]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/events/uprobes.c
3b02c72938a834a5fce35a5aa74509005105e0ba
[karo-tx-linux.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>         /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h>         /* try_to_free_swap */
34 #include <linux/ptrace.h>       /* user_enable_single_step */
35 #include <linux/kdebug.h>       /* notifier mechanism */
36 #include "../../mm/internal.h"  /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39
40 #include <linux/uprobes.h>
41
42 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
43 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
44
45 static struct rb_root uprobes_tree = RB_ROOT;
46 /*
47  * allows us to skip the uprobe_mmap if there are no uprobe events active
48  * at this time.  Probably a fine grained per inode count is better?
49  */
50 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
51
52 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
53
54 #define UPROBES_HASH_SZ 13
55 /* serialize uprobe->pending_list */
56 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
57 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
58
59 static struct percpu_rw_semaphore dup_mmap_sem;
60
61 /* Have a copy of original instruction */
62 #define UPROBE_COPY_INSN        0
63
64 struct uprobe {
65         struct rb_node          rb_node;        /* node in the rb tree */
66         atomic_t                ref;
67         struct rw_semaphore     register_rwsem;
68         struct rw_semaphore     consumer_rwsem;
69         struct list_head        pending_list;
70         struct uprobe_consumer  *consumers;
71         struct inode            *inode;         /* Also hold a ref to inode */
72         loff_t                  offset;
73         unsigned long           flags;
74
75         /*
76          * The generic code assumes that it has two members of unknown type
77          * owned by the arch-specific code:
78          *
79          *      insn -  copy_insn() saves the original instruction here for
80          *              arch_uprobe_analyze_insn().
81          *
82          *      ixol -  potentially modified instruction to execute out of
83          *              line, copied to xol_area by xol_get_insn_slot().
84          */
85         struct arch_uprobe      arch;
86 };
87
88 struct return_instance {
89         struct uprobe           *uprobe;
90         unsigned long           func;
91         unsigned long           orig_ret_vaddr; /* original return address */
92         bool                    chained;        /* true, if instance is nested */
93
94         struct return_instance  *next;          /* keep as stack */
95 };
96
97 /*
98  * Execute out of line area: anonymous executable mapping installed
99  * by the probed task to execute the copy of the original instruction
100  * mangled by set_swbp().
101  *
102  * On a breakpoint hit, thread contests for a slot.  It frees the
103  * slot after singlestep. Currently a fixed number of slots are
104  * allocated.
105  */
106 struct xol_area {
107         wait_queue_head_t       wq;             /* if all slots are busy */
108         atomic_t                slot_count;     /* number of in-use slots */
109         unsigned long           *bitmap;        /* 0 = free slot */
110         struct page             *page;
111
112         /*
113          * We keep the vma's vm_start rather than a pointer to the vma
114          * itself.  The probed process or a naughty kernel module could make
115          * the vma go away, and we must handle that reasonably gracefully.
116          */
117         unsigned long           vaddr;          /* Page(s) of instruction slots */
118 };
119
120 /*
121  * valid_vma: Verify if the specified vma is an executable vma
122  * Relax restrictions while unregistering: vm_flags might have
123  * changed after breakpoint was inserted.
124  *      - is_register: indicates if we are in register context.
125  *      - Return 1 if the specified virtual address is in an
126  *        executable vma.
127  */
128 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
129 {
130         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
131
132         if (is_register)
133                 flags |= VM_WRITE;
134
135         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
136 }
137
138 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
139 {
140         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
141 }
142
143 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
144 {
145         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
146 }
147
148 /**
149  * __replace_page - replace page in vma by new page.
150  * based on replace_page in mm/ksm.c
151  *
152  * @vma:      vma that holds the pte pointing to page
153  * @addr:     address the old @page is mapped at
154  * @page:     the cowed page we are replacing by kpage
155  * @kpage:    the modified page we replace page by
156  *
157  * Returns 0 on success, -EFAULT on failure.
158  */
159 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
160                                 struct page *page, struct page *kpage)
161 {
162         struct mm_struct *mm = vma->vm_mm;
163         spinlock_t *ptl;
164         pte_t *ptep;
165         int err;
166         /* For mmu_notifiers */
167         const unsigned long mmun_start = addr;
168         const unsigned long mmun_end   = addr + PAGE_SIZE;
169
170         /* For try_to_free_swap() and munlock_vma_page() below */
171         lock_page(page);
172
173         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
174         err = -EAGAIN;
175         ptep = page_check_address(page, mm, addr, &ptl, 0);
176         if (!ptep)
177                 goto unlock;
178
179         get_page(kpage);
180         page_add_new_anon_rmap(kpage, vma, addr);
181
182         if (!PageAnon(page)) {
183                 dec_mm_counter(mm, MM_FILEPAGES);
184                 inc_mm_counter(mm, MM_ANONPAGES);
185         }
186
187         flush_cache_page(vma, addr, pte_pfn(*ptep));
188         ptep_clear_flush(vma, addr, ptep);
189         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
190
191         page_remove_rmap(page);
192         if (!page_mapped(page))
193                 try_to_free_swap(page);
194         pte_unmap_unlock(ptep, ptl);
195
196         if (vma->vm_flags & VM_LOCKED)
197                 munlock_vma_page(page);
198         put_page(page);
199
200         err = 0;
201  unlock:
202         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
203         unlock_page(page);
204         return err;
205 }
206
207 /**
208  * is_swbp_insn - check if instruction is breakpoint instruction.
209  * @insn: instruction to be checked.
210  * Default implementation of is_swbp_insn
211  * Returns true if @insn is a breakpoint instruction.
212  */
213 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
214 {
215         return *insn == UPROBE_SWBP_INSN;
216 }
217
218 /**
219  * is_trap_insn - check if instruction is breakpoint instruction.
220  * @insn: instruction to be checked.
221  * Default implementation of is_trap_insn
222  * Returns true if @insn is a breakpoint instruction.
223  *
224  * This function is needed for the case where an architecture has multiple
225  * trap instructions (like powerpc).
226  */
227 bool __weak is_trap_insn(uprobe_opcode_t *insn)
228 {
229         return is_swbp_insn(insn);
230 }
231
232 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
233 {
234         void *kaddr = kmap_atomic(page);
235         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
236         kunmap_atomic(kaddr);
237 }
238
239 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
240 {
241         void *kaddr = kmap_atomic(page);
242         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
243         kunmap_atomic(kaddr);
244 }
245
246 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
247 {
248         uprobe_opcode_t old_opcode;
249         bool is_swbp;
250
251         /*
252          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
253          * We do not check if it is any other 'trap variant' which could
254          * be conditional trap instruction such as the one powerpc supports.
255          *
256          * The logic is that we do not care if the underlying instruction
257          * is a trap variant; uprobes always wins over any other (gdb)
258          * breakpoint.
