (!is_sampling_event(event))
8564                 return;
8565
8566         period = local64_read(&hwc->period_left);
8567         if (period) {
8568                 if (period < 0)
8569                         period = 10000;
8570
8571                 local64_set(&hwc->period_left, 0);
8572         } else {
8573                 period = max_t(u64, 10000, hwc->sample_period);
8574         }
8575         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8576                       HRTIMER_MODE_REL_PINNED);
8577 }
8578
8579 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8580 {
8581         struct hw_perf_event *hwc = &event->hw;
8582
8583         if (is_sampling_event(event)) {
8584                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8585                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8586
8587                 hrtimer_cancel(&hwc->hrtimer);
8588         }
8589 }
8590
8591 static void perf_swevent_init_hrtimer(struct perf_event *event)
8592 {
8593         struct hw_perf_event *hwc = &event->hw;
8594
8595         if (!is_sampling_event(event))
8596                 return;
8597
8598         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8599         hwc->hrtimer.function = perf_swevent_hrtimer;
8600
8601         /*
8602          * Since hrtimers have a fixed rate, we can do a static freq->period
8603          * mapping and avoid the whole period adjust feedback stuff.
8604          */
8605         if (event->attr.freq) {
8606                 long freq = event->attr.sample_freq;
8607
8608                 event->attr.sample_period = NSEC_PER_SEC / freq;
8609                 hwc->sample_period = event->attr.sample_period;
8610                 local64_set(&hwc->period_left, hwc->sample_period);
8611                 hwc->last_period = hwc->sample_period;
8612                 event->attr.freq = 0;
8613         }
8614 }
8615
8616 /*
8617  * Software event: cpu wall time clock
8618  */
8619
8620 static void cpu_clock_event_update(struct perf_event *event)
8621 {
8622         s64 prev;
8623         u64 now;
8624
8625         now = local_clock();
8626         prev = local64_xchg(&event->hw.prev_count, now);
8627         local64_add(now - prev, &event->count);
8628 }
8629
8630 static void cpu_clock_event_start(struct perf_event *event, int flags)
8631 {
8632         local64_set(&event->hw.prev_count, local_clock());
8633         perf_swevent_start_hrtimer(event);
8634 }
8635
8636 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8637 {
8638         perf_swevent_cancel_hrtimer(event);
8639         cpu_clock_event_update(event);
8640 }
8641
8642 static int cpu_clock_event_add(struct perf_event *event, int flags)
8643 {
8644         if (flags & PERF_EF_START)
8645                 cpu_clock_event_start(event, flags);
8646         perf_event_update_userpage(event);
8647
8648         return 0;
8649 }
8650
8651 static void cpu_clock_event_del(struct perf_event *event, int flags)
8652 {
8653         cpu_clock_event_stop(event, flags);
8654 }
8655
8656 static void cpu_clock_event_read(struct perf_event *event)
8657 {
8658         cpu_clock_event_update(event);
8659 }
8660
8661 static int cpu_clock_event_init(struct perf_event *event)
8662 {
8663         if (event->attr.type != PERF_TYPE_SOFTWARE)
8664                 return -ENOENT;
8665
8666         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8667                 return -ENOENT;
8668
8669         /*
8670          * no branch sampling for software events
8671          */
8672         if (has_branch_stack(event))
8673                 return -EOPNOTSUPP;
8674
8675         perf_swevent_init_hrtimer(event);
8676
8677         return 0;
8678 }
8679
8680 static struct pmu perf_cpu_clock = {
8681         .task_ctx_nr    = perf_sw_context,
8682
8683         .capabilities   = PERF_PMU_CAP_NO_NMI,
8684
8685         .event_init     = cpu_clock_event_init,
8686         .add            = cpu_clock_event_add,
8687         .del            = cpu_clock_event_del,
8688         .start          = cpu_clock_event_start,
8689         .stop           = cpu_clock_event_stop,
8690         .read           = cpu_clock_event_read,
8691 };
8692
8693 /*
8694  * Software event: task time clock
8695  */
8696
8697 static void task_clock_event_update(struct perf_event *event, u64 now)
8698 {
8699         u64 prev;
8700         s64 delta;
8701
8702         prev = local64_xchg(&event->hw.prev_count, now);
8703         delta = now - prev;
8704         local64_add(delta, &event->count);
8705 }
8706
8707 static void task_clock_event_start(struct perf_event *event, int flags)
8708 {
8709         local64_set(&event->hw.prev_count, event->ctx->time);
8710         perf_swevent_start_hrtimer(event);
8711 }
8712
8713 static void task_clock_event_stop(struct perf_event *event, int flags)
8714 {
8715         perf_swevent_cancel_hrtimer(event);
8716         task_clock_event_update(event, event->ctx->time);
8717 }
8718
8719 static int task_clock_event_add(struct perf_event *event, int flags)
8720 {
8721         if (flags & PERF_EF_START)
8722                 task_clock_event_start(event, flags);
8723         perf_event_update_userpage(event);
8724
8725         return 0;
8726 }
8727
8728 static void task_clock_event_del(struct perf_event *event, int flags)
8729 {
8730         task_clock_event_stop(event, PERF_EF_UPDATE);
8731 }
8732
8733 static void task_clock_event_read(struct perf_event *event)
8734 {
8735         u64 now = perf_clock();
8736         u64 delta = now - event->ctx->timestamp;
8737         u64 time = event->ctx->time + delta;
8738
8739         task_clock_event_update(event, time);
8740 }
8741
8742 static int task_clock_event_init(struct perf_event *event)
8743 {
8744         if (event->attr.type != PERF_TYPE_SOFTWARE)
8745                 return -ENOENT;
8746
8747         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8748                 return -ENOENT;
8749
8750         /*
8751          * no branch sampling for software events
8752          */
8753         if (has_branch_stack(event))
8754                 return -EOPNOTSUPP;
8755
8756         perf_swevent_init_hrtimer(event);
8757
8758         return 0;
8759 }
8760
8761 static struct pmu perf_task_clock = {
8762         .task_ctx_nr    = perf_sw_context,
8763
8764         .capabilities   = PERF_PMU_CAP_NO_NMI,
8765
8766         .event_init     = task_clock_event_init,
8767         .add            = task_clock_event_add,
8768         .del            = task_clock_event_del,
8769         .start          = task_clock_event_start,
8770         .stop           = task_clock_event_stop,
8771         .read           = task_clock_event_read,
8772 };
8773
8774 static void perf_pmu_nop_void(struct pmu *pmu)
8775 {
8776 }
8777
8778 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8779 {
8780 }
8781
8782 static int perf_pmu_nop_int(struct pmu *pmu)
8783 {
8784         return 0;
8785 }
8786
8787 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8788
8789 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8790 {
8791         __this_cpu_write(nop_txn_flags, flags);
8792
8793         if (flags & ~PERF_PMU_TXN_ADD)
8794                 return;
8795
8796         perf_pmu_disable(pmu);
8797 }
8798
8799 static int perf_pmu_commit_txn(struct pmu *pmu)
8800 {
8801         unsigned int flags = __this_cpu_read(nop_txn_flags);
8802
8803         __this_cpu_write(nop_txn_flags, 0);
8804
8805         if (flags & ~PERF_PMU_TXN_ADD)
8806                 return 0;
8807
8808         perf_pmu_enable(pmu);
8809         return 0;
8810 }
8811
8812 static void perf_pmu_cancel_txn(struct pmu *pmu)
8813 {
8814         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8815
8816         __this_cpu_write(nop_txn_flags, 0);
8817
8818         if (flags & ~PERF_PMU_TXN_ADD)
8819                 return;
8820
8821         perf_pmu_enable(pmu);
8822 }
8823
8824 static int perf_event_idx_default(struct perf_event *event)
8825 {
8826         return 0;
8827 }
8828
8829 /*
8830  * Ensures all contexts with the same task_ctx_nr have the same
8831  * pmu_cpu_context too.
