]> git.karo-electronics.de Git - mv-sheeva.git/blob - kernel/fork.c
mm: Remove i_mmap_lock lockbreak
[mv-sheeva.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/ksm.h>
54 #include <linux/acct.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/freezer.h>
58 #include <linux/delayacct.h>
59 #include <linux/taskstats_kern.h>
60 #include <linux/random.h>
61 #include <linux/tty.h>
62 #include <linux/proc_fs.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71
72 #include <asm/pgtable.h>
73 #include <asm/pgalloc.h>
74 #include <asm/uaccess.h>
75 #include <asm/mmu_context.h>
76 #include <asm/cacheflush.h>
77 #include <asm/tlbflush.h>
78
79 #include <trace/events/sched.h>
80
81 /*
82  * Protected counters by write_lock_irq(&tasklist_lock)
83  */
84 unsigned long total_forks;      /* Handle normal Linux uptimes. */
85 int nr_threads;                 /* The idle threads do not count.. */
86
87 int max_threads;                /* tunable limit on nr_threads */
88
89 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
90
91 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
92
93 #ifdef CONFIG_PROVE_RCU
94 int lockdep_tasklist_lock_is_held(void)
95 {
96         return lockdep_is_held(&tasklist_lock);
97 }
98 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
99 #endif /* #ifdef CONFIG_PROVE_RCU */
100
101 int nr_processes(void)
102 {
103         int cpu;
104         int total = 0;
105
106         for_each_possible_cpu(cpu)
107                 total += per_cpu(process_counts, cpu);
108
109         return total;
110 }
111
112 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
113 # define alloc_task_struct_node(node)           \
114                 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
115 # define free_task_struct(tsk)                  \
116                 kmem_cache_free(task_struct_cachep, (tsk))
117 static struct kmem_cache *task_struct_cachep;
118 #endif
119
120 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
121 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
122                                                   int node)
123 {
124 #ifdef CONFIG_DEBUG_STACK_USAGE
125         gfp_t mask = GFP_KERNEL | __GFP_ZERO;
126 #else
127         gfp_t mask = GFP_KERNEL;
128 #endif
129         struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
130
131         return page ? page_address(page) : NULL;
132 }
133
134 static inline void free_thread_info(struct thread_info *ti)
135 {
136         free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
137 }
138 #endif
139
140 /* SLAB cache for signal_struct structures (tsk->signal) */
141 static struct kmem_cache *signal_cachep;
142
143 /* SLAB cache for sighand_struct structures (tsk->sighand) */
144 struct kmem_cache *sighand_cachep;
145
146 /* SLAB cache for files_struct structures (tsk->files) */
147 struct kmem_cache *files_cachep;
148
149 /* SLAB cache for fs_struct structures (tsk->fs) */
150 struct kmem_cache *fs_cachep;
151
152 /* SLAB cache for vm_area_struct structures */
153 struct kmem_cache *vm_area_cachep;
154
155 /* SLAB cache for mm_struct structures (tsk->mm) */
156 static struct kmem_cache *mm_cachep;
157
158 static void account_kernel_stack(struct thread_info *ti, int account)
159 {
160         struct zone *zone = page_zone(virt_to_page(ti));
161
162         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
163 }
164
165 void free_task(struct task_struct *tsk)
166 {
167         prop_local_destroy_single(&tsk->dirties);
168         account_kernel_stack(tsk->stack, -1);
169         free_thread_info(tsk->stack);
170         rt_mutex_debug_task_free(tsk);
171         ftrace_graph_exit_task(tsk);
172         free_task_struct(tsk);
173 }
174 EXPORT_SYMBOL(free_task);
175
176 static inline void free_signal_struct(struct signal_struct *sig)
177 {
178         taskstats_tgid_free(sig);
179         sched_autogroup_exit(sig);
180         kmem_cache_free(signal_cachep, sig);
181 }
182
183 static inline void put_signal_struct(struct signal_struct *sig)
184 {
185         if (atomic_dec_and_test(&sig->sigcnt))
186                 free_signal_struct(sig);
187 }
188
189 void __put_task_struct(struct task_struct *tsk)
190 {
191         WARN_ON(!tsk->exit_state);
192         WARN_ON(atomic_read(&tsk->usage));
193         WARN_ON(tsk == current);
194
195         exit_creds(tsk);
196         delayacct_tsk_free(tsk);
197         put_signal_struct(tsk->signal);
198
199         if (!profile_handoff_task(tsk))
200                 free_task(tsk);
201 }
202 EXPORT_SYMBOL_GPL(__put_task_struct);
203
204 /*
205  * macro override instead of weak attribute alias, to workaround
206  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
207  */
208 #ifndef arch_task_cache_init
209 #define arch_task_cache_init()
210 #endif
211
212 void __init fork_init(unsigned long mempages)
213 {
214 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
215 #ifndef ARCH_MIN_TASKALIGN
216 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
217 #endif
218         /* create a slab on which task_structs can be allocated */
219         task_struct_cachep =
220                 kmem_cache_create("task_struct", sizeof(struct task_struct),
221                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
222 #endif
223
224         /* do the arch specific task caches init */
225         arch_task_cache_init();
226
227         /*
228          * The default maximum number of threads is set to a safe
229          * value: the thread structures can take up at most half
230          * of memory.