259          */
260         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
261         is_swbp = is_swbp_insn(&old_opcode);
262
263         if (is_swbp_insn(new_opcode)) {
264                 if (is_swbp)            /* register: already installed? */
265                         return 0;
266         } else {
267                 if (!is_swbp)           /* unregister: was it changed by us? */
268                         return 0;
269         }
270
271         return 1;
272 }
273
274 /*
275  * NOTE:
276  * Expect the breakpoint instruction to be the smallest size instruction for
277  * the architecture. If an arch has variable length instruction and the
278  * breakpoint instruction is not of the smallest length instruction
279  * supported by that architecture then we need to modify is_trap_at_addr and
280  * uprobe_write_opcode accordingly. This would never be a problem for archs
281  * that have fixed length instructions.
282  *
283  * uprobe_write_opcode - write the opcode at a given virtual address.
284  * @mm: the probed process address space.
285  * @vaddr: the virtual address to store the opcode.
286  * @opcode: opcode to be written at @vaddr.
287  *
288  * Called with mm->mmap_sem held for write.
289  * Return 0 (success) or a negative errno.
290  */
291 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
292                         uprobe_opcode_t opcode)
293 {
294         struct page *old_page, *new_page;
295         struct vm_area_struct *vma;
296         int ret;
297
298 retry:
299         /* Read the page with vaddr into memory */
300         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
301         if (ret <= 0)
302                 return ret;
303
304         ret = verify_opcode(old_page, vaddr, &opcode);
305         if (ret <= 0)
306                 goto put_old;
307
308         ret = anon_vma_prepare(vma);
309         if (ret)
310                 goto put_old;
311
312         ret = -ENOMEM;
313         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
314         if (!new_page)
315                 goto put_old;
316
317         if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))
318                 goto put_new;
319
320         __SetPageUptodate(new_page);
321         copy_highpage(new_page, old_page);
322         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
323
324         ret = __replace_page(vma, vaddr, old_page, new_page);
325         if (ret)
326                 mem_cgroup_uncharge_page(new_page);
327
328 put_new:
329         page_cache_release(new_page);
330 put_old:
331         put_page(old_page);
332
333         if (unlikely(ret == -EAGAIN))
334                 goto retry;
335         return ret;
336 }
337
338 /**
339  * set_swbp - store breakpoint at a given address.
340  * @auprobe: arch specific probepoint information.
341  * @mm: the probed process address space.
342  * @vaddr: the virtual address to insert the opcode.
343  *
344  * For mm @mm, store the breakpoint instruction at @vaddr.
345  * Return 0 (success) or a negative errno.
346  */
347 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
348 {
349         return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
350 }
351
352 /**
353  * set_orig_insn - Restore the original instruction.
354  * @mm: the probed process address space.
355  * @auprobe: arch specific probepoint information.
356  * @vaddr: the virtual address to insert the opcode.
357  *
358  * For mm @mm, restore the original opcode (opcode) at @vaddr.
359  * Return 0 (success) or a negative errno.
360  */
361 int __weak
362 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
363 {
364         return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
365 }
366
367 static int match_uprobe(struct uprobe *l, struct uprobe *r)
368 {
369         if (l->inode < r->inode)
370                 return -1;
371
372         if (l->inode > r->inode)
373                 return 1;
374
375         if (l->offset < r->offset)
376                 return -1;
377
378         if (l->offset > r->offset)
379                 return 1;
380
381         return 0;
382 }
383
384 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
385 {
386         struct uprobe u = { .inode = inode, .offset = offset };
387         struct rb_node *n = uprobes_tree.rb_node;
388         struct uprobe *uprobe;
389         int match;
390
391         while (n) {
392                 uprobe = rb_entry(n, struct uprobe, rb_node);
393                 match = match_uprobe(&u, uprobe);
394                 if (!match) {
395                         atomic_inc(&uprobe->ref);
396                         return uprobe;
397                 }
398
399                 if (match < 0)
400                         n = n->rb_left;
401                 else
402                         n = n->rb_right;
403         }
404         return NULL;
405 }
406
407 /*
408  * Find a uprobe corresponding to a given inode:offset
409  * Acquires uprobes_treelock
410  */
411 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
412 {
413         struct uprobe *uprobe;
414
415         spin_lock(&uprobes_treelock);
416         uprobe = __find_uprobe(inode, offset);
417         spin_unlock(&uprobes_treelock);
418
419         return uprobe;
420 }
421
422 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
423 {
424         struct rb_node **p = &uprobes_tree.rb_node;
425         struct rb_node *parent = NULL;
426         struct uprobe *u;
427         int match;
428
429         while (*p) {
430                 parent = *p;
431                 u = rb_entry(parent, struct uprobe, rb_node);
432                 match = match_uprobe(uprobe, u);
433                 if (!match) {
434                         atomic_inc(&u->ref);
435                         return u;
436                 }
437
438                 if (match < 0)
439                         p = &parent->rb_left;
440                 else
441                         p = &parent->rb_right;
442
443         }
444
445         u = NULL;
446         rb_link_node(&uprobe->rb_node, parent, p);
447         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
448         /* get access + creation ref */
449         atomic_set(&uprobe->ref, 2);
450
451         return u;
452 }
453
454 /*
455  * Acquire uprobes_treelock.
456  * Matching uprobe already exists in rbtree;
457  *      increment (access refcount) and return the matching uprobe.
458  *
459  * No matching uprobe; insert the uprobe in rb_tree;
460  *      get a double refcount (access + creation) and return NULL.
461  */
462 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
463 {
464         struct uprobe *u;
465
466         spin_lock(&uprobes_treelock);
467         u = __insert_uprobe(uprobe);
468         spin_unlock(&uprobes_treelock);
469
470         return u;
471 }
472
473 static void put_uprobe(struct uprobe *uprobe)
474 {
475         if (atomic_dec_and_test(&uprobe->ref))
476                 kfree(uprobe);
477 }
478
479 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
480 {
481         struct uprobe *uprobe, *cur_uprobe;
482
483         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
484         if (!uprobe)
485                 return NULL;
486
487         uprobe->inode = igrab(inode);
488         uprobe->offset = offset;
489         init_rwsem(&uprobe->register_rwsem);
490         init_rwsem(&uprobe->consumer_rwsem);
491
492         /* add to uprobes_tree, sorted on inode:offset */
493         cur_uprobe = insert_uprobe(uprobe);
494         /* a uprobe exists for this inode:offset combination */
495         if (cur_uprobe) {
496                 kfree(uprobe);
497                 uprobe = cur_uprobe;
498                 iput(inode);
499         }
500
501         return uprobe;
502 }
503
504 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
505 {
506         down_write(&uprobe->consumer_rwsem);
507         uc->next = uprobe->consumers;
508         uprobe->consumers = uc;
509         up_write(&uprobe->consumer_rwsem);
510 }
511
512 /*
513  * For uprobe @uprobe, delete the consumer @uc.