8832  */
8833 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8834 {
8835         struct pmu *pmu;
8836
8837         if (ctxn < 0)
8838                 return NULL;
8839
8840         list_for_each_entry(pmu, &pmus, entry) {
8841                 if (pmu->task_ctx_nr == ctxn)
8842                         return pmu->pmu_cpu_context;
8843         }
8844
8845         return NULL;
8846 }
8847
8848 static void free_pmu_context(struct pmu *pmu)
8849 {
8850         mutex_lock(&pmus_lock);
8851         free_percpu(pmu->pmu_cpu_context);
8852         mutex_unlock(&pmus_lock);
8853 }
8854
8855 /*
8856  * Let userspace know that this PMU supports address range filtering:
8857  */
8858 static ssize_t nr_addr_filters_show(struct device *dev,
8859                                     struct device_attribute *attr,
8860                                     char *page)
8861 {
8862         struct pmu *pmu = dev_get_drvdata(dev);
8863
8864         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8865 }
8866 DEVICE_ATTR_RO(nr_addr_filters);
8867
8868 static struct idr pmu_idr;
8869
8870 static ssize_t
8871 type_show(struct device *dev, struct device_attribute *attr, char *page)
8872 {
8873         struct pmu *pmu = dev_get_drvdata(dev);
8874
8875         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8876 }
8877 static DEVICE_ATTR_RO(type);
8878
8879 static ssize_t
8880 perf_event_mux_interval_ms_show(struct device *dev,
8881                                 struct device_attribute *attr,
8882                                 char *page)
8883 {
8884         struct pmu *pmu = dev_get_drvdata(dev);
8885
8886         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8887 }
8888
8889 static DEFINE_MUTEX(mux_interval_mutex);
8890
8891 static ssize_t
8892 perf_event_mux_interval_ms_store(struct device *dev,
8893                                  struct device_attribute *attr,
8894                                  const char *buf, size_t count)
8895 {
8896         struct pmu *pmu = dev_get_drvdata(dev);
8897         int timer, cpu, ret;
8898
8899         ret = kstrtoint(buf, 0, &timer);
8900         if (ret)
8901                 return ret;
8902
8903         if (timer < 1)
8904                 return -EINVAL;
8905
8906         /* same value, noting to do */
8907         if (timer == pmu->hrtimer_interval_ms)
8908                 return count;
8909
8910         mutex_lock(&mux_interval_mutex);
8911         pmu->hrtimer_interval_ms = timer;
8912
8913         /* update all cpuctx for this PMU */
8914         cpus_read_lock();
8915         for_each_online_cpu(cpu) {
8916                 struct perf_cpu_context *cpuctx;
8917                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8918                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8919
8920                 cpu_function_call(cpu,
8921                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8922         }
8923         cpus_read_unlock();
8924         mutex_unlock(&mux_interval_mutex);
8925
8926         return count;
8927 }
8928 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8929
8930 static struct attribute *pmu_dev_attrs[] = {
8931         &dev_attr_type.attr,
8932         &dev_attr_perf_event_mux_interval_ms.attr,
8933         NULL,
8934 };
8935 ATTRIBUTE_GROUPS(pmu_dev);
8936
8937 static int pmu_bus_running;
8938 static struct bus_type pmu_bus = {
8939         .name           = "event_source",
8940         .dev_groups     = pmu_dev_groups,
8941 };
8942
8943 static void pmu_dev_release(struct device *dev)
8944 {
8945         kfree(dev);
8946 }
8947
8948 static int pmu_dev_alloc(struct pmu *pmu)
8949 {
8950         int ret = -ENOMEM;
8951
8952         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8953         if (!pmu->dev)
8954                 goto out;
8955
8956         pmu->dev->groups = pmu->attr_groups;
8957         device_initialize(pmu->dev);
8958         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8959         if (ret)
8960                 goto free_dev;
8961
8962         dev_set_drvdata(pmu->dev, pmu);
8963         pmu->dev->bus = &pmu_bus;
8964         pmu->dev->release = pmu_dev_release;
8965         ret = device_add(pmu->dev);
8966         if (ret)
8967                 goto free_dev;
8968
8969         /* For PMUs with address filters, throw in an extra attribute: */
8970         if (pmu->nr_addr_filters)
8971                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8972
8973         if (ret)
8974                 goto del_dev;
8975
8976 out:
8977         return ret;
8978
8979 del_dev:
8980         device_del(pmu->dev);
8981
8982 free_dev:
8983         put_device(pmu->dev);
8984         goto out;
8985 }
8986
8987 static struct lock_class_key cpuctx_mutex;
8988 static struct lock_class_key cpuctx_lock;
8989
8990 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8991 {
8992         int cpu, ret;
8993
8994         mutex_lock(&pmus_lock);
8995         ret = -ENOMEM;
8996         pmu->pmu_disable_count = alloc_percpu(int);
8997         if (!pmu->pmu_disable_count)
8998                 goto unlock;
8999
9000         pmu->type = -1;
9001         if (!name)
9002                 goto skip_type;
9003         pmu->name = name;
9004
9005         if (type < 0) {
9006                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9007                 if (type < 0) {
9008                         ret = type;
9009                         goto free_pdc;
9010                 }
9011         }
9012         pmu->type = type;
9013
9014         if (pmu_bus_running) {
9015                 ret = pmu_dev_alloc(pmu);
9016                 if (ret)
9017                         goto free_idr;
9018         }
9019
9020 skip_type:
9021         if (pmu->task_ctx_nr == perf_hw_context) {
9022                 static int hw_context_taken = 0;
9023
9024                 /*
9025                  * Other than systems with heterogeneous CPUs, it never makes
9026                  * sense for two PMUs to share perf_hw_context. PMUs which are
9027                  * uncore must use perf_invalid_context.
9028                  */
9029                 if (WARN_ON_ONCE(hw_context_taken &&
9030                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9031                         pmu->task_ctx_nr = perf_invalid_context;
9032
9033                 hw_context_taken = 1;
9034         }
9035
9036         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9037         if (pmu->pmu_cpu_context)
9038                 goto got_cpu_context;
9039
9040         ret = -ENOMEM;
9041         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9042         if (!pmu->pmu_cpu_context)
9043                 goto free_dev;
9044
9045         for_each_possible_cpu(cpu) {
9046                 struct perf_cpu_context *cpuctx;
9047
9048                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9049                 __perf_event_init_context(&cpuctx->ctx);
9050                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9051                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9052                 cpuctx->ctx.pmu = pmu;
9053                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9054
9055                 __perf_mux_hrtimer_init(cpuctx, cpu);
9056         }
9057
9058 got_cpu_context:
9059         if (!pmu->start_txn) {
9060                 if (pmu->pmu_enable) {
9061                         /*
9062                          * If we have pmu_enable/pmu_disable calls, install
9063                          * transaction stubs that use that to try and batch
9064                          * hardware accesses.
9065                          */
9066                         pmu->start_txn  = perf_pmu_start_txn;
9067                         pmu->commit_txn = perf_pmu_commit_txn;
9068                         pmu->cancel_txn = perf_pmu_cancel_txn;
9069                 } else {
9070                         pmu->start_txn  = perf_pmu_nop_txn;
9071                         pmu->commit_txn = perf_pmu_nop_int;
9072                         pmu->cancel_txn = perf_pmu_nop_void;
9073                 }
9074         }
9075
9076         if (!pmu->pmu_enable) {
9077                 pmu->pmu_enable  = perf_pmu_nop_void;
9078                 pmu->pmu_disable = perf_pmu_nop_void;
9079         }
9080
9081         if (!pmu->event_idx)
9082                 pmu->event_idx = perf_event_idx_default;
9083
9084         list_add_rcu(&pmu->entry, &pmus);
9085         atomic_set(&pmu->exclusive_cnt, 0);
9086         ret = 0;
9087 unlock:
9088         mutex_unlock(&pmus_lock);
9089
9090         return ret;
9091
9092 free_dev:
9093         device_del(pmu->dev);
9094         put_device(pmu->dev);
9095
9096 free_idr:
9097         if (pmu->type >= PERF_TYPE_MAX)
9098                 idr_remove(&pmu_idr, pmu->type);
9099
9100 free_pdc:
9101         free_percpu(pmu->pmu_disable_count);
9102         goto unlock;
9103 }
9104 EXPORT_SYMBOL_GPL(perf_pmu_register);
9105
9106 void perf_pmu_unregister(struct pmu *pmu)
9107 {
9108         int remove_device;
9109
9110         mutex_lock(&pmus_lock);
9111         remove_device = pmu_bus_running;
9112         list_del_rcu(&pmu->entry);
9113         mutex_unlock(&pmus_lock);
9114
9115         /*
9116          * We dereference the pmu list under both SRCU and regular RCU, so
9117          * synchronize against both of those.
9118          */
9119         synchronize_srcu(&pmus_srcu);
9120         synchronize_rcu();
9121
9122         free_percpu(pmu->pmu_disable_count);
9123         if (pmu->type >= PERF_TYPE_MAX)
9124                 idr_remove(&pmu_idr, pmu->type);
9125         if (remove_device) {
9126                 if (pmu->nr_addr_filters)
9127                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9128                 device_del(pmu->dev);
9129                 put_device(pmu->dev);
9130         }
9131         free_pmu_context(pmu);
9132 }
9133 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9134
9135 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9136 {
9137         struct perf_event_context *ctx = NULL;
9138         int ret;
9139
9140         if (!try_module_get(pmu->module))
9141                 return -ENODEV;
9142
9143         if (event->group_leader != event) {
9144                 /*
9145                  * This ctx->mutex can nest when we're called through
9146                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9147                  */
9148                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9149                                                  SINGLE_DEPTH_NESTING);
9150                 BUG_ON(!ctx);
9151         }
9152
9153         event->pmu = pmu;
9154         ret = pmu->event_init(event);
9155
9156         if (ctx)
9157                 perf_event_ctx_unlock(event->group_leader, ctx);
9158
9159         if (ret)
9160                 module_put(pmu->module);
9161
9162         return ret;
9163 }
9164
9165 static struct pmu *perf_init_event(struct perf_event *event)
9166 {
9167         struct pmu *pmu;
9168         int idx;
9169         int ret;
9170
9171         idx = srcu_read_lock(&pmus_srcu);
9172
9173         /* Try parent's PMU first: */
9174         if (event->parent && event->parent->pmu) {
9175                 pmu = event->parent->pmu;
9176                 ret = perf_try_init_event(pmu, event);
9177                 if (!ret)
9178                         goto unlock;
9179         }
9180
9181         rcu_read_lock();
9182         pmu = idr_find(&pmu_idr, event->attr.type);
9183         rcu_read_unlock();
9184         if (pmu) {
9185                 ret = perf_try_init_event(pmu, event);
9186                 if (ret)
9187                         pmu = ERR_PTR(ret);
9188                 goto unlock;
9189         }
9190
9191         list_for_each_entry_rcu(pmu, &pmus, entry) {
9192                 ret = perf_try_init_event(pmu, event);
9193                 if (!ret)
9194                         goto unlock;
9195
9196                 if (ret != -ENOENT) {
9197                         pmu = ERR_PTR(ret);
9198                         goto unlock;
9199                 }
9200         }
9201         pmu = ERR_PTR(-ENOENT);
9202 unlock:
9203         srcu_read_unlock(&pmus_srcu, idx);
9204
9205         return pmu;
9206 }
9207
9208 static void attach_sb_event(struct perf_event *event)
9209 {
9210         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9211
9212         raw_spin_lock(&pel->lock);
9213         list_add_rcu(&event->sb_list, &pel->list);
9214         raw_spin_unlock(&pel->lock);
9215 }
9216
9217 /*
9218  * We keep a list of all !task (and therefore per-cpu) events
9219  * that need to receive side-band records.
9220  *
9221  * This avoids having to scan all the various PMU per-cpu contexts
9222  * looking for them.
