]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/fork.c
System call wrappers part 30
[karo-tx-linux.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/profile.h>
50 #include <linux/rmap.h>
51 #include <linux/acct.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/cn_proc.h>
54 #include <linux/freezer.h>
55 #include <linux/delayacct.h>
56 #include <linux/taskstats_kern.h>
57 #include <linux/random.h>
58 #include <linux/tty.h>
59 #include <linux/proc_fs.h>
60 #include <linux/blkdev.h>
61
62 #include <asm/pgtable.h>
63 #include <asm/pgalloc.h>
64 #include <asm/uaccess.h>
65 #include <asm/mmu_context.h>
66 #include <asm/cacheflush.h>
67 #include <asm/tlbflush.h>
68
69 /*
70  * Protected counters by write_lock_irq(&tasklist_lock)
71  */
72 unsigned long total_forks;      /* Handle normal Linux uptimes. */
73 int nr_threads;                 /* The idle threads do not count.. */
74
75 int max_threads;                /* tunable limit on nr_threads */
76
77 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
78
79 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
80
81 int nr_processes(void)
82 {
83         int cpu;
84         int total = 0;
85
86         for_each_online_cpu(cpu)
87                 total += per_cpu(process_counts, cpu);
88
89         return total;
90 }
91
92 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
93 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
94 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
95 static struct kmem_cache *task_struct_cachep;
96 #endif
97
98 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
99 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
100 {
101 #ifdef CONFIG_DEBUG_STACK_USAGE
102         gfp_t mask = GFP_KERNEL | __GFP_ZERO;
103 #else
104         gfp_t mask = GFP_KERNEL;
105 #endif
106         return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
107 }
108
109 static inline void free_thread_info(struct thread_info *ti)
110 {
111         free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
112 }
113 #endif
114
115 /* SLAB cache for signal_struct structures (tsk->signal) */
116 static struct kmem_cache *signal_cachep;
117
118 /* SLAB cache for sighand_struct structures (tsk->sighand) */
119 struct kmem_cache *sighand_cachep;
120
121 /* SLAB cache for files_struct structures (tsk->files) */
122 struct kmem_cache *files_cachep;
123
124 /* SLAB cache for fs_struct structures (tsk->fs) */
125 struct kmem_cache *fs_cachep;
126
127 /* SLAB cache for vm_area_struct structures */
128 struct kmem_cache *vm_area_cachep;
129
130 /* SLAB cache for mm_struct structures (tsk->mm) */
131 static struct kmem_cache *mm_cachep;
132
133 void free_task(struct task_struct *tsk)
134 {
135         prop_local_destroy_single(&tsk->dirties);
136         free_thread_info(tsk->stack);
137         rt_mutex_debug_task_free(tsk);
138         free_task_struct(tsk);
139 }
140 EXPORT_SYMBOL(free_task);
141
142 void __put_task_struct(struct task_struct *tsk)
143 {
144         WARN_ON(!tsk->exit_state);
145         WARN_ON(atomic_read(&tsk->usage));
146         WARN_ON(tsk == current);
147
148         security_task_free(tsk);
149         free_uid(tsk->user);
150         put_group_info(tsk->group_info);
151         delayacct_tsk_free(tsk);
152
153         if (!profile_handoff_task(tsk))
154                 free_task(tsk);
155 }
156
157 /*
158  * macro override instead of weak attribute alias, to workaround
159  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
160  */
161 #ifndef arch_task_cache_init
162 #define arch_task_cache_init()
163 #endif
164
165 void __init fork_init(unsigned long mempages)
166 {
167 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
168 #ifndef ARCH_MIN_TASKALIGN
169 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
170 #endif
171         /* create a slab on which task_structs can be allocated */
172         task_struct_cachep =
173                 kmem_cache_create("task_struct", sizeof(struct task_struct),
174                         ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
175 #endif
176
177         /* do the arch specific task caches init */
178         arch_task_cache_init();
179
180         /*
181          * The default maximum number of threads is set to a safe
182          * value: the thread structures can take up at most half
183          * of memory.
184          */
185         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
186
187         /*
188          * we need to allow at least 20 threads to boot a system
189          */
190         if(max_threads < 20)
191                 max_threads = 20;
192
193         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
194         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
195         init_task.signal->rlim[RLIMIT_SIGPENDING] =
196                 init_task.signal->rlim[RLIMIT_NPROC];
197 }
198
199 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
200                                                struct task_struct *src)
201 {
202         *dst = *src;
203         return 0;
204 }
205
206 static struct task_struct *dup_task_struct(struct task_struct *orig)
207 {
208         struct task_struct *tsk;
209         struct thread_info *ti;
210         int err;
211
212         prepare_to_copy(orig);
213
214         tsk = alloc_task_struct();
215         if (!tsk)
216                 return NULL;
217
218         ti = alloc_thread_info(tsk);
219         if (!ti) {
220                 free_task_struct(tsk);
221                 return NULL;
222         }
223
224         err = arch_dup_task_struct(tsk, orig);
225         if (err)
226                 goto out;
227
228         tsk->stack = ti;
229
230         err = prop_local_init_single(&tsk->dirties);
231         if (err)
232                 goto out;
233
234         setup_thread_stack(tsk, orig);
235
236 #ifdef CONFIG_CC_STACKPROTECTOR
237         tsk->stack_canary = get_random_int();
238 #endif
239
240         /* One for us, one for whoever does the "release_task()" (usually parent) */
241         atomic_set(&tsk->usage,2);
242         atomic_set(&tsk->fs_excl, 0);
243 #ifdef CONFIG_BLK_DEV_IO_TRACE
244         tsk->btrace_seq = 0;
245 #endif
246         tsk->splice_pipe = NULL;
247         return tsk;
248
249 out:
250         free_thread_info(ti);
251         free_task_struct(tsk);
252         return NULL;
253 }
254
255 #ifdef CONFIG_MMU
256 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
257 {
258         struct vm_area_struct *mpnt, *tmp, **pprev;
259         struct rb_node **rb_link, *rb_parent;
260         int retval;
261         unsigned long charge;
262         struct mempolicy *pol;
263
264         down_write(&oldmm->mmap_sem);
265         flush_cache_dup_mm(oldmm);
266         /*
267          * Not linked in yet - no deadlock potential:
268          */
269         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
