]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/exit.c
exec: RT sub-thread can livelock and monopolize CPU on exec
[karo-tx-linux.git] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/freezer.h>
34 #include <linux/cpuset.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47
48 #include <asm/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu_context.h>
52
53 extern void sem_exit (void);
54
55 static void exit_mm(struct task_struct * tsk);
56
57 static void __unhash_process(struct task_struct *p)
58 {
59         nr_threads--;
60         detach_pid(p, PIDTYPE_PID);
61         if (thread_group_leader(p)) {
62                 detach_pid(p, PIDTYPE_PGID);
63                 detach_pid(p, PIDTYPE_SID);
64
65                 list_del_rcu(&p->tasks);
66                 __get_cpu_var(process_counts)--;
67         }
68         list_del_rcu(&p->thread_group);
69         remove_parent(p);
70 }
71
72 /*
73  * This function expects the tasklist_lock write-locked.
74  */
75 static void __exit_signal(struct task_struct *tsk)
76 {
77         struct signal_struct *sig = tsk->signal;
78         struct sighand_struct *sighand;
79
80         BUG_ON(!sig);
81         BUG_ON(!atomic_read(&sig->count));
82
83         rcu_read_lock();
84         sighand = rcu_dereference(tsk->sighand);
85         spin_lock(&sighand->siglock);
86
87         posix_cpu_timers_exit(tsk);
88         if (atomic_dec_and_test(&sig->count))
89                 posix_cpu_timers_exit_group(tsk);
90         else {
91                 /*
92                  * If there is any task waiting for the group exit
93                  * then notify it:
94                  */
95                 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
96                         wake_up_process(sig->group_exit_task);
97
98                 if (tsk == sig->curr_target)
99                         sig->curr_target = next_thread(tsk);
100                 /*
101                  * Accumulate here the counters for all threads but the
102                  * group leader as they die, so they can be added into
103                  * the process-wide totals when those are taken.
104                  * The group leader stays around as a zombie as long
105                  * as there are other threads.  When it gets reaped,
106                  * the exit.c code will add its counts into these totals.
107                  * We won't ever get here for the group leader, since it
108                  * will have been the last reference on the signal_struct.
109                  */
110                 sig->utime = cputime_add(sig->utime, tsk->utime);
111                 sig->stime = cputime_add(sig->stime, tsk->stime);
112                 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
113                 sig->min_flt += tsk->min_flt;
114                 sig->maj_flt += tsk->maj_flt;
115                 sig->nvcsw += tsk->nvcsw;
116                 sig->nivcsw += tsk->nivcsw;
117                 sig->inblock += task_io_get_inblock(tsk);
118                 sig->oublock += task_io_get_oublock(tsk);
119                 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
120                 sig = NULL; /* Marker for below. */
121         }
122
123         __unhash_process(tsk);
124
125         tsk->signal = NULL;
126         tsk->sighand = NULL;
127         spin_unlock(&sighand->siglock);
128         rcu_read_unlock();
129
130         __cleanup_sighand(sighand);
131         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
132         flush_sigqueue(&tsk->pending);
133         if (sig) {
134                 flush_sigqueue(&sig->shared_pending);
135                 taskstats_tgid_free(sig);
136                 __cleanup_signal(sig);
137         }
138 }
139
140 static void delayed_put_task_struct(struct rcu_head *rhp)
141 {
142         put_task_struct(container_of(rhp, struct task_struct, rcu));
143 }
144
145 void release_task(struct task_struct * p)
146 {
147         struct task_struct *leader;
148         int zap_leader;
149 repeat:
150         atomic_dec(&p->user->processes);
151         write_lock_irq(&tasklist_lock);
152         ptrace_unlink(p);
153         BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
154         __exit_signal(p);
155
156         /*
157          * If we are the last non-leader member of the thread
158          * group, and the leader is zombie, then notify the
159          * group leader's parent process. (if it wants notification.)
160          */
161         zap_leader = 0;
162         leader = p->group_leader;
163         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
164                 BUG_ON(leader->exit_signal == -1);
165                 do_notify_parent(leader, leader->exit_signal);
166                 /*
167                  * If we were the last child thread and the leader has
168                  * exited already, and the leader's parent ignores SIGCHLD,
169                  * then we are the one who should release the leader.
170                  *
171                  * do_notify_parent() will have marked it self-reaping in
172                  * that case.
173                  */
174                 zap_leader = (leader->exit_signal == -1);
175         }
176
177         write_unlock_irq(&tasklist_lock);
178         proc_flush_task(p);
179         release_thread(p);
180         call_rcu(&p->rcu, delayed_put_task_struct);
181
182         p = leader;
183         if (unlikely(zap_leader))
184                 goto repeat;
185 }
186
187 /*
188  * This checks not only the pgrp, but falls back on the pid if no
189  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
190  * without this...
191  *
192  * The caller must hold rcu lock or the tasklist lock.
193  */
194 struct pid *session_of_pgrp(struct pid *pgrp)
195 {
196         struct task_struct *p;
197         struct pid *sid = NULL;
198
199         p = pid_task(pgrp, PIDTYPE_PGID);
200         if (p == NULL)
201                 p = pid_task(pgrp, PIDTYPE_PID);
202         if (p != NULL)
203                 sid = task_session(p);
204
205         return sid;
206 }
207
208 /*
209  * Determine if a process group is "orphaned", according to the POSIX
210  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
211  * by terminal-generated stop signals.  Newly orphaned process groups are
212  * to receive a SIGHUP and a SIGCONT.
213  *
214  * "I ask you, have you ever known what it is to be an orphan?"
215  */
216 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
217 {
218         struct task_struct *p;
219         int ret = 1;
220
221         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
222                 if (p == ignored_task
223                                 || p->exit_state
224                                 || is_init(p->real_parent))
225                         continue;
226                 if (task_pgrp(p->real_parent) != pgrp &&
227                     task_session(p->real_parent) == task_session(p)) {
228                         ret = 0;
229                         break;
230                 }
231         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
232         return ret;     /* (sighing) "Often!" */
233 }
234
235 int is_current_pgrp_orphaned(void)
236 {
237         int retval;
238
239         read_lock(&tasklist_lock);
240         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
241         read_unlock(&tasklist_lock);
242
243         return retval;
244 }
245
246 static int has_stopped_jobs(struct pid *pgrp)
247 {
248         int retval = 0;
249         struct task_struct *p;
250
251         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
252                 if (p->state != TASK_STOPPED)
253                         continue;
254                 retval = 1;
255                 break;
256         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
257         return retval;
258 }
259
260 /**
261  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
262  *
263  * If a kernel thread is launched as a result of a system call, or if
264  * it ever exits, it should generally reparent itself to kthreadd so it
265  * isn't in the way of other processes and is correctly cleaned up on exit.