9223  */
9224 static void account_pmu_sb_event(struct perf_event *event)
9225 {
9226         if (is_sb_event(event))
9227                 attach_sb_event(event);
9228 }
9229
9230 static void account_event_cpu(struct perf_event *event, int cpu)
9231 {
9232         if (event->parent)
9233                 return;
9234
9235         if (is_cgroup_event(event))
9236                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9237 }
9238
9239 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9240 static void account_freq_event_nohz(void)
9241 {
9242 #ifdef CONFIG_NO_HZ_FULL
9243         /* Lock so we don't race with concurrent unaccount */
9244         spin_lock(&nr_freq_lock);
9245         if (atomic_inc_return(&nr_freq_events) == 1)
9246                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9247         spin_unlock(&nr_freq_lock);
9248 #endif
9249 }
9250
9251 static void account_freq_event(void)
9252 {
9253         if (tick_nohz_full_enabled())
9254                 account_freq_event_nohz();
9255         else
9256                 atomic_inc(&nr_freq_events);
9257 }
9258
9259
9260 static void account_event(struct perf_event *event)
9261 {
9262         bool inc = false;
9263
9264         if (event->parent)
9265                 return;
9266
9267         if (event->attach_state & PERF_ATTACH_TASK)
9268                 inc = true;
9269         if (event->attr.mmap || event->attr.mmap_data)
9270                 atomic_inc(&nr_mmap_events);
9271         if (event->attr.comm)
9272                 atomic_inc(&nr_comm_events);
9273         if (event->attr.namespaces)
9274                 atomic_inc(&nr_namespaces_events);
9275         if (event->attr.task)
9276                 atomic_inc(&nr_task_events);
9277         if (event->attr.freq)
9278                 account_freq_event();
9279         if (event->attr.context_switch) {
9280                 atomic_inc(&nr_switch_events);
9281                 inc = true;
9282         }
9283         if (has_branch_stack(event))
9284                 inc = true;
9285         if (is_cgroup_event(event))
9286                 inc = true;
9287
9288         if (inc) {
9289                 if (atomic_inc_not_zero(&perf_sched_count))
9290                         goto enabled;
9291
9292                 mutex_lock(&perf_sched_mutex);
9293                 if (!atomic_read(&perf_sched_count)) {
9294                         static_branch_enable(&perf_sched_events);
9295                         /*
9296                          * Guarantee that all CPUs observe they key change and
9297                          * call the perf scheduling hooks before proceeding to
9298                          * install events that need them.
9299                          */
9300                         synchronize_sched();
9301                 }
9302                 /*
9303                  * Now that we have waited for the sync_sched(), allow further
9304                  * increments to by-pass the mutex.
9305                  */
9306                 atomic_inc(&perf_sched_count);
9307                 mutex_unlock(&perf_sched_mutex);
9308         }
9309 enabled:
9310
9311         account_event_cpu(event, event->cpu);
9312
9313         account_pmu_sb_event(event);
9314 }
9315
9316 /*
9317  * Allocate and initialize a event structure
9318  */
9319 static struct perf_event *
9320 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9321                  struct task_struct *task,
9322                  struct perf_event *group_leader,
9323                  struct perf_event *parent_event,
9324                  perf_overflow_handler_t overflow_handler,
9325                  void *context, int cgroup_fd)
9326 {
9327         struct pmu *pmu;
9328         struct perf_event *event;
9329         struct hw_perf_event *hwc;
9330         long err = -EINVAL;
9331
9332         if ((unsigned)cpu >= nr_cpu_ids) {
9333                 if (!task || cpu != -1)
9334                         return ERR_PTR(-EINVAL);
9335         }
9336
9337         event = kzalloc(sizeof(*event), GFP_KERNEL);
9338         if (!event)
9339                 return ERR_PTR(-ENOMEM);
9340
9341         /*
9342          * Single events are their own group leaders, with an
9343          * empty sibling list:
9344          */
9345         if (!group_leader)
9346                 group_leader = event;
9347
9348         mutex_init(&event->child_mutex);
9349         INIT_LIST_HEAD(&event->child_list);
9350
9351         INIT_LIST_HEAD(&event->group_entry);
9352         INIT_LIST_HEAD(&event->event_entry);
9353         INIT_LIST_HEAD(&event->sibling_list);
9354         INIT_LIST_HEAD(&event->rb_entry);
9355         INIT_LIST_HEAD(&event->active_entry);
9356         INIT_LIST_HEAD(&event->addr_filters.list);
9357         INIT_HLIST_NODE(&event->hlist_entry);
9358
9359
9360         init_waitqueue_head(&event->waitq);
9361         init_irq_work(&event->pending, perf_pending_event);
9362
9363         mutex_init(&event->mmap_mutex);
9364         raw_spin_lock_init(&event->addr_filters.lock);
9365
9366         atomic_long_set(&event->refcount, 1);
9367         event->cpu              = cpu;
9368         event->attr             = *attr;
9369         event->group_leader     = group_leader;
9370         event->pmu              = NULL;
9371         event->oncpu            = -1;
9372
9373         event->parent           = parent_event;
9374
9375         event->ns               = get_pid_ns(task_active_pid_ns(current));
9376         event->id               = atomic64_inc_return(&perf_event_id);
9377
9378         event->state            = PERF_EVENT_STATE_INACTIVE;
9379
9380         if (task) {
9381                 event->attach_state = PERF_ATTACH_TASK;
9382                 /*
9383                  * XXX pmu::event_init needs to know what task to account to
9384                  * and we cannot use the ctx information because we need the
9385                  * pmu before we get a ctx.
9386                  */
9387                 event->hw.target = task;
9388         }
9389
9390         event->clock = &local_clock;
9391         if (parent_event)
9392                 event->clock = parent_event->clock;
9393
9394         if (!overflow_handler && parent_event) {
9395                 overflow_handler = parent_event->overflow_handler;
9396                 context = parent_event->overflow_handler_context;
9397 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9398                 if (overflow_handler == bpf_overflow_handler) {
9399                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9400
9401                         if (IS_ERR(prog)) {
9402                                 err = PTR_ERR(prog);
9403                                 goto err_ns;
9404                         }
9405                         event->prog = prog;
9406                         event->orig_overflow_handler =
9407                                 parent_event->orig_overflow_handler;
9408                 }
9409 #endif
9410         }
9411
9412         if (overflow_handler) {
9413                 event->overflow_handler = overflow_handler;
9414                 event->overflow_handler_context = context;
9415         } else if (is_write_backward(event)){
9416                 event->overflow_handler = perf_event_output_backward;
9417                 event->overflow_handler_context = NULL;
9418         } else {
9419                 event->overflow_handler = perf_event_output_forward;
9420                 event->overflow_handler_context = NULL;
9421         }
9422
9423         perf_event__state_init(event);
9424
9425         pmu = NULL;
9426
9427         hwc = &event->hw;
9428         hwc->sample_period = attr->sample_period;
9429         if (attr->freq && attr->sample_freq)
9430                 hwc->sample_period = 1;
9431         hwc->last_period = hwc->sample_period;
9432
9433         local64_set(&hwc->period_left, hwc->sample_period);
9434
9435         /*
9436          * We currently do not support PERF_SAMPLE_READ on inherited events.
9437          * See perf_output_read().
9438          */
9439         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9440                 goto err_ns;
9441
9442         if (!has_branch_stack(event))
9443                 event->attr.branch_sample_type = 0;
9444
9445         if (cgroup_fd != -1) {
9446                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9447                 if (err)
9448                         goto err_ns;
9449         }
9450
9451         pmu = perf_init_event(event);
9452         if (IS_ERR(pmu)) {
9453                 err = PTR_ERR(pmu);
9454                 goto err_ns;
9455         }
9456
9457         err = exclusive_event_init(event);
9458         if (err)
9459                 goto err_pmu;
9460
9461         if (has_addr_filter(event)) {
9462                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9463                                                    sizeof(unsigned long),
9464                                                    GFP_KERNEL);
9465                 if (!event->addr_filters_offs) {
9466                         err = -ENOMEM;
9467                         goto err_per_task;
9468                 }
9469
9470                 /* force hw sync on the address filters */
9471                 event->addr_filters_gen = 1;
9472         }
9473
9474         if (!event->parent) {
9475                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9476                         err = get_callchain_buffers(attr->sample_max_stack);
9477                         if (err)
9478                                 goto err_addr_filters;
9479                 }
9480         }
9481
9482         /* symmetric to unaccount_event() in _free_event() */
9483         account_event(event);
9484
9485         return event;
9486
9487 err_addr_filters:
9488         kfree(event->addr_filters_offs);
9489
9490 err_per_task:
9491         exclusive_event_destroy(event);
9492
9493 err_pmu:
9494         if (event->destroy)
9495                 event->destroy(event);
9496         module_put(pmu->module);
9497 err_ns:
9498         if (is_cgroup_event(event))
9499                 perf_detach_cgroup(event);
9500         if (event->ns)
9501                 put_pid_ns(event->ns);
9502         kfree(event);
9503
9504         return ERR_PTR(err);
9505 }
9506
9507 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9508                           struct perf_event_attr *attr)
9509 {
9510         u32 size;
9511         int ret;
9512
9513         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9514                 return -EFAULT;
9515
9516         /*
9517          * zero the full structure, so that a short copy will be nice.
9518          */
9519         memset(attr, 0, sizeof(*attr));
9520
9521         ret = get_user(size, &uattr->size);
9522         if (ret)
9523                 return ret;
9524
9525         if (size > PAGE_SIZE)   /* silly large */
9526                 goto err_size;
9527
9528         if (!size)              /* abi compat */
9529                 size = PERF_ATTR_SIZE_VER0;
9530
9531         if (size < PERF_ATTR_SIZE_VER0)
9532                 goto err_size;
9533
9534         /*
9535          * If we're handed a bigger struct than we know of,
9536          * ensure all the unknown bits are 0 - i.e. new
9537          * user-space does not rely on any kernel feature
9538          * extensions we dont know about yet.