270
271         mm->locked_vm = 0;
272         mm->mmap = NULL;
273         mm->mmap_cache = NULL;
274         mm->free_area_cache = oldmm->mmap_base;
275         mm->cached_hole_size = ~0UL;
276         mm->map_count = 0;
277         cpus_clear(mm->cpu_vm_mask);
278         mm->mm_rb = RB_ROOT;
279         rb_link = &mm->mm_rb.rb_node;
280         rb_parent = NULL;
281         pprev = &mm->mmap;
282
283         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
284                 struct file *file;
285
286                 if (mpnt->vm_flags & VM_DONTCOPY) {
287                         long pages = vma_pages(mpnt);
288                         mm->total_vm -= pages;
289                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
290                                                                 -pages);
291                         continue;
292                 }
293                 charge = 0;
294                 if (mpnt->vm_flags & VM_ACCOUNT) {
295                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
296                         if (security_vm_enough_memory(len))
297                                 goto fail_nomem;
298                         charge = len;
299                 }
300                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
301                 if (!tmp)
302                         goto fail_nomem;
303                 *tmp = *mpnt;
304                 pol = mpol_dup(vma_policy(mpnt));
305                 retval = PTR_ERR(pol);
306                 if (IS_ERR(pol))
307                         goto fail_nomem_policy;
308                 vma_set_policy(tmp, pol);
309                 tmp->vm_flags &= ~VM_LOCKED;
310                 tmp->vm_mm = mm;
311                 tmp->vm_next = NULL;
312                 anon_vma_link(tmp);
313                 file = tmp->vm_file;
314                 if (file) {
315                         struct inode *inode = file->f_path.dentry->d_inode;
316                         struct address_space *mapping = file->f_mapping;
317
318                         get_file(file);
319                         if (tmp->vm_flags & VM_DENYWRITE)
320                                 atomic_dec(&inode->i_writecount);
321                         spin_lock(&mapping->i_mmap_lock);
322                         if (tmp->vm_flags & VM_SHARED)
323                                 mapping->i_mmap_writable++;
324                         tmp->vm_truncate_count = mpnt->vm_truncate_count;
325                         flush_dcache_mmap_lock(mapping);
326                         /* insert tmp into the share list, just after mpnt */
327                         vma_prio_tree_add(tmp, mpnt);
328                         flush_dcache_mmap_unlock(mapping);
329                         spin_unlock(&mapping->i_mmap_lock);
330                 }
331
332                 /*
333                  * Clear hugetlb-related page reserves for children. This only
334                  * affects MAP_PRIVATE mappings. Faults generated by the child
335                  * are not guaranteed to succeed, even if read-only
336                  */
337                 if (is_vm_hugetlb_page(tmp))
338                         reset_vma_resv_huge_pages(tmp);
339
340                 /*
341                  * Link in the new vma and copy the page table entries.
342                  */
343                 *pprev = tmp;
344                 pprev = &tmp->vm_next;
345
346                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
347                 rb_link = &tmp->vm_rb.rb_right;
348                 rb_parent = &tmp->vm_rb;
349
350                 mm->map_count++;
351                 retval = copy_page_range(mm, oldmm, mpnt);
352
353                 if (tmp->vm_ops && tmp->vm_ops->open)
354                         tmp->vm_ops->open(tmp);
355
356                 if (retval)
357                         goto out;
358         }
359         /* a new mm has just been created */
360         arch_dup_mmap(oldmm, mm);
361         retval = 0;
362 out:
363         up_write(&mm->mmap_sem);
364         flush_tlb_mm(oldmm);
365         up_write(&oldmm->mmap_sem);
366         return retval;
367 fail_nomem_policy:
368         kmem_cache_free(vm_area_cachep, tmp);
369 fail_nomem:
370         retval = -ENOMEM;
371         vm_unacct_memory(charge);
372         goto out;
373 }
374
375 static inline int mm_alloc_pgd(struct mm_struct * mm)
376 {
377         mm->pgd = pgd_alloc(mm);
378         if (unlikely(!mm->pgd))
379                 return -ENOMEM;
380         return 0;
381 }
382
383 static inline void mm_free_pgd(struct mm_struct * mm)
384 {
385         pgd_free(mm, mm->pgd);
386 }
387 #else
388 #define dup_mmap(mm, oldmm)     (0)
389 #define mm_alloc_pgd(mm)        (0)
390 #define mm_free_pgd(mm)
391 #endif /* CONFIG_MMU */
392
393 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
394
395 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
396 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
397
398 #include <linux/init_task.h>
399
400 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
401 {
402         atomic_set(&mm->mm_users, 1);
403         atomic_set(&mm->mm_count, 1);
404         init_rwsem(&mm->mmap_sem);
405         INIT_LIST_HEAD(&mm->mmlist);
406         mm->flags = (current->mm) ? current->mm->flags
407                                   : MMF_DUMP_FILTER_DEFAULT;
408         mm->core_state = NULL;
409         mm->nr_ptes = 0;
410         set_mm_counter(mm, file_rss, 0);
411         set_mm_counter(mm, anon_rss, 0);
412         spin_lock_init(&mm->page_table_lock);
413         rwlock_init(&mm->ioctx_list_lock);
414         mm->ioctx_list = NULL;
415         mm->free_area_cache = TASK_UNMAPPED_BASE;
416         mm->cached_hole_size = ~0UL;
417         mm_init_owner(mm, p);
418
419         if (likely(!mm_alloc_pgd(mm))) {
420                 mm->def_flags = 0;
421                 mmu_notifier_mm_init(mm);
422                 return mm;
423         }
424
425         free_mm(mm);
426         return NULL;
427 }
428
429 /*
430  * Allocate and initialize an mm_struct.
431  */
432 struct mm_struct * mm_alloc(void)
433 {
434         struct mm_struct * mm;
435
436         mm = allocate_mm();
437         if (mm) {
438                 memset(mm, 0, sizeof(*mm));
439                 mm = mm_init(mm, current);
440         }
441         return mm;
442 }
443
444 /*
445  * Called when the last reference to the mm
446  * is dropped: either by a lazy thread or by
447  * mmput. Free the page directory and the mm.
448  */
449 void __mmdrop(struct mm_struct *mm)
450 {
451         BUG_ON(mm == &init_mm);
452         mm_free_pgd(mm);
453         destroy_context(mm);
454         mmu_notifier_mm_destroy(mm);
455         free_mm(mm);
456 }
457 EXPORT_SYMBOL_GPL(__mmdrop);
458
459 /*
460  * Decrement the use count and release all resources for an mm.
