]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/fork.c
sched/rtmutex/deadline: Fix a PI crash for deadline tasks
[karo-tx-linux.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/fs.h>
41 #include <linux/mm.h>
42 #include <linux/vmacache.h>
43 #include <linux/nsproxy.h>
44 #include <linux/capability.h>
45 #include <linux/cpu.h>
46 #include <linux/cgroup.h>
47 #include <linux/security.h>
48 #include <linux/hugetlb.h>
49 #include <linux/seccomp.h>
50 #include <linux/swap.h>
51 #include <linux/syscalls.h>
52 #include <linux/jiffies.h>
53 #include <linux/futex.h>
54 #include <linux/compat.h>
55 #include <linux/kthread.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/rcupdate.h>
58 #include <linux/ptrace.h>
59 #include <linux/mount.h>
60 #include <linux/audit.h>
61 #include <linux/memcontrol.h>
62 #include <linux/ftrace.h>
63 #include <linux/proc_fs.h>
64 #include <linux/profile.h>
65 #include <linux/rmap.h>
66 #include <linux/ksm.h>
67 #include <linux/acct.h>
68 #include <linux/userfaultfd_k.h>
69 #include <linux/tsacct_kern.h>
70 #include <linux/cn_proc.h>
71 #include <linux/freezer.h>
72 #include <linux/delayacct.h>
73 #include <linux/taskstats_kern.h>
74 #include <linux/random.h>
75 #include <linux/tty.h>
76 #include <linux/blkdev.h>
77 #include <linux/fs_struct.h>
78 #include <linux/magic.h>
79 #include <linux/perf_event.h>
80 #include <linux/posix-timers.h>
81 #include <linux/user-return-notifier.h>
82 #include <linux/oom.h>
83 #include <linux/khugepaged.h>
84 #include <linux/signalfd.h>
85 #include <linux/uprobes.h>
86 #include <linux/aio.h>
87 #include <linux/compiler.h>
88 #include <linux/sysctl.h>
89 #include <linux/kcov.h>
90
91 #include <asm/pgtable.h>
92 #include <asm/pgalloc.h>
93 #include <linux/uaccess.h>
94 #include <asm/mmu_context.h>
95 #include <asm/cacheflush.h>
96 #include <asm/tlbflush.h>
97
98 #include <trace/events/sched.h>
99
100 #define CREATE_TRACE_POINTS
101 #include <trace/events/task.h>
102
103 /*
104  * Minimum number of threads to boot the kernel
105  */
106 #define MIN_THREADS 20
107
108 /*
109  * Maximum number of threads
110  */
111 #define MAX_THREADS FUTEX_TID_MASK
112
113 /*
114  * Protected counters by write_lock_irq(&tasklist_lock)
115  */
116 unsigned long total_forks;      /* Handle normal Linux uptimes. */
117 int nr_threads;                 /* The idle threads do not count.. */
118
119 int max_threads;                /* tunable limit on nr_threads */
120
121 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
122
123 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
124
125 #ifdef CONFIG_PROVE_RCU
126 int lockdep_tasklist_lock_is_held(void)
127 {
128         return lockdep_is_held(&tasklist_lock);
129 }
130 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
131 #endif /* #ifdef CONFIG_PROVE_RCU */
132
133 int nr_processes(void)
134 {
135         int cpu;
136         int total = 0;
137
138         for_each_possible_cpu(cpu)
139                 total += per_cpu(process_counts, cpu);
140
141         return total;
142 }
143
144 void __weak arch_release_task_struct(struct task_struct *tsk)
145 {
146 }
147
148 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
149 static struct kmem_cache *task_struct_cachep;
150
151 static inline struct task_struct *alloc_task_struct_node(int node)
152 {
153         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
154 }
155
156 static inline void free_task_struct(struct task_struct *tsk)
157 {
158         kmem_cache_free(task_struct_cachep, tsk);
159 }
160 #endif
161
162 void __weak arch_release_thread_stack(unsigned long *stack)
163 {
164 }
165
166 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
167
168 /*
169  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
170  * kmemcache based allocator.
171  */
172 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
173
174 #ifdef CONFIG_VMAP_STACK
175 /*
176  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
177  * flush.  Try to minimize the number of calls by caching stacks.
178  */
179 #define NR_CACHED_STACKS 2
180 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
181 #endif
182
183 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
184 {
185 #ifdef CONFIG_VMAP_STACK
186         void *stack;
187         int i;
188
189         local_irq_disable();
190         for (i = 0; i < NR_CACHED_STACKS; i++) {
191                 struct vm_struct *s = this_cpu_read(cached_stacks[i]);
192
193                 if (!s)
194                         continue;
195                 this_cpu_write(cached_stacks[i], NULL);
196
197                 tsk->stack_vm_area = s;
198                 local_irq_enable();
199                 return s->addr;
200         }
201         local_irq_enable();
202
203         stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
204                                      VMALLOC_START, VMALLOC_END,
205                                      THREADINFO_GFP | __GFP_HIGHMEM,
206                                      PAGE_KERNEL,
207                                      0, node, __builtin_return_address(0));
208
209         /*
210          * We can't call find_vm_area() in interrupt context, and
211          * free_thread_stack() can be called in interrupt context,
212          * so cache the vm_struct.
213          */
214         if (stack)
215                 tsk->stack_vm_area = find_vm_area(stack);
216         return stack;
217 #else
218         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
219                                              THREAD_SIZE_ORDER);
220
221         return page ? page_address(page) : NULL;
222 #endif
223 }
224
225 static inline void free_thread_stack(struct task_struct *tsk)
226 {
227 #ifdef CONFIG_VMAP_STACK
228         if (task_stack_vm_area(tsk)) {
229                 unsigned long flags;
230                 int i;
231
232                 local_irq_save(flags);
233                 for (i = 0; i < NR_CACHED_STACKS; i++) {
234                         if (this_cpu_read(cached_stacks[i]))
235                                 continue;
236
237                         this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
238                         local_irq_restore(flags);
239                         return;
240                 }
241                 local_irq_restore(flags);
242
243                 vfree_atomic(tsk->stack);
244                 return;
245         }
246 #endif
247
248         __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
249 }
250 # else
251 static struct kmem_cache *thread_stack_cache;
252
253 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
254                                                   int node)
255 {
256         return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
257 }
258
259 static void free_thread_stack(struct task_struct *tsk)
260 {
261         kmem_cache_free(thread_stack_cache, tsk->stack);
262 }
263
264 void thread_stack_cache_init(void)
265 {
266         thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
267                                               THREAD_SIZE, 0, NULL);
268         BUG_ON(thread_stack_cache == NULL);
269 }
270 # endif
271 #endif
272
273 /* SLAB cache for signal_struct structures (tsk->signal) */
274 static struct kmem_cache *signal_cachep;
275
276 /* SLAB cache for sighand_struct structures (tsk->sighand) */
277 struct kmem_cache *sighand_cachep;
278
279 /* SLAB cache for files_struct structures (tsk->files) */
280 struct kmem_cache *files_cachep;
281
282 /* SLAB cache for fs_struct structures (tsk->fs) */
283 struct kmem_cache *fs_cachep;
284
285 /* SLAB cache for vm_area_struct structures */
286 struct kmem_cache *vm_area_cachep;
287
288 /* SLAB cache for mm_struct structures (tsk->mm) */
289 static struct kmem_cache *mm_cachep;
290
291 static void account_kernel_stack(struct task_struct *tsk, int account)
292 {
293         void *stack = task_stack_page(tsk);
294         struct vm_struct *vm = task_stack_vm_area(tsk);
295
296         BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
297
298         if (vm) {
299                 int i;
300
301                 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
302
303                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
304                         mod_zone_page_state(page_zone(vm->pages[i]),
305                                             NR_KERNEL_STACK_KB,
306                                             PAGE_SIZE / 1024 * account);
307                 }
308
309                 /* All stack pages belong to the same memcg. */
310                 memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
311                                             account * (THREAD_SIZE / 1024));
312         } else {
313                 /*
314                  * All stack pages are in the same zone and belong to the
315                  * same memcg.
316                  */
317                 struct page *first_page = virt_to_page(stack);
318
319                 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
320                                     THREAD_SIZE / 1024 * account);
321
322                 memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
323                                             account * (THREAD_SIZE / 1024));
324         }
325 }
326
327 static void release_task_stack(struct task_struct *tsk)
328 {
329         if (WARN_ON(tsk->state != TASK_DEAD))
330                 return;  /* Better to leak the stack than to free prematurely */
331
332         account_kernel_stack(tsk, -1);
333         arch_release_thread_stack(tsk->stack);
334         free_thread_stack(tsk);
335         tsk->stack = NULL;
336 #ifdef CONFIG_VMAP_STACK
337         tsk->stack_vm_area = NULL;
338 #endif
339 }
340
341 #ifdef CONFIG_THREAD_INFO_IN_TASK
342 void put_task_stack(struct task_struct *tsk)
343 {
344         if (atomic_dec_and_test(&tsk->stack_refcount))
345                 release_task_stack(tsk);
346 }
347 #endif
348
349 void free_task(struct task_struct *tsk)
350 {
351 #ifndef CONFIG_THREAD_INFO_IN_TASK
352         /*
353          * The task is finally done with both the stack and thread_info,
354          * so free both.