9539          */
9540         if (size > sizeof(*attr)) {
9541                 unsigned char __user *addr;
9542                 unsigned char __user *end;
9543                 unsigned char val;
9544
9545                 addr = (void __user *)uattr + sizeof(*attr);
9546                 end  = (void __user *)uattr + size;
9547
9548                 for (; addr < end; addr++) {
9549                         ret = get_user(val, addr);
9550                         if (ret)
9551                                 return ret;
9552                         if (val)
9553                                 goto err_size;
9554                 }
9555                 size = sizeof(*attr);
9556         }
9557
9558         ret = copy_from_user(attr, uattr, size);
9559         if (ret)
9560                 return -EFAULT;
9561
9562         if (attr->__reserved_1)
9563                 return -EINVAL;
9564
9565         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9566                 return -EINVAL;
9567
9568         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9569                 return -EINVAL;
9570
9571         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9572                 u64 mask = attr->branch_sample_type;
9573
9574                 /* only using defined bits */
9575                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9576                         return -EINVAL;
9577
9578                 /* at least one branch bit must be set */
9579                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9580                         return -EINVAL;
9581
9582                 /* propagate priv level, when not set for branch */
9583                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9584
9585                         /* exclude_kernel checked on syscall entry */
9586                         if (!attr->exclude_kernel)
9587                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9588
9589                         if (!attr->exclude_user)
9590                                 mask |= PERF_SAMPLE_BRANCH_USER;
9591
9592                         if (!attr->exclude_hv)
9593                                 mask |= PERF_SAMPLE_BRANCH_HV;
9594                         /*
9595                          * adjust user setting (for HW filter setup)
9596                          */
9597                         attr->branch_sample_type = mask;
9598                 }
9599                 /* privileged levels capture (kernel, hv): check permissions */
9600                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9601                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9602                         return -EACCES;
9603         }
9604
9605         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9606                 ret = perf_reg_validate(attr->sample_regs_user);
9607                 if (ret)
9608                         return ret;
9609         }
9610
9611         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9612                 if (!arch_perf_have_user_stack_dump())
9613                         return -ENOSYS;
9614
9615                 /*
9616                  * We have __u32 type for the size, but so far
9617                  * we can only use __u16 as maximum due to the
9618                  * __u16 sample size limit.
9619                  */
9620                 if (attr->sample_stack_user >= USHRT_MAX)
9621                         ret = -EINVAL;
9622                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9623                         ret = -EINVAL;
9624         }
9625
9626         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9627                 ret = perf_reg_validate(attr->sample_regs_intr);
9628 out:
9629         return ret;
9630
9631 err_size:
9632         put_user(sizeof(*attr), &uattr->size);
9633         ret = -E2BIG;
9634         goto out;
9635 }
9636
9637 static int
9638 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9639 {
9640         struct ring_buffer *rb = NULL;
9641         int ret = -EINVAL;
9642
9643         if (!output_event)
9644                 goto set;
9645
9646         /* don't allow circular references */
9647         if (event == output_event)
9648                 goto out;
9649
9650         /*
9651          * Don't allow cross-cpu buffers
9652          */
9653         if (output_event->cpu != event->cpu)
9654                 goto out;
9655
9656         /*
9657          * If its not a per-cpu rb, it must be the same task.
9658          */
9659         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9660                 goto out;
9661
9662         /*
9663          * Mixing clocks in the same buffer is trouble you don't need.
9664          */
9665         if (output_event->clock != event->clock)
9666                 goto out;
9667
9668         /*
9669          * Either writing ring buffer from beginning or from end.
9670          * Mixing is not allowed.
9671          */
9672         if (is_write_backward(output_event) != is_write_backward(event))
9673                 goto out;
9674
9675         /*
9676          * If both events generate aux data, they must be on the same PMU
9677          */
9678         if (has_aux(event) && has_aux(output_event) &&
9679             event->pmu != output_event->pmu)
9680                 goto out;
9681
9682 set:
9683         mutex_lock(&event->mmap_mutex);
9684         /* Can't redirect output if we've got an active mmap() */
9685         if (atomic_read(&event->mmap_count))
9686                 goto unlock;
9687
9688         if (output_event) {
9689                 /* get the rb we want to redirect to */
9690                 rb = ring_buffer_get(output_event);
9691                 if (!rb)
9692                         goto unlock;
9693         }
9694
9695         ring_buffer_attach(event, rb);
9696
9697         ret = 0;
9698 unlock:
9699         mutex_unlock(&event->mmap_mutex);
9700
9701 out:
9702         return ret;
9703 }
9704
9705 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9706 {
9707         if (b < a)
9708                 swap(a, b);
9709
9710         mutex_lock(a);
9711         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9712 }
9713
9714 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9715 {
9716         bool nmi_safe = false;
9717
9718         switch (clk_id) {
9719         case CLOCK_MONOTONIC:
9720                 event->clock = &ktime_get_mono_fast_ns;
9721                 nmi_safe = true;
9722                 break;
9723
9724         case CLOCK_MONOTONIC_RAW:
9725                 event->clock = &ktime_get_raw_fast_ns;
9726                 nmi_safe = true;
9727                 break;
9728
9729         case CLOCK_REALTIME:
9730                 event->clock = &ktime_get_real_ns;
9731                 break;
9732
9733         case CLOCK_BOOTTIME:
9734                 event->clock = &ktime_get_boot_ns;
9735                 break;
9736
9737         case CLOCK_TAI:
9738                 event->clock = &ktime_get_tai_ns;
9739                 break;
9740
9741         default:
9742                 return -EINVAL;
9743         }
9744
9745         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9746                 return -EINVAL;
9747
9748         return 0;
9749 }
9750
9751 /*
9752  * Variation on perf_event_ctx_lock_nested(), except we take two context
9753  * mutexes.
9754  */
9755 static struct perf_event_context *
9756 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9757                              struct perf_event_context *ctx)
9758 {
9759         struct perf_event_context *gctx;
9760
9761 again:
9762         rcu_read_lock();
9763         gctx = READ_ONCE(group_leader->ctx);
9764         if (!atomic_inc_not_zero(&gctx->refcount)) {
9765                 rcu_read_unlock();
9766                 goto again;
9767         }
9768         rcu_read_unlock();
9769
9770         mutex_lock_double(&gctx->mutex, &ctx->mutex);
9771
9772         if (group_leader->ctx != gctx) {
9773                 mutex_unlock(&ctx->mutex);
9774                 mutex_unlock(&gctx->mutex);
9775                 put_ctx(gctx);
9776                 goto again;
9777         }
9778
9779         return gctx;
9780 }
9781
9782 /**
9783  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9784  *
9785  * @attr_uptr:  event_id type attributes for monitoring/sampling
9786  * @pid:                target pid
9787  * @cpu:                target cpu
9788  * @group_fd:           group leader event fd
9789  */
9790 SYSCALL_DEFINE5(perf_event_open,
9791                 struct perf_event_attr __user *, attr_uptr,
9792                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9793 {
9794         struct perf_event *group_leader = NULL, *output_event = NULL;
9795         struct perf_event *event, *sibling;
9796         struct perf_event_attr attr;
9797         struct perf_event_context *ctx, *uninitialized_var(gctx);
9798         struct file *event_file = NULL;
9799         struct fd group = {NULL, 0};
9800         struct task_struct *task = NULL;
9801         struct pmu *pmu;
9802         int event_fd;
9803         int move_group = 0;
9804         int err;
9805         int f_flags = O_RDWR;
9806         int cgroup_fd = -1;
9807
9808         /* for future expandability... */
9809         if (flags & ~PERF_FLAG_ALL)
9810                 return -EINVAL;
9811
9812         err = perf_copy_attr(attr_uptr, &attr);
9813         if (err)
9814                 return err;
9815
9816         if (!attr.exclude_kernel) {
9817                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9818                         return -EACCES;
9819         }
9820
9821         if (attr.namespaces) {
9822                 if (!capable(CAP_SYS_ADMIN))
9823                         return -EACCES;
9824         }
9825
9826         if (attr.freq) {
9827                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9828                         return -EINVAL;
9829         } else {
9830                 if (attr.sample_period & (1ULL << 63))
9831                         return -EINVAL;
9832         }
9833
9834         if (!attr.sample_max_stack)
9835                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9836
9837         /*
9838          * In cgroup mode, the pid argument is used to pass the fd
9839          * opened to the cgroup directory in cgroupfs. The cpu argument
9840          * designates the cpu on which to monitor threads from that
9841          * cgroup.
9842          */
9843         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9844                 return -EINVAL;
9845
9846         if (flags & PERF_FLAG_FD_CLOEXEC)
9847                 f_flags |= O_CLOEXEC;
9848
9849         event_fd = get_unused_fd_flags(f_flags);
9850         if (event_fd < 0)
9851                 return event_fd;
9852
9853         if (group_fd != -1) {
9854                 err = perf_fget_light(group_fd, &group);
9855                 if (err)
9856                         goto err_fd;
9857                 group_leader = group.file->private_data;
9858                 if (flags & PERF_FLAG_FD_OUTPUT)
9859                         output_event = group_leader;
9860                 if (flags & PERF_FLAG_FD_NO_GROUP)
9861                         group_leader = NULL;
9862         }
9863
9864         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9865                 task = find_lively_task_by_vpid(pid);
9866                 if (IS_ERR(task)) {
9867                         err = PTR_ERR(task);
9868                         goto err_group_fd;
9869                 }
9870         }
9871
9872         if (task && group_leader &&
9873             group_leader->attr.inherit != attr.inherit) {
9874                 err = -EINVAL;
9875                 goto err_task;
9876         }
9877
9878         if (task) {
9879                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9880                 if (err)
9881                         goto err_task;
9882
9883                 /*
9884                  * Reuse ptrace permission checks for now.
9885                  *
9886                  * We must hold cred_guard_mutex across this and any potential
9887                  * perf_install_in_context() call for this new event to
9888                  * serialize against exec() altering our credentials (and the
9889                  * perf_event_exit_task() that could imply).