461  */
462 void mmput(struct mm_struct *mm)
463 {
464         might_sleep();
465
466         if (atomic_dec_and_test(&mm->mm_users)) {
467                 exit_aio(mm);
468                 exit_mmap(mm);
469                 set_mm_exe_file(mm, NULL);
470                 if (!list_empty(&mm->mmlist)) {
471                         spin_lock(&mmlist_lock);
472                         list_del(&mm->mmlist);
473                         spin_unlock(&mmlist_lock);
474                 }
475                 put_swap_token(mm);
476                 mmdrop(mm);
477         }
478 }
479 EXPORT_SYMBOL_GPL(mmput);
480
481 /**
482  * get_task_mm - acquire a reference to the task's mm
483  *
484  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
485  * this kernel workthread has transiently adopted a user mm with use_mm,
486  * to do its AIO) is not set and if so returns a reference to it, after
487  * bumping up the use count.  User must release the mm via mmput()
488  * after use.  Typically used by /proc and ptrace.
489  */
490 struct mm_struct *get_task_mm(struct task_struct *task)
491 {
492         struct mm_struct *mm;
493
494         task_lock(task);
495         mm = task->mm;
496         if (mm) {
497                 if (task->flags & PF_KTHREAD)
498                         mm = NULL;
499                 else
500                         atomic_inc(&mm->mm_users);
501         }
502         task_unlock(task);
503         return mm;
504 }
505 EXPORT_SYMBOL_GPL(get_task_mm);
506
507 /* Please note the differences between mmput and mm_release.
508  * mmput is called whenever we stop holding onto a mm_struct,
509  * error success whatever.
510  *
511  * mm_release is called after a mm_struct has been removed
512  * from the current process.
513  *
514  * This difference is important for error handling, when we
515  * only half set up a mm_struct for a new process and need to restore
516  * the old one.  Because we mmput the new mm_struct before
517  * restoring the old one. . .
518  * Eric Biederman 10 January 1998
519  */
520 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
521 {
522         struct completion *vfork_done = tsk->vfork_done;
523
524         /* Get rid of any cached register state */
525         deactivate_mm(tsk, mm);
526
527         /* notify parent sleeping on vfork() */
528         if (vfork_done) {
529                 tsk->vfork_done = NULL;
530                 complete(vfork_done);
531         }
532
533         /*
534          * If we're exiting normally, clear a user-space tid field if
535          * requested.  We leave this alone when dying by signal, to leave
536          * the value intact in a core dump, and to save the unnecessary
537          * trouble otherwise.  Userland only wants this done for a sys_exit.
538          */
539         if (tsk->clear_child_tid
540             && !(tsk->flags & PF_SIGNALED)
541             && atomic_read(&mm->mm_users) > 1) {
542                 u32 __user * tidptr = tsk->clear_child_tid;
543                 tsk->clear_child_tid = NULL;
544
545                 /*
546                  * We don't check the error code - if userspace has
547                  * not set up a proper pointer then tough luck.
548                  */
549                 put_user(0, tidptr);
550                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
551         }
552 }
553
554 /*
555  * Allocate a new mm structure and copy contents from the
556  * mm structure of the passed in task structure.
557  */
558 struct mm_struct *dup_mm(struct task_struct *tsk)
559 {
560         struct mm_struct *mm, *oldmm = current->mm;
561         int err;
562
563         if (!oldmm)
564                 return NULL;
565
566         mm = allocate_mm();
567         if (!mm)
568                 goto fail_nomem;
569
570         memcpy(mm, oldmm, sizeof(*mm));
571
572         /* Initializing for Swap token stuff */
573         mm->token_priority = 0;
574         mm->last_interval = 0;
575
576         if (!mm_init(mm, tsk))
577                 goto fail_nomem;
578
579         if (init_new_context(tsk, mm))
580                 goto fail_nocontext;
581
582         dup_mm_exe_file(oldmm, mm);
583
584         err = dup_mmap(mm, oldmm);
585         if (err)
586                 goto free_pt;
587
588         mm->hiwater_rss = get_mm_rss(mm);
589         mm->hiwater_vm = mm->total_vm;
590
591         return mm;
592
593 free_pt:
594         mmput(mm);
595
596 fail_nomem:
597         return NULL;
598
599 fail_nocontext:
600         /*
601          * If init_new_context() failed, we cannot use mmput() to free the mm
602          * because it calls destroy_context()
603          */
604         mm_free_pgd(mm);
605         free_mm(mm);
606         return NULL;
607 }
608
609 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
610 {
611         struct mm_struct * mm, *oldmm;
612         int retval;
613
614         tsk->min_flt = tsk->maj_flt = 0;
615         tsk->nvcsw = tsk->nivcsw = 0;
616
617         tsk->mm = NULL;
618         tsk->active_mm = NULL;
619
620         /*
621          * Are we cloning a kernel thread?
622          *
623          * We need to steal a active VM for that..
624          */
625         oldmm = current->mm;
626         if (!oldmm)
627                 return 0;
628
629         if (clone_flags & CLONE_VM) {
630                 atomic_inc(&oldmm->mm_users);
631                 mm = oldmm;
632                 goto good_mm;
633         }
634
635         retval = -ENOMEM;
636         mm = dup_mm(tsk);
637         if (!mm)
638                 goto fail_nomem;
639
640 good_mm:
641         /* Initializing for Swap token stuff */
642         mm->token_priority = 0;
643         mm->last_interval = 0;
644
645         tsk->mm = mm;
646         tsk->active_mm = mm;
647         return 0;
648
649 fail_nomem:
650         return retval;
651 }
652
653 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
654 {
655         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
656         /* We don't need to lock fs - think why ;-) */
657         if (fs) {
658                 atomic_set(&fs->count, 1);
659                 rwlock_init(&fs->lock);
660                 fs->umask = old->umask;
661                 read_lock(&old->lock);
662                 fs->root = old->root;
663                 path_get(&old->root);
664                 fs->pwd = old->pwd;
665                 path_get(&old->pwd);
666                 read_unlock(&old->lock);
667         }
668         return fs;
669 }
670
671 struct fs_struct *copy_fs_struct(struct fs_struct *old)
672 {
673         return __copy_fs_struct(old);
674 }
675
676 EXPORT_SYMBOL_GPL(copy_fs_struct);
677
678 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
679 {
680         if (clone_flags & CLONE_FS) {
681                 atomic_inc(&current->fs->count);
682                 return 0;
683         }
684         tsk->fs = __copy_fs_struct(current->fs);
685         if (!tsk->fs)
686                 return -ENOMEM;
687         return 0;
688 }
689
690 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
691 {
692         struct files_struct *oldf, *newf;
693         int error = 0;
694
695         /*
696          * A background process may not have any files ...