355          */
356         release_task_stack(tsk);
357 #else
358         /*
359          * If the task had a separate stack allocation, it should be gone
360          * by now.
361          */
362         WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
363 #endif
364         rt_mutex_debug_task_free(tsk);
365         ftrace_graph_exit_task(tsk);
366         put_seccomp_filter(tsk);
367         arch_release_task_struct(tsk);
368         if (tsk->flags & PF_KTHREAD)
369                 free_kthread_struct(tsk);
370         free_task_struct(tsk);
371 }
372 EXPORT_SYMBOL(free_task);
373
374 static inline void free_signal_struct(struct signal_struct *sig)
375 {
376         taskstats_tgid_free(sig);
377         sched_autogroup_exit(sig);
378         /*
379          * __mmdrop is not safe to call from softirq context on x86 due to
380          * pgd_dtor so postpone it to the async context
381          */
382         if (sig->oom_mm)
383                 mmdrop_async(sig->oom_mm);
384         kmem_cache_free(signal_cachep, sig);
385 }
386
387 static inline void put_signal_struct(struct signal_struct *sig)
388 {
389         if (atomic_dec_and_test(&sig->sigcnt))
390                 free_signal_struct(sig);
391 }
392
393 void __put_task_struct(struct task_struct *tsk)
394 {
395         WARN_ON(!tsk->exit_state);
396         WARN_ON(atomic_read(&tsk->usage));
397         WARN_ON(tsk == current);
398
399         cgroup_free(tsk);
400         task_numa_free(tsk);
401         security_task_free(tsk);
402         exit_creds(tsk);
403         delayacct_tsk_free(tsk);
404         put_signal_struct(tsk->signal);
405
406         if (!profile_handoff_task(tsk))
407                 free_task(tsk);
408 }
409 EXPORT_SYMBOL_GPL(__put_task_struct);
410
411 void __init __weak arch_task_cache_init(void) { }
412
413 /*
414  * set_max_threads
415  */
416 static void set_max_threads(unsigned int max_threads_suggested)
417 {
418         u64 threads;
419
420         /*
421          * The number of threads shall be limited such that the thread
422          * structures may only consume a small part of the available memory.
423          */
424         if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
425                 threads = MAX_THREADS;
426         else
427                 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
428                                     (u64) THREAD_SIZE * 8UL);
429
430         if (threads > max_threads_suggested)
431                 threads = max_threads_suggested;
432
433         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
434 }
435
436 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
437 /* Initialized by the architecture: */
438 int arch_task_struct_size __read_mostly;
439 #endif
440
441 void __init fork_init(void)
442 {
443         int i;
444 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
445 #ifndef ARCH_MIN_TASKALIGN
446 #define ARCH_MIN_TASKALIGN      0
447 #endif
448         int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
449
450         /* create a slab on which task_structs can be allocated */
451         task_struct_cachep = kmem_cache_create("task_struct",
452                         arch_task_struct_size, align,
453                         SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
454 #endif
455
456         /* do the arch specific task caches init */
457         arch_task_cache_init();
458
459         set_max_threads(MAX_THREADS);
460
461         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
462         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
463         init_task.signal->rlim[RLIMIT_SIGPENDING] =
464                 init_task.signal->rlim[RLIMIT_NPROC];
465
466         for (i = 0; i < UCOUNT_COUNTS; i++) {
467                 init_user_ns.ucount_max[i] = max_threads/2;
468         }
469 }
470
471 int __weak arch_dup_task_struct(struct task_struct *dst,
472                                                struct task_struct *src)
473 {
474         *dst = *src;
475         return 0;
476 }
477
478 void set_task_stack_end_magic(struct task_struct *tsk)
479 {
480         unsigned long *stackend;
481
482         stackend = end_of_stack(tsk);
483         *stackend = STACK_END_MAGIC;    /* for overflow detection */
484 }
485
486 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
487 {
488         struct task_struct *tsk;
489         unsigned long *stack;
490         struct vm_struct *stack_vm_area;
491         int err;
492
493         if (node == NUMA_NO_NODE)
494                 node = tsk_fork_get_node(orig);
495         tsk = alloc_task_struct_node(node);
496         if (!tsk)
497                 return NULL;
498
499         stack = alloc_thread_stack_node(tsk, node);
500         if (!stack)
501                 goto free_tsk;
502
503         stack_vm_area = task_stack_vm_area(tsk);
504
505         err = arch_dup_task_struct(tsk, orig);
506
507         /*
508          * arch_dup_task_struct() clobbers the stack-related fields.  Make
509          * sure they're properly initialized before using any stack-related
510          * functions again.
511          */
512         tsk->stack = stack;
513 #ifdef CONFIG_VMAP_STACK
514         tsk->stack_vm_area = stack_vm_area;
515 #endif
516 #ifdef CONFIG_THREAD_INFO_IN_TASK
517         atomic_set(&tsk->stack_refcount, 1);
518 #endif
519
520         if (err)
521                 goto free_stack;
522
523 #ifdef CONFIG_SECCOMP
524         /*
525          * We must handle setting up seccomp filters once we're under
526          * the sighand lock in case orig has changed between now and
527          * then. Until then, filter must be NULL to avoid messing up
528          * the usage counts on the error path calling free_task.
529          */
530         tsk->seccomp.filter = NULL;
531 #endif
532
533         setup_thread_stack(tsk, orig);
534         clear_user_return_notifier(tsk);
535         clear_tsk_need_resched(tsk);
536         set_task_stack_end_magic(tsk);
537
538 #ifdef CONFIG_CC_STACKPROTECTOR
539         tsk->stack_canary = get_random_int();
540 #endif
541
542         /*
543          * One for us, one for whoever does the "release_task()" (usually
544          * parent)
545          */
546         atomic_set(&tsk->usage, 2);
547 #ifdef CONFIG_BLK_DEV_IO_TRACE
548         tsk->btrace_seq = 0;
549 #endif
550         tsk->splice_pipe = NULL;
551         tsk->task_frag.page = NULL;
552         tsk->wake_q.next = NULL;
553
554         account_kernel_stack(tsk, 1);
555
556         kcov_task_init(tsk);
557
558         return tsk;
559
560 free_stack:
561         free_thread_stack(tsk);
562 free_tsk:
563         free_task_struct(tsk);
564         return NULL;
565 }
566
567 #ifdef CONFIG_MMU
568 static __latent_entropy int dup_mmap(struct mm_struct *mm,
569                                         struct mm_struct *oldmm)
570 {
571         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
572         struct rb_node **rb_link, *rb_parent;
573         int retval;
574         unsigned long charge;
575         LIST_HEAD(uf);
576
577         uprobe_start_dup_mmap();
578         if (down_write_killable(&oldmm->mmap_sem)) {
579                 retval = -EINTR;
580                 goto fail_uprobe_end;
581         }
582         flush_cache_dup_mm(oldmm);
583         uprobe_dup_mmap(oldmm, mm);
584         /*
585          * Not linked in yet - no deadlock potential:
586          */
587         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
588
589         /* No ordering required: file already has been exposed. */
590         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
591
592         mm->total_vm = oldmm->total_vm;
593         mm->data_vm = oldmm->data_vm;
594         mm->exec_vm = oldmm->exec_vm;
595         mm->stack_vm = oldmm->stack_vm;
596
597         rb_link = &mm->mm_rb.rb_node;
598         rb_parent = NULL;
599         pprev = &mm->mmap;
600         retval = ksm_fork(mm, oldmm);
601         if (retval)
602                 goto out;
603         retval = khugepaged_fork(mm, oldmm);
604         if (retval)
605                 goto out;
606
607         prev = NULL;
608         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
609                 struct file *file;
610
611                 if (mpnt->vm_flags & VM_DONTCOPY) {
612                         vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
613                         continue;
614                 }
615                 charge = 0;
616                 if (mpnt->vm_flags & VM_ACCOUNT) {
617                         unsigned long len = vma_pages(mpnt);
618
619                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
620                                 goto fail_nomem;
621                         charge = len;
622                 }
623                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
624                 if (!tmp)
625                         goto fail_nomem;
626                 *tmp = *mpnt;
627                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
628                 retval = vma_dup_policy(mpnt, tmp);
629                 if (retval)
630                         goto fail_nomem_policy;
631                 tmp->vm_mm = mm;
632                 retval = dup_userfaultfd(tmp, &uf);
633                 if (retval)
634                         goto fail_nomem_anon_vma_fork;
635                 if (anon_vma_fork(tmp, mpnt))
636                         goto fail_nomem_anon_vma_fork;
637                 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
638                 tmp->vm_next = tmp->vm_prev = NULL;
639                 file = tmp->vm_file;
640                 if (file) {
641                         struct inode *inode = file_inode(file);
642                         struct address_space *mapping = file->f_mapping;
643
644                         get_file(file);
645                         if (tmp->vm_flags & VM_DENYWRITE)
646                                 atomic_dec(&inode->i_writecount);
647                         i_mmap_lock_write(mapping);
648                         if (tmp->vm_flags & VM_SHARED)
649                                 atomic_inc(&mapping->i_mmap_writable);
650                         flush_dcache_mmap_lock(mapping);
651                         /* insert tmp into the share list, just after mpnt */
652                         vma_interval_tree_insert_after(tmp, mpnt,
653                                         &mapping->i_mmap);
654                         flush_dcache_mmap_unlock(mapping);
655                         i_mmap_unlock_write(mapping);
656                 }
657
658                 /*
659                  * Clear hugetlb-related page reserves for children. This only
660                  * affects MAP_PRIVATE mappings. Faults generated by the child
661                  * are not guaranteed to succeed, even if read-only
662                  */
663                 if (is_vm_hugetlb_page(tmp))
664                         reset_vma_resv_huge_pages(tmp);
665
666                 /*
667                  * Link in the new vma and copy the page table entries.