514  * Return true if the @uc is deleted successfully
515  * or return false.
516  */
517 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
518 {
519         struct uprobe_consumer **con;
520         bool ret = false;
521
522         down_write(&uprobe->consumer_rwsem);
523         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
524                 if (*con == uc) {
525                         *con = uc->next;
526                         ret = true;
527                         break;
528                 }
529         }
530         up_write(&uprobe->consumer_rwsem);
531
532         return ret;
533 }
534
535 static int __copy_insn(struct address_space *mapping, struct file *filp,
536                         void *insn, int nbytes, loff_t offset)
537 {
538         struct page *page;
539
540         if (!mapping->a_ops->readpage)
541                 return -EIO;
542         /*
543          * Ensure that the page that has the original instruction is
544          * populated and in page-cache.
545          */
546         page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
547         if (IS_ERR(page))
548                 return PTR_ERR(page);
549
550         copy_from_page(page, offset, insn, nbytes);
551         page_cache_release(page);
552
553         return 0;
554 }
555
556 static int copy_insn(struct uprobe *uprobe, struct file *filp)
557 {
558         struct address_space *mapping = uprobe->inode->i_mapping;
559         loff_t offs = uprobe->offset;
560         void *insn = &uprobe->arch.insn;
561         int size = sizeof(uprobe->arch.insn);
562         int len, err = -EIO;
563
564         /* Copy only available bytes, -EIO if nothing was read */
565         do {
566                 if (offs >= i_size_read(uprobe->inode))
567                         break;
568
569                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
570                 err = __copy_insn(mapping, filp, insn, len, offs);
571                 if (err)
572                         break;
573
574                 insn += len;
575                 offs += len;
576                 size -= len;
577         } while (size);
578
579         return err;
580 }
581
582 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
583                                 struct mm_struct *mm, unsigned long vaddr)
584 {
585         int ret = 0;
586
587         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
588                 return ret;
589
590         /* TODO: move this into _register, until then we abuse this sem. */
591         down_write(&uprobe->consumer_rwsem);
592         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
593                 goto out;
594
595         ret = copy_insn(uprobe, file);
596         if (ret)
597                 goto out;
598
599         ret = -ENOTSUPP;
600         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
601                 goto out;
602
603         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
604         if (ret)
605                 goto out;
606
607         /* uprobe_write_opcode() assumes we don't cross page boundary */
608         BUG_ON((uprobe->offset & ~PAGE_MASK) +
609                         UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
610
611         smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
612         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
613
614  out:
615         up_write(&uprobe->consumer_rwsem);
616
617         return ret;
618 }
619
620 static inline bool consumer_filter(struct uprobe_consumer *uc,
621                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
622 {
623         return !uc->filter || uc->filter(uc, ctx, mm);
624 }
625
626 static bool filter_chain(struct uprobe *uprobe,
627                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
628 {
629         struct uprobe_consumer *uc;
630         bool ret = false;
631
632         down_read(&uprobe->consumer_rwsem);
633         for (uc = uprobe->consumers; uc; uc = uc->next) {
634                 ret = consumer_filter(uc, ctx, mm);
635                 if (ret)
636                         break;
637         }
638         up_read(&uprobe->consumer_rwsem);
639
640         return ret;
641 }
642
643 static int
644 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
645                         struct vm_area_struct *vma, unsigned long vaddr)
646 {
647         bool first_uprobe;
648         int ret;
649
650         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
651         if (ret)
652                 return ret;
653
654         /*
655          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
656          * the task can hit this breakpoint right after __replace_page().
657          */
658         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
659         if (first_uprobe)
660                 set_bit(MMF_HAS_UPROBES, &mm->flags);
661
662         ret = set_swbp(&uprobe->arch, mm, vaddr);
663         if (!ret)
664                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
665         else if (first_uprobe)
666                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
667
668         return ret;
669 }
670
671 static int
672 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
673 {
674         set_bit(MMF_RECALC_UPROBES, &mm->flags);
675         return set_orig_insn(&uprobe->arch, mm, vaddr);
676 }
677
678 static inline bool uprobe_is_active(struct uprobe *uprobe)
679 {
680         return !RB_EMPTY_NODE(&uprobe->rb_node);
681 }
682 /*
683  * There could be threads that have already hit the breakpoint. They
684  * will recheck the current insn and restart if find_uprobe() fails.
685  * See find_active_uprobe().
686  */
687 static void delete_uprobe(struct uprobe *uprobe)
688 {
689         if (WARN_ON(!uprobe_is_active(uprobe)))
690                 return;
691
692         spin_lock(&uprobes_treelock);
693         rb_erase(&uprobe->rb_node, &uprobes_tree);
694         spin_unlock(&uprobes_treelock);
695         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
696         iput(uprobe->inode);
697         put_uprobe(uprobe);
698 }
699
700 struct map_info {
701         struct map_info *next;
702         struct mm_struct *mm;
703         unsigned long vaddr;
704 };
705
706 static inline struct map_info *free_map_info(struct map_info *info)
707 {
708         struct map_info *next = info->next;
709         kfree(info);
710         return next;
711 }
712
713 static struct map_info *
714 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
715 {
716         unsigned long pgoff = offset >> PAGE_SHIFT;
717         struct vm_area_struct *vma;
718         struct map_info *curr = NULL;
719         struct map_info *prev = NULL;
720         struct map_info *info;
721         int more = 0;
722
723  again:
724         mutex_lock(&mapping->i_mmap_mutex);
725         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
726                 if (!valid_vma(vma, is_register))
727                         continue;
728
729                 if (!prev && !more) {
730                         /*
731                          * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
732                          * reclaim. This is optimistic, no harm done if it fails.
