]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/futex.c
futex: Avoid freeing an active timer
[karo-tx-linux.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
70
71 #include <asm/futex.h>
72
73 #include "locking/rtmutex_common.h"
74
75 /*
76  * READ this before attempting to hack on futexes!
77  *
78  * Basic futex operation and ordering guarantees
79  * =============================================
80  *
81  * The waiter reads the futex value in user space and calls
82  * futex_wait(). This function computes the hash bucket and acquires
83  * the hash bucket lock. After that it reads the futex user space value
84  * again and verifies that the data has not changed. If it has not changed
85  * it enqueues itself into the hash bucket, releases the hash bucket lock
86  * and schedules.
87  *
88  * The waker side modifies the user space value of the futex and calls
89  * futex_wake(). This function computes the hash bucket and acquires the
90  * hash bucket lock. Then it looks for waiters on that futex in the hash
91  * bucket and wakes them.
92  *
93  * In futex wake up scenarios where no tasks are blocked on a futex, taking
94  * the hb spinlock can be avoided and simply return. In order for this
95  * optimization to work, ordering guarantees must exist so that the waiter
96  * being added to the list is acknowledged when the list is concurrently being
97  * checked by the waker, avoiding scenarios like the following:
98  *
99  * CPU 0                               CPU 1
100  * val = *futex;
101  * sys_futex(WAIT, futex, val);
102  *   futex_wait(futex, val);
103  *   uval = *futex;
104  *                                     *futex = newval;
105  *                                     sys_futex(WAKE, futex);
106  *                                       futex_wake(futex);
107  *                                       if (queue_empty())
108  *                                         return;
109  *   if (uval == val)
110  *      lock(hash_bucket(futex));
111  *      queue();
112  *     unlock(hash_bucket(futex));
113  *     schedule();
114  *
115  * This would cause the waiter on CPU 0 to wait forever because it
116  * missed the transition of the user space value from val to newval
117  * and the waker did not find the waiter in the hash bucket queue.
118  *
119  * The correct serialization ensures that a waiter either observes
120  * the changed user space value before blocking or is woken by a
121  * concurrent waker:
122  *
123  * CPU 0                                 CPU 1
124  * val = *futex;
125  * sys_futex(WAIT, futex, val);
126  *   futex_wait(futex, val);
127  *
128  *   waiters++; (a)
129  *   smp_mb(); (A) <-- paired with -.
130  *                                  |
131  *   lock(hash_bucket(futex));      |
132  *                                  |
133  *   uval = *futex;                 |
134  *                                  |        *futex = newval;
135  *                                  |        sys_futex(WAKE, futex);
136  *                                  |          futex_wake(futex);
137  *                                  |
138  *                                  `--------> smp_mb(); (B)
139  *   if (uval == val)
140  *     queue();
141  *     unlock(hash_bucket(futex));
142  *     schedule();                         if (waiters)
143  *                                           lock(hash_bucket(futex));
144  *   else                                    wake_waiters(futex);
145  *     waiters--; (b)                        unlock(hash_bucket(futex));
146  *
147  * Where (A) orders the waiters increment and the futex value read through
148  * atomic operations (see hb_waiters_inc) and where (B) orders the write
149  * to futex and the waiters read -- this is done by the barriers for both
150  * shared and private futexes in get_futex_key_refs().
151  *
152  * This yields the following case (where X:=waiters, Y:=futex):
153  *
154  *      X = Y = 0
155  *
156  *      w[X]=1          w[Y]=1
157  *      MB              MB
158  *      r[Y]=y          r[X]=x
159  *
160  * Which guarantees that x==0 && y==0 is impossible; which translates back into
161  * the guarantee that we cannot both miss the futex variable change and the
162  * enqueue.
163  *
164  * Note that a new waiter is accounted for in (a) even when it is possible that
165  * the wait call can return error, in which case we backtrack from it in (b).
166  * Refer to the comment in queue_lock().
167  *
168  * Similarly, in order to account for waiters being requeued on another
169  * address we always increment the waiters for the destination bucket before
170  * acquiring the lock. It then decrements them again  after releasing it -
171  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172  * will do the additional required waiter count housekeeping. This is done for
173  * double_lock_hb() and double_unlock_hb(), respectively.
174  */
175
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179
180 /*
181  * Futex flags used to encode options to functions and preserve them across
182  * restarts.
183  */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED           0x01
186 #else
187 /*
188  * NOMMU does not have per process address space. Let the compiler optimize
189  * code away.
190  */
191 # define FLAGS_SHARED           0x00
192 #endif
193 #define FLAGS_CLOCKRT           0x02
194 #define FLAGS_HAS_TIMEOUT       0x04
195
196 /*
197  * Priority Inheritance state:
198  */
199 struct futex_pi_state {
200         /*
201          * list of 'owned' pi_state instances - these have to be
202          * cleaned up in do_exit() if the task exits prematurely:
203          */
204         struct list_head list;
205
206         /*
207          * The PI object:
208          */
209         struct rt_mutex pi_mutex;
210
211         struct task_struct *owner;
212         atomic_t refcount;
213
214         union futex_key key;
215 };
216
217 /**
218  * struct futex_q - The hashed futex queue entry, one per waiting task
219  * @list:               priority-sorted list of tasks waiting on this futex
220  * @task:               the task waiting on the futex
221  * @lock_ptr:           the hash bucket lock
222  * @key:                the key the futex is hashed on
223  * @pi_state:           optional priority inheritance state
224  * @rt_waiter:          rt_waiter storage for use with requeue_pi
225  * @requeue_pi_key:     the requeue_pi target futex key
226  * @bitset:             bitset for the optional bitmasked wakeup
227  *
228  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
229  * we can wake only the relevant ones (hashed queues may be shared).
230  *
231  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233  * The order of wakeup is always to make the first condition true, then
234  * the second.
235  *
236  * PI futexes are typically woken before they are removed from the hash list via
237  * the rt_mutex code. See unqueue_me_pi().
238  */
239 struct futex_q {
240         struct plist_node list;
241
242         struct task_struct *task;
243         spinlock_t *lock_ptr;
244         union futex_key key;
245         struct futex_pi_state *pi_state;
246         struct rt_mutex_waiter *rt_waiter;
247         union futex_key *requeue_pi_key;
248         u32 bitset;
249 };
250
251 static const struct futex_q futex_q_init = {
252         /* list gets initialized in queue_me()*/
253         .key = FUTEX_KEY_INIT,
254         .bitset = FUTEX_BITSET_MATCH_ANY
255 };
256
257 /*
258  * Hash buckets are shared by all the futex_keys that hash to the same
259  * location.  Each key may have multiple futex_q structures, one for each task
260  * waiting on a futex.
261  */
262 struct futex_hash_bucket {
263         atomic_t waiters;
264         spinlock_t lock;
265         struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267
268 /*
269  * The base of the bucket array and its size are always used together
270  * (after initialization only in hash_futex()), so ensure that they
271  * reside in the same cacheline.
272  */
273 static struct {
274         struct futex_hash_bucket *queues;
275         unsigned long            hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues   (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279
280
281 /*
282  * Fault injections for futexes.
283  */
284 #ifdef CONFIG_FAIL_FUTEX
285
286 static struct {
287         struct fault_attr attr;
288
289         bool ignore_private;
290 } fail_futex = {
291         .attr = FAULT_ATTR_INITIALIZER,
292         .ignore_private = false,
293 };
294
295 static int __init setup_fail_futex(char *str)
296 {
297         return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300
301 static bool should_fail_futex(bool fshared)
302 {
303         if (fail_futex.ignore_private && !fshared)
304                 return false;
305
306         return should_fail(&fail_futex.attr, 1);
307 }
308
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311 static int __init fail_futex_debugfs(void)
312 {
313         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314         struct dentry *dir;
315
316         dir = fault_create_debugfs_attr("fail_futex", NULL,
317                                         &fail_futex.attr);
318         if (IS_ERR(dir))
319                 return PTR_ERR(dir);
320
321         if (!debugfs_create_bool("ignore-private", mode, dir,
322                                  &fail_futex.ignore_private)) {
323                 debugfs_remove_recursive(dir);
324                 return -ENOMEM;
325         }
326
327         return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
335 static inline bool should_fail_futex(bool fshared)
336 {
337         return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
341 static inline void futex_get_mm(union futex_key *key)
342 {
343         mmgrab(key->private.mm);
344         /*
345          * Ensure futex_get_mm() implies a full barrier such that
346          * get_futex_key() implies a full barrier. This is relied upon
347          * as smp_mb(); (B), see the ordering comment above.
348          */
349         smp_mb__after_atomic();
350 }
351
352 /*
353  * Reflects a new waiter being added to the waitqueue.
354  */
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358         atomic_inc(&hb->waiters);
359         /*
360          * Full barrier (A), see the ordering comment above.
361          */
362         smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367  * Reflects a waiter being removed from the waitqueue by wakeup
368  * paths.
369  */
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373         atomic_dec(&hb->waiters);
374 #endif
375 }
376
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380         return atomic_read(&hb->waiters);
381 #else
382         return 1;
383 #endif
384 }
385
386 /**
387  * hash_futex - Return the hash bucket in the global hash
388  * @key:        Pointer to the futex key for which the hash is calculated
389  *
390  * We hash on the keys returned from get_futex_key (see below) and return the
391  * corresponding hash bucket in the global hash.
392  */
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395         u32 hash = jhash2((u32*)&key->both.word,
396                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397                           key->both.offset);
398         return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403  * match_futex - Check whether two futex keys are equal
404  * @key1:       Pointer to key1
405  * @key2:       Pointer to key2
406  *
407  * Return 1 if two futex_keys are equal, 0 otherwise.
408  */
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411         return (key1 && key2
412                 && key1->both.word == key2->both.word
413                 && key1->both.ptr == key2->both.ptr
414                 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418  * Take a reference to the resource addressed by a key.
419  * Can be called while holding spinlocks.
420  *
421  */
422 static void get_futex_key_refs(union futex_key *key)
423 {
424         if (!key->both.ptr)
425                 return;
426
427         /*
428          * On MMU less systems futexes are always "private" as there is no per
429          * process address space. We need the smp wmb nevertheless - yes,
430          * arch/blackfin has MMU less SMP ...
431          */
432         if (!IS_ENABLED(CONFIG_MMU)) {
433                 smp_mb(); /* explicit smp_mb(); (B) */
434                 return;
435         }
436
437         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438         case FUT_OFF_INODE:
439                 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440                 break;
441         case FUT_OFF_MMSHARED:
442                 futex_get_mm(key); /* implies smp_mb(); (B) */
443                 break;
444         default:
445                 /*
446                  * Private futexes do not hold reference on an inode or
447                  * mm, therefore the only purpose of calling get_futex_key_refs
448                  * is because we need the barrier for the lockless waiter check.
449                  */
450                 smp_mb(); /* explicit smp_mb(); (B) */
451         }
452 }
453
454 /*
455  * Drop a reference to the resource addressed by a key.
456  * The hash bucket spinlock must not be held. This is
457  * a no-op for private futexes, see comment in the get
458  * counterpart.
459  */
460 static void drop_futex_key_refs(union futex_key *key)
461 {
462         if (!key->both.ptr) {
463                 /* If we're here then we tried to put a key we failed to get */
464                 WARN_ON_ONCE(1);
465                 return;
466         }
467
468         if (!IS_ENABLED(CONFIG_MMU))
469                 return;
470
471         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472         case FUT_OFF_INODE:
473                 iput(key->shared.inode);
474                 break;
475         case FUT_OFF_MMSHARED:
476                 mmdrop(key->private.mm);
477                 break;
478         }
479 }
480
481 /**
482  * get_futex_key() - Get parameters which are the keys for a futex
483  * @uaddr:      virtual address of the futex
484  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485  * @key:        address where result is stored.
486  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
487  *              VERIFY_WRITE)
488  *
489  * Return: a negative error code or 0
490  *
491  * The key words are stored in *key on success.
492  *
493  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
495  * We can usually work out the index without swapping in the page.
496  *
497  * lock_page() might sleep, the caller should not hold a spinlock.
498  */
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501 {
502         unsigned long address = (unsigned long)uaddr;
503         struct mm_struct *mm = current->mm;
504         struct page *page, *tail;
505         struct address_space *mapping;
506         int err, ro = 0;
507
508         /*
509          * The futex address must be "naturally" aligned.
510          */
511         key->both.offset = address % PAGE_SIZE;
512         if (unlikely((address % sizeof(u32)) != 0))
513                 return -EINVAL;
514         address -= key->both.offset;
515
516         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517                 return -EFAULT;
518
519         if (unlikely(should_fail_futex(fshared)))
520                 return -EFAULT;
521
522         /*
523          * PROCESS_PRIVATE futexes are fast.
524          * As the mm cannot disappear under us and the 'key' only needs
525          * virtual address, we dont even have to find the underlying vma.