668                  */
669                 *pprev = tmp;
670                 pprev = &tmp->vm_next;
671                 tmp->vm_prev = prev;
672                 prev = tmp;
673
674                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
675                 rb_link = &tmp->vm_rb.rb_right;
676                 rb_parent = &tmp->vm_rb;
677
678                 mm->map_count++;
679                 retval = copy_page_range(mm, oldmm, mpnt);
680
681                 if (tmp->vm_ops && tmp->vm_ops->open)
682                         tmp->vm_ops->open(tmp);
683
684                 if (retval)
685                         goto out;
686         }
687         /* a new mm has just been created */
688         arch_dup_mmap(oldmm, mm);
689         retval = 0;
690 out:
691         up_write(&mm->mmap_sem);
692         flush_tlb_mm(oldmm);
693         up_write(&oldmm->mmap_sem);
694         dup_userfaultfd_complete(&uf);
695 fail_uprobe_end:
696         uprobe_end_dup_mmap();
697         return retval;
698 fail_nomem_anon_vma_fork:
699         mpol_put(vma_policy(tmp));
700 fail_nomem_policy:
701         kmem_cache_free(vm_area_cachep, tmp);
702 fail_nomem:
703         retval = -ENOMEM;
704         vm_unacct_memory(charge);
705         goto out;
706 }
707
708 static inline int mm_alloc_pgd(struct mm_struct *mm)
709 {
710         mm->pgd = pgd_alloc(mm);
711         if (unlikely(!mm->pgd))
712                 return -ENOMEM;
713         return 0;
714 }
715
716 static inline void mm_free_pgd(struct mm_struct *mm)
717 {
718         pgd_free(mm, mm->pgd);
719 }
720 #else
721 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
722 {
723         down_write(&oldmm->mmap_sem);
724         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
725         up_write(&oldmm->mmap_sem);
726         return 0;
727 }
728 #define mm_alloc_pgd(mm)        (0)
729 #define mm_free_pgd(mm)
730 #endif /* CONFIG_MMU */
731
732 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
733
734 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
735 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
736
737 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
738
739 static int __init coredump_filter_setup(char *s)
740 {
741         default_dump_filter =
742                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
743                 MMF_DUMP_FILTER_MASK;
744         return 1;
745 }
746
747 __setup("coredump_filter=", coredump_filter_setup);
748
749 #include <linux/init_task.h>
750
751 static void mm_init_aio(struct mm_struct *mm)
752 {
753 #ifdef CONFIG_AIO
754         spin_lock_init(&mm->ioctx_lock);
755         mm->ioctx_table = NULL;
756 #endif
757 }
758
759 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
760 {
761 #ifdef CONFIG_MEMCG
762         mm->owner = p;
763 #endif
764 }
765
766 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
767         struct user_namespace *user_ns)
768 {
769         mm->mmap = NULL;
770         mm->mm_rb = RB_ROOT;
771         mm->vmacache_seqnum = 0;
772         atomic_set(&mm->mm_users, 1);
773         atomic_set(&mm->mm_count, 1);
774         init_rwsem(&mm->mmap_sem);
775         INIT_LIST_HEAD(&mm->mmlist);
776         mm->core_state = NULL;
777         atomic_long_set(&mm->nr_ptes, 0);
778         mm_nr_pmds_init(mm);
779         mm->map_count = 0;
780         mm->locked_vm = 0;
781         mm->pinned_vm = 0;
782         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
783         spin_lock_init(&mm->page_table_lock);
784         mm_init_cpumask(mm);
785         mm_init_aio(mm);
786         mm_init_owner(mm, p);
787         mmu_notifier_mm_init(mm);
788         clear_tlb_flush_pending(mm);
789 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
790         mm->pmd_huge_pte = NULL;
791 #endif
792
793         if (current->mm) {
794                 mm->flags = current->mm->flags & MMF_INIT_MASK;
795                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
796         } else {
797                 mm->flags = default_dump_filter;
798                 mm->def_flags = 0;
799         }
800
801         if (mm_alloc_pgd(mm))
802                 goto fail_nopgd;
803
804         if (init_new_context(p, mm))
805                 goto fail_nocontext;
806
807         mm->user_ns = get_user_ns(user_ns);
808         return mm;
809
810 fail_nocontext:
811         mm_free_pgd(mm);
812 fail_nopgd:
813         free_mm(mm);
814         return NULL;
815 }
816
817 static void check_mm(struct mm_struct *mm)
818 {
819         int i;
820
821         for (i = 0; i < NR_MM_COUNTERS; i++) {
822                 long x = atomic_long_read(&mm->rss_stat.count[i]);
823
824                 if (unlikely(x))
825                         printk(KERN_ALERT "BUG: Bad rss-counter state "
826                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
827         }
828
829         if (atomic_long_read(&mm->nr_ptes))
830                 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
831                                 atomic_long_read(&mm->nr_ptes));
832         if (mm_nr_pmds(mm))
833                 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
834                                 mm_nr_pmds(mm));
835
836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
837         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
838 #endif
839 }
840
841 /*
842  * Allocate and initialize an mm_struct.
843  */
844 struct mm_struct *mm_alloc(void)
845 {
846         struct mm_struct *mm;
847
848         mm = allocate_mm();
849         if (!mm)
850                 return NULL;
851
852         memset(mm, 0, sizeof(*mm));
853         return mm_init(mm, current, current_user_ns());
854 }
855
856 /*
857  * Called when the last reference to the mm
858  * is dropped: either by a lazy thread or by
859  * mmput. Free the page directory and the mm.
860  */
861 void __mmdrop(struct mm_struct *mm)
862 {
863         BUG_ON(mm == &init_mm);
864         mm_free_pgd(mm);
865         destroy_context(mm);
866         mmu_notifier_mm_destroy(mm);
867         check_mm(mm);
868         put_user_ns(mm->user_ns);
869         free_mm(mm);
870 }
871 EXPORT_SYMBOL_GPL(__mmdrop);
872
873 static inline void __mmput(struct mm_struct *mm)
874 {
875         VM_BUG_ON(atomic_read(&mm->mm_users));
876
877         uprobe_clear_state(mm);
878         exit_aio(mm);
879         ksm_exit(mm);
880         khugepaged_exit(mm); /* must run before exit_mmap */
881         exit_mmap(mm);
882         mm_put_huge_zero_page(mm);
883         set_mm_exe_file(mm, NULL);
884         if (!list_empty(&mm->mmlist)) {
885                 spin_lock(&mmlist_lock);
886                 list_del(&mm->mmlist);
887                 spin_unlock(&mmlist_lock);
888         }
889         if (mm->binfmt)
890                 module_put(mm->binfmt->module);
891         set_bit(MMF_OOM_SKIP, &mm->flags);
892         mmdrop(mm);
893 }
894
895 /*
896  * Decrement the use count and release all resources for an mm.
897  */
898 void mmput(struct mm_struct *mm)
899 {
900         might_sleep();
901
902         if (atomic_dec_and_test(&mm->mm_users))
903                 __mmput(mm);
904 }
905 EXPORT_SYMBOL_GPL(mmput);
906
907 #ifdef CONFIG_MMU
908 static void mmput_async_fn(struct work_struct *work)
909 {
910         struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
911         __mmput(mm);
912 }
913
914 void mmput_async(struct mm_struct *mm)
915 {
916         if (atomic_dec_and_test(&mm->mm_users)) {
917                 INIT_WORK(&mm->async_put_work, mmput_async_fn);
918                 schedule_work(&mm->async_put_work);
919         }
920 }
921 #endif
922
923 /**
924  * set_mm_exe_file - change a reference to the mm's executable file
925  *
926  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
927  *
928  * Main users are mmput() and sys_execve(). Callers prevent concurrent
929  * invocations: in mmput() nobody alive left, in execve task is single
930  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
931  * mm->exe_file, but does so without using set_mm_exe_file() in order
932  * to do avoid the need for any locks.
933  */
934 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
935 {
936         struct file *old_exe_file;
937
938         /*
939          * It is safe to dereference the exe_file without RCU as
940          * this function is only called if nobody else can access
941          * this mm -- see comment above for justification.
942          */
943         old_exe_file = rcu_dereference_raw(mm->exe_file);
944
945         if (new_exe_file)
946                 get_file(new_exe_file);
947         rcu_assign_pointer(mm->exe_file, new_exe_file);
948         if (old_exe_file)
949                 fput(old_exe_file);
950 }
951
952 /**
953  * get_mm_exe_file - acquire a reference to the mm's executable file
954  *
955  * Returns %NULL if mm has no associated executable file.
956  * User must release file via fput().