266  *
267  * The various task state such as scheduling policy and priority may have
268  * been inherited from a user process, so we reset them to sane values here.
269  *
270  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
271  */
272 static void reparent_to_kthreadd(void)
273 {
274         write_lock_irq(&tasklist_lock);
275
276         ptrace_unlink(current);
277         /* Reparent to init */
278         remove_parent(current);
279         current->real_parent = current->parent = kthreadd_task;
280         add_parent(current);
281
282         /* Set the exit signal to SIGCHLD so we signal init on exit */
283         current->exit_signal = SIGCHLD;
284
285         if (task_nice(current) < 0)
286                 set_user_nice(current, 0);
287         /* cpus_allowed? */
288         /* rt_priority? */
289         /* signals? */
290         security_task_reparent_to_init(current);
291         memcpy(current->signal->rlim, init_task.signal->rlim,
292                sizeof(current->signal->rlim));
293         atomic_inc(&(INIT_USER->__count));
294         write_unlock_irq(&tasklist_lock);
295         switch_uid(INIT_USER);
296 }
297
298 void __set_special_pids(pid_t session, pid_t pgrp)
299 {
300         struct task_struct *curr = current->group_leader;
301
302         if (process_session(curr) != session) {
303                 detach_pid(curr, PIDTYPE_SID);
304                 set_signal_session(curr->signal, session);
305                 attach_pid(curr, PIDTYPE_SID, find_pid(session));
306         }
307         if (process_group(curr) != pgrp) {
308                 detach_pid(curr, PIDTYPE_PGID);
309                 curr->signal->pgrp = pgrp;
310                 attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp));
311         }
312 }
313
314 static void set_special_pids(pid_t session, pid_t pgrp)
315 {
316         write_lock_irq(&tasklist_lock);
317         __set_special_pids(session, pgrp);
318         write_unlock_irq(&tasklist_lock);
319 }
320
321 /*
322  * Let kernel threads use this to say that they
323  * allow a certain signal (since daemonize() will
324  * have disabled all of them by default).
325  */
326 int allow_signal(int sig)
327 {
328         if (!valid_signal(sig) || sig < 1)
329                 return -EINVAL;
330
331         spin_lock_irq(&current->sighand->siglock);
332         sigdelset(&current->blocked, sig);
333         if (!current->mm) {
334                 /* Kernel threads handle their own signals.
335                    Let the signal code know it'll be handled, so
336                    that they don't get converted to SIGKILL or
337                    just silently dropped */
338                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
339         }
340         recalc_sigpending();
341         spin_unlock_irq(&current->sighand->siglock);
342         return 0;
343 }
344
345 EXPORT_SYMBOL(allow_signal);
346
347 int disallow_signal(int sig)
348 {
349         if (!valid_signal(sig) || sig < 1)
350                 return -EINVAL;
351
352         spin_lock_irq(&current->sighand->siglock);
353         current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
354         recalc_sigpending();
355         spin_unlock_irq(&current->sighand->siglock);
356         return 0;
357 }
358
359 EXPORT_SYMBOL(disallow_signal);
360
361 /*
362  *      Put all the gunge required to become a kernel thread without
363  *      attached user resources in one place where it belongs.
364  */
365
366 void daemonize(const char *name, ...)
367 {
368         va_list args;
369         struct fs_struct *fs;
370         sigset_t blocked;
371
372         va_start(args, name);
373         vsnprintf(current->comm, sizeof(current->comm), name, args);
374         va_end(args);
375
376         /*
377          * If we were started as result of loading a module, close all of the
378          * user space pages.  We don't need them, and if we didn't close them
379          * they would be locked into memory.
380          */
381         exit_mm(current);
382         /*
383          * We don't want to have TIF_FREEZE set if the system-wide hibernation
384          * or suspend transition begins right now.
385          */
386         current->flags |= PF_NOFREEZE;
387
388         set_special_pids(1, 1);
389         proc_clear_tty(current);
390
391         /* Block and flush all signals */
392         sigfillset(&blocked);
393         sigprocmask(SIG_BLOCK, &blocked, NULL);
394         flush_signals(current);
395
396         /* Become as one with the init task */
397
398         exit_fs(current);       /* current->fs->count--; */
399         fs = init_task.fs;
400         current->fs = fs;
401         atomic_inc(&fs->count);
402
403         exit_task_namespaces(current);
404         current->nsproxy = init_task.nsproxy;
405         get_task_namespaces(current);
406
407         exit_files(current);
408         current->files = init_task.files;
409         atomic_inc(&current->files->count);
410
411         reparent_to_kthreadd();
412 }
413
414 EXPORT_SYMBOL(daemonize);
415
416 static void close_files(struct files_struct * files)
417 {
418         int i, j;
419         struct fdtable *fdt;
420
421         j = 0;
422
423         /*
424          * It is safe to dereference the fd table without RCU or
425          * ->file_lock because this is the last reference to the
426          * files structure.
427          */
428         fdt = files_fdtable(files);
429         for (;;) {
430                 unsigned long set;
431                 i = j * __NFDBITS;
432                 if (i >= fdt->max_fds)
433                         break;
434                 set = fdt->open_fds->fds_bits[j++];
435                 while (set) {
436                         if (set & 1) {
437                                 struct file * file = xchg(&fdt->fd[i], NULL);
438                                 if (file) {
439                                         filp_close(file, files);
440                                         cond_resched();
441                                 }
442                         }
443                         i++;
444                         set >>= 1;
445                 }
446         }
447 }
448
449 struct files_struct *get_files_struct(struct task_struct *task)
450 {
451         struct files_struct *files;
452
453         task_lock(task);
454         files = task->files;
455         if (files)
456                 atomic_inc(&files->count);
457         task_unlock(task);
458
459         return files;
460 }
461
462 void fastcall put_files_struct(struct files_struct *files)
463 {
464         struct fdtable *fdt;
465
466         if (atomic_dec_and_test(&files->count)) {
467                 close_files(files);
468                 /*
469                  * Free the fd and fdset arrays if we expanded them.
470                  * If the fdtable was embedded, pass files for freeing
471                  * at the end of the RCU grace period. Otherwise,
472                  * you can free files immediately.
