]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/fork.c
431b67a6098ca5907e2a2d27a3ec88ce77bd48be
[karo-tx-linux.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78
79 #include <asm/pgtable.h>
80 #include <asm/pgalloc.h>
81 #include <asm/uaccess.h>
82 #include <asm/mmu_context.h>
83 #include <asm/cacheflush.h>
84 #include <asm/tlbflush.h>
85
86 #include <trace/events/sched.h>
87
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/task.h>
90
91 /*
92  * Minimum number of threads to boot the kernel
93  */
94 #define MIN_THREADS 20
95
96 /*
97  * Maximum number of threads
98  */
99 #define MAX_THREADS FUTEX_TID_MASK
100
101 /*
102  * Protected counters by write_lock_irq(&tasklist_lock)
103  */
104 unsigned long total_forks;      /* Handle normal Linux uptimes. */
105 int nr_threads;                 /* The idle threads do not count.. */
106
107 int max_threads;                /* tunable limit on nr_threads */
108
109 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
110
111 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
112
113 #ifdef CONFIG_PROVE_RCU
114 int lockdep_tasklist_lock_is_held(void)
115 {
116         return lockdep_is_held(&tasklist_lock);
117 }
118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
119 #endif /* #ifdef CONFIG_PROVE_RCU */
120
121 int nr_processes(void)
122 {
123         int cpu;
124         int total = 0;
125
126         for_each_possible_cpu(cpu)
127                 total += per_cpu(process_counts, cpu);
128
129         return total;
130 }
131
132 void __weak arch_release_task_struct(struct task_struct *tsk)
133 {
134 }
135
136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
137 static struct kmem_cache *task_struct_cachep;
138
139 static inline struct task_struct *alloc_task_struct_node(int node)
140 {
141         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
142 }
143
144 static inline void free_task_struct(struct task_struct *tsk)
145 {
146         kmem_cache_free(task_struct_cachep, tsk);
147 }
148 #endif
149
150 void __weak arch_release_thread_info(struct thread_info *ti)
151 {
152 }
153
154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
155
156 /*
157  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
158  * kmemcache based allocator.
159  */
160 # if THREAD_SIZE >= PAGE_SIZE
161 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
162                                                   int node)
163 {
164         struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
165                                                   THREAD_SIZE_ORDER);
166
167         return page ? page_address(page) : NULL;
168 }
169
170 static inline void free_thread_info(struct thread_info *ti)
171 {
172         free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
173 }
174 # else
175 static struct kmem_cache *thread_info_cache;
176
177 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
178                                                   int node)
179 {
180         return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
181 }
182
183 static void free_thread_info(struct thread_info *ti)
184 {
185         kmem_cache_free(thread_info_cache, ti);
186 }
187
188 void thread_info_cache_init(void)
189 {
190         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
191                                               THREAD_SIZE, 0, NULL);
192         BUG_ON(thread_info_cache == NULL);
193 }
194 # endif
195 #endif
196
197 /* SLAB cache for signal_struct structures (tsk->signal) */
198 static struct kmem_cache *signal_cachep;
199
200 /* SLAB cache for sighand_struct structures (tsk->sighand) */
201 struct kmem_cache *sighand_cachep;
202
203 /* SLAB cache for files_struct structures (tsk->files) */
204 struct kmem_cache *files_cachep;
205
206 /* SLAB cache for fs_struct structures (tsk->fs) */
207 struct kmem_cache *fs_cachep;
208
209 /* SLAB cache for vm_area_struct structures */
210 struct kmem_cache *vm_area_cachep;
211
212 /* SLAB cache for mm_struct structures (tsk->mm) */
213 static struct kmem_cache *mm_cachep;
214
215 static void account_kernel_stack(struct thread_info *ti, int account)
216 {
217         struct zone *zone = page_zone(virt_to_page(ti));
218
219         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
220 }
221
222 void free_task(struct task_struct *tsk)
223 {
224         account_kernel_stack(tsk->stack, -1);
225         arch_release_thread_info(tsk->stack);
226         free_thread_info(tsk->stack);
227         rt_mutex_debug_task_free(tsk);
228         ftrace_graph_exit_task(tsk);
229         put_seccomp_filter(tsk);
230         arch_release_task_struct(tsk);
231         free_task_struct(tsk);
232 }
233 EXPORT_SYMBOL(free_task);
234
235 static inline void free_signal_struct(struct signal_struct *sig)
236 {
237         taskstats_tgid_free(sig);
238         sched_autogroup_exit(sig);
239         kmem_cache_free(signal_cachep, sig);
240 }
241
242 static inline void put_signal_struct(struct signal_struct *sig)
243 {
244         if (atomic_dec_and_test(&sig->sigcnt))
245                 free_signal_struct(sig);
246 }
247
248 void __put_task_struct(struct task_struct *tsk)
249 {
250         WARN_ON(!tsk->exit_state);
251         WARN_ON(atomic_read(&tsk->usage));
252         WARN_ON(tsk == current);
253
254         task_numa_free(tsk);
255         security_task_free(tsk);
256         exit_creds(tsk);
257         delayacct_tsk_free(tsk);
258         put_signal_struct(tsk->signal);
259
260         if (!profile_handoff_task(tsk))
261                 free_task(tsk);
262 }
263 EXPORT_SYMBOL_GPL(__put_task_struct);
264
265 void __init __weak arch_task_cache_init(void) { }
266
267 /*
268  * set_max_threads
269  */
270 static void set_max_threads(unsigned int max_threads_suggested)
271 {
272         u64 threads;
273
274         /*
275          * The number of threads shall be limited such that the thread
276          * structures may only consume a small part of the available memory.
277          */
278         if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
279                 threads = MAX_THREADS;
280         else
281                 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
282                                     (u64) THREAD_SIZE * 8UL);
283
284         if (threads > max_threads_suggested)
285                 threads = max_threads_suggested;
286
287         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
288 }
289
290 int __weak arch_task_struct_size(void)
291 {
292         return sizeof(struct task_struct);
293 }
294
295 void __init fork_init(void)
296 {
297         int task_struct_size = arch_task_struct_size();
298 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
299 #ifndef ARCH_MIN_TASKALIGN
300 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
301 #endif
302         /* create a slab on which task_structs can be allocated */
303         task_struct_cachep =
304                 kmem_cache_create("task_struct", task_struct_size,
305                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
306 #endif
307
308         /* do the arch specific task caches init */
309         arch_task_cache_init();
310
311         set_max_threads(MAX_THREADS);
312
313         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
314         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
315         init_task.signal->rlim[RLIMIT_SIGPENDING] =
316                 init_task.signal->rlim[RLIMIT_NPROC];
317 }
318
319 int __weak arch_dup_task_struct(struct task_struct *dst,
320                                                struct task_struct *src)
321 {
322         *dst = *src;
323         return 0;
324 }
325
326 void set_task_stack_end_magic(struct task_struct *tsk)
327 {
328         unsigned long *stackend;
329
330         stackend = end_of_stack(tsk);
331         *stackend = STACK_END_MAGIC;    /* for overflow detection */
332 }
333
334 static struct task_struct *dup_task_struct(struct task_struct *orig)
335 {
336         struct task_struct *tsk;
337         struct thread_info *ti;
338         int node = tsk_fork_get_node(orig);
339         int err;
340
341         tsk = alloc_task_struct_node(node);
342         if (!tsk)
343                 return NULL;
344
345         ti = alloc_thread_info_node(tsk, node);
346         if (!ti)
347                 goto free_tsk;
348
349         err = arch_dup_task_struct(tsk, orig);
350         if (err)
351                 goto free_ti;
352
353         tsk->stack = ti;
354 #ifdef CONFIG_SECCOMP
355         /*
356          * We must handle setting up seccomp filters once we're under
357          * the sighand lock in case orig has changed between now and
358          * then. Until then, filter must be NULL to avoid messing up
359          * the usage counts on the error path calling free_task.
