]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/futex.c
futex: Handle futex value corruption gracefully
[karo-tx-linux.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23  *  enough at me, Linus for the original (flawed) idea, Matthew
24  *  Kirkwood for proof-of-concept implementation.
25  *
26  *  "The futexes are also cursed."
27  *  "But they come in a choice of three flavours!"
28  *
29  *  This program is free software; you can redistribute it and/or modify
30  *  it under the terms of the GNU General Public License as published by
31  *  the Free Software Foundation; either version 2 of the License, or
32  *  (at your option) any later version.
33  *
34  *  This program is distributed in the hope that it will be useful,
35  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
36  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
37  *  GNU General Public License for more details.
38  *
39  *  You should have received a copy of the GNU General Public License
40  *  along with this program; if not, write to the Free Software
41  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
42  */
43 #include <linux/slab.h>
44 #include <linux/poll.h>
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
58
59 #include <asm/futex.h>
60
61 #include "rtmutex_common.h"
62
63 int __read_mostly futex_cmpxchg_enabled;
64
65 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
67 /*
68  * Priority Inheritance state:
69  */
70 struct futex_pi_state {
71         /*
72          * list of 'owned' pi_state instances - these have to be
73          * cleaned up in do_exit() if the task exits prematurely:
74          */
75         struct list_head list;
76
77         /*
78          * The PI object:
79          */
80         struct rt_mutex pi_mutex;
81
82         struct task_struct *owner;
83         atomic_t refcount;
84
85         union futex_key key;
86 };
87
88 /*
89  * We use this hashed waitqueue instead of a normal wait_queue_t, so
90  * we can wake only the relevant ones (hashed queues may be shared).
91  *
92  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
93  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
94  * The order of wakup is always to make the first condition true, then
95  * wake up q->waiters, then make the second condition true.
96  */
97 struct futex_q {
98         struct plist_node list;
99         wait_queue_head_t waiters;
100
101         /* Which hash list lock to use: */
102         spinlock_t *lock_ptr;
103
104         /* Key which the futex is hashed on: */
105         union futex_key key;
106
107         /* Optional priority inheritance state: */
108         struct futex_pi_state *pi_state;
109         struct task_struct *task;
110
111         /* Bitset for the optional bitmasked wakeup */
112         u32 bitset;
113 };
114
115 /*
116  * Split the global futex_lock into every hash list lock.
117  */
118 struct futex_hash_bucket {
119         spinlock_t lock;
120         struct plist_head chain;
121 };
122
123 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
124
125 /*
126  * Take mm->mmap_sem, when futex is shared
127  */
128 static inline void futex_lock_mm(struct rw_semaphore *fshared)
129 {
130         if (fshared)
131                 down_read(fshared);
132 }
133
134 /*
135  * Release mm->mmap_sem, when the futex is shared
136  */
137 static inline void futex_unlock_mm(struct rw_semaphore *fshared)
138 {
139         if (fshared)
140                 up_read(fshared);
141 }
142
143 /*
144  * We hash on the keys returned from get_futex_key (see below).
145  */
146 static struct futex_hash_bucket *hash_futex(union futex_key *key)
147 {
148         u32 hash = jhash2((u32*)&key->both.word,
149                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
150                           key->both.offset);
151         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
152 }
153
154 /*
155  * Return 1 if two futex_keys are equal, 0 otherwise.
156  */
157 static inline int match_futex(union futex_key *key1, union futex_key *key2)
158 {
159         return (key1->both.word == key2->both.word
160                 && key1->both.ptr == key2->both.ptr
161                 && key1->both.offset == key2->both.offset);
162 }
163
164 /**
165  * get_futex_key - Get parameters which are the keys for a futex.
166  * @uaddr: virtual address of the futex
167  * @shared: NULL for a PROCESS_PRIVATE futex,
168  *      &current->mm->mmap_sem for a PROCESS_SHARED futex
169  * @key: address where result is stored.
170  *
171  * Returns a negative error code or 0
172  * The key words are stored in *key on success.
173  *
174  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
175  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
176  * We can usually work out the index without swapping in the page.
177  *
178  * fshared is NULL for PROCESS_PRIVATE futexes
179  * For other futexes, it points to &current->mm->mmap_sem and
180  * caller must have taken the reader lock. but NOT any spinlocks.
181  */
182 static int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared,
183                          union futex_key *key)
184 {
185         unsigned long address = (unsigned long)uaddr;
186         struct mm_struct *mm = current->mm;
187         struct vm_area_struct *vma;
188         struct page *page;
189         int err;
190
191         /*
192          * The futex address must be "naturally" aligned.
193          */
194         key->both.offset = address % PAGE_SIZE;
195         if (unlikely((address % sizeof(u32)) != 0))
196                 return -EINVAL;
197         address -= key->both.offset;
198
199         /*
200          * PROCESS_PRIVATE futexes are fast.
201          * As the mm cannot disappear under us and the 'key' only needs
202          * virtual address, we dont even have to find the underlying vma.
203          * Note : We do have to check 'uaddr' is a valid user address,
204          *        but access_ok() should be faster than find_vma()
205          */
206         if (!fshared) {
207                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
208                         return -EFAULT;
209                 key->private.mm = mm;
210                 key->private.address = address;
211                 return 0;
212         }
213         /*
214          * The futex is hashed differently depending on whether
215          * it's in a shared or private mapping.  So check vma first.
216          */
217         vma = find_extend_vma(mm, address);
218         if (unlikely(!vma))
219                 return -EFAULT;
220
221         /*
222          * Permissions.
223          */
224         if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
225                 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
226
227         /*
228          * Private mappings are handled in a simple way.
229          *
230          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
231          * it's a read-only handle, it's expected that futexes attach to
232          * the object not the particular process.  Therefore we use
233          * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
234          * mappings of _writable_ handles.
235          */
236         if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
237                 key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
238                 key->private.mm = mm;
239                 key->private.address = address;
240                 return 0;
241         }
242
243         /*
244          * Linear file mappings are also simple.
245          */
246         key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
247         key->both.offset |= FUT_OFF_INODE; /* inode-based key. */
248         if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
249                 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
250                                      + vma->vm_pgoff);
251                 return 0;
252         }
253
254         /*
255          * We could walk the page table to read the non-linear
256          * pte, and get the page index without fetching the page
257          * from swap.  But that's a lot of code to duplicate here
258          * for a rare case, so we simply fetch the page.
259          */
260         err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
261         if (err >= 0) {
262                 key->shared.pgoff =
263                         page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
264                 put_page(page);
265                 return 0;
266         }
267         return err;
268 }
269
270 /*
271  * Take a reference to the resource addressed by a key.
272  * Can be called while holding spinlocks.
273  *
274  */
275 static void get_futex_key_refs(union futex_key *key)
276 {
277         if (key->both.ptr == NULL)
278                 return;
279         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
280                 case FUT_OFF_INODE:
281                         atomic_inc(&key->shared.inode->i_count);
282                         break;
283                 case FUT_OFF_MMSHARED:
284                         atomic_inc(&key->private.mm->mm_count);
285                         break;
286         }
287 }
288
289 /*
290  * Drop a reference to the resource addressed by a key.
291  * The hash bucket spinlock must not be held.
292  */
293 static void drop_futex_key_refs(union futex_key *key)
294 {
295         if (!key->both.ptr)
296                 return;
297         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
298                 case FUT_OFF_INODE:
299                         iput(key->shared.inode);
300                         break;
301                 case FUT_OFF_MMSHARED:
302                         mmdrop(key->private.mm);
303                         break;
304         }
305 }
306
307 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
308 {
309         u32 curval;
310
311         pagefault_disable();
312         curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
313         pagefault_enable();
314
315         return curval;
316 }
317
318 static int get_futex_value_locked(u32 *dest, u32 __user *from)
319 {
320         int ret;
321
322         pagefault_disable();
323         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
324         pagefault_enable();
325
326         return ret ? -EFAULT : 0;
327 }
328
329 /*
330  * Fault handling.