526          * Note : We do have to check 'uaddr' is a valid user address,
527          *        but access_ok() should be faster than find_vma()
528          */
529         if (!fshared) {
530                 key->private.mm = mm;
531                 key->private.address = address;
532                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
533                 return 0;
534         }
535
536 again:
537         /* Ignore any VERIFY_READ mapping (futex common case) */
538         if (unlikely(should_fail_futex(fshared)))
539                 return -EFAULT;
540
541         err = get_user_pages_fast(address, 1, 1, &page);
542         /*
543          * If write access is not required (eg. FUTEX_WAIT), try
544          * and get read-only access.
545          */
546         if (err == -EFAULT && rw == VERIFY_READ) {
547                 err = get_user_pages_fast(address, 1, 0, &page);
548                 ro = 1;
549         }
550         if (err < 0)
551                 return err;
552         else
553                 err = 0;
554
555         /*
556          * The treatment of mapping from this point on is critical. The page
557          * lock protects many things but in this context the page lock
558          * stabilizes mapping, prevents inode freeing in the shared
559          * file-backed region case and guards against movement to swap cache.
560          *
561          * Strictly speaking the page lock is not needed in all cases being
562          * considered here and page lock forces unnecessarily serialization
563          * From this point on, mapping will be re-verified if necessary and
564          * page lock will be acquired only if it is unavoidable
565          *
566          * Mapping checks require the head page for any compound page so the
567          * head page and mapping is looked up now. For anonymous pages, it
568          * does not matter if the page splits in the future as the key is
569          * based on the address. For filesystem-backed pages, the tail is
570          * required as the index of the page determines the key. For
571          * base pages, there is no tail page and tail == page.
572          */
573         tail = page;
574         page = compound_head(page);
575         mapping = READ_ONCE(page->mapping);
576
577         /*
578          * If page->mapping is NULL, then it cannot be a PageAnon
579          * page; but it might be the ZERO_PAGE or in the gate area or
580          * in a special mapping (all cases which we are happy to fail);
581          * or it may have been a good file page when get_user_pages_fast
582          * found it, but truncated or holepunched or subjected to
583          * invalidate_complete_page2 before we got the page lock (also
584          * cases which we are happy to fail).  And we hold a reference,
585          * so refcount care in invalidate_complete_page's remove_mapping
586          * prevents drop_caches from setting mapping to NULL beneath us.
587          *
588          * The case we do have to guard against is when memory pressure made
589          * shmem_writepage move it from filecache to swapcache beneath us:
590          * an unlikely race, but we do need to retry for page->mapping.
591          */
592         if (unlikely(!mapping)) {
593                 int shmem_swizzled;
594
595                 /*
596                  * Page lock is required to identify which special case above
597                  * applies. If this is really a shmem page then the page lock
598                  * will prevent unexpected transitions.
599                  */
600                 lock_page(page);
601                 shmem_swizzled = PageSwapCache(page) || page->mapping;
602                 unlock_page(page);
603                 put_page(page);
604
605                 if (shmem_swizzled)
606                         goto again;
607
608                 return -EFAULT;
609         }
610
611         /*
612          * Private mappings are handled in a simple way.
613          *
614          * If the futex key is stored on an anonymous page, then the associated
615          * object is the mm which is implicitly pinned by the calling process.
616          *
617          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618          * it's a read-only handle, it's expected that futexes attach to
619          * the object not the particular process.
620          */
621         if (PageAnon(page)) {
622                 /*
623                  * A RO anonymous page will never change and thus doesn't make
624                  * sense for futex operations.
625                  */
626                 if (unlikely(should_fail_futex(fshared)) || ro) {
627                         err = -EFAULT;
628                         goto out;
629                 }
630
631                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632                 key->private.mm = mm;
633                 key->private.address = address;
634
635                 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
637         } else {
638                 struct inode *inode;
639
640                 /*
641                  * The associated futex object in this case is the inode and
642                  * the page->mapping must be traversed. Ordinarily this should
643                  * be stabilised under page lock but it's not strictly
644                  * necessary in this case as we just want to pin the inode, not
645                  * update the radix tree or anything like that.
646                  *
647                  * The RCU read lock is taken as the inode is finally freed
648                  * under RCU. If the mapping still matches expectations then the
649                  * mapping->host can be safely accessed as being a valid inode.
650                  */
651                 rcu_read_lock();
652
653                 if (READ_ONCE(page->mapping) != mapping) {
654                         rcu_read_unlock();
655                         put_page(page);
656
657                         goto again;
658                 }
659
660                 inode = READ_ONCE(mapping->host);
661                 if (!inode) {
662                         rcu_read_unlock();
663                         put_page(page);
664
665                         goto again;
666                 }
667
668                 /*
669                  * Take a reference unless it is about to be freed. Previously
670                  * this reference was taken by ihold under the page lock
671                  * pinning the inode in place so i_lock was unnecessary. The
672                  * only way for this check to fail is if the inode was
673                  * truncated in parallel so warn for now if this happens.
674                  *
675                  * We are not calling into get_futex_key_refs() in file-backed
676                  * cases, therefore a successful atomic_inc return below will
677                  * guarantee that get_futex_key() will still imply smp_mb(); (B).
678                  */
679                 if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
680                         rcu_read_unlock();
681                         put_page(page);
682
683                         goto again;
684                 }
685
686                 /* Should be impossible but lets be paranoid for now */
687                 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
688                         err = -EFAULT;
689                         rcu_read_unlock();
690                         iput(inode);
691
692                         goto out;
693                 }
694
695                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
696                 key->shared.inode = inode;
697                 key->shared.pgoff = basepage_index(tail);
698                 rcu_read_unlock();
699         }
700
701 out:
702         put_page(page);
703         return err;
704 }
705
706 static inline void put_futex_key(union futex_key *key)
707 {
708         drop_futex_key_refs(key);
709 }
710
711 /**
712  * fault_in_user_writeable() - Fault in user address and verify RW access
713  * @uaddr:      pointer to faulting user space address
714  *
715  * Slow path to fixup the fault we just took in the atomic write
716  * access to @uaddr.
717  *
718  * We have no generic implementation of a non-destructive write to the
719  * user address. We know that we faulted in the atomic pagefault
720  * disabled section so we can as well avoid the #PF overhead by
721  * calling get_user_pages() right away.
722  */
723 static int fault_in_user_writeable(u32 __user *uaddr)
724 {
725         struct mm_struct *mm = current->mm;
726         int ret;
727
728         down_read(&mm->mmap_sem);
729         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
730                                FAULT_FLAG_WRITE, NULL);
731         up_read(&mm->mmap_sem);
732
733         return ret < 0 ? ret : 0;
734 }
735
736 /**
737  * futex_top_waiter() - Return the highest priority waiter on a futex
738  * @hb:         the hash bucket the futex_q's reside in
739  * @key:        the futex key (to distinguish it from other futex futex_q's)
740  *
741  * Must be called with the hb lock held.
742  */
743 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
744                                         union futex_key *key)
745 {
746         struct futex_q *this;
747
748         plist_for_each_entry(this, &hb->chain, list) {
749                 if (match_futex(&this->key, key))
750                         return this;
751         }
752         return NULL;
753 }
754
755 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
756                                       u32 uval, u32 newval)
757 {
758         int ret;
759
760         pagefault_disable();
761         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
762         pagefault_enable();
763
764         return ret;
765 }
766
767 static int get_futex_value_locked(u32 *dest, u32 __user *from)
768 {
769         int ret;
770
771         pagefault_disable();
772         ret = __get_user(*dest, from);
773         pagefault_enable();
774
775         return ret ? -EFAULT : 0;
776 }
777
778
779 /*
780  * PI code:
781  */
782 static int refill_pi_state_cache(void)
783 {
784         struct futex_pi_state *pi_state;
785
786         if (likely(current->pi_state_cache))
787                 return 0;
788
789         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
790
791         if (!pi_state)
792                 return -ENOMEM;
793
794         INIT_LIST_HEAD(&pi_state->list);
795         /* pi_mutex gets initialized later */
796         pi_state->owner = NULL;
797         atomic_set(&pi_state->refcount, 1);
798         pi_state->key = FUTEX_KEY_INIT;
799
800         current->pi_state_cache = pi_state;
801
802         return 0;
803 }
804
805 static struct futex_pi_state *alloc_pi_state(void)
806 {
807         struct futex_pi_state *pi_state = current->pi_state_cache;
808
809         WARN_ON(!pi_state);
810         current->pi_state_cache = NULL;
811
812         return pi_state;
813 }
814
815 static void get_pi_state(struct futex_pi_state *pi_state)
816 {
817         WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
818 }
819
820 /*
821  * Drops a reference to the pi_state object and frees or caches it
822  * when the last reference is gone.
823  *
824  * Must be called with the hb lock held.
825  */
826 static void put_pi_state(struct futex_pi_state *pi_state)
827 {
828         if (!pi_state)
829                 return;
830
831         if (!atomic_dec_and_test(&pi_state->refcount))
832                 return;
833
834         /*
835          * If pi_state->owner is NULL, the owner is most probably dying
836          * and has cleaned up the pi_state already
837          */
838         if (pi_state->owner) {
839                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
840                 list_del_init(&pi_state->list);
841                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
842
843                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
844         }
845
846         if (current->pi_state_cache)
847                 kfree(pi_state);
848         else {
849                 /*
850                  * pi_state->list is already empty.
851                  * clear pi_state->owner.
852                  * refcount is at 0 - put it back to 1.
853                  */
854                 pi_state->owner = NULL;
855                 atomic_set(&pi_state->refcount, 1);
856                 current->pi_state_cache = pi_state;
857         }
858 }
859
860 /*
861  * Look up the task based on what TID userspace gave us.
862  * We dont trust it.
863  */
864 static struct task_struct *futex_find_get_task(pid_t pid)
865 {
866         struct task_struct *p;
867
868         rcu_read_lock();
869         p = find_task_by_vpid(pid);
870         if (p)
871                 get_task_struct(p);
872
873         rcu_read_unlock();
874
875         return p;
876 }
877
878 /*
879  * This task is holding PI mutexes at exit time => bad.
880  * Kernel cleans up PI-state, but userspace is likely hosed.
881  * (Robust-futex cleanup is separate and might save the day for userspace.)
882  */
883 void exit_pi_state_list(struct task_struct *curr)
884 {
885         struct list_head *next, *head = &curr->pi_state_list;
886         struct futex_pi_state *pi_state;
887         struct futex_hash_bucket *hb;
888         union futex_key key = FUTEX_KEY_INIT;
889
890         if (!futex_cmpxchg_enabled)
891                 return;
892         /*
893          * We are a ZOMBIE and nobody can enqueue itself on
894          * pi_state_list anymore, but we have to be careful
895          * versus waiters unqueueing themselves:
896          */
897         raw_spin_lock_irq(&curr->pi_lock);
898         while (!list_empty(head)) {
899
900                 next = head->next;
901                 pi_state = list_entry(next, struct futex_pi_state, list);
902                 key = pi_state->key;
903                 hb = hash_futex(&key);
904                 raw_spin_unlock_irq(&curr->pi_lock);
905
906                 spin_lock(&hb->lock);
907
908                 raw_spin_lock_irq(&curr->pi_lock);
909                 /*
910                  * We dropped the pi-lock, so re-check whether this
911                  * task still owns the PI-state:
912                  */
913                 if (head->next != next) {
914                         spin_unlock(&hb->lock);
915                         continue;
916                 }
917
918                 WARN_ON(pi_state->owner != curr);
919                 WARN_ON(list_empty(&pi_state->list));
920                 list_del_init(&pi_state->list);
921                 pi_state->owner = NULL;
922                 raw_spin_unlock_irq(&curr->pi_lock);
923
924                 get_pi_state(pi_state);
925                 spin_unlock(&hb->lock);
926
927                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
928                 put_pi_state(pi_state);
929
930                 raw_spin_lock_irq(&curr->pi_lock);
931         }
932         raw_spin_unlock_irq(&curr->pi_lock);
933 }
934
935 /*
936  * We need to check the following states:
937  *
938  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
939  *
940  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
941  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
942  *
943  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
944  *
945  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
946  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
947  *
948  * [6]  Found  | Found    | task      | 0         | 1      | Valid
949  *
950  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
951  *
952  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
953  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
954  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
955  *
956  * [1]  Indicates that the kernel can acquire the futex atomically. We
957  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
958  *
959  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
960  *      thread is found then it indicates that the owner TID has died.
961  *
962  * [3]  Invalid. The waiter is queued on a non PI futex
963  *
964  * [4]  Valid state after exit_robust_list(), which sets the user space
965  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
966  *
967  * [5]  The user space value got manipulated between exit_robust_list()
968  *      and exit_pi_state_list()
969  *
970  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
971  *      the pi_state but cannot access the user space value.