231          */
232         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
233
234         /*
235          * we need to allow at least 20 threads to boot a system
236          */
237         if(max_threads < 20)
238                 max_threads = 20;
239
240         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
241         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
242         init_task.signal->rlim[RLIMIT_SIGPENDING] =
243                 init_task.signal->rlim[RLIMIT_NPROC];
244 }
245
246 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
247                                                struct task_struct *src)
248 {
249         *dst = *src;
250         return 0;
251 }
252
253 static struct task_struct *dup_task_struct(struct task_struct *orig)
254 {
255         struct task_struct *tsk;
256         struct thread_info *ti;
257         unsigned long *stackend;
258         int node = tsk_fork_get_node(orig);
259         int err;
260
261         prepare_to_copy(orig);
262
263         tsk = alloc_task_struct_node(node);
264         if (!tsk)
265                 return NULL;
266
267         ti = alloc_thread_info_node(tsk, node);
268         if (!ti) {
269                 free_task_struct(tsk);
270                 return NULL;
271         }
272
273         err = arch_dup_task_struct(tsk, orig);
274         if (err)
275                 goto out;
276
277         tsk->stack = ti;
278
279         err = prop_local_init_single(&tsk->dirties);
280         if (err)
281                 goto out;
282
283         setup_thread_stack(tsk, orig);
284         clear_user_return_notifier(tsk);
285         clear_tsk_need_resched(tsk);
286         stackend = end_of_stack(tsk);
287         *stackend = STACK_END_MAGIC;    /* for overflow detection */
288
289 #ifdef CONFIG_CC_STACKPROTECTOR
290         tsk->stack_canary = get_random_int();
291 #endif
292
293         /* One for us, one for whoever does the "release_task()" (usually parent) */
294         atomic_set(&tsk->usage,2);
295         atomic_set(&tsk->fs_excl, 0);
296 #ifdef CONFIG_BLK_DEV_IO_TRACE
297         tsk->btrace_seq = 0;
298 #endif
299         tsk->splice_pipe = NULL;
300
301         account_kernel_stack(ti, 1);
302
303         return tsk;
304
305 out:
306         free_thread_info(ti);
307         free_task_struct(tsk);
308         return NULL;
309 }
310
311 #ifdef CONFIG_MMU
312 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
313 {
314         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
315         struct rb_node **rb_link, *rb_parent;
316         int retval;
317         unsigned long charge;
318         struct mempolicy *pol;
319
320         down_write(&oldmm->mmap_sem);
321         flush_cache_dup_mm(oldmm);
322         /*
323          * Not linked in yet - no deadlock potential:
324          */
325         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
326
327         mm->locked_vm = 0;
328         mm->mmap = NULL;
329         mm->mmap_cache = NULL;
330         mm->free_area_cache = oldmm->mmap_base;
331         mm->cached_hole_size = ~0UL;
332         mm->map_count = 0;
333         cpumask_clear(mm_cpumask(mm));
334         mm->mm_rb = RB_ROOT;
335         rb_link = &mm->mm_rb.rb_node;
336         rb_parent = NULL;
337         pprev = &mm->mmap;
338         retval = ksm_fork(mm, oldmm);
339         if (retval)
340                 goto out;
341         retval = khugepaged_fork(mm, oldmm);
342         if (retval)
343                 goto out;
344
345         prev = NULL;
346         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
347                 struct file *file;
348
349                 if (mpnt->vm_flags & VM_DONTCOPY) {
350                         long pages = vma_pages(mpnt);
351                         mm->total_vm -= pages;
352                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
353                                                                 -pages);
354                         continue;
355                 }
356                 charge = 0;
357                 if (mpnt->vm_flags & VM_ACCOUNT) {
358                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
359                         if (security_vm_enough_memory(len))
360                                 goto fail_nomem;
361                         charge = len;
362                 }
363                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
364                 if (!tmp)
365                         goto fail_nomem;
366                 *tmp = *mpnt;
367                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
368                 pol = mpol_dup(vma_policy(mpnt));
369                 retval = PTR_ERR(pol);
370                 if (IS_ERR(pol))
371                         goto fail_nomem_policy;
372                 vma_set_policy(tmp, pol);
373                 tmp->vm_mm = mm;
374                 if (anon_vma_fork(tmp, mpnt))
375                         goto fail_nomem_anon_vma_fork;
376                 tmp->vm_flags &= ~VM_LOCKED;
377                 tmp->vm_next = tmp->vm_prev = NULL;
378                 file = tmp->vm_file;
379                 if (file) {
380                         struct inode *inode = file->f_path.dentry->d_inode;
381                         struct address_space *mapping = file->f_mapping;
382
383                         get_file(file);
384                         if (tmp->vm_flags & VM_DENYWRITE)
385                                 atomic_dec(&inode->i_writecount);
386                         spin_lock(&mapping->i_mmap_lock);
387                         if (tmp->vm_flags & VM_SHARED)
388                                 mapping->i_mmap_writable++;
389                         flush_dcache_mmap_lock(mapping);
390                         /* insert tmp into the share list, just after mpnt */
391                         vma_prio_tree_add(tmp, mpnt);
392                         flush_dcache_mmap_unlock(mapping);
393                         spin_unlock(&mapping->i_mmap_lock);
394                 }
395
396                 /*
397                  * Clear hugetlb-related page reserves for children. This only
398                  * affects MAP_PRIVATE mappings. Faults generated by the child
399                  * are not guaranteed to succeed, even if read-only
400                  */
401                 if (is_vm_hugetlb_page(tmp))
402                         reset_vma_resv_huge_pages(tmp);
403
404                 /*
405                  * Link in the new vma and copy the page table entries.
406                  */
407                 *pprev = tmp;
408                 pprev = &tmp->vm_next;
409                 tmp->vm_prev = prev;
410                 prev = tmp;
411
412                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
413                 rb_link = &tmp->vm_rb.rb_right;
414                 rb_parent = &tmp->vm_rb;
415
416                 mm->map_count++;
417                 retval = copy_page_range(mm, oldmm, mpnt);
418
419                 if (tmp->vm_ops && tmp->vm_ops->open)
420                         tmp->vm_ops->open(tmp);
421
422                 if (retval)
423                         goto out;
424         }
425         /* a new mm has just been created */
426         arch_dup_mmap(oldmm, mm);
427         retval = 0;
428 out:
429         up_write(&mm->mmap_sem);
430         flush_tlb_mm(oldmm);
431         up_write(&oldmm->mmap_sem);
432         return retval;
433 fail_nomem_anon_vma_fork:
434         mpol_put(pol);
435 fail_nomem_policy:
436         kmem_cache_free(vm_area_cachep, tmp);
437 fail_nomem:
438         retval = -ENOMEM;
439         vm_unacct_memory(charge);
440         goto out;
441 }
442
443 static inline int mm_alloc_pgd(struct mm_struct * mm)
444 {
445         mm->pgd = pgd_alloc(mm);
446         if (unlikely(!mm->pgd))
447                 return -ENOMEM;
448         return 0;
449 }
450
451 static inline void mm_free_pgd(struct mm_struct * mm)
452 {
453         pgd_free(mm, mm->pgd);
454 }
455 #else
456 #define dup_mmap(mm, oldmm)     (0)
457 #define mm_alloc_pgd(mm)        (0)
458 #define mm_free_pgd(mm)
459 #endif /* CONFIG_MMU */
460
461 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
462
463 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
464 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
465
466 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
467
468 static int __init coredump_filter_setup(char *s)
469 {
470         default_dump_filter =
471                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
472                 MMF_DUMP_FILTER_MASK;
473         return 1;
474 }
475
476 __setup("coredump_filter=", coredump_filter_setup);
477
478 #include <linux/init_task.h>
479
480 static void mm_init_aio(struct mm_struct *mm)
481 {
482 #ifdef CONFIG_AIO
483         spin_lock_init(&mm->ioctx_lock);
484         INIT_HLIST_HEAD(&mm->ioctx_list);
485 #endif
486 }
487
488 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
489 {
490         atomic_set(&mm->mm_users, 1);
491         atomic_set(&mm->mm_count, 1);
492         init_rwsem(&mm->mmap_sem);
493         INIT_LIST_HEAD(&mm->mmlist);
494         mm->flags = (current->mm) ?