360          */
361         tsk->seccomp.filter = NULL;
362 #endif
363
364         setup_thread_stack(tsk, orig);
365         clear_user_return_notifier(tsk);
366         clear_tsk_need_resched(tsk);
367         set_task_stack_end_magic(tsk);
368
369 #ifdef CONFIG_CC_STACKPROTECTOR
370         tsk->stack_canary = get_random_int();
371 #endif
372
373         /*
374          * One for us, one for whoever does the "release_task()" (usually
375          * parent)
376          */
377         atomic_set(&tsk->usage, 2);
378 #ifdef CONFIG_BLK_DEV_IO_TRACE
379         tsk->btrace_seq = 0;
380 #endif
381         tsk->splice_pipe = NULL;
382         tsk->task_frag.page = NULL;
383
384         account_kernel_stack(ti, 1);
385
386         return tsk;
387
388 free_ti:
389         free_thread_info(ti);
390 free_tsk:
391         free_task_struct(tsk);
392         return NULL;
393 }
394
395 #ifdef CONFIG_MMU
396 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
397 {
398         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
399         struct rb_node **rb_link, *rb_parent;
400         int retval;
401         unsigned long charge;
402
403         uprobe_start_dup_mmap();
404         down_write(&oldmm->mmap_sem);
405         flush_cache_dup_mm(oldmm);
406         uprobe_dup_mmap(oldmm, mm);
407         /*
408          * Not linked in yet - no deadlock potential:
409          */
410         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
411
412         /* No ordering required: file already has been exposed. */
413         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
414
415         mm->total_vm = oldmm->total_vm;
416         mm->shared_vm = oldmm->shared_vm;
417         mm->exec_vm = oldmm->exec_vm;
418         mm->stack_vm = oldmm->stack_vm;
419
420         rb_link = &mm->mm_rb.rb_node;
421         rb_parent = NULL;
422         pprev = &mm->mmap;
423         retval = ksm_fork(mm, oldmm);
424         if (retval)
425                 goto out;
426         retval = khugepaged_fork(mm, oldmm);
427         if (retval)
428                 goto out;
429
430         prev = NULL;
431         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
432                 struct file *file;
433
434                 if (mpnt->vm_flags & VM_DONTCOPY) {
435                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
436                                                         -vma_pages(mpnt));
437                         continue;
438                 }
439                 charge = 0;
440                 if (mpnt->vm_flags & VM_ACCOUNT) {
441                         unsigned long len = vma_pages(mpnt);
442
443                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
444                                 goto fail_nomem;
445                         charge = len;
446                 }
447                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
448                 if (!tmp)
449                         goto fail_nomem;
450                 *tmp = *mpnt;
451                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
452                 retval = vma_dup_policy(mpnt, tmp);
453                 if (retval)
454                         goto fail_nomem_policy;
455                 tmp->vm_mm = mm;
456                 if (anon_vma_fork(tmp, mpnt))
457                         goto fail_nomem_anon_vma_fork;
458                 tmp->vm_flags &= ~VM_LOCKED;
459                 tmp->vm_next = tmp->vm_prev = NULL;
460                 file = tmp->vm_file;
461                 if (file) {
462                         struct inode *inode = file_inode(file);
463                         struct address_space *mapping = file->f_mapping;
464
465                         get_file(file);
466                         if (tmp->vm_flags & VM_DENYWRITE)
467                                 atomic_dec(&inode->i_writecount);
468                         i_mmap_lock_write(mapping);
469                         if (tmp->vm_flags & VM_SHARED)
470                                 atomic_inc(&mapping->i_mmap_writable);
471                         flush_dcache_mmap_lock(mapping);
472                         /* insert tmp into the share list, just after mpnt */
473                         vma_interval_tree_insert_after(tmp, mpnt,
474                                         &mapping->i_mmap);
475                         flush_dcache_mmap_unlock(mapping);
476                         i_mmap_unlock_write(mapping);
477                 }
478
479                 /*
480                  * Clear hugetlb-related page reserves for children. This only
481                  * affects MAP_PRIVATE mappings. Faults generated by the child
482                  * are not guaranteed to succeed, even if read-only
483                  */
484                 if (is_vm_hugetlb_page(tmp))
485                         reset_vma_resv_huge_pages(tmp);
486
487                 /*
488                  * Link in the new vma and copy the page table entries.
489                  */
490                 *pprev = tmp;
491                 pprev = &tmp->vm_next;
492                 tmp->vm_prev = prev;
493                 prev = tmp;
494
495                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
496                 rb_link = &tmp->vm_rb.rb_right;
497                 rb_parent = &tmp->vm_rb;
498
499                 mm->map_count++;
500                 retval = copy_page_range(mm, oldmm, mpnt);
501
502                 if (tmp->vm_ops && tmp->vm_ops->open)
503                         tmp->vm_ops->open(tmp);
504
505                 if (retval)
506                         goto out;
507         }
508         /* a new mm has just been created */
509         arch_dup_mmap(oldmm, mm);
510         retval = 0;
511 out:
512         up_write(&mm->mmap_sem);
513         flush_tlb_mm(oldmm);
514         up_write(&oldmm->mmap_sem);
515         uprobe_end_dup_mmap();
516         return retval;
517 fail_nomem_anon_vma_fork:
518         mpol_put(vma_policy(tmp));
519 fail_nomem_policy:
520         kmem_cache_free(vm_area_cachep, tmp);
521 fail_nomem:
522         retval = -ENOMEM;
523         vm_unacct_memory(charge);
524         goto out;
525 }
526
527 static inline int mm_alloc_pgd(struct mm_struct *mm)
528 {
529         mm->pgd = pgd_alloc(mm);
530         if (unlikely(!mm->pgd))
531                 return -ENOMEM;
532         return 0;
533 }
534
535 static inline void mm_free_pgd(struct mm_struct *mm)
536 {
537         pgd_free(mm, mm->pgd);
538 }
539 #else
540 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
541 {
542         down_write(&oldmm->mmap_sem);
543         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
544         up_write(&oldmm->mmap_sem);
545         return 0;
546 }
547 #define mm_alloc_pgd(mm)        (0)
548 #define mm_free_pgd(mm)
549 #endif /* CONFIG_MMU */
550
551 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
552
553 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
554 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
555
556 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
557
558 static int __init coredump_filter_setup(char *s)
559 {
560         default_dump_filter =
561                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
562                 MMF_DUMP_FILTER_MASK;
563         return 1;
564 }
565
566 __setup("coredump_filter=", coredump_filter_setup);
567
568 #include <linux/init_task.h>
569
570 static void mm_init_aio(struct mm_struct *mm)
571 {
572 #ifdef CONFIG_AIO
573         spin_lock_init(&mm->ioctx_lock);
574         mm->ioctx_table = NULL;
575 #endif
576 }
577
578 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
579 {
580 #ifdef CONFIG_MEMCG
581         mm->owner = p;
582 #endif
583 }
584
585 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
586 {
587         mm->mmap = NULL;
588         mm->mm_rb = RB_ROOT;
589         mm->vmacache_seqnum = 0;
590         atomic_set(&mm->mm_users, 1);
591         atomic_set(&mm->mm_count, 1);
592         init_rwsem(&mm->mmap_sem);
593         INIT_LIST_HEAD(&mm->mmlist);
594         mm->core_state = NULL;
595         atomic_long_set(&mm->nr_ptes, 0);
596         mm_nr_pmds_init(mm);
597         mm->map_count = 0;
598         mm->locked_vm = 0;
599         mm->pinned_vm = 0;
600         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
601         spin_lock_init(&mm->page_table_lock);
602         mm_init_cpumask(mm);
603         mm_init_aio(mm);
604         mm_init_owner(mm, p);
605         mmu_notifier_mm_init(mm);
606         clear_tlb_flush_pending(mm);
607 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
608         mm->pmd_huge_pte = NULL;
609 #endif
610
611         if (current->mm) {
612                 mm->flags = current->mm->flags & MMF_INIT_MASK;
613                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
614         } else {
615                 mm->flags = default_dump_filter;
616                 mm->def_flags = 0;
617         }
618
619         if (mm_alloc_pgd(mm))
620                 goto fail_nopgd;
621
622         if (init_new_context(p, mm))
623                 goto fail_nocontext;
624
625         return mm;
626
627 fail_nocontext:
628         mm_free_pgd(mm);
629 fail_nopgd:
630         free_mm(mm);
631         return NULL;
632 }
633
634 static void check_mm(struct mm_struct *mm)
635 {
636         int i;
637
638         for (i = 0; i < NR_MM_COUNTERS; i++) {
639                 long x = atomic_long_read(&mm->rss_stat.count[i]);
640
641                 if (unlikely(x))
642                         printk(KERN_ALERT "BUG: Bad rss-counter state "
643                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
644         }
645
646         if (atomic_long_read(&mm->nr_ptes))
647                 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
648                                 atomic_long_read(&mm->nr_ptes));
649         if (mm_nr_pmds(mm))
650                 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
651                                 mm_nr_pmds(mm));
652
653 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
654         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
655 #endif
656 }
657
658 /*
659  * Allocate and initialize an mm_struct.