697          */
698         oldf = current->files;
699         if (!oldf)
700                 goto out;
701
702         if (clone_flags & CLONE_FILES) {
703                 atomic_inc(&oldf->count);
704                 goto out;
705         }
706
707         newf = dup_fd(oldf, &error);
708         if (!newf)
709                 goto out;
710
711         tsk->files = newf;
712         error = 0;
713 out:
714         return error;
715 }
716
717 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
718 {
719 #ifdef CONFIG_BLOCK
720         struct io_context *ioc = current->io_context;
721
722         if (!ioc)
723                 return 0;
724         /*
725          * Share io context with parent, if CLONE_IO is set
726          */
727         if (clone_flags & CLONE_IO) {
728                 tsk->io_context = ioc_task_link(ioc);
729                 if (unlikely(!tsk->io_context))
730                         return -ENOMEM;
731         } else if (ioprio_valid(ioc->ioprio)) {
732                 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
733                 if (unlikely(!tsk->io_context))
734                         return -ENOMEM;
735
736                 tsk->io_context->ioprio = ioc->ioprio;
737         }
738 #endif
739         return 0;
740 }
741
742 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
743 {
744         struct sighand_struct *sig;
745
746         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
747                 atomic_inc(&current->sighand->count);
748                 return 0;
749         }
750         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
751         rcu_assign_pointer(tsk->sighand, sig);
752         if (!sig)
753                 return -ENOMEM;
754         atomic_set(&sig->count, 1);
755         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
756         return 0;
757 }
758
759 void __cleanup_sighand(struct sighand_struct *sighand)
760 {
761         if (atomic_dec_and_test(&sighand->count))
762                 kmem_cache_free(sighand_cachep, sighand);
763 }
764
765 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
766 {
767         struct signal_struct *sig;
768         int ret;
769
770         if (clone_flags & CLONE_THREAD) {
771                 atomic_inc(&current->signal->count);
772                 atomic_inc(&current->signal->live);
773                 return 0;
774         }
775         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
776         tsk->signal = sig;
777         if (!sig)
778                 return -ENOMEM;
779
780         ret = copy_thread_group_keys(tsk);
781         if (ret < 0) {
782                 kmem_cache_free(signal_cachep, sig);
783                 return ret;
784         }
785
786         atomic_set(&sig->count, 1);
787         atomic_set(&sig->live, 1);
788         init_waitqueue_head(&sig->wait_chldexit);
789         sig->flags = 0;
790         sig->group_exit_code = 0;
791         sig->group_exit_task = NULL;
792         sig->group_stop_count = 0;
793         sig->curr_target = tsk;
794         init_sigpending(&sig->shared_pending);
795         INIT_LIST_HEAD(&sig->posix_timers);
796
797         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
798         sig->it_real_incr.tv64 = 0;
799         sig->real_timer.function = it_real_fn;
800
801         sig->it_virt_expires = cputime_zero;
802         sig->it_virt_incr = cputime_zero;
803         sig->it_prof_expires = cputime_zero;
804         sig->it_prof_incr = cputime_zero;
805
806         sig->leader = 0;        /* session leadership doesn't inherit */
807         sig->tty_old_pgrp = NULL;
808
809         sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
810         sig->gtime = cputime_zero;
811         sig->cgtime = cputime_zero;
812         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
813         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
814         sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
815         task_io_accounting_init(&sig->ioac);
816         sig->sum_sched_runtime = 0;
817         INIT_LIST_HEAD(&sig->cpu_timers[0]);
818         INIT_LIST_HEAD(&sig->cpu_timers[1]);
819         INIT_LIST_HEAD(&sig->cpu_timers[2]);
820         taskstats_tgid_init(sig);
821
822         task_lock(current->group_leader);
823         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
824         task_unlock(current->group_leader);
825
826         if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
827                 /*
828                  * New sole thread in the process gets an expiry time
829                  * of the whole CPU time limit.
830                  */
831                 tsk->it_prof_expires =
832                         secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
833         }
834         acct_init_pacct(&sig->pacct);
835
836         tty_audit_fork(sig);
837
838         return 0;
839 }
840
841 void __cleanup_signal(struct signal_struct *sig)
842 {
843         exit_thread_group_keys(sig);
844         kmem_cache_free(signal_cachep, sig);
845 }
846
847 static void cleanup_signal(struct task_struct *tsk)
848 {
849         struct signal_struct *sig = tsk->signal;
850
851         atomic_dec(&sig->live);
852
853         if (atomic_dec_and_test(&sig->count))
854                 __cleanup_signal(sig);
855 }
856
857 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
858 {
859         unsigned long new_flags = p->flags;
860
861         new_flags &= ~PF_SUPERPRIV;
862         new_flags |= PF_FORKNOEXEC;
863         new_flags |= PF_STARTING;
864         p->flags = new_flags;
865         clear_freeze_flag(p);
866 }
867
868 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
869 {
870         current->clear_child_tid = tidptr;
871
872         return task_pid_vnr(current);
873 }
874
875 static void rt_mutex_init_task(struct task_struct *p)
876 {
877         spin_lock_init(&p->pi_lock);
878 #ifdef CONFIG_RT_MUTEXES
879         plist_head_init(&p->pi_waiters, &p->pi_lock);
880         p->pi_blocked_on = NULL;
881 #endif
882 }
883
884 #ifdef CONFIG_MM_OWNER
885 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
886 {
887         mm->owner = p;
888 }
889 #endif /* CONFIG_MM_OWNER */
890
891 /*
892  * This creates a new process as a copy of the old one,
893  * but does not actually start it yet.
894  *
895  * It copies the registers, and all the appropriate
896  * parts of the process environment (as per the clone
897  * flags). The actual kick-off is left to the caller.
898  */
899 static struct task_struct *copy_process(unsigned long clone_flags,
900                                         unsigned long stack_start,
901                                         struct pt_regs *regs,
902                                         unsigned long stack_size,
903                                         int __user *child_tidptr,
904                                         struct pid *pid,
905                                         int trace)
906 {
907         int retval;
908         struct task_struct *p;
909         int cgroup_callbacks_done = 0;
910
911         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
912                 return ERR_PTR(-EINVAL);
913
914         /*
915          * Thread groups must share signals as well, and detached threads
916          * can only be started up within the thread group.
917          */
918         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
919                 return ERR_PTR(-EINVAL);
920
921         /*
922          * Shared signal handlers imply shared VM. By way of the above,
923          * thread groups also imply shared VM. Blocking this case allows
924          * for various simplifications in other code.