495                 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
496         mm->core_state = NULL;
497         mm->nr_ptes = 0;
498         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
499         spin_lock_init(&mm->page_table_lock);
500         mm->free_area_cache = TASK_UNMAPPED_BASE;
501         mm->cached_hole_size = ~0UL;
502         mm_init_aio(mm);
503         mm_init_owner(mm, p);
504         atomic_set(&mm->oom_disable_count, 0);
505
506         if (likely(!mm_alloc_pgd(mm))) {
507                 mm->def_flags = 0;
508                 mmu_notifier_mm_init(mm);
509                 return mm;
510         }
511
512         free_mm(mm);
513         return NULL;
514 }
515
516 /*
517  * Allocate and initialize an mm_struct.
518  */
519 struct mm_struct * mm_alloc(void)
520 {
521         struct mm_struct * mm;
522
523         mm = allocate_mm();
524         if (mm) {
525                 memset(mm, 0, sizeof(*mm));
526                 mm = mm_init(mm, current);
527         }
528         return mm;
529 }
530
531 /*
532  * Called when the last reference to the mm
533  * is dropped: either by a lazy thread or by
534  * mmput. Free the page directory and the mm.
535  */
536 void __mmdrop(struct mm_struct *mm)
537 {
538         BUG_ON(mm == &init_mm);
539         mm_free_pgd(mm);
540         destroy_context(mm);
541         mmu_notifier_mm_destroy(mm);
542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
543         VM_BUG_ON(mm->pmd_huge_pte);
544 #endif
545         free_mm(mm);
546 }
547 EXPORT_SYMBOL_GPL(__mmdrop);
548
549 /*
550  * Decrement the use count and release all resources for an mm.
551  */
552 void mmput(struct mm_struct *mm)
553 {
554         might_sleep();
555
556         if (atomic_dec_and_test(&mm->mm_users)) {
557                 exit_aio(mm);
558                 ksm_exit(mm);
559                 khugepaged_exit(mm); /* must run before exit_mmap */
560                 exit_mmap(mm);
561                 set_mm_exe_file(mm, NULL);
562                 if (!list_empty(&mm->mmlist)) {
563                         spin_lock(&mmlist_lock);
564                         list_del(&mm->mmlist);
565                         spin_unlock(&mmlist_lock);
566                 }
567                 put_swap_token(mm);
568                 if (mm->binfmt)
569                         module_put(mm->binfmt->module);
570                 mmdrop(mm);
571         }
572 }
573 EXPORT_SYMBOL_GPL(mmput);
574
575 /**
576  * get_task_mm - acquire a reference to the task's mm
577  *
578  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
579  * this kernel workthread has transiently adopted a user mm with use_mm,
580  * to do its AIO) is not set and if so returns a reference to it, after
581  * bumping up the use count.  User must release the mm via mmput()
582  * after use.  Typically used by /proc and ptrace.
583  */
584 struct mm_struct *get_task_mm(struct task_struct *task)
585 {
586         struct mm_struct *mm;
587
588         task_lock(task);
589         mm = task->mm;
590         if (mm) {
591                 if (task->flags & PF_KTHREAD)
592                         mm = NULL;
593                 else
594                         atomic_inc(&mm->mm_users);
595         }
596         task_unlock(task);
597         return mm;
598 }
599 EXPORT_SYMBOL_GPL(get_task_mm);
600
601 /* Please note the differences between mmput and mm_release.
602  * mmput is called whenever we stop holding onto a mm_struct,
603  * error success whatever.
604  *
605  * mm_release is called after a mm_struct has been removed
606  * from the current process.
607  *
608  * This difference is important for error handling, when we
609  * only half set up a mm_struct for a new process and need to restore
610  * the old one.  Because we mmput the new mm_struct before
611  * restoring the old one. . .
612  * Eric Biederman 10 January 1998
613  */
614 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
615 {
616         struct completion *vfork_done = tsk->vfork_done;
617
618         /* Get rid of any futexes when releasing the mm */
619 #ifdef CONFIG_FUTEX
620         if (unlikely(tsk->robust_list)) {
621                 exit_robust_list(tsk);
622                 tsk->robust_list = NULL;
623         }
624 #ifdef CONFIG_COMPAT
625         if (unlikely(tsk->compat_robust_list)) {
626                 compat_exit_robust_list(tsk);
627                 tsk->compat_robust_list = NULL;
628         }
629 #endif
630         if (unlikely(!list_empty(&tsk->pi_state_list)))
631                 exit_pi_state_list(tsk);
632 #endif
633
634         /* Get rid of any cached register state */
635         deactivate_mm(tsk, mm);
636
637         /* notify parent sleeping on vfork() */
638         if (vfork_done) {
639                 tsk->vfork_done = NULL;
640                 complete(vfork_done);
641         }
642
643         /*
644          * If we're exiting normally, clear a user-space tid field if
645          * requested.  We leave this alone when dying by signal, to leave
646          * the value intact in a core dump, and to save the unnecessary
647          * trouble otherwise.  Userland only wants this done for a sys_exit.
648          */
649         if (tsk->clear_child_tid) {
650                 if (!(tsk->flags & PF_SIGNALED) &&
651                     atomic_read(&mm->mm_users) > 1) {
652                         /*
653                          * We don't check the error code - if userspace has
654                          * not set up a proper pointer then tough luck.
655                          */
656                         put_user(0, tsk->clear_child_tid);
657                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
658                                         1, NULL, NULL, 0);
659                 }
660                 tsk->clear_child_tid = NULL;
661         }
662 }
663
664 /*
665  * Allocate a new mm structure and copy contents from the
666  * mm structure of the passed in task structure.