957  */
958 struct file *get_mm_exe_file(struct mm_struct *mm)
959 {
960         struct file *exe_file;
961
962         rcu_read_lock();
963         exe_file = rcu_dereference(mm->exe_file);
964         if (exe_file && !get_file_rcu(exe_file))
965                 exe_file = NULL;
966         rcu_read_unlock();
967         return exe_file;
968 }
969 EXPORT_SYMBOL(get_mm_exe_file);
970
971 /**
972  * get_task_exe_file - acquire a reference to the task's executable file
973  *
974  * Returns %NULL if task's mm (if any) has no associated executable file or
975  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
976  * User must release file via fput().
977  */
978 struct file *get_task_exe_file(struct task_struct *task)
979 {
980         struct file *exe_file = NULL;
981         struct mm_struct *mm;
982
983         task_lock(task);
984         mm = task->mm;
985         if (mm) {
986                 if (!(task->flags & PF_KTHREAD))
987                         exe_file = get_mm_exe_file(mm);
988         }
989         task_unlock(task);
990         return exe_file;
991 }
992 EXPORT_SYMBOL(get_task_exe_file);
993
994 /**
995  * get_task_mm - acquire a reference to the task's mm
996  *
997  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
998  * this kernel workthread has transiently adopted a user mm with use_mm,
999  * to do its AIO) is not set and if so returns a reference to it, after
1000  * bumping up the use count.  User must release the mm via mmput()
1001  * after use.  Typically used by /proc and ptrace.
1002  */
1003 struct mm_struct *get_task_mm(struct task_struct *task)
1004 {
1005         struct mm_struct *mm;
1006
1007         task_lock(task);
1008         mm = task->mm;
1009         if (mm) {
1010                 if (task->flags & PF_KTHREAD)
1011                         mm = NULL;
1012                 else
1013                         mmget(mm);
1014         }
1015         task_unlock(task);
1016         return mm;
1017 }
1018 EXPORT_SYMBOL_GPL(get_task_mm);
1019
1020 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1021 {
1022         struct mm_struct *mm;
1023         int err;
1024
1025         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1026         if (err)
1027                 return ERR_PTR(err);
1028
1029         mm = get_task_mm(task);
1030         if (mm && mm != current->mm &&
1031                         !ptrace_may_access(task, mode)) {
1032                 mmput(mm);
1033                 mm = ERR_PTR(-EACCES);
1034         }
1035         mutex_unlock(&task->signal->cred_guard_mutex);
1036
1037         return mm;
1038 }
1039
1040 static void complete_vfork_done(struct task_struct *tsk)
1041 {
1042         struct completion *vfork;
1043
1044         task_lock(tsk);
1045         vfork = tsk->vfork_done;
1046         if (likely(vfork)) {
1047                 tsk->vfork_done = NULL;
1048                 complete(vfork);
1049         }
1050         task_unlock(tsk);
1051 }
1052
1053 static int wait_for_vfork_done(struct task_struct *child,
1054                                 struct completion *vfork)
1055 {
1056         int killed;
1057
1058         freezer_do_not_count();
1059         killed = wait_for_completion_killable(vfork);
1060         freezer_count();
1061
1062         if (killed) {
1063                 task_lock(child);
1064                 child->vfork_done = NULL;
1065                 task_unlock(child);
1066         }
1067
1068         put_task_struct(child);
1069         return killed;
1070 }
1071
1072 /* Please note the differences between mmput and mm_release.
1073  * mmput is called whenever we stop holding onto a mm_struct,
1074  * error success whatever.
1075  *
1076  * mm_release is called after a mm_struct has been removed
1077  * from the current process.
1078  *
1079  * This difference is important for error handling, when we
1080  * only half set up a mm_struct for a new process and need to restore
1081  * the old one.  Because we mmput the new mm_struct before
1082  * restoring the old one. . .
1083  * Eric Biederman 10 January 1998
1084  */
1085 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1086 {
1087         /* Get rid of any futexes when releasing the mm */
1088 #ifdef CONFIG_FUTEX
1089         if (unlikely(tsk->robust_list)) {
1090                 exit_robust_list(tsk);
1091                 tsk->robust_list = NULL;
1092         }
1093 #ifdef CONFIG_COMPAT
1094         if (unlikely(tsk->compat_robust_list)) {
1095                 compat_exit_robust_list(tsk);
1096                 tsk->compat_robust_list = NULL;
1097         }
1098 #endif
1099         if (unlikely(!list_empty(&tsk->pi_state_list)))
1100                 exit_pi_state_list(tsk);
1101 #endif
1102
1103         uprobe_free_utask(tsk);
1104
1105         /* Get rid of any cached register state */
1106         deactivate_mm(tsk, mm);
1107
1108         /*
1109          * Signal userspace if we're not exiting with a core dump
1110          * because we want to leave the value intact for debugging
1111          * purposes.
1112          */
1113         if (tsk->clear_child_tid) {
1114                 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1115                     atomic_read(&mm->mm_users) > 1) {
1116                         /*
1117                          * We don't check the error code - if userspace has
1118                          * not set up a proper pointer then tough luck.
1119                          */
1120                         put_user(0, tsk->clear_child_tid);
1121                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1122                                         1, NULL, NULL, 0);
1123                 }
1124                 tsk->clear_child_tid = NULL;
1125         }
1126
1127         /*
1128          * All done, finally we can wake up parent and return this mm to him.
1129          * Also kthread_stop() uses this completion for synchronization.
1130          */
1131         if (tsk->vfork_done)
1132                 complete_vfork_done(tsk);
1133 }
1134
1135 /*
1136  * Allocate a new mm structure and copy contents from the
1137  * mm structure of the passed in task structure.
1138  */
1139 static struct mm_struct *dup_mm(struct task_struct *tsk)
1140 {
1141         struct mm_struct *mm, *oldmm = current->mm;
1142         int err;
1143
1144         mm = allocate_mm();
1145         if (!mm)
1146                 goto fail_nomem;
1147
1148         memcpy(mm, oldmm, sizeof(*mm));
1149
1150         if (!mm_init(mm, tsk, mm->user_ns))
1151                 goto fail_nomem;
1152
1153         err = dup_mmap(mm, oldmm);
1154         if (err)
1155                 goto free_pt;
1156
1157         mm->hiwater_rss = get_mm_rss(mm);
1158         mm->hiwater_vm = mm->total_vm;
1159
1160         if (mm->binfmt && !try_module_get(mm->binfmt->module))
1161                 goto free_pt;
1162
1163         return mm;
1164
1165 free_pt:
1166         /* don't put binfmt in mmput, we haven't got module yet */
1167         mm->binfmt = NULL;
1168         mmput(mm);
1169
1170 fail_nomem:
1171         return NULL;
1172 }
1173
1174 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1175 {
1176         struct mm_struct *mm, *oldmm;
1177         int retval;
1178
1179         tsk->min_flt = tsk->maj_flt = 0;
1180         tsk->nvcsw = tsk->nivcsw = 0;
1181 #ifdef CONFIG_DETECT_HUNG_TASK
1182         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1183 #endif
1184
1185         tsk->mm = NULL;
1186         tsk->active_mm = NULL;
1187
1188         /*
1189          * Are we cloning a kernel thread?
1190          *
1191          * We need to steal a active VM for that..
1192          */
1193         oldmm = current->mm;
1194         if (!oldmm)
1195                 return 0;
1196
1197         /* initialize the new vmacache entries */
1198         vmacache_flush(tsk);
1199
1200         if (clone_flags & CLONE_VM) {
1201                 mmget(oldmm);
1202                 mm = oldmm;
1203                 goto good_mm;
1204         }
1205
1206         retval = -ENOMEM;
1207         mm = dup_mm(tsk);
1208         if (!mm)
1209                 goto fail_nomem;
1210
1211 good_mm:
1212         tsk->mm = mm;
1213         tsk->active_mm = mm;
1214         return 0;
1215
1216 fail_nomem:
1217         return retval;
1218 }
1219
1220 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1221 {
1222         struct fs_struct *fs = current->fs;
1223         if (clone_flags & CLONE_FS) {
1224                 /* tsk->fs is already what we want */
1225                 spin_lock(&fs->lock);
1226                 if (fs->in_exec) {
1227                         spin_unlock(&fs->lock);
1228                         return -EAGAIN;
1229                 }
1230                 fs->users++;
1231                 spin_unlock(&fs->lock);
1232                 return 0;
1233         }
1234         tsk->fs = copy_fs_struct(fs);
1235         if (!tsk->fs)
1236                 return -ENOMEM;
1237         return 0;
1238 }
1239
1240 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1241 {
1242         struct files_struct *oldf, *newf;
1243         int error = 0;
1244
1245         /*
1246          * A background process may not have any files ...