331  * if fshared is non NULL, current->mm->mmap_sem is already held
332  */
333 static int futex_handle_fault(unsigned long address,
334                               struct rw_semaphore *fshared, int attempt)
335 {
336         struct vm_area_struct * vma;
337         struct mm_struct *mm = current->mm;
338         int ret = -EFAULT;
339
340         if (attempt > 2)
341                 return ret;
342
343         if (!fshared)
344                 down_read(&mm->mmap_sem);
345         vma = find_vma(mm, address);
346         if (vma && address >= vma->vm_start &&
347             (vma->vm_flags & VM_WRITE)) {
348                 int fault;
349                 fault = handle_mm_fault(mm, vma, address, 1);
350                 if (unlikely((fault & VM_FAULT_ERROR))) {
351 #if 0
352                         /* XXX: let's do this when we verify it is OK */
353                         if (ret & VM_FAULT_OOM)
354                                 ret = -ENOMEM;
355 #endif
356                 } else {
357                         ret = 0;
358                         if (fault & VM_FAULT_MAJOR)
359                                 current->maj_flt++;
360                         else
361                                 current->min_flt++;
362                 }
363         }
364         if (!fshared)
365                 up_read(&mm->mmap_sem);
366         return ret;
367 }
368
369 /*
370  * PI code:
371  */
372 static int refill_pi_state_cache(void)
373 {
374         struct futex_pi_state *pi_state;
375
376         if (likely(current->pi_state_cache))
377                 return 0;
378
379         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
380
381         if (!pi_state)
382                 return -ENOMEM;
383
384         INIT_LIST_HEAD(&pi_state->list);
385         /* pi_mutex gets initialized later */
386         pi_state->owner = NULL;
387         atomic_set(&pi_state->refcount, 1);
388
389         current->pi_state_cache = pi_state;
390
391         return 0;
392 }
393
394 static struct futex_pi_state * alloc_pi_state(void)
395 {
396         struct futex_pi_state *pi_state = current->pi_state_cache;
397
398         WARN_ON(!pi_state);
399         current->pi_state_cache = NULL;
400
401         return pi_state;
402 }
403
404 static void free_pi_state(struct futex_pi_state *pi_state)
405 {
406         if (!atomic_dec_and_test(&pi_state->refcount))
407                 return;
408
409         /*
410          * If pi_state->owner is NULL, the owner is most probably dying
411          * and has cleaned up the pi_state already
412          */
413         if (pi_state->owner) {
414                 spin_lock_irq(&pi_state->owner->pi_lock);
415                 list_del_init(&pi_state->list);
416                 spin_unlock_irq(&pi_state->owner->pi_lock);
417
418                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
419         }
420
421         if (current->pi_state_cache)
422                 kfree(pi_state);
423         else {
424                 /*
425                  * pi_state->list is already empty.
426                  * clear pi_state->owner.
427                  * refcount is at 0 - put it back to 1.
428                  */
429                 pi_state->owner = NULL;
430                 atomic_set(&pi_state->refcount, 1);
431                 current->pi_state_cache = pi_state;
432         }
433 }
434
435 /*
436  * Look up the task based on what TID userspace gave us.
437  * We dont trust it.
438  */
439 static struct task_struct * futex_find_get_task(pid_t pid)
440 {
441         struct task_struct *p;
442
443         rcu_read_lock();
444         p = find_task_by_vpid(pid);
445         if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
446                 p = ERR_PTR(-ESRCH);
447         else
448                 get_task_struct(p);
449
450         rcu_read_unlock();
451
452         return p;
453 }
454
455 /*
456  * This task is holding PI mutexes at exit time => bad.
457  * Kernel cleans up PI-state, but userspace is likely hosed.
458  * (Robust-futex cleanup is separate and might save the day for userspace.)
459  */
460 void exit_pi_state_list(struct task_struct *curr)
461 {
462         struct list_head *next, *head = &curr->pi_state_list;
463         struct futex_pi_state *pi_state;
464         struct futex_hash_bucket *hb;
465         union futex_key key;
466
467         if (!futex_cmpxchg_enabled)
468                 return;
469         /*
470          * We are a ZOMBIE and nobody can enqueue itself on
471          * pi_state_list anymore, but we have to be careful
472          * versus waiters unqueueing themselves:
473          */
474         spin_lock_irq(&curr->pi_lock);
475         while (!list_empty(head)) {
476
477                 next = head->next;
478                 pi_state = list_entry(next, struct futex_pi_state, list);
479                 key = pi_state->key;
480                 hb = hash_futex(&key);
481                 spin_unlock_irq(&curr->pi_lock);
482
483                 spin_lock(&hb->lock);
484
485                 spin_lock_irq(&curr->pi_lock);
486                 /*
487                  * We dropped the pi-lock, so re-check whether this
488                  * task still owns the PI-state:
489                  */
490                 if (head->next != next) {
491                         spin_unlock(&hb->lock);
492                         continue;
493                 }
494
495                 WARN_ON(pi_state->owner != curr);
496                 WARN_ON(list_empty(&pi_state->list));
497                 list_del_init(&pi_state->list);
498                 pi_state->owner = NULL;
499                 spin_unlock_irq(&curr->pi_lock);
500
501                 rt_mutex_unlock(&pi_state->pi_mutex);
502
503                 spin_unlock(&hb->lock);
504
505                 spin_lock_irq(&curr->pi_lock);
506         }
507         spin_unlock_irq(&curr->pi_lock);
508 }
509
510 static int
511 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
512                 union futex_key *key, struct futex_pi_state **ps)
513 {
514         struct futex_pi_state *pi_state = NULL;
515         struct futex_q *this, *next;
516         struct plist_head *head;
517         struct task_struct *p;
518         pid_t pid = uval & FUTEX_TID_MASK;
519
520         head = &hb->chain;
521
522         plist_for_each_entry_safe(this, next, head, list) {
523                 if (match_futex(&this->key, key)) {
524                         /*
525                          * Another waiter already exists - bump up
526                          * the refcount and return its pi_state:
527                          */
528                         pi_state = this->pi_state;
529                         /*
530                          * Userspace might have messed up non PI and PI futexes
531                          */
532                         if (unlikely(!pi_state))
533                                 return -EINVAL;
534
535                         WARN_ON(!atomic_read(&pi_state->refcount));
536
537                         /*
538                          * When pi_state->owner is NULL then the owner died
539                          * and another waiter is on the fly. pi_state->owner
540                          * is fixed up by the task which acquires
541                          * pi_state->rt_mutex.
542                          *
543                          * We do not check for pid == 0 which can happen when
544                          * the owner died and robust_list_exit() cleared the
545                          * TID.
546                          */
547                         if (pid && pi_state->owner) {
548                                 /*
549                                  * Bail out if user space manipulated the
550                                  * futex value.
551                                  */
552                                 if (pid != task_pid_vnr(pi_state->owner))
553                                         return -EINVAL;
554                         }
555
556                         atomic_inc(&pi_state->refcount);
557                         *ps = pi_state;
558
559                         return 0;
560                 }
561         }
562
563         /*
564          * We are the first waiter - try to look up the real owner and attach
565          * the new pi_state to it, but bail out when TID = 0
566          */
567         if (!pid)
568                 return -ESRCH;
569         p = futex_find_get_task(pid);
570         if (IS_ERR(p))
571                 return PTR_ERR(p);
572
573         /*
574          * We need to look at the task state flags to figure out,
575          * whether the task is exiting. To protect against the do_exit
576          * change of the task flags, we do this protected by
577          * p->pi_lock:
578          */
579         spin_lock_irq(&p->pi_lock);
580         if (unlikely(p->flags & PF_EXITING)) {
581                 /*
582                  * The task is on the way out. When PF_EXITPIDONE is
583                  * set, we know that the task has finished the
584                  * cleanup:
585                  */
586                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
587
588                 spin_unlock_irq(&p->pi_lock);
589                 put_task_struct(p);
590                 return ret;
591         }
592
593         pi_state = alloc_pi_state();
594
595         /*
596          * Initialize the pi_mutex in locked state and make 'p'
597          * the owner of it:
598          */
599         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
600
601         /* Store the key for possible exit cleanups: */
602         pi_state->key = *key;
603
604         WARN_ON(!list_empty(&pi_state->list));
605         list_add(&pi_state->list, &p->pi_state_list);
606         pi_state->owner = p;
607         spin_unlock_irq(&p->pi_lock);
608
609         put_task_struct(p);
610
611         *ps = pi_state;
612
613         return 0;
614 }
615
616 /*
617  * The hash bucket lock must be held when this is called.