9890                  */
9891                 err = -EACCES;
9892                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9893                         goto err_cred;
9894         }
9895
9896         if (flags & PERF_FLAG_PID_CGROUP)
9897                 cgroup_fd = pid;
9898
9899         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9900                                  NULL, NULL, cgroup_fd);
9901         if (IS_ERR(event)) {
9902                 err = PTR_ERR(event);
9903                 goto err_cred;
9904         }
9905
9906         if (is_sampling_event(event)) {
9907                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9908                         err = -EOPNOTSUPP;
9909                         goto err_alloc;
9910                 }
9911         }
9912
9913         /*
9914          * Special case software events and allow them to be part of
9915          * any hardware group.
9916          */
9917         pmu = event->pmu;
9918
9919         if (attr.use_clockid) {
9920                 err = perf_event_set_clock(event, attr.clockid);
9921                 if (err)
9922                         goto err_alloc;
9923         }
9924
9925         if (pmu->task_ctx_nr == perf_sw_context)
9926                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9927
9928         if (group_leader &&
9929             (is_software_event(event) != is_software_event(group_leader))) {
9930                 if (is_software_event(event)) {
9931                         /*
9932                          * If event and group_leader are not both a software
9933                          * event, and event is, then group leader is not.
9934                          *
9935                          * Allow the addition of software events to !software
9936                          * groups, this is safe because software events never
9937                          * fail to schedule.
9938                          */
9939                         pmu = group_leader->pmu;
9940                 } else if (is_software_event(group_leader) &&
9941                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9942                         /*
9943                          * In case the group is a pure software group, and we
9944                          * try to add a hardware event, move the whole group to
9945                          * the hardware context.
9946                          */
9947                         move_group = 1;
9948                 }
9949         }
9950
9951         /*
9952          * Get the target context (task or percpu):
9953          */
9954         ctx = find_get_context(pmu, task, event);
9955         if (IS_ERR(ctx)) {
9956                 err = PTR_ERR(ctx);
9957                 goto err_alloc;
9958         }
9959
9960         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9961                 err = -EBUSY;
9962                 goto err_context;
9963         }
9964
9965         /*
9966          * Look up the group leader (we will attach this event to it):
9967          */
9968         if (group_leader) {
9969                 err = -EINVAL;
9970
9971                 /*
9972                  * Do not allow a recursive hierarchy (this new sibling
9973                  * becoming part of another group-sibling):
9974                  */
9975                 if (group_leader->group_leader != group_leader)
9976                         goto err_context;
9977
9978                 /* All events in a group should have the same clock */
9979                 if (group_leader->clock != event->clock)
9980                         goto err_context;
9981
9982                 /*
9983                  * Do not allow to attach to a group in a different
9984                  * task or CPU context:
9985                  */
9986                 if (move_group) {
9987                         /*
9988                          * Make sure we're both on the same task, or both
9989                          * per-cpu events.
9990                          */
9991                         if (group_leader->ctx->task != ctx->task)
9992                                 goto err_context;
9993
9994                         /*
9995                          * Make sure we're both events for the same CPU;
9996                          * grouping events for different CPUs is broken; since
9997                          * you can never concurrently schedule them anyhow.
9998                          */
9999                         if (group_leader->cpu != event->cpu)
10000                                 goto err_context;
10001                 } else {
10002                         if (group_leader->ctx != ctx)
10003                                 goto err_context;
10004                 }
10005
10006                 /*
10007                  * Only a group leader can be exclusive or pinned
10008                  */
10009                 if (attr.exclusive || attr.pinned)
10010                         goto err_context;
10011         }
10012
10013         if (output_event) {
10014                 err = perf_event_set_output(event, output_event);
10015                 if (err)
10016                         goto err_context;
10017         }
10018
10019         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10020                                         f_flags);
10021         if (IS_ERR(event_file)) {
10022                 err = PTR_ERR(event_file);
10023                 event_file = NULL;
10024                 goto err_context;
10025         }
10026
10027         if (move_group) {
10028                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10029
10030                 if (gctx->task == TASK_TOMBSTONE) {
10031                         err = -ESRCH;
10032                         goto err_locked;
10033                 }
10034
10035                 /*
10036                  * Check if we raced against another sys_perf_event_open() call
10037                  * moving the software group underneath us.
10038                  */
10039                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10040                         /*
10041                          * If someone moved the group out from under us, check
10042                          * if this new event wound up on the same ctx, if so
10043                          * its the regular !move_group case, otherwise fail.
10044                          */
10045                         if (gctx != ctx) {
10046                                 err = -EINVAL;
10047                                 goto err_locked;
10048                         } else {
10049                                 perf_event_ctx_unlock(group_leader, gctx);
10050                                 move_group = 0;
10051                         }
10052                 }
10053         } else {
10054                 mutex_lock(&ctx->mutex);
10055         }
10056
10057         if (ctx->task == TASK_TOMBSTONE) {
10058                 err = -ESRCH;
10059                 goto err_locked;
10060         }
10061
10062         if (!perf_event_validate_size(event)) {
10063                 err = -E2BIG;
10064                 goto err_locked;
10065         }
10066
10067         if (!task) {
10068                 /*
10069                  * Check if the @cpu we're creating an event for is online.
10070                  *
10071                  * We use the perf_cpu_context::ctx::mutex to serialize against
10072                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10073                  */
10074                 struct perf_cpu_context *cpuctx =
10075                         container_of(ctx, struct perf_cpu_context, ctx);
10076
10077                 if (!cpuctx->online) {
10078                         err = -ENODEV;
10079                         goto err_locked;
10080                 }
10081         }
10082
10083
10084         /*
10085          * Must be under the same ctx::mutex as perf_install_in_context(),
10086          * because we need to serialize with concurrent event creation.
10087          */
10088         if (!exclusive_event_installable(event, ctx)) {
10089                 /* exclusive and group stuff are assumed mutually exclusive */
10090                 WARN_ON_ONCE(move_group);
10091
10092                 err = -EBUSY;
10093                 goto err_locked;
10094         }
10095
10096         WARN_ON_ONCE(ctx->parent_ctx);
10097
10098         /*
10099          * This is the point on no return; we cannot fail hereafter. This is
10100          * where we start modifying current state.
10101          */
10102
10103         if (move_group) {
10104                 /*
10105                  * See perf_event_ctx_lock() for comments on the details
10106                  * of swizzling perf_event::ctx.
10107                  */
10108                 perf_remove_from_context(group_leader, 0);
10109                 put_ctx(gctx);
10110
10111                 list_for_each_entry(sibling, &group_leader->sibling_list,
10112                                     group_entry) {
10113                         perf_remove_from_context(sibling, 0);
10114                         put_ctx(gctx);
10115                 }
10116
10117                 /*
10118                  * Wait for everybody to stop referencing the events through
10119                  * the old lists, before installing it on new lists.
10120                  */
10121                 synchronize_rcu();
10122
10123                 /*
10124                  * Install the group siblings before the group leader.
10125                  *
10126                  * Because a group leader will try and install the entire group
10127                  * (through the sibling list, which is still in-tact), we can
10128                  * end up with siblings installed in the wrong context.
10129                  *
10130                  * By installing siblings first we NO-OP because they're not
10131                  * reachable through the group lists.
10132                  */
10133                 list_for_each_entry(sibling, &group_leader->sibling_list,
10134                                     group_entry) {
10135                         perf_event__state_init(sibling);
10136                         perf_install_in_context(ctx, sibling, sibling->cpu);
10137                         get_ctx(ctx);
10138                 }
10139
10140                 /*
10141                  * Removing from the context ends up with disabled
10142                  * event. What we want here is event in the initial
10143                  * startup state, ready to be add into new context.
10144                  */
10145                 perf_event__state_init(group_leader);
10146                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10147                 get_ctx(ctx);
10148         }
10149
10150         /*
10151          * Precalculate sample_data sizes; do while holding ctx::mutex such
10152          * that we're serialized against further additions and before
10153          * perf_install_in_context() which is the point the event is active and
10154          * can use these values.
10155          */
10156         perf_event__header_size(event);
10157         perf_event__id_header_size(event);
10158
10159         event->owner = current;
10160
10161         perf_install_in_context(ctx, event, event->cpu);
10162         perf_unpin_context(ctx);
10163
10164         if (move_group)
10165                 perf_event_ctx_unlock(group_leader, gctx);
10166         mutex_unlock(&ctx->mutex);
10167
10168         if (task) {
10169                 mutex_unlock(&task->signal->cred_guard_mutex);
10170                 put_task_struct(task);
10171         }
10172
10173         mutex_lock(&current->perf_event_mutex);
10174         list_add_tail(&event->owner_entry, &current->perf_event_list);
10175         mutex_unlock(&current->perf_event_mutex);
10176
10177         /*
10178          * Drop the reference on the group_event after placing the
10179          * new event on the sibling_list. This ensures destruction
10180          * of the group leader will find the pointer to itself in
10181          * perf_group_detach().
10182          */
10183         fdput(group);
10184         fd_install(event_fd, event_file);
10185         return event_fd;
10186
10187 err_locked:
10188         if (move_group)
10189                 perf_event_ctx_unlock(group_leader, gctx);
10190         mutex_unlock(&ctx->mutex);
10191 /* err_file: */
10192         fput(event_file);
10193 err_context:
10194         perf_unpin_context(ctx);
10195         put_ctx(ctx);
10196 err_alloc:
10197         /*
10198          * If event_file is set, the fput() above will have called ->release()
10199          * and that will take care of freeing the event.