925          */
926         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
927                 return ERR_PTR(-EINVAL);
928
929         retval = security_task_create(clone_flags);
930         if (retval)
931                 goto fork_out;
932
933         retval = -ENOMEM;
934         p = dup_task_struct(current);
935         if (!p)
936                 goto fork_out;
937
938         rt_mutex_init_task(p);
939
940 #ifdef CONFIG_PROVE_LOCKING
941         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
942         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
943 #endif
944         retval = -EAGAIN;
945         if (atomic_read(&p->user->processes) >=
946                         p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
947                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
948                     p->user != current->nsproxy->user_ns->root_user)
949                         goto bad_fork_free;
950         }
951
952         atomic_inc(&p->user->__count);
953         atomic_inc(&p->user->processes);
954         get_group_info(p->group_info);
955
956         /*
957          * If multiple threads are within copy_process(), then this check
958          * triggers too late. This doesn't hurt, the check is only there
959          * to stop root fork bombs.
960          */
961         if (nr_threads >= max_threads)
962                 goto bad_fork_cleanup_count;
963
964         if (!try_module_get(task_thread_info(p)->exec_domain->module))
965                 goto bad_fork_cleanup_count;
966
967         if (p->binfmt && !try_module_get(p->binfmt->module))
968                 goto bad_fork_cleanup_put_domain;
969
970         p->did_exec = 0;
971         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
972         copy_flags(clone_flags, p);
973         INIT_LIST_HEAD(&p->children);
974         INIT_LIST_HEAD(&p->sibling);
975 #ifdef CONFIG_PREEMPT_RCU
976         p->rcu_read_lock_nesting = 0;
977         p->rcu_flipctr_idx = 0;
978 #endif /* #ifdef CONFIG_PREEMPT_RCU */
979         p->vfork_done = NULL;
980         spin_lock_init(&p->alloc_lock);
981
982         clear_tsk_thread_flag(p, TIF_SIGPENDING);
983         init_sigpending(&p->pending);
984
985         p->utime = cputime_zero;
986         p->stime = cputime_zero;
987         p->gtime = cputime_zero;
988         p->utimescaled = cputime_zero;
989         p->stimescaled = cputime_zero;
990         p->prev_utime = cputime_zero;
991         p->prev_stime = cputime_zero;
992
993 #ifdef CONFIG_DETECT_SOFTLOCKUP
994         p->last_switch_count = 0;
995         p->last_switch_timestamp = 0;
996 #endif
997
998         task_io_accounting_init(&p->ioac);
999         acct_clear_integrals(p);
1000
1001         p->it_virt_expires = cputime_zero;
1002         p->it_prof_expires = cputime_zero;
1003         p->it_sched_expires = 0;
1004         INIT_LIST_HEAD(&p->cpu_timers[0]);
1005         INIT_LIST_HEAD(&p->cpu_timers[1]);
1006         INIT_LIST_HEAD(&p->cpu_timers[2]);
1007
1008         p->lock_depth = -1;             /* -1 = no lock */
1009         do_posix_clock_monotonic_gettime(&p->start_time);
1010         p->real_start_time = p->start_time;
1011         monotonic_to_bootbased(&p->real_start_time);
1012 #ifdef CONFIG_SECURITY
1013         p->security = NULL;
1014 #endif
1015         p->cap_bset = current->cap_bset;
1016         p->io_context = NULL;
1017         p->audit_context = NULL;
1018         cgroup_fork(p);
1019 #ifdef CONFIG_NUMA
1020         p->mempolicy = mpol_dup(p->mempolicy);
1021         if (IS_ERR(p->mempolicy)) {
1022                 retval = PTR_ERR(p->mempolicy);
1023                 p->mempolicy = NULL;
1024                 goto bad_fork_cleanup_cgroup;
1025         }
1026         mpol_fix_fork_child_flag(p);
1027 #endif
1028 #ifdef CONFIG_TRACE_IRQFLAGS
1029         p->irq_events = 0;
1030 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1031         p->hardirqs_enabled = 1;
1032 #else
1033         p->hardirqs_enabled = 0;
1034 #endif
1035         p->hardirq_enable_ip = 0;
1036         p->hardirq_enable_event = 0;
1037         p->hardirq_disable_ip = _THIS_IP_;
1038         p->hardirq_disable_event = 0;
1039         p->softirqs_enabled = 1;
1040         p->softirq_enable_ip = _THIS_IP_;
1041         p->softirq_enable_event = 0;
1042         p->softirq_disable_ip = 0;
1043         p->softirq_disable_event = 0;
1044         p->hardirq_context = 0;
1045         p->softirq_context = 0;
1046 #endif
1047 #ifdef CONFIG_LOCKDEP
1048         p->lockdep_depth = 0; /* no locks held yet */
1049         p->curr_chain_key = 0;
1050         p->lockdep_recursion = 0;
1051 #endif
1052
1053 #ifdef CONFIG_DEBUG_MUTEXES
1054         p->blocked_on = NULL; /* not blocked yet */
1055 #endif
1056
1057         /* Perform scheduler related setup. Assign this task to a CPU. */
1058         sched_fork(p, clone_flags);
1059
1060         if ((retval = security_task_alloc(p)))
1061                 goto bad_fork_cleanup_policy;
1062         if ((retval = audit_alloc(p)))
1063                 goto bad_fork_cleanup_security;
1064         /* copy all the process information */
1065         if ((retval = copy_semundo(clone_flags, p)))
1066                 goto bad_fork_cleanup_audit;
1067         if ((retval = copy_files(clone_flags, p)))
1068                 goto bad_fork_cleanup_semundo;
1069         if ((retval = copy_fs(clone_flags, p)))
1070                 goto bad_fork_cleanup_files;
1071         if ((retval = copy_sighand(clone_flags, p)))
1072                 goto bad_fork_cleanup_fs;
1073         if ((retval = copy_signal(clone_flags, p)))
1074                 goto bad_fork_cleanup_sighand;
1075         if ((retval = copy_mm(clone_flags, p)))
1076                 goto bad_fork_cleanup_signal;
1077         if ((retval = copy_keys(clone_flags, p)))
1078                 goto bad_fork_cleanup_mm;
1079         if ((retval = copy_namespaces(clone_flags, p)))
1080                 goto bad_fork_cleanup_keys;
1081         if ((retval = copy_io(clone_flags, p)))
1082                 goto bad_fork_cleanup_namespaces;
1083         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1084         if (retval)
1085                 goto bad_fork_cleanup_io;
1086
1087         if (pid != &init_struct_pid) {
1088                 retval = -ENOMEM;
1089                 pid = alloc_pid(task_active_pid_ns(p));
1090                 if (!pid)
1091                         goto bad_fork_cleanup_io;
1092
1093                 if (clone_flags & CLONE_NEWPID) {
1094                         retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1095                         if (retval < 0)
1096                                 goto bad_fork_free_pid;
1097                 }
1098         }
1099
1100         p->pid = pid_nr(pid);
1101         p->tgid = p->pid;
1102         if (clone_flags & CLONE_THREAD)
1103                 p->tgid = current->tgid;
1104
1105         if (current->nsproxy != p->nsproxy) {
1106                 retval = ns_cgroup_clone(p, pid);
1107                 if (retval)
1108                         goto bad_fork_free_pid;
1109         }
1110
1111         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1112         /*
1113          * Clear TID on mm_release()?
