4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
42 #include <linux/vmacache.h>
43 #include <linux/nsproxy.h>
44 #include <linux/capability.h>
45 #include <linux/cpu.h>
46 #include <linux/cgroup.h>
47 #include <linux/security.h>
48 #include <linux/hugetlb.h>
49 #include <linux/seccomp.h>
50 #include <linux/swap.h>
51 #include <linux/syscalls.h>
52 #include <linux/jiffies.h>
53 #include <linux/futex.h>
54 #include <linux/compat.h>
55 #include <linux/kthread.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/rcupdate.h>
58 #include <linux/ptrace.h>
59 #include <linux/mount.h>
60 #include <linux/audit.h>
61 #include <linux/memcontrol.h>
62 #include <linux/ftrace.h>
63 #include <linux/proc_fs.h>
64 #include <linux/profile.h>
65 #include <linux/rmap.h>
66 #include <linux/ksm.h>
67 #include <linux/acct.h>
68 #include <linux/userfaultfd_k.h>
69 #include <linux/tsacct_kern.h>
70 #include <linux/cn_proc.h>
71 #include <linux/freezer.h>
72 #include <linux/delayacct.h>
73 #include <linux/taskstats_kern.h>
74 #include <linux/random.h>
75 #include <linux/tty.h>
76 #include <linux/blkdev.h>
77 #include <linux/fs_struct.h>
78 #include <linux/magic.h>
79 #include <linux/perf_event.h>
80 #include <linux/posix-timers.h>
81 #include <linux/user-return-notifier.h>
82 #include <linux/oom.h>
83 #include <linux/khugepaged.h>
84 #include <linux/signalfd.h>
85 #include <linux/uprobes.h>
86 #include <linux/aio.h>
87 #include <linux/compiler.h>
88 #include <linux/sysctl.h>
89 #include <linux/kcov.h>
91 #include <asm/pgtable.h>
92 #include <asm/pgalloc.h>
93 #include <linux/uaccess.h>
94 #include <asm/mmu_context.h>
95 #include <asm/cacheflush.h>
96 #include <asm/tlbflush.h>
98 #include <trace/events/sched.h>
100 #define CREATE_TRACE_POINTS
101 #include <trace/events/task.h>
104 * Minimum number of threads to boot the kernel
106 #define MIN_THREADS 20
109 * Maximum number of threads
111 #define MAX_THREADS FUTEX_TID_MASK
114 * Protected counters by write_lock_irq(&tasklist_lock)
116 unsigned long total_forks; /* Handle normal Linux uptimes. */
117 int nr_threads; /* The idle threads do not count.. */
119 int max_threads; /* tunable limit on nr_threads */
121 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
123 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
125 #ifdef CONFIG_PROVE_RCU
126 int lockdep_tasklist_lock_is_held(void)
128 return lockdep_is_held(&tasklist_lock);
130 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
131 #endif /* #ifdef CONFIG_PROVE_RCU */
133 int nr_processes(void)
138 for_each_possible_cpu(cpu)
139 total += per_cpu(process_counts, cpu);
144 void __weak arch_release_task_struct(struct task_struct *tsk)
148 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
149 static struct kmem_cache *task_struct_cachep;
151 static inline struct task_struct *alloc_task_struct_node(int node)
153 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
156 static inline void free_task_struct(struct task_struct *tsk)
158 kmem_cache_free(task_struct_cachep, tsk);
162 void __weak arch_release_thread_stack(unsigned long *stack)
166 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
169 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
170 * kmemcache based allocator.
172 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
174 #ifdef CONFIG_VMAP_STACK
176 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
177 * flush. Try to minimize the number of calls by caching stacks.
179 #define NR_CACHED_STACKS 2
180 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
183 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
185 #ifdef CONFIG_VMAP_STACK
190 for (i = 0; i < NR_CACHED_STACKS; i++) {
191 struct vm_struct *s = this_cpu_read(cached_stacks[i]);
195 this_cpu_write(cached_stacks[i], NULL);
197 tsk->stack_vm_area = s;
203 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
204 VMALLOC_START, VMALLOC_END,
205 THREADINFO_GFP | __GFP_HIGHMEM,
207 0, node, __builtin_return_address(0));
210 * We can't call find_vm_area() in interrupt context, and
211 * free_thread_stack() can be called in interrupt context,
212 * so cache the vm_struct.
215 tsk->stack_vm_area = find_vm_area(stack);
218 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
221 return page ? page_address(page) : NULL;
225 static inline void free_thread_stack(struct task_struct *tsk)
227 #ifdef CONFIG_VMAP_STACK
228 if (task_stack_vm_area(tsk)) {
232 local_irq_save(flags);
233 for (i = 0; i < NR_CACHED_STACKS; i++) {
234 if (this_cpu_read(cached_stacks[i]))
237 this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
238 local_irq_restore(flags);
241 local_irq_restore(flags);
243 vfree_atomic(tsk->stack);
248 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
251 static struct kmem_cache *thread_stack_cache;
253 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
256 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
259 static void free_thread_stack(struct task_struct *tsk)
261 kmem_cache_free(thread_stack_cache, tsk->stack);
264 void thread_stack_cache_init(void)
266 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
267 THREAD_SIZE, 0, NULL);
268 BUG_ON(thread_stack_cache == NULL);
273 /* SLAB cache for signal_struct structures (tsk->signal) */
274 static struct kmem_cache *signal_cachep;
276 /* SLAB cache for sighand_struct structures (tsk->sighand) */
277 struct kmem_cache *sighand_cachep;
279 /* SLAB cache for files_struct structures (tsk->files) */
280 struct kmem_cache *files_cachep;
282 /* SLAB cache for fs_struct structures (tsk->fs) */
283 struct kmem_cache *fs_cachep;
285 /* SLAB cache for vm_area_struct structures */
286 struct kmem_cache *vm_area_cachep;
288 /* SLAB cache for mm_struct structures (tsk->mm) */
289 static struct kmem_cache *mm_cachep;
291 static void account_kernel_stack(struct task_struct *tsk, int account)
293 void *stack = task_stack_page(tsk);
294 struct vm_struct *vm = task_stack_vm_area(tsk);
296 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
301 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
303 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
304 mod_zone_page_state(page_zone(vm->pages[i]),
306 PAGE_SIZE / 1024 * account);
309 /* All stack pages belong to the same memcg. */
310 memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
311 account * (THREAD_SIZE / 1024));
314 * All stack pages are in the same zone and belong to the
317 struct page *first_page = virt_to_page(stack);
319 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
320 THREAD_SIZE / 1024 * account);
322 memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
323 account * (THREAD_SIZE / 1024));
327 static void release_task_stack(struct task_struct *tsk)
329 if (WARN_ON(tsk->state != TASK_DEAD))
330 return; /* Better to leak the stack than to free prematurely */
332 account_kernel_stack(tsk, -1);
333 arch_release_thread_stack(tsk->stack);
334 free_thread_stack(tsk);
336 #ifdef CONFIG_VMAP_STACK
337 tsk->stack_vm_area = NULL;
341 #ifdef CONFIG_THREAD_INFO_IN_TASK
342 void put_task_stack(struct task_struct *tsk)
344 if (atomic_dec_and_test(&tsk->stack_refcount))