618  * Afterwards, the futex_q must not be accessed.
619  */
620 static void wake_futex(struct futex_q *q)
621 {
622         plist_del(&q->list, &q->list.plist);
623         /*
624          * The lock in wake_up_all() is a crucial memory barrier after the
625          * plist_del() and also before assigning to q->lock_ptr.
626          */
627         wake_up_all(&q->waiters);
628         /*
629          * The waiting task can free the futex_q as soon as this is written,
630          * without taking any locks.  This must come last.
631          *
632          * A memory barrier is required here to prevent the following store
633          * to lock_ptr from getting ahead of the wakeup. Clearing the lock
634          * at the end of wake_up_all() does not prevent this store from
635          * moving.
636          */
637         smp_wmb();
638         q->lock_ptr = NULL;
639 }
640
641 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
642 {
643         struct task_struct *new_owner;
644         struct futex_pi_state *pi_state = this->pi_state;
645         u32 curval, newval;
646
647         if (!pi_state)
648                 return -EINVAL;
649
650         spin_lock(&pi_state->pi_mutex.wait_lock);
651         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
652
653         /*
654          * This happens when we have stolen the lock and the original
655          * pending owner did not enqueue itself back on the rt_mutex.
656          * Thats not a tragedy. We know that way, that a lock waiter
657          * is on the fly. We make the futex_q waiter the pending owner.
658          */
659         if (!new_owner)
660                 new_owner = this->task;
661
662         /*
663          * We pass it to the next owner. (The WAITERS bit is always
664          * kept enabled while there is PI state around. We must also
665          * preserve the owner died bit.)
666          */
667         if (!(uval & FUTEX_OWNER_DIED)) {
668                 int ret = 0;
669
670                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
671
672                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
673
674                 if (curval == -EFAULT)
675                         ret = -EFAULT;
676                 else if (curval != uval)
677                         ret = -EINVAL;
678                 if (ret) {
679                         spin_unlock(&pi_state->pi_mutex.wait_lock);
680                         return ret;
681                 }
682         }
683
684         spin_lock_irq(&pi_state->owner->pi_lock);
685         WARN_ON(list_empty(&pi_state->list));
686         list_del_init(&pi_state->list);
687         spin_unlock_irq(&pi_state->owner->pi_lock);
688
689         spin_lock_irq(&new_owner->pi_lock);
690         WARN_ON(!list_empty(&pi_state->list));
691         list_add(&pi_state->list, &new_owner->pi_state_list);
692         pi_state->owner = new_owner;
693         spin_unlock_irq(&new_owner->pi_lock);
694
695         spin_unlock(&pi_state->pi_mutex.wait_lock);
696         rt_mutex_unlock(&pi_state->pi_mutex);
697
698         return 0;
699 }
700
701 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
702 {
703         u32 oldval;
704
705         /*
706          * There is no waiter, so we unlock the futex. The owner died
707          * bit has not to be preserved here. We are the owner:
708          */
709         oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
710
711         if (oldval == -EFAULT)
712                 return oldval;
713         if (oldval != uval)
714                 return -EAGAIN;
715
716         return 0;
717 }
718
719 /*
720  * Express the locking dependencies for lockdep:
721  */
722 static inline void
723 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
724 {
725         if (hb1 <= hb2) {
726                 spin_lock(&hb1->lock);
727                 if (hb1 < hb2)
728                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
729         } else { /* hb1 > hb2 */
730                 spin_lock(&hb2->lock);
731                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
732         }
733 }
734
735 /*
736  * Wake up all waiters hashed on the physical page that is mapped
737  * to this virtual address:
738  */
739 static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared,
740                       int nr_wake, u32 bitset)
741 {
742         struct futex_hash_bucket *hb;
743         struct futex_q *this, *next;
744         struct plist_head *head;
745         union futex_key key;
746         int ret;
747
748         if (!bitset)
749                 return -EINVAL;
750
751         futex_lock_mm(fshared);
752
753         ret = get_futex_key(uaddr, fshared, &key);
754         if (unlikely(ret != 0))
755                 goto out;
756
757         hb = hash_futex(&key);
758         spin_lock(&hb->lock);
759         head = &hb->chain;
760
761         plist_for_each_entry_safe(this, next, head, list) {
762                 if (match_futex (&this->key, &key)) {
763                         if (this->pi_state) {
764                                 ret = -EINVAL;
765                                 break;
766                         }
767
768                         /* Check if one of the bits is set in both bitsets */
769                         if (!(this->bitset & bitset))
770                                 continue;
771
772                         wake_futex(this);
773                         if (++ret >= nr_wake)
774                                 break;
775                 }
776         }
777
778         spin_unlock(&hb->lock);
779 out:
780         futex_unlock_mm(fshared);
781         return ret;
782 }
783
784 /*
785  * Wake up all waiters hashed on the physical page that is mapped
786  * to this virtual address:
787  */
788 static int
789 futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared,
790               u32 __user *uaddr2,
791               int nr_wake, int nr_wake2, int op)
792 {
793         union futex_key key1, key2;
794         struct futex_hash_bucket *hb1, *hb2;
795         struct plist_head *head;
796         struct futex_q *this, *next;
797         int ret, op_ret, attempt = 0;
798
799 retryfull:
800         futex_lock_mm(fshared);
801
802         ret = get_futex_key(uaddr1, fshared, &key1);
803         if (unlikely(ret != 0))
804                 goto out;
805         ret = get_futex_key(uaddr2, fshared, &key2);
806         if (unlikely(ret != 0))
807                 goto out;
808
809         hb1 = hash_futex(&key1);
810         hb2 = hash_futex(&key2);
811
812 retry:
813         double_lock_hb(hb1, hb2);
814
815         op_ret = futex_atomic_op_inuser(op, uaddr2);
816         if (unlikely(op_ret < 0)) {
817                 u32 dummy;
818
819                 spin_unlock(&hb1->lock);
820                 if (hb1 != hb2)
821                         spin_unlock(&hb2->lock);
822
823 #ifndef CONFIG_MMU
824                 /*
825                  * we don't get EFAULT from MMU faults if we don't have an MMU,
826                  * but we might get them from range checking
827                  */
828                 ret = op_ret;
829                 goto out;
830 #endif
831
832                 if (unlikely(op_ret != -EFAULT)) {
833                         ret = op_ret;
834                         goto out;
835                 }
836
837                 /*
838                  * futex_atomic_op_inuser needs to both read and write
839                  * *(int __user *)uaddr2, but we can't modify it
840                  * non-atomically.  Therefore, if get_user below is not
841                  * enough, we need to handle the fault ourselves, while
842                  * still holding the mmap_sem.
843                  */
844                 if (attempt++) {
845                         ret = futex_handle_fault((unsigned long)uaddr2,
846                                                  fshared, attempt);
847                         if (ret)
848                                 goto out;
849                         goto retry;
850                 }
851
852                 /*
853                  * If we would have faulted, release mmap_sem,
854                  * fault it in and start all over again.