473                  */
474                 fdt = files_fdtable(files);
475                 if (fdt != &files->fdtab)
476                         kmem_cache_free(files_cachep, files);
477                 free_fdtable(fdt);
478         }
479 }
480
481 EXPORT_SYMBOL(put_files_struct);
482
483 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
484 {
485         struct files_struct *old;
486
487         old = tsk->files;
488         task_lock(tsk);
489         tsk->files = files;
490         task_unlock(tsk);
491         put_files_struct(old);
492 }
493 EXPORT_SYMBOL(reset_files_struct);
494
495 static inline void __exit_files(struct task_struct *tsk)
496 {
497         struct files_struct * files = tsk->files;
498
499         if (files) {
500                 task_lock(tsk);
501                 tsk->files = NULL;
502                 task_unlock(tsk);
503                 put_files_struct(files);
504         }
505 }
506
507 void exit_files(struct task_struct *tsk)
508 {
509         __exit_files(tsk);
510 }
511
512 static inline void __put_fs_struct(struct fs_struct *fs)
513 {
514         /* No need to hold fs->lock if we are killing it */
515         if (atomic_dec_and_test(&fs->count)) {
516                 dput(fs->root);
517                 mntput(fs->rootmnt);
518                 dput(fs->pwd);
519                 mntput(fs->pwdmnt);
520                 if (fs->altroot) {
521                         dput(fs->altroot);
522                         mntput(fs->altrootmnt);
523                 }
524                 kmem_cache_free(fs_cachep, fs);
525         }
526 }
527
528 void put_fs_struct(struct fs_struct *fs)
529 {
530         __put_fs_struct(fs);
531 }
532
533 static inline void __exit_fs(struct task_struct *tsk)
534 {
535         struct fs_struct * fs = tsk->fs;
536
537         if (fs) {
538                 task_lock(tsk);
539                 tsk->fs = NULL;
540                 task_unlock(tsk);
541                 __put_fs_struct(fs);
542         }
543 }
544
545 void exit_fs(struct task_struct *tsk)
546 {
547         __exit_fs(tsk);
548 }
549
550 EXPORT_SYMBOL_GPL(exit_fs);
551
552 /*
553  * Turn us into a lazy TLB process if we
554  * aren't already..
555  */
556 static void exit_mm(struct task_struct * tsk)
557 {
558         struct mm_struct *mm = tsk->mm;
559
560         mm_release(tsk, mm);
561         if (!mm)
562                 return;
563         /*
564          * Serialize with any possible pending coredump.
565          * We must hold mmap_sem around checking core_waiters
566          * and clearing tsk->mm.  The core-inducing thread
567          * will increment core_waiters for each thread in the
568          * group with ->mm != NULL.
569          */
570         down_read(&mm->mmap_sem);
571         if (mm->core_waiters) {
572                 up_read(&mm->mmap_sem);
573                 down_write(&mm->mmap_sem);
574                 if (!--mm->core_waiters)
575                         complete(mm->core_startup_done);
576                 up_write(&mm->mmap_sem);
577
578                 wait_for_completion(&mm->core_done);
579                 down_read(&mm->mmap_sem);
580         }
581         atomic_inc(&mm->mm_count);
582         BUG_ON(mm != tsk->active_mm);
583         /* more a memory barrier than a real lock */
584         task_lock(tsk);
585         tsk->mm = NULL;
586         up_read(&mm->mmap_sem);
587         enter_lazy_tlb(mm, current);
588         /* We don't want this task to be frozen prematurely */
589         clear_freeze_flag(tsk);
590         task_unlock(tsk);
591         mmput(mm);
592 }
593
594 static void
595 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
596 {
597         if (p->pdeath_signal)
598                 /* We already hold the tasklist_lock here.  */
599                 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
600
601         /* Move the child from its dying parent to the new one.  */
602         if (unlikely(traced)) {
603                 /* Preserve ptrace links if someone else is tracing this child.  */
604                 list_del_init(&p->ptrace_list);
605                 if (p->parent != p->real_parent)
606                         list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
607         } else {
608                 /* If this child is being traced, then we're the one tracing it
609                  * anyway, so let go of it.
610                  */
611                 p->ptrace = 0;
612                 remove_parent(p);
613                 p->parent = p->real_parent;
614                 add_parent(p);
615
616                 if (p->state == TASK_TRACED) {
617                         /*
618                          * If it was at a trace stop, turn it into
619                          * a normal stop since it's no longer being
620                          * traced.
621                          */
622                         ptrace_untrace(p);
623                 }
624         }
625
626         /* If this is a threaded reparent there is no need to
627          * notify anyone anything has happened.
628          */
629         if (p->real_parent->group_leader == father->group_leader)
630                 return;
631
632         /* We don't want people slaying init.  */
633         if (p->exit_signal != -1)
634                 p->exit_signal = SIGCHLD;
635
636         /* If we'd notified the old parent about this child's death,
637          * also notify the new parent.
638          */
639         if (!traced && p->exit_state == EXIT_ZOMBIE &&
640             p->exit_signal != -1 && thread_group_empty(p))
641                 do_notify_parent(p, p->exit_signal);
642
643         /*
644          * process group orphan check
645          * Case ii: Our child is in a different pgrp
646          * than we are, and it was the only connection
647          * outside, so the child pgrp is now orphaned.
648          */
649         if ((task_pgrp(p) != task_pgrp(father)) &&
650             (task_session(p) == task_session(father))) {
651                 struct pid *pgrp = task_pgrp(p);
652
653                 if (will_become_orphaned_pgrp(pgrp, NULL) &&
654                     has_stopped_jobs(pgrp)) {
655                         __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
656                         __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
657                 }
658         }
659 }
660
661 /*
662  * When we die, we re-parent all our children.
663  * Try to give them to another thread in our thread
664  * group, and if no such member exists, give it to
665  * the child reaper process (ie "init") in our pid
666  * space.
667  */
668 static void
669 forget_original_parent(struct task_struct *father, struct list_head *to_release)
670 {
671         struct task_struct *p, *reaper = father;
672         struct list_head *_p, *_n;
673
674         do {
675                 reaper = next_thread(reaper);
676                 if (reaper == father) {
677                         reaper = child_reaper(father);
678                         break;
679                 }
680         } while (reaper->exit_state);
681
682         /*
683          * There are only two places where our children can be:
684          *
685          * - in our child list
686          * - in our ptraced child list
687          *
688          * Search them and reparent children.
689          */
690         list_for_each_safe(_p, _n, &father->children) {
691                 int ptrace;
692                 p = list_entry(_p, struct task_struct, sibling);
693
694                 ptrace = p->ptrace;
695
696                 /* if father isn't the real parent, then ptrace must be enabled */
697                 BUG_ON(father != p->real_parent && !ptrace);
698
699                 if (father == p->real_parent) {
700                         /* reparent with a reaper, real father it's us */
701                         p->real_parent = reaper;
702                         reparent_thread(p, father, 0);
703                 } else {
704                         /* reparent ptraced task to its real parent */
705                         __ptrace_unlink (p);
706                         if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
707                             thread_group_empty(p))
708                                 do_notify_parent(p, p->exit_signal);
709                 }
710
711                 /*
712                  * if the ptraced child is a zombie with exit_signal == -1
713                  * we must collect it before we exit, or it will remain
714                  * zombie forever since we prevented it from self-reap itself
715                  * while it was being traced by us, to be able to see it in wait4.