345 release_task_stack(tsk);
349 void free_task(struct task_struct *tsk)
351 #ifndef CONFIG_THREAD_INFO_IN_TASK
353 * The task is finally done with both the stack and thread_info,
356 release_task_stack(tsk);
359 * If the task had a separate stack allocation, it should be gone
362 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
364 rt_mutex_debug_task_free(tsk);
365 ftrace_graph_exit_task(tsk);
366 put_seccomp_filter(tsk);
367 arch_release_task_struct(tsk);
368 if (tsk->flags & PF_KTHREAD)
369 free_kthread_struct(tsk);
370 free_task_struct(tsk);
372 EXPORT_SYMBOL(free_task);
374 static inline void free_signal_struct(struct signal_struct *sig)
376 taskstats_tgid_free(sig);
377 sched_autogroup_exit(sig);
379 * __mmdrop is not safe to call from softirq context on x86 due to
380 * pgd_dtor so postpone it to the async context
383 mmdrop_async(sig->oom_mm);
384 kmem_cache_free(signal_cachep, sig);
387 static inline void put_signal_struct(struct signal_struct *sig)
389 if (atomic_dec_and_test(&sig->sigcnt))
390 free_signal_struct(sig);
393 void __put_task_struct(struct task_struct *tsk)
395 WARN_ON(!tsk->exit_state);
396 WARN_ON(atomic_read(&tsk->usage));
397 WARN_ON(tsk == current);
401 security_task_free(tsk);
403 delayacct_tsk_free(tsk);
404 put_signal_struct(tsk->signal);
406 if (!profile_handoff_task(tsk))
409 EXPORT_SYMBOL_GPL(__put_task_struct);
411 void __init __weak arch_task_cache_init(void) { }
416 static void set_max_threads(unsigned int max_threads_suggested)
421 * The number of threads shall be limited such that the thread
422 * structures may only consume a small part of the available memory.
424 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
425 threads = MAX_THREADS;
427 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
428 (u64) THREAD_SIZE * 8UL);
430 if (threads > max_threads_suggested)
431 threads = max_threads_suggested;
433 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
436 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
437 /* Initialized by the architecture: */
438 int arch_task_struct_size __read_mostly;
441 void __init fork_init(void)
444 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
445 #ifndef ARCH_MIN_TASKALIGN
446 #define ARCH_MIN_TASKALIGN 0
448 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
450 /* create a slab on which task_structs can be allocated */
451 task_struct_cachep = kmem_cache_create("task_struct",
452 arch_task_struct_size, align,
453 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
456 /* do the arch specific task caches init */
457 arch_task_cache_init();
459 set_max_threads(MAX_THREADS);
461 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
462 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
463 init_task.signal->rlim[RLIMIT_SIGPENDING] =
464 init_task.signal->rlim[RLIMIT_NPROC];
466 for (i = 0; i < UCOUNT_COUNTS; i++) {
467 init_user_ns.ucount_max[i] = max_threads/2;
471 int __weak arch_dup_task_struct(struct task_struct *dst,
472 struct task_struct *src)
478 void set_task_stack_end_magic(struct task_struct *tsk)
480 unsigned long *stackend;
482 stackend = end_of_stack(tsk);
483 *stackend = STACK_END_MAGIC; /* for overflow detection */
486 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
488 struct task_struct *tsk;
489 unsigned long *stack;
490 struct vm_struct *stack_vm_area;
493 if (node == NUMA_NO_NODE)
494 node = tsk_fork_get_node(orig);
495 tsk = alloc_task_struct_node(node);
499 stack = alloc_thread_stack_node(tsk, node);
503 stack_vm_area = task_stack_vm_area(tsk);
505 err = arch_dup_task_struct(tsk, orig);
508 * arch_dup_task_struct() clobbers the stack-related fields. Make
509 * sure they're properly initialized before using any stack-related
513 #ifdef CONFIG_VMAP_STACK
514 tsk->stack_vm_area = stack_vm_area;
516 #ifdef CONFIG_THREAD_INFO_IN_TASK
517 atomic_set(&tsk->stack_refcount, 1);
523 #ifdef CONFIG_SECCOMP
525 * We must handle setting up seccomp filters once we're under
526 * the sighand lock in case orig has changed between now and
527 * then. Until then, filter must be NULL to avoid messing up
528 * the usage counts on the error path calling free_task.
530 tsk->seccomp.filter = NULL;
533 setup_thread_stack(tsk, orig);
534 clear_user_return_notifier(tsk);
535 clear_tsk_need_resched(tsk);
536 set_task_stack_end_magic(tsk);
538 #ifdef CONFIG_CC_STACKPROTECTOR
539 tsk->stack_canary = get_random_int();
543 * One for us, one for whoever does the "release_task()" (usually
546 atomic_set(&tsk->usage, 2);
547 #ifdef CONFIG_BLK_DEV_IO_TRACE
550 tsk->splice_pipe = NULL;
551 tsk->task_frag.page = NULL;
552 tsk->wake_q.next = NULL;
554 account_kernel_stack(tsk, 1);
561 free_thread_stack(tsk);
563 free_task_struct(tsk);
568 static __latent_entropy int dup_mmap(struct mm_struct *mm,
569 struct mm_struct *oldmm)
571 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
572 struct rb_node **rb_link, *rb_parent;
574 unsigned long charge;
577 uprobe_start_dup_mmap();
578 if (down_write_killable(&oldmm->mmap_sem)) {
580 goto fail_uprobe_end;
582 flush_cache_dup_mm(oldmm);
583 uprobe_dup_mmap(oldmm, mm);
585 * Not linked in yet - no deadlock potential:
587 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
589 /* No ordering required: file already has been exposed. */
590 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
592 mm->total_vm = oldmm->total_vm;
593 mm->data_vm = oldmm->data_vm;
594 mm->exec_vm = oldmm->exec_vm;
595 mm->stack_vm = oldmm->stack_vm;
597 rb_link = &mm->mm_rb.rb_node;
600 retval = ksm_fork(mm, oldmm);
603 retval = khugepaged_fork(mm, oldmm);
608 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
611 if (mpnt->vm_flags & VM_DONTCOPY) {
612 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
616 if (mpnt->vm_flags & VM_ACCOUNT) {
617 unsigned long len = vma_pages(mpnt);
619 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
623 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
627 INIT_LIST_HEAD(&tmp->anon_vma_chain);
628 retval = vma_dup_policy(mpnt, tmp);
630 goto fail_nomem_policy;
632 retval = dup_userfaultfd(tmp, &uf);
634 goto fail_nomem_anon_vma_fork;
635 if (anon_vma_fork(tmp, mpnt))
636 goto fail_nomem_anon_vma_fork;
637 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
638 tmp->vm_next = tmp->vm_prev = NULL;
641 struct inode *inode = file_inode(file);
642 struct address_space *mapping = file->f_mapping;
645 if (tmp->vm_flags & VM_DENYWRITE)
646 atomic_dec(&inode->i_writecount);
647 i_mmap_lock_write(mapping);
648 if (tmp->vm_flags & VM_SHARED)
649 atomic_inc(&mapping->i_mmap_writable);
650 flush_dcache_mmap_lock(mapping);
651 /* insert tmp into the share list, just after mpnt */
652 vma_interval_tree_insert_after(tmp, mpnt,
654 flush_dcache_mmap_unlock(mapping);
655 i_mmap_unlock_write(mapping);
659 * Clear hugetlb-related page reserves for children. This only
660 * affects MAP_PRIVATE mappings. Faults generated by the child
661 * are not guaranteed to succeed, even if read-only
663 if (is_vm_hugetlb_page(tmp))
664 reset_vma_resv_huge_pages(tmp);
667 * Link in the new vma and copy the page table entries.