855                  */
856                 futex_unlock_mm(fshared);
857
858                 ret = get_user(dummy, uaddr2);
859                 if (ret)
860                         return ret;
861
862                 goto retryfull;
863         }
864
865         head = &hb1->chain;
866
867         plist_for_each_entry_safe(this, next, head, list) {
868                 if (match_futex (&this->key, &key1)) {
869                         wake_futex(this);
870                         if (++ret >= nr_wake)
871                                 break;
872                 }
873         }
874
875         if (op_ret > 0) {
876                 head = &hb2->chain;
877
878                 op_ret = 0;
879                 plist_for_each_entry_safe(this, next, head, list) {
880                         if (match_futex (&this->key, &key2)) {
881                                 wake_futex(this);
882                                 if (++op_ret >= nr_wake2)
883                                         break;
884                         }
885                 }
886                 ret += op_ret;
887         }
888
889         spin_unlock(&hb1->lock);
890         if (hb1 != hb2)
891                 spin_unlock(&hb2->lock);
892 out:
893         futex_unlock_mm(fshared);
894
895         return ret;
896 }
897
898 /*
899  * Requeue all waiters hashed on one physical page to another
900  * physical page.
901  */
902 static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared,
903                          u32 __user *uaddr2,
904                          int nr_wake, int nr_requeue, u32 *cmpval)
905 {
906         union futex_key key1, key2;
907         struct futex_hash_bucket *hb1, *hb2;
908         struct plist_head *head1;
909         struct futex_q *this, *next;
910         int ret, drop_count = 0;
911
912  retry:
913         futex_lock_mm(fshared);
914
915         ret = get_futex_key(uaddr1, fshared, &key1);
916         if (unlikely(ret != 0))
917                 goto out;
918         ret = get_futex_key(uaddr2, fshared, &key2);
919         if (unlikely(ret != 0))
920                 goto out;
921
922         hb1 = hash_futex(&key1);
923         hb2 = hash_futex(&key2);
924
925         double_lock_hb(hb1, hb2);
926
927         if (likely(cmpval != NULL)) {
928                 u32 curval;
929
930                 ret = get_futex_value_locked(&curval, uaddr1);
931
932                 if (unlikely(ret)) {
933                         spin_unlock(&hb1->lock);
934                         if (hb1 != hb2)
935                                 spin_unlock(&hb2->lock);
936
937                         /*
938                          * If we would have faulted, release mmap_sem, fault
939                          * it in and start all over again.
940                          */
941                         futex_unlock_mm(fshared);
942
943                         ret = get_user(curval, uaddr1);
944
945                         if (!ret)
946                                 goto retry;
947
948                         return ret;
949                 }
950                 if (curval != *cmpval) {
951                         ret = -EAGAIN;
952                         goto out_unlock;
953                 }
954         }
955
956         head1 = &hb1->chain;
957         plist_for_each_entry_safe(this, next, head1, list) {
958                 if (!match_futex (&this->key, &key1))
959                         continue;
960                 if (++ret <= nr_wake) {
961                         wake_futex(this);
962                 } else {
963                         /*
964                          * If key1 and key2 hash to the same bucket, no need to
965                          * requeue.
966                          */
967                         if (likely(head1 != &hb2->chain)) {
968                                 plist_del(&this->list, &hb1->chain);
969                                 plist_add(&this->list, &hb2->chain);
970                                 this->lock_ptr = &hb2->lock;
971 #ifdef CONFIG_DEBUG_PI_LIST
972                                 this->list.plist.lock = &hb2->lock;
973 #endif
974                         }
975                         this->key = key2;
976                         get_futex_key_refs(&key2);
977                         drop_count++;
978
979                         if (ret - nr_wake >= nr_requeue)
980                                 break;
981                 }
982         }
983
984 out_unlock:
985         spin_unlock(&hb1->lock);
986         if (hb1 != hb2)
987                 spin_unlock(&hb2->lock);
988
989         /* drop_futex_key_refs() must be called outside the spinlocks. */
990         while (--drop_count >= 0)
991                 drop_futex_key_refs(&key1);
992
993 out:
994         futex_unlock_mm(fshared);
995         return ret;
996 }
997
998 /* The key must be already stored in q->key. */
999 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1000 {
1001         struct futex_hash_bucket *hb;
1002
1003         init_waitqueue_head(&q->waiters);
1004
1005         get_futex_key_refs(&q->key);
1006         hb = hash_futex(&q->key);
1007         q->lock_ptr = &hb->lock;
1008
1009         spin_lock(&hb->lock);
1010         return hb;
1011 }
1012
1013 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1014 {
1015         int prio;
1016
1017         /*
1018          * The priority used to register this element is
1019          * - either the real thread-priority for the real-time threads
1020          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1021          * - or MAX_RT_PRIO for non-RT threads.
1022          * Thus, all RT-threads are woken first in priority order, and
1023          * the others are woken last, in FIFO order.
1024          */
1025         prio = min(current->normal_prio, MAX_RT_PRIO);
1026
1027         plist_node_init(&q->list, prio);
1028 #ifdef CONFIG_DEBUG_PI_LIST
1029         q->list.plist.lock = &hb->lock;
1030 #endif
1031         plist_add(&q->list, &hb->chain);
1032         q->task = current;
1033         spin_unlock(&hb->lock);
1034 }
1035
1036 static inline void
1037 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1038 {
1039         spin_unlock(&hb->lock);
1040         drop_futex_key_refs(&q->key);
1041 }
1042
1043 /*
1044  * queue_me and unqueue_me must be called as a pair, each
1045  * exactly once.  They are called with the hashed spinlock held.
1046  */
1047
1048 /* Return 1 if we were still queued (ie. 0 means we were woken) */
1049 static int unqueue_me(struct futex_q *q)
1050 {
1051         spinlock_t *lock_ptr;
1052         int ret = 0;
1053
1054         /* In the common case we don't take the spinlock, which is nice. */
1055  retry:
1056         lock_ptr = q->lock_ptr;
1057         barrier();
1058         if (lock_ptr != NULL) {
1059                 spin_lock(lock_ptr);
1060                 /*
1061                  * q->lock_ptr can change between reading it and
1062                  * spin_lock(), causing us to take the wrong lock.  This
1063                  * corrects the race condition.
1064                  *
1065                  * Reasoning goes like this: if we have the wrong lock,
1066                  * q->lock_ptr must have changed (maybe several times)
1067                  * between reading it and the spin_lock().  It can
1068                  * change again after the spin_lock() but only if it was
1069                  * already changed before the spin_lock().  It cannot,
1070                  * however, change back to the original value.  Therefore
1071                  * we can detect whether we acquired the correct lock.
1072                  */
1073                 if (unlikely(lock_ptr != q->lock_ptr)) {
1074                         spin_unlock(lock_ptr);
1075                         goto retry;
1076                 }
1077                 WARN_ON(plist_node_empty(&q->list));
1078                 plist_del(&q->list, &q->list.plist);
1079
1080                 BUG_ON(q->pi_state);
1081
1082                 spin_unlock(lock_ptr);
1083                 ret = 1;
1084         }
1085
1086         drop_futex_key_refs(&q->key);
1087         return ret;
1088 }
1089
1090 /*
1091  * PI futexes can not be requeued and must remove themself from the
1092  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1093  * and dropped here.
1094  */
1095 static void unqueue_me_pi(struct futex_q *q)
1096 {
1097         WARN_ON(plist_node_empty(&q->list));
1098         plist_del(&q->list, &q->list.plist);
1099
1100         BUG_ON(!q->pi_state);
1101         free_pi_state(q->pi_state);
1102         q->pi_state = NULL;
1103
1104         spin_unlock(q->lock_ptr);
1105
1106         drop_futex_key_refs(&q->key);
1107 }
1108
1109 /*
1110  * Fixup the pi_state owner with the new owner.
1111  *
1112  * Must be called with hash bucket lock held and mm->sem held for non
1113  * private futexes.