733                          */
734                         prev = kmalloc(sizeof(struct map_info),
735                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
736                         if (prev)
737                                 prev->next = NULL;
738                 }
739                 if (!prev) {
740                         more++;
741                         continue;
742                 }
743
744                 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
745                         continue;
746
747                 info = prev;
748                 prev = prev->next;
749                 info->next = curr;
750                 curr = info;
751
752                 info->mm = vma->vm_mm;
753                 info->vaddr = offset_to_vaddr(vma, offset);
754         }
755         mutex_unlock(&mapping->i_mmap_mutex);
756
757         if (!more)
758                 goto out;
759
760         prev = curr;
761         while (curr) {
762                 mmput(curr->mm);
763                 curr = curr->next;
764         }
765
766         do {
767                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
768                 if (!info) {
769                         curr = ERR_PTR(-ENOMEM);
770                         goto out;
771                 }
772                 info->next = prev;
773                 prev = info;
774         } while (--more);
775
776         goto again;
777  out:
778         while (prev)
779                 prev = free_map_info(prev);
780         return curr;
781 }
782
783 static int
784 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
785 {
786         bool is_register = !!new;
787         struct map_info *info;
788         int err = 0;
789
790         percpu_down_write(&dup_mmap_sem);
791         info = build_map_info(uprobe->inode->i_mapping,
792                                         uprobe->offset, is_register);
793         if (IS_ERR(info)) {
794                 err = PTR_ERR(info);
795                 goto out;
796         }
797
798         while (info) {
799                 struct mm_struct *mm = info->mm;
800                 struct vm_area_struct *vma;
801
802                 if (err && is_register)
803                         goto free;
804
805                 down_write(&mm->mmap_sem);
806                 vma = find_vma(mm, info->vaddr);
807                 if (!vma || !valid_vma(vma, is_register) ||
808                     file_inode(vma->vm_file) != uprobe->inode)
809                         goto unlock;
810
811                 if (vma->vm_start > info->vaddr ||
812                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
813                         goto unlock;
814
815                 if (is_register) {
816                         /* consult only the "caller", new consumer. */
817                         if (consumer_filter(new,
818                                         UPROBE_FILTER_REGISTER, mm))
819                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
820                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
821                         if (!filter_chain(uprobe,
822                                         UPROBE_FILTER_UNREGISTER, mm))
823                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
824                 }
825
826  unlock:
827                 up_write(&mm->mmap_sem);
828  free:
829                 mmput(mm);
830                 info = free_map_info(info);
831         }
832  out:
833         percpu_up_write(&dup_mmap_sem);
834         return err;
835 }
836
837 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
838 {
839         consumer_add(uprobe, uc);
840         return register_for_each_vma(uprobe, uc);
841 }
842
843 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
844 {
845         int err;
846
847         if (!consumer_del(uprobe, uc))  /* WARN? */
848                 return;
849
850         err = register_for_each_vma(uprobe, NULL);
851         /* TODO : cant unregister? schedule a worker thread */
852         if (!uprobe->consumers && !err)
853                 delete_uprobe(uprobe);
854 }
855
856 /*
857  * uprobe_register - register a probe
858  * @inode: the file in which the probe has to be placed.
859  * @offset: offset from the start of the file.
860  * @uc: information on howto handle the probe..
861  *
862  * Apart from the access refcount, uprobe_register() takes a creation
863  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
864  * inserted into the rbtree (i.e first consumer for a @inode:@offset
865  * tuple).  Creation refcount stops uprobe_unregister from freeing the
866  * @uprobe even before the register operation is complete. Creation
867  * refcount is released when the last @uc for the @uprobe
868  * unregisters.
869  *
870  * Return errno if it cannot successully install probes
871  * else return 0 (success)
872  */
873 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
874 {
875         struct uprobe *uprobe;
876         int ret;
877
878         /* Uprobe must have at least one set consumer */
879         if (!uc->handler && !uc->ret_handler)
880                 return -EINVAL;
881
882         /* Racy, just to catch the obvious mistakes */
883         if (offset > i_size_read(inode))
884                 return -EINVAL;
885
886  retry:
887         uprobe = alloc_uprobe(inode, offset);
888         if (!uprobe)
889                 return -ENOMEM;
890         /*
891          * We can race with uprobe_unregister()->delete_uprobe().
892          * Check uprobe_is_active() and retry if it is false.
893          */
894         down_write(&uprobe->register_rwsem);
895         ret = -EAGAIN;
896         if (likely(uprobe_is_active(uprobe))) {
897                 ret = __uprobe_register(uprobe, uc);
898                 if (ret)
899                         __uprobe_unregister(uprobe, uc);
900         }
901         up_write(&uprobe->register_rwsem);
902         put_uprobe(uprobe);
903
904         if (unlikely(ret == -EAGAIN))
905                 goto retry;
906         return ret;
907 }
908 EXPORT_SYMBOL_GPL(uprobe_register);
909
910 /*
911  * uprobe_apply - unregister a already registered probe.
912  * @inode: the file in which the probe has to be removed.
913  * @offset: offset from the start of the file.
914  * @uc: consumer which wants to add more or remove some breakpoints
915  * @add: add or remove the breakpoints
916  */
917 int uprobe_apply(struct inode *inode, loff_t offset,
918                         struct uprobe_consumer *uc, bool add)
919 {
920         struct uprobe *uprobe;
921         struct uprobe_consumer *con;
922         int ret = -ENOENT;
923
924         uprobe = find_uprobe(inode, offset);
925         if (!uprobe)
926                 return ret;
927
928         down_write(&uprobe->register_rwsem);
929         for (con = uprobe->consumers; con && con != uc ; con = con->next)
930                 ;
931         if (con)
932                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
933         up_write(&uprobe->register_rwsem);
934         put_uprobe(uprobe);
935
936         return ret;
937 }
938
939 /*
940  * uprobe_unregister - unregister a already registered probe.
941  * @inode: the file in which the probe has to be removed.
942  * @offset: offset from the start of the file.
943  * @uc: identify which probe if multiple probes are colocated.
944  */
945 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
946 {
947         struct uprobe *uprobe;
948
949         uprobe = find_uprobe(inode, offset);
950         if (!uprobe)
951                 return;
952
953         down_write(&uprobe->register_rwsem);
954         __uprobe_unregister(uprobe, uc);
955         up_write(&uprobe->register_rwsem);
956         put_uprobe(uprobe);
957 }
958 EXPORT_SYMBOL_GPL(uprobe_unregister);
959
960 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
961 {
962         struct vm_area_struct *vma;
963         int err = 0;
964
965         down_read(&mm->mmap_sem);
966         for (vma = mm->mmap; vma; vma = vma->vm_next) {
967                 unsigned long vaddr;
968                 loff_t offset;
969
970                 if (!valid_vma(vma, false) ||
971                     file_inode(vma->vm_file) != uprobe->inode)
972                         continue;
973
974                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
975                 if (uprobe->offset <  offset ||
976                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
977                         continue;
978
979                 vaddr = offset_to_vaddr(vma, uprobe->offset);
980                 err |= remove_breakpoint(uprobe, mm, vaddr);
981         }
982         up_read(&mm->mmap_sem);
983
984         return err;
985 }
986
987 static struct rb_node *
988 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
989 {
990         struct rb_node *n = uprobes_tree.rb_node;
991
992         while (n) {
993                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
994
995                 if (inode < u->inode) {
996                         n = n->rb_left;
997                 } else if (inode > u->inode) {
998                         n = n->rb_right;
999                 } else {
1000                         if (max < u->offset)
1001                                 n = n->rb_left;
1002                         else if (min > u->offset)
1003                                 n = n->rb_right;
1004                         else
1005                                 break;
1006                 }
1007         }
1008
1009         return n;
1010 }
1011
1012 /*
1013  * For a given range in vma, build a list of probes that need to be inserted.