670 pprev = &tmp->vm_next;
674 __vma_link_rb(mm, tmp, rb_link, rb_parent);
675 rb_link = &tmp->vm_rb.rb_right;
676 rb_parent = &tmp->vm_rb;
679 retval = copy_page_range(mm, oldmm, mpnt);
681 if (tmp->vm_ops && tmp->vm_ops->open)
682 tmp->vm_ops->open(tmp);
687 /* a new mm has just been created */
688 arch_dup_mmap(oldmm, mm);
691 up_write(&mm->mmap_sem);
693 up_write(&oldmm->mmap_sem);
694 dup_userfaultfd_complete(&uf);
696 uprobe_end_dup_mmap();
698 fail_nomem_anon_vma_fork:
699 mpol_put(vma_policy(tmp));
701 kmem_cache_free(vm_area_cachep, tmp);
704 vm_unacct_memory(charge);
708 static inline int mm_alloc_pgd(struct mm_struct *mm)
710 mm->pgd = pgd_alloc(mm);
711 if (unlikely(!mm->pgd))
716 static inline void mm_free_pgd(struct mm_struct *mm)
718 pgd_free(mm, mm->pgd);
721 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
723 down_write(&oldmm->mmap_sem);
724 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
725 up_write(&oldmm->mmap_sem);
728 #define mm_alloc_pgd(mm) (0)
729 #define mm_free_pgd(mm)
730 #endif /* CONFIG_MMU */
732 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
734 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
735 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
737 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
739 static int __init coredump_filter_setup(char *s)
741 default_dump_filter =
742 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
743 MMF_DUMP_FILTER_MASK;
747 __setup("coredump_filter=", coredump_filter_setup);
749 #include <linux/init_task.h>
751 static void mm_init_aio(struct mm_struct *mm)
754 spin_lock_init(&mm->ioctx_lock);
755 mm->ioctx_table = NULL;
759 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
766 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
767 struct user_namespace *user_ns)
771 mm->vmacache_seqnum = 0;
772 atomic_set(&mm->mm_users, 1);
773 atomic_set(&mm->mm_count, 1);
774 init_rwsem(&mm->mmap_sem);
775 INIT_LIST_HEAD(&mm->mmlist);
776 mm->core_state = NULL;
777 atomic_long_set(&mm->nr_ptes, 0);
782 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
783 spin_lock_init(&mm->page_table_lock);
786 mm_init_owner(mm, p);
787 mmu_notifier_mm_init(mm);
788 clear_tlb_flush_pending(mm);
789 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
790 mm->pmd_huge_pte = NULL;
794 mm->flags = current->mm->flags & MMF_INIT_MASK;
795 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
797 mm->flags = default_dump_filter;
801 if (mm_alloc_pgd(mm))
804 if (init_new_context(p, mm))
807 mm->user_ns = get_user_ns(user_ns);
817 static void check_mm(struct mm_struct *mm)
821 for (i = 0; i < NR_MM_COUNTERS; i++) {
822 long x = atomic_long_read(&mm->rss_stat.count[i]);
825 printk(KERN_ALERT "BUG: Bad rss-counter state "
826 "mm:%p idx:%d val:%ld\n", mm, i, x);
829 if (atomic_long_read(&mm->nr_ptes))
830 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
831 atomic_long_read(&mm->nr_ptes));
833 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
837 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
842 * Allocate and initialize an mm_struct.
844 struct mm_struct *mm_alloc(void)
846 struct mm_struct *mm;
852 memset(mm, 0, sizeof(*mm));
853 return mm_init(mm, current, current_user_ns());
857 * Called when the last reference to the mm
858 * is dropped: either by a lazy thread or by
859 * mmput. Free the page directory and the mm.
861 void __mmdrop(struct mm_struct *mm)
863 BUG_ON(mm == &init_mm);
866 mmu_notifier_mm_destroy(mm);
868 put_user_ns(mm->user_ns);
871 EXPORT_SYMBOL_GPL(__mmdrop);
873 static inline void __mmput(struct mm_struct *mm)
875 VM_BUG_ON(atomic_read(&mm->mm_users));
877 uprobe_clear_state(mm);
880 khugepaged_exit(mm); /* must run before exit_mmap */
882 mm_put_huge_zero_page(mm);
883 set_mm_exe_file(mm, NULL);
884 if (!list_empty(&mm->mmlist)) {
885 spin_lock(&mmlist_lock);
886 list_del(&mm->mmlist);
887 spin_unlock(&mmlist_lock);
890 module_put(mm->binfmt->module);
891 set_bit(MMF_OOM_SKIP, &mm->flags);
896 * Decrement the use count and release all resources for an mm.
898 void mmput(struct mm_struct *mm)
902 if (atomic_dec_and_test(&mm->mm_users))
905 EXPORT_SYMBOL_GPL(mmput);
908 static void mmput_async_fn(struct work_struct *work)
910 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
914 void mmput_async(struct mm_struct *mm)
916 if (atomic_dec_and_test(&mm->mm_users)) {
917 INIT_WORK(&mm->async_put_work, mmput_async_fn);
918 schedule_work(&mm->async_put_work);
924 * set_mm_exe_file - change a reference to the mm's executable file
926 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
928 * Main users are mmput() and sys_execve(). Callers prevent concurrent
929 * invocations: in mmput() nobody alive left, in execve task is single
930 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
931 * mm->exe_file, but does so without using set_mm_exe_file() in order
932 * to do avoid the need for any locks.