660  */
661 struct mm_struct *mm_alloc(void)
662 {
663         struct mm_struct *mm;
664
665         mm = allocate_mm();
666         if (!mm)
667                 return NULL;
668
669         memset(mm, 0, sizeof(*mm));
670         return mm_init(mm, current);
671 }
672
673 /*
674  * Called when the last reference to the mm
675  * is dropped: either by a lazy thread or by
676  * mmput. Free the page directory and the mm.
677  */
678 void __mmdrop(struct mm_struct *mm)
679 {
680         BUG_ON(mm == &init_mm);
681         mm_free_pgd(mm);
682         destroy_context(mm);
683         mmu_notifier_mm_destroy(mm);
684         check_mm(mm);
685         free_mm(mm);
686 }
687 EXPORT_SYMBOL_GPL(__mmdrop);
688
689 /*
690  * Decrement the use count and release all resources for an mm.
691  */
692 void mmput(struct mm_struct *mm)
693 {
694         might_sleep();
695
696         if (atomic_dec_and_test(&mm->mm_users)) {
697                 uprobe_clear_state(mm);
698                 exit_aio(mm);
699                 ksm_exit(mm);
700                 khugepaged_exit(mm); /* must run before exit_mmap */
701                 exit_mmap(mm);
702                 set_mm_exe_file(mm, NULL);
703                 if (!list_empty(&mm->mmlist)) {
704                         spin_lock(&mmlist_lock);
705                         list_del(&mm->mmlist);
706                         spin_unlock(&mmlist_lock);
707                 }
708                 if (mm->binfmt)
709                         module_put(mm->binfmt->module);
710                 mmdrop(mm);
711         }
712 }
713 EXPORT_SYMBOL_GPL(mmput);
714
715 /**
716  * set_mm_exe_file - change a reference to the mm's executable file
717  *
718  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
719  *
720  * Main users are mmput() and sys_execve(). Callers prevent concurrent
721  * invocations: in mmput() nobody alive left, in execve task is single
722  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
723  * mm->exe_file, but does so without using set_mm_exe_file() in order
724  * to do avoid the need for any locks.
725  */
726 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
727 {
728         struct file *old_exe_file;
729
730         /*
731          * It is safe to dereference the exe_file without RCU as
732          * this function is only called if nobody else can access
733          * this mm -- see comment above for justification.
734          */
735         old_exe_file = rcu_dereference_raw(mm->exe_file);
736
737         if (new_exe_file)
738                 get_file(new_exe_file);
739         rcu_assign_pointer(mm->exe_file, new_exe_file);
740         if (old_exe_file)
741                 fput(old_exe_file);
742 }
743
744 /**
745  * get_mm_exe_file - acquire a reference to the mm's executable file
746  *
747  * Returns %NULL if mm has no associated executable file.
748  * User must release file via fput().
749  */
750 struct file *get_mm_exe_file(struct mm_struct *mm)
751 {
752         struct file *exe_file;
753
754         rcu_read_lock();
755         exe_file = rcu_dereference(mm->exe_file);
756         if (exe_file && !get_file_rcu(exe_file))
757                 exe_file = NULL;
758         rcu_read_unlock();
759         return exe_file;
760 }
761 EXPORT_SYMBOL(get_mm_exe_file);
762
763 /**
764  * get_task_mm - acquire a reference to the task's mm
765  *
766  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
767  * this kernel workthread has transiently adopted a user mm with use_mm,
768  * to do its AIO) is not set and if so returns a reference to it, after
769  * bumping up the use count.  User must release the mm via mmput()
770  * after use.  Typically used by /proc and ptrace.
771  */
772 struct mm_struct *get_task_mm(struct task_struct *task)
773 {
774         struct mm_struct *mm;
775
776         task_lock(task);
777         mm = task->mm;
778         if (mm) {
779                 if (task->flags & PF_KTHREAD)
780                         mm = NULL;
781                 else
782                         atomic_inc(&mm->mm_users);
783         }
784         task_unlock(task);
785         return mm;
786 }
787 EXPORT_SYMBOL_GPL(get_task_mm);
788
789 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
790 {
791         struct mm_struct *mm;
792         int err;
793
794         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
795         if (err)
796                 return ERR_PTR(err);
797
798         mm = get_task_mm(task);
799         if (mm && mm != current->mm &&
800                         !ptrace_may_access(task, mode)) {
801                 mmput(mm);
802                 mm = ERR_PTR(-EACCES);
803         }
804         mutex_unlock(&task->signal->cred_guard_mutex);
805
806         return mm;
807 }
808
809 static void complete_vfork_done(struct task_struct *tsk)
810 {
811         struct completion *vfork;
812
813         task_lock(tsk);
814         vfork = tsk->vfork_done;
815         if (likely(vfork)) {
816                 tsk->vfork_done = NULL;
817                 complete(vfork);
818         }
819         task_unlock(tsk);
820 }
821
822 static int wait_for_vfork_done(struct task_struct *child,
823                                 struct completion *vfork)
824 {
825         int killed;
826
827         freezer_do_not_count();
828         killed = wait_for_completion_killable(vfork);
829         freezer_count();
830
831         if (killed) {
832                 task_lock(child);
833                 child->vfork_done = NULL;
834                 task_unlock(child);
835         }
836
837         put_task_struct(child);
838         return killed;
839 }
840
841 /* Please note the differences between mmput and mm_release.
842  * mmput is called whenever we stop holding onto a mm_struct,
843  * error success whatever.
844  *
845  * mm_release is called after a mm_struct has been removed
846  * from the current process.
847  *
848  * This difference is important for error handling, when we
849  * only half set up a mm_struct for a new process and need to restore
850  * the old one.  Because we mmput the new mm_struct before
851  * restoring the old one. . .
852  * Eric Biederman 10 January 1998
853  */
854 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
855 {
856         /* Get rid of any futexes when releasing the mm */
857 #ifdef CONFIG_FUTEX
858         if (unlikely(tsk->robust_list)) {
859                 exit_robust_list(tsk);
860                 tsk->robust_list = NULL;
861         }
862 #ifdef CONFIG_COMPAT
863         if (unlikely(tsk->compat_robust_list)) {
864                 compat_exit_robust_list(tsk);
865                 tsk->compat_robust_list = NULL;
866         }
867 #endif
868         if (unlikely(!list_empty(&tsk->pi_state_list)))
869                 exit_pi_state_list(tsk);
870 #endif
871
872         uprobe_free_utask(tsk);
873
874         /* Get rid of any cached register state */
875         deactivate_mm(tsk, mm);
876
877         /*
878          * If we're exiting normally, clear a user-space tid field if
879          * requested.  We leave this alone when dying by signal, to leave
880          * the value intact in a core dump, and to save the unnecessary
881          * trouble, say, a killed vfork parent shouldn't touch this mm.