1014  */
1015 static void build_probe_list(struct inode *inode,
1016                                 struct vm_area_struct *vma,
1017                                 unsigned long start, unsigned long end,
1018                                 struct list_head *head)
1019 {
1020         loff_t min, max;
1021         struct rb_node *n, *t;
1022         struct uprobe *u;
1023
1024         INIT_LIST_HEAD(head);
1025         min = vaddr_to_offset(vma, start);
1026         max = min + (end - start) - 1;
1027
1028         spin_lock(&uprobes_treelock);
1029         n = find_node_in_range(inode, min, max);
1030         if (n) {
1031                 for (t = n; t; t = rb_prev(t)) {
1032                         u = rb_entry(t, struct uprobe, rb_node);
1033                         if (u->inode != inode || u->offset < min)
1034                                 break;
1035                         list_add(&u->pending_list, head);
1036                         atomic_inc(&u->ref);
1037                 }
1038                 for (t = n; (t = rb_next(t)); ) {
1039                         u = rb_entry(t, struct uprobe, rb_node);
1040                         if (u->inode != inode || u->offset > max)
1041                                 break;
1042                         list_add(&u->pending_list, head);
1043                         atomic_inc(&u->ref);
1044                 }
1045         }
1046         spin_unlock(&uprobes_treelock);
1047 }
1048
1049 /*
1050  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1051  *
1052  * Currently we ignore all errors and always return 0, the callers
1053  * can't handle the failure anyway.
1054  */
1055 int uprobe_mmap(struct vm_area_struct *vma)
1056 {
1057         struct list_head tmp_list;
1058         struct uprobe *uprobe, *u;
1059         struct inode *inode;
1060
1061         if (no_uprobe_events() || !valid_vma(vma, true))
1062                 return 0;
1063
1064         inode = file_inode(vma->vm_file);
1065         if (!inode)
1066                 return 0;
1067
1068         mutex_lock(uprobes_mmap_hash(inode));
1069         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1070         /*
1071          * We can race with uprobe_unregister(), this uprobe can be already
1072          * removed. But in this case filter_chain() must return false, all
1073          * consumers have gone away.
1074          */
1075         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1076                 if (!fatal_signal_pending(current) &&
1077                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1078                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1079                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1080                 }
1081                 put_uprobe(uprobe);
1082         }
1083         mutex_unlock(uprobes_mmap_hash(inode));
1084
1085         return 0;
1086 }
1087
1088 static bool
1089 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1090 {
1091         loff_t min, max;
1092         struct inode *inode;
1093         struct rb_node *n;
1094
1095         inode = file_inode(vma->vm_file);
1096
1097         min = vaddr_to_offset(vma, start);
1098         max = min + (end - start) - 1;
1099
1100         spin_lock(&uprobes_treelock);
1101         n = find_node_in_range(inode, min, max);
1102         spin_unlock(&uprobes_treelock);
1103
1104         return !!n;
1105 }
1106
1107 /*
1108  * Called in context of a munmap of a vma.
1109  */
1110 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1111 {
1112         if (no_uprobe_events() || !valid_vma(vma, false))
1113                 return;
1114
1115         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1116                 return;
1117
1118         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1119              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1120                 return;
1121
1122         if (vma_has_uprobes(vma, start, end))
1123                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1124 }
1125
1126 /* Slot allocation for XOL */
1127 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1128 {
1129         int ret = -EALREADY;
1130
1131         down_write(&mm->mmap_sem);
1132         if (mm->uprobes_state.xol_area)
1133                 goto fail;
1134
1135         if (!area->vaddr) {
1136                 /* Try to map as high as possible, this is only a hint. */
1137                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1138                                                 PAGE_SIZE, 0, 0);
1139                 if (area->vaddr & ~PAGE_MASK) {
1140                         ret = area->vaddr;
1141                         goto fail;
1142                 }
1143         }
1144
1145         ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1146                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1147         if (ret)
1148                 goto fail;
1149
1150         smp_wmb();      /* pairs with get_xol_area() */
1151         mm->uprobes_state.xol_area = area;
1152  fail:
1153         up_write(&mm->mmap_sem);
1154
1155         return ret;
1156 }
1157
1158 static struct xol_area *__create_xol_area(unsigned long vaddr)
1159 {
1160         struct mm_struct *mm = current->mm;
1161         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1162         struct xol_area *area;
1163
1164         area = kmalloc(sizeof(*area), GFP_KERNEL);
1165         if (unlikely(!area))
1166                 goto out;
1167
1168         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1169         if (!area->bitmap)
1170                 goto free_area;
1171
1172         area->page = alloc_page(GFP_HIGHUSER);
1173         if (!area->page)
1174                 goto free_bitmap;
1175
1176         area->vaddr = vaddr;
1177         init_waitqueue_head(&area->wq);
1178         /* Reserve the 1st slot for get_trampoline_vaddr() */
1179         set_bit(0, area->bitmap);
1180         atomic_set(&area->slot_count, 1);
1181         copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1182
1183         if (!xol_add_vma(mm, area))
1184                 return area;
1185
1186         __free_page(area->page);
1187  free_bitmap:
1188         kfree(area->bitmap);
1189  free_area:
1190         kfree(area);
1191  out:
1192         return NULL;
1193 }
1194
1195 /*
1196  * get_xol_area - Allocate process's xol_area if necessary.
1197  * This area will be used for storing instructions for execution out of line.
1198  *
1199  * Returns the allocated area or NULL.
1200  */
1201 static struct xol_area *get_xol_area(void)
1202 {
1203         struct mm_struct *mm = current->mm;
1204         struct xol_area *area;
1205
1206         if (!mm->uprobes_state.xol_area)
1207                 __create_xol_area(0);
1208
1209         area = mm->uprobes_state.xol_area;
1210         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1211         return area;
1212 }
1213
1214 /*
1215  * uprobe_clear_state - Free the area allocated for slots.
1216  */
1217 void uprobe_clear_state(struct mm_struct *mm)
1218 {
1219         struct xol_area *area = mm->uprobes_state.xol_area;
1220
1221         if (!area)
1222                 return;
1223
1224         put_page(area->page);
1225         kfree(area->bitmap);
1226         kfree(area);
1227 }
1228
1229 void uprobe_start_dup_mmap(void)
1230 {
1231         percpu_down_read(&dup_mmap_sem);
1232 }
1233
1234 void uprobe_end_dup_mmap(void)
1235 {
1236         percpu_up_read(&dup_mmap_sem);
1237 }
1238
1239 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1240 {
1241         newmm->uprobes_state.xol_area = NULL;
1242
1243         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1244                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1245                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1246                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1247         }
1248 }
1249
1250 /*
1251  *  - search for a free slot.