1114          */
1115         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1116 #ifdef CONFIG_FUTEX
1117         p->robust_list = NULL;
1118 #ifdef CONFIG_COMPAT
1119         p->compat_robust_list = NULL;
1120 #endif
1121         INIT_LIST_HEAD(&p->pi_state_list);
1122         p->pi_state_cache = NULL;
1123 #endif
1124         /*
1125          * sigaltstack should be cleared when sharing the same VM
1126          */
1127         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1128                 p->sas_ss_sp = p->sas_ss_size = 0;
1129
1130         /*
1131          * Syscall tracing should be turned off in the child regardless
1132          * of CLONE_PTRACE.
1133          */
1134         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1135 #ifdef TIF_SYSCALL_EMU
1136         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1137 #endif
1138         clear_all_latency_tracing(p);
1139
1140         /* Our parent execution domain becomes current domain
1141            These must match for thread signalling to apply */
1142         p->parent_exec_id = p->self_exec_id;
1143
1144         /* ok, now we should be set up.. */
1145         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1146         p->pdeath_signal = 0;
1147         p->exit_state = 0;
1148
1149         /*
1150          * Ok, make it visible to the rest of the system.
1151          * We dont wake it up yet.
1152          */
1153         p->group_leader = p;
1154         INIT_LIST_HEAD(&p->thread_group);
1155
1156         /* Now that the task is set up, run cgroup callbacks if
1157          * necessary. We need to run them before the task is visible
1158          * on the tasklist. */
1159         cgroup_fork_callbacks(p);
1160         cgroup_callbacks_done = 1;
1161
1162         /* Need tasklist lock for parent etc handling! */
1163         write_lock_irq(&tasklist_lock);
1164
1165         /*
1166          * The task hasn't been attached yet, so its cpus_allowed mask will
1167          * not be changed, nor will its assigned CPU.
1168          *
1169          * The cpus_allowed mask of the parent may have changed after it was
1170          * copied first time - so re-copy it here, then check the child's CPU
1171          * to ensure it is on a valid CPU (and if not, just force it back to
1172          * parent's CPU). This avoids alot of nasty races.
1173          */
1174         p->cpus_allowed = current->cpus_allowed;
1175         p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1176         if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1177                         !cpu_online(task_cpu(p))))
1178                 set_task_cpu(p, smp_processor_id());
1179
1180         /* CLONE_PARENT re-uses the old parent */
1181         if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1182                 p->real_parent = current->real_parent;
1183         else
1184                 p->real_parent = current;
1185
1186         spin_lock(&current->sighand->siglock);
1187
1188         /*
1189          * Process group and session signals need to be delivered to just the
1190          * parent before the fork or both the parent and the child after the
1191          * fork. Restart if a signal comes in before we add the new process to
1192          * it's process group.
1193          * A fatal signal pending means that current will exit, so the new
1194          * thread can't slip out of an OOM kill (or normal SIGKILL).
1195          */
1196         recalc_sigpending();
1197         if (signal_pending(current)) {
1198                 spin_unlock(&current->sighand->siglock);
1199                 write_unlock_irq(&tasklist_lock);
1200                 retval = -ERESTARTNOINTR;
1201                 goto bad_fork_free_pid;
1202         }
1203
1204         if (clone_flags & CLONE_THREAD) {
1205                 p->group_leader = current->group_leader;
1206                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1207
1208                 if (!cputime_eq(current->signal->it_virt_expires,
1209                                 cputime_zero) ||
1210                     !cputime_eq(current->signal->it_prof_expires,
1211                                 cputime_zero) ||
1212                     current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1213                     !list_empty(&current->signal->cpu_timers[0]) ||
1214                     !list_empty(&current->signal->cpu_timers[1]) ||
1215                     !list_empty(&current->signal->cpu_timers[2])) {
1216                         /*
1217                          * Have child wake up on its first tick to check
1218                          * for process CPU timers.
1219                          */
1220                         p->it_prof_expires = jiffies_to_cputime(1);
1221                 }
1222         }
1223
1224         if (likely(p->pid)) {
1225                 list_add_tail(&p->sibling, &p->real_parent->children);
1226                 tracehook_finish_clone(p, clone_flags, trace);
1227
1228                 if (thread_group_leader(p)) {
1229                         if (clone_flags & CLONE_NEWPID)
1230                                 p->nsproxy->pid_ns->child_reaper = p;
1231
1232                         p->signal->leader_pid = pid;
1233                         p->signal->tty = current->signal->tty;
1234                         set_task_pgrp(p, task_pgrp_nr(current));
1235                         set_task_session(p, task_session_nr(current));
1236                         attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1237                         attach_pid(p, PIDTYPE_SID, task_session(current));
1238                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1239                         __get_cpu_var(process_counts)++;
1240                 }
1241                 attach_pid(p, PIDTYPE_PID, pid);
1242                 nr_threads++;
1243         }
1244
1245         total_forks++;
1246         spin_unlock(&current->sighand->siglock);
1247         write_unlock_irq(&tasklist_lock);
1248         proc_fork_connector(p);
1249         cgroup_post_fork(p);
1250         return p;
1251
1252 bad_fork_free_pid:
1253         if (pid != &init_struct_pid)
1254                 free_pid(pid);
1255 bad_fork_cleanup_io:
1256         put_io_context(p->io_context);
1257 bad_fork_cleanup_namespaces:
1258         exit_task_namespaces(p);
1259 bad_fork_cleanup_keys:
1260         exit_keys(p);
1261 bad_fork_cleanup_mm:
1262         if (p->mm)
1263                 mmput(p->mm);
1264 bad_fork_cleanup_signal:
1265         cleanup_signal(p);
1266 bad_fork_cleanup_sighand:
1267         __cleanup_sighand(p->sighand);
1268 bad_fork_cleanup_fs:
1269         exit_fs(p); /* blocking */
1270 bad_fork_cleanup_files:
1271         exit_files(p); /* blocking */
1272 bad_fork_cleanup_semundo:
1273         exit_sem(p);
1274 bad_fork_cleanup_audit:
1275         audit_free(p);
1276 bad_fork_cleanup_security:
1277         security_task_free(p);
1278 bad_fork_cleanup_policy:
1279 #ifdef CONFIG_NUMA
1280         mpol_put(p->mempolicy);
1281 bad_fork_cleanup_cgroup:
1282 #endif
1283         cgroup_exit(p, cgroup_callbacks_done);
1284         delayacct_tsk_free(p);
1285         if (p->binfmt)
1286                 module_put(p->binfmt->module);
1287 bad_fork_cleanup_put_domain:
1288         module_put(task_thread_info(p)->exec_domain->module);
1289 bad_fork_cleanup_count:
1290         put_group_info(p->group_info);
1291         atomic_dec(&p->user->processes);
1292         free_uid(p->user);
1293 bad_fork_free:
1294         free_task(p);
1295 fork_out:
1296         return ERR_PTR(retval);
1297 }
1298
1299 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1300 {
1301         memset(regs, 0, sizeof(struct pt_regs));
1302         return regs;
1303 }
1304
1305 struct task_struct * __cpuinit fork_idle(int cpu)
1306 {
1307         struct task_struct *task;
1308         struct pt_regs regs;
1309
1310         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1311                             &init_struct_pid, 0);
1312         if (!IS_ERR(task))
1313                 init_idle(task, cpu);
1314
1315         return task;
1316 }
1317
1318 /*
1319  *  Ok, this is the main fork-routine.