882          * Userland only wants this done for a sys_exit.
883          */
884         if (tsk->clear_child_tid) {
885                 if (!(tsk->flags & PF_SIGNALED) &&
886                     atomic_read(&mm->mm_users) > 1) {
887                         /*
888                          * We don't check the error code - if userspace has
889                          * not set up a proper pointer then tough luck.
890                          */
891                         put_user(0, tsk->clear_child_tid);
892                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
893                                         1, NULL, NULL, 0);
894                 }
895                 tsk->clear_child_tid = NULL;
896         }
897
898         /*
899          * All done, finally we can wake up parent and return this mm to him.
900          * Also kthread_stop() uses this completion for synchronization.
901          */
902         if (tsk->vfork_done)
903                 complete_vfork_done(tsk);
904 }
905
906 /*
907  * Allocate a new mm structure and copy contents from the
908  * mm structure of the passed in task structure.
909  */
910 static struct mm_struct *dup_mm(struct task_struct *tsk)
911 {
912         struct mm_struct *mm, *oldmm = current->mm;
913         int err;
914
915         mm = allocate_mm();
916         if (!mm)
917                 goto fail_nomem;
918
919         memcpy(mm, oldmm, sizeof(*mm));
920
921         if (!mm_init(mm, tsk))
922                 goto fail_nomem;
923
924         err = dup_mmap(mm, oldmm);
925         if (err)
926                 goto free_pt;
927
928         mm->hiwater_rss = get_mm_rss(mm);
929         mm->hiwater_vm = mm->total_vm;
930
931         if (mm->binfmt && !try_module_get(mm->binfmt->module))
932                 goto free_pt;
933
934         return mm;
935
936 free_pt:
937         /* don't put binfmt in mmput, we haven't got module yet */
938         mm->binfmt = NULL;
939         mmput(mm);
940
941 fail_nomem:
942         return NULL;
943 }
944
945 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
946 {
947         struct mm_struct *mm, *oldmm;
948         int retval;
949
950         tsk->min_flt = tsk->maj_flt = 0;
951         tsk->nvcsw = tsk->nivcsw = 0;
952 #ifdef CONFIG_DETECT_HUNG_TASK
953         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
954 #endif
955
956         tsk->mm = NULL;
957         tsk->active_mm = NULL;
958
959         /*
960          * Are we cloning a kernel thread?
961          *
962          * We need to steal a active VM for that..
963          */
964         oldmm = current->mm;
965         if (!oldmm)
966                 return 0;
967
968         /* initialize the new vmacache entries */
969         vmacache_flush(tsk);
970
971         if (clone_flags & CLONE_VM) {
972                 atomic_inc(&oldmm->mm_users);
973                 mm = oldmm;
974                 goto good_mm;
975         }
976
977         retval = -ENOMEM;
978         mm = dup_mm(tsk);
979         if (!mm)
980                 goto fail_nomem;
981
982 good_mm:
983         tsk->mm = mm;
984         tsk->active_mm = mm;
985         return 0;
986
987 fail_nomem:
988         return retval;
989 }
990
991 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
992 {
993         struct fs_struct *fs = current->fs;
994         if (clone_flags & CLONE_FS) {
995                 /* tsk->fs is already what we want */
996                 spin_lock(&fs->lock);
997                 if (fs->in_exec) {
998                         spin_unlock(&fs->lock);
999                         return -EAGAIN;
1000                 }
1001                 fs->users++;
1002                 spin_unlock(&fs->lock);
1003                 return 0;
1004         }
1005         tsk->fs = copy_fs_struct(fs);
1006         if (!tsk->fs)
1007                 return -ENOMEM;
1008         return 0;
1009 }
1010
1011 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1012 {
1013         struct files_struct *oldf, *newf;
1014         int error = 0;
1015
1016         /*
1017          * A background process may not have any files ...
1018          */
1019         oldf = current->files;
1020         if (!oldf)
1021                 goto out;
1022
1023         if (clone_flags & CLONE_FILES) {
1024                 atomic_inc(&oldf->count);
1025                 goto out;
1026         }
1027
1028         newf = dup_fd(oldf, &error);
1029         if (!newf)
1030                 goto out;
1031
1032         tsk->files = newf;
1033         error = 0;
1034 out:
1035         return error;
1036 }
1037
1038 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1039 {
1040 #ifdef CONFIG_BLOCK
1041         struct io_context *ioc = current->io_context;
1042         struct io_context *new_ioc;
1043
1044         if (!ioc)
1045                 return 0;
1046         /*
1047          * Share io context with parent, if CLONE_IO is set
1048          */
1049         if (clone_flags & CLONE_IO) {
1050                 ioc_task_link(ioc);
1051                 tsk->io_context = ioc;
1052         } else if (ioprio_valid(ioc->ioprio)) {
1053                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1054                 if (unlikely(!new_ioc))
1055                         return -ENOMEM;
1056
1057                 new_ioc->ioprio = ioc->ioprio;
1058                 put_io_context(new_ioc);
1059         }
1060 #endif
1061         return 0;
1062 }
1063
1064 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1065 {
1066         struct sighand_struct *sig;
1067
1068         if (clone_flags & CLONE_SIGHAND) {
1069                 atomic_inc(&current->sighand->count);
1070                 return 0;
1071         }
1072         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1073         rcu_assign_pointer(tsk->sighand, sig);
1074         if (!sig)
1075                 return -ENOMEM;
1076         atomic_set(&sig->count, 1);
1077         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1078         return 0;
1079 }
1080
1081 void __cleanup_sighand(struct sighand_struct *sighand)
1082 {
1083         if (atomic_dec_and_test(&sighand->count)) {
1084                 signalfd_cleanup(sighand);
1085                 /*
1086                  * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1087                  * without an RCU grace period, see __lock_task_sighand().
1088                  */
1089                 kmem_cache_free(sighand_cachep, sighand);
1090         }
1091 }
1092
1093 /*
1094  * Initialize POSIX timer handling for a thread group.
1095  */
1096 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1097 {
1098         unsigned long cpu_limit;
1099
1100         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1101         if (cpu_limit != RLIM_INFINITY) {
1102                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1103                 sig->cputimer.running = 1;
1104         }
1105
1106         /* The timer lists. */
1107         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1108         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1109         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1110 }
1111
1112 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1113 {
1114         struct signal_struct *sig;
1115
1116         if (clone_flags & CLONE_THREAD)
1117                 return 0;
1118
1119         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1120         tsk->signal = sig;
1121         if (!sig)
1122                 return -ENOMEM;
1123
1124         sig->nr_threads = 1;
1125         atomic_set(&sig->live, 1);
1126         atomic_set(&sig->sigcnt, 1);
1127
1128         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1129         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1130         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1131
1132         init_waitqueue_head(&sig->wait_chldexit);
1133         sig->curr_target = tsk;
1134         init_sigpending(&sig->shared_pending);
1135         INIT_LIST_HEAD(&sig->posix_timers);
1136         seqlock_init(&sig->stats_lock);
1137
1138         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1139         sig->real_timer.function = it_real_fn;
1140
1141         task_lock(current->group_leader);
1142         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1143         task_unlock(current->group_leader);
1144
1145         posix_cpu_timers_init_group(sig);
1146
1147         tty_audit_fork(sig);
1148         sched_autogroup_fork(sig);
1149
1150         sig->oom_score_adj = current->signal->oom_score_adj;
1151         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1152
1153         sig->has_child_subreaper = current->signal->has_child_subreaper ||
1154                                    current->signal->is_child_subreaper;
1155
1156         mutex_init(&sig->cred_guard_mutex);
1157
1158         return 0;
1159 }
1160
1161 static void copy_seccomp(struct task_struct *p)
1162 {
1163 #ifdef CONFIG_SECCOMP
1164         /*
1165          * Must be called with sighand->lock held, which is common to
1166          * all threads in the group. Holding cred_guard_mutex is not
1167          * needed because this new task is not yet running and cannot
1168          * be racing exec.