934 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
936 struct file *old_exe_file;
939 * It is safe to dereference the exe_file without RCU as
940 * this function is only called if nobody else can access
941 * this mm -- see comment above for justification.
943 old_exe_file = rcu_dereference_raw(mm->exe_file);
946 get_file(new_exe_file);
947 rcu_assign_pointer(mm->exe_file, new_exe_file);
953 * get_mm_exe_file - acquire a reference to the mm's executable file
955 * Returns %NULL if mm has no associated executable file.
956 * User must release file via fput().
958 struct file *get_mm_exe_file(struct mm_struct *mm)
960 struct file *exe_file;
963 exe_file = rcu_dereference(mm->exe_file);
964 if (exe_file && !get_file_rcu(exe_file))
969 EXPORT_SYMBOL(get_mm_exe_file);
972 * get_task_exe_file - acquire a reference to the task's executable file
974 * Returns %NULL if task's mm (if any) has no associated executable file or
975 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
976 * User must release file via fput().
978 struct file *get_task_exe_file(struct task_struct *task)
980 struct file *exe_file = NULL;
981 struct mm_struct *mm;
986 if (!(task->flags & PF_KTHREAD))
987 exe_file = get_mm_exe_file(mm);
992 EXPORT_SYMBOL(get_task_exe_file);
995 * get_task_mm - acquire a reference to the task's mm
997 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
998 * this kernel workthread has transiently adopted a user mm with use_mm,
999 * to do its AIO) is not set and if so returns a reference to it, after
1000 * bumping up the use count. User must release the mm via mmput()
1001 * after use. Typically used by /proc and ptrace.
1003 struct mm_struct *get_task_mm(struct task_struct *task)
1005 struct mm_struct *mm;
1010 if (task->flags & PF_KTHREAD)
1018 EXPORT_SYMBOL_GPL(get_task_mm);
1020 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1022 struct mm_struct *mm;
1025 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1027 return ERR_PTR(err);
1029 mm = get_task_mm(task);
1030 if (mm && mm != current->mm &&
1031 !ptrace_may_access(task, mode)) {
1033 mm = ERR_PTR(-EACCES);
1035 mutex_unlock(&task->signal->cred_guard_mutex);
1040 static void complete_vfork_done(struct task_struct *tsk)
1042 struct completion *vfork;
1045 vfork = tsk->vfork_done;
1046 if (likely(vfork)) {
1047 tsk->vfork_done = NULL;
1053 static int wait_for_vfork_done(struct task_struct *child,
1054 struct completion *vfork)
1058 freezer_do_not_count();
1059 killed = wait_for_completion_killable(vfork);
1064 child->vfork_done = NULL;
1068 put_task_struct(child);
1072 /* Please note the differences between mmput and mm_release.
1073 * mmput is called whenever we stop holding onto a mm_struct,
1074 * error success whatever.
1076 * mm_release is called after a mm_struct has been removed
1077 * from the current process.
1079 * This difference is important for error handling, when we
1080 * only half set up a mm_struct for a new process and need to restore
1081 * the old one. Because we mmput the new mm_struct before
1082 * restoring the old one. . .
1083 * Eric Biederman 10 January 1998
1085 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1087 /* Get rid of any futexes when releasing the mm */
1089 if (unlikely(tsk->robust_list)) {
1090 exit_robust_list(tsk);
1091 tsk->robust_list = NULL;
1093 #ifdef CONFIG_COMPAT
1094 if (unlikely(tsk->compat_robust_list)) {
1095 compat_exit_robust_list(tsk);
1096 tsk->compat_robust_list = NULL;
1099 if (unlikely(!list_empty(&tsk->pi_state_list)))
1100 exit_pi_state_list(tsk);
1103 uprobe_free_utask(tsk);
1105 /* Get rid of any cached register state */
1106 deactivate_mm(tsk, mm);
1109 * Signal userspace if we're not exiting with a core dump
1110 * because we want to leave the value intact for debugging
1113 if (tsk->clear_child_tid) {
1114 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1115 atomic_read(&mm->mm_users) > 1) {
1117 * We don't check the error code - if userspace has
1118 * not set up a proper pointer then tough luck.
1120 put_user(0, tsk->clear_child_tid);
1121 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1124 tsk->clear_child_tid = NULL;
1128 * All done, finally we can wake up parent and return this mm to him.
1129 * Also kthread_stop() uses this completion for synchronization.
1131 if (tsk->vfork_done)
1132 complete_vfork_done(tsk);
1136 * Allocate a new mm structure and copy contents from the
1137 * mm structure of the passed in task structure.
1139 static struct mm_struct *dup_mm(struct task_struct *tsk)
1141 struct mm_struct *mm, *oldmm = current->mm;
1148 memcpy(mm, oldmm, sizeof(*mm));
1150 if (!mm_init(mm, tsk, mm->user_ns))
1153 err = dup_mmap(mm, oldmm);
1157 mm->hiwater_rss = get_mm_rss(mm);
1158 mm->hiwater_vm = mm->total_vm;
1160 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1166 /* don't put binfmt in mmput, we haven't got module yet */
1174 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1176 struct mm_struct *mm, *oldmm;
1179 tsk->min_flt = tsk->maj_flt = 0;
1180 tsk->nvcsw = tsk->nivcsw = 0;
1181 #ifdef CONFIG_DETECT_HUNG_TASK
1182 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1186 tsk->active_mm = NULL;
1189 * Are we cloning a kernel thread?
1191 * We need to steal a active VM for that..
1193 oldmm = current->mm;
1197 /* initialize the new vmacache entries */
1198 vmacache_flush(tsk);
1200 if (clone_flags & CLONE_VM) {
1213 tsk->active_mm = mm;
1220 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1222 struct fs_struct *fs = current->fs;
1223 if (clone_flags & CLONE_FS) {
1224 /* tsk->fs is already what we want */
1225 spin_lock(&fs->lock);
1227 spin_unlock(&fs->lock);
1231 spin_unlock(&fs->lock);
1234 tsk->fs = copy_fs_struct(fs);
1240 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1242 struct files_struct *oldf, *newf;
1246 * A background process may not have any files ...
1248 oldf = current->files;
1252 if (clone_flags & CLONE_FILES) {
1253 atomic_inc(&oldf->count);
1257 newf = dup_fd(oldf, &error);
1267 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1270 struct io_context *ioc = current->io_context;
1271 struct io_context *new_ioc;
1276 * Share io context with parent, if CLONE_IO is set
1278 if (clone_flags & CLONE_IO) {
1280 tsk->io_context = ioc;
1281 } else if (ioprio_valid(ioc->ioprio)) {
1282 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1283 if (unlikely(!new_ioc))
1286 new_ioc->ioprio = ioc->ioprio;
1287 put_io_context(new_ioc);
1293 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1295 struct sighand_struct *sig;
1297 if (clone_flags & CLONE_SIGHAND) {
1298 atomic_inc(¤t->sighand->count);
1301 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1302 rcu_assign_pointer(tsk->sighand, sig);
1306 atomic_set(&sig->count, 1);
1307 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1311 void __cleanup_sighand(struct sighand_struct *sighand)
1313 if (atomic_dec_and_test(&sighand->count)) {
1314 signalfd_cleanup(sighand);
1316 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1317 * without an RCU grace period, see __lock_task_sighand().