1247          */
1248         oldf = current->files;
1249         if (!oldf)
1250                 goto out;
1251
1252         if (clone_flags & CLONE_FILES) {
1253                 atomic_inc(&oldf->count);
1254                 goto out;
1255         }
1256
1257         newf = dup_fd(oldf, &error);
1258         if (!newf)
1259                 goto out;
1260
1261         tsk->files = newf;
1262         error = 0;
1263 out:
1264         return error;
1265 }
1266
1267 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1268 {
1269 #ifdef CONFIG_BLOCK
1270         struct io_context *ioc = current->io_context;
1271         struct io_context *new_ioc;
1272
1273         if (!ioc)
1274                 return 0;
1275         /*
1276          * Share io context with parent, if CLONE_IO is set
1277          */
1278         if (clone_flags & CLONE_IO) {
1279                 ioc_task_link(ioc);
1280                 tsk->io_context = ioc;
1281         } else if (ioprio_valid(ioc->ioprio)) {
1282                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1283                 if (unlikely(!new_ioc))
1284                         return -ENOMEM;
1285
1286                 new_ioc->ioprio = ioc->ioprio;
1287                 put_io_context(new_ioc);
1288         }
1289 #endif
1290         return 0;
1291 }
1292
1293 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1294 {
1295         struct sighand_struct *sig;
1296
1297         if (clone_flags & CLONE_SIGHAND) {
1298                 atomic_inc(&current->sighand->count);
1299                 return 0;
1300         }
1301         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1302         rcu_assign_pointer(tsk->sighand, sig);
1303         if (!sig)
1304                 return -ENOMEM;
1305
1306         atomic_set(&sig->count, 1);
1307         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1308         return 0;
1309 }
1310
1311 void __cleanup_sighand(struct sighand_struct *sighand)
1312 {
1313         if (atomic_dec_and_test(&sighand->count)) {
1314                 signalfd_cleanup(sighand);
1315                 /*
1316                  * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1317                  * without an RCU grace period, see __lock_task_sighand().
1318                  */
1319                 kmem_cache_free(sighand_cachep, sighand);
1320         }
1321 }
1322
1323 #ifdef CONFIG_POSIX_TIMERS
1324 /*
1325  * Initialize POSIX timer handling for a thread group.
1326  */
1327 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1328 {
1329         unsigned long cpu_limit;
1330
1331         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1332         if (cpu_limit != RLIM_INFINITY) {
1333                 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1334                 sig->cputimer.running = true;
1335         }
1336
1337         /* The timer lists. */
1338         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1339         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1340         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1341 }
1342 #else
1343 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1344 #endif
1345
1346 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1347 {
1348         struct signal_struct *sig;
1349
1350         if (clone_flags & CLONE_THREAD)
1351                 return 0;
1352
1353         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1354         tsk->signal = sig;
1355         if (!sig)
1356                 return -ENOMEM;
1357
1358         sig->nr_threads = 1;
1359         atomic_set(&sig->live, 1);
1360         atomic_set(&sig->sigcnt, 1);
1361
1362         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1363         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1364         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1365
1366         init_waitqueue_head(&sig->wait_chldexit);
1367         sig->curr_target = tsk;
1368         init_sigpending(&sig->shared_pending);
1369         seqlock_init(&sig->stats_lock);
1370         prev_cputime_init(&sig->prev_cputime);
1371
1372 #ifdef CONFIG_POSIX_TIMERS
1373         INIT_LIST_HEAD(&sig->posix_timers);
1374         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1375         sig->real_timer.function = it_real_fn;
1376 #endif
1377
1378         task_lock(current->group_leader);
1379         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1380         task_unlock(current->group_leader);
1381
1382         posix_cpu_timers_init_group(sig);
1383
1384         tty_audit_fork(sig);
1385         sched_autogroup_fork(sig);
1386
1387         sig->oom_score_adj = current->signal->oom_score_adj;
1388         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1389
1390         mutex_init(&sig->cred_guard_mutex);
1391
1392         return 0;
1393 }
1394
1395 static void copy_seccomp(struct task_struct *p)
1396 {
1397 #ifdef CONFIG_SECCOMP
1398         /*
1399          * Must be called with sighand->lock held, which is common to
1400          * all threads in the group. Holding cred_guard_mutex is not
1401          * needed because this new task is not yet running and cannot
1402          * be racing exec.
1403          */
1404         assert_spin_locked(&current->sighand->siglock);
1405
1406         /* Ref-count the new filter user, and assign it. */
1407         get_seccomp_filter(current);
1408         p->seccomp = current->seccomp;
1409
1410         /*
1411          * Explicitly enable no_new_privs here in case it got set
1412          * between the task_struct being duplicated and holding the
1413          * sighand lock. The seccomp state and nnp must be in sync.
1414          */
1415         if (task_no_new_privs(current))
1416                 task_set_no_new_privs(p);
1417
1418         /*
1419          * If the parent gained a seccomp mode after copying thread
1420          * flags and between before we held the sighand lock, we have
1421          * to manually enable the seccomp thread flag here.
1422          */
1423         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1424                 set_tsk_thread_flag(p, TIF_SECCOMP);
1425 #endif
1426 }
1427
1428 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1429 {
1430         current->clear_child_tid = tidptr;
1431
1432         return task_pid_vnr(current);
1433 }
1434
1435 static void rt_mutex_init_task(struct task_struct *p)
1436 {
1437         raw_spin_lock_init(&p->pi_lock);
1438 #ifdef CONFIG_RT_MUTEXES
1439         p->pi_waiters = RB_ROOT;
1440         p->pi_waiters_leftmost = NULL;
1441         p->pi_top_task = NULL;
1442         p->pi_blocked_on = NULL;
1443 #endif
1444 }
1445
1446 #ifdef CONFIG_POSIX_TIMERS
1447 /*
1448  * Initialize POSIX timer handling for a single task.
1449  */
1450 static void posix_cpu_timers_init(struct task_struct *tsk)
1451 {
1452         tsk->cputime_expires.prof_exp = 0;
1453         tsk->cputime_expires.virt_exp = 0;
1454         tsk->cputime_expires.sched_exp = 0;
1455         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1456         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1457         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1458 }
1459 #else
1460 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1461 #endif
1462
1463 static inline void
1464 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1465 {
1466          task->pids[type].pid = pid;
1467 }
1468
1469 static inline void rcu_copy_process(struct task_struct *p)
1470 {
1471 #ifdef CONFIG_PREEMPT_RCU
1472         p->rcu_read_lock_nesting = 0;
1473         p->rcu_read_unlock_special.s = 0;
1474         p->rcu_blocked_node = NULL;
1475         INIT_LIST_HEAD(&p->rcu_node_entry);
1476 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1477 #ifdef CONFIG_TASKS_RCU
1478         p->rcu_tasks_holdout = false;
1479         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1480         p->rcu_tasks_idle_cpu = -1;
1481 #endif /* #ifdef CONFIG_TASKS_RCU */
1482 }
1483
1484 /*
1485  * This creates a new process as a copy of the old one,
1486  * but does not actually start it yet.
1487  *
1488  * It copies the registers, and all the appropriate
1489  * parts of the process environment (as per the clone
1490  * flags). The actual kick-off is left to the caller.
1491  */
1492 static __latent_entropy struct task_struct *copy_process(
1493                                         unsigned long clone_flags,
1494                                         unsigned long stack_start,
1495                                         unsigned long stack_size,
1496                                         int __user *child_tidptr,
1497                                         struct pid *pid,
1498                                         int trace,
1499                                         unsigned long tls,
1500                                         int node)
1501 {
1502         int retval;
1503         struct task_struct *p;
1504
1505         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1506                 return ERR_PTR(-EINVAL);
1507
1508         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1509                 return ERR_PTR(-EINVAL);
1510
1511         /*
1512          * Thread groups must share signals as well, and detached threads
1513          * can only be started up within the thread group.
1514          */
1515         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1516                 return ERR_PTR(-EINVAL);
1517
1518         /*
1519          * Shared signal handlers imply shared VM. By way of the above,
1520          * thread groups also imply shared VM. Blocking this case allows
1521          * for various simplifications in other code.
1522          */
1523         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1524                 return ERR_PTR(-EINVAL);
1525
1526         /*
1527          * Siblings of global init remain as zombies on exit since they are
1528          * not reaped by their parent (swapper). To solve this and to avoid
1529          * multi-rooted process trees, prevent global and container-inits
1530          * from creating siblings.
1531          */
1532         if ((clone_flags & CLONE_PARENT) &&
1533                                 current->signal->flags & SIGNAL_UNKILLABLE)
1534                 return ERR_PTR(-EINVAL);
1535
1536         /*
1537          * If the new process will be in a different pid or user namespace
1538          * do not allow it to share a thread group with the forking task.
1539          */
1540         if (clone_flags & CLONE_THREAD) {
1541                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1542                     (task_active_pid_ns(current) !=
1543                                 current->nsproxy->pid_ns_for_children))
1544                         return ERR_PTR(-EINVAL);
1545         }
1546
1547         retval = security_task_create(clone_flags);
1548         if (retval)
1549                 goto fork_out;
1550
1551         retval = -ENOMEM;
1552         p = dup_task_struct(current, node);
1553         if (!p)
1554                 goto fork_out;
1555
1556         ftrace_graph_init_task(p);
1557
1558         rt_mutex_init_task(p);
1559
1560 #ifdef CONFIG_PROVE_LOCKING
1561         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1562         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1563 #endif
1564         retval = -EAGAIN;
1565         if (atomic_read(&p->real_cred->user->processes) >=
1566                         task_rlimit(p, RLIMIT_NPROC)) {
1567                 if (p->real_cred->user != INIT_USER &&
1568                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1569                         goto bad_fork_free;
1570         }
1571         current->flags &= ~PF_NPROC_EXCEEDED;
1572
1573         retval = copy_creds(p, clone_flags);
1574         if (retval < 0)
1575                 goto bad_fork_free;
1576
1577         /*
1578          * If multiple threads are within copy_process(), then this check
1579          * triggers too late. This doesn't hurt, the check is only there
1580          * to stop root fork bombs.