1320  *
1321  * It copies the process, and if successful kick-starts
1322  * it and waits for it to finish using the VM if required.
1323  */
1324 long do_fork(unsigned long clone_flags,
1325               unsigned long stack_start,
1326               struct pt_regs *regs,
1327               unsigned long stack_size,
1328               int __user *parent_tidptr,
1329               int __user *child_tidptr)
1330 {
1331         struct task_struct *p;
1332         int trace = 0;
1333         long nr;
1334
1335         /*
1336          * We hope to recycle these flags after 2.6.26
1337          */
1338         if (unlikely(clone_flags & CLONE_STOPPED)) {
1339                 static int __read_mostly count = 100;
1340
1341                 if (count > 0 && printk_ratelimit()) {
1342                         char comm[TASK_COMM_LEN];
1343
1344                         count--;
1345                         printk(KERN_INFO "fork(): process `%s' used deprecated "
1346                                         "clone flags 0x%lx\n",
1347                                 get_task_comm(comm, current),
1348                                 clone_flags & CLONE_STOPPED);
1349                 }
1350         }
1351
1352         /*
1353          * When called from kernel_thread, don't do user tracing stuff.
1354          */
1355         if (likely(user_mode(regs)))
1356                 trace = tracehook_prepare_clone(clone_flags);
1357
1358         p = copy_process(clone_flags, stack_start, regs, stack_size,
1359                          child_tidptr, NULL, trace);
1360         /*
1361          * Do this prior waking up the new thread - the thread pointer
1362          * might get invalid after that point, if the thread exits quickly.
1363          */
1364         if (!IS_ERR(p)) {
1365                 struct completion vfork;
1366
1367                 nr = task_pid_vnr(p);
1368
1369                 if (clone_flags & CLONE_PARENT_SETTID)
1370                         put_user(nr, parent_tidptr);
1371
1372                 if (clone_flags & CLONE_VFORK) {
1373                         p->vfork_done = &vfork;
1374                         init_completion(&vfork);
1375                 }
1376
1377                 tracehook_report_clone(trace, regs, clone_flags, nr, p);
1378
1379                 /*
1380                  * We set PF_STARTING at creation in case tracing wants to
1381                  * use this to distinguish a fully live task from one that
1382                  * hasn't gotten to tracehook_report_clone() yet.  Now we
1383                  * clear it and set the child going.
1384                  */
1385                 p->flags &= ~PF_STARTING;
1386
1387                 if (unlikely(clone_flags & CLONE_STOPPED)) {
1388                         /*
1389                          * We'll start up with an immediate SIGSTOP.
1390                          */
1391                         sigaddset(&p->pending.signal, SIGSTOP);
1392                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1393                         __set_task_state(p, TASK_STOPPED);
1394                 } else {
1395                         wake_up_new_task(p, clone_flags);
1396                 }
1397
1398                 tracehook_report_clone_complete(trace, regs,
1399                                                 clone_flags, nr, p);
1400
1401                 if (clone_flags & CLONE_VFORK) {
1402                         freezer_do_not_count();
1403                         wait_for_completion(&vfork);
1404                         freezer_count();
1405                         tracehook_report_vfork_done(p, nr);
1406                 }
1407         } else {
1408                 nr = PTR_ERR(p);
1409         }
1410         return nr;
1411 }
1412
1413 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1414 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1415 #endif
1416
1417 static void sighand_ctor(void *data)
1418 {
1419         struct sighand_struct *sighand = data;
1420
1421         spin_lock_init(&sighand->siglock);
1422         init_waitqueue_head(&sighand->signalfd_wqh);
1423 }
1424
1425 void __init proc_caches_init(void)
1426 {
1427         sighand_cachep = kmem_cache_create("sighand_cache",
1428                         sizeof(struct sighand_struct), 0,
1429                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1430                         sighand_ctor);
1431         signal_cachep = kmem_cache_create("signal_cache",
1432                         sizeof(struct signal_struct), 0,
1433                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1434         files_cachep = kmem_cache_create("files_cache",
1435                         sizeof(struct files_struct), 0,
1436                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1437         fs_cachep = kmem_cache_create("fs_cache",
1438                         sizeof(struct fs_struct), 0,
1439                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1440         vm_area_cachep = kmem_cache_create("vm_area_struct",
1441                         sizeof(struct vm_area_struct), 0,
1442                         SLAB_PANIC, NULL);
1443         mm_cachep = kmem_cache_create("mm_struct",
1444                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1445                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1446 }
1447
1448 /*
1449  * Check constraints on flags passed to the unshare system call and
1450  * force unsharing of additional process context as appropriate.
1451  */
1452 static void check_unshare_flags(unsigned long *flags_ptr)
1453 {
1454         /*
1455          * If unsharing a thread from a thread group, must also
1456          * unshare vm.
1457          */
1458         if (*flags_ptr & CLONE_THREAD)
1459                 *flags_ptr |= CLONE_VM;
1460
1461         /*
1462          * If unsharing vm, must also unshare signal handlers.
1463          */
1464         if (*flags_ptr & CLONE_VM)
1465                 *flags_ptr |= CLONE_SIGHAND;
1466
1467         /*
1468          * If unsharing signal handlers and the task was created
1469          * using CLONE_THREAD, then must unshare the thread
1470          */
1471         if ((*flags_ptr & CLONE_SIGHAND) &&
1472             (atomic_read(&current->signal->count) > 1))
1473                 *flags_ptr |= CLONE_THREAD;
1474
1475         /*
1476          * If unsharing namespace, must also unshare filesystem information.