1114  */
1115 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1116                                 struct task_struct *newowner,
1117                                 struct rw_semaphore *fshared)
1118 {
1119         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1120         struct futex_pi_state *pi_state = q->pi_state;
1121         struct task_struct *oldowner = pi_state->owner;
1122         u32 uval, curval, newval;
1123         int ret, attempt = 0;
1124
1125         /* Owner died? */
1126         if (!pi_state->owner)
1127                 newtid |= FUTEX_OWNER_DIED;
1128
1129         /*
1130          * We are here either because we stole the rtmutex from the
1131          * pending owner or we are the pending owner which failed to
1132          * get the rtmutex. We have to replace the pending owner TID
1133          * in the user space variable. This must be atomic as we have
1134          * to preserve the owner died bit here.
1135          *
1136          * Note: We write the user space value _before_ changing the
1137          * pi_state because we can fault here. Imagine swapped out
1138          * pages or a fork, which was running right before we acquired
1139          * mmap_sem, that marked all the anonymous memory readonly for
1140          * cow.
1141          *
1142          * Modifying pi_state _before_ the user space value would
1143          * leave the pi_state in an inconsistent state when we fault
1144          * here, because we need to drop the hash bucket lock to
1145          * handle the fault. This might be observed in the PID check
1146          * in lookup_pi_state.
1147          */
1148 retry:
1149         if (get_futex_value_locked(&uval, uaddr))
1150                 goto handle_fault;
1151
1152         while (1) {
1153                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1154
1155                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1156
1157                 if (curval == -EFAULT)
1158                         goto handle_fault;
1159                 if (curval == uval)
1160                         break;
1161                 uval = curval;
1162         }
1163
1164         /*
1165          * We fixed up user space. Now we need to fix the pi_state
1166          * itself.
1167          */
1168         if (pi_state->owner != NULL) {
1169                 spin_lock_irq(&pi_state->owner->pi_lock);
1170                 WARN_ON(list_empty(&pi_state->list));
1171                 list_del_init(&pi_state->list);
1172                 spin_unlock_irq(&pi_state->owner->pi_lock);
1173         }
1174
1175         pi_state->owner = newowner;
1176
1177         spin_lock_irq(&newowner->pi_lock);
1178         WARN_ON(!list_empty(&pi_state->list));
1179         list_add(&pi_state->list, &newowner->pi_state_list);
1180         spin_unlock_irq(&newowner->pi_lock);
1181         return 0;
1182
1183         /*
1184          * To handle the page fault we need to drop the hash bucket
1185          * lock here. That gives the other task (either the pending
1186          * owner itself or the task which stole the rtmutex) the
1187          * chance to try the fixup of the pi_state. So once we are
1188          * back from handling the fault we need to check the pi_state
1189          * after reacquiring the hash bucket lock and before trying to
1190          * do another fixup. When the fixup has been done already we
1191          * simply return.
1192          */
1193 handle_fault:
1194         spin_unlock(q->lock_ptr);
1195
1196         ret = futex_handle_fault((unsigned long)uaddr, fshared, attempt++);
1197
1198         spin_lock(q->lock_ptr);
1199
1200         /*
1201          * Check if someone else fixed it for us:
1202          */
1203         if (pi_state->owner != oldowner)
1204                 return 0;
1205
1206         if (ret)
1207                 return ret;
1208
1209         goto retry;
1210 }
1211
1212 /*
1213  * In case we must use restart_block to restart a futex_wait,
1214  * we encode in the 'flags' shared capability
1215  */
1216 #define FLAGS_SHARED  1
1217
1218 static long futex_wait_restart(struct restart_block *restart);
1219
1220 static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
1221                       u32 val, ktime_t *abs_time, u32 bitset)
1222 {
1223         struct task_struct *curr = current;
1224         DECLARE_WAITQUEUE(wait, curr);
1225         struct futex_hash_bucket *hb;
1226         struct futex_q q;
1227         u32 uval;
1228         int ret;
1229         struct hrtimer_sleeper t;
1230         int rem = 0;
1231
1232         if (!bitset)
1233                 return -EINVAL;
1234
1235         q.pi_state = NULL;
1236         q.bitset = bitset;
1237  retry:
1238         futex_lock_mm(fshared);
1239
1240         ret = get_futex_key(uaddr, fshared, &q.key);
1241         if (unlikely(ret != 0))
1242                 goto out_release_sem;
1243
1244         hb = queue_lock(&q);
1245
1246         /*
1247          * Access the page AFTER the futex is queued.
1248          * Order is important:
1249          *
1250          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1251          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1252          *
1253          * The basic logical guarantee of a futex is that it blocks ONLY
1254          * if cond(var) is known to be true at the time of blocking, for
1255          * any cond.  If we queued after testing *uaddr, that would open
1256          * a race condition where we could block indefinitely with
1257          * cond(var) false, which would violate the guarantee.
1258          *
1259          * A consequence is that futex_wait() can return zero and absorb
1260          * a wakeup when *uaddr != val on entry to the syscall.  This is
1261          * rare, but normal.
1262          *
1263          * for shared futexes, we hold the mmap semaphore, so the mapping
1264          * cannot have changed since we looked it up in get_futex_key.
1265          */
1266         ret = get_futex_value_locked(&uval, uaddr);
1267
1268         if (unlikely(ret)) {
1269                 queue_unlock(&q, hb);
1270
1271                 /*
1272                  * If we would have faulted, release mmap_sem, fault it in and
1273                  * start all over again.
1274                  */
1275                 futex_unlock_mm(fshared);
1276
1277                 ret = get_user(uval, uaddr);
1278
1279                 if (!ret)
1280                         goto retry;
1281                 return ret;
1282         }
1283         ret = -EWOULDBLOCK;
1284         if (uval != val)
1285                 goto out_unlock_release_sem;
1286
1287         /* Only actually queue if *uaddr contained val.  */
1288         queue_me(&q, hb);
1289
1290         /*
1291          * Now the futex is queued and we have checked the data, we
1292          * don't want to hold mmap_sem while we sleep.
1293          */
1294         futex_unlock_mm(fshared);
1295
1296         /*
1297          * There might have been scheduling since the queue_me(), as we
1298          * cannot hold a spinlock across the get_user() in case it
1299          * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1300          * queueing ourselves into the futex hash.  This code thus has to
1301          * rely on the futex_wake() code removing us from hash when it
1302          * wakes us up.
1303          */
1304
1305         /* add_wait_queue is the barrier after __set_current_state. */
1306         __set_current_state(TASK_INTERRUPTIBLE);
1307         add_wait_queue(&q.waiters, &wait);
1308         /*
1309          * !plist_node_empty() is safe here without any lock.
1310          * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1311          */
1312         if (likely(!plist_node_empty(&q.list))) {
1313                 if (!abs_time)
1314                         schedule();
1315                 else {
1316                         hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC,
1317                                                 HRTIMER_MODE_ABS);
1318                         hrtimer_init_sleeper(&t, current);
1319                         t.timer.expires = *abs_time;
1320
1321                         hrtimer_start(&t.timer, t.timer.expires,
1322                                                 HRTIMER_MODE_ABS);
1323                         if (!hrtimer_active(&t.timer))
1324                                 t.task = NULL;
1325
1326                         /*
1327                          * the timer could have already expired, in which
1328                          * case current would be flagged for rescheduling.
1329                          * Don't bother calling schedule.
1330                          */
1331                         if (likely(t.task))
1332                                 schedule();
1333
1334                         hrtimer_cancel(&t.timer);
1335
1336                         /* Flag if a timeout occured */
1337                         rem = (t.task == NULL);
1338
1339                         destroy_hrtimer_on_stack(&t.timer);
1340                 }
1341         }
1342         __set_current_state(TASK_RUNNING);
1343
1344         /*
1345          * NOTE: we don't remove ourselves from the waitqueue because
1346          * we are the only user of it.