1252  */
1253 static unsigned long xol_take_insn_slot(struct xol_area *area)
1254 {
1255         unsigned long slot_addr;
1256         int slot_nr;
1257
1258         do {
1259                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1260                 if (slot_nr < UINSNS_PER_PAGE) {
1261                         if (!test_and_set_bit(slot_nr, area->bitmap))
1262                                 break;
1263
1264                         slot_nr = UINSNS_PER_PAGE;
1265                         continue;
1266                 }
1267                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1268         } while (slot_nr >= UINSNS_PER_PAGE);
1269
1270         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1271         atomic_inc(&area->slot_count);
1272
1273         return slot_addr;
1274 }
1275
1276 /*
1277  * xol_get_insn_slot - allocate a slot for xol.
1278  * Returns the allocated slot address or 0.
1279  */
1280 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1281 {
1282         struct xol_area *area;
1283         unsigned long xol_vaddr;
1284
1285         area = get_xol_area();
1286         if (!area)
1287                 return 0;
1288
1289         xol_vaddr = xol_take_insn_slot(area);
1290         if (unlikely(!xol_vaddr))
1291                 return 0;
1292
1293         /* Initialize the slot */
1294         copy_to_page(area->page, xol_vaddr,
1295                         &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1296         /*
1297          * We probably need flush_icache_user_range() but it needs vma.
1298          * This should work on supported architectures too.
1299          */
1300         flush_dcache_page(area->page);
1301
1302         return xol_vaddr;
1303 }
1304
1305 /*
1306  * xol_free_insn_slot - If slot was earlier allocated by
1307  * @xol_get_insn_slot(), make the slot available for
1308  * subsequent requests.
1309  */
1310 static void xol_free_insn_slot(struct task_struct *tsk)
1311 {
1312         struct xol_area *area;
1313         unsigned long vma_end;
1314         unsigned long slot_addr;
1315
1316         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1317                 return;
1318
1319         slot_addr = tsk->utask->xol_vaddr;
1320         if (unlikely(!slot_addr))
1321                 return;
1322
1323         area = tsk->mm->uprobes_state.xol_area;
1324         vma_end = area->vaddr + PAGE_SIZE;
1325         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1326                 unsigned long offset;
1327                 int slot_nr;
1328
1329                 offset = slot_addr - area->vaddr;
1330                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1331                 if (slot_nr >= UINSNS_PER_PAGE)
1332                         return;
1333
1334                 clear_bit(slot_nr, area->bitmap);
1335                 atomic_dec(&area->slot_count);
1336                 if (waitqueue_active(&area->wq))
1337                         wake_up(&area->wq);
1338
1339                 tsk->utask->xol_vaddr = 0;
1340         }
1341 }
1342
1343 /**
1344  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1345  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1346  * instruction.
1347  * Return the address of the breakpoint instruction.
1348  */
1349 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1350 {
1351         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1352 }
1353
1354 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1355 {
1356         struct uprobe_task *utask = current->utask;
1357
1358         if (unlikely(utask && utask->active_uprobe))
1359                 return utask->vaddr;
1360
1361         return instruction_pointer(regs);
1362 }
1363
1364 /*
1365  * Called with no locks held.
1366  * Called in context of a exiting or a exec-ing thread.
1367  */
1368 void uprobe_free_utask(struct task_struct *t)
1369 {
1370         struct uprobe_task *utask = t->utask;
1371         struct return_instance *ri, *tmp;
1372
1373         if (!utask)
1374                 return;
1375
1376         if (utask->active_uprobe)
1377                 put_uprobe(utask->active_uprobe);
1378
1379         ri = utask->return_instances;
1380         while (ri) {
1381                 tmp = ri;
1382                 ri = ri->next;
1383
1384                 put_uprobe(tmp->uprobe);
1385                 kfree(tmp);
1386         }
1387
1388         xol_free_insn_slot(t);
1389         kfree(utask);
1390         t->utask = NULL;
1391 }
1392
1393 /*
1394  * Allocate a uprobe_task object for the task if if necessary.
1395  * Called when the thread hits a breakpoint.
1396  *
1397  * Returns:
1398  * - pointer to new uprobe_task on success
1399  * - NULL otherwise
1400  */
1401 static struct uprobe_task *get_utask(void)
1402 {
1403         if (!current->utask)
1404                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1405         return current->utask;
1406 }
1407
1408 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1409 {
1410         struct uprobe_task *n_utask;
1411         struct return_instance **p, *o, *n;
1412
1413         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1414         if (!n_utask)
1415                 return -ENOMEM;
1416         t->utask = n_utask;
1417
1418         p = &n_utask->return_instances;
1419         for (o = o_utask->return_instances; o; o = o->next) {
1420                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1421                 if (!n)
1422                         return -ENOMEM;
1423
1424                 *n = *o;
1425                 atomic_inc(&n->uprobe->ref);
1426                 n->next = NULL;
1427
1428                 *p = n;
1429                 p = &n->next;
1430                 n_utask->depth++;
1431         }
1432
1433         return 0;
1434 }
1435
1436 static void uprobe_warn(struct task_struct *t, const char *msg)
1437 {
1438         pr_warn("uprobe: %s:%d failed to %s\n",
1439                         current->comm, current->pid, msg);
1440 }
1441
1442 static void dup_xol_work(struct callback_head *work)
1443 {
1444         if (current->flags & PF_EXITING)
1445                 return;
1446
1447         if (!__create_xol_area(current->utask->dup_xol_addr))
1448                 uprobe_warn(current, "dup xol area");
1449 }
1450
1451 /*
1452  * Called in context of a new clone/fork from copy_process.
1453  */
1454 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1455 {
1456         struct uprobe_task *utask = current->utask;
1457         struct mm_struct *mm = current->mm;
1458         struct xol_area *area;
1459
1460         t->utask = NULL;
1461
1462         if (!utask || !utask->return_instances)
1463                 return;
1464
1465         if (mm == t->mm && !(flags & CLONE_VFORK))
1466                 return;
1467
1468         if (dup_utask(t, utask))
1469                 return uprobe_warn(t, "dup ret instances");
1470
1471         /* The task can fork() after dup_xol_work() fails */
1472         area = mm->uprobes_state.xol_area;
1473         if (!area)
1474                 return uprobe_warn(t, "dup xol area");
1475
1476         if (mm == t->mm)
1477                 return;
1478
1479         t->utask->dup_xol_addr = area->vaddr;
1480         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1481         task_work_add(t, &t->utask->dup_xol_work, true);
1482 }
1483
1484 /*
1485  * Current area->vaddr notion assume the trampoline address is always
1486  * equal area->vaddr.
1487  *
1488  * Returns -1 in case the xol_area is not allocated.