667  */
668 struct mm_struct *dup_mm(struct task_struct *tsk)
669 {
670         struct mm_struct *mm, *oldmm = current->mm;
671         int err;
672
673         if (!oldmm)
674                 return NULL;
675
676         mm = allocate_mm();
677         if (!mm)
678                 goto fail_nomem;
679
680         memcpy(mm, oldmm, sizeof(*mm));
681
682         /* Initializing for Swap token stuff */
683         mm->token_priority = 0;
684         mm->last_interval = 0;
685
686 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
687         mm->pmd_huge_pte = NULL;
688 #endif
689
690         if (!mm_init(mm, tsk))
691                 goto fail_nomem;
692
693         if (init_new_context(tsk, mm))
694                 goto fail_nocontext;
695
696         dup_mm_exe_file(oldmm, mm);
697
698         err = dup_mmap(mm, oldmm);
699         if (err)
700                 goto free_pt;
701
702         mm->hiwater_rss = get_mm_rss(mm);
703         mm->hiwater_vm = mm->total_vm;
704
705         if (mm->binfmt && !try_module_get(mm->binfmt->module))
706                 goto free_pt;
707
708         return mm;
709
710 free_pt:
711         /* don't put binfmt in mmput, we haven't got module yet */
712         mm->binfmt = NULL;
713         mmput(mm);
714
715 fail_nomem:
716         return NULL;
717
718 fail_nocontext:
719         /*
720          * If init_new_context() failed, we cannot use mmput() to free the mm
721          * because it calls destroy_context()
722          */
723         mm_free_pgd(mm);
724         free_mm(mm);
725         return NULL;
726 }
727
728 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
729 {
730         struct mm_struct * mm, *oldmm;
731         int retval;
732
733         tsk->min_flt = tsk->maj_flt = 0;
734         tsk->nvcsw = tsk->nivcsw = 0;
735 #ifdef CONFIG_DETECT_HUNG_TASK
736         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
737 #endif
738
739         tsk->mm = NULL;
740         tsk->active_mm = NULL;
741
742         /*
743          * Are we cloning a kernel thread?
744          *
745          * We need to steal a active VM for that..
746          */
747         oldmm = current->mm;
748         if (!oldmm)
749                 return 0;
750
751         if (clone_flags & CLONE_VM) {
752                 atomic_inc(&oldmm->mm_users);
753                 mm = oldmm;
754                 goto good_mm;
755         }
756
757         retval = -ENOMEM;
758         mm = dup_mm(tsk);
759         if (!mm)
760                 goto fail_nomem;
761
762 good_mm:
763         /* Initializing for Swap token stuff */
764         mm->token_priority = 0;
765         mm->last_interval = 0;
766         if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
767                 atomic_inc(&mm->oom_disable_count);
768
769         tsk->mm = mm;
770         tsk->active_mm = mm;
771         return 0;
772
773 fail_nomem:
774         return retval;
775 }
776
777 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
778 {
779         struct fs_struct *fs = current->fs;
780         if (clone_flags & CLONE_FS) {
781                 /* tsk->fs is already what we want */
782                 spin_lock(&fs->lock);
783                 if (fs->in_exec) {
784                         spin_unlock(&fs->lock);
785                         return -EAGAIN;
786                 }
787                 fs->users++;
788                 spin_unlock(&fs->lock);
789                 return 0;
790         }
791         tsk->fs = copy_fs_struct(fs);
792         if (!tsk->fs)
793                 return -ENOMEM;
794         return 0;
795 }
796
797 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
798 {
799         struct files_struct *oldf, *newf;
800         int error = 0;
801
802         /*
803          * A background process may not have any files ...
804          */
805         oldf = current->files;
806         if (!oldf)
807                 goto out;
808
809         if (clone_flags & CLONE_FILES) {
810                 atomic_inc(&oldf->count);
811                 goto out;
812         }
813
814         newf = dup_fd(oldf, &error);
815         if (!newf)
816                 goto out;
817
818         tsk->files = newf;
819         error = 0;
820 out:
821         return error;
822 }
823
824 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
825 {
826 #ifdef CONFIG_BLOCK
827         struct io_context *ioc = current->io_context;
828
829         if (!ioc)
830                 return 0;
831         /*
832          * Share io context with parent, if CLONE_IO is set
833          */
834         if (clone_flags & CLONE_IO) {
835                 tsk->io_context = ioc_task_link(ioc);
836                 if (unlikely(!tsk->io_context))
837                         return -ENOMEM;
838         } else if (ioprio_valid(ioc->ioprio)) {
839                 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
840                 if (unlikely(!tsk->io_context))
841                         return -ENOMEM;
842
843                 tsk->io_context->ioprio = ioc->ioprio;
844         }
845 #endif
846         return 0;
847 }
848
849 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
850 {
851         struct sighand_struct *sig;
852
853         if (clone_flags & CLONE_SIGHAND) {
854                 atomic_inc(&current->sighand->count);
855                 return 0;
856         }
857         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
858         rcu_assign_pointer(tsk->sighand, sig);
859         if (!sig)
860                 return -ENOMEM;
861         atomic_set(&sig->count, 1);
862         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
863         return 0;
864 }
865
866 void __cleanup_sighand(struct sighand_struct *sighand)
867 {
868         if (atomic_dec_and_test(&sighand->count))
869                 kmem_cache_free(sighand_cachep, sighand);
870 }
871
872
873 /*
874  * Initialize POSIX timer handling for a thread group.