1581          */
1582         retval = -EAGAIN;
1583         if (nr_threads >= max_threads)
1584                 goto bad_fork_cleanup_count;
1585
1586         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1587         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1588         p->flags |= PF_FORKNOEXEC;
1589         INIT_LIST_HEAD(&p->children);
1590         INIT_LIST_HEAD(&p->sibling);
1591         rcu_copy_process(p);
1592         p->vfork_done = NULL;
1593         spin_lock_init(&p->alloc_lock);
1594
1595         init_sigpending(&p->pending);
1596
1597         p->utime = p->stime = p->gtime = 0;
1598 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1599         p->utimescaled = p->stimescaled = 0;
1600 #endif
1601         prev_cputime_init(&p->prev_cputime);
1602
1603 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1604         seqcount_init(&p->vtime_seqcount);
1605         p->vtime_snap = 0;
1606         p->vtime_snap_whence = VTIME_INACTIVE;
1607 #endif
1608
1609 #if defined(SPLIT_RSS_COUNTING)
1610         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1611 #endif
1612
1613         p->default_timer_slack_ns = current->timer_slack_ns;
1614
1615         task_io_accounting_init(&p->ioac);
1616         acct_clear_integrals(p);
1617
1618         posix_cpu_timers_init(p);
1619
1620         p->start_time = ktime_get_ns();
1621         p->real_start_time = ktime_get_boot_ns();
1622         p->io_context = NULL;
1623         p->audit_context = NULL;
1624         cgroup_fork(p);
1625 #ifdef CONFIG_NUMA
1626         p->mempolicy = mpol_dup(p->mempolicy);
1627         if (IS_ERR(p->mempolicy)) {
1628                 retval = PTR_ERR(p->mempolicy);
1629                 p->mempolicy = NULL;
1630                 goto bad_fork_cleanup_threadgroup_lock;
1631         }
1632 #endif
1633 #ifdef CONFIG_CPUSETS
1634         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1635         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1636         seqcount_init(&p->mems_allowed_seq);
1637 #endif
1638 #ifdef CONFIG_TRACE_IRQFLAGS
1639         p->irq_events = 0;
1640         p->hardirqs_enabled = 0;
1641         p->hardirq_enable_ip = 0;
1642         p->hardirq_enable_event = 0;
1643         p->hardirq_disable_ip = _THIS_IP_;
1644         p->hardirq_disable_event = 0;
1645         p->softirqs_enabled = 1;
1646         p->softirq_enable_ip = _THIS_IP_;
1647         p->softirq_enable_event = 0;
1648         p->softirq_disable_ip = 0;
1649         p->softirq_disable_event = 0;
1650         p->hardirq_context = 0;
1651         p->softirq_context = 0;
1652 #endif
1653
1654         p->pagefault_disabled = 0;
1655
1656 #ifdef CONFIG_LOCKDEP
1657         p->lockdep_depth = 0; /* no locks held yet */
1658         p->curr_chain_key = 0;
1659         p->lockdep_recursion = 0;
1660 #endif
1661
1662 #ifdef CONFIG_DEBUG_MUTEXES
1663         p->blocked_on = NULL; /* not blocked yet */
1664 #endif
1665 #ifdef CONFIG_BCACHE
1666         p->sequential_io        = 0;
1667         p->sequential_io_avg    = 0;
1668 #endif
1669
1670         /* Perform scheduler related setup. Assign this task to a CPU. */
1671         retval = sched_fork(clone_flags, p);
1672         if (retval)
1673                 goto bad_fork_cleanup_policy;
1674
1675         retval = perf_event_init_task(p);
1676         if (retval)
1677                 goto bad_fork_cleanup_policy;
1678         retval = audit_alloc(p);
1679         if (retval)
1680                 goto bad_fork_cleanup_perf;
1681         /* copy all the process information */
1682         shm_init_task(p);
1683         retval = copy_semundo(clone_flags, p);
1684         if (retval)
1685                 goto bad_fork_cleanup_audit;
1686         retval = copy_files(clone_flags, p);
1687         if (retval)
1688                 goto bad_fork_cleanup_semundo;
1689         retval = copy_fs(clone_flags, p);
1690         if (retval)
1691                 goto bad_fork_cleanup_files;
1692         retval = copy_sighand(clone_flags, p);
1693         if (retval)
1694                 goto bad_fork_cleanup_fs;
1695         retval = copy_signal(clone_flags, p);
1696         if (retval)
1697                 goto bad_fork_cleanup_sighand;
1698         retval = copy_mm(clone_flags, p);
1699         if (retval)
1700                 goto bad_fork_cleanup_signal;
1701         retval = copy_namespaces(clone_flags, p);
1702         if (retval)
1703                 goto bad_fork_cleanup_mm;
1704         retval = copy_io(clone_flags, p);
1705         if (retval)
1706                 goto bad_fork_cleanup_namespaces;
1707         retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1708         if (retval)
1709                 goto bad_fork_cleanup_io;
1710
1711         if (pid != &init_struct_pid) {
1712                 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1713                 if (IS_ERR(pid)) {
1714                         retval = PTR_ERR(pid);
1715                         goto bad_fork_cleanup_thread;
1716                 }
1717         }
1718
1719         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1720         /*
1721          * Clear TID on mm_release()?
1722          */
1723         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1724 #ifdef CONFIG_BLOCK
1725         p->plug = NULL;
1726 #endif
1727 #ifdef CONFIG_FUTEX
1728         p->robust_list = NULL;
1729 #ifdef CONFIG_COMPAT
1730         p->compat_robust_list = NULL;
1731 #endif
1732         INIT_LIST_HEAD(&p->pi_state_list);
1733         p->pi_state_cache = NULL;
1734 #endif
1735         /*
1736          * sigaltstack should be cleared when sharing the same VM
1737          */
1738         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1739                 sas_ss_reset(p);
1740
1741         /*
1742          * Syscall tracing and stepping should be turned off in the
1743          * child regardless of CLONE_PTRACE.
1744          */
1745         user_disable_single_step(p);
1746         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1747 #ifdef TIF_SYSCALL_EMU
1748         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1749 #endif
1750         clear_all_latency_tracing(p);
1751
1752         /* ok, now we should be set up.. */
1753         p->pid = pid_nr(pid);
1754         if (clone_flags & CLONE_THREAD) {
1755                 p->exit_signal = -1;
1756                 p->group_leader = current->group_leader;
1757                 p->tgid = current->tgid;
1758         } else {
1759                 if (clone_flags & CLONE_PARENT)
1760                         p->exit_signal = current->group_leader->exit_signal;
1761                 else
1762                         p->exit_signal = (clone_flags & CSIGNAL);
1763                 p->group_leader = p;
1764                 p->tgid = p->pid;
1765         }
1766
1767         p->nr_dirtied = 0;
1768         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1769         p->dirty_paused_when = 0;
1770
1771         p->pdeath_signal = 0;
1772         INIT_LIST_HEAD(&p->thread_group);
1773         p->task_works = NULL;
1774
1775         cgroup_threadgroup_change_begin(current);
1776         /*
1777          * Ensure that the cgroup subsystem policies allow the new process to be
1778          * forked. It should be noted the the new process's css_set can be changed
1779          * between here and cgroup_post_fork() if an organisation operation is in
1780          * progress.
1781          */
1782         retval = cgroup_can_fork(p);
1783         if (retval)
1784                 goto bad_fork_free_pid;
1785
1786         /*
1787          * Make it visible to the rest of the system, but dont wake it up yet.
1788          * Need tasklist lock for parent etc handling!
1789          */
1790         write_lock_irq(&tasklist_lock);
1791
1792         /* CLONE_PARENT re-uses the old parent */
1793         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1794                 p->real_parent = current->real_parent;
1795                 p->parent_exec_id = current->parent_exec_id;
1796         } else {
1797                 p->real_parent = current;
1798                 p->parent_exec_id = current->self_exec_id;
1799         }
1800
1801         spin_lock(&current->sighand->siglock);
1802
1803         /*
1804          * Copy seccomp details explicitly here, in case they were changed
1805          * before holding sighand lock.
1806          */
1807         copy_seccomp(p);
1808
1809         /*
1810          * Process group and session signals need to be delivered to just the
1811          * parent before the fork or both the parent and the child after the
1812          * fork. Restart if a signal comes in before we add the new process to
1813          * it's process group.
1814          * A fatal signal pending means that current will exit, so the new
1815          * thread can't slip out of an OOM kill (or normal SIGKILL).
1816         */
1817         recalc_sigpending();
1818         if (signal_pending(current)) {
1819                 spin_unlock(&current->sighand->siglock);
1820                 write_unlock_irq(&tasklist_lock);
1821                 retval = -ERESTARTNOINTR;
1822                 goto bad_fork_cancel_cgroup;
1823         }
1824
1825         if (likely(p->pid)) {
1826                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1827
1828                 init_task_pid(p, PIDTYPE_PID, pid);
1829                 if (thread_group_leader(p)) {
1830                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1831                         init_task_pid(p, PIDTYPE_SID, task_session(current));
1832
1833                         if (is_child_reaper(pid)) {
1834                                 ns_of_pid(pid)->child_reaper = p;
1835                                 p->signal->flags |= SIGNAL_UNKILLABLE;
1836                         }
1837
1838                         p->signal->leader_pid = pid;
1839                         p->signal->tty = tty_kref_get(current->signal->tty);
1840                         /*
1841                          * Inherit has_child_subreaper flag under the same
1842                          * tasklist_lock with adding child to the process tree
1843                          * for propagate_has_child_subreaper optimization.