10200          */
10201         if (!event_file)
10202                 free_event(event);
10203 err_cred:
10204         if (task)
10205                 mutex_unlock(&task->signal->cred_guard_mutex);
10206 err_task:
10207         if (task)
10208                 put_task_struct(task);
10209 err_group_fd:
10210         fdput(group);
10211 err_fd:
10212         put_unused_fd(event_fd);
10213         return err;
10214 }
10215
10216 /**
10217  * perf_event_create_kernel_counter
10218  *
10219  * @attr: attributes of the counter to create
10220  * @cpu: cpu in which the counter is bound
10221  * @task: task to profile (NULL for percpu)
10222  */
10223 struct perf_event *
10224 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10225                                  struct task_struct *task,
10226                                  perf_overflow_handler_t overflow_handler,
10227                                  void *context)
10228 {
10229         struct perf_event_context *ctx;
10230         struct perf_event *event;
10231         int err;
10232
10233         /*
10234          * Get the target context (task or percpu):
10235          */
10236
10237         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10238                                  overflow_handler, context, -1);
10239         if (IS_ERR(event)) {
10240                 err = PTR_ERR(event);
10241                 goto err;
10242         }
10243
10244         /* Mark owner so we could distinguish it from user events. */
10245         event->owner = TASK_TOMBSTONE;
10246
10247         ctx = find_get_context(event->pmu, task, event);
10248         if (IS_ERR(ctx)) {
10249                 err = PTR_ERR(ctx);
10250                 goto err_free;
10251         }
10252
10253         WARN_ON_ONCE(ctx->parent_ctx);
10254         mutex_lock(&ctx->mutex);
10255         if (ctx->task == TASK_TOMBSTONE) {
10256                 err = -ESRCH;
10257                 goto err_unlock;
10258         }
10259
10260         if (!task) {
10261                 /*
10262                  * Check if the @cpu we're creating an event for is online.
10263                  *
10264                  * We use the perf_cpu_context::ctx::mutex to serialize against
10265                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10266                  */
10267                 struct perf_cpu_context *cpuctx =
10268                         container_of(ctx, struct perf_cpu_context, ctx);
10269                 if (!cpuctx->online) {
10270                         err = -ENODEV;
10271                         goto err_unlock;
10272                 }
10273         }
10274
10275         if (!exclusive_event_installable(event, ctx)) {
10276                 err = -EBUSY;
10277                 goto err_unlock;
10278         }
10279
10280         perf_install_in_context(ctx, event, cpu);
10281         perf_unpin_context(ctx);
10282         mutex_unlock(&ctx->mutex);
10283
10284         return event;
10285
10286 err_unlock:
10287         mutex_unlock(&ctx->mutex);
10288         perf_unpin_context(ctx);
10289         put_ctx(ctx);
10290 err_free:
10291         free_event(event);
10292 err:
10293         return ERR_PTR(err);
10294 }
10295 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10296
10297 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10298 {
10299         struct perf_event_context *src_ctx;
10300         struct perf_event_context *dst_ctx;
10301         struct perf_event *event, *tmp;
10302         LIST_HEAD(events);
10303
10304         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10305         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10306
10307         /*
10308          * See perf_event_ctx_lock() for comments on the details
10309          * of swizzling perf_event::ctx.
10310          */
10311         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10312         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10313                                  event_entry) {
10314                 perf_remove_from_context(event, 0);
10315                 unaccount_event_cpu(event, src_cpu);
10316                 put_ctx(src_ctx);
10317                 list_add(&event->migrate_entry, &events);
10318         }
10319
10320         /*
10321          * Wait for the events to quiesce before re-instating them.
10322          */
10323         synchronize_rcu();
10324
10325         /*
10326          * Re-instate events in 2 passes.
10327          *
10328          * Skip over group leaders and only install siblings on this first
10329          * pass, siblings will not get enabled without a leader, however a
10330          * leader will enable its siblings, even if those are still on the old
10331          * context.
10332          */
10333         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10334                 if (event->group_leader == event)
10335                         continue;
10336
10337                 list_del(&event->migrate_entry);
10338                 if (event->state >= PERF_EVENT_STATE_OFF)
10339                         event->state = PERF_EVENT_STATE_INACTIVE;
10340                 account_event_cpu(event, dst_cpu);
10341                 perf_install_in_context(dst_ctx, event, dst_cpu);
10342                 get_ctx(dst_ctx);
10343         }
10344
10345         /*
10346          * Once all the siblings are setup properly, install the group leaders
10347          * to make it go.
10348          */
10349         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10350                 list_del(&event->migrate_entry);
10351                 if (event->state >= PERF_EVENT_STATE_OFF)
10352                         event->state = PERF_EVENT_STATE_INACTIVE;
10353                 account_event_cpu(event, dst_cpu);
10354                 perf_install_in_context(dst_ctx, event, dst_cpu);
10355                 get_ctx(dst_ctx);
10356         }
10357         mutex_unlock(&dst_ctx->mutex);
10358         mutex_unlock(&src_ctx->mutex);
10359 }
10360 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10361
10362 static void sync_child_event(struct perf_event *child_event,
10363                                struct task_struct *child)
10364 {
10365         struct perf_event *parent_event = child_event->parent;
10366         u64 child_val;
10367
10368         if (child_event->attr.inherit_stat)
10369                 perf_event_read_event(child_event, child);
10370
10371         child_val = perf_event_count(child_event);
10372
10373         /*
10374          * Add back the child's count to the parent's count:
10375          */
10376         atomic64_add(child_val, &parent_event->child_count);
10377         atomic64_add(child_event->total_time_enabled,
10378                      &parent_event->child_total_time_enabled);
10379         atomic64_add(child_event->total_time_running,
10380                      &parent_event->child_total_time_running);
10381 }
10382
10383 static void
10384 perf_event_exit_event(struct perf_event *child_event,
10385                       struct perf_event_context *child_ctx,
10386                       struct task_struct *child)
10387 {
10388         struct perf_event *parent_event = child_event->parent;
10389
10390         /*
10391          * Do not destroy the 'original' grouping; because of the context
10392          * switch optimization the original events could've ended up in a
10393          * random child task.
10394          *
10395          * If we were to destroy the original group, all group related
10396          * operations would cease to function properly after this random
10397          * child dies.
10398          *
10399          * Do destroy all inherited groups, we don't care about those
10400          * and being thorough is better.
10401          */
10402         raw_spin_lock_irq(&child_ctx->lock);
10403         WARN_ON_ONCE(child_ctx->is_active);
10404
10405         if (parent_event)
10406                 perf_group_detach(child_event);
10407         list_del_event(child_event, child_ctx);
10408         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10409         raw_spin_unlock_irq(&child_ctx->lock);
10410
10411         /*
10412          * Parent events are governed by their filedesc, retain them.
10413          */
10414         if (!parent_event) {
10415                 perf_event_wakeup(child_event);
10416                 return;
10417         }
10418         /*
10419          * Child events can be cleaned up.
10420          */
10421
10422         sync_child_event(child_event, child);
10423
10424         /*
10425          * Remove this event from the parent's list
10426          */
10427         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10428         mutex_lock(&parent_event->child_mutex);
10429         list_del_init(&child_event->child_list);
10430         mutex_unlock(&parent_event->child_mutex);
10431
10432         /*
10433          * Kick perf_poll() for is_event_hup().
10434          */
10435         perf_event_wakeup(parent_event);
10436         free_event(child_event);
10437         put_event(parent_event);
10438 }
10439
10440 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10441 {
10442         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10443         struct perf_event *child_event, *next;
10444
10445         WARN_ON_ONCE(child != current);
10446
10447         child_ctx = perf_pin_task_context(child, ctxn);
10448         if (!child_ctx)
10449                 return;
10450
10451         /*
10452          * In order to reduce the amount of tricky in ctx tear-down, we hold
10453          * ctx::mutex over the entire thing. This serializes against almost
10454          * everything that wants to access the ctx.
10455          *
10456          * The exception is sys_perf_event_open() /
10457          * perf_event_create_kernel_count() which does find_get_context()
10458          * without ctx::mutex (it cannot because of the move_group double mutex
10459          * lock thing). See the comments in perf_install_in_context().
10460          */
10461         mutex_lock(&child_ctx->mutex);
10462
10463         /*
10464          * In a single ctx::lock section, de-schedule the events and detach the
10465          * context from the task such that we cannot ever get it scheduled back
10466          * in.
10467          */
10468         raw_spin_lock_irq(&child_ctx->lock);
10469         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10470
10471         /*
10472          * Now that the context is inactive, destroy the task <-> ctx relation
10473          * and mark the context dead.
10474          */
10475         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10476         put_ctx(child_ctx); /* cannot be last */
10477         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10478         put_task_struct(current); /* cannot be last */
10479
10480         clone_ctx = unclone_ctx(child_ctx);
10481         raw_spin_unlock_irq(&child_ctx->lock);
10482
10483         if (clone_ctx)
10484                 put_ctx(clone_ctx);
10485
10486         /*
10487          * Report the task dead after unscheduling the events so that we
10488          * won't get any samples after PERF_RECORD_EXIT. We can however still
10489          * get a few PERF_RECORD_READ events.
10490          */
10491         perf_event_task(child, child_ctx, 0);
10492
10493         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10494                 perf_event_exit_event(child_event, child_ctx, child);
10495
10496         mutex_unlock(&child_ctx->mutex);
10497
10498         put_ctx(child_ctx);
10499 }
10500
10501 /*
10502  * When a child task exits, feed back event values to parent events.
10503  *
10504  * Can be called with cred_guard_mutex held when called from
10505  * install_exec_creds().
10506  */
10507 void perf_event_exit_task(struct task_struct *child)
10508 {
10509         struct perf_event *event, *tmp;
10510         int ctxn;
10511
10512         mutex_lock(&child->perf_event_mutex);
10513         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10514                                  owner_entry) {
10515                 list_del_init(&event->owner_entry);
10516
10517                 /*
10518                  * Ensure the list deletion is visible before we clear
10519                  * the owner, closes a race against perf_release() where
10520                  * we need to serialize on the owner->perf_event_mutex.