1347          */
1348
1349         /* If we were woken (and unqueued), we succeeded, whatever. */
1350         if (!unqueue_me(&q))
1351                 return 0;
1352         if (rem)
1353                 return -ETIMEDOUT;
1354
1355         /*
1356          * We expect signal_pending(current), but another thread may
1357          * have handled it for us already.
1358          */
1359         if (!abs_time)
1360                 return -ERESTARTSYS;
1361         else {
1362                 struct restart_block *restart;
1363                 restart = &current_thread_info()->restart_block;
1364                 restart->fn = futex_wait_restart;
1365                 restart->futex.uaddr = (u32 *)uaddr;
1366                 restart->futex.val = val;
1367                 restart->futex.time = abs_time->tv64;
1368                 restart->futex.bitset = bitset;
1369                 restart->futex.flags = 0;
1370
1371                 if (fshared)
1372                         restart->futex.flags |= FLAGS_SHARED;
1373                 return -ERESTART_RESTARTBLOCK;
1374         }
1375
1376  out_unlock_release_sem:
1377         queue_unlock(&q, hb);
1378
1379  out_release_sem:
1380         futex_unlock_mm(fshared);
1381         return ret;
1382 }
1383
1384
1385 static long futex_wait_restart(struct restart_block *restart)
1386 {
1387         u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1388         struct rw_semaphore *fshared = NULL;
1389         ktime_t t;
1390
1391         t.tv64 = restart->futex.time;
1392         restart->fn = do_no_restart_syscall;
1393         if (restart->futex.flags & FLAGS_SHARED)
1394                 fshared = &current->mm->mmap_sem;
1395         return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1396                                 restart->futex.bitset);
1397 }
1398
1399
1400 /*
1401  * Userspace tried a 0 -> TID atomic transition of the futex value
1402  * and failed. The kernel side here does the whole locking operation:
1403  * if there are waiters then it will block, it does PI, etc. (Due to
1404  * races the kernel might see a 0 value of the futex too.)
1405  */
1406 static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
1407                          int detect, ktime_t *time, int trylock)
1408 {
1409         struct hrtimer_sleeper timeout, *to = NULL;
1410         struct task_struct *curr = current;
1411         struct futex_hash_bucket *hb;
1412         u32 uval, newval, curval;
1413         struct futex_q q;
1414         int ret, lock_taken, ownerdied = 0, attempt = 0;
1415
1416         if (refill_pi_state_cache())
1417                 return -ENOMEM;
1418
1419         if (time) {
1420                 to = &timeout;
1421                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1422                                       HRTIMER_MODE_ABS);
1423                 hrtimer_init_sleeper(to, current);
1424                 to->timer.expires = *time;
1425         }
1426
1427         q.pi_state = NULL;
1428  retry:
1429         futex_lock_mm(fshared);
1430
1431         ret = get_futex_key(uaddr, fshared, &q.key);
1432         if (unlikely(ret != 0))
1433                 goto out_release_sem;
1434
1435  retry_unlocked:
1436         hb = queue_lock(&q);
1437
1438  retry_locked:
1439         ret = lock_taken = 0;
1440
1441         /*
1442          * To avoid races, we attempt to take the lock here again
1443          * (by doing a 0 -> TID atomic cmpxchg), while holding all
1444          * the locks. It will most likely not succeed.
1445          */
1446         newval = task_pid_vnr(current);
1447
1448         curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1449
1450         if (unlikely(curval == -EFAULT))
1451                 goto uaddr_faulted;
1452
1453         /*
1454          * Detect deadlocks. In case of REQUEUE_PI this is a valid
1455          * situation and we return success to user space.
1456          */
1457         if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
1458                 ret = -EDEADLK;
1459                 goto out_unlock_release_sem;
1460         }
1461
1462         /*
1463          * Surprise - we got the lock. Just return to userspace:
1464          */
1465         if (unlikely(!curval))
1466                 goto out_unlock_release_sem;
1467
1468         uval = curval;
1469
1470         /*
1471          * Set the WAITERS flag, so the owner will know it has someone
1472          * to wake at next unlock
1473          */
1474         newval = curval | FUTEX_WAITERS;
1475
1476         /*
1477          * There are two cases, where a futex might have no owner (the
1478          * owner TID is 0): OWNER_DIED. We take over the futex in this
1479          * case. We also do an unconditional take over, when the owner
1480          * of the futex died.
1481          *
1482          * This is safe as we are protected by the hash bucket lock !
1483          */
1484         if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1485                 /* Keep the OWNER_DIED bit */
1486                 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
1487                 ownerdied = 0;
1488                 lock_taken = 1;
1489         }
1490
1491         curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1492
1493         if (unlikely(curval == -EFAULT))
1494                 goto uaddr_faulted;
1495         if (unlikely(curval != uval))
1496                 goto retry_locked;
1497
1498         /*
1499          * We took the lock due to owner died take over.
1500          */
1501         if (unlikely(lock_taken))
1502                 goto out_unlock_release_sem;
1503
1504         /*
1505          * We dont have the lock. Look up the PI state (or create it if
1506          * we are the first waiter):
1507          */
1508         ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1509
1510         if (unlikely(ret)) {
1511                 switch (ret) {
1512
1513                 case -EAGAIN:
1514                         /*
1515                          * Task is exiting and we just wait for the
1516                          * exit to complete.
1517                          */
1518                         queue_unlock(&q, hb);
1519                         futex_unlock_mm(fshared);
1520                         cond_resched();
1521                         goto retry;
1522
1523                 case -ESRCH:
1524                         /*
1525                          * No owner found for this futex. Check if the
1526                          * OWNER_DIED bit is set to figure out whether
1527                          * this is a robust futex or not.
1528                          */
1529                         if (get_futex_value_locked(&curval, uaddr))
1530                                 goto uaddr_faulted;
1531
1532                         /*
1533                          * We simply start over in case of a robust
1534                          * futex. The code above will take the futex
1535                          * and return happy.
1536                          */
1537                         if (curval & FUTEX_OWNER_DIED) {
1538                                 ownerdied = 1;
1539                                 goto retry_locked;
1540                         }
1541                 default:
1542                         goto out_unlock_release_sem;
1543                 }
1544         }
1545
1546         /*
1547          * Only actually queue now that the atomic ops are done:
1548          */
1549         queue_me(&q, hb);
1550
1551         /*
1552          * Now the futex is queued and we have checked the data, we
1553          * don't want to hold mmap_sem while we sleep.
1554          */
1555         futex_unlock_mm(fshared);
1556
1557         WARN_ON(!q.pi_state);
1558         /*
1559          * Block on the PI mutex:
1560          */
1561         if (!trylock)
1562                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1563         else {
1564                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1565                 /* Fixup the trylock return value: */
1566                 ret = ret ? 0 : -EWOULDBLOCK;
1567         }
1568
1569         futex_lock_mm(fshared);
1570         spin_lock(q.lock_ptr);
1571
1572         if (!ret) {
1573                 /*
1574                  * Got the lock. We might not be the anticipated owner
1575                  * if we did a lock-steal - fix up the PI-state in
1576                  * that case:
1577                  */
1578                 if (q.pi_state->owner != curr)
1579                         ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
1580         } else {
1581                 /*
1582                  * Catch the rare case, where the lock was released
1583                  * when we were on the way back before we locked the
1584                  * hash bucket.
1585                  */
1586                 if (q.pi_state->owner == curr) {
1587                         /*
1588                          * Try to get the rt_mutex now. This might
1589                          * fail as some other task acquired the
1590                          * rt_mutex after we removed ourself from the
1591                          * rt_mutex waiters list.
1592                          */
1593                         if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1594                                 ret = 0;
1595                         else {
1596                                 /*
1597                                  * pi_state is incorrect, some other
1598                                  * task did a lock steal and we
1599                                  * returned due to timeout or signal
1600                                  * without taking the rt_mutex. Too
1601                                  * late. We can access the
1602                                  * rt_mutex_owner without locking, as
1603                                  * the other task is now blocked on
1604                                  * the hash bucket lock. Fix the state
1605                                  * up.