972  *
973  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
974  *
975  * [8]  Owner and user space value match
976  *
977  * [9]  There is no transient state which sets the user space TID to 0
978  *      except exit_robust_list(), but this is indicated by the
979  *      FUTEX_OWNER_DIED bit. See [4]
980  *
981  * [10] There is no transient state which leaves owner and user space
982  *      TID out of sync.
983  *
984  *
985  * Serialization and lifetime rules:
986  *
987  * hb->lock:
988  *
989  *      hb -> futex_q, relation
990  *      futex_q -> pi_state, relation
991  *
992  *      (cannot be raw because hb can contain arbitrary amount
993  *       of futex_q's)
994  *
995  * pi_mutex->wait_lock:
996  *
997  *      {uval, pi_state}
998  *
999  *      (and pi_mutex 'obviously')
1000  *
1001  * p->pi_lock:
1002  *
1003  *      p->pi_state_list -> pi_state->list, relation
1004  *
1005  * pi_state->refcount:
1006  *
1007  *      pi_state lifetime
1008  *
1009  *
1010  * Lock order:
1011  *
1012  *   hb->lock
1013  *     pi_mutex->wait_lock
1014  *       p->pi_lock
1015  *
1016  */
1017
1018 /*
1019  * Validate that the existing waiter has a pi_state and sanity check
1020  * the pi_state against the user space value. If correct, attach to
1021  * it.
1022  */
1023 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1024                               struct futex_pi_state *pi_state,
1025                               struct futex_pi_state **ps)
1026 {
1027         pid_t pid = uval & FUTEX_TID_MASK;
1028         int ret, uval2;
1029
1030         /*
1031          * Userspace might have messed up non-PI and PI futexes [3]
1032          */
1033         if (unlikely(!pi_state))
1034                 return -EINVAL;
1035
1036         /*
1037          * We get here with hb->lock held, and having found a
1038          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1039          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1040          * which in turn means that futex_lock_pi() still has a reference on
1041          * our pi_state.
1042          *
1043          * The waiter holding a reference on @pi_state also protects against
1044          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1045          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1046          * free pi_state before we can take a reference ourselves.
1047          */
1048         WARN_ON(!atomic_read(&pi_state->refcount));
1049
1050         /*
1051          * Now that we have a pi_state, we can acquire wait_lock
1052          * and do the state validation.
1053          */
1054         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1055
1056         /*
1057          * Since {uval, pi_state} is serialized by wait_lock, and our current
1058          * uval was read without holding it, it can have changed. Verify it
1059          * still is what we expect it to be, otherwise retry the entire
1060          * operation.
1061          */
1062         if (get_futex_value_locked(&uval2, uaddr))
1063                 goto out_efault;
1064
1065         if (uval != uval2)
1066                 goto out_eagain;
1067
1068         /*
1069          * Handle the owner died case:
1070          */
1071         if (uval & FUTEX_OWNER_DIED) {
1072                 /*
1073                  * exit_pi_state_list sets owner to NULL and wakes the
1074                  * topmost waiter. The task which acquires the
1075                  * pi_state->rt_mutex will fixup owner.
1076                  */
1077                 if (!pi_state->owner) {
1078                         /*
1079                          * No pi state owner, but the user space TID
1080                          * is not 0. Inconsistent state. [5]
1081                          */
1082                         if (pid)
1083                                 goto out_einval;
1084                         /*
1085                          * Take a ref on the state and return success. [4]
1086                          */
1087                         goto out_attach;
1088                 }
1089
1090                 /*
1091                  * If TID is 0, then either the dying owner has not
1092                  * yet executed exit_pi_state_list() or some waiter
1093                  * acquired the rtmutex in the pi state, but did not
1094                  * yet fixup the TID in user space.
1095                  *
1096                  * Take a ref on the state and return success. [6]
1097                  */
1098                 if (!pid)
1099                         goto out_attach;
1100         } else {
1101                 /*
1102                  * If the owner died bit is not set, then the pi_state
1103                  * must have an owner. [7]
1104                  */
1105                 if (!pi_state->owner)
1106                         goto out_einval;
1107         }
1108
1109         /*
1110          * Bail out if user space manipulated the futex value. If pi
1111          * state exists then the owner TID must be the same as the
1112          * user space TID. [9/10]
1113          */
1114         if (pid != task_pid_vnr(pi_state->owner))
1115                 goto out_einval;
1116
1117 out_attach:
1118         get_pi_state(pi_state);
1119         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1120         *ps = pi_state;
1121         return 0;
1122
1123 out_einval:
1124         ret = -EINVAL;
1125         goto out_error;
1126
1127 out_eagain:
1128         ret = -EAGAIN;
1129         goto out_error;
1130
1131 out_efault:
1132         ret = -EFAULT;
1133         goto out_error;
1134
1135 out_error:
1136         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1137         return ret;
1138 }
1139
1140 /*
1141  * Lookup the task for the TID provided from user space and attach to
1142  * it after doing proper sanity checks.
1143  */
1144 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1145                               struct futex_pi_state **ps)
1146 {
1147         pid_t pid = uval & FUTEX_TID_MASK;
1148         struct futex_pi_state *pi_state;
1149         struct task_struct *p;
1150
1151         /*
1152          * We are the first waiter - try to look up the real owner and attach
1153          * the new pi_state to it, but bail out when TID = 0 [1]
1154          */
1155         if (!pid)
1156                 return -ESRCH;
1157         p = futex_find_get_task(pid);
1158         if (!p)
1159                 return -ESRCH;
1160
1161         if (unlikely(p->flags & PF_KTHREAD)) {
1162                 put_task_struct(p);
1163                 return -EPERM;
1164         }
1165
1166         /*
1167          * We need to look at the task state flags to figure out,
1168          * whether the task is exiting. To protect against the do_exit
1169          * change of the task flags, we do this protected by
1170          * p->pi_lock:
1171          */
1172         raw_spin_lock_irq(&p->pi_lock);
1173         if (unlikely(p->flags & PF_EXITING)) {
1174                 /*
1175                  * The task is on the way out. When PF_EXITPIDONE is
1176                  * set, we know that the task has finished the
1177                  * cleanup:
1178                  */
1179                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1180
1181                 raw_spin_unlock_irq(&p->pi_lock);
1182                 put_task_struct(p);
1183                 return ret;
1184         }
1185
1186         /*
1187          * No existing pi state. First waiter. [2]
1188          *
1189          * This creates pi_state, we have hb->lock held, this means nothing can
1190          * observe this state, wait_lock is irrelevant.
1191          */
1192         pi_state = alloc_pi_state();
1193
1194         /*
1195          * Initialize the pi_mutex in locked state and make @p
1196          * the owner of it:
1197          */
1198         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1199
1200         /* Store the key for possible exit cleanups: */
1201         pi_state->key = *key;
1202
1203         WARN_ON(!list_empty(&pi_state->list));
1204         list_add(&pi_state->list, &p->pi_state_list);
1205         pi_state->owner = p;
1206         raw_spin_unlock_irq(&p->pi_lock);
1207
1208         put_task_struct(p);
1209
1210         *ps = pi_state;
1211
1212         return 0;
1213 }
1214
1215 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1216                            struct futex_hash_bucket *hb,
1217                            union futex_key *key, struct futex_pi_state **ps)
1218 {
1219         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1220
1221         /*
1222          * If there is a waiter on that futex, validate it and
1223          * attach to the pi_state when the validation succeeds.
1224          */
1225         if (top_waiter)
1226                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1227
1228         /*
1229          * We are the first waiter - try to look up the owner based on
1230          * @uval and attach to it.
1231          */
1232         return attach_to_pi_owner(uval, key, ps);
1233 }
1234
1235 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1236 {
1237         u32 uninitialized_var(curval);
1238
1239         if (unlikely(should_fail_futex(true)))
1240                 return -EFAULT;
1241
1242         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1243                 return -EFAULT;
1244
1245         /* If user space value changed, let the caller retry */
1246         return curval != uval ? -EAGAIN : 0;
1247 }
1248
1249 /**
1250  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1251  * @uaddr:              the pi futex user address
1252  * @hb:                 the pi futex hash bucket
1253  * @key:                the futex key associated with uaddr and hb
1254  * @ps:                 the pi_state pointer where we store the result of the
1255  *                      lookup
1256  * @task:               the task to perform the atomic lock work for.  This will
1257  *                      be "current" except in the case of requeue pi.
1258  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1259  *
1260  * Return:
1261  *  0 - ready to wait;
1262  *  1 - acquired the lock;
1263  * <0 - error
1264  *
1265  * The hb->lock and futex_key refs shall be held by the caller.
1266  */
1267 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1268                                 union futex_key *key,
1269                                 struct futex_pi_state **ps,
1270                                 struct task_struct *task, int set_waiters)
1271 {
1272         u32 uval, newval, vpid = task_pid_vnr(task);
1273         struct futex_q *top_waiter;
1274         int ret;
1275
1276         /*
1277          * Read the user space value first so we can validate a few
1278          * things before proceeding further.
1279          */
1280         if (get_futex_value_locked(&uval, uaddr))
1281                 return -EFAULT;
1282
1283         if (unlikely(should_fail_futex(true)))
1284                 return -EFAULT;
1285
1286         /*
1287          * Detect deadlocks.
1288          */
1289         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1290                 return -EDEADLK;
1291
1292         if ((unlikely(should_fail_futex(true))))
1293                 return -EDEADLK;
1294
1295         /*
1296          * Lookup existing state first. If it exists, try to attach to
1297          * its pi_state.
1298          */
1299         top_waiter = futex_top_waiter(hb, key);
1300         if (top_waiter)
1301                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1302
1303         /*
1304          * No waiter and user TID is 0. We are here because the
1305          * waiters or the owner died bit is set or called from
1306          * requeue_cmp_pi or for whatever reason something took the
1307          * syscall.
1308          */
1309         if (!(uval & FUTEX_TID_MASK)) {
1310                 /*
1311                  * We take over the futex. No other waiters and the user space
1312                  * TID is 0. We preserve the owner died bit.
1313                  */
1314                 newval = uval & FUTEX_OWNER_DIED;
1315                 newval |= vpid;
1316
1317                 /* The futex requeue_pi code can enforce the waiters bit */
1318                 if (set_waiters)
1319                         newval |= FUTEX_WAITERS;
1320
1321                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1322                 /* If the take over worked, return 1 */
1323                 return ret < 0 ? ret : 1;
1324         }
1325
1326         /*
1327          * First waiter. Set the waiters bit before attaching ourself to
1328          * the owner. If owner tries to unlock, it will be forced into
1329          * the kernel and blocked on hb->lock.
1330          */
1331         newval = uval | FUTEX_WAITERS;
1332         ret = lock_pi_update_atomic(uaddr, uval, newval);
1333         if (ret)
1334                 return ret;
1335         /*
1336          * If the update of the user space value succeeded, we try to
1337          * attach to the owner. If that fails, no harm done, we only
1338          * set the FUTEX_WAITERS bit in the user space variable.
1339          */
1340         return attach_to_pi_owner(uval, key, ps);
1341 }
1342
1343 /**
1344  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1345  * @q:  The futex_q to unqueue
1346  *
1347  * The q->lock_ptr must not be NULL and must be held by the caller.
1348  */
1349 static void __unqueue_futex(struct futex_q *q)
1350 {
1351         struct futex_hash_bucket *hb;
1352
1353         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1354             || WARN_ON(plist_node_empty(&q->list)))
1355                 return;
1356
1357         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1358         plist_del(&q->list, &hb->chain);
1359         hb_waiters_dec(hb);
1360 }
1361
1362 /*
1363  * The hash bucket lock must be held when this is called.
1364  * Afterwards, the futex_q must not be accessed. Callers
1365  * must ensure to later call wake_up_q() for the actual
1366  * wakeups to occur.
1367  */
1368 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1369 {
1370         struct task_struct *p = q->task;
1371
1372         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1373                 return;
1374
1375         /*
1376          * Queue the task for later wakeup for after we've released
1377          * the hb->lock. wake_q_add() grabs reference to p.
1378          */
1379         wake_q_add(wake_q, p);
1380         __unqueue_futex(q);
1381         /*
1382          * The waiting task can free the futex_q as soon as
1383          * q->lock_ptr = NULL is written, without taking any locks. A
1384          * memory barrier is required here to prevent the following
1385          * store to lock_ptr from getting ahead of the plist_del.
1386          */
1387         smp_store_release(&q->lock_ptr, NULL);
1388 }
1389
1390 /*
1391  * Caller must hold a reference on @pi_state.
1392  */
1393 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1394 {
1395         u32 uninitialized_var(curval), newval;
1396         struct task_struct *new_owner;
1397         bool postunlock = false;
1398         DEFINE_WAKE_Q(wake_q);
1399         int ret = 0;
1400
1401         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1402         if (WARN_ON_ONCE(!new_owner)) {
1403                 /*
1404                  * As per the comment in futex_unlock_pi() this should not happen.