1169          */
1170         assert_spin_locked(&current->sighand->siglock);
1171
1172         /* Ref-count the new filter user, and assign it. */
1173         get_seccomp_filter(current);
1174         p->seccomp = current->seccomp;
1175
1176         /*
1177          * Explicitly enable no_new_privs here in case it got set
1178          * between the task_struct being duplicated and holding the
1179          * sighand lock. The seccomp state and nnp must be in sync.
1180          */
1181         if (task_no_new_privs(current))
1182                 task_set_no_new_privs(p);
1183
1184         /*
1185          * If the parent gained a seccomp mode after copying thread
1186          * flags and between before we held the sighand lock, we have
1187          * to manually enable the seccomp thread flag here.
1188          */
1189         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1190                 set_tsk_thread_flag(p, TIF_SECCOMP);
1191 #endif
1192 }
1193
1194 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1195 {
1196         current->clear_child_tid = tidptr;
1197
1198         return task_pid_vnr(current);
1199 }
1200
1201 static void rt_mutex_init_task(struct task_struct *p)
1202 {
1203         raw_spin_lock_init(&p->pi_lock);
1204 #ifdef CONFIG_RT_MUTEXES
1205         p->pi_waiters = RB_ROOT;
1206         p->pi_waiters_leftmost = NULL;
1207         p->pi_blocked_on = NULL;
1208 #endif
1209 }
1210
1211 /*
1212  * Initialize POSIX timer handling for a single task.
1213  */
1214 static void posix_cpu_timers_init(struct task_struct *tsk)
1215 {
1216         tsk->cputime_expires.prof_exp = 0;
1217         tsk->cputime_expires.virt_exp = 0;
1218         tsk->cputime_expires.sched_exp = 0;
1219         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1220         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1221         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1222 }
1223
1224 static inline void
1225 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1226 {
1227          task->pids[type].pid = pid;
1228 }
1229
1230 /*
1231  * This creates a new process as a copy of the old one,
1232  * but does not actually start it yet.
1233  *
1234  * It copies the registers, and all the appropriate
1235  * parts of the process environment (as per the clone
1236  * flags). The actual kick-off is left to the caller.
1237  */
1238 static struct task_struct *copy_process(unsigned long clone_flags,
1239                                         unsigned long stack_start,
1240                                         unsigned long stack_size,
1241                                         int __user *child_tidptr,
1242                                         struct pid *pid,
1243                                         int trace,
1244                                         unsigned long tls)
1245 {
1246         int retval;
1247         struct task_struct *p;
1248
1249         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1250                 return ERR_PTR(-EINVAL);
1251
1252         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1253                 return ERR_PTR(-EINVAL);
1254
1255         /*
1256          * Thread groups must share signals as well, and detached threads
1257          * can only be started up within the thread group.
1258          */
1259         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1260                 return ERR_PTR(-EINVAL);
1261
1262         /*
1263          * Shared signal handlers imply shared VM. By way of the above,
1264          * thread groups also imply shared VM. Blocking this case allows
1265          * for various simplifications in other code.
1266          */
1267         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1268                 return ERR_PTR(-EINVAL);
1269
1270         /*
1271          * Siblings of global init remain as zombies on exit since they are
1272          * not reaped by their parent (swapper). To solve this and to avoid
1273          * multi-rooted process trees, prevent global and container-inits
1274          * from creating siblings.
1275          */
1276         if ((clone_flags & CLONE_PARENT) &&
1277                                 current->signal->flags & SIGNAL_UNKILLABLE)
1278                 return ERR_PTR(-EINVAL);
1279
1280         /*
1281          * If the new process will be in a different pid or user namespace
1282          * do not allow it to share a thread group or signal handlers or
1283          * parent with the forking task.
1284          */
1285         if (clone_flags & CLONE_SIGHAND) {
1286                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1287                     (task_active_pid_ns(current) !=
1288                                 current->nsproxy->pid_ns_for_children))
1289                         return ERR_PTR(-EINVAL);
1290         }
1291
1292         retval = security_task_create(clone_flags);
1293         if (retval)
1294                 goto fork_out;
1295
1296         retval = -ENOMEM;
1297         p = dup_task_struct(current);
1298         if (!p)
1299                 goto fork_out;
1300
1301         ftrace_graph_init_task(p);
1302
1303         rt_mutex_init_task(p);
1304
1305 #ifdef CONFIG_PROVE_LOCKING
1306         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1307         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1308 #endif
1309         retval = -EAGAIN;
1310         if (atomic_read(&p->real_cred->user->processes) >=
1311                         task_rlimit(p, RLIMIT_NPROC)) {
1312                 if (p->real_cred->user != INIT_USER &&
1313                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1314                         goto bad_fork_free;
1315         }
1316         current->flags &= ~PF_NPROC_EXCEEDED;
1317
1318         retval = copy_creds(p, clone_flags);
1319         if (retval < 0)
1320                 goto bad_fork_free;
1321
1322         /*
1323          * If multiple threads are within copy_process(), then this check
1324          * triggers too late. This doesn't hurt, the check is only there
1325          * to stop root fork bombs.