875  */
876 static void posix_cpu_timers_init_group(struct signal_struct *sig)
877 {
878         unsigned long cpu_limit;
879
880         /* Thread group counters. */
881         thread_group_cputime_init(sig);
882
883         cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
884         if (cpu_limit != RLIM_INFINITY) {
885                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
886                 sig->cputimer.running = 1;
887         }
888
889         /* The timer lists. */
890         INIT_LIST_HEAD(&sig->cpu_timers[0]);
891         INIT_LIST_HEAD(&sig->cpu_timers[1]);
892         INIT_LIST_HEAD(&sig->cpu_timers[2]);
893 }
894
895 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
896 {
897         struct signal_struct *sig;
898
899         if (clone_flags & CLONE_THREAD)
900                 return 0;
901
902         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
903         tsk->signal = sig;
904         if (!sig)
905                 return -ENOMEM;
906
907         sig->nr_threads = 1;
908         atomic_set(&sig->live, 1);
909         atomic_set(&sig->sigcnt, 1);
910         init_waitqueue_head(&sig->wait_chldexit);
911         if (clone_flags & CLONE_NEWPID)
912                 sig->flags |= SIGNAL_UNKILLABLE;
913         sig->curr_target = tsk;
914         init_sigpending(&sig->shared_pending);
915         INIT_LIST_HEAD(&sig->posix_timers);
916
917         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
918         sig->real_timer.function = it_real_fn;
919
920         task_lock(current->group_leader);
921         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
922         task_unlock(current->group_leader);
923
924         posix_cpu_timers_init_group(sig);
925
926         tty_audit_fork(sig);
927         sched_autogroup_fork(sig);
928
929         sig->oom_adj = current->signal->oom_adj;
930         sig->oom_score_adj = current->signal->oom_score_adj;
931         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
932
933         mutex_init(&sig->cred_guard_mutex);
934
935         return 0;
936 }
937
938 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
939 {
940         unsigned long new_flags = p->flags;
941
942         new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
943         new_flags |= PF_FORKNOEXEC;
944         new_flags |= PF_STARTING;
945         p->flags = new_flags;
946         clear_freeze_flag(p);
947 }
948
949 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
950 {
951         current->clear_child_tid = tidptr;
952
953         return task_pid_vnr(current);
954 }
955
956 static void rt_mutex_init_task(struct task_struct *p)
957 {
958         raw_spin_lock_init(&p->pi_lock);
959 #ifdef CONFIG_RT_MUTEXES
960         plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
961         p->pi_blocked_on = NULL;
962 #endif
963 }
964
965 #ifdef CONFIG_MM_OWNER
966 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
967 {
968         mm->owner = p;
969 }
970 #endif /* CONFIG_MM_OWNER */
971
972 /*
973  * Initialize POSIX timer handling for a single task.
974  */
975 static void posix_cpu_timers_init(struct task_struct *tsk)
976 {
977         tsk->cputime_expires.prof_exp = cputime_zero;
978         tsk->cputime_expires.virt_exp = cputime_zero;
979         tsk->cputime_expires.sched_exp = 0;
980         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
981         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
982         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
983 }
984
985 /*
986  * This creates a new process as a copy of the old one,
987  * but does not actually start it yet.
988  *
989  * It copies the registers, and all the appropriate
990  * parts of the process environment (as per the clone
991  * flags). The actual kick-off is left to the caller.
992  */
993 static struct task_struct *copy_process(unsigned long clone_flags,
994                                         unsigned long stack_start,
995                                         struct pt_regs *regs,
996                                         unsigned long stack_size,
997                                         int __user *child_tidptr,
998                                         struct pid *pid,
999                                         int trace)
1000 {
1001         int retval;
1002         struct task_struct *p;
1003         int cgroup_callbacks_done = 0;
1004
1005         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1006                 return ERR_PTR(-EINVAL);
1007
1008         /*
1009          * Thread groups must share signals as well, and detached threads
1010          * can only be started up within the thread group.
1011          */
1012         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1013                 return ERR_PTR(-EINVAL);
1014
1015         /*
1016          * Shared signal handlers imply shared VM. By way of the above,
1017          * thread groups also imply shared VM. Blocking this case allows
1018          * for various simplifications in other code.
1019          */
1020         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1021                 return ERR_PTR(-EINVAL);
1022
1023         /*
1024          * Siblings of global init remain as zombies on exit since they are
1025          * not reaped by their parent (swapper). To solve this and to avoid
1026          * multi-rooted process trees, prevent global and container-inits
1027          * from creating siblings.
1028          */
1029         if ((clone_flags & CLONE_PARENT) &&
1030                                 current->signal->flags & SIGNAL_UNKILLABLE)
1031                 return ERR_PTR(-EINVAL);
1032
1033         retval = security_task_create(clone_flags);
1034         if (retval)
1035                 goto fork_out;
1036
1037         retval = -ENOMEM;
1038         p = dup_task_struct(current);
1039         if (!p)
1040                 goto fork_out;
1041
1042         ftrace_graph_init_task(p);
1043
1044         rt_mutex_init_task(p);
1045
1046 #ifdef CONFIG_PROVE_LOCKING
1047         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1048         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1049 #endif
1050         retval = -EAGAIN;
1051         if (atomic_read(&p->real_cred->user->processes) >=
1052                         task_rlimit(p, RLIMIT_NPROC)) {
1053                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1054                     p->real_cred->user != INIT_USER)
1055                         goto bad_fork_free;
1056         }
1057
1058         retval = copy_creds(p, clone_flags);
1059         if (retval < 0)
1060                 goto bad_fork_free;
1061
1062         /*
1063          * If multiple threads are within copy_process(), then this check
1064          * triggers too late. This doesn't hurt, the check is only there
1065          * to stop root fork bombs.