1405                  *
1406                  * When this happens, give up our locks and try again, giving
1407                  * the futex_lock_pi() instance time to complete, either by
1408                  * waiting on the rtmutex or removing itself from the futex
1409                  * queue.
1410                  */
1411                 ret = -EAGAIN;
1412                 goto out_unlock;
1413         }
1414
1415         /*
1416          * We pass it to the next owner. The WAITERS bit is always kept
1417          * enabled while there is PI state around. We cleanup the owner
1418          * died bit, because we are the owner.
1419          */
1420         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1421
1422         if (unlikely(should_fail_futex(true)))
1423                 ret = -EFAULT;
1424
1425         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1426                 ret = -EFAULT;
1427
1428         } else if (curval != uval) {
1429                 /*
1430                  * If a unconditional UNLOCK_PI operation (user space did not
1431                  * try the TID->0 transition) raced with a waiter setting the
1432                  * FUTEX_WAITERS flag between get_user() and locking the hash
1433                  * bucket lock, retry the operation.
1434                  */
1435                 if ((FUTEX_TID_MASK & curval) == uval)
1436                         ret = -EAGAIN;
1437                 else
1438                         ret = -EINVAL;
1439         }
1440
1441         if (ret)
1442                 goto out_unlock;
1443
1444         raw_spin_lock(&pi_state->owner->pi_lock);
1445         WARN_ON(list_empty(&pi_state->list));
1446         list_del_init(&pi_state->list);
1447         raw_spin_unlock(&pi_state->owner->pi_lock);
1448
1449         raw_spin_lock(&new_owner->pi_lock);
1450         WARN_ON(!list_empty(&pi_state->list));
1451         list_add(&pi_state->list, &new_owner->pi_state_list);
1452         pi_state->owner = new_owner;
1453         raw_spin_unlock(&new_owner->pi_lock);
1454
1455         /*
1456          * We've updated the uservalue, this unlock cannot fail.
1457          */
1458         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1459
1460 out_unlock:
1461         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1462
1463         if (postunlock)
1464                 rt_mutex_postunlock(&wake_q);
1465
1466         return ret;
1467 }
1468
1469 /*
1470  * Express the locking dependencies for lockdep:
1471  */
1472 static inline void
1473 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1474 {
1475         if (hb1 <= hb2) {
1476                 spin_lock(&hb1->lock);
1477                 if (hb1 < hb2)
1478                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1479         } else { /* hb1 > hb2 */
1480                 spin_lock(&hb2->lock);
1481                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1482         }
1483 }
1484
1485 static inline void
1486 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1487 {
1488         spin_unlock(&hb1->lock);
1489         if (hb1 != hb2)
1490                 spin_unlock(&hb2->lock);
1491 }
1492
1493 /*
1494  * Wake up waiters matching bitset queued on this futex (uaddr).
1495  */
1496 static int
1497 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1498 {
1499         struct futex_hash_bucket *hb;
1500         struct futex_q *this, *next;
1501         union futex_key key = FUTEX_KEY_INIT;
1502         int ret;
1503         DEFINE_WAKE_Q(wake_q);
1504
1505         if (!bitset)
1506                 return -EINVAL;
1507
1508         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1509         if (unlikely(ret != 0))
1510                 goto out;
1511
1512         hb = hash_futex(&key);
1513
1514         /* Make sure we really have tasks to wakeup */
1515         if (!hb_waiters_pending(hb))
1516                 goto out_put_key;
1517
1518         spin_lock(&hb->lock);
1519
1520         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1521                 if (match_futex (&this->key, &key)) {
1522                         if (this->pi_state || this->rt_waiter) {
1523                                 ret = -EINVAL;
1524                                 break;
1525                         }
1526
1527                         /* Check if one of the bits is set in both bitsets */
1528                         if (!(this->bitset & bitset))
1529                                 continue;
1530
1531                         mark_wake_futex(&wake_q, this);
1532                         if (++ret >= nr_wake)
1533                                 break;
1534                 }
1535         }
1536
1537         spin_unlock(&hb->lock);
1538         wake_up_q(&wake_q);
1539 out_put_key:
1540         put_futex_key(&key);
1541 out:
1542         return ret;
1543 }
1544
1545 /*
1546  * Wake up all waiters hashed on the physical page that is mapped
1547  * to this virtual address:
1548  */
1549 static int
1550 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1551               int nr_wake, int nr_wake2, int op)
1552 {
1553         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1554         struct futex_hash_bucket *hb1, *hb2;
1555         struct futex_q *this, *next;
1556         int ret, op_ret;
1557         DEFINE_WAKE_Q(wake_q);
1558
1559 retry:
1560         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1561         if (unlikely(ret != 0))
1562                 goto out;
1563         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1564         if (unlikely(ret != 0))
1565                 goto out_put_key1;
1566
1567         hb1 = hash_futex(&key1);
1568         hb2 = hash_futex(&key2);
1569
1570 retry_private:
1571         double_lock_hb(hb1, hb2);
1572         op_ret = futex_atomic_op_inuser(op, uaddr2);
1573         if (unlikely(op_ret < 0)) {
1574
1575                 double_unlock_hb(hb1, hb2);
1576
1577 #ifndef CONFIG_MMU
1578                 /*
1579                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1580                  * but we might get them from range checking
1581                  */
1582                 ret = op_ret;
1583                 goto out_put_keys;
1584 #endif
1585
1586                 if (unlikely(op_ret != -EFAULT)) {
1587                         ret = op_ret;
1588                         goto out_put_keys;
1589                 }
1590
1591                 ret = fault_in_user_writeable(uaddr2);
1592                 if (ret)
1593                         goto out_put_keys;
1594
1595                 if (!(flags & FLAGS_SHARED))
1596                         goto retry_private;
1597
1598                 put_futex_key(&key2);
1599                 put_futex_key(&key1);
1600                 goto retry;
1601         }
1602
1603         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1604                 if (match_futex (&this->key, &key1)) {
1605                         if (this->pi_state || this->rt_waiter) {
1606                                 ret = -EINVAL;
1607                                 goto out_unlock;
1608                         }
1609                         mark_wake_futex(&wake_q, this);
1610                         if (++ret >= nr_wake)
1611                                 break;
1612                 }
1613         }
1614
1615         if (op_ret > 0) {
1616                 op_ret = 0;
1617                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1618                         if (match_futex (&this->key, &key2)) {
1619                                 if (this->pi_state || this->rt_waiter) {
1620                                         ret = -EINVAL;
1621                                         goto out_unlock;
1622                                 }
1623                                 mark_wake_futex(&wake_q, this);
1624                                 if (++op_ret >= nr_wake2)
1625                                         break;
1626                         }
1627                 }
1628                 ret += op_ret;
1629         }
1630
1631 out_unlock:
1632         double_unlock_hb(hb1, hb2);
1633         wake_up_q(&wake_q);
1634 out_put_keys:
1635         put_futex_key(&key2);
1636 out_put_key1:
1637         put_futex_key(&key1);
1638 out:
1639         return ret;
1640 }
1641
1642 /**
1643  * requeue_futex() - Requeue a futex_q from one hb to another
1644  * @q:          the futex_q to requeue
1645  * @hb1:        the source hash_bucket
1646  * @hb2:        the target hash_bucket
1647  * @key2:       the new key for the requeued futex_q
1648  */
1649 static inline
1650 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1651                    struct futex_hash_bucket *hb2, union futex_key *key2)
1652 {
1653
1654         /*
1655          * If key1 and key2 hash to the same bucket, no need to
1656          * requeue.
1657          */
1658         if (likely(&hb1->chain != &hb2->chain)) {
1659                 plist_del(&q->list, &hb1->chain);
1660                 hb_waiters_dec(hb1);
1661                 hb_waiters_inc(hb2);
1662                 plist_add(&q->list, &hb2->chain);
1663                 q->lock_ptr = &hb2->lock;
1664         }
1665         get_futex_key_refs(key2);
1666         q->key = *key2;
1667 }
1668
1669 /**
1670  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1671  * @q:          the futex_q
1672  * @key:        the key of the requeue target futex
1673  * @hb:         the hash_bucket of the requeue target futex
1674  *
1675  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1676  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1677  * to the requeue target futex so the waiter can detect the wakeup on the right
1678  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1679  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1680  * to protect access to the pi_state to fixup the owner later.  Must be called
1681  * with both q->lock_ptr and hb->lock held.
1682  */
1683 static inline
1684 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1685                            struct futex_hash_bucket *hb)
1686 {
1687         get_futex_key_refs(key);
1688         q->key = *key;
1689
1690         __unqueue_futex(q);
1691
1692         WARN_ON(!q->rt_waiter);
1693         q->rt_waiter = NULL;
1694
1695         q->lock_ptr = &hb->lock;
1696
1697         wake_up_state(q->task, TASK_NORMAL);
1698 }
1699
1700 /**
1701  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1702  * @pifutex:            the user address of the to futex
1703  * @hb1:                the from futex hash bucket, must be locked by the caller
1704  * @hb2:                the to futex hash bucket, must be locked by the caller
1705  * @key1:               the from futex key
1706  * @key2:               the to futex key
1707  * @ps:                 address to store the pi_state pointer
1708  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1709  *
1710  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1711  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1712  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1713  * hb1 and hb2 must be held by the caller.
1714  *
1715  * Return:
1716  *  0 - failed to acquire the lock atomically;
1717  * >0 - acquired the lock, return value is vpid of the top_waiter
1718  * <0 - error
1719  */
1720 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1721                                  struct futex_hash_bucket *hb1,
1722                                  struct futex_hash_bucket *hb2,
1723                                  union futex_key *key1, union futex_key *key2,
1724                                  struct futex_pi_state **ps, int set_waiters)
1725 {
1726         struct futex_q *top_waiter = NULL;
1727         u32 curval;
1728         int ret, vpid;
1729
1730         if (get_futex_value_locked(&curval, pifutex))
1731                 return -EFAULT;
1732
1733         if (unlikely(should_fail_futex(true)))
1734                 return -EFAULT;
1735
1736         /*
1737          * Find the top_waiter and determine if there are additional waiters.
1738          * If the caller intends to requeue more than 1 waiter to pifutex,
1739          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1740          * as we have means to handle the possible fault.  If not, don't set
1741          * the bit unecessarily as it will force the subsequent unlock to enter
1742          * the kernel.
1743          */
1744         top_waiter = futex_top_waiter(hb1, key1);
1745
1746         /* There are no waiters, nothing for us to do. */
1747         if (!top_waiter)
1748                 return 0;
1749
1750         /* Ensure we requeue to the expected futex. */
1751         if (!match_futex(top_waiter->requeue_pi_key, key2))
1752                 return -EINVAL;
1753
1754         /*
1755          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1756          * the contended case or if set_waiters is 1.  The pi_state is returned
1757          * in ps in contended cases.
1758          */
1759         vpid = task_pid_vnr(top_waiter->task);
1760         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1761                                    set_waiters);
1762         if (ret == 1) {
1763                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1764                 return vpid;
1765         }
1766         return ret;
1767 }
1768
1769 /**
1770  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1771  * @uaddr1:     source futex user address
1772  * @flags:      futex flags (FLAGS_SHARED, etc.)
1773  * @uaddr2:     target futex user address
1774  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1775  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1776  * @cmpval:     @uaddr1 expected value (or %NULL)
1777  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1778  *              pi futex (pi to pi requeue is not supported)
1779  *
1780  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1781  * uaddr2 atomically on behalf of the top waiter.
1782  *
1783  * Return:
1784  * >=0 - on success, the number of tasks requeued or woken;
1785  *  <0 - on error
1786  */
1787 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1788                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1789                          u32 *cmpval, int requeue_pi)
1790 {
1791         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1792         int drop_count = 0, task_count = 0, ret;
1793         struct futex_pi_state *pi_state = NULL;
1794         struct futex_hash_bucket *hb1, *hb2;
1795         struct futex_q *this, *next;
1796         DEFINE_WAKE_Q(wake_q);
1797
1798         if (requeue_pi) {
1799                 /*
1800                  * Requeue PI only works on two distinct uaddrs. This
1801                  * check is only valid for private futexes. See below.
1802                  */
1803                 if (uaddr1 == uaddr2)
1804                         return -EINVAL;
1805
1806                 /*
1807                  * requeue_pi requires a pi_state, try to allocate it now
1808                  * without any locks in case it fails.
1809                  */
1810                 if (refill_pi_state_cache())
1811                         return -ENOMEM;
1812                 /*
1813                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1814                  * + nr_requeue, since it acquires the rt_mutex prior to
1815                  * returning to userspace, so as to not leave the rt_mutex with
1816                  * waiters and no owner.  However, second and third wake-ups
1817                  * cannot be predicted as they involve race conditions with the
1818                  * first wake and a fault while looking up the pi_state.  Both
1819                  * pthread_cond_signal() and pthread_cond_broadcast() should
1820                  * use nr_wake=1.