1319 kmem_cache_free(sighand_cachep, sighand);
1323 #ifdef CONFIG_POSIX_TIMERS
1325 * Initialize POSIX timer handling for a thread group.
1327 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1329 unsigned long cpu_limit;
1331 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1332 if (cpu_limit != RLIM_INFINITY) {
1333 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1334 sig->cputimer.running = true;
1337 /* The timer lists. */
1338 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1339 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1340 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1343 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1346 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1348 struct signal_struct *sig;
1350 if (clone_flags & CLONE_THREAD)
1353 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1358 sig->nr_threads = 1;
1359 atomic_set(&sig->live, 1);
1360 atomic_set(&sig->sigcnt, 1);
1362 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1363 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1364 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1366 init_waitqueue_head(&sig->wait_chldexit);
1367 sig->curr_target = tsk;
1368 init_sigpending(&sig->shared_pending);
1369 seqlock_init(&sig->stats_lock);
1370 prev_cputime_init(&sig->prev_cputime);
1372 #ifdef CONFIG_POSIX_TIMERS
1373 INIT_LIST_HEAD(&sig->posix_timers);
1374 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1375 sig->real_timer.function = it_real_fn;
1378 task_lock(current->group_leader);
1379 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1380 task_unlock(current->group_leader);
1382 posix_cpu_timers_init_group(sig);
1384 tty_audit_fork(sig);
1385 sched_autogroup_fork(sig);
1387 sig->oom_score_adj = current->signal->oom_score_adj;
1388 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1390 mutex_init(&sig->cred_guard_mutex);
1395 static void copy_seccomp(struct task_struct *p)
1397 #ifdef CONFIG_SECCOMP
1399 * Must be called with sighand->lock held, which is common to
1400 * all threads in the group. Holding cred_guard_mutex is not
1401 * needed because this new task is not yet running and cannot
1404 assert_spin_locked(¤t->sighand->siglock);
1406 /* Ref-count the new filter user, and assign it. */
1407 get_seccomp_filter(current);
1408 p->seccomp = current->seccomp;
1411 * Explicitly enable no_new_privs here in case it got set
1412 * between the task_struct being duplicated and holding the
1413 * sighand lock. The seccomp state and nnp must be in sync.
1415 if (task_no_new_privs(current))
1416 task_set_no_new_privs(p);
1419 * If the parent gained a seccomp mode after copying thread
1420 * flags and between before we held the sighand lock, we have
1421 * to manually enable the seccomp thread flag here.
1423 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1424 set_tsk_thread_flag(p, TIF_SECCOMP);
1428 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1430 current->clear_child_tid = tidptr;
1432 return task_pid_vnr(current);
1435 static void rt_mutex_init_task(struct task_struct *p)
1437 raw_spin_lock_init(&p->pi_lock);
1438 #ifdef CONFIG_RT_MUTEXES
1439 p->pi_waiters = RB_ROOT;
1440 p->pi_waiters_leftmost = NULL;
1441 p->pi_top_task = NULL;
1442 p->pi_blocked_on = NULL;
1446 #ifdef CONFIG_POSIX_TIMERS
1448 * Initialize POSIX timer handling for a single task.
1450 static void posix_cpu_timers_init(struct task_struct *tsk)
1452 tsk->cputime_expires.prof_exp = 0;
1453 tsk->cputime_expires.virt_exp = 0;
1454 tsk->cputime_expires.sched_exp = 0;
1455 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1456 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1457 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1460 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1464 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1466 task->pids[type].pid = pid;
1469 static inline void rcu_copy_process(struct task_struct *p)
1471 #ifdef CONFIG_PREEMPT_RCU
1472 p->rcu_read_lock_nesting = 0;
1473 p->rcu_read_unlock_special.s = 0;
1474 p->rcu_blocked_node = NULL;
1475 INIT_LIST_HEAD(&p->rcu_node_entry);
1476 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1477 #ifdef CONFIG_TASKS_RCU
1478 p->rcu_tasks_holdout = false;
1479 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1480 p->rcu_tasks_idle_cpu = -1;
1481 #endif /* #ifdef CONFIG_TASKS_RCU */
1485 * This creates a new process as a copy of the old one,
1486 * but does not actually start it yet.
1488 * It copies the registers, and all the appropriate
1489 * parts of the process environment (as per the clone
1490 * flags). The actual kick-off is left to the caller.
1492 static __latent_entropy struct task_struct *copy_process(
1493 unsigned long clone_flags,
1494 unsigned long stack_start,
1495 unsigned long stack_size,
1496 int __user *child_tidptr,
1503 struct task_struct *p;
1505 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1506 return ERR_PTR(-EINVAL);
1508 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1509 return ERR_PTR(-EINVAL);
1512 * Thread groups must share signals as well, and detached threads
1513 * can only be started up within the thread group.
1515 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1516 return ERR_PTR(-EINVAL);
1519 * Shared signal handlers imply shared VM. By way of the above,
1520 * thread groups also imply shared VM. Blocking this case allows
1521 * for various simplifications in other code.
1523 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1524 return ERR_PTR(-EINVAL);
1527 * Siblings of global init remain as zombies on exit since they are
1528 * not reaped by their parent (swapper). To solve this and to avoid
1529 * multi-rooted process trees, prevent global and container-inits
1530 * from creating siblings.
1532 if ((clone_flags & CLONE_PARENT) &&
1533 current->signal->flags & SIGNAL_UNKILLABLE)
1534 return ERR_PTR(-EINVAL);
1537 * If the new process will be in a different pid or user namespace
1538 * do not allow it to share a thread group with the forking task.
1540 if (clone_flags & CLONE_THREAD) {
1541 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1542 (task_active_pid_ns(current) !=
1543 current->nsproxy->pid_ns_for_children))
1544 return ERR_PTR(-EINVAL);
1547 retval = security_task_create(clone_flags);
1552 p = dup_task_struct(current, node);
1556 ftrace_graph_init_task(p);
1558 rt_mutex_init_task(p);
1560 #ifdef CONFIG_PROVE_LOCKING
1561 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1562 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1565 if (atomic_read(&p->real_cred->user->processes) >=
1566 task_rlimit(p, RLIMIT_NPROC)) {
1567 if (p->real_cred->user != INIT_USER &&
1568 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1571 current->flags &= ~PF_NPROC_EXCEEDED;
1573 retval = copy_creds(p, clone_flags);
1578 * If multiple threads are within copy_process(), then this check
1579 * triggers too late. This doesn't hurt, the check is only there
1580 * to stop root fork bombs.