10521                  */
10522                 smp_store_release(&event->owner, NULL);
10523         }
10524         mutex_unlock(&child->perf_event_mutex);
10525
10526         for_each_task_context_nr(ctxn)
10527                 perf_event_exit_task_context(child, ctxn);
10528
10529         /*
10530          * The perf_event_exit_task_context calls perf_event_task
10531          * with child's task_ctx, which generates EXIT events for
10532          * child contexts and sets child->perf_event_ctxp[] to NULL.
10533          * At this point we need to send EXIT events to cpu contexts.
10534          */
10535         perf_event_task(child, NULL, 0);
10536 }
10537
10538 static void perf_free_event(struct perf_event *event,
10539                             struct perf_event_context *ctx)
10540 {
10541         struct perf_event *parent = event->parent;
10542
10543         if (WARN_ON_ONCE(!parent))
10544                 return;
10545
10546         mutex_lock(&parent->child_mutex);
10547         list_del_init(&event->child_list);
10548         mutex_unlock(&parent->child_mutex);
10549
10550         put_event(parent);
10551
10552         raw_spin_lock_irq(&ctx->lock);
10553         perf_group_detach(event);
10554         list_del_event(event, ctx);
10555         raw_spin_unlock_irq(&ctx->lock);
10556         free_event(event);
10557 }
10558
10559 /*
10560  * Free an unexposed, unused context as created by inheritance by
10561  * perf_event_init_task below, used by fork() in case of fail.
10562  *
10563  * Not all locks are strictly required, but take them anyway to be nice and
10564  * help out with the lockdep assertions.
10565  */
10566 void perf_event_free_task(struct task_struct *task)
10567 {
10568         struct perf_event_context *ctx;
10569         struct perf_event *event, *tmp;
10570         int ctxn;
10571
10572         for_each_task_context_nr(ctxn) {
10573                 ctx = task->perf_event_ctxp[ctxn];
10574                 if (!ctx)
10575                         continue;
10576
10577                 mutex_lock(&ctx->mutex);
10578                 raw_spin_lock_irq(&ctx->lock);
10579                 /*
10580                  * Destroy the task <-> ctx relation and mark the context dead.
10581                  *
10582                  * This is important because even though the task hasn't been
10583                  * exposed yet the context has been (through child_list).
10584                  */
10585                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10586                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10587                 put_task_struct(task); /* cannot be last */
10588                 raw_spin_unlock_irq(&ctx->lock);
10589
10590                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10591                         perf_free_event(event, ctx);
10592
10593                 mutex_unlock(&ctx->mutex);
10594                 put_ctx(ctx);
10595         }
10596 }
10597
10598 void perf_event_delayed_put(struct task_struct *task)
10599 {
10600         int ctxn;
10601
10602         for_each_task_context_nr(ctxn)
10603                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10604 }
10605
10606 struct file *perf_event_get(unsigned int fd)
10607 {
10608         struct file *file;
10609
10610         file = fget_raw(fd);
10611         if (!file)
10612                 return ERR_PTR(-EBADF);
10613
10614         if (file->f_op != &perf_fops) {
10615                 fput(file);
10616                 return ERR_PTR(-EBADF);
10617         }
10618
10619         return file;
10620 }
10621
10622 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10623 {
10624         if (!event)
10625                 return ERR_PTR(-EINVAL);
10626
10627         return &event->attr;
10628 }
10629
10630 /*
10631  * Inherit a event from parent task to child task.
10632  *
10633  * Returns:
10634  *  - valid pointer on success
10635  *  - NULL for orphaned events
10636  *  - IS_ERR() on error
10637  */
10638 static struct perf_event *
10639 inherit_event(struct perf_event *parent_event,
10640               struct task_struct *parent,
10641               struct perf_event_context *parent_ctx,
10642               struct task_struct *child,
10643               struct perf_event *group_leader,
10644               struct perf_event_context *child_ctx)
10645 {
10646         enum perf_event_active_state parent_state = parent_event->state;
10647         struct perf_event *child_event;
10648         unsigned long flags;
10649
10650         /*
10651          * Instead of creating recursive hierarchies of events,
10652          * we link inherited events back to the original parent,
10653          * which has a filp for sure, which we use as the reference
10654          * count:
10655          */
10656         if (parent_event->parent)
10657                 parent_event = parent_event->parent;
10658
10659         child_event = perf_event_alloc(&parent_event->attr,
10660                                            parent_event->cpu,
10661                                            child,
10662                                            group_leader, parent_event,
10663                                            NULL, NULL, -1);
10664         if (IS_ERR(child_event))
10665                 return child_event;
10666
10667         /*
10668          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10669          * must be under the same lock in order to serialize against
10670          * perf_event_release_kernel(), such that either we must observe
10671          * is_orphaned_event() or they will observe us on the child_list.
10672          */
10673         mutex_lock(&parent_event->child_mutex);
10674         if (is_orphaned_event(parent_event) ||
10675             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10676                 mutex_unlock(&parent_event->child_mutex);
10677                 free_event(child_event);
10678                 return NULL;
10679         }
10680
10681         get_ctx(child_ctx);
10682
10683         /*
10684          * Make the child state follow the state of the parent event,
10685          * not its attr.disabled bit.  We hold the parent's mutex,
10686          * so we won't race with perf_event_{en, dis}able_family.
10687          */
10688         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10689                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10690         else
10691                 child_event->state = PERF_EVENT_STATE_OFF;
10692
10693         if (parent_event->attr.freq) {
10694                 u64 sample_period = parent_event->hw.sample_period;
10695                 struct hw_perf_event *hwc = &child_event->hw;
10696
10697                 hwc->sample_period = sample_period;
10698                 hwc->last_period   = sample_period;
10699
10700                 local64_set(&hwc->period_left, sample_period);
10701         }
10702
10703         child_event->ctx = child_ctx;
10704         child_event->overflow_handler = parent_event->overflow_handler;
10705         child_event->overflow_handler_context
10706                 = parent_event->overflow_handler_context;
10707
10708         /*
10709          * Precalculate sample_data sizes
10710          */
10711         perf_event__header_size(child_event);
10712         perf_event__id_header_size(child_event);
10713
10714         /*
10715          * Link it up in the child's context:
10716          */
10717         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10718         add_event_to_ctx(child_event, child_ctx);
10719         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10720
10721         /*
10722          * Link this into the parent event's child list
10723          */
10724         list_add_tail(&child_event->child_list, &parent_event->child_list);
10725         mutex_unlock(&parent_event->child_mutex);
10726
10727         return child_event;
10728 }
10729
10730 /*
10731  * Inherits an event group.
10732  *
10733  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10734  * This matches with perf_event_release_kernel() removing all child events.
10735  *
10736  * Returns:
10737  *  - 0 on success
10738  *  - <0 on error
10739  */
10740 static int inherit_group(struct perf_event *parent_event,
10741               struct task_struct *parent,
10742               struct perf_event_context *parent_ctx,
10743               struct task_struct *child,
10744               struct perf_event_context *child_ctx)
10745 {
10746         struct perf_event *leader;
10747         struct perf_event *sub;
10748         struct perf_event *child_ctr;
10749
10750         leader = inherit_event(parent_event, parent, parent_ctx,
10751                                  child, NULL, child_ctx);
10752         if (IS_ERR(leader))
10753                 return PTR_ERR(leader);
10754         /*
10755          * @leader can be NULL here because of is_orphaned_event(). In this
10756          * case inherit_event() will create individual events, similar to what
10757          * perf_group_detach() would do anyway.
10758          */
10759         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10760                 child_ctr = inherit_event(sub, parent, parent_ctx,
10761                                             child, leader, child_ctx);
10762                 if (IS_ERR(child_ctr))
10763                         return PTR_ERR(child_ctr);
10764         }
10765         return 0;
10766 }
10767
10768 /*
10769  * Creates the child task context and tries to inherit the event-group.
10770  *
10771  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10772  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10773  * consistent with perf_event_release_kernel() removing all child events.
10774  *
10775  * Returns:
10776  *  - 0 on success
10777  *  - <0 on error
10778  */
10779 static int
10780 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10781                    struct perf_event_context *parent_ctx,
10782                    struct task_struct *child, int ctxn,
10783                    int *inherited_all)
10784 {
10785         int ret;
10786         struct perf_event_context *child_ctx;
10787
10788         if (!event->attr.inherit) {
10789                 *inherited_all = 0;
10790                 return 0;
10791         }
10792
10793         child_ctx = child->perf_event_ctxp[ctxn];
10794         if (!child_ctx) {
10795                 /*
10796                  * This is executed from the parent task context, so
10797                  * inherit events that have been marked for cloning.
10798                  * First allocate and initialize a context for the
10799                  * child.
10800                  */
10801                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10802                 if (!child_ctx)
10803                         return -ENOMEM;
10804
10805                 child->perf_event_ctxp[ctxn] = child_ctx;
10806         }
10807
10808         ret = inherit_group(event, parent, parent_ctx,
10809                             child, child_ctx);
10810
10811         if (ret)
10812                 *inherited_all = 0;
10813
10814         return ret;
10815 }
10816
10817 /*
10818  * Initialize the perf_event context in task_struct
10819  */
10820 static int perf_event_init_context(struct task_struct *child, int ctxn)
10821 {
10822         struct perf_event_context *child_ctx, *parent_ctx;
10823         struct perf_event_context *cloned_ctx;
10824         struct perf_event *event;
10825         struct task_struct *parent = current;
10826         int inherited_all = 1;
10827         unsigned long flags;
10828         int ret = 0;
10829
10830         if (likely(!parent->perf_event_ctxp[ctxn]))
10831                 return 0;
10832
10833         /*
10834          * If the parent's context is a clone, pin it so it won't get
10835          * swapped under us.
10836          */
10837         parent_ctx = perf_pin_task_context(parent, ctxn);
10838         if (!parent_ctx)
10839                 return 0;
10840
10841         /*
10842          * No need to check if parent_ctx != NULL here; since we saw
10843          * it non-NULL earlier, the only reason for it to become NULL
10844          * is if we exit, and since we're currently in the middle of
10845          * a fork we can't be exiting at the same time.