1821                  */
1822                 if (nr_wake != 1)
1823                         return -EINVAL;
1824         }
1825
1826 retry:
1827         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1828         if (unlikely(ret != 0))
1829                 goto out;
1830         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1831                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1832         if (unlikely(ret != 0))
1833                 goto out_put_key1;
1834
1835         /*
1836          * The check above which compares uaddrs is not sufficient for
1837          * shared futexes. We need to compare the keys:
1838          */
1839         if (requeue_pi && match_futex(&key1, &key2)) {
1840                 ret = -EINVAL;
1841                 goto out_put_keys;
1842         }
1843
1844         hb1 = hash_futex(&key1);
1845         hb2 = hash_futex(&key2);
1846
1847 retry_private:
1848         hb_waiters_inc(hb2);
1849         double_lock_hb(hb1, hb2);
1850
1851         if (likely(cmpval != NULL)) {
1852                 u32 curval;
1853
1854                 ret = get_futex_value_locked(&curval, uaddr1);
1855
1856                 if (unlikely(ret)) {
1857                         double_unlock_hb(hb1, hb2);
1858                         hb_waiters_dec(hb2);
1859
1860                         ret = get_user(curval, uaddr1);
1861                         if (ret)
1862                                 goto out_put_keys;
1863
1864                         if (!(flags & FLAGS_SHARED))
1865                                 goto retry_private;
1866
1867                         put_futex_key(&key2);
1868                         put_futex_key(&key1);
1869                         goto retry;
1870                 }
1871                 if (curval != *cmpval) {
1872                         ret = -EAGAIN;
1873                         goto out_unlock;
1874                 }
1875         }
1876
1877         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1878                 /*
1879                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1880                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1881                  * bit.  We force this here where we are able to easily handle
1882                  * faults rather in the requeue loop below.
1883                  */
1884                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1885                                                  &key2, &pi_state, nr_requeue);
1886
1887                 /*
1888                  * At this point the top_waiter has either taken uaddr2 or is
1889                  * waiting on it.  If the former, then the pi_state will not
1890                  * exist yet, look it up one more time to ensure we have a
1891                  * reference to it. If the lock was taken, ret contains the
1892                  * vpid of the top waiter task.
1893                  * If the lock was not taken, we have pi_state and an initial
1894                  * refcount on it. In case of an error we have nothing.
1895                  */
1896                 if (ret > 0) {
1897                         WARN_ON(pi_state);
1898                         drop_count++;
1899                         task_count++;
1900                         /*
1901                          * If we acquired the lock, then the user space value
1902                          * of uaddr2 should be vpid. It cannot be changed by
1903                          * the top waiter as it is blocked on hb2 lock if it
1904                          * tries to do so. If something fiddled with it behind
1905                          * our back the pi state lookup might unearth it. So
1906                          * we rather use the known value than rereading and
1907                          * handing potential crap to lookup_pi_state.
1908                          *
1909                          * If that call succeeds then we have pi_state and an
1910                          * initial refcount on it.
1911                          */
1912                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1913                 }
1914
1915                 switch (ret) {
1916                 case 0:
1917                         /* We hold a reference on the pi state. */
1918                         break;
1919
1920                         /* If the above failed, then pi_state is NULL */
1921                 case -EFAULT:
1922                         double_unlock_hb(hb1, hb2);
1923                         hb_waiters_dec(hb2);
1924                         put_futex_key(&key2);
1925                         put_futex_key(&key1);
1926                         ret = fault_in_user_writeable(uaddr2);
1927                         if (!ret)
1928                                 goto retry;
1929                         goto out;
1930                 case -EAGAIN:
1931                         /*
1932                          * Two reasons for this:
1933                          * - Owner is exiting and we just wait for the
1934                          *   exit to complete.
1935                          * - The user space value changed.
1936                          */
1937                         double_unlock_hb(hb1, hb2);
1938                         hb_waiters_dec(hb2);
1939                         put_futex_key(&key2);
1940                         put_futex_key(&key1);
1941                         cond_resched();
1942                         goto retry;
1943                 default:
1944                         goto out_unlock;
1945                 }
1946         }
1947
1948         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1949                 if (task_count - nr_wake >= nr_requeue)
1950                         break;
1951
1952                 if (!match_futex(&this->key, &key1))
1953                         continue;
1954
1955                 /*
1956                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1957                  * be paired with each other and no other futex ops.
1958                  *
1959                  * We should never be requeueing a futex_q with a pi_state,
1960                  * which is awaiting a futex_unlock_pi().
1961                  */
1962                 if ((requeue_pi && !this->rt_waiter) ||
1963                     (!requeue_pi && this->rt_waiter) ||
1964                     this->pi_state) {
1965                         ret = -EINVAL;
1966                         break;
1967                 }
1968
1969                 /*
1970                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1971                  * lock, we already woke the top_waiter.  If not, it will be
1972                  * woken by futex_unlock_pi().
1973                  */
1974                 if (++task_count <= nr_wake && !requeue_pi) {
1975                         mark_wake_futex(&wake_q, this);
1976                         continue;
1977                 }
1978
1979                 /* Ensure we requeue to the expected futex for requeue_pi. */
1980                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1981                         ret = -EINVAL;
1982                         break;
1983                 }
1984
1985                 /*
1986                  * Requeue nr_requeue waiters and possibly one more in the case
1987                  * of requeue_pi if we couldn't acquire the lock atomically.
1988                  */
1989                 if (requeue_pi) {
1990                         /*
1991                          * Prepare the waiter to take the rt_mutex. Take a
1992                          * refcount on the pi_state and store the pointer in
1993                          * the futex_q object of the waiter.
1994                          */
1995                         get_pi_state(pi_state);
1996                         this->pi_state = pi_state;
1997                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1998                                                         this->rt_waiter,
1999                                                         this->task);
2000                         if (ret == 1) {
2001                                 /*
2002                                  * We got the lock. We do neither drop the
2003                                  * refcount on pi_state nor clear
2004                                  * this->pi_state because the waiter needs the
2005                                  * pi_state for cleaning up the user space
2006                                  * value. It will drop the refcount after
2007                                  * doing so.
2008                                  */
2009                                 requeue_pi_wake_futex(this, &key2, hb2);
2010                                 drop_count++;
2011                                 continue;
2012                         } else if (ret) {
2013                                 /*
2014                                  * rt_mutex_start_proxy_lock() detected a
2015                                  * potential deadlock when we tried to queue
2016                                  * that waiter. Drop the pi_state reference
2017                                  * which we took above and remove the pointer
2018                                  * to the state from the waiters futex_q
2019                                  * object.
2020                                  */
2021                                 this->pi_state = NULL;
2022                                 put_pi_state(pi_state);
2023                                 /*
2024                                  * We stop queueing more waiters and let user
2025                                  * space deal with the mess.
2026                                  */
2027                                 break;
2028                         }
2029                 }
2030                 requeue_futex(this, hb1, hb2, &key2);
2031                 drop_count++;
2032         }
2033
2034         /*
2035          * We took an extra initial reference to the pi_state either
2036          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2037          * need to drop it here again.
2038          */
2039         put_pi_state(pi_state);
2040
2041 out_unlock:
2042         double_unlock_hb(hb1, hb2);
2043         wake_up_q(&wake_q);
2044         hb_waiters_dec(hb2);
2045
2046         /*
2047          * drop_futex_key_refs() must be called outside the spinlocks. During
2048          * the requeue we moved futex_q's from the hash bucket at key1 to the
2049          * one at key2 and updated their key pointer.  We no longer need to
2050          * hold the references to key1.
2051          */
2052         while (--drop_count >= 0)
2053                 drop_futex_key_refs(&key1);
2054
2055 out_put_keys:
2056         put_futex_key(&key2);
2057 out_put_key1:
2058         put_futex_key(&key1);
2059 out:
2060         return ret ? ret : task_count;
2061 }
2062
2063 /* The key must be already stored in q->key. */
2064 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2065         __acquires(&hb->lock)
2066 {
2067         struct futex_hash_bucket *hb;
2068
2069         hb = hash_futex(&q->key);
2070
2071         /*
2072          * Increment the counter before taking the lock so that
2073          * a potential waker won't miss a to-be-slept task that is
2074          * waiting for the spinlock. This is safe as all queue_lock()
2075          * users end up calling queue_me(). Similarly, for housekeeping,
2076          * decrement the counter at queue_unlock() when some error has
2077          * occurred and we don't end up adding the task to the list.
2078          */
2079         hb_waiters_inc(hb);
2080
2081         q->lock_ptr = &hb->lock;
2082
2083         spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2084         return hb;
2085 }
2086
2087 static inline void
2088 queue_unlock(struct futex_hash_bucket *hb)
2089         __releases(&hb->lock)
2090 {
2091         spin_unlock(&hb->lock);
2092         hb_waiters_dec(hb);
2093 }
2094
2095 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2096 {
2097         int prio;
2098
2099         /*
2100          * The priority used to register this element is
2101          * - either the real thread-priority for the real-time threads
2102          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2103          * - or MAX_RT_PRIO for non-RT threads.
2104          * Thus, all RT-threads are woken first in priority order, and
2105          * the others are woken last, in FIFO order.
2106          */
2107         prio = min(current->normal_prio, MAX_RT_PRIO);
2108
2109         plist_node_init(&q->list, prio);
2110         plist_add(&q->list, &hb->chain);
2111         q->task = current;
2112 }
2113
2114 /**
2115  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2116  * @q:  The futex_q to enqueue
2117  * @hb: The destination hash bucket
2118  *
2119  * The hb->lock must be held by the caller, and is released here. A call to
2120  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2121  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2122  * or nothing if the unqueue is done as part of the wake process and the unqueue
2123  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2124  * an example).
2125  */
2126 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2127         __releases(&hb->lock)
2128 {
2129         __queue_me(q, hb);
2130         spin_unlock(&hb->lock);
2131 }
2132
2133 /**
2134  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2135  * @q:  The futex_q to unqueue
2136  *
2137  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2138  * be paired with exactly one earlier call to queue_me().
2139  *
2140  * Return:
2141  *   1 - if the futex_q was still queued (and we removed unqueued it);
2142  *   0 - if the futex_q was already removed by the waking thread
2143  */
2144 static int unqueue_me(struct futex_q *q)
2145 {
2146         spinlock_t *lock_ptr;
2147         int ret = 0;
2148
2149         /* In the common case we don't take the spinlock, which is nice. */
2150 retry:
2151         /*
2152          * q->lock_ptr can change between this read and the following spin_lock.
2153          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2154          * optimizing lock_ptr out of the logic below.
2155          */
2156         lock_ptr = READ_ONCE(q->lock_ptr);
2157         if (lock_ptr != NULL) {
2158                 spin_lock(lock_ptr);
2159                 /*
2160                  * q->lock_ptr can change between reading it and
2161                  * spin_lock(), causing us to take the wrong lock.  This
2162                  * corrects the race condition.
2163                  *
2164                  * Reasoning goes like this: if we have the wrong lock,
2165                  * q->lock_ptr must have changed (maybe several times)
2166                  * between reading it and the spin_lock().  It can
2167                  * change again after the spin_lock() but only if it was
2168                  * already changed before the spin_lock().  It cannot,
2169                  * however, change back to the original value.  Therefore
2170                  * we can detect whether we acquired the correct lock.
2171                  */
2172                 if (unlikely(lock_ptr != q->lock_ptr)) {
2173                         spin_unlock(lock_ptr);
2174                         goto retry;
2175                 }
2176                 __unqueue_futex(q);
2177
2178                 BUG_ON(q->pi_state);
2179
2180                 spin_unlock(lock_ptr);
2181                 ret = 1;
2182         }
2183
2184         drop_futex_key_refs(&q->key);
2185         return ret;
2186 }
2187
2188 /*
2189  * PI futexes can not be requeued and must remove themself from the
2190  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2191  * and dropped here.
2192  */
2193 static void unqueue_me_pi(struct futex_q *q)
2194         __releases(q->lock_ptr)
2195 {
2196         __unqueue_futex(q);
2197
2198         BUG_ON(!q->pi_state);
2199         put_pi_state(q->pi_state);
2200         q->pi_state = NULL;
2201
2202         spin_unlock(q->lock_ptr);
2203 }
2204
2205 /*
2206  * Fixup the pi_state owner with the new owner.
2207  *
2208  * Must be called with hash bucket lock held and mm->sem held for non
2209  * private futexes.
2210  */
2211 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2212                                 struct task_struct *newowner)
2213 {
2214         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2215         struct futex_pi_state *pi_state = q->pi_state;
2216         u32 uval, uninitialized_var(curval), newval;
2217         struct task_struct *oldowner;
2218         int ret;
2219
2220         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2221
2222         oldowner = pi_state->owner;
2223         /* Owner died? */
2224         if (!pi_state->owner)
2225                 newtid |= FUTEX_OWNER_DIED;
2226
2227         /*
2228          * We are here either because we stole the rtmutex from the
2229          * previous highest priority waiter or we are the highest priority
2230          * waiter but have failed to get the rtmutex the first time.