1844                          */
1845                         p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1846                                                          p->real_parent->signal->is_child_subreaper;
1847                         list_add_tail(&p->sibling, &p->real_parent->children);
1848                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1849                         attach_pid(p, PIDTYPE_PGID);
1850                         attach_pid(p, PIDTYPE_SID);
1851                         __this_cpu_inc(process_counts);
1852                 } else {
1853                         current->signal->nr_threads++;
1854                         atomic_inc(&current->signal->live);
1855                         atomic_inc(&current->signal->sigcnt);
1856                         list_add_tail_rcu(&p->thread_group,
1857                                           &p->group_leader->thread_group);
1858                         list_add_tail_rcu(&p->thread_node,
1859                                           &p->signal->thread_head);
1860                 }
1861                 attach_pid(p, PIDTYPE_PID);
1862                 nr_threads++;
1863         }
1864
1865         total_forks++;
1866         spin_unlock(&current->sighand->siglock);
1867         syscall_tracepoint_update(p);
1868         write_unlock_irq(&tasklist_lock);
1869
1870         proc_fork_connector(p);
1871         cgroup_post_fork(p);
1872         cgroup_threadgroup_change_end(current);
1873         perf_event_fork(p);
1874
1875         trace_task_newtask(p, clone_flags);
1876         uprobe_copy_process(p, clone_flags);
1877
1878         return p;
1879
1880 bad_fork_cancel_cgroup:
1881         cgroup_cancel_fork(p);
1882 bad_fork_free_pid:
1883         cgroup_threadgroup_change_end(current);
1884         if (pid != &init_struct_pid)
1885                 free_pid(pid);
1886 bad_fork_cleanup_thread:
1887         exit_thread(p);
1888 bad_fork_cleanup_io:
1889         if (p->io_context)
1890                 exit_io_context(p);
1891 bad_fork_cleanup_namespaces:
1892         exit_task_namespaces(p);
1893 bad_fork_cleanup_mm:
1894         if (p->mm)
1895                 mmput(p->mm);
1896 bad_fork_cleanup_signal:
1897         if (!(clone_flags & CLONE_THREAD))
1898                 free_signal_struct(p->signal);
1899 bad_fork_cleanup_sighand:
1900         __cleanup_sighand(p->sighand);
1901 bad_fork_cleanup_fs:
1902         exit_fs(p); /* blocking */
1903 bad_fork_cleanup_files:
1904         exit_files(p); /* blocking */
1905 bad_fork_cleanup_semundo:
1906         exit_sem(p);
1907 bad_fork_cleanup_audit:
1908         audit_free(p);
1909 bad_fork_cleanup_perf:
1910         perf_event_free_task(p);
1911 bad_fork_cleanup_policy:
1912 #ifdef CONFIG_NUMA
1913         mpol_put(p->mempolicy);
1914 bad_fork_cleanup_threadgroup_lock:
1915 #endif
1916         delayacct_tsk_free(p);
1917 bad_fork_cleanup_count:
1918         atomic_dec(&p->cred->user->processes);
1919         exit_creds(p);
1920 bad_fork_free:
1921         p->state = TASK_DEAD;
1922         put_task_stack(p);
1923         free_task(p);
1924 fork_out:
1925         return ERR_PTR(retval);
1926 }
1927
1928 static inline void init_idle_pids(struct pid_link *links)
1929 {
1930         enum pid_type type;
1931
1932         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1933                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1934                 links[type].pid = &init_struct_pid;
1935         }
1936 }
1937
1938 struct task_struct *fork_idle(int cpu)
1939 {
1940         struct task_struct *task;
1941         task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1942                             cpu_to_node(cpu));
1943         if (!IS_ERR(task)) {
1944                 init_idle_pids(task->pids);
1945                 init_idle(task, cpu);
1946         }
1947
1948         return task;
1949 }
1950
1951 /*
1952  *  Ok, this is the main fork-routine.
1953  *
1954  * It copies the process, and if successful kick-starts
1955  * it and waits for it to finish using the VM if required.
1956  */
1957 long _do_fork(unsigned long clone_flags,
1958               unsigned long stack_start,
1959               unsigned long stack_size,
1960               int __user *parent_tidptr,
1961               int __user *child_tidptr,
1962               unsigned long tls)
1963 {
1964         struct task_struct *p;
1965         int trace = 0;
1966         long nr;
1967
1968         /*
1969          * Determine whether and which event to report to ptracer.  When
1970          * called from kernel_thread or CLONE_UNTRACED is explicitly
1971          * requested, no event is reported; otherwise, report if the event
1972          * for the type of forking is enabled.
1973          */
1974         if (!(clone_flags & CLONE_UNTRACED)) {
1975                 if (clone_flags & CLONE_VFORK)
1976                         trace = PTRACE_EVENT_VFORK;
1977                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1978                         trace = PTRACE_EVENT_CLONE;
1979                 else
1980                         trace = PTRACE_EVENT_FORK;
1981
1982                 if (likely(!ptrace_event_enabled(current, trace)))
1983                         trace = 0;
1984         }
1985
1986         p = copy_process(clone_flags, stack_start, stack_size,
1987                          child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1988         add_latent_entropy();
1989         /*
1990          * Do this prior waking up the new thread - the thread pointer
1991          * might get invalid after that point, if the thread exits quickly.
1992          */
1993         if (!IS_ERR(p)) {
1994                 struct completion vfork;
1995                 struct pid *pid;
1996
1997                 trace_sched_process_fork(current, p);
1998
1999                 pid = get_task_pid(p, PIDTYPE_PID);
2000                 nr = pid_vnr(pid);
2001
2002                 if (clone_flags & CLONE_PARENT_SETTID)
2003                         put_user(nr, parent_tidptr);
2004
2005                 if (clone_flags & CLONE_VFORK) {
2006                         p->vfork_done = &vfork;
2007                         init_completion(&vfork);
2008                         get_task_struct(p);
2009                 }
2010
2011                 wake_up_new_task(p);
2012
2013                 /* forking complete and child started to run, tell ptracer */
2014                 if (unlikely(trace))
2015                         ptrace_event_pid(trace, pid);
2016
2017                 if (clone_flags & CLONE_VFORK) {
2018                         if (!wait_for_vfork_done(p, &vfork))
2019                                 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2020                 }
2021
2022                 put_pid(pid);
2023         } else {
2024                 nr = PTR_ERR(p);
2025         }
2026         return nr;
2027 }
2028
2029 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2030 /* For compatibility with architectures that call do_fork directly rather than
2031  * using the syscall entry points below. */
2032 long do_fork(unsigned long clone_flags,
2033               unsigned long stack_start,
2034               unsigned long stack_size,
2035               int __user *parent_tidptr,
2036               int __user *child_tidptr)
2037 {
2038         return _do_fork(clone_flags, stack_start, stack_size,
2039                         parent_tidptr, child_tidptr, 0);
2040 }
2041 #endif
2042
2043 /*
2044  * Create a kernel thread.
2045  */
2046 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2047 {
2048         return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2049                 (unsigned long)arg, NULL, NULL, 0);
2050 }
2051
2052 #ifdef __ARCH_WANT_SYS_FORK
2053 SYSCALL_DEFINE0(fork)
2054 {
2055 #ifdef CONFIG_MMU
2056         return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2057 #else
2058         /* can not support in nommu mode */
2059         return -EINVAL;
2060 #endif
2061 }
2062 #endif
2063
2064 #ifdef __ARCH_WANT_SYS_VFORK
2065 SYSCALL_DEFINE0(vfork)
2066 {
2067         return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2068                         0, NULL, NULL, 0);
2069 }
2070 #endif
2071
2072 #ifdef __ARCH_WANT_SYS_CLONE
2073 #ifdef CONFIG_CLONE_BACKWARDS
2074 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2075                  int __user *, parent_tidptr,
2076                  unsigned long, tls,
2077                  int __user *, child_tidptr)
2078 #elif defined(CONFIG_CLONE_BACKWARDS2)
2079 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2080                  int __user *, parent_tidptr,
2081                  int __user *, child_tidptr,
2082                  unsigned long, tls)
2083 #elif defined(CONFIG_CLONE_BACKWARDS3)
2084 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2085                 int, stack_size,
2086                 int __user *, parent_tidptr,
2087                 int __user *, child_tidptr,
2088                 unsigned long, tls)
2089 #else
2090 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2091                  int __user *, parent_tidptr,
2092                  int __user *, child_tidptr,
2093                  unsigned long, tls)
2094 #endif
2095 {
2096         return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2097 }
2098 #endif
2099
2100 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2101 {
2102         struct task_struct *leader, *parent, *child;
2103         int res;
2104
2105         read_lock(&tasklist_lock);
2106         leader = top = top->group_leader;
2107 down:
2108         for_each_thread(leader, parent) {
2109                 list_for_each_entry(child, &parent->children, sibling) {
2110                         res = visitor(child, data);
2111                         if (res) {
2112                                 if (res < 0)
2113                                         goto out;
2114                                 leader = child;
2115                                 goto down;
2116                         }
2117 up:
2118                         ;
2119                 }
2120         }
2121
2122         if (leader != top) {
2123                 child = leader;
2124                 parent = child->real_parent;
2125                 leader = parent->group_leader;
2126                 goto up;
2127         }
2128 out:
2129         read_unlock(&tasklist_lock);
2130 }
2131
2132 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2133 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2134 #endif
2135
2136 static void sighand_ctor(void *data)
2137 {
2138         struct sighand_struct *sighand = data;
2139
2140         spin_lock_init(&sighand->siglock);
2141         init_waitqueue_head(&sighand->signalfd_wqh);
2142 }
2143
2144 void __init proc_caches_init(void)
2145 {
2146         sighand_cachep = kmem_cache_create("sighand_cache",
2147                         sizeof(struct sighand_struct), 0,
2148                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2149                         SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2150         signal_cachep = kmem_cache_create("signal_cache",
2151                         sizeof(struct signal_struct), 0,
2152                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2153                         NULL);
2154         files_cachep = kmem_cache_create("files_cache",
2155                         sizeof(struct files_struct), 0,
2156                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2157                         NULL);
2158         fs_cachep = kmem_cache_create("fs_cache",
2159                         sizeof(struct fs_struct), 0,
2160                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2161                         NULL);
2162         /*
2163          * FIXME! The "sizeof(struct mm_struct)" currently includes the
2164          * whole struct cpumask for the OFFSTACK case. We could change
2165          * this to *only* allocate as much of it as required by the
2166          * maximum number of CPU's we can ever have.  The cpumask_allocation
2167          * is at the end of the structure, exactly for that reason.