1583 if (nr_threads >= max_threads)
1584 goto bad_fork_cleanup_count;
1586 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1587 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1588 p->flags |= PF_FORKNOEXEC;
1589 INIT_LIST_HEAD(&p->children);
1590 INIT_LIST_HEAD(&p->sibling);
1591 rcu_copy_process(p);
1592 p->vfork_done = NULL;
1593 spin_lock_init(&p->alloc_lock);
1595 init_sigpending(&p->pending);
1597 p->utime = p->stime = p->gtime = 0;
1598 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1599 p->utimescaled = p->stimescaled = 0;
1601 prev_cputime_init(&p->prev_cputime);
1603 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1604 seqcount_init(&p->vtime_seqcount);
1606 p->vtime_snap_whence = VTIME_INACTIVE;
1609 #if defined(SPLIT_RSS_COUNTING)
1610 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1613 p->default_timer_slack_ns = current->timer_slack_ns;
1615 task_io_accounting_init(&p->ioac);
1616 acct_clear_integrals(p);
1618 posix_cpu_timers_init(p);
1620 p->start_time = ktime_get_ns();
1621 p->real_start_time = ktime_get_boot_ns();
1622 p->io_context = NULL;
1623 p->audit_context = NULL;
1626 p->mempolicy = mpol_dup(p->mempolicy);
1627 if (IS_ERR(p->mempolicy)) {
1628 retval = PTR_ERR(p->mempolicy);
1629 p->mempolicy = NULL;
1630 goto bad_fork_cleanup_threadgroup_lock;
1633 #ifdef CONFIG_CPUSETS
1634 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1635 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1636 seqcount_init(&p->mems_allowed_seq);
1638 #ifdef CONFIG_TRACE_IRQFLAGS
1640 p->hardirqs_enabled = 0;
1641 p->hardirq_enable_ip = 0;
1642 p->hardirq_enable_event = 0;
1643 p->hardirq_disable_ip = _THIS_IP_;
1644 p->hardirq_disable_event = 0;
1645 p->softirqs_enabled = 1;
1646 p->softirq_enable_ip = _THIS_IP_;
1647 p->softirq_enable_event = 0;
1648 p->softirq_disable_ip = 0;
1649 p->softirq_disable_event = 0;
1650 p->hardirq_context = 0;
1651 p->softirq_context = 0;
1654 p->pagefault_disabled = 0;
1656 #ifdef CONFIG_LOCKDEP
1657 p->lockdep_depth = 0; /* no locks held yet */
1658 p->curr_chain_key = 0;
1659 p->lockdep_recursion = 0;
1662 #ifdef CONFIG_DEBUG_MUTEXES
1663 p->blocked_on = NULL; /* not blocked yet */
1665 #ifdef CONFIG_BCACHE
1666 p->sequential_io = 0;
1667 p->sequential_io_avg = 0;
1670 /* Perform scheduler related setup. Assign this task to a CPU. */
1671 retval = sched_fork(clone_flags, p);
1673 goto bad_fork_cleanup_policy;
1675 retval = perf_event_init_task(p);
1677 goto bad_fork_cleanup_policy;
1678 retval = audit_alloc(p);
1680 goto bad_fork_cleanup_perf;
1681 /* copy all the process information */
1683 retval = copy_semundo(clone_flags, p);
1685 goto bad_fork_cleanup_audit;
1686 retval = copy_files(clone_flags, p);
1688 goto bad_fork_cleanup_semundo;
1689 retval = copy_fs(clone_flags, p);
1691 goto bad_fork_cleanup_files;
1692 retval = copy_sighand(clone_flags, p);
1694 goto bad_fork_cleanup_fs;
1695 retval = copy_signal(clone_flags, p);
1697 goto bad_fork_cleanup_sighand;
1698 retval = copy_mm(clone_flags, p);
1700 goto bad_fork_cleanup_signal;
1701 retval = copy_namespaces(clone_flags, p);
1703 goto bad_fork_cleanup_mm;
1704 retval = copy_io(clone_flags, p);
1706 goto bad_fork_cleanup_namespaces;
1707 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1709 goto bad_fork_cleanup_io;
1711 if (pid != &init_struct_pid) {
1712 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1714 retval = PTR_ERR(pid);
1715 goto bad_fork_cleanup_thread;
1719 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1721 * Clear TID on mm_release()?
1723 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1728 p->robust_list = NULL;
1729 #ifdef CONFIG_COMPAT
1730 p->compat_robust_list = NULL;
1732 INIT_LIST_HEAD(&p->pi_state_list);
1733 p->pi_state_cache = NULL;
1736 * sigaltstack should be cleared when sharing the same VM
1738 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1742 * Syscall tracing and stepping should be turned off in the
1743 * child regardless of CLONE_PTRACE.
1745 user_disable_single_step(p);
1746 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1747 #ifdef TIF_SYSCALL_EMU
1748 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1750 clear_all_latency_tracing(p);
1752 /* ok, now we should be set up.. */
1753 p->pid = pid_nr(pid);
1754 if (clone_flags & CLONE_THREAD) {
1755 p->exit_signal = -1;
1756 p->group_leader = current->group_leader;
1757 p->tgid = current->tgid;
1759 if (clone_flags & CLONE_PARENT)
1760 p->exit_signal = current->group_leader->exit_signal;
1762 p->exit_signal = (clone_flags & CSIGNAL);
1763 p->group_leader = p;
1768 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1769 p->dirty_paused_when = 0;
1771 p->pdeath_signal = 0;
1772 INIT_LIST_HEAD(&p->thread_group);
1773 p->task_works = NULL;
1775 cgroup_threadgroup_change_begin(current);
1777 * Ensure that the cgroup subsystem policies allow the new process to be
1778 * forked. It should be noted the the new process's css_set can be changed
1779 * between here and cgroup_post_fork() if an organisation operation is in
1782 retval = cgroup_can_fork(p);
1784 goto bad_fork_free_pid;
1787 * Make it visible to the rest of the system, but dont wake it up yet.
1788 * Need tasklist lock for parent etc handling!
1790 write_lock_irq(&tasklist_lock);
1792 /* CLONE_PARENT re-uses the old parent */
1793 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1794 p->real_parent = current->real_parent;
1795 p->parent_exec_id = current->parent_exec_id;
1797 p->real_parent = current;
1798 p->parent_exec_id = current->self_exec_id;
1801 spin_lock(¤t->sighand->siglock);
1804 * Copy seccomp details explicitly here, in case they were changed
1805 * before holding sighand lock.
1810 * Process group and session signals need to be delivered to just the
1811 * parent before the fork or both the parent and the child after the
1812 * fork. Restart if a signal comes in before we add the new process to
1813 * it's process group.