1606                                  */
1607                                 struct task_struct *owner;
1608                                 int res;
1609
1610                                 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1611                                 res = fixup_pi_state_owner(uaddr, &q, owner,
1612                                                            fshared);
1613
1614                                 /* propagate -EFAULT, if the fixup failed */
1615                                 if (res)
1616                                         ret = res;
1617                         }
1618                 } else {
1619                         /*
1620                          * Paranoia check. If we did not take the lock
1621                          * in the trylock above, then we should not be
1622                          * the owner of the rtmutex, neither the real
1623                          * nor the pending one:
1624                          */
1625                         if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1626                                 printk(KERN_ERR "futex_lock_pi: ret = %d "
1627                                        "pi-mutex: %p pi-state %p\n", ret,
1628                                        q.pi_state->pi_mutex.owner,
1629                                        q.pi_state->owner);
1630                 }
1631         }
1632
1633         /* Unqueue and drop the lock */
1634         unqueue_me_pi(&q);
1635         futex_unlock_mm(fshared);
1636
1637         if (to)
1638                 destroy_hrtimer_on_stack(&to->timer);
1639         return ret != -EINTR ? ret : -ERESTARTNOINTR;
1640
1641  out_unlock_release_sem:
1642         queue_unlock(&q, hb);
1643
1644  out_release_sem:
1645         futex_unlock_mm(fshared);
1646         if (to)
1647                 destroy_hrtimer_on_stack(&to->timer);
1648         return ret;
1649
1650  uaddr_faulted:
1651         /*
1652          * We have to r/w  *(int __user *)uaddr, but we can't modify it
1653          * non-atomically.  Therefore, if get_user below is not
1654          * enough, we need to handle the fault ourselves, while
1655          * still holding the mmap_sem.
1656          *
1657          * ... and hb->lock. :-) --ANK
1658          */
1659         queue_unlock(&q, hb);
1660
1661         if (attempt++) {
1662                 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1663                                          attempt);
1664                 if (ret)
1665                         goto out_release_sem;
1666                 goto retry_unlocked;
1667         }
1668
1669         futex_unlock_mm(fshared);
1670
1671         ret = get_user(uval, uaddr);
1672         if (!ret && (uval != -EFAULT))
1673                 goto retry;
1674
1675         if (to)
1676                 destroy_hrtimer_on_stack(&to->timer);
1677         return ret;
1678 }
1679
1680 /*
1681  * Userspace attempted a TID -> 0 atomic transition, and failed.
1682  * This is the in-kernel slowpath: we look up the PI state (if any),
1683  * and do the rt-mutex unlock.
1684  */
1685 static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared)
1686 {
1687         struct futex_hash_bucket *hb;
1688         struct futex_q *this, *next;
1689         u32 uval;
1690         struct plist_head *head;
1691         union futex_key key;
1692         int ret, attempt = 0;
1693
1694 retry:
1695         if (get_user(uval, uaddr))
1696                 return -EFAULT;
1697         /*
1698          * We release only a lock we actually own:
1699          */
1700         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1701                 return -EPERM;
1702         /*
1703          * First take all the futex related locks:
1704          */
1705         futex_lock_mm(fshared);
1706
1707         ret = get_futex_key(uaddr, fshared, &key);
1708         if (unlikely(ret != 0))
1709                 goto out;
1710
1711         hb = hash_futex(&key);
1712 retry_unlocked:
1713         spin_lock(&hb->lock);
1714
1715         /*
1716          * To avoid races, try to do the TID -> 0 atomic transition
1717          * again. If it succeeds then we can return without waking
1718          * anyone else up:
1719          */
1720         if (!(uval & FUTEX_OWNER_DIED))
1721                 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1722
1723
1724         if (unlikely(uval == -EFAULT))
1725                 goto pi_faulted;
1726         /*
1727          * Rare case: we managed to release the lock atomically,
1728          * no need to wake anyone else up:
1729          */
1730         if (unlikely(uval == task_pid_vnr(current)))
1731                 goto out_unlock;
1732
1733         /*
1734          * Ok, other tasks may need to be woken up - check waiters
1735          * and do the wakeup if necessary:
1736          */
1737         head = &hb->chain;
1738
1739         plist_for_each_entry_safe(this, next, head, list) {
1740                 if (!match_futex (&this->key, &key))
1741                         continue;
1742                 ret = wake_futex_pi(uaddr, uval, this);
1743                 /*
1744                  * The atomic access to the futex value
1745                  * generated a pagefault, so retry the
1746                  * user-access and the wakeup:
1747                  */
1748                 if (ret == -EFAULT)
1749                         goto pi_faulted;
1750                 goto out_unlock;
1751         }
1752         /*
1753          * No waiters - kernel unlocks the futex:
1754          */
1755         if (!(uval & FUTEX_OWNER_DIED)) {
1756                 ret = unlock_futex_pi(uaddr, uval);
1757                 if (ret == -EFAULT)
1758                         goto pi_faulted;
1759         }
1760
1761 out_unlock:
1762         spin_unlock(&hb->lock);
1763 out:
1764         futex_unlock_mm(fshared);
1765
1766         return ret;
1767
1768 pi_faulted:
1769         /*
1770          * We have to r/w  *(int __user *)uaddr, but we can't modify it
1771          * non-atomically.  Therefore, if get_user below is not
1772          * enough, we need to handle the fault ourselves, while
1773          * still holding the mmap_sem.
1774          *
1775          * ... and hb->lock. --ANK
1776          */
1777         spin_unlock(&hb->lock);
1778
1779         if (attempt++) {
1780                 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1781                                          attempt);
1782                 if (ret)
1783                         goto out;
1784                 uval = 0;
1785                 goto retry_unlocked;
1786         }
1787
1788         futex_unlock_mm(fshared);
1789
1790         ret = get_user(uval, uaddr);
1791         if (!ret && (uval != -EFAULT))
1792                 goto retry;
1793
1794         return ret;
1795 }
1796
1797 /*
1798  * Support for robust futexes: the kernel cleans up held futexes at
1799  * thread exit time.
1800  *
1801  * Implementation: user-space maintains a per-thread list of locks it
1802  * is holding. Upon do_exit(), the kernel carefully walks this list,
1803  * and marks all locks that are owned by this thread with the
1804  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1805  * always manipulated with the lock held, so the list is private and
1806  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1807  * field, to allow the kernel to clean up if the thread dies after
1808  * acquiring the lock, but just before it could have added itself to
1809  * the list. There can only be one such pending lock.
1810  */
1811
1812 /**
1813  * sys_set_robust_list - set the robust-futex list head of a task
1814  * @head: pointer to the list-head
1815  * @len: length of the list-head, as userspace expects
1816  */
1817 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
1818                 size_t, len)
1819 {
1820         if (!futex_cmpxchg_enabled)
1821                 return -ENOSYS;
1822         /*
1823          * The kernel knows only one size for now:
1824          */
1825         if (unlikely(len != sizeof(*head)))
1826                 return -EINVAL;
1827
1828         current->robust_list = head;
1829
1830         return 0;
1831 }
1832
1833 /**
1834  * sys_get_robust_list - get the robust-futex list head of a task
1835  * @pid: pid of the process [zero for current task]
1836  * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1837  * @len_ptr: pointer to a length field, the kernel fills in the header size
1838  */
1839 SYSCALL_DEFINE3(get_robust_list, int, pid,
1840                 struct robust_list_head __user * __user *, head_ptr,
1841                 size_t __user *, len_ptr)
1842 {
1843         struct robust_list_head __user *head;
1844         unsigned long ret;
1845
1846         if (!futex_cmpxchg_enabled)
1847                 return -ENOSYS;
1848
1849         if (!pid)
1850                 head = current->robust_list;
1851         else {
1852                 struct task_struct *p;
1853
1854                 ret = -ESRCH;
1855                 rcu_read_lock();
1856                 p = find_task_by_vpid(pid);
1857                 if (!p)
1858                         goto err_unlock;
1859                 ret = -EPERM;
1860                 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1861                                 !capable(CAP_SYS_PTRACE))
1862                         goto err_unlock;
1863                 head = p->robust_list;
1864                 rcu_read_unlock();
1865         }
1866
1867         if (put_user(sizeof(*head), len_ptr))
1868                 return -EFAULT;
1869         return put_user(head, head_ptr);
1870
1871 err_unlock:
1872         rcu_read_unlock();
1873
1874         return ret;
1875 }
1876
1877 /*
1878  * Process a futex-list entry, check whether it's owned by the
1879  * dying task, and do notification if so:
1880  */
1881 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1882 {
1883         u32 uval, nval, mval;
1884
1885 retry:
1886         if (get_user(uval, uaddr))
1887                 return -1;
1888
1889         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
1890                 /*
1891                  * Ok, this dying thread is truly holding a futex
1892                  * of interest. Set the OWNER_DIED bit atomically
1893                  * via cmpxchg, and if the value had FUTEX_WAITERS
1894                  * set, wake up a waiter (if any). (We have to do a
1895                  * futex_wake() even if OWNER_DIED is already set -
1896                  * to handle the rare but possible case of recursive
1897                  * thread-death.) The rest of the cleanup is done in
1898                  * userspace.