2231          *
2232          * We have to replace the newowner TID in the user space variable.
2233          * This must be atomic as we have to preserve the owner died bit here.
2234          *
2235          * Note: We write the user space value _before_ changing the pi_state
2236          * because we can fault here. Imagine swapped out pages or a fork
2237          * that marked all the anonymous memory readonly for cow.
2238          *
2239          * Modifying pi_state _before_ the user space value would leave the
2240          * pi_state in an inconsistent state when we fault here, because we
2241          * need to drop the locks to handle the fault. This might be observed
2242          * in the PID check in lookup_pi_state.
2243          */
2244 retry:
2245         if (get_futex_value_locked(&uval, uaddr))
2246                 goto handle_fault;
2247
2248         for (;;) {
2249                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2250
2251                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2252                         goto handle_fault;
2253                 if (curval == uval)
2254                         break;
2255                 uval = curval;
2256         }
2257
2258         /*
2259          * We fixed up user space. Now we need to fix the pi_state
2260          * itself.
2261          */
2262         if (pi_state->owner != NULL) {
2263                 raw_spin_lock(&pi_state->owner->pi_lock);
2264                 WARN_ON(list_empty(&pi_state->list));
2265                 list_del_init(&pi_state->list);
2266                 raw_spin_unlock(&pi_state->owner->pi_lock);
2267         }
2268
2269         pi_state->owner = newowner;
2270
2271         raw_spin_lock(&newowner->pi_lock);
2272         WARN_ON(!list_empty(&pi_state->list));
2273         list_add(&pi_state->list, &newowner->pi_state_list);
2274         raw_spin_unlock(&newowner->pi_lock);
2275         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2276
2277         return 0;
2278
2279         /*
2280          * To handle the page fault we need to drop the locks here. That gives
2281          * the other task (either the highest priority waiter itself or the
2282          * task which stole the rtmutex) the chance to try the fixup of the
2283          * pi_state. So once we are back from handling the fault we need to
2284          * check the pi_state after reacquiring the locks and before trying to
2285          * do another fixup. When the fixup has been done already we simply
2286          * return.
2287          *
2288          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2289          * drop hb->lock since the caller owns the hb -> futex_q relation.
2290          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2291          */
2292 handle_fault:
2293         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2294         spin_unlock(q->lock_ptr);
2295
2296         ret = fault_in_user_writeable(uaddr);
2297
2298         spin_lock(q->lock_ptr);
2299         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2300
2301         /*
2302          * Check if someone else fixed it for us:
2303          */
2304         if (pi_state->owner != oldowner) {
2305                 ret = 0;
2306                 goto out_unlock;
2307         }
2308
2309         if (ret)
2310                 goto out_unlock;
2311
2312         goto retry;
2313
2314 out_unlock:
2315         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2316         return ret;
2317 }
2318
2319 static long futex_wait_restart(struct restart_block *restart);
2320
2321 /**
2322  * fixup_owner() - Post lock pi_state and corner case management
2323  * @uaddr:      user address of the futex
2324  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2325  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2326  *
2327  * After attempting to lock an rt_mutex, this function is called to cleanup
2328  * the pi_state owner as well as handle race conditions that may allow us to
2329  * acquire the lock. Must be called with the hb lock held.
2330  *
2331  * Return:
2332  *  1 - success, lock taken;
2333  *  0 - success, lock not taken;
2334  * <0 - on error (-EFAULT)
2335  */
2336 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2337 {
2338         int ret = 0;
2339
2340         if (locked) {
2341                 /*
2342                  * Got the lock. We might not be the anticipated owner if we
2343                  * did a lock-steal - fix up the PI-state in that case:
2344                  *
2345                  * We can safely read pi_state->owner without holding wait_lock
2346                  * because we now own the rt_mutex, only the owner will attempt
2347                  * to change it.
2348                  */
2349                 if (q->pi_state->owner != current)
2350                         ret = fixup_pi_state_owner(uaddr, q, current);
2351                 goto out;
2352         }
2353
2354         /*
2355          * Paranoia check. If we did not take the lock, then we should not be
2356          * the owner of the rt_mutex.
2357          */
2358         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2359                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2360                                 "pi-state %p\n", ret,
2361                                 q->pi_state->pi_mutex.owner,
2362                                 q->pi_state->owner);
2363         }
2364
2365 out:
2366         return ret ? ret : locked;
2367 }
2368
2369 /**
2370  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2371  * @hb:         the futex hash bucket, must be locked by the caller
2372  * @q:          the futex_q to queue up on
2373  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2374  */
2375 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2376                                 struct hrtimer_sleeper *timeout)
2377 {
2378         /*
2379          * The task state is guaranteed to be set before another task can
2380          * wake it. set_current_state() is implemented using smp_store_mb() and
2381          * queue_me() calls spin_unlock() upon completion, both serializing
2382          * access to the hash list and forcing another memory barrier.
2383          */
2384         set_current_state(TASK_INTERRUPTIBLE);
2385         queue_me(q, hb);
2386
2387         /* Arm the timer */
2388         if (timeout)
2389                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2390
2391         /*
2392          * If we have been removed from the hash list, then another task
2393          * has tried to wake us, and we can skip the call to schedule().
2394          */
2395         if (likely(!plist_node_empty(&q->list))) {
2396                 /*
2397                  * If the timer has already expired, current will already be
2398                  * flagged for rescheduling. Only call schedule if there
2399                  * is no timeout, or if it has yet to expire.
2400                  */
2401                 if (!timeout || timeout->task)
2402                         freezable_schedule();
2403         }
2404         __set_current_state(TASK_RUNNING);
2405 }
2406
2407 /**
2408  * futex_wait_setup() - Prepare to wait on a futex
2409  * @uaddr:      the futex userspace address
2410  * @val:        the expected value
2411  * @flags:      futex flags (FLAGS_SHARED, etc.)
2412  * @q:          the associated futex_q
2413  * @hb:         storage for hash_bucket pointer to be returned to caller
2414  *
2415  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2416  * compare it with the expected value.  Handle atomic faults internally.
2417  * Return with the hb lock held and a q.key reference on success, and unlocked
2418  * with no q.key reference on failure.
2419  *
2420  * Return:
2421  *  0 - uaddr contains val and hb has been locked;
2422  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2423  */
2424 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2425                            struct futex_q *q, struct futex_hash_bucket **hb)
2426 {
2427         u32 uval;
2428         int ret;
2429
2430         /*
2431          * Access the page AFTER the hash-bucket is locked.
2432          * Order is important:
2433          *
2434          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2435          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2436          *
2437          * The basic logical guarantee of a futex is that it blocks ONLY
2438          * if cond(var) is known to be true at the time of blocking, for
2439          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2440          * would open a race condition where we could block indefinitely with
2441          * cond(var) false, which would violate the guarantee.
2442          *
2443          * On the other hand, we insert q and release the hash-bucket only
2444          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2445          * absorb a wakeup if *uaddr does not match the desired values
2446          * while the syscall executes.
2447          */
2448 retry:
2449         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2450         if (unlikely(ret != 0))
2451                 return ret;
2452
2453 retry_private:
2454         *hb = queue_lock(q);
2455
2456         ret = get_futex_value_locked(&uval, uaddr);
2457
2458         if (ret) {
2459                 queue_unlock(*hb);
2460
2461                 ret = get_user(uval, uaddr);
2462                 if (ret)
2463                         goto out;
2464
2465                 if (!(flags & FLAGS_SHARED))
2466                         goto retry_private;
2467
2468                 put_futex_key(&q->key);
2469                 goto retry;
2470         }
2471
2472         if (uval != val) {
2473                 queue_unlock(*hb);
2474                 ret = -EWOULDBLOCK;
2475         }
2476
2477 out:
2478         if (ret)
2479                 put_futex_key(&q->key);
2480         return ret;
2481 }
2482
2483 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2484                       ktime_t *abs_time, u32 bitset)
2485 {
2486         struct hrtimer_sleeper timeout, *to = NULL;
2487         struct restart_block *restart;
2488         struct futex_hash_bucket *hb;
2489         struct futex_q q = futex_q_init;
2490         int ret;
2491
2492         if (!bitset)
2493                 return -EINVAL;
2494         q.bitset = bitset;
2495
2496         if (abs_time) {
2497                 to = &timeout;
2498
2499                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2500                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2501                                       HRTIMER_MODE_ABS);
2502                 hrtimer_init_sleeper(to, current);
2503                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2504                                              current->timer_slack_ns);
2505         }
2506
2507 retry:
2508         /*
2509          * Prepare to wait on uaddr. On success, holds hb lock and increments
2510          * q.key refs.
2511          */
2512         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2513         if (ret)
2514                 goto out;
2515
2516         /* queue_me and wait for wakeup, timeout, or a signal. */
2517         futex_wait_queue_me(hb, &q, to);
2518
2519         /* If we were woken (and unqueued), we succeeded, whatever. */
2520         ret = 0;
2521         /* unqueue_me() drops q.key ref */
2522         if (!unqueue_me(&q))
2523                 goto out;
2524         ret = -ETIMEDOUT;
2525         if (to && !to->task)
2526                 goto out;
2527
2528         /*
2529          * We expect signal_pending(current), but we might be the
2530          * victim of a spurious wakeup as well.
2531          */
2532         if (!signal_pending(current))
2533                 goto retry;
2534
2535         ret = -ERESTARTSYS;
2536         if (!abs_time)
2537                 goto out;
2538
2539         restart = &current->restart_block;
2540         restart->fn = futex_wait_restart;
2541         restart->futex.uaddr = uaddr;
2542         restart->futex.val = val;
2543         restart->futex.time = *abs_time;
2544         restart->futex.bitset = bitset;
2545         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2546
2547         ret = -ERESTART_RESTARTBLOCK;
2548
2549 out:
2550         if (to) {
2551                 hrtimer_cancel(&to->timer);
2552                 destroy_hrtimer_on_stack(&to->timer);
2553         }
2554         return ret;
2555 }
2556
2557
2558 static long futex_wait_restart(struct restart_block *restart)
2559 {
2560         u32 __user *uaddr = restart->futex.uaddr;
2561         ktime_t t, *tp = NULL;
2562
2563         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2564                 t = restart->futex.time;
2565                 tp = &t;
2566         }
2567         restart->fn = do_no_restart_syscall;
2568
2569         return (long)futex_wait(uaddr, restart->futex.flags,
2570                                 restart->futex.val, tp, restart->futex.bitset);
2571 }
2572
2573
2574 /*
2575  * Userspace tried a 0 -> TID atomic transition of the futex value
2576  * and failed. The kernel side here does the whole locking operation:
2577  * if there are waiters then it will block as a consequence of relying
2578  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2579  * a 0 value of the futex too.).
2580  *
2581  * Also serves as futex trylock_pi()'ing, and due semantics.
2582  */
2583 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2584                          ktime_t *time, int trylock)
2585 {
2586         struct hrtimer_sleeper timeout, *to = NULL;
2587         struct futex_pi_state *pi_state = NULL;
2588         struct rt_mutex_waiter rt_waiter;
2589         struct futex_hash_bucket *hb;
2590         struct futex_q q = futex_q_init;
2591         int res, ret;
2592
2593         if (refill_pi_state_cache())
2594                 return -ENOMEM;
2595
2596         if (time) {
2597                 to = &timeout;
2598                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2599                                       HRTIMER_MODE_ABS);
2600                 hrtimer_init_sleeper(to, current);
2601                 hrtimer_set_expires(&to->timer, *time);
2602         }
2603
2604 retry:
2605         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2606         if (unlikely(ret != 0))
2607                 goto out;
2608
2609 retry_private:
2610         hb = queue_lock(&q);
2611
2612         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2613         if (unlikely(ret)) {
2614                 /*
2615                  * Atomic work succeeded and we got the lock,
2616                  * or failed. Either way, we do _not_ block.
2617                  */
2618                 switch (ret) {
2619                 case 1:
2620                         /* We got the lock. */
2621                         ret = 0;
2622                         goto out_unlock_put_key;
2623                 case -EFAULT:
2624                         goto uaddr_faulted;
2625                 case -EAGAIN:
2626                         /*
2627                          * Two reasons for this:
2628                          * - Task is exiting and we just wait for the
2629                          *   exit to complete.
2630                          * - The user space value changed.