1814 * A fatal signal pending means that current will exit, so the new
1815 * thread can't slip out of an OOM kill (or normal SIGKILL).
1817 recalc_sigpending();
1818 if (signal_pending(current)) {
1819 spin_unlock(¤t->sighand->siglock);
1820 write_unlock_irq(&tasklist_lock);
1821 retval = -ERESTARTNOINTR;
1822 goto bad_fork_cancel_cgroup;
1825 if (likely(p->pid)) {
1826 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1828 init_task_pid(p, PIDTYPE_PID, pid);
1829 if (thread_group_leader(p)) {
1830 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1831 init_task_pid(p, PIDTYPE_SID, task_session(current));
1833 if (is_child_reaper(pid)) {
1834 ns_of_pid(pid)->child_reaper = p;
1835 p->signal->flags |= SIGNAL_UNKILLABLE;
1838 p->signal->leader_pid = pid;
1839 p->signal->tty = tty_kref_get(current->signal->tty);
1841 * Inherit has_child_subreaper flag under the same
1842 * tasklist_lock with adding child to the process tree
1843 * for propagate_has_child_subreaper optimization.
1845 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1846 p->real_parent->signal->is_child_subreaper;
1847 list_add_tail(&p->sibling, &p->real_parent->children);
1848 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1849 attach_pid(p, PIDTYPE_PGID);
1850 attach_pid(p, PIDTYPE_SID);
1851 __this_cpu_inc(process_counts);
1853 current->signal->nr_threads++;
1854 atomic_inc(¤t->signal->live);
1855 atomic_inc(¤t->signal->sigcnt);
1856 list_add_tail_rcu(&p->thread_group,
1857 &p->group_leader->thread_group);
1858 list_add_tail_rcu(&p->thread_node,
1859 &p->signal->thread_head);
1861 attach_pid(p, PIDTYPE_PID);
1866 spin_unlock(¤t->sighand->siglock);
1867 syscall_tracepoint_update(p);
1868 write_unlock_irq(&tasklist_lock);
1870 proc_fork_connector(p);
1871 cgroup_post_fork(p);
1872 cgroup_threadgroup_change_end(current);
1875 trace_task_newtask(p, clone_flags);
1876 uprobe_copy_process(p, clone_flags);
1880 bad_fork_cancel_cgroup:
1881 cgroup_cancel_fork(p);
1883 cgroup_threadgroup_change_end(current);
1884 if (pid != &init_struct_pid)
1886 bad_fork_cleanup_thread:
1888 bad_fork_cleanup_io:
1891 bad_fork_cleanup_namespaces:
1892 exit_task_namespaces(p);
1893 bad_fork_cleanup_mm:
1896 bad_fork_cleanup_signal:
1897 if (!(clone_flags & CLONE_THREAD))
1898 free_signal_struct(p->signal);
1899 bad_fork_cleanup_sighand:
1900 __cleanup_sighand(p->sighand);
1901 bad_fork_cleanup_fs:
1902 exit_fs(p); /* blocking */
1903 bad_fork_cleanup_files:
1904 exit_files(p); /* blocking */
1905 bad_fork_cleanup_semundo:
1907 bad_fork_cleanup_audit:
1909 bad_fork_cleanup_perf:
1910 perf_event_free_task(p);
1911 bad_fork_cleanup_policy:
1913 mpol_put(p->mempolicy);
1914 bad_fork_cleanup_threadgroup_lock:
1916 delayacct_tsk_free(p);
1917 bad_fork_cleanup_count:
1918 atomic_dec(&p->cred->user->processes);
1921 p->state = TASK_DEAD;
1925 return ERR_PTR(retval);
1928 static inline void init_idle_pids(struct pid_link *links)
1932 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1933 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1934 links[type].pid = &init_struct_pid;
1938 struct task_struct *fork_idle(int cpu)
1940 struct task_struct *task;
1941 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1943 if (!IS_ERR(task)) {
1944 init_idle_pids(task->pids);
1945 init_idle(task, cpu);
1952 * Ok, this is the main fork-routine.
1954 * It copies the process, and if successful kick-starts
1955 * it and waits for it to finish using the VM if required.
1957 long _do_fork(unsigned long clone_flags,
1958 unsigned long stack_start,
1959 unsigned long stack_size,
1960 int __user *parent_tidptr,
1961 int __user *child_tidptr,
1964 struct task_struct *p;
1969 * Determine whether and which event to report to ptracer. When
1970 * called from kernel_thread or CLONE_UNTRACED is explicitly
1971 * requested, no event is reported; otherwise, report if the event
1972 * for the type of forking is enabled.
1974 if (!(clone_flags & CLONE_UNTRACED)) {
1975 if (clone_flags & CLONE_VFORK)
1976 trace = PTRACE_EVENT_VFORK;
1977 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1978 trace = PTRACE_EVENT_CLONE;
1980 trace = PTRACE_EVENT_FORK;
1982 if (likely(!ptrace_event_enabled(current, trace)))
1986 p = copy_process(clone_flags, stack_start, stack_size,
1987 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1988 add_latent_entropy();
1990 * Do this prior waking up the new thread - the thread pointer
1991 * might get invalid after that point, if the thread exits quickly.
1994 struct completion vfork;
1997 trace_sched_process_fork(current, p);
1999 pid = get_task_pid(p, PIDTYPE_PID);
2002 if (clone_flags & CLONE_PARENT_SETTID)
2003 put_user(nr, parent_tidptr);
2005 if (clone_flags & CLONE_VFORK) {
2006 p->vfork_done = &vfork;
2007 init_completion(&vfork);
2011 wake_up_new_task(p);
2013 /* forking complete and child started to run, tell ptracer */
2014 if (unlikely(trace))
2015 ptrace_event_pid(trace, pid);
2017 if (clone_flags & CLONE_VFORK) {
2018 if (!wait_for_vfork_done(p, &vfork))
2019 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2029 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2030 /* For compatibility with architectures that call do_fork directly rather than
2031 * using the syscall entry points below. */
2032 long do_fork(unsigned long clone_flags,
2033 unsigned long stack_start,
2034 unsigned long stack_size,
2035 int __user *parent_tidptr,
2036 int __user *child_tidptr)
2038 return _do_fork(clone_flags, stack_start, stack_size,
2039 parent_tidptr, child_tidptr, 0);
2044 * Create a kernel thread.