1066          */
1067         retval = -EAGAIN;
1068         if (nr_threads >= max_threads)
1069                 goto bad_fork_cleanup_count;
1070
1071         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1072                 goto bad_fork_cleanup_count;
1073
1074         p->did_exec = 0;
1075         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1076         copy_flags(clone_flags, p);
1077         INIT_LIST_HEAD(&p->children);
1078         INIT_LIST_HEAD(&p->sibling);
1079         rcu_copy_process(p);
1080         p->vfork_done = NULL;
1081         spin_lock_init(&p->alloc_lock);
1082
1083         init_sigpending(&p->pending);
1084
1085         p->utime = cputime_zero;
1086         p->stime = cputime_zero;
1087         p->gtime = cputime_zero;
1088         p->utimescaled = cputime_zero;
1089         p->stimescaled = cputime_zero;
1090 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1091         p->prev_utime = cputime_zero;
1092         p->prev_stime = cputime_zero;
1093 #endif
1094 #if defined(SPLIT_RSS_COUNTING)
1095         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1096 #endif
1097
1098         p->default_timer_slack_ns = current->timer_slack_ns;
1099
1100         task_io_accounting_init(&p->ioac);
1101         acct_clear_integrals(p);
1102
1103         posix_cpu_timers_init(p);
1104
1105         do_posix_clock_monotonic_gettime(&p->start_time);
1106         p->real_start_time = p->start_time;
1107         monotonic_to_bootbased(&p->real_start_time);
1108         p->io_context = NULL;
1109         p->audit_context = NULL;
1110         cgroup_fork(p);
1111 #ifdef CONFIG_NUMA
1112         p->mempolicy = mpol_dup(p->mempolicy);
1113         if (IS_ERR(p->mempolicy)) {
1114                 retval = PTR_ERR(p->mempolicy);
1115                 p->mempolicy = NULL;
1116                 goto bad_fork_cleanup_cgroup;
1117         }
1118         mpol_fix_fork_child_flag(p);
1119 #endif
1120 #ifdef CONFIG_TRACE_IRQFLAGS
1121         p->irq_events = 0;
1122 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1123         p->hardirqs_enabled = 1;
1124 #else
1125         p->hardirqs_enabled = 0;
1126 #endif
1127         p->hardirq_enable_ip = 0;
1128         p->hardirq_enable_event = 0;
1129         p->hardirq_disable_ip = _THIS_IP_;
1130         p->hardirq_disable_event = 0;
1131         p->softirqs_enabled = 1;
1132         p->softirq_enable_ip = _THIS_IP_;
1133         p->softirq_enable_event = 0;
1134         p->softirq_disable_ip = 0;
1135         p->softirq_disable_event = 0;
1136         p->hardirq_context = 0;
1137         p->softirq_context = 0;
1138 #endif
1139 #ifdef CONFIG_LOCKDEP
1140         p->lockdep_depth = 0; /* no locks held yet */
1141         p->curr_chain_key = 0;
1142         p->lockdep_recursion = 0;
1143 #endif
1144
1145 #ifdef CONFIG_DEBUG_MUTEXES
1146         p->blocked_on = NULL; /* not blocked yet */
1147 #endif
1148 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1149         p->memcg_batch.do_batch = 0;
1150         p->memcg_batch.memcg = NULL;
1151 #endif
1152
1153         /* Perform scheduler related setup. Assign this task to a CPU. */
1154         sched_fork(p);
1155
1156         retval = perf_event_init_task(p);
1157         if (retval)
1158                 goto bad_fork_cleanup_policy;
1159
1160         if ((retval = audit_alloc(p)))
1161                 goto bad_fork_cleanup_policy;
1162         /* copy all the process information */
1163         if ((retval = copy_semundo(clone_flags, p)))
1164                 goto bad_fork_cleanup_audit;
1165         if ((retval = copy_files(clone_flags, p)))
1166                 goto bad_fork_cleanup_semundo;
1167         if ((retval = copy_fs(clone_flags, p)))
1168                 goto bad_fork_cleanup_files;
1169         if ((retval = copy_sighand(clone_flags, p)))
1170                 goto bad_fork_cleanup_fs;
1171         if ((retval = copy_signal(clone_flags, p)))
1172                 goto bad_fork_cleanup_sighand;
1173         if ((retval = copy_mm(clone_flags, p)))
1174                 goto bad_fork_cleanup_signal;
1175         if ((retval = copy_namespaces(clone_flags, p)))
1176                 goto bad_fork_cleanup_mm;
1177         if ((retval = copy_io(clone_flags, p)))
1178                 goto bad_fork_cleanup_namespaces;
1179         retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1180         if (retval)
1181                 goto bad_fork_cleanup_io;
1182
1183         if (pid != &init_struct_pid) {
1184                 retval = -ENOMEM;
1185                 pid = alloc_pid(p->nsproxy->pid_ns);
1186                 if (!pid)
1187                         goto bad_fork_cleanup_io;
1188         }
1189
1190         p->pid = pid_nr(pid);
1191         p->tgid = p->pid;
1192         if (clone_flags & CLONE_THREAD)
1193                 p->tgid = current->tgid;
1194
1195         if (current->nsproxy != p->nsproxy) {
1196                 retval = ns_cgroup_clone(p, pid);
1197                 if (retval)
1198                         goto bad_fork_free_pid;
1199         }
1200
1201         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1202         /*
1203          * Clear TID on mm_release()?
1204          */
1205         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1206 #ifdef CONFIG_BLOCK
1207         p->plug = NULL;
1208 #endif
1209 #ifdef CONFIG_FUTEX
1210         p->robust_list = NULL;
1211 #ifdef CONFIG_COMPAT
1212         p->compat_robust_list = NULL;
1213 #endif
1214         INIT_LIST_HEAD(&p->pi_state_list);
1215         p->pi_state_cache = NULL;
1216 #endif
1217         /*
1218          * sigaltstack should be cleared when sharing the same VM
1219          */
1220         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1221                 p->sas_ss_sp = p->sas_ss_size = 0;
1222
1223         /*
1224          * Syscall tracing and stepping should be turned off in the
1225          * child regardless of CLONE_PTRACE.
1226          */
1227         user_disable_single_step(p);
1228         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1229 #ifdef TIF_SYSCALL_EMU
1230         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1231 #endif
1232         clear_all_latency_tracing(p);
1233
1234         /* ok, now we should be set up.. */
1235         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1236         p->pdeath_signal = 0;
1237         p->exit_state = 0;
1238
1239         /*
1240          * Ok, make it visible to the rest of the system.
1241          * We dont wake it up yet.
1242          */
1243         p->group_leader = p;
1244         INIT_LIST_HEAD(&p->thread_group);
1245
1246         /* Now that the task is set up, run cgroup callbacks if
1247          * necessary. We need to run them before the task is visible
1248          * on the tasklist. */
1249         cgroup_fork_callbacks(p);
1250         cgroup_callbacks_done = 1;
1251
1252         /* Need tasklist lock for parent etc handling! */
1253         write_lock_irq(&tasklist_lock);
1254
1255         /* CLONE_PARENT re-uses the old parent */
1256         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1257                 p->real_parent = current->real_parent;
1258                 p->parent_exec_id = current->parent_exec_id;
1259         } else {
1260                 p->real_parent = current;
1261                 p->parent_exec_id = current->self_exec_id;
1262         }
1263
1264         spin_lock(&current->sighand->siglock);
1265
1266         /*
1267          * Process group and session signals need to be delivered to just the
1268          * parent before the fork or both the parent and the child after the
1269          * fork. Restart if a signal comes in before we add the new process to
1270          * it's process group.
1271          * A fatal signal pending means that current will exit, so the new
1272          * thread can't slip out of an OOM kill (or normal SIGKILL).