1326          */
1327         retval = -EAGAIN;
1328         if (nr_threads >= max_threads)
1329                 goto bad_fork_cleanup_count;
1330
1331         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1332         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1333         p->flags |= PF_FORKNOEXEC;
1334         INIT_LIST_HEAD(&p->children);
1335         INIT_LIST_HEAD(&p->sibling);
1336         rcu_copy_process(p);
1337         p->vfork_done = NULL;
1338         spin_lock_init(&p->alloc_lock);
1339
1340         init_sigpending(&p->pending);
1341
1342         p->utime = p->stime = p->gtime = 0;
1343         p->utimescaled = p->stimescaled = 0;
1344 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1345         p->prev_cputime.utime = p->prev_cputime.stime = 0;
1346 #endif
1347 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1348         seqlock_init(&p->vtime_seqlock);
1349         p->vtime_snap = 0;
1350         p->vtime_snap_whence = VTIME_SLEEPING;
1351 #endif
1352
1353 #if defined(SPLIT_RSS_COUNTING)
1354         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1355 #endif
1356
1357         p->default_timer_slack_ns = current->timer_slack_ns;
1358
1359         task_io_accounting_init(&p->ioac);
1360         acct_clear_integrals(p);
1361
1362         posix_cpu_timers_init(p);
1363
1364         p->start_time = ktime_get_ns();
1365         p->real_start_time = ktime_get_boot_ns();
1366         p->io_context = NULL;
1367         p->audit_context = NULL;
1368         if (clone_flags & CLONE_THREAD)
1369                 threadgroup_change_begin(current);
1370         cgroup_fork(p);
1371 #ifdef CONFIG_NUMA
1372         p->mempolicy = mpol_dup(p->mempolicy);
1373         if (IS_ERR(p->mempolicy)) {
1374                 retval = PTR_ERR(p->mempolicy);
1375                 p->mempolicy = NULL;
1376                 goto bad_fork_cleanup_threadgroup_lock;
1377         }
1378 #endif
1379 #ifdef CONFIG_CPUSETS
1380         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1381         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1382         seqcount_init(&p->mems_allowed_seq);
1383 #endif
1384 #ifdef CONFIG_TRACE_IRQFLAGS
1385         p->irq_events = 0;
1386         p->hardirqs_enabled = 0;
1387         p->hardirq_enable_ip = 0;
1388         p->hardirq_enable_event = 0;
1389         p->hardirq_disable_ip = _THIS_IP_;
1390         p->hardirq_disable_event = 0;
1391         p->softirqs_enabled = 1;
1392         p->softirq_enable_ip = _THIS_IP_;
1393         p->softirq_enable_event = 0;
1394         p->softirq_disable_ip = 0;
1395         p->softirq_disable_event = 0;
1396         p->hardirq_context = 0;
1397         p->softirq_context = 0;
1398 #endif
1399
1400         p->pagefault_disabled = 0;
1401
1402 #ifdef CONFIG_LOCKDEP
1403         p->lockdep_depth = 0; /* no locks held yet */
1404         p->curr_chain_key = 0;
1405         p->lockdep_recursion = 0;
1406 #endif
1407
1408 #ifdef CONFIG_DEBUG_MUTEXES
1409         p->blocked_on = NULL; /* not blocked yet */
1410 #endif
1411 #ifdef CONFIG_BCACHE
1412         p->sequential_io        = 0;
1413         p->sequential_io_avg    = 0;
1414 #endif
1415
1416         /* Perform scheduler related setup. Assign this task to a CPU. */
1417         retval = sched_fork(clone_flags, p);
1418         if (retval)
1419                 goto bad_fork_cleanup_policy;
1420
1421         retval = perf_event_init_task(p);
1422         if (retval)
1423                 goto bad_fork_cleanup_policy;
1424         retval = audit_alloc(p);
1425         if (retval)
1426                 goto bad_fork_cleanup_perf;
1427         /* copy all the process information */
1428         shm_init_task(p);
1429         retval = copy_semundo(clone_flags, p);
1430         if (retval)
1431                 goto bad_fork_cleanup_audit;
1432         retval = copy_files(clone_flags, p);
1433         if (retval)
1434                 goto bad_fork_cleanup_semundo;
1435         retval = copy_fs(clone_flags, p);
1436         if (retval)
1437                 goto bad_fork_cleanup_files;
1438         retval = copy_sighand(clone_flags, p);
1439         if (retval)
1440                 goto bad_fork_cleanup_fs;
1441         retval = copy_signal(clone_flags, p);
1442         if (retval)
1443                 goto bad_fork_cleanup_sighand;
1444         retval = copy_mm(clone_flags, p);
1445         if (retval)
1446                 goto bad_fork_cleanup_signal;
1447         retval = copy_namespaces(clone_flags, p);
1448         if (retval)
1449                 goto bad_fork_cleanup_mm;
1450         retval = copy_io(clone_flags, p);
1451         if (retval)
1452                 goto bad_fork_cleanup_namespaces;
1453         retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1454         if (retval)
1455                 goto bad_fork_cleanup_io;
1456
1457         if (pid != &init_struct_pid) {
1458                 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1459                 if (IS_ERR(pid)) {
1460                         retval = PTR_ERR(pid);
1461                         goto bad_fork_cleanup_io;
1462                 }
1463         }
1464
1465         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1466         /*
1467          * Clear TID on mm_release()?
1468          */
1469         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1470 #ifdef CONFIG_BLOCK
1471         p->plug = NULL;
1472 #endif
1473 #ifdef CONFIG_FUTEX
1474         p->robust_list = NULL;
1475 #ifdef CONFIG_COMPAT
1476         p->compat_robust_list = NULL;
1477 #endif
1478         INIT_LIST_HEAD(&p->pi_state_list);
1479         p->pi_state_cache = NULL;
1480 #endif
1481         /*
1482          * sigaltstack should be cleared when sharing the same VM
1483          */
1484         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1485                 p->sas_ss_sp = p->sas_ss_size = 0;
1486
1487         /*
1488          * Syscall tracing and stepping should be turned off in the
1489          * child regardless of CLONE_PTRACE.
1490          */
1491         user_disable_single_step(p);
1492         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1493 #ifdef TIF_SYSCALL_EMU
1494         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1495 #endif
1496         clear_all_latency_tracing(p);
1497
1498         /* ok, now we should be set up.. */
1499         p->pid = pid_nr(pid);
1500         if (clone_flags & CLONE_THREAD) {
1501                 p->exit_signal = -1;
1502                 p->group_leader = current->group_leader;
1503                 p->tgid = current->tgid;
1504         } else {
1505                 if (clone_flags & CLONE_PARENT)
1506                         p->exit_signal = current->group_leader->exit_signal;
1507                 else
1508                         p->exit_signal = (clone_flags & CSIGNAL);
1509                 p->group_leader = p;
1510                 p->tgid = p->pid;
1511         }
1512
1513         p->nr_dirtied = 0;
1514         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1515         p->dirty_paused_when = 0;
1516
1517         p->pdeath_signal = 0;
1518         INIT_LIST_HEAD(&p->thread_group);
1519         p->task_works = NULL;
1520
1521         /*
1522          * Make it visible to the rest of the system, but dont wake it up yet.
1523          * Need tasklist lock for parent etc handling!
1524          */
1525         write_lock_irq(&tasklist_lock);
1526
1527         /* CLONE_PARENT re-uses the old parent */
1528         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1529                 p->real_parent = current->real_parent;
1530                 p->parent_exec_id = current->parent_exec_id;
1531         } else {
1532                 p->real_parent = current;
1533                 p->parent_exec_id = current->self_exec_id;
1534         }
1535
1536         spin_lock(&current->sighand->siglock);
1537
1538         /*
1539          * Copy seccomp details explicitly here, in case they were changed
1540          * before holding sighand lock.
1541          */
1542         copy_seccomp(p);
1543
1544         /*
1545          * Process group and session signals need to be delivered to just the
1546          * parent before the fork or both the parent and the child after the
1547          * fork. Restart if a signal comes in before we add the new process to
1548          * it's process group.
1549          * A fatal signal pending means that current will exit, so the new
1550          * thread can't slip out of an OOM kill (or normal SIGKILL).