2631                          */
2632                         queue_unlock(hb);
2633                         put_futex_key(&q.key);
2634                         cond_resched();
2635                         goto retry;
2636                 default:
2637                         goto out_unlock_put_key;
2638                 }
2639         }
2640
2641         WARN_ON(!q.pi_state);
2642
2643         /*
2644          * Only actually queue now that the atomic ops are done:
2645          */
2646         __queue_me(&q, hb);
2647
2648         if (trylock) {
2649                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2650                 /* Fixup the trylock return value: */
2651                 ret = ret ? 0 : -EWOULDBLOCK;
2652                 goto no_block;
2653         }
2654
2655         rt_mutex_init_waiter(&rt_waiter);
2656
2657         /*
2658          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2659          * hold it while doing rt_mutex_start_proxy(), because then it will
2660          * include hb->lock in the blocking chain, even through we'll not in
2661          * fact hold it while blocking. This will lead it to report -EDEADLK
2662          * and BUG when futex_unlock_pi() interleaves with this.
2663          *
2664          * Therefore acquire wait_lock while holding hb->lock, but drop the
2665          * latter before calling rt_mutex_start_proxy_lock(). This still fully
2666          * serializes against futex_unlock_pi() as that does the exact same
2667          * lock handoff sequence.
2668          */
2669         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2670         spin_unlock(q.lock_ptr);
2671         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2672         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2673
2674         if (ret) {
2675                 if (ret == 1)
2676                         ret = 0;
2677
2678                 spin_lock(q.lock_ptr);
2679                 goto no_block;
2680         }
2681
2682
2683         if (unlikely(to))
2684                 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2685
2686         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2687
2688         spin_lock(q.lock_ptr);
2689         /*
2690          * If we failed to acquire the lock (signal/timeout), we must
2691          * first acquire the hb->lock before removing the lock from the
2692          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2693          * wait lists consistent.
2694          *
2695          * In particular; it is important that futex_unlock_pi() can not
2696          * observe this inconsistency.
2697          */
2698         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2699                 ret = 0;
2700
2701 no_block:
2702         /*
2703          * Fixup the pi_state owner and possibly acquire the lock if we
2704          * haven't already.
2705          */
2706         res = fixup_owner(uaddr, &q, !ret);
2707         /*
2708          * If fixup_owner() returned an error, proprogate that.  If it acquired
2709          * the lock, clear our -ETIMEDOUT or -EINTR.
2710          */
2711         if (res)
2712                 ret = (res < 0) ? res : 0;
2713
2714         /*
2715          * If fixup_owner() faulted and was unable to handle the fault, unlock
2716          * it and return the fault to userspace.
2717          */
2718         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2719                 pi_state = q.pi_state;
2720                 get_pi_state(pi_state);
2721         }
2722
2723         /* Unqueue and drop the lock */
2724         unqueue_me_pi(&q);
2725
2726         if (pi_state) {
2727                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2728                 put_pi_state(pi_state);
2729         }
2730
2731         goto out_put_key;
2732
2733 out_unlock_put_key:
2734         queue_unlock(hb);
2735
2736 out_put_key:
2737         put_futex_key(&q.key);
2738 out:
2739         if (to) {
2740                 hrtimer_cancel(&to->timer);
2741                 destroy_hrtimer_on_stack(&to->timer);
2742         }
2743         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2744
2745 uaddr_faulted:
2746         queue_unlock(hb);
2747
2748         ret = fault_in_user_writeable(uaddr);
2749         if (ret)
2750                 goto out_put_key;
2751
2752         if (!(flags & FLAGS_SHARED))
2753                 goto retry_private;
2754
2755         put_futex_key(&q.key);
2756         goto retry;
2757 }
2758
2759 /*
2760  * Userspace attempted a TID -> 0 atomic transition, and failed.
2761  * This is the in-kernel slowpath: we look up the PI state (if any),
2762  * and do the rt-mutex unlock.
2763  */
2764 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2765 {
2766         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2767         union futex_key key = FUTEX_KEY_INIT;
2768         struct futex_hash_bucket *hb;
2769         struct futex_q *top_waiter;
2770         int ret;
2771
2772 retry:
2773         if (get_user(uval, uaddr))
2774                 return -EFAULT;
2775         /*
2776          * We release only a lock we actually own:
2777          */
2778         if ((uval & FUTEX_TID_MASK) != vpid)
2779                 return -EPERM;
2780
2781         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2782         if (ret)
2783                 return ret;
2784
2785         hb = hash_futex(&key);
2786         spin_lock(&hb->lock);
2787
2788         /*
2789          * Check waiters first. We do not trust user space values at
2790          * all and we at least want to know if user space fiddled
2791          * with the futex value instead of blindly unlocking.
2792          */
2793         top_waiter = futex_top_waiter(hb, &key);
2794         if (top_waiter) {
2795                 struct futex_pi_state *pi_state = top_waiter->pi_state;
2796
2797                 ret = -EINVAL;
2798                 if (!pi_state)
2799                         goto out_unlock;
2800
2801                 /*
2802                  * If current does not own the pi_state then the futex is
2803                  * inconsistent and user space fiddled with the futex value.
2804                  */
2805                 if (pi_state->owner != current)
2806                         goto out_unlock;
2807
2808                 get_pi_state(pi_state);
2809                 /*
2810                  * By taking wait_lock while still holding hb->lock, we ensure
2811                  * there is no point where we hold neither; and therefore
2812                  * wake_futex_pi() must observe a state consistent with what we
2813                  * observed.
2814                  */
2815                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2816                 spin_unlock(&hb->lock);
2817
2818                 ret = wake_futex_pi(uaddr, uval, pi_state);
2819
2820                 put_pi_state(pi_state);
2821
2822                 /*
2823                  * Success, we're done! No tricky corner cases.
2824                  */
2825                 if (!ret)
2826                         goto out_putkey;
2827                 /*
2828                  * The atomic access to the futex value generated a
2829                  * pagefault, so retry the user-access and the wakeup:
2830                  */
2831                 if (ret == -EFAULT)
2832                         goto pi_faulted;
2833                 /*
2834                  * A unconditional UNLOCK_PI op raced against a waiter
2835                  * setting the FUTEX_WAITERS bit. Try again.
2836                  */
2837                 if (ret == -EAGAIN) {
2838                         put_futex_key(&key);
2839                         goto retry;
2840                 }
2841                 /*
2842                  * wake_futex_pi has detected invalid state. Tell user
2843                  * space.
2844                  */
2845                 goto out_putkey;
2846         }
2847
2848         /*
2849          * We have no kernel internal state, i.e. no waiters in the
2850          * kernel. Waiters which are about to queue themselves are stuck
2851          * on hb->lock. So we can safely ignore them. We do neither
2852          * preserve the WAITERS bit not the OWNER_DIED one. We are the
2853          * owner.
2854          */
2855         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2856                 spin_unlock(&hb->lock);
2857                 goto pi_faulted;
2858         }
2859
2860         /*
2861          * If uval has changed, let user space handle it.
2862          */
2863         ret = (curval == uval) ? 0 : -EAGAIN;
2864
2865 out_unlock:
2866         spin_unlock(&hb->lock);
2867 out_putkey:
2868         put_futex_key(&key);
2869         return ret;
2870
2871 pi_faulted:
2872         put_futex_key(&key);
2873
2874         ret = fault_in_user_writeable(uaddr);
2875         if (!ret)
2876                 goto retry;
2877
2878         return ret;
2879 }
2880
2881 /**
2882  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2883  * @hb:         the hash_bucket futex_q was original enqueued on
2884  * @q:          the futex_q woken while waiting to be requeued
2885  * @key2:       the futex_key of the requeue target futex
2886  * @timeout:    the timeout associated with the wait (NULL if none)
2887  *
2888  * Detect if the task was woken on the initial futex as opposed to the requeue
2889  * target futex.  If so, determine if it was a timeout or a signal that caused
2890  * the wakeup and return the appropriate error code to the caller.  Must be
2891  * called with the hb lock held.
2892  *
2893  * Return:
2894  *  0 = no early wakeup detected;
2895  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2896  */
2897 static inline
2898 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2899                                    struct futex_q *q, union futex_key *key2,
2900                                    struct hrtimer_sleeper *timeout)
2901 {
2902         int ret = 0;
2903
2904         /*
2905          * With the hb lock held, we avoid races while we process the wakeup.
2906          * We only need to hold hb (and not hb2) to ensure atomicity as the
2907          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2908          * It can't be requeued from uaddr2 to something else since we don't
2909          * support a PI aware source futex for requeue.
2910          */
2911         if (!match_futex(&q->key, key2)) {
2912                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2913                 /*
2914                  * We were woken prior to requeue by a timeout or a signal.
2915                  * Unqueue the futex_q and determine which it was.
2916                  */
2917                 plist_del(&q->list, &hb->chain);
2918                 hb_waiters_dec(hb);
2919
2920                 /* Handle spurious wakeups gracefully */
2921                 ret = -EWOULDBLOCK;
2922                 if (timeout && !timeout->task)
2923                         ret = -ETIMEDOUT;
2924                 else if (signal_pending(current))
2925                         ret = -ERESTARTNOINTR;
2926         }
2927         return ret;
2928 }
2929
2930 /**
2931  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2932  * @uaddr:      the futex we initially wait on (non-pi)
2933  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2934  *              the same type, no requeueing from private to shared, etc.
2935  * @val:        the expected value of uaddr
2936  * @abs_time:   absolute timeout
2937  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2938  * @uaddr2:     the pi futex we will take prior to returning to user-space
2939  *
2940  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2941  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2942  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2943  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2944  * without one, the pi logic would not know which task to boost/deboost, if
2945  * there was a need to.
2946  *
2947  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2948  * via the following--
2949  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2950  * 2) wakeup on uaddr2 after a requeue
2951  * 3) signal
2952  * 4) timeout
2953  *
2954  * If 3, cleanup and return -ERESTARTNOINTR.
2955  *
2956  * If 2, we may then block on trying to take the rt_mutex and return via:
2957  * 5) successful lock
2958  * 6) signal
2959  * 7) timeout
2960  * 8) other lock acquisition failure
2961  *
2962  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2963  *
2964  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2965  *
2966  * Return:
2967  *  0 - On success;
2968  * <0 - On error
2969  */
2970 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2971                                  u32 val, ktime_t *abs_time, u32 bitset,
2972                                  u32 __user *uaddr2)
2973 {
2974         struct hrtimer_sleeper timeout, *to = NULL;
2975         struct futex_pi_state *pi_state = NULL;
2976         struct rt_mutex_waiter rt_waiter;
2977         struct futex_hash_bucket *hb;
2978         union futex_key key2 = FUTEX_KEY_INIT;
2979         struct futex_q q = futex_q_init;
2980         int res, ret;
2981
2982         if (uaddr == uaddr2)
2983                 return -EINVAL;
2984
2985         if (!bitset)
2986                 return -EINVAL;
2987
2988         if (abs_time) {
2989                 to = &timeout;
2990                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2991                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2992                                       HRTIMER_MODE_ABS);
2993                 hrtimer_init_sleeper(to, current);
2994                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2995                                              current->timer_slack_ns);
2996         }
2997
2998         /*
2999          * The waiter is allocated on our stack, manipulated by the requeue
3000          * code while we sleep on uaddr.
3001          */
3002         rt_mutex_init_waiter(&rt_waiter);
3003
3004         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3005         if (unlikely(ret != 0))
3006                 goto out;
3007
3008         q.bitset = bitset;
3009         q.rt_waiter = &rt_waiter;
3010         q.requeue_pi_key = &key2;
3011
3012         /*
3013          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3014          * count.
3015          */
3016         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3017         if (ret)
3018                 goto out_key2;
3019
3020         /*
3021          * The check above which compares uaddrs is not sufficient for
3022          * shared futexes. We need to compare the keys:
3023          */
3024         if (match_futex(&q.key, &key2)) {
3025                 queue_unlock(hb);
3026                 ret = -EINVAL;
3027                 goto out_put_keys;
3028         }
3029
3030         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3031         futex_wait_queue_me(hb, &q, to);
3032
3033         spin_lock(&hb->lock);
3034         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3035         spin_unlock(&hb->lock);
3036         if (ret)
3037                 goto out_put_keys;
3038
3039         /*
3040          * In order for us to be here, we know our q.key == key2, and since
3041          * we took the hb->lock above, we also know that futex_requeue() has
3042          * completed and we no longer have to concern ourselves with a wakeup
3043          * race with the atomic proxy lock acquisition by the requeue code. The
3044          * futex_requeue dropped our key1 reference and incremented our key2
3045          * reference count.
3046          */
3047
3048         /* Check if the requeue code acquired the second futex for us. */
3049         if (!q.rt_waiter) {
3050                 /*
3051                  * Got the lock. We might not be the anticipated owner if we
3052                  * did a lock-steal - fix up the PI-state in that case.
3053                  */
3054                 if (q.pi_state && (q.pi_state->owner != current)) {
3055                         spin_lock(q.lock_ptr);
3056                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3057                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3058                                 pi_state = q.pi_state;
3059                                 get_pi_state(pi_state);
3060                         }
3061                         /*
3062                          * Drop the reference to the pi state which
3063                          * the requeue_pi() code acquired for us.