716                  */
717                 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
718                         list_add(&p->ptrace_list, to_release);
719         }
720         list_for_each_safe(_p, _n, &father->ptrace_children) {
721                 p = list_entry(_p, struct task_struct, ptrace_list);
722                 p->real_parent = reaper;
723                 reparent_thread(p, father, 1);
724         }
725 }
726
727 /*
728  * Send signals to all our closest relatives so that they know
729  * to properly mourn us..
730  */
731 static void exit_notify(struct task_struct *tsk)
732 {
733         int state;
734         struct task_struct *t;
735         struct list_head ptrace_dead, *_p, *_n;
736         struct pid *pgrp;
737
738         if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
739             && !thread_group_empty(tsk)) {
740                 /*
741                  * This occurs when there was a race between our exit
742                  * syscall and a group signal choosing us as the one to
743                  * wake up.  It could be that we are the only thread
744                  * alerted to check for pending signals, but another thread
745                  * should be woken now to take the signal since we will not.
746                  * Now we'll wake all the threads in the group just to make
747                  * sure someone gets all the pending signals.
748                  */
749                 spin_lock_irq(&tsk->sighand->siglock);
750                 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
751                         if (!signal_pending(t) && !(t->flags & PF_EXITING))
752                                 recalc_sigpending_and_wake(t);
753                 spin_unlock_irq(&tsk->sighand->siglock);
754         }
755
756         write_lock_irq(&tasklist_lock);
757
758         /*
759          * This does two things:
760          *
761          * A.  Make init inherit all the child processes
762          * B.  Check to see if any process groups have become orphaned
763          *      as a result of our exiting, and if they have any stopped
764          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
765          */
766
767         INIT_LIST_HEAD(&ptrace_dead);
768         forget_original_parent(tsk, &ptrace_dead);
769         BUG_ON(!list_empty(&tsk->children));
770         BUG_ON(!list_empty(&tsk->ptrace_children));
771
772         /*
773          * Check to see if any process groups have become orphaned
774          * as a result of our exiting, and if they have any stopped
775          * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
776          *
777          * Case i: Our father is in a different pgrp than we are
778          * and we were the only connection outside, so our pgrp
779          * is about to become orphaned.
780          */
781         t = tsk->real_parent;
782
783         pgrp = task_pgrp(tsk);
784         if ((task_pgrp(t) != pgrp) &&
785             (task_session(t) == task_session(tsk)) &&
786             will_become_orphaned_pgrp(pgrp, tsk) &&
787             has_stopped_jobs(pgrp)) {
788                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
789                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
790         }
791
792         /* Let father know we died
793          *
794          * Thread signals are configurable, but you aren't going to use
795          * that to send signals to arbitary processes. 
796          * That stops right now.
797          *
798          * If the parent exec id doesn't match the exec id we saved
799          * when we started then we know the parent has changed security
800          * domain.
801          *
802          * If our self_exec id doesn't match our parent_exec_id then
803          * we have changed execution domain as these two values started
804          * the same after a fork.
805          */
806         if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
807             ( tsk->parent_exec_id != t->self_exec_id  ||
808               tsk->self_exec_id != tsk->parent_exec_id)
809             && !capable(CAP_KILL))
810                 tsk->exit_signal = SIGCHLD;
811
812
813         /* If something other than our normal parent is ptracing us, then
814          * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
815          * only has special meaning to our real parent.
816          */
817         if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
818                 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
819                 do_notify_parent(tsk, signal);
820         } else if (tsk->ptrace) {
821                 do_notify_parent(tsk, SIGCHLD);
822         }
823
824         state = EXIT_ZOMBIE;
825         if (tsk->exit_signal == -1 && likely(!tsk->ptrace))
826                 state = EXIT_DEAD;
827         tsk->exit_state = state;
828
829         if (thread_group_leader(tsk) &&
830             tsk->signal->notify_count < 0 &&
831             tsk->signal->group_exit_task)
832                 wake_up_process(tsk->signal->group_exit_task);
833
834         write_unlock_irq(&tasklist_lock);
835
836         list_for_each_safe(_p, _n, &ptrace_dead) {
837                 list_del_init(_p);
838                 t = list_entry(_p, struct task_struct, ptrace_list);
839                 release_task(t);
840         }
841
842         /* If the process is dead, release it - nobody will wait for it */
843         if (state == EXIT_DEAD)
844                 release_task(tsk);
845 }
846
847 #ifdef CONFIG_DEBUG_STACK_USAGE
848 static void check_stack_usage(void)
849 {
850         static DEFINE_SPINLOCK(low_water_lock);
851         static int lowest_to_date = THREAD_SIZE;
852         unsigned long *n = end_of_stack(current);
853         unsigned long free;
854
855         while (*n == 0)
856                 n++;
857         free = (unsigned long)n - (unsigned long)end_of_stack(current);
858
859         if (free >= lowest_to_date)
860                 return;
861
862         spin_lock(&low_water_lock);
863         if (free < lowest_to_date) {
864                 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
865                                 "left\n",
866                                 current->comm, free);
867                 lowest_to_date = free;
868         }
869         spin_unlock(&low_water_lock);
870 }
871 #else
872 static inline void check_stack_usage(void) {}
873 #endif
874
875 static inline void exit_child_reaper(struct task_struct *tsk)
876 {
877         if (likely(tsk->group_leader != child_reaper(tsk)))
878                 return;
879
880         panic("Attempted to kill init!");
881 }
882
883 fastcall NORET_TYPE void do_exit(long code)
884 {
885         struct task_struct *tsk = current;
886         int group_dead;
887
888         profile_task_exit(tsk);
889
890         WARN_ON(atomic_read(&tsk->fs_excl));
891
892         if (unlikely(in_interrupt()))
893                 panic("Aiee, killing interrupt handler!");
894         if (unlikely(!tsk->pid))
895                 panic("Attempted to kill the idle task!");
896
897         if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
898                 current->ptrace_message = code;
899                 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
900         }
901
902         /*
903          * We're taking recursive faults here in do_exit. Safest is to just
904          * leave this task alone and wait for reboot.
905          */
906         if (unlikely(tsk->flags & PF_EXITING)) {
907                 printk(KERN_ALERT
908                         "Fixing recursive fault but reboot is needed!\n");
909                 /*
910                  * We can do this unlocked here. The futex code uses
911                  * this flag just to verify whether the pi state
912                  * cleanup has been done or not. In the worst case it
913                  * loops once more. We pretend that the cleanup was
914                  * done as there is no way to return. Either the
915                  * OWNER_DIED bit is set by now or we push the blocked
916                  * task into the wait for ever nirwana as well.