1551         */
1552         recalc_sigpending();
1553         if (signal_pending(current)) {
1554                 spin_unlock(&current->sighand->siglock);
1555                 write_unlock_irq(&tasklist_lock);
1556                 retval = -ERESTARTNOINTR;
1557                 goto bad_fork_free_pid;
1558         }
1559
1560         if (likely(p->pid)) {
1561                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1562
1563                 init_task_pid(p, PIDTYPE_PID, pid);
1564                 if (thread_group_leader(p)) {
1565                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1566                         init_task_pid(p, PIDTYPE_SID, task_session(current));
1567
1568                         if (is_child_reaper(pid)) {
1569                                 ns_of_pid(pid)->child_reaper = p;
1570                                 p->signal->flags |= SIGNAL_UNKILLABLE;
1571                         }
1572
1573                         p->signal->leader_pid = pid;
1574                         p->signal->tty = tty_kref_get(current->signal->tty);
1575                         list_add_tail(&p->sibling, &p->real_parent->children);
1576                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1577                         attach_pid(p, PIDTYPE_PGID);
1578                         attach_pid(p, PIDTYPE_SID);
1579                         __this_cpu_inc(process_counts);
1580                 } else {
1581                         current->signal->nr_threads++;
1582                         atomic_inc(&current->signal->live);
1583                         atomic_inc(&current->signal->sigcnt);
1584                         list_add_tail_rcu(&p->thread_group,
1585                                           &p->group_leader->thread_group);
1586                         list_add_tail_rcu(&p->thread_node,
1587                                           &p->signal->thread_head);
1588                 }
1589                 attach_pid(p, PIDTYPE_PID);
1590                 nr_threads++;
1591         }
1592
1593         total_forks++;
1594         spin_unlock(&current->sighand->siglock);
1595         syscall_tracepoint_update(p);
1596         write_unlock_irq(&tasklist_lock);
1597
1598         proc_fork_connector(p);
1599         cgroup_post_fork(p);
1600         if (clone_flags & CLONE_THREAD)
1601                 threadgroup_change_end(current);
1602         perf_event_fork(p);
1603
1604         trace_task_newtask(p, clone_flags);
1605         uprobe_copy_process(p, clone_flags);
1606
1607         return p;
1608
1609 bad_fork_free_pid:
1610         if (pid != &init_struct_pid)
1611                 free_pid(pid);
1612 bad_fork_cleanup_io:
1613         if (p->io_context)
1614                 exit_io_context(p);
1615 bad_fork_cleanup_namespaces:
1616         exit_task_namespaces(p);
1617 bad_fork_cleanup_mm:
1618         if (p->mm)
1619                 mmput(p->mm);
1620 bad_fork_cleanup_signal:
1621         if (!(clone_flags & CLONE_THREAD))
1622                 free_signal_struct(p->signal);
1623 bad_fork_cleanup_sighand:
1624         __cleanup_sighand(p->sighand);
1625 bad_fork_cleanup_fs:
1626         exit_fs(p); /* blocking */
1627 bad_fork_cleanup_files:
1628         exit_files(p); /* blocking */
1629 bad_fork_cleanup_semundo:
1630         exit_sem(p);
1631 bad_fork_cleanup_audit:
1632         audit_free(p);
1633 bad_fork_cleanup_perf:
1634         perf_event_free_task(p);
1635 bad_fork_cleanup_policy:
1636 #ifdef CONFIG_NUMA
1637         mpol_put(p->mempolicy);
1638 bad_fork_cleanup_threadgroup_lock:
1639 #endif
1640         if (clone_flags & CLONE_THREAD)
1641                 threadgroup_change_end(current);
1642         delayacct_tsk_free(p);
1643 bad_fork_cleanup_count:
1644         atomic_dec(&p->cred->user->processes);
1645         exit_creds(p);
1646 bad_fork_free:
1647         free_task(p);
1648 fork_out:
1649         return ERR_PTR(retval);
1650 }
1651
1652 static inline void init_idle_pids(struct pid_link *links)
1653 {
1654         enum pid_type type;
1655
1656         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1657                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1658                 links[type].pid = &init_struct_pid;
1659         }
1660 }
1661
1662 struct task_struct *fork_idle(int cpu)
1663 {
1664         struct task_struct *task;
1665         task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
1666         if (!IS_ERR(task)) {
1667                 init_idle_pids(task->pids);
1668                 init_idle(task, cpu);
1669         }
1670
1671         return task;
1672 }
1673
1674 /*
1675  *  Ok, this is the main fork-routine.
1676  *
1677  * It copies the process, and if successful kick-starts
1678  * it and waits for it to finish using the VM if required.
1679  */
1680 long _do_fork(unsigned long clone_flags,
1681               unsigned long stack_start,
1682               unsigned long stack_size,
1683               int __user *parent_tidptr,
1684               int __user *child_tidptr,
1685               unsigned long tls)
1686 {
1687         struct task_struct *p;
1688         int trace = 0;
1689         long nr;
1690
1691         /*
1692          * Determine whether and which event to report to ptracer.  When
1693          * called from kernel_thread or CLONE_UNTRACED is explicitly
1694          * requested, no event is reported; otherwise, report if the event
1695          * for the type of forking is enabled.
1696          */
1697         if (!(clone_flags & CLONE_UNTRACED)) {
1698                 if (clone_flags & CLONE_VFORK)
1699                         trace = PTRACE_EVENT_VFORK;
1700                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1701                         trace = PTRACE_EVENT_CLONE;
1702                 else
1703                         trace = PTRACE_EVENT_FORK;
1704
1705                 if (likely(!ptrace_event_enabled(current, trace)))
1706                         trace = 0;
1707         }
1708
1709         p = copy_process(clone_flags, stack_start, stack_size,
1710                          child_tidptr, NULL, trace, tls);
1711         /*
1712          * Do this prior waking up the new thread - the thread pointer
1713          * might get invalid after that point, if the thread exits quickly.
1714          */
1715         if (!IS_ERR(p)) {
1716                 struct completion vfork;
1717                 struct pid *pid;
1718
1719                 trace_sched_process_fork(current, p);
1720
1721                 pid = get_task_pid(p, PIDTYPE_PID);
1722                 nr = pid_vnr(pid);
1723
1724                 if (clone_flags & CLONE_PARENT_SETTID)
1725                         put_user(nr, parent_tidptr);
1726
1727                 if (clone_flags & CLONE_VFORK) {
1728                         p->vfork_done = &vfork;
1729                         init_completion(&vfork);
1730                         get_task_struct(p);
1731                 }
1732
1733                 wake_up_new_task(p);
1734
1735                 /* forking complete and child started to run, tell ptracer */
1736                 if (unlikely(trace))
1737                         ptrace_event_pid(trace, pid);
1738
1739                 if (clone_flags & CLONE_VFORK) {
1740                         if (!wait_for_vfork_done(p, &vfork))
1741                                 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1742                 }
1743
1744                 put_pid(pid);
1745         } else {
1746                 nr = PTR_ERR(p);
1747         }
1748         return nr;
1749 }
1750
1751 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1752 /* For compatibility with architectures that call do_fork directly rather than
1753  * using the syscall entry points below. */
1754 long do_fork(unsigned long clone_flags,
1755               unsigned long stack_start,
1756               unsigned long stack_size,
1757               int __user *parent_tidptr,
1758               int __user *child_tidptr)
1759 {
1760         return _do_fork(clone_flags, stack_start, stack_size,
1761                         parent_tidptr, child_tidptr, 0);
1762 }
1763 #endif
1764
1765 /*
1766  * Create a kernel thread.
1767  */
1768 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1769 {
1770         return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1771                 (unsigned long)arg, NULL, NULL, 0);
1772 }
1773
1774 #ifdef __ARCH_WANT_SYS_FORK
1775 SYSCALL_DEFINE0(fork)
1776 {
1777 #ifdef CONFIG_MMU
1778         return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1779 #else
1780         /* can not support in nommu mode */
1781         return -EINVAL;
1782 #endif
1783 }
1784 #endif
1785
1786 #ifdef __ARCH_WANT_SYS_VFORK
1787 SYSCALL_DEFINE0(vfork)
1788 {
1789         return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1790                         0, NULL, NULL, 0);
1791 }
1792 #endif
1793
1794 #ifdef __ARCH_WANT_SYS_CLONE
1795 #ifdef CONFIG_CLONE_BACKWARDS
1796 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1797                  int __user *, parent_tidptr,
1798                  unsigned long, tls,
1799                  int __user *, child_tidptr)
1800 #elif defined(CONFIG_CLONE_BACKWARDS2)
1801 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1802                  int __user *, parent_tidptr,
1803                  int __user *, child_tidptr,
1804                  unsigned long, tls)
1805 #elif defined(CONFIG_CLONE_BACKWARDS3)
1806 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1807                 int, stack_size,
1808                 int __user *, parent_tidptr,
1809                 int __user *, child_tidptr,
1810                 unsigned long, tls)
1811 #else
1812 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1813                  int __user *, parent_tidptr,
1814                  int __user *, child_tidptr,
1815                  unsigned long, tls)
1816 #endif
1817 {
1818         return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1819 }
1820 #endif
1821
1822 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1823 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1824 #endif
1825
1826 static void sighand_ctor(void *data)
1827 {
1828         struct sighand_struct *sighand = data;
1829
1830         spin_lock_init(&sighand->siglock);
1831         init_waitqueue_head(&sighand->signalfd_wqh);
1832 }
1833
1834 void __init proc_caches_init(void)
1835 {
1836         sighand_cachep = kmem_cache_create("sighand_cache",
1837                         sizeof(struct sighand_struct), 0,
1838                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1839                         SLAB_NOTRACK, sighand_ctor);
1840         signal_cachep = kmem_cache_create("signal_cache",
1841                         sizeof(struct signal_struct), 0,
1842                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1843         files_cachep = kmem_cache_create("files_cache",
1844                         sizeof(struct files_struct), 0,
1845                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1846         fs_cachep = kmem_cache_create("fs_cache",
1847                         sizeof(struct fs_struct), 0,
1848                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1849         /*
1850          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1851          * whole struct cpumask for the OFFSTACK case. We could change
1852          * this to *only* allocate as much of it as required by the
1853          * maximum number of CPU's we can ever have.  The cpumask_allocation
1854          * is at the end of the structure, exactly for that reason.