1477          */
1478         if (*flags_ptr & CLONE_NEWNS)
1479                 *flags_ptr |= CLONE_FS;
1480 }
1481
1482 /*
1483  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1484  */
1485 static int unshare_thread(unsigned long unshare_flags)
1486 {
1487         if (unshare_flags & CLONE_THREAD)
1488                 return -EINVAL;
1489
1490         return 0;
1491 }
1492
1493 /*
1494  * Unshare the filesystem structure if it is being shared
1495  */
1496 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1497 {
1498         struct fs_struct *fs = current->fs;
1499
1500         if ((unshare_flags & CLONE_FS) &&
1501             (fs && atomic_read(&fs->count) > 1)) {
1502                 *new_fsp = __copy_fs_struct(current->fs);
1503                 if (!*new_fsp)
1504                         return -ENOMEM;
1505         }
1506
1507         return 0;
1508 }
1509
1510 /*
1511  * Unsharing of sighand is not supported yet
1512  */
1513 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1514 {
1515         struct sighand_struct *sigh = current->sighand;
1516
1517         if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1518                 return -EINVAL;
1519         else
1520                 return 0;
1521 }
1522
1523 /*
1524  * Unshare vm if it is being shared
1525  */
1526 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1527 {
1528         struct mm_struct *mm = current->mm;
1529
1530         if ((unshare_flags & CLONE_VM) &&
1531             (mm && atomic_read(&mm->mm_users) > 1)) {
1532                 return -EINVAL;
1533         }
1534
1535         return 0;
1536 }
1537
1538 /*
1539  * Unshare file descriptor table if it is being shared
1540  */
1541 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1542 {
1543         struct files_struct *fd = current->files;
1544         int error = 0;
1545
1546         if ((unshare_flags & CLONE_FILES) &&
1547             (fd && atomic_read(&fd->count) > 1)) {
1548                 *new_fdp = dup_fd(fd, &error);
1549                 if (!*new_fdp)
1550                         return error;
1551         }
1552
1553         return 0;
1554 }
1555
1556 /*
1557  * unshare allows a process to 'unshare' part of the process
1558  * context which was originally shared using clone.  copy_*
1559  * functions used by do_fork() cannot be used here directly
1560  * because they modify an inactive task_struct that is being
1561  * constructed. Here we are modifying the current, active,
1562  * task_struct.
1563  */
1564 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1565 {
1566         int err = 0;
1567         struct fs_struct *fs, *new_fs = NULL;
1568         struct sighand_struct *new_sigh = NULL;
1569         struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1570         struct files_struct *fd, *new_fd = NULL;
1571         struct nsproxy *new_nsproxy = NULL;
1572         int do_sysvsem = 0;
1573
1574         check_unshare_flags(&unshare_flags);
1575
1576         /* Return -EINVAL for all unsupported flags */
1577         err = -EINVAL;
1578         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1579                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1580                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1581                                 CLONE_NEWNET))
1582                 goto bad_unshare_out;
1583
1584         /*
1585          * CLONE_NEWIPC must also detach from the undolist: after switching
1586          * to a new ipc namespace, the semaphore arrays from the old
1587          * namespace are unreachable.
1588          */
1589         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1590                 do_sysvsem = 1;
1591         if ((err = unshare_thread(unshare_flags)))
1592                 goto bad_unshare_out;
1593         if ((err = unshare_fs(unshare_flags, &new_fs)))
1594                 goto bad_unshare_cleanup_thread;
1595         if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1596                 goto bad_unshare_cleanup_fs;
1597         if ((err = unshare_vm(unshare_flags, &new_mm)))
1598                 goto bad_unshare_cleanup_sigh;
1599         if ((err = unshare_fd(unshare_flags, &new_fd)))
1600                 goto bad_unshare_cleanup_vm;
1601         if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1602                         new_fs)))
1603                 goto bad_unshare_cleanup_fd;
1604
1605         if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1606                 if (do_sysvsem) {
1607                         /*
1608                          * CLONE_SYSVSEM is equivalent to sys_exit().
1609                          */
1610                         exit_sem(current);
1611                 }
1612
1613                 if (new_nsproxy) {
1614                         switch_task_namespaces(current, new_nsproxy);
1615                         new_nsproxy = NULL;
1616                 }
1617
1618                 task_lock(current);
1619
1620                 if (new_fs) {
1621                         fs = current->fs;
1622                         current->fs = new_fs;
1623                         new_fs = fs;
1624                 }
1625
1626                 if (new_mm) {
1627                         mm = current->mm;
1628                         active_mm = current->active_mm;
1629                         current->mm = new_mm;
1630                         current->active_mm = new_mm;
1631                         activate_mm(active_mm, new_mm);
1632                         new_mm = mm;
1633                 }
1634
1635                 if (new_fd) {
1636                         fd = current->files;
1637                         current->files = new_fd;
1638                         new_fd = fd;
1639                 }
1640
1641                 task_unlock(current);
1642         }
1643
1644         if (new_nsproxy)
1645                 put_nsproxy(new_nsproxy);
1646
1647 bad_unshare_cleanup_fd:
1648         if (new_fd)
1649                 put_files_struct(new_fd);
1650
1651 bad_unshare_cleanup_vm:
1652         if (new_mm)
1653                 mmput(new_mm);
1654
1655 bad_unshare_cleanup_sigh:
1656         if (new_sigh)
1657                 if (atomic_dec_and_test(&new_sigh->count))
1658                         kmem_cache_free(sighand_cachep, new_sigh);
1659
1660 bad_unshare_cleanup_fs:
1661         if (new_fs)
1662                 put_fs_struct(new_fs);
1663
1664 bad_unshare_cleanup_thread:
1665 bad_unshare_out:
1666         return err;
1667 }
1668
1669 /*
1670  *      Helper to unshare the files of the current task.
1671  *      We don't want to expose copy_files internals to
1672  *      the exec layer of the kernel.
1673  */
1674
1675 int unshare_files(struct files_struct **displaced)
1676 {
1677         struct task_struct *task = current;
1678         struct files_struct *copy = NULL;
1679         int error;
1680
1681         error = unshare_fd(CLONE_FILES, &copy);
1682         if (error || !copy) {
1683                 *displaced = NULL;
1684                 return error;
1685         }
1686         *displaced = task->files;
1687         task_lock(task);
1688         task->files = copy;
1689         task_unlock(task);
1690         return 0;
1691 }