1273          */
1274         recalc_sigpending();
1275         if (signal_pending(current)) {
1276                 spin_unlock(&current->sighand->siglock);
1277                 write_unlock_irq(&tasklist_lock);
1278                 retval = -ERESTARTNOINTR;
1279                 goto bad_fork_free_pid;
1280         }
1281
1282         if (clone_flags & CLONE_THREAD) {
1283                 current->signal->nr_threads++;
1284                 atomic_inc(&current->signal->live);
1285                 atomic_inc(&current->signal->sigcnt);
1286                 p->group_leader = current->group_leader;
1287                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1288         }
1289
1290         if (likely(p->pid)) {
1291                 tracehook_finish_clone(p, clone_flags, trace);
1292
1293                 if (thread_group_leader(p)) {
1294                         if (is_child_reaper(pid))
1295                                 p->nsproxy->pid_ns->child_reaper = p;
1296
1297                         p->signal->leader_pid = pid;
1298                         p->signal->tty = tty_kref_get(current->signal->tty);
1299                         attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1300                         attach_pid(p, PIDTYPE_SID, task_session(current));
1301                         list_add_tail(&p->sibling, &p->real_parent->children);
1302                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1303                         __this_cpu_inc(process_counts);
1304                 }
1305                 attach_pid(p, PIDTYPE_PID, pid);
1306                 nr_threads++;
1307         }
1308
1309         total_forks++;
1310         spin_unlock(&current->sighand->siglock);
1311         write_unlock_irq(&tasklist_lock);
1312         proc_fork_connector(p);
1313         cgroup_post_fork(p);
1314         perf_event_fork(p);
1315         return p;
1316
1317 bad_fork_free_pid:
1318         if (pid != &init_struct_pid)
1319                 free_pid(pid);
1320 bad_fork_cleanup_io:
1321         if (p->io_context)
1322                 exit_io_context(p);
1323 bad_fork_cleanup_namespaces:
1324         exit_task_namespaces(p);
1325 bad_fork_cleanup_mm:
1326         if (p->mm) {
1327                 task_lock(p);
1328                 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1329                         atomic_dec(&p->mm->oom_disable_count);
1330                 task_unlock(p);
1331                 mmput(p->mm);
1332         }
1333 bad_fork_cleanup_signal:
1334         if (!(clone_flags & CLONE_THREAD))
1335                 free_signal_struct(p->signal);
1336 bad_fork_cleanup_sighand:
1337         __cleanup_sighand(p->sighand);
1338 bad_fork_cleanup_fs:
1339         exit_fs(p); /* blocking */
1340 bad_fork_cleanup_files:
1341         exit_files(p); /* blocking */
1342 bad_fork_cleanup_semundo:
1343         exit_sem(p);
1344 bad_fork_cleanup_audit:
1345         audit_free(p);
1346 bad_fork_cleanup_policy:
1347         perf_event_free_task(p);
1348 #ifdef CONFIG_NUMA
1349         mpol_put(p->mempolicy);
1350 bad_fork_cleanup_cgroup:
1351 #endif
1352         cgroup_exit(p, cgroup_callbacks_done);
1353         delayacct_tsk_free(p);
1354         module_put(task_thread_info(p)->exec_domain->module);
1355 bad_fork_cleanup_count:
1356         atomic_dec(&p->cred->user->processes);
1357         exit_creds(p);
1358 bad_fork_free:
1359         free_task(p);
1360 fork_out:
1361         return ERR_PTR(retval);
1362 }
1363
1364 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1365 {
1366         memset(regs, 0, sizeof(struct pt_regs));
1367         return regs;
1368 }
1369
1370 static inline void init_idle_pids(struct pid_link *links)
1371 {
1372         enum pid_type type;
1373
1374         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1375                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1376                 links[type].pid = &init_struct_pid;
1377         }
1378 }
1379
1380 struct task_struct * __cpuinit fork_idle(int cpu)
1381 {
1382         struct task_struct *task;
1383         struct pt_regs regs;
1384
1385         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1386                             &init_struct_pid, 0);
1387         if (!IS_ERR(task)) {
1388                 init_idle_pids(task->pids);
1389                 init_idle(task, cpu);
1390         }
1391
1392         return task;
1393 }
1394
1395 /*
1396  *  Ok, this is the main fork-routine.
1397  *
1398  * It copies the process, and if successful kick-starts
1399  * it and waits for it to finish using the VM if required.
1400  */
1401 long do_fork(unsigned long clone_flags,
1402               unsigned long stack_start,
1403               struct pt_regs *regs,
1404               unsigned long stack_size,
1405               int __user *parent_tidptr,
1406               int __user *child_tidptr)
1407 {
1408         struct task_struct *p;
1409         int trace = 0;
1410         long nr;
1411
1412         /*
1413          * Do some preliminary argument and permissions checking before we
1414          * actually start allocating stuff
1415          */
1416         if (clone_flags & CLONE_NEWUSER) {
1417                 if (clone_flags & CLONE_THREAD)
1418                         return -EINVAL;
1419                 /* hopefully this check will go away when userns support is
1420                  * complete
1421                  */
1422                 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1423                                 !capable(CAP_SETGID))
1424                         return -EPERM;
1425         }
1426
1427         /*
1428          * When called from kernel_thread, don't do user tracing stuff.
1429          */
1430         if (likely(user_mode(regs)))
1431                 trace = tracehook_prepare_clone(clone_flags);
1432
1433         p = copy_process(clone_flags, stack_start, regs, stack_size,
1434                          child_tidptr, NULL, trace);
1435         /*
1436          * Do this prior waking up the new thread - the thread pointer
1437          * might get invalid after that point, if the thread exits quickly.
1438          */
1439         if (!IS_ERR(p)) {
1440                 struct completion vfork;
1441
1442                 trace_sched_process_fork(current, p);
1443
1444                 nr = task_pid_vnr(p);
1445
1446                 if (clone_flags & CLONE_PARENT_SETTID)
1447                         put_user(nr, parent_tidptr);
1448
1449                 if (clone_flags & CLONE_VFORK) {
1450                         p->vfork_done = &vfork;
1451                         init_completion(&vfork);
1452                 }
1453
1454                 audit_finish_fork(p);
1455                 tracehook_report_clone(regs, clone_flags, nr, p);
1456
1457                 /*
1458                  * We set PF_STARTING at creation in case tracing wants to
1459                  * use this to distinguish a fully live task from one that
1460                  * hasn't gotten to tracehook_report_clone() yet.  Now we
1461                  * clear it and set the child going.