917                  */
918                 tsk->flags |= PF_EXITPIDONE;
919                 if (tsk->io_context)
920                         exit_io_context();
921                 set_current_state(TASK_UNINTERRUPTIBLE);
922                 schedule();
923         }
924
925         tsk->flags |= PF_EXITING;
926         /*
927          * tsk->flags are checked in the futex code to protect against
928          * an exiting task cleaning up the robust pi futexes.
929          */
930         smp_mb();
931         spin_unlock_wait(&tsk->pi_lock);
932
933         if (unlikely(in_atomic()))
934                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
935                                 current->comm, current->pid,
936                                 preempt_count());
937
938         acct_update_integrals(tsk);
939         if (tsk->mm) {
940                 update_hiwater_rss(tsk->mm);
941                 update_hiwater_vm(tsk->mm);
942         }
943         group_dead = atomic_dec_and_test(&tsk->signal->live);
944         if (group_dead) {
945                 exit_child_reaper(tsk);
946                 hrtimer_cancel(&tsk->signal->real_timer);
947                 exit_itimers(tsk->signal);
948         }
949         acct_collect(code, group_dead);
950         if (unlikely(tsk->robust_list))
951                 exit_robust_list(tsk);
952 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
953         if (unlikely(tsk->compat_robust_list))
954                 compat_exit_robust_list(tsk);
955 #endif
956         if (group_dead)
957                 tty_audit_exit();
958         if (unlikely(tsk->audit_context))
959                 audit_free(tsk);
960
961         tsk->exit_code = code;
962         taskstats_exit(tsk, group_dead);
963
964         exit_mm(tsk);
965
966         if (group_dead)
967                 acct_process();
968         exit_sem(tsk);
969         __exit_files(tsk);
970         __exit_fs(tsk);
971         check_stack_usage();
972         exit_thread();
973         cpuset_exit(tsk);
974         exit_keys(tsk);
975
976         if (group_dead && tsk->signal->leader)
977                 disassociate_ctty(1);
978
979         module_put(task_thread_info(tsk)->exec_domain->module);
980         if (tsk->binfmt)
981                 module_put(tsk->binfmt->module);
982
983         proc_exit_connector(tsk);
984         exit_task_namespaces(tsk);
985         exit_notify(tsk);
986 #ifdef CONFIG_NUMA
987         mpol_free(tsk->mempolicy);
988         tsk->mempolicy = NULL;
989 #endif
990         /*
991          * This must happen late, after the PID is not
992          * hashed anymore:
993          */
994         if (unlikely(!list_empty(&tsk->pi_state_list)))
995                 exit_pi_state_list(tsk);
996         if (unlikely(current->pi_state_cache))
997                 kfree(current->pi_state_cache);
998         /*
999          * Make sure we are holding no locks:
1000          */
1001         debug_check_no_locks_held(tsk);
1002         /*
1003          * We can do this unlocked here. The futex code uses this flag
1004          * just to verify whether the pi state cleanup has been done
1005          * or not. In the worst case it loops once more.
1006          */
1007         tsk->flags |= PF_EXITPIDONE;
1008
1009         if (tsk->io_context)
1010                 exit_io_context();
1011
1012         if (tsk->splice_pipe)
1013                 __free_pipe_info(tsk->splice_pipe);
1014
1015         preempt_disable();
1016         /* causes final put_task_struct in finish_task_switch(). */
1017         tsk->state = TASK_DEAD;
1018
1019         schedule();
1020         BUG();
1021         /* Avoid "noreturn function does return".  */
1022         for (;;)
1023                 cpu_relax();    /* For when BUG is null */
1024 }
1025
1026 EXPORT_SYMBOL_GPL(do_exit);
1027
1028 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1029 {
1030         if (comp)
1031                 complete(comp);
1032
1033         do_exit(code);
1034 }
1035
1036 EXPORT_SYMBOL(complete_and_exit);
1037
1038 asmlinkage long sys_exit(int error_code)
1039 {
1040         do_exit((error_code&0xff)<<8);
1041 }
1042
1043 /*
1044  * Take down every thread in the group.  This is called by fatal signals
1045  * as well as by sys_exit_group (below).
1046  */
1047 NORET_TYPE void
1048 do_group_exit(int exit_code)
1049 {
1050         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1051
1052         if (current->signal->flags & SIGNAL_GROUP_EXIT)
1053                 exit_code = current->signal->group_exit_code;
1054         else if (!thread_group_empty(current)) {
1055                 struct signal_struct *const sig = current->signal;
1056                 struct sighand_struct *const sighand = current->sighand;
1057                 spin_lock_irq(&sighand->siglock);
1058                 if (sig->flags & SIGNAL_GROUP_EXIT)
1059                         /* Another thread got here before we took the lock.  */
1060                         exit_code = sig->group_exit_code;
1061                 else {
1062                         sig->group_exit_code = exit_code;
1063                         zap_other_threads(current);
1064                 }
1065                 spin_unlock_irq(&sighand->siglock);
1066         }
1067
1068         do_exit(exit_code);
1069         /* NOTREACHED */
1070 }
1071
1072 /*
1073  * this kills every thread in the thread group. Note that any externally
1074  * wait4()-ing process will get the correct exit code - even if this
1075  * thread is not the thread group leader.
1076  */
1077 asmlinkage void sys_exit_group(int error_code)
1078 {
1079         do_group_exit((error_code & 0xff) << 8);
1080 }
1081
1082 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1083 {
1084         int err;
1085
1086         if (pid > 0) {
1087                 if (p->pid != pid)
1088                         return 0;
1089         } else if (!pid) {
1090                 if (process_group(p) != process_group(current))
1091                         return 0;
1092         } else if (pid != -1) {
1093                 if (process_group(p) != -pid)
1094                         return 0;
1095         }
1096
1097         /*
1098          * Do not consider detached threads that are
1099          * not ptraced:
1100          */
1101         if (p->exit_signal == -1 && !p->ptrace)
1102                 return 0;
1103
1104         /* Wait for all children (clone and not) if __WALL is set;
1105          * otherwise, wait for clone children *only* if __WCLONE is
1106          * set; otherwise, wait for non-clone children *only*.  (Note:
1107          * A "clone" child here is one that reports to its parent
1108          * using a signal other than SIGCHLD.) */
1109         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1110             && !(options & __WALL))
1111                 return 0;
1112         /*
1113          * Do not consider thread group leaders that are
1114          * in a non-empty thread group:
1115          */
1116         if (delay_group_leader(p))
1117                 return 2;
1118
1119         err = security_task_wait(p);
1120         if (err)
1121                 return err;
1122
1123         return 1;
1124 }
1125
1126 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1127                                int why, int status,
1128                                struct siginfo __user *infop,
1129                                struct rusage __user *rusagep)
1130 {
1131         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1132
1133         put_task_struct(p);
1134         if (!retval)
1135                 retval = put_user(SIGCHLD, &infop->si_signo);
1136         if (!retval)
1137                 retval = put_user(0, &infop->si_errno);
1138         if (!retval)
1139                 retval = put_user((short)why, &infop->si_code);
1140         if (!retval)
1141                 retval = put_user(pid, &infop->si_pid);
1142         if (!retval)
1143                 retval = put_user(uid, &infop->si_uid);
1144         if (!retval)
1145                 retval = put_user(status, &infop->si_status);
1146         if (!retval)
1147                 retval = pid;
1148         return retval;
1149 }
1150
1151 /*
1152  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1153  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1154  * the lock and this task is uninteresting.  If we return nonzero, we have
1155  * released the lock and the system call should return.