1899                  */
1900                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1901                 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1902
1903                 if (nval == -EFAULT)
1904                         return -1;
1905
1906                 if (nval != uval)
1907                         goto retry;
1908
1909                 /*
1910                  * Wake robust non-PI futexes here. The wakeup of
1911                  * PI futexes happens in exit_pi_state():
1912                  */
1913                 if (!pi && (uval & FUTEX_WAITERS))
1914                         futex_wake(uaddr, &curr->mm->mmap_sem, 1,
1915                                    FUTEX_BITSET_MATCH_ANY);
1916         }
1917         return 0;
1918 }
1919
1920 /*
1921  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1922  */
1923 static inline int fetch_robust_entry(struct robust_list __user **entry,
1924                                      struct robust_list __user * __user *head,
1925                                      int *pi)
1926 {
1927         unsigned long uentry;
1928
1929         if (get_user(uentry, (unsigned long __user *)head))
1930                 return -EFAULT;
1931
1932         *entry = (void __user *)(uentry & ~1UL);
1933         *pi = uentry & 1;
1934
1935         return 0;
1936 }
1937
1938 /*
1939  * Walk curr->robust_list (very carefully, it's a userspace list!)
1940  * and mark any locks found there dead, and notify any waiters.
1941  *
1942  * We silently return on any sign of list-walking problem.
1943  */
1944 void exit_robust_list(struct task_struct *curr)
1945 {
1946         struct robust_list_head __user *head = curr->robust_list;
1947         struct robust_list __user *entry, *next_entry, *pending;
1948         unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
1949         unsigned long futex_offset;
1950         int rc;
1951
1952         if (!futex_cmpxchg_enabled)
1953                 return;
1954
1955         /*
1956          * Fetch the list head (which was registered earlier, via
1957          * sys_set_robust_list()):
1958          */
1959         if (fetch_robust_entry(&entry, &head->list.next, &pi))
1960                 return;
1961         /*
1962          * Fetch the relative futex offset:
1963          */
1964         if (get_user(futex_offset, &head->futex_offset))
1965                 return;
1966         /*
1967          * Fetch any possibly pending lock-add first, and handle it
1968          * if it exists:
1969          */
1970         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1971                 return;
1972
1973         next_entry = NULL;      /* avoid warning with gcc */
1974         while (entry != &head->list) {
1975                 /*
1976                  * Fetch the next entry in the list before calling
1977                  * handle_futex_death:
1978                  */
1979                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1980                 /*
1981                  * A pending lock might already be on the list, so
1982                  * don't process it twice:
1983                  */
1984                 if (entry != pending)
1985                         if (handle_futex_death((void __user *)entry + futex_offset,
1986                                                 curr, pi))
1987                                 return;
1988                 if (rc)
1989                         return;
1990                 entry = next_entry;
1991                 pi = next_pi;
1992                 /*
1993                  * Avoid excessively long or circular lists:
1994                  */
1995                 if (!--limit)
1996                         break;
1997
1998                 cond_resched();
1999         }
2000
2001         if (pending)
2002                 handle_futex_death((void __user *)pending + futex_offset,
2003                                    curr, pip);
2004 }
2005
2006 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2007                 u32 __user *uaddr2, u32 val2, u32 val3)
2008 {
2009         int ret = -ENOSYS;
2010         int cmd = op & FUTEX_CMD_MASK;
2011         struct rw_semaphore *fshared = NULL;
2012
2013         if (!(op & FUTEX_PRIVATE_FLAG))
2014                 fshared = &current->mm->mmap_sem;
2015
2016         switch (cmd) {
2017         case FUTEX_WAIT:
2018                 val3 = FUTEX_BITSET_MATCH_ANY;
2019         case FUTEX_WAIT_BITSET:
2020                 ret = futex_wait(uaddr, fshared, val, timeout, val3);
2021                 break;
2022         case FUTEX_WAKE:
2023                 val3 = FUTEX_BITSET_MATCH_ANY;
2024         case FUTEX_WAKE_BITSET:
2025                 ret = futex_wake(uaddr, fshared, val, val3);
2026                 break;
2027         case FUTEX_REQUEUE:
2028                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
2029                 break;
2030         case FUTEX_CMP_REQUEUE:
2031                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
2032                 break;
2033         case FUTEX_WAKE_OP:
2034                 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2035                 break;
2036         case FUTEX_LOCK_PI:
2037                 if (futex_cmpxchg_enabled)
2038                         ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2039                 break;
2040         case FUTEX_UNLOCK_PI:
2041                 if (futex_cmpxchg_enabled)
2042                         ret = futex_unlock_pi(uaddr, fshared);
2043                 break;
2044         case FUTEX_TRYLOCK_PI:
2045                 if (futex_cmpxchg_enabled)
2046                         ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2047                 break;
2048         default:
2049                 ret = -ENOSYS;
2050         }
2051         return ret;
2052 }
2053
2054
2055 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2056                 struct timespec __user *, utime, u32 __user *, uaddr2,
2057                 u32, val3)
2058 {
2059         struct timespec ts;
2060         ktime_t t, *tp = NULL;
2061         u32 val2 = 0;
2062         int cmd = op & FUTEX_CMD_MASK;
2063
2064         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2065                       cmd == FUTEX_WAIT_BITSET)) {
2066                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2067                         return -EFAULT;
2068                 if (!timespec_valid(&ts))
2069                         return -EINVAL;
2070
2071                 t = timespec_to_ktime(ts);
2072                 if (cmd == FUTEX_WAIT)
2073                         t = ktime_add_safe(ktime_get(), t);
2074                 tp = &t;
2075         }
2076         /*
2077          * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
2078          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2079          */
2080         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2081             cmd == FUTEX_WAKE_OP)
2082                 val2 = (u32) (unsigned long) utime;
2083
2084         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2085 }
2086
2087 static int __init futex_init(void)
2088 {
2089         u32 curval;
2090         int i;
2091
2092         /*
2093          * This will fail and we want it. Some arch implementations do
2094          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2095          * functionality. We want to know that before we call in any
2096          * of the complex code paths. Also we want to prevent
2097          * registration of robust lists in that case. NULL is
2098          * guaranteed to fault and we get -EFAULT on functional
2099          * implementation, the non functional ones will return
2100          * -ENOSYS.
2101          */
2102         curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2103         if (curval == -EFAULT)
2104                 futex_cmpxchg_enabled = 1;
2105
2106         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2107                 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2108                 spin_lock_init(&futex_queues[i].lock);
2109         }
2110
2111         return 0;
2112 }
2113 __initcall(futex_init);