10846          */
10847
10848         /*
10849          * Lock the parent list. No need to lock the child - not PID
10850          * hashed yet and not running, so nobody can access it.
10851          */
10852         mutex_lock(&parent_ctx->mutex);
10853
10854         /*
10855          * We dont have to disable NMIs - we are only looking at
10856          * the list, not manipulating it:
10857          */
10858         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10859                 ret = inherit_task_group(event, parent, parent_ctx,
10860                                          child, ctxn, &inherited_all);
10861                 if (ret)
10862                         goto out_unlock;
10863         }
10864
10865         /*
10866          * We can't hold ctx->lock when iterating the ->flexible_group list due
10867          * to allocations, but we need to prevent rotation because
10868          * rotate_ctx() will change the list from interrupt context.
10869          */
10870         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10871         parent_ctx->rotate_disable = 1;
10872         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10873
10874         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10875                 ret = inherit_task_group(event, parent, parent_ctx,
10876                                          child, ctxn, &inherited_all);
10877                 if (ret)
10878                         goto out_unlock;
10879         }
10880
10881         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10882         parent_ctx->rotate_disable = 0;
10883
10884         child_ctx = child->perf_event_ctxp[ctxn];
10885
10886         if (child_ctx && inherited_all) {
10887                 /*
10888                  * Mark the child context as a clone of the parent
10889                  * context, or of whatever the parent is a clone of.
10890                  *
10891                  * Note that if the parent is a clone, the holding of
10892                  * parent_ctx->lock avoids it from being uncloned.
10893                  */
10894                 cloned_ctx = parent_ctx->parent_ctx;
10895                 if (cloned_ctx) {
10896                         child_ctx->parent_ctx = cloned_ctx;
10897                         child_ctx->parent_gen = parent_ctx->parent_gen;
10898                 } else {
10899                         child_ctx->parent_ctx = parent_ctx;
10900                         child_ctx->parent_gen = parent_ctx->generation;
10901                 }
10902                 get_ctx(child_ctx->parent_ctx);
10903         }
10904
10905         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10906 out_unlock:
10907         mutex_unlock(&parent_ctx->mutex);
10908
10909         perf_unpin_context(parent_ctx);
10910         put_ctx(parent_ctx);
10911
10912         return ret;
10913 }
10914
10915 /*
10916  * Initialize the perf_event context in task_struct
10917  */
10918 int perf_event_init_task(struct task_struct *child)
10919 {
10920         int ctxn, ret;
10921
10922         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10923         mutex_init(&child->perf_event_mutex);
10924         INIT_LIST_HEAD(&child->perf_event_list);
10925
10926         for_each_task_context_nr(ctxn) {
10927                 ret = perf_event_init_context(child, ctxn);
10928                 if (ret) {
10929                         perf_event_free_task(child);
10930                         return ret;
10931                 }
10932         }
10933
10934         return 0;
10935 }
10936
10937 static void __init perf_event_init_all_cpus(void)
10938 {
10939         struct swevent_htable *swhash;
10940         int cpu;
10941
10942         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
10943
10944         for_each_possible_cpu(cpu) {
10945                 swhash = &per_cpu(swevent_htable, cpu);
10946                 mutex_init(&swhash->hlist_mutex);
10947                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10948
10949                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10950                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10951
10952 #ifdef CONFIG_CGROUP_PERF
10953                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10954 #endif
10955                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10956         }
10957 }
10958
10959 void perf_swevent_init_cpu(unsigned int cpu)
10960 {
10961         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10962
10963         mutex_lock(&swhash->hlist_mutex);
10964         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10965                 struct swevent_hlist *hlist;
10966
10967                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10968                 WARN_ON(!hlist);
10969                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10970         }
10971         mutex_unlock(&swhash->hlist_mutex);
10972 }
10973
10974 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10975 static void __perf_event_exit_context(void *__info)
10976 {
10977         struct perf_event_context *ctx = __info;
10978         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10979         struct perf_event *event;
10980
10981         raw_spin_lock(&ctx->lock);
10982         list_for_each_entry(event, &ctx->event_list, event_entry)
10983                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10984         raw_spin_unlock(&ctx->lock);
10985 }
10986
10987 static void perf_event_exit_cpu_context(int cpu)
10988 {
10989         struct perf_cpu_context *cpuctx;
10990         struct perf_event_context *ctx;
10991         struct pmu *pmu;
10992
10993         mutex_lock(&pmus_lock);
10994         list_for_each_entry(pmu, &pmus, entry) {
10995                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10996                 ctx = &cpuctx->ctx;
10997
10998                 mutex_lock(&ctx->mutex);
10999                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11000                 cpuctx->online = 0;
11001                 mutex_unlock(&ctx->mutex);
11002         }
11003         cpumask_clear_cpu(cpu, perf_online_mask);
11004         mutex_unlock(&pmus_lock);
11005 }
11006 #else
11007
11008 static void perf_event_exit_cpu_context(int cpu) { }
11009
11010 #endif
11011
11012 int perf_event_init_cpu(unsigned int cpu)
11013 {
11014         struct perf_cpu_context *cpuctx;
11015         struct perf_event_context *ctx;
11016         struct pmu *pmu;
11017
11018         perf_swevent_init_cpu(cpu);
11019
11020         mutex_lock(&pmus_lock);
11021         cpumask_set_cpu(cpu, perf_online_mask);
11022         list_for_each_entry(pmu, &pmus, entry) {
11023                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11024                 ctx = &cpuctx->ctx;
11025
11026                 mutex_lock(&ctx->mutex);
11027                 cpuctx->online = 1;
11028                 mutex_unlock(&ctx->mutex);
11029         }
11030         mutex_unlock(&pmus_lock);
11031
11032         return 0;
11033 }
11034
11035 int perf_event_exit_cpu(unsigned int cpu)
11036 {
11037         perf_event_exit_cpu_context(cpu);
11038         return 0;
11039 }
11040
11041 static int
11042 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11043 {
11044         int cpu;
11045
11046         for_each_online_cpu(cpu)
11047                 perf_event_exit_cpu(cpu);
11048
11049         return NOTIFY_OK;
11050 }
11051
11052 /*
11053  * Run the perf reboot notifier at the very last possible moment so that
11054  * the generic watchdog code runs as long as possible.
11055  */
11056 static struct notifier_block perf_reboot_notifier = {
11057         .notifier_call = perf_reboot,
11058         .priority = INT_MIN,
11059 };
11060
11061 void __init perf_event_init(void)
11062 {
11063         int ret;
11064
11065         idr_init(&pmu_idr);
11066
11067         perf_event_init_all_cpus();
11068         init_srcu_struct(&pmus_srcu);
11069         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11070         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11071         perf_pmu_register(&perf_task_clock, NULL, -1);
11072         perf_tp_register();
11073         perf_event_init_cpu(smp_processor_id());
11074         register_reboot_notifier(&perf_reboot_notifier);
11075
11076         ret = init_hw_breakpoint();
11077         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11078
11079         /*
11080          * Build time assertion that we keep the data_head at the intended
11081          * location.  IOW, validation we got the __reserved[] size right.
11082          */
11083         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11084                      != 1024);
11085 }
11086
11087 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11088                               char *page)
11089 {
11090         struct perf_pmu_events_attr *pmu_attr =
11091                 container_of(attr, struct perf_pmu_events_attr, attr);
11092
11093         if (pmu_attr->event_str)
11094                 return sprintf(page, "%s\n", pmu_attr->event_str);
11095
11096         return 0;
11097 }
11098 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11099
11100 static int __init perf_event_sysfs_init(void)
11101 {
11102         struct pmu *pmu;
11103         int ret;
11104
11105         mutex_lock(&pmus_lock);
11106
11107         ret = bus_register(&pmu_bus);
11108         if (ret)
11109                 goto unlock;
11110
11111         list_for_each_entry(pmu, &pmus, entry) {
11112                 if (!pmu->name || pmu->type < 0)
11113                         continue;
11114
11115                 ret = pmu_dev_alloc(pmu);
11116                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11117         }
11118         pmu_bus_running = 1;
11119         ret = 0;
11120
11121 unlock:
11122         mutex_unlock(&pmus_lock);
11123
11124         return ret;
11125 }
11126 device_initcall(perf_event_sysfs_init);
11127
11128 #ifdef CONFIG_CGROUP_PERF
11129 static struct cgroup_subsys_state *
11130 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11131 {
11132         struct perf_cgroup *jc;
11133
11134         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11135         if (!jc)
11136                 return ERR_PTR(-ENOMEM);
11137
11138         jc->info = alloc_percpu(struct perf_cgroup_info);
11139         if (!jc->info) {
11140                 kfree(jc);
11141                 return ERR_PTR(-ENOMEM);
11142         }
11143
11144         return &jc->css;
11145 }
11146
11147 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11148 {
11149         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11150
11151         free_percpu(jc->info);
11152         kfree(jc);
11153 }
11154
11155 static int __perf_cgroup_move(void *info)
11156 {
11157         struct task_struct *task = info;
11158         rcu_read_lock();
11159         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11160         rcu_read_unlock();
11161         return 0;
11162 }
11163
11164 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11165 {
11166         struct task_struct *task;
11167         struct cgroup_subsys_state *css;
11168
11169         cgroup_taskset_for_each(task, css, tset)
11170                 task_function_call(task, __perf_cgroup_move, task);
11171 }
11172
11173 struct cgroup_subsys perf_event_cgrp_subsys = {
11174         .css_alloc      = perf_cgroup_css_alloc,
11175         .css_free       = perf_cgroup_css_free,
11176         .attach         = perf_cgroup_attach,
11177         /*
11178          * Implicitly enable on dfl hierarchy so that perf events can
11179          * always be filtered by cgroup2 path as long as perf_event
11180          * controller is not mounted on a legacy hierarchy.
11181          */
11182         .implicit_on_dfl = true,
11183 };
11184 #endif /* CONFIG_CGROUP_PERF */