2046 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2048 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2049 (unsigned long)arg, NULL, NULL, 0);
2052 #ifdef __ARCH_WANT_SYS_FORK
2053 SYSCALL_DEFINE0(fork)
2056 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2058 /* can not support in nommu mode */
2064 #ifdef __ARCH_WANT_SYS_VFORK
2065 SYSCALL_DEFINE0(vfork)
2067 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2072 #ifdef __ARCH_WANT_SYS_CLONE
2073 #ifdef CONFIG_CLONE_BACKWARDS
2074 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2075 int __user *, parent_tidptr,
2077 int __user *, child_tidptr)
2078 #elif defined(CONFIG_CLONE_BACKWARDS2)
2079 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2080 int __user *, parent_tidptr,
2081 int __user *, child_tidptr,
2083 #elif defined(CONFIG_CLONE_BACKWARDS3)
2084 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2086 int __user *, parent_tidptr,
2087 int __user *, child_tidptr,
2090 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2091 int __user *, parent_tidptr,
2092 int __user *, child_tidptr,
2096 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2100 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2102 struct task_struct *leader, *parent, *child;
2105 read_lock(&tasklist_lock);
2106 leader = top = top->group_leader;
2108 for_each_thread(leader, parent) {
2109 list_for_each_entry(child, &parent->children, sibling) {
2110 res = visitor(child, data);
2122 if (leader != top) {
2124 parent = child->real_parent;
2125 leader = parent->group_leader;
2129 read_unlock(&tasklist_lock);
2132 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2133 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2136 static void sighand_ctor(void *data)
2138 struct sighand_struct *sighand = data;
2140 spin_lock_init(&sighand->siglock);
2141 init_waitqueue_head(&sighand->signalfd_wqh);
2144 void __init proc_caches_init(void)
2146 sighand_cachep = kmem_cache_create("sighand_cache",
2147 sizeof(struct sighand_struct), 0,
2148 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2149 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2150 signal_cachep = kmem_cache_create("signal_cache",
2151 sizeof(struct signal_struct), 0,
2152 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2154 files_cachep = kmem_cache_create("files_cache",
2155 sizeof(struct files_struct), 0,
2156 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2158 fs_cachep = kmem_cache_create("fs_cache",
2159 sizeof(struct fs_struct), 0,
2160 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2163 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2164 * whole struct cpumask for the OFFSTACK case. We could change
2165 * this to *only* allocate as much of it as required by the
2166 * maximum number of CPU's we can ever have. The cpumask_allocation
2167 * is at the end of the structure, exactly for that reason.
2169 mm_cachep = kmem_cache_create("mm_struct",
2170 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2171 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2173 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2175 nsproxy_cache_init();
2179 * Check constraints on flags passed to the unshare system call.
2181 static int check_unshare_flags(unsigned long unshare_flags)
2183 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2184 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2185 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2186 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2189 * Not implemented, but pretend it works if there is nothing
2190 * to unshare. Note that unsharing the address space or the
2191 * signal handlers also need to unshare the signal queues (aka
2194 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2195 if (!thread_group_empty(current))
2198 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2199 if (atomic_read(¤t->sighand->count) > 1)
2202 if (unshare_flags & CLONE_VM) {
2203 if (!current_is_single_threaded())
2211 * Unshare the filesystem structure if it is being shared
2213 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2215 struct fs_struct *fs = current->fs;
2217 if (!(unshare_flags & CLONE_FS) || !fs)
2220 /* don't need lock here; in the worst case we'll do useless copy */
2224 *new_fsp = copy_fs_struct(fs);
2232 * Unshare file descriptor table if it is being shared
2234 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2236 struct files_struct *fd = current->files;
2239 if ((unshare_flags & CLONE_FILES) &&
2240 (fd && atomic_read(&fd->count) > 1)) {
2241 *new_fdp = dup_fd(fd, &error);
2250 * unshare allows a process to 'unshare' part of the process
2251 * context which was originally shared using clone. copy_*
2252 * functions used by do_fork() cannot be used here directly
2253 * because they modify an inactive task_struct that is being
2254 * constructed. Here we are modifying the current, active,
2257 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2259 struct fs_struct *fs, *new_fs = NULL;
2260 struct files_struct *fd, *new_fd = NULL;
2261 struct cred *new_cred = NULL;
2262 struct nsproxy *new_nsproxy = NULL;
2267 * If unsharing a user namespace must also unshare the thread group
2268 * and unshare the filesystem root and working directories.
2270 if (unshare_flags & CLONE_NEWUSER)
2271 unshare_flags |= CLONE_THREAD | CLONE_FS;
2273 * If unsharing vm, must also unshare signal handlers.
2275 if (unshare_flags & CLONE_VM)
2276 unshare_flags |= CLONE_SIGHAND;
2278 * If unsharing a signal handlers, must also unshare the signal queues.
2280 if (unshare_flags & CLONE_SIGHAND)
2281 unshare_flags |= CLONE_THREAD;
2283 * If unsharing namespace, must also unshare filesystem information.
2285 if (unshare_flags & CLONE_NEWNS)
2286 unshare_flags |= CLONE_FS;
2288 err = check_unshare_flags(unshare_flags);
2290 goto bad_unshare_out;
2292 * CLONE_NEWIPC must also detach from the undolist: after switching
2293 * to a new ipc namespace, the semaphore arrays from the old
2294 * namespace are unreachable.
2296 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2298 err = unshare_fs(unshare_flags, &new_fs);
2300 goto bad_unshare_out;
2301 err = unshare_fd(unshare_flags, &new_fd);
2303 goto bad_unshare_cleanup_fs;
2304 err = unshare_userns(unshare_flags, &new_cred);
2306 goto bad_unshare_cleanup_fd;
2307 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2310 goto bad_unshare_cleanup_cred;
2312 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2315 * CLONE_SYSVSEM is equivalent to sys_exit().
2319 if (unshare_flags & CLONE_NEWIPC) {
2320 /* Orphan segments in old ns (see sem above). */
2322 shm_init_task(current);
2326 switch_task_namespaces(current, new_nsproxy);
2332 spin_lock(&fs->lock);
2333 current->fs = new_fs;
2338 spin_unlock(&fs->lock);
2342 fd = current->files;
2343 current->files = new_fd;
2347 task_unlock(current);
2350 /* Install the new user namespace */
2351 commit_creds(new_cred);
2356 bad_unshare_cleanup_cred:
2359 bad_unshare_cleanup_fd:
2361 put_files_struct(new_fd);
2363 bad_unshare_cleanup_fs:
2365 free_fs_struct(new_fs);
2372 * Helper to unshare the files of the current task.
2373 * We don't want to expose copy_files internals to
2374 * the exec layer of the kernel.
2377 int unshare_files(struct files_struct **displaced)
2379 struct task_struct *task = current;
2380 struct files_struct *copy = NULL;
2383 error = unshare_fd(CLONE_FILES, ©);
2384 if (error || !copy) {
2388 *displaced = task->files;
2395 int sysctl_max_threads(struct ctl_table *table, int write,
2396 void __user *buffer, size_t *lenp, loff_t *ppos)
2400 int threads = max_threads;
2401 int min = MIN_THREADS;
2402 int max = MAX_THREADS;
2409 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2413 set_max_threads(threads);