1156  */
1157 static int wait_task_zombie(struct task_struct *p, int noreap,
1158                             struct siginfo __user *infop,
1159                             int __user *stat_addr, struct rusage __user *ru)
1160 {
1161         unsigned long state;
1162         int retval, status, traced;
1163
1164         if (unlikely(noreap)) {
1165                 pid_t pid = p->pid;
1166                 uid_t uid = p->uid;
1167                 int exit_code = p->exit_code;
1168                 int why, status;
1169
1170                 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1171                         return 0;
1172                 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1173                         return 0;
1174                 get_task_struct(p);
1175                 read_unlock(&tasklist_lock);
1176                 if ((exit_code & 0x7f) == 0) {
1177                         why = CLD_EXITED;
1178                         status = exit_code >> 8;
1179                 } else {
1180                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1181                         status = exit_code & 0x7f;
1182                 }
1183                 return wait_noreap_copyout(p, pid, uid, why,
1184                                            status, infop, ru);
1185         }
1186
1187         /*
1188          * Try to move the task's state to DEAD
1189          * only one thread is allowed to do this:
1190          */
1191         state = xchg(&p->exit_state, EXIT_DEAD);
1192         if (state != EXIT_ZOMBIE) {
1193                 BUG_ON(state != EXIT_DEAD);
1194                 return 0;
1195         }
1196
1197         /* traced means p->ptrace, but not vice versa */
1198         traced = (p->real_parent != p->parent);
1199
1200         if (likely(!traced)) {
1201                 struct signal_struct *psig;
1202                 struct signal_struct *sig;
1203
1204                 /*
1205                  * The resource counters for the group leader are in its
1206                  * own task_struct.  Those for dead threads in the group
1207                  * are in its signal_struct, as are those for the child
1208                  * processes it has previously reaped.  All these
1209                  * accumulate in the parent's signal_struct c* fields.
1210                  *
1211                  * We don't bother to take a lock here to protect these
1212                  * p->signal fields, because they are only touched by
1213                  * __exit_signal, which runs with tasklist_lock
1214                  * write-locked anyway, and so is excluded here.  We do
1215                  * need to protect the access to p->parent->signal fields,
1216                  * as other threads in the parent group can be right
1217                  * here reaping other children at the same time.
1218                  */
1219                 spin_lock_irq(&p->parent->sighand->siglock);
1220                 psig = p->parent->signal;
1221                 sig = p->signal;
1222                 psig->cutime =
1223                         cputime_add(psig->cutime,
1224                         cputime_add(p->utime,
1225                         cputime_add(sig->utime,
1226                                     sig->cutime)));
1227                 psig->cstime =
1228                         cputime_add(psig->cstime,
1229                         cputime_add(p->stime,
1230                         cputime_add(sig->stime,
1231                                     sig->cstime)));
1232                 psig->cgtime =
1233                         cputime_add(psig->cgtime,
1234                         cputime_add(p->gtime,
1235                         cputime_add(sig->gtime,
1236                                     sig->cgtime)));
1237                 psig->cmin_flt +=
1238                         p->min_flt + sig->min_flt + sig->cmin_flt;
1239                 psig->cmaj_flt +=
1240                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1241                 psig->cnvcsw +=
1242                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1243                 psig->cnivcsw +=
1244                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1245                 psig->cinblock +=
1246                         task_io_get_inblock(p) +
1247                         sig->inblock + sig->cinblock;
1248                 psig->coublock +=
1249                         task_io_get_oublock(p) +
1250                         sig->oublock + sig->coublock;
1251                 spin_unlock_irq(&p->parent->sighand->siglock);
1252         }
1253
1254         /*
1255          * Now we are sure this task is interesting, and no other
1256          * thread can reap it because we set its state to EXIT_DEAD.
1257          */
1258         read_unlock(&tasklist_lock);
1259
1260         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1261         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1262                 ? p->signal->group_exit_code : p->exit_code;
1263         if (!retval && stat_addr)
1264                 retval = put_user(status, stat_addr);
1265         if (!retval && infop)
1266                 retval = put_user(SIGCHLD, &infop->si_signo);
1267         if (!retval && infop)
1268                 retval = put_user(0, &infop->si_errno);
1269         if (!retval && infop) {
1270                 int why;
1271
1272                 if ((status & 0x7f) == 0) {
1273                         why = CLD_EXITED;
1274                         status >>= 8;
1275                 } else {
1276                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1277                         status &= 0x7f;
1278                 }
1279                 retval = put_user((short)why, &infop->si_code);
1280                 if (!retval)
1281                         retval = put_user(status, &infop->si_status);
1282         }
1283         if (!retval && infop)
1284                 retval = put_user(p->pid, &infop->si_pid);
1285         if (!retval && infop)
1286                 retval = put_user(p->uid, &infop->si_uid);
1287         if (!retval)
1288                 retval = p->pid;
1289
1290         if (traced) {
1291                 write_lock_irq(&tasklist_lock);
1292                 /* We dropped tasklist, ptracer could die and untrace */
1293                 ptrace_unlink(p);
1294                 /*
1295                  * If this is not a detached task, notify the parent.
1296                  * If it's still not detached after that, don't release
1297                  * it now.
1298                  */
1299                 if (p->exit_signal != -1) {
1300                         do_notify_parent(p, p->exit_signal);
1301                         if (p->exit_signal != -1) {
1302                                 p->exit_state = EXIT_ZOMBIE;
1303                                 p = NULL;
1304                         }
1305                 }
1306                 write_unlock_irq(&tasklist_lock);
1307         }
1308         if (p != NULL)
1309                 release_task(p);
1310
1311         return retval;
1312 }
1313
1314 /*
1315  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1316  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1317  * the lock and this task is uninteresting.  If we return nonzero, we have
1318  * released the lock and the system call should return.