1462                  */
1463                 p->flags &= ~PF_STARTING;
1464
1465                 wake_up_new_task(p);
1466
1467                 tracehook_report_clone_complete(trace, regs,
1468                                                 clone_flags, nr, p);
1469
1470                 if (clone_flags & CLONE_VFORK) {
1471                         freezer_do_not_count();
1472                         wait_for_completion(&vfork);
1473                         freezer_count();
1474                         tracehook_report_vfork_done(p, nr);
1475                 }
1476         } else {
1477                 nr = PTR_ERR(p);
1478         }
1479         return nr;
1480 }
1481
1482 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1483 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1484 #endif
1485
1486 static void sighand_ctor(void *data)
1487 {
1488         struct sighand_struct *sighand = data;
1489
1490         spin_lock_init(&sighand->siglock);
1491         init_waitqueue_head(&sighand->signalfd_wqh);
1492 }
1493
1494 void __init proc_caches_init(void)
1495 {
1496         sighand_cachep = kmem_cache_create("sighand_cache",
1497                         sizeof(struct sighand_struct), 0,
1498                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1499                         SLAB_NOTRACK, sighand_ctor);
1500         signal_cachep = kmem_cache_create("signal_cache",
1501                         sizeof(struct signal_struct), 0,
1502                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1503         files_cachep = kmem_cache_create("files_cache",
1504                         sizeof(struct files_struct), 0,
1505                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1506         fs_cachep = kmem_cache_create("fs_cache",
1507                         sizeof(struct fs_struct), 0,
1508                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1509         mm_cachep = kmem_cache_create("mm_struct",
1510                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1511                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1512         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1513         mmap_init();
1514 }
1515
1516 /*
1517  * Check constraints on flags passed to the unshare system call.
1518  */
1519 static int check_unshare_flags(unsigned long unshare_flags)
1520 {
1521         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1522                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1523                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1524                 return -EINVAL;
1525         /*
1526          * Not implemented, but pretend it works if there is nothing to
1527          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1528          * needs to unshare vm.
1529          */
1530         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1531                 /* FIXME: get_task_mm() increments ->mm_users */
1532                 if (atomic_read(&current->mm->mm_users) > 1)
1533                         return -EINVAL;
1534         }
1535
1536         return 0;
1537 }
1538
1539 /*
1540  * Unshare the filesystem structure if it is being shared
1541  */
1542 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1543 {
1544         struct fs_struct *fs = current->fs;
1545
1546         if (!(unshare_flags & CLONE_FS) || !fs)
1547                 return 0;
1548
1549         /* don't need lock here; in the worst case we'll do useless copy */
1550         if (fs->users == 1)
1551                 return 0;
1552
1553         *new_fsp = copy_fs_struct(fs);
1554         if (!*new_fsp)
1555                 return -ENOMEM;
1556
1557         return 0;
1558 }
1559
1560 /*
1561  * Unshare file descriptor table if it is being shared
1562  */
1563 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1564 {
1565         struct files_struct *fd = current->files;
1566         int error = 0;
1567
1568         if ((unshare_flags & CLONE_FILES) &&
1569             (fd && atomic_read(&fd->count) > 1)) {
1570                 *new_fdp = dup_fd(fd, &error);
1571                 if (!*new_fdp)
1572                         return error;
1573         }
1574
1575         return 0;
1576 }
1577
1578 /*
1579  * unshare allows a process to 'unshare' part of the process
1580  * context which was originally shared using clone.  copy_*
1581  * functions used by do_fork() cannot be used here directly
1582  * because they modify an inactive task_struct that is being
1583  * constructed. Here we are modifying the current, active,
1584  * task_struct.
1585  */
1586 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1587 {
1588         struct fs_struct *fs, *new_fs = NULL;
1589         struct files_struct *fd, *new_fd = NULL;
1590         struct nsproxy *new_nsproxy = NULL;
1591         int do_sysvsem = 0;
1592         int err;
1593
1594         err = check_unshare_flags(unshare_flags);
1595         if (err)
1596                 goto bad_unshare_out;
1597
1598         /*
1599          * If unsharing namespace, must also unshare filesystem information.
1600          */
1601         if (unshare_flags & CLONE_NEWNS)
1602                 unshare_flags |= CLONE_FS;
1603         /*
1604          * CLONE_NEWIPC must also detach from the undolist: after switching
1605          * to a new ipc namespace, the semaphore arrays from the old
1606          * namespace are unreachable.
1607          */
1608         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1609                 do_sysvsem = 1;
1610         if ((err = unshare_fs(unshare_flags, &new_fs)))
1611                 goto bad_unshare_out;
1612         if ((err = unshare_fd(unshare_flags, &new_fd)))
1613                 goto bad_unshare_cleanup_fs;
1614         if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1615                         new_fs)))
1616                 goto bad_unshare_cleanup_fd;
1617
1618         if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1619                 if (do_sysvsem) {
1620                         /*
1621                          * CLONE_SYSVSEM is equivalent to sys_exit().
1622                          */
1623                         exit_sem(current);
1624                 }
1625
1626                 if (new_nsproxy) {
1627                         switch_task_namespaces(current, new_nsproxy);
1628                         new_nsproxy = NULL;
1629                 }
1630
1631                 task_lock(current);
1632
1633                 if (new_fs) {
1634                         fs = current->fs;
1635                         spin_lock(&fs->lock);
1636                         current->fs = new_fs;
1637                         if (--fs->users)
1638                                 new_fs = NULL;
1639                         else
1640                                 new_fs = fs;
1641                         spin_unlock(&fs->lock);
1642                 }
1643
1644                 if (new_fd) {
1645                         fd = current->files;
1646                         current->files = new_fd;
1647                         new_fd = fd;
1648                 }
1649
1650                 task_unlock(current);
1651         }
1652
1653         if (new_nsproxy)
1654                 put_nsproxy(new_nsproxy);
1655
1656 bad_unshare_cleanup_fd:
1657         if (new_fd)
1658                 put_files_struct(new_fd);
1659
1660 bad_unshare_cleanup_fs:
1661         if (new_fs)
1662                 free_fs_struct(new_fs);
1663
1664 bad_unshare_out:
1665         return err;
1666 }
1667
1668 /*
1669  *      Helper to unshare the files of the current task.
1670  *      We don't want to expose copy_files internals to
1671  *      the exec layer of the kernel.
1672  */
1673
1674 int unshare_files(struct files_struct **displaced)
1675 {
1676         struct task_struct *task = current;
1677         struct files_struct *copy = NULL;
1678         int error;
1679
1680         error = unshare_fd(CLONE_FILES, &copy);
1681         if (error || !copy) {
1682                 *displaced = NULL;
1683                 return error;
1684         }
1685         *displaced = task->files;
1686         task_lock(task);
1687         task->files = copy;
1688         task_unlock(task);
1689         return 0;
1690 }