1855          */
1856         mm_cachep = kmem_cache_create("mm_struct",
1857                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1858                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1859         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1860         mmap_init();
1861         nsproxy_cache_init();
1862 }
1863
1864 /*
1865  * Check constraints on flags passed to the unshare system call.
1866  */
1867 static int check_unshare_flags(unsigned long unshare_flags)
1868 {
1869         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1870                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1871                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1872                                 CLONE_NEWUSER|CLONE_NEWPID))
1873                 return -EINVAL;
1874         /*
1875          * Not implemented, but pretend it works if there is nothing to
1876          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1877          * needs to unshare vm.
1878          */
1879         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1880                 /* FIXME: get_task_mm() increments ->mm_users */
1881                 if (atomic_read(&current->mm->mm_users) > 1)
1882                         return -EINVAL;
1883         }
1884
1885         return 0;
1886 }
1887
1888 /*
1889  * Unshare the filesystem structure if it is being shared
1890  */
1891 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1892 {
1893         struct fs_struct *fs = current->fs;
1894
1895         if (!(unshare_flags & CLONE_FS) || !fs)
1896                 return 0;
1897
1898         /* don't need lock here; in the worst case we'll do useless copy */
1899         if (fs->users == 1)
1900                 return 0;
1901
1902         *new_fsp = copy_fs_struct(fs);
1903         if (!*new_fsp)
1904                 return -ENOMEM;
1905
1906         return 0;
1907 }
1908
1909 /*
1910  * Unshare file descriptor table if it is being shared
1911  */
1912 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1913 {
1914         struct files_struct *fd = current->files;
1915         int error = 0;
1916
1917         if ((unshare_flags & CLONE_FILES) &&
1918             (fd && atomic_read(&fd->count) > 1)) {
1919                 *new_fdp = dup_fd(fd, &error);
1920                 if (!*new_fdp)
1921                         return error;
1922         }
1923
1924         return 0;
1925 }
1926
1927 /*
1928  * unshare allows a process to 'unshare' part of the process
1929  * context which was originally shared using clone.  copy_*
1930  * functions used by do_fork() cannot be used here directly
1931  * because they modify an inactive task_struct that is being
1932  * constructed. Here we are modifying the current, active,
1933  * task_struct.
1934  */
1935 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1936 {
1937         struct fs_struct *fs, *new_fs = NULL;
1938         struct files_struct *fd, *new_fd = NULL;
1939         struct cred *new_cred = NULL;
1940         struct nsproxy *new_nsproxy = NULL;
1941         int do_sysvsem = 0;
1942         int err;
1943
1944         /*
1945          * If unsharing a user namespace must also unshare the thread.
1946          */
1947         if (unshare_flags & CLONE_NEWUSER)
1948                 unshare_flags |= CLONE_THREAD | CLONE_FS;
1949         /*
1950          * If unsharing a thread from a thread group, must also unshare vm.
1951          */
1952         if (unshare_flags & CLONE_THREAD)
1953                 unshare_flags |= CLONE_VM;
1954         /*
1955          * If unsharing vm, must also unshare signal handlers.
1956          */
1957         if (unshare_flags & CLONE_VM)
1958                 unshare_flags |= CLONE_SIGHAND;
1959         /*
1960          * If unsharing namespace, must also unshare filesystem information.
1961          */
1962         if (unshare_flags & CLONE_NEWNS)
1963                 unshare_flags |= CLONE_FS;
1964
1965         err = check_unshare_flags(unshare_flags);
1966         if (err)
1967                 goto bad_unshare_out;
1968         /*
1969          * CLONE_NEWIPC must also detach from the undolist: after switching
1970          * to a new ipc namespace, the semaphore arrays from the old
1971          * namespace are unreachable.
1972          */
1973         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1974                 do_sysvsem = 1;
1975         err = unshare_fs(unshare_flags, &new_fs);
1976         if (err)
1977                 goto bad_unshare_out;
1978         err = unshare_fd(unshare_flags, &new_fd);
1979         if (err)
1980                 goto bad_unshare_cleanup_fs;
1981         err = unshare_userns(unshare_flags, &new_cred);
1982         if (err)
1983                 goto bad_unshare_cleanup_fd;
1984         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1985                                          new_cred, new_fs);
1986         if (err)
1987                 goto bad_unshare_cleanup_cred;
1988
1989         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1990                 if (do_sysvsem) {
1991                         /*
1992                          * CLONE_SYSVSEM is equivalent to sys_exit().
1993                          */
1994                         exit_sem(current);
1995                 }
1996                 if (unshare_flags & CLONE_NEWIPC) {
1997                         /* Orphan segments in old ns (see sem above). */
1998                         exit_shm(current);
1999                         shm_init_task(current);
2000                 }
2001
2002                 if (new_nsproxy)
2003                         switch_task_namespaces(current, new_nsproxy);
2004
2005                 task_lock(current);
2006
2007                 if (new_fs) {
2008                         fs = current->fs;
2009                         spin_lock(&fs->lock);
2010                         current->fs = new_fs;
2011                         if (--fs->users)
2012                                 new_fs = NULL;
2013                         else
2014                                 new_fs = fs;
2015                         spin_unlock(&fs->lock);
2016                 }
2017
2018                 if (new_fd) {
2019                         fd = current->files;
2020                         current->files = new_fd;
2021                         new_fd = fd;
2022                 }
2023
2024                 task_unlock(current);
2025
2026                 if (new_cred) {
2027                         /* Install the new user namespace */
2028                         commit_creds(new_cred);
2029                         new_cred = NULL;
2030                 }
2031         }
2032
2033 bad_unshare_cleanup_cred:
2034         if (new_cred)
2035                 put_cred(new_cred);
2036 bad_unshare_cleanup_fd:
2037         if (new_fd)
2038                 put_files_struct(new_fd);
2039
2040 bad_unshare_cleanup_fs:
2041         if (new_fs)
2042                 free_fs_struct(new_fs);
2043
2044 bad_unshare_out:
2045         return err;
2046 }
2047
2048 /*
2049  *      Helper to unshare the files of the current task.
2050  *      We don't want to expose copy_files internals to
2051  *      the exec layer of the kernel.
2052  */
2053
2054 int unshare_files(struct files_struct **displaced)
2055 {
2056         struct task_struct *task = current;
2057         struct files_struct *copy = NULL;
2058         int error;
2059
2060         error = unshare_fd(CLONE_FILES, &copy);
2061         if (error || !copy) {
2062                 *displaced = NULL;
2063                 return error;
2064         }
2065         *displaced = task->files;
2066         task_lock(task);
2067         task->files = copy;
2068         task_unlock(task);
2069         return 0;
2070 }
2071
2072 int sysctl_max_threads(struct ctl_table *table, int write,
2073                        void __user *buffer, size_t *lenp, loff_t *ppos)
2074 {
2075         struct ctl_table t;
2076         int ret;
2077         int threads = max_threads;
2078         int min = MIN_THREADS;
2079         int max = MAX_THREADS;
2080
2081         t = *table;
2082         t.data = &threads;
2083         t.extra1 = &min;
2084         t.extra2 = &max;
2085
2086         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2087         if (ret || !write)
2088                 return ret;
2089
2090         set_max_threads(threads);
2091
2092         return 0;
2093 }