1319  */
1320 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1321                              int noreap, struct siginfo __user *infop,
1322                              int __user *stat_addr, struct rusage __user *ru)
1323 {
1324         int retval, exit_code;
1325
1326         if (!p->exit_code)
1327                 return 0;
1328         if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1329             p->signal->group_stop_count > 0)
1330                 /*
1331                  * A group stop is in progress and this is the group leader.
1332                  * We won't report until all threads have stopped.
1333                  */
1334                 return 0;
1335
1336         /*
1337          * Now we are pretty sure this task is interesting.
1338          * Make sure it doesn't get reaped out from under us while we
1339          * give up the lock and then examine it below.  We don't want to
1340          * keep holding onto the tasklist_lock while we call getrusage and
1341          * possibly take page faults for user memory.
1342          */
1343         get_task_struct(p);
1344         read_unlock(&tasklist_lock);
1345
1346         if (unlikely(noreap)) {
1347                 pid_t pid = p->pid;
1348                 uid_t uid = p->uid;
1349                 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1350
1351                 exit_code = p->exit_code;
1352                 if (unlikely(!exit_code) ||
1353                     unlikely(p->state & TASK_TRACED))
1354                         goto bail_ref;
1355                 return wait_noreap_copyout(p, pid, uid,
1356                                            why, (exit_code << 8) | 0x7f,
1357                                            infop, ru);
1358         }
1359
1360         write_lock_irq(&tasklist_lock);
1361
1362         /*
1363          * This uses xchg to be atomic with the thread resuming and setting
1364          * it.  It must also be done with the write lock held to prevent a
1365          * race with the EXIT_ZOMBIE case.
1366          */
1367         exit_code = xchg(&p->exit_code, 0);
1368         if (unlikely(p->exit_state)) {
1369                 /*
1370                  * The task resumed and then died.  Let the next iteration
1371                  * catch it in EXIT_ZOMBIE.  Note that exit_code might
1372                  * already be zero here if it resumed and did _exit(0).
1373                  * The task itself is dead and won't touch exit_code again;
1374                  * other processors in this function are locked out.
1375                  */
1376                 p->exit_code = exit_code;
1377                 exit_code = 0;
1378         }
1379         if (unlikely(exit_code == 0)) {
1380                 /*
1381                  * Another thread in this function got to it first, or it
1382                  * resumed, or it resumed and then died.
1383                  */
1384                 write_unlock_irq(&tasklist_lock);
1385 bail_ref:
1386                 put_task_struct(p);
1387                 /*
1388                  * We are returning to the wait loop without having successfully
1389                  * removed the process and having released the lock. We cannot
1390                  * continue, since the "p" task pointer is potentially stale.
1391                  *
1392                  * Return -EAGAIN, and do_wait() will restart the loop from the
1393                  * beginning. Do _not_ re-acquire the lock.
1394                  */
1395                 return -EAGAIN;
1396         }
1397
1398         /* move to end of parent's list to avoid starvation */
1399         remove_parent(p);
1400         add_parent(p);
1401
1402         write_unlock_irq(&tasklist_lock);
1403
1404         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1405         if (!retval && stat_addr)
1406                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1407         if (!retval && infop)
1408                 retval = put_user(SIGCHLD, &infop->si_signo);
1409         if (!retval && infop)
1410                 retval = put_user(0, &infop->si_errno);
1411         if (!retval && infop)
1412                 retval = put_user((short)((p->ptrace & PT_PTRACED)
1413                                           ? CLD_TRAPPED : CLD_STOPPED),
1414                                   &infop->si_code);
1415         if (!retval && infop)
1416                 retval = put_user(exit_code, &infop->si_status);
1417         if (!retval && infop)
1418                 retval = put_user(p->pid, &infop->si_pid);
1419         if (!retval && infop)
1420                 retval = put_user(p->uid, &infop->si_uid);
1421         if (!retval)
1422                 retval = p->pid;
1423         put_task_struct(p);
1424
1425         BUG_ON(!retval);
1426         return retval;
1427 }
1428
1429 /*
1430  * Handle do_wait work for one task in a live, non-stopped state.
1431  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1432  * the lock and this task is uninteresting.  If we return nonzero, we have
1433  * released the lock and the system call should return.
1434  */
1435 static int wait_task_continued(struct task_struct *p, int noreap,
1436                                struct siginfo __user *infop,
1437                                int __user *stat_addr, struct rusage __user *ru)
1438 {
1439         int retval;
1440         pid_t pid;
1441         uid_t uid;
1442
1443         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1444                 return 0;
1445
1446         spin_lock_irq(&p->sighand->siglock);
1447         /* Re-check with the lock held.  */
1448         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1449                 spin_unlock_irq(&p->sighand->siglock);
1450                 return 0;
1451         }
1452         if (!noreap)
1453                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1454         spin_unlock_irq(&p->sighand->siglock);
1455
1456         pid = p->pid;
1457         uid = p->uid;
1458         get_task_struct(p);
1459         read_unlock(&tasklist_lock);
1460
1461         if (!infop) {
1462                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1463                 put_task_struct(p);
1464                 if (!retval && stat_addr)
1465                         retval = put_user(0xffff, stat_addr);
1466                 if (!retval)
1467                         retval = p->pid;
1468         } else {
1469                 retval = wait_noreap_copyout(p, pid, uid,
1470                                              CLD_CONTINUED, SIGCONT,
1471                                              infop, ru);
1472                 BUG_ON(retval == 0);
1473         }
1474
1475         return retval;
1476 }
1477
1478
1479 static inline int my_ptrace_child(struct task_struct *p)
1480 {
1481         if (!(p->ptrace & PT_PTRACED))
1482                 return 0;
1483         if (!(p->ptrace & PT_ATTACHED))
1484                 return 1;
1485         /*
1486          * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1487          * we are the attacher.  If we are the real parent, this is a race
1488          * inside ptrace_attach.  It is waiting for the tasklist_lock,
1489          * which we have to switch the parent links, but has already set
1490          * the flags in p->ptrace.
1491          */
1492         return (p->parent != p->real_parent);
1493 }
1494
1495 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1496                     int __user *stat_addr, struct rusage __user *ru)
1497 {
1498         DECLARE_WAITQUEUE(wait, current);
1499         struct task_struct *tsk;
1500         int flag, retval;
1501         int allowed, denied;
1502
1503         add_wait_queue(&current->signal->wait_chldexit,&wait);
1504 repeat:
1505         /*
1506          * We will set this flag if we see any child that might later
1507          * match our criteria, even if we are not able to reap it yet.