1489  */
1490 static unsigned long get_trampoline_vaddr(void)
1491 {
1492         struct xol_area *area;
1493         unsigned long trampoline_vaddr = -1;
1494
1495         area = current->mm->uprobes_state.xol_area;
1496         smp_read_barrier_depends();
1497         if (area)
1498                 trampoline_vaddr = area->vaddr;
1499
1500         return trampoline_vaddr;
1501 }
1502
1503 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1504 {
1505         struct return_instance *ri;
1506         struct uprobe_task *utask;
1507         unsigned long orig_ret_vaddr, trampoline_vaddr;
1508         bool chained = false;
1509
1510         if (!get_xol_area())
1511                 return;
1512
1513         utask = get_utask();
1514         if (!utask)
1515                 return;
1516
1517         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1518                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1519                                 " nestedness limit pid/tgid=%d/%d\n",
1520                                 current->pid, current->tgid);
1521                 return;
1522         }
1523
1524         ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1525         if (!ri)
1526                 goto fail;
1527
1528         trampoline_vaddr = get_trampoline_vaddr();
1529         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1530         if (orig_ret_vaddr == -1)
1531                 goto fail;
1532
1533         /*
1534          * We don't want to keep trampoline address in stack, rather keep the
1535          * original return address of first caller thru all the consequent
1536          * instances. This also makes breakpoint unwrapping easier.
1537          */
1538         if (orig_ret_vaddr == trampoline_vaddr) {
1539                 if (!utask->return_instances) {
1540                         /*
1541                          * This situation is not possible. Likely we have an
1542                          * attack from user-space.
1543                          */
1544                         pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1545                                                 current->pid, current->tgid);
1546                         goto fail;
1547                 }
1548
1549                 chained = true;
1550                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1551         }
1552
1553         atomic_inc(&uprobe->ref);
1554         ri->uprobe = uprobe;
1555         ri->func = instruction_pointer(regs);
1556         ri->orig_ret_vaddr = orig_ret_vaddr;
1557         ri->chained = chained;
1558
1559         utask->depth++;
1560
1561         /* add instance to the stack */
1562         ri->next = utask->return_instances;
1563         utask->return_instances = ri;
1564
1565         return;
1566
1567  fail:
1568         kfree(ri);
1569 }
1570
1571 /* Prepare to single-step probed instruction out of line. */
1572 static int
1573 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1574 {
1575         struct uprobe_task *utask;
1576         unsigned long xol_vaddr;
1577         int err;
1578
1579         utask = get_utask();
1580         if (!utask)
1581                 return -ENOMEM;
1582
1583         xol_vaddr = xol_get_insn_slot(uprobe);
1584         if (!xol_vaddr)
1585                 return -ENOMEM;
1586
1587         utask->xol_vaddr = xol_vaddr;
1588         utask->vaddr = bp_vaddr;
1589
1590         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1591         if (unlikely(err)) {
1592                 xol_free_insn_slot(current);
1593                 return err;
1594         }
1595
1596         utask->active_uprobe = uprobe;
1597         utask->state = UTASK_SSTEP;
1598         return 0;
1599 }
1600
1601 /*
1602  * If we are singlestepping, then ensure this thread is not connected to
1603  * non-fatal signals until completion of singlestep.  When xol insn itself
1604  * triggers the signal,  restart the original insn even if the task is
1605  * already SIGKILL'ed (since coredump should report the correct ip).  This
1606  * is even more important if the task has a handler for SIGSEGV/etc, The
1607  * _same_ instruction should be repeated again after return from the signal
1608  * handler, and SSTEP can never finish in this case.
1609  */
1610 bool uprobe_deny_signal(void)
1611 {
1612         struct task_struct *t = current;
1613         struct uprobe_task *utask = t->utask;
1614
1615         if (likely(!utask || !utask->active_uprobe))
1616                 return false;
1617
1618         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1619
1620         if (signal_pending(t)) {
1621                 spin_lock_irq(&t->sighand->siglock);
1622                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1623                 spin_unlock_irq(&t->sighand->siglock);
1624
1625                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1626                         utask->state = UTASK_SSTEP_TRAPPED;
1627                         set_tsk_thread_flag(t, TIF_UPROBE);
1628                         set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1629                 }
1630         }
1631
1632         return true;
1633 }
1634
1635 static void mmf_recalc_uprobes(struct mm_struct *mm)
1636 {
1637         struct vm_area_struct *vma;
1638
1639         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1640                 if (!valid_vma(vma, false))
1641                         continue;
1642                 /*
1643                  * This is not strictly accurate, we can race with
1644                  * uprobe_unregister() and see the already removed
1645                  * uprobe if delete_uprobe() was not yet called.
1646                  * Or this uprobe can be filtered out.
1647                  */
1648                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1649                         return;
1650         }
1651
1652         clear_bit(MMF_HAS_UPROBES, &mm->flags);
1653 }
1654
1655 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1656 {
1657         struct page *page;
1658         uprobe_opcode_t opcode;
1659         int result;
1660
1661         pagefault_disable();
1662         result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1663                                                         sizeof(opcode));
1664         pagefault_enable();
1665
1666         if (likely(result == 0))
1667                 goto out;
1668
1669         result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1670         if (result < 0)
1671                 return result;
1672
1673         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1674         put_page(page);
1675  out:
1676         /* This needs to return true for any variant of the trap insn */
1677         return is_trap_insn(&opcode);
1678 }
1679
1680 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1681 {
1682         struct mm_struct *mm = current->mm;
1683         struct uprobe *uprobe = NULL;
1684         struct vm_area_struct *vma;
1685
1686         down_read(&mm->mmap_sem);
1687         vma = find_vma(mm, bp_vaddr);
1688         if (vma && vma->vm_start <= bp_vaddr) {
1689                 if (valid_vma(vma, false)) {
1690                         struct inode *inode = file_inode(vma->vm_file);
1691                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1692
1693                         uprobe = find_uprobe(inode, offset);
1694                 }
1695
1696                 if (!uprobe)
1697                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1698         } else {
1699                 *is_swbp = -EFAULT;
1700         }
1701
1702         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1703                 mmf_recalc_uprobes(mm);
1704         up_read(&mm->mmap_sem);
1705
1706         return uprobe;
1707 }
1708
1709 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1710 {
1711         struct uprobe_consumer *uc;
1712         int remove = UPROBE_HANDLER_REMOVE;
1713         bool need_prep = false; /* prepare return uprobe, when needed */
1714
1715         down_read(&uprobe->register_rwsem);
1716         for (uc = uprobe->consumers; uc; uc = uc->next) {
1717                 int rc = 0;
1718
1719                 if (uc->handler) {
1720                         rc = uc->handler(uc, regs);
1721                         WARN(rc & ~UPROBE_HANDLER_MASK,
1722                                 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1723                 }
1724
1725                 if (uc->ret_handler)
1726                         need_prep = true;
1727
1728                 remove &= rc;
1729         }
1730
1731         if (need_prep && !remove)
1732                 prepare_uretprobe(uprobe, regs); /* put bp at return */
1733
1734         if (remove && uprobe->consumers) {
1735                 WARN_ON(!uprobe_is_active(uprobe));
1736                 unapply_uprobe(uprobe, current->mm);
1737         }
1738         up_read(&uprobe->register_rwsem);
1739 }
1740
1741 static void
1742 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1743 {
1744         struct uprobe *uprobe = ri->uprobe;
1745         struct uprobe_consumer *uc;
1746
1747         down_read(&uprobe->register_rwsem);
1748         for (uc = uprobe->consumers; uc; uc = uc->next) {
1749                 if (uc->ret_handler)
1750                         uc->ret_handler(uc, ri->func, regs);
1751         }
1752         up_read(&uprobe->register_rwsem);
1753 }
1754
1755 static bool handle_trampoline(struct pt_regs *regs)
1756 {
1757         struct uprobe_task *utask;
1758         struct return_instance *ri, *tmp;
1759         bool chained;
1760
1761         utask = current->utask;
1762         if (!utask)
1763                 return false;
1764
1765         ri = utask->return_instances;
1766         if (!ri)
1767                 return false;
1768
1769         /*
1770          * TODO: we should throw out return_instance's invalidated by
1771          * longjmp(), currently we assume that the probed function always
1772          * returns.