2168          */
2169         mm_cachep = kmem_cache_create("mm_struct",
2170                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2171                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2172                         NULL);
2173         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2174         mmap_init();
2175         nsproxy_cache_init();
2176 }
2177
2178 /*
2179  * Check constraints on flags passed to the unshare system call.
2180  */
2181 static int check_unshare_flags(unsigned long unshare_flags)
2182 {
2183         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2184                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2185                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2186                                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2187                 return -EINVAL;
2188         /*
2189          * Not implemented, but pretend it works if there is nothing
2190          * to unshare.  Note that unsharing the address space or the
2191          * signal handlers also need to unshare the signal queues (aka
2192          * CLONE_THREAD).
2193          */
2194         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2195                 if (!thread_group_empty(current))
2196                         return -EINVAL;
2197         }
2198         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2199                 if (atomic_read(&current->sighand->count) > 1)
2200                         return -EINVAL;
2201         }
2202         if (unshare_flags & CLONE_VM) {
2203                 if (!current_is_single_threaded())
2204                         return -EINVAL;
2205         }
2206
2207         return 0;
2208 }
2209
2210 /*
2211  * Unshare the filesystem structure if it is being shared
2212  */
2213 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2214 {
2215         struct fs_struct *fs = current->fs;
2216
2217         if (!(unshare_flags & CLONE_FS) || !fs)
2218                 return 0;
2219
2220         /* don't need lock here; in the worst case we'll do useless copy */
2221         if (fs->users == 1)
2222                 return 0;
2223
2224         *new_fsp = copy_fs_struct(fs);
2225         if (!*new_fsp)
2226                 return -ENOMEM;
2227
2228         return 0;
2229 }
2230
2231 /*
2232  * Unshare file descriptor table if it is being shared
2233  */
2234 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2235 {
2236         struct files_struct *fd = current->files;
2237         int error = 0;
2238
2239         if ((unshare_flags & CLONE_FILES) &&
2240             (fd && atomic_read(&fd->count) > 1)) {
2241                 *new_fdp = dup_fd(fd, &error);
2242                 if (!*new_fdp)
2243                         return error;
2244         }
2245
2246         return 0;
2247 }
2248
2249 /*
2250  * unshare allows a process to 'unshare' part of the process
2251  * context which was originally shared using clone.  copy_*
2252  * functions used by do_fork() cannot be used here directly
2253  * because they modify an inactive task_struct that is being
2254  * constructed. Here we are modifying the current, active,
2255  * task_struct.
2256  */
2257 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2258 {
2259         struct fs_struct *fs, *new_fs = NULL;
2260         struct files_struct *fd, *new_fd = NULL;
2261         struct cred *new_cred = NULL;
2262         struct nsproxy *new_nsproxy = NULL;
2263         int do_sysvsem = 0;
2264         int err;
2265
2266         /*
2267          * If unsharing a user namespace must also unshare the thread group
2268          * and unshare the filesystem root and working directories.
2269          */
2270         if (unshare_flags & CLONE_NEWUSER)
2271                 unshare_flags |= CLONE_THREAD | CLONE_FS;
2272         /*
2273          * If unsharing vm, must also unshare signal handlers.
2274          */
2275         if (unshare_flags & CLONE_VM)
2276                 unshare_flags |= CLONE_SIGHAND;
2277         /*
2278          * If unsharing a signal handlers, must also unshare the signal queues.
2279          */
2280         if (unshare_flags & CLONE_SIGHAND)
2281                 unshare_flags |= CLONE_THREAD;
2282         /*
2283          * If unsharing namespace, must also unshare filesystem information.
2284          */
2285         if (unshare_flags & CLONE_NEWNS)
2286                 unshare_flags |= CLONE_FS;
2287
2288         err = check_unshare_flags(unshare_flags);
2289         if (err)
2290                 goto bad_unshare_out;
2291         /*
2292          * CLONE_NEWIPC must also detach from the undolist: after switching
2293          * to a new ipc namespace, the semaphore arrays from the old
2294          * namespace are unreachable.
2295          */
2296         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2297                 do_sysvsem = 1;
2298         err = unshare_fs(unshare_flags, &new_fs);
2299         if (err)
2300                 goto bad_unshare_out;
2301         err = unshare_fd(unshare_flags, &new_fd);
2302         if (err)
2303                 goto bad_unshare_cleanup_fs;
2304         err = unshare_userns(unshare_flags, &new_cred);
2305         if (err)
2306                 goto bad_unshare_cleanup_fd;
2307         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2308                                          new_cred, new_fs);
2309         if (err)
2310                 goto bad_unshare_cleanup_cred;
2311
2312         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2313                 if (do_sysvsem) {
2314                         /*
2315                          * CLONE_SYSVSEM is equivalent to sys_exit().
2316                          */
2317                         exit_sem(current);
2318                 }
2319                 if (unshare_flags & CLONE_NEWIPC) {
2320                         /* Orphan segments in old ns (see sem above). */
2321                         exit_shm(current);
2322                         shm_init_task(current);
2323                 }
2324
2325                 if (new_nsproxy)
2326                         switch_task_namespaces(current, new_nsproxy);
2327
2328                 task_lock(current);
2329
2330                 if (new_fs) {
2331                         fs = current->fs;
2332                         spin_lock(&fs->lock);
2333                         current->fs = new_fs;
2334                         if (--fs->users)
2335                                 new_fs = NULL;
2336                         else
2337                                 new_fs = fs;
2338                         spin_unlock(&fs->lock);
2339                 }
2340
2341                 if (new_fd) {
2342                         fd = current->files;
2343                         current->files = new_fd;
2344                         new_fd = fd;
2345                 }
2346
2347                 task_unlock(current);
2348
2349                 if (new_cred) {
2350                         /* Install the new user namespace */
2351                         commit_creds(new_cred);
2352                         new_cred = NULL;
2353                 }
2354         }
2355
2356 bad_unshare_cleanup_cred:
2357         if (new_cred)
2358                 put_cred(new_cred);
2359 bad_unshare_cleanup_fd:
2360         if (new_fd)
2361                 put_files_struct(new_fd);
2362
2363 bad_unshare_cleanup_fs:
2364         if (new_fs)
2365                 free_fs_struct(new_fs);
2366
2367 bad_unshare_out:
2368         return err;
2369 }
2370
2371 /*
2372  *      Helper to unshare the files of the current task.
2373  *      We don't want to expose copy_files internals to
2374  *      the exec layer of the kernel.
2375  */
2376
2377 int unshare_files(struct files_struct **displaced)
2378 {
2379         struct task_struct *task = current;
2380         struct files_struct *copy = NULL;
2381         int error;
2382
2383         error = unshare_fd(CLONE_FILES, &copy);
2384         if (error || !copy) {
2385                 *displaced = NULL;
2386                 return error;
2387         }
2388         *displaced = task->files;
2389         task_lock(task);
2390         task->files = copy;
2391         task_unlock(task);
2392         return 0;
2393 }
2394
2395 int sysctl_max_threads(struct ctl_table *table, int write,
2396                        void __user *buffer, size_t *lenp, loff_t *ppos)
2397 {
2398         struct ctl_table t;
2399         int ret;
2400         int threads = max_threads;
2401         int min = MIN_THREADS;
2402         int max = MAX_THREADS;
2403
2404         t = *table;
2405         t.data = &threads;
2406         t.extra1 = &min;
2407         t.extra2 = &max;
2408
2409         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2410         if (ret || !write)
2411                 return ret;
2412
2413         set_max_threads(threads);
2414
2415         return 0;
2416 }