1508          */
1509         flag = 0;
1510         allowed = denied = 0;
1511         current->state = TASK_INTERRUPTIBLE;
1512         read_lock(&tasklist_lock);
1513         tsk = current;
1514         do {
1515                 struct task_struct *p;
1516                 struct list_head *_p;
1517                 int ret;
1518
1519                 list_for_each(_p,&tsk->children) {
1520                         p = list_entry(_p, struct task_struct, sibling);
1521
1522                         ret = eligible_child(pid, options, p);
1523                         if (!ret)
1524                                 continue;
1525
1526                         if (unlikely(ret < 0)) {
1527                                 denied = ret;
1528                                 continue;
1529                         }
1530                         allowed = 1;
1531
1532                         switch (p->state) {
1533                         case TASK_TRACED:
1534                                 /*
1535                                  * When we hit the race with PTRACE_ATTACH,
1536                                  * we will not report this child.  But the
1537                                  * race means it has not yet been moved to
1538                                  * our ptrace_children list, so we need to
1539                                  * set the flag here to avoid a spurious ECHILD
1540                                  * when the race happens with the only child.
1541                                  */
1542                                 flag = 1;
1543                                 if (!my_ptrace_child(p))
1544                                         continue;
1545                                 /*FALLTHROUGH*/
1546                         case TASK_STOPPED:
1547                                 /*
1548                                  * It's stopped now, so it might later
1549                                  * continue, exit, or stop again.
1550                                  */
1551                                 flag = 1;
1552                                 if (!(options & WUNTRACED) &&
1553                                     !my_ptrace_child(p))
1554                                         continue;
1555                                 retval = wait_task_stopped(p, ret == 2,
1556                                                            (options & WNOWAIT),
1557                                                            infop,
1558                                                            stat_addr, ru);
1559                                 if (retval == -EAGAIN)
1560                                         goto repeat;
1561                                 if (retval != 0) /* He released the lock.  */
1562                                         goto end;
1563                                 break;
1564                         default:
1565                         // case EXIT_DEAD:
1566                                 if (p->exit_state == EXIT_DEAD)
1567                                         continue;
1568                         // case EXIT_ZOMBIE:
1569                                 if (p->exit_state == EXIT_ZOMBIE) {
1570                                         /*
1571                                          * Eligible but we cannot release
1572                                          * it yet:
1573                                          */
1574                                         if (ret == 2)
1575                                                 goto check_continued;
1576                                         if (!likely(options & WEXITED))
1577                                                 continue;
1578                                         retval = wait_task_zombie(
1579                                                 p, (options & WNOWAIT),
1580                                                 infop, stat_addr, ru);
1581                                         /* He released the lock.  */
1582                                         if (retval != 0)
1583                                                 goto end;
1584                                         break;
1585                                 }
1586 check_continued:
1587                                 /*
1588                                  * It's running now, so it might later
1589                                  * exit, stop, or stop and then continue.
1590                                  */
1591                                 flag = 1;
1592                                 if (!unlikely(options & WCONTINUED))
1593                                         continue;
1594                                 retval = wait_task_continued(
1595                                         p, (options & WNOWAIT),
1596                                         infop, stat_addr, ru);
1597                                 if (retval != 0) /* He released the lock.  */
1598                                         goto end;
1599                                 break;
1600                         }
1601                 }
1602                 if (!flag) {
1603                         list_for_each(_p, &tsk->ptrace_children) {
1604                                 p = list_entry(_p, struct task_struct,
1605                                                 ptrace_list);
1606                                 if (!eligible_child(pid, options, p))
1607                                         continue;
1608                                 flag = 1;
1609                                 break;
1610                         }
1611                 }
1612                 if (options & __WNOTHREAD)
1613                         break;
1614                 tsk = next_thread(tsk);
1615                 BUG_ON(tsk->signal != current->signal);
1616         } while (tsk != current);
1617
1618         read_unlock(&tasklist_lock);
1619         if (flag) {
1620                 retval = 0;
1621                 if (options & WNOHANG)
1622                         goto end;
1623                 retval = -ERESTARTSYS;
1624                 if (signal_pending(current))
1625                         goto end;
1626                 schedule();
1627                 goto repeat;
1628         }
1629         retval = -ECHILD;
1630         if (unlikely(denied) && !allowed)
1631                 retval = denied;
1632 end:
1633         current->state = TASK_RUNNING;
1634         remove_wait_queue(&current->signal->wait_chldexit,&wait);
1635         if (infop) {
1636                 if (retval > 0)
1637                 retval = 0;
1638                 else {
1639                         /*
1640                          * For a WNOHANG return, clear out all the fields
1641                          * we would set so the user can easily tell the
1642                          * difference.
1643                          */
1644                         if (!retval)
1645                                 retval = put_user(0, &infop->si_signo);
1646                         if (!retval)
1647                                 retval = put_user(0, &infop->si_errno);
1648                         if (!retval)
1649                                 retval = put_user(0, &infop->si_code);
1650                         if (!retval)
1651                                 retval = put_user(0, &infop->si_pid);
1652                         if (!retval)
1653                                 retval = put_user(0, &infop->si_uid);
1654                         if (!retval)
1655                                 retval = put_user(0, &infop->si_status);
1656                 }
1657         }
1658         return retval;
1659 }
1660
1661 asmlinkage long sys_waitid(int which, pid_t pid,
1662                            struct siginfo __user *infop, int options,
1663                            struct rusage __user *ru)
1664 {
1665         long ret;
1666
1667         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1668                 return -EINVAL;
1669         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1670                 return -EINVAL;
1671
1672         switch (which) {
1673         case P_ALL:
1674                 pid = -1;
1675                 break;
1676         case P_PID:
1677                 if (pid <= 0)
1678                         return -EINVAL;
1679                 break;
1680         case P_PGID:
1681                 if (pid <= 0)
1682                         return -EINVAL;
1683                 pid = -pid;
1684                 break;
1685         default:
1686                 return -EINVAL;
1687         }
1688
1689         ret = do_wait(pid, options, infop, NULL, ru);
1690
1691         /* avoid REGPARM breakage on x86: */
1692         prevent_tail_call(ret);
1693         return ret;
1694 }
1695
1696 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1697                           int options, struct rusage __user *ru)
1698 {
1699         long ret;
1700
1701         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1702                         __WNOTHREAD|__WCLONE|__WALL))
1703                 return -EINVAL;
1704         ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1705
1706         /* avoid REGPARM breakage on x86: */
1707         prevent_tail_call(ret);
1708         return ret;
1709 }
1710
1711 #ifdef __ARCH_WANT_SYS_WAITPID
1712
1713 /*
1714  * sys_waitpid() remains for compatibility. waitpid() should be
1715  * implemented by calling sys_wait4() from libc.a.
1716  */
1717 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1718 {
1719         return sys_wait4(pid, stat_addr, options, NULL);
1720 }
1721
1722 #endif