1773          */
1774         instruction_pointer_set(regs, ri->orig_ret_vaddr);
1775
1776         for (;;) {
1777                 handle_uretprobe_chain(ri, regs);
1778
1779                 chained = ri->chained;
1780                 put_uprobe(ri->uprobe);
1781
1782                 tmp = ri;
1783                 ri = ri->next;
1784                 kfree(tmp);
1785                 utask->depth--;
1786
1787                 if (!chained)
1788                         break;
1789                 BUG_ON(!ri);
1790         }
1791
1792         utask->return_instances = ri;
1793
1794         return true;
1795 }
1796
1797 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1798 {
1799         return false;
1800 }
1801
1802 /*
1803  * Run handler and ask thread to singlestep.
1804  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1805  */
1806 static void handle_swbp(struct pt_regs *regs)
1807 {
1808         struct uprobe *uprobe;
1809         unsigned long bp_vaddr;
1810         int uninitialized_var(is_swbp);
1811
1812         bp_vaddr = uprobe_get_swbp_addr(regs);
1813         if (bp_vaddr == get_trampoline_vaddr()) {
1814                 if (handle_trampoline(regs))
1815                         return;
1816
1817                 pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1818                                                 current->pid, current->tgid);
1819         }
1820
1821         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1822         if (!uprobe) {
1823                 if (is_swbp > 0) {
1824                         /* No matching uprobe; signal SIGTRAP. */
1825                         send_sig(SIGTRAP, current, 0);
1826                 } else {
1827                         /*
1828                          * Either we raced with uprobe_unregister() or we can't
1829                          * access this memory. The latter is only possible if
1830                          * another thread plays with our ->mm. In both cases
1831                          * we can simply restart. If this vma was unmapped we
1832                          * can pretend this insn was not executed yet and get
1833                          * the (correct) SIGSEGV after restart.
1834                          */
1835                         instruction_pointer_set(regs, bp_vaddr);
1836                 }
1837                 return;
1838         }
1839
1840         /* change it in advance for ->handler() and restart */
1841         instruction_pointer_set(regs, bp_vaddr);
1842
1843         /*
1844          * TODO: move copy_insn/etc into _register and remove this hack.
1845          * After we hit the bp, _unregister + _register can install the
1846          * new and not-yet-analyzed uprobe at the same address, restart.
1847          */
1848         smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1849         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1850                 goto out;
1851
1852         /* Tracing handlers use ->utask to communicate with fetch methods */
1853         if (!get_utask())
1854                 goto out;
1855
1856         if (arch_uprobe_ignore(&uprobe->arch, regs))
1857                 goto out;
1858
1859         handler_chain(uprobe, regs);
1860
1861         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1862                 goto out;
1863
1864         if (!pre_ssout(uprobe, regs, bp_vaddr))
1865                 return;
1866
1867         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1868 out:
1869         put_uprobe(uprobe);
1870 }
1871
1872 /*
1873  * Perform required fix-ups and disable singlestep.
1874  * Allow pending signals to take effect.
1875  */
1876 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1877 {
1878         struct uprobe *uprobe;
1879         int err = 0;
1880
1881         uprobe = utask->active_uprobe;
1882         if (utask->state == UTASK_SSTEP_ACK)
1883                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
1884         else if (utask->state == UTASK_SSTEP_TRAPPED)
1885                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1886         else
1887                 WARN_ON_ONCE(1);
1888
1889         put_uprobe(uprobe);
1890         utask->active_uprobe = NULL;
1891         utask->state = UTASK_RUNNING;
1892         xol_free_insn_slot(current);
1893
1894         spin_lock_irq(&current->sighand->siglock);
1895         recalc_sigpending(); /* see uprobe_deny_signal() */
1896         spin_unlock_irq(&current->sighand->siglock);
1897
1898         if (unlikely(err)) {
1899                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1900                 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1901         }
1902 }
1903
1904 /*
1905  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1906  * allows the thread to return from interrupt. After that handle_swbp()
1907  * sets utask->active_uprobe.
1908  *
1909  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1910  * and allows the thread to return from interrupt.
1911  *
1912  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1913  * uprobe_notify_resume().
1914  */
1915 void uprobe_notify_resume(struct pt_regs *regs)
1916 {
1917         struct uprobe_task *utask;
1918
1919         clear_thread_flag(TIF_UPROBE);
1920
1921         utask = current->utask;
1922         if (utask && utask->active_uprobe)
1923                 handle_singlestep(utask, regs);
1924         else
1925                 handle_swbp(regs);
1926 }
1927
1928 /*
1929  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1930  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1931  */
1932 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1933 {
1934         if (!current->mm)
1935                 return 0;
1936
1937         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1938             (!current->utask || !current->utask->return_instances))
1939                 return 0;
1940
1941         set_thread_flag(TIF_UPROBE);
1942         return 1;
1943 }
1944
1945 /*
1946  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1947  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1948  */
1949 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1950 {
1951         struct uprobe_task *utask = current->utask;
1952
1953         if (!current->mm || !utask || !utask->active_uprobe)
1954                 /* task is currently not uprobed */
1955                 return 0;
1956
1957         utask->state = UTASK_SSTEP_ACK;
1958         set_thread_flag(TIF_UPROBE);
1959         return 1;
1960 }
1961
1962 static struct notifier_block uprobe_exception_nb = {
1963         .notifier_call          = arch_uprobe_exception_notify,
1964         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
1965 };
1966
1967 static int __init init_uprobes(void)
1968 {
1969         int i;
1970
1971         for (i = 0; i < UPROBES_HASH_SZ; i++)
1972                 mutex_init(&uprobes_mmap_mutex[i]);
1973
1974         if (percpu_init_rwsem(&dup_mmap_sem))
1975                 return -ENOMEM;
1976
1977         return register_die_notifier(&uprobe_exception_nb);
1978 }
1979 __initcall(init_uprobes);