3064                          */
3065                         put_pi_state(q.pi_state);
3066                         spin_unlock(q.lock_ptr);
3067                 }
3068         } else {
3069                 struct rt_mutex *pi_mutex;
3070
3071                 /*
3072                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3073                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3074                  * the pi_state.
3075                  */
3076                 WARN_ON(!q.pi_state);
3077                 pi_mutex = &q.pi_state->pi_mutex;
3078                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3079
3080                 spin_lock(q.lock_ptr);
3081                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3082                         ret = 0;
3083
3084                 debug_rt_mutex_free_waiter(&rt_waiter);
3085                 /*
3086                  * Fixup the pi_state owner and possibly acquire the lock if we
3087                  * haven't already.
3088                  */
3089                 res = fixup_owner(uaddr2, &q, !ret);
3090                 /*
3091                  * If fixup_owner() returned an error, proprogate that.  If it
3092                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3093                  */
3094                 if (res)
3095                         ret = (res < 0) ? res : 0;
3096
3097                 /*
3098                  * If fixup_pi_state_owner() faulted and was unable to handle
3099                  * the fault, unlock the rt_mutex and return the fault to
3100                  * userspace.
3101                  */
3102                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3103                         pi_state = q.pi_state;
3104                         get_pi_state(pi_state);
3105                 }
3106
3107                 /* Unqueue and drop the lock. */
3108                 unqueue_me_pi(&q);
3109         }
3110
3111         if (pi_state) {
3112                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3113                 put_pi_state(pi_state);
3114         }
3115
3116         if (ret == -EINTR) {
3117                 /*
3118                  * We've already been requeued, but cannot restart by calling
3119                  * futex_lock_pi() directly. We could restart this syscall, but
3120                  * it would detect that the user space "val" changed and return
3121                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3122                  * -EWOULDBLOCK directly.
3123                  */
3124                 ret = -EWOULDBLOCK;
3125         }
3126
3127 out_put_keys:
3128         put_futex_key(&q.key);
3129 out_key2:
3130         put_futex_key(&key2);
3131
3132 out:
3133         if (to) {
3134                 hrtimer_cancel(&to->timer);
3135                 destroy_hrtimer_on_stack(&to->timer);
3136         }
3137         return ret;
3138 }
3139
3140 /*
3141  * Support for robust futexes: the kernel cleans up held futexes at
3142  * thread exit time.
3143  *
3144  * Implementation: user-space maintains a per-thread list of locks it
3145  * is holding. Upon do_exit(), the kernel carefully walks this list,
3146  * and marks all locks that are owned by this thread with the
3147  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3148  * always manipulated with the lock held, so the list is private and
3149  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3150  * field, to allow the kernel to clean up if the thread dies after
3151  * acquiring the lock, but just before it could have added itself to
3152  * the list. There can only be one such pending lock.
3153  */
3154
3155 /**
3156  * sys_set_robust_list() - Set the robust-futex list head of a task
3157  * @head:       pointer to the list-head
3158  * @len:        length of the list-head, as userspace expects
3159  */
3160 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3161                 size_t, len)
3162 {
3163         if (!futex_cmpxchg_enabled)
3164                 return -ENOSYS;
3165         /*
3166          * The kernel knows only one size for now:
3167          */
3168         if (unlikely(len != sizeof(*head)))
3169                 return -EINVAL;
3170
3171         current->robust_list = head;
3172
3173         return 0;
3174 }
3175
3176 /**
3177  * sys_get_robust_list() - Get the robust-futex list head of a task
3178  * @pid:        pid of the process [zero for current task]
3179  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3180  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3181  */
3182 SYSCALL_DEFINE3(get_robust_list, int, pid,
3183                 struct robust_list_head __user * __user *, head_ptr,
3184                 size_t __user *, len_ptr)
3185 {
3186         struct robust_list_head __user *head;
3187         unsigned long ret;
3188         struct task_struct *p;
3189
3190         if (!futex_cmpxchg_enabled)
3191                 return -ENOSYS;
3192
3193         rcu_read_lock();
3194
3195         ret = -ESRCH;
3196         if (!pid)
3197                 p = current;
3198         else {
3199                 p = find_task_by_vpid(pid);
3200                 if (!p)
3201                         goto err_unlock;
3202         }
3203
3204         ret = -EPERM;
3205         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3206                 goto err_unlock;
3207
3208         head = p->robust_list;
3209         rcu_read_unlock();
3210
3211         if (put_user(sizeof(*head), len_ptr))
3212                 return -EFAULT;
3213         return put_user(head, head_ptr);
3214
3215 err_unlock:
3216         rcu_read_unlock();
3217
3218         return ret;
3219 }
3220
3221 /*
3222  * Process a futex-list entry, check whether it's owned by the
3223  * dying task, and do notification if so:
3224  */
3225 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3226 {
3227         u32 uval, uninitialized_var(nval), mval;
3228
3229 retry:
3230         if (get_user(uval, uaddr))
3231                 return -1;
3232
3233         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3234                 /*
3235                  * Ok, this dying thread is truly holding a futex
3236                  * of interest. Set the OWNER_DIED bit atomically
3237                  * via cmpxchg, and if the value had FUTEX_WAITERS
3238                  * set, wake up a waiter (if any). (We have to do a
3239                  * futex_wake() even if OWNER_DIED is already set -
3240                  * to handle the rare but possible case of recursive
3241                  * thread-death.) The rest of the cleanup is done in
3242                  * userspace.
3243                  */
3244                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3245                 /*
3246                  * We are not holding a lock here, but we want to have
3247                  * the pagefault_disable/enable() protection because
3248                  * we want to handle the fault gracefully. If the
3249                  * access fails we try to fault in the futex with R/W
3250                  * verification via get_user_pages. get_user() above
3251                  * does not guarantee R/W access. If that fails we
3252                  * give up and leave the futex locked.
3253                  */
3254                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3255                         if (fault_in_user_writeable(uaddr))
3256                                 return -1;
3257                         goto retry;
3258                 }
3259                 if (nval != uval)
3260                         goto retry;
3261
3262                 /*
3263                  * Wake robust non-PI futexes here. The wakeup of
3264                  * PI futexes happens in exit_pi_state():
3265                  */
3266                 if (!pi && (uval & FUTEX_WAITERS))
3267                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3268         }
3269         return 0;
3270 }
3271
3272 /*
3273  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3274  */
3275 static inline int fetch_robust_entry(struct robust_list __user **entry,
3276                                      struct robust_list __user * __user *head,
3277                                      unsigned int *pi)
3278 {
3279         unsigned long uentry;
3280
3281         if (get_user(uentry, (unsigned long __user *)head))
3282                 return -EFAULT;
3283
3284         *entry = (void __user *)(uentry & ~1UL);
3285         *pi = uentry & 1;
3286
3287         return 0;
3288 }
3289
3290 /*
3291  * Walk curr->robust_list (very carefully, it's a userspace list!)
3292  * and mark any locks found there dead, and notify any waiters.
3293  *
3294  * We silently return on any sign of list-walking problem.
3295  */
3296 void exit_robust_list(struct task_struct *curr)
3297 {
3298         struct robust_list_head __user *head = curr->robust_list;
3299         struct robust_list __user *entry, *next_entry, *pending;
3300         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3301         unsigned int uninitialized_var(next_pi);
3302         unsigned long futex_offset;
3303         int rc;
3304
3305         if (!futex_cmpxchg_enabled)
3306                 return;
3307
3308         /*
3309          * Fetch the list head (which was registered earlier, via
3310          * sys_set_robust_list()):
3311          */
3312         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3313                 return;
3314         /*
3315          * Fetch the relative futex offset:
3316          */
3317         if (get_user(futex_offset, &head->futex_offset))
3318                 return;
3319         /*
3320          * Fetch any possibly pending lock-add first, and handle it
3321          * if it exists:
3322          */
3323         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3324                 return;
3325
3326         next_entry = NULL;      /* avoid warning with gcc */
3327         while (entry != &head->list) {
3328                 /*
3329                  * Fetch the next entry in the list before calling
3330                  * handle_futex_death:
3331                  */
3332                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3333                 /*
3334                  * A pending lock might already be on the list, so
3335                  * don't process it twice:
3336                  */
3337                 if (entry != pending)
3338                         if (handle_futex_death((void __user *)entry + futex_offset,
3339                                                 curr, pi))
3340                                 return;
3341                 if (rc)
3342                         return;
3343                 entry = next_entry;
3344                 pi = next_pi;
3345                 /*
3346                  * Avoid excessively long or circular lists:
3347                  */
3348                 if (!--limit)
3349                         break;
3350
3351                 cond_resched();
3352         }
3353
3354         if (pending)
3355                 handle_futex_death((void __user *)pending + futex_offset,
3356                                    curr, pip);
3357 }
3358
3359 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3360                 u32 __user *uaddr2, u32 val2, u32 val3)
3361 {
3362         int cmd = op & FUTEX_CMD_MASK;
3363         unsigned int flags = 0;
3364
3365         if (!(op & FUTEX_PRIVATE_FLAG))
3366                 flags |= FLAGS_SHARED;
3367
3368         if (op & FUTEX_CLOCK_REALTIME) {
3369                 flags |= FLAGS_CLOCKRT;
3370                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3371                     cmd != FUTEX_WAIT_REQUEUE_PI)
3372                         return -ENOSYS;
3373         }
3374
3375         switch (cmd) {
3376         case FUTEX_LOCK_PI:
3377         case FUTEX_UNLOCK_PI:
3378         case FUTEX_TRYLOCK_PI:
3379         case FUTEX_WAIT_REQUEUE_PI:
3380         case FUTEX_CMP_REQUEUE_PI:
3381                 if (!futex_cmpxchg_enabled)
3382                         return -ENOSYS;
3383         }
3384
3385         switch (cmd) {
3386         case FUTEX_WAIT:
3387                 val3 = FUTEX_BITSET_MATCH_ANY;
3388         case FUTEX_WAIT_BITSET:
3389                 return futex_wait(uaddr, flags, val, timeout, val3);
3390         case FUTEX_WAKE:
3391                 val3 = FUTEX_BITSET_MATCH_ANY;
3392         case FUTEX_WAKE_BITSET:
3393                 return futex_wake(uaddr, flags, val, val3);
3394         case FUTEX_REQUEUE:
3395                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3396         case FUTEX_CMP_REQUEUE:
3397                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3398         case FUTEX_WAKE_OP:
3399                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3400         case FUTEX_LOCK_PI:
3401                 return futex_lock_pi(uaddr, flags, timeout, 0);
3402         case FUTEX_UNLOCK_PI:
3403                 return futex_unlock_pi(uaddr, flags);
3404         case FUTEX_TRYLOCK_PI:
3405                 return futex_lock_pi(uaddr, flags, NULL, 1);
3406         case FUTEX_WAIT_REQUEUE_PI:
3407                 val3 = FUTEX_BITSET_MATCH_ANY;
3408                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3409                                              uaddr2);
3410         case FUTEX_CMP_REQUEUE_PI:
3411                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3412         }
3413         return -ENOSYS;
3414 }
3415
3416
3417 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3418                 struct timespec __user *, utime, u32 __user *, uaddr2,
3419                 u32, val3)
3420 {
3421         struct timespec ts;
3422         ktime_t t, *tp = NULL;
3423         u32 val2 = 0;
3424         int cmd = op & FUTEX_CMD_MASK;
3425
3426         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3427                       cmd == FUTEX_WAIT_BITSET ||
3428                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3429                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3430                         return -EFAULT;
3431                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3432                         return -EFAULT;
3433                 if (!timespec_valid(&ts))
3434                         return -EINVAL;
3435
3436                 t = timespec_to_ktime(ts);
3437                 if (cmd == FUTEX_WAIT)
3438                         t = ktime_add_safe(ktime_get(), t);
3439                 tp = &t;
3440         }
3441         /*
3442          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3443          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3444          */
3445         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3446             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3447                 val2 = (u32) (unsigned long) utime;
3448
3449         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3450 }
3451
3452 static void __init futex_detect_cmpxchg(void)
3453 {
3454 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3455         u32 curval;
3456
3457         /*
3458          * This will fail and we want it. Some arch implementations do
3459          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3460          * functionality. We want to know that before we call in any
3461          * of the complex code paths. Also we want to prevent
3462          * registration of robust lists in that case. NULL is
3463          * guaranteed to fault and we get -EFAULT on functional
3464          * implementation, the non-functional ones will return
3465          * -ENOSYS.
3466          */
3467         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3468                 futex_cmpxchg_enabled = 1;
3469 #endif
3470 }
3471
3472 static int __init futex_init(void)
3473 {
3474         unsigned int futex_shift;
3475         unsigned long i;
3476
3477 #if CONFIG_BASE_SMALL
3478         futex_hashsize = 16;
3479 #else
3480         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3481 #endif
3482
3483         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3484                                                futex_hashsize, 0,
3485                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3486                                                &futex_shift, NULL,
3487                                                futex_hashsize, futex_hashsize);
3488         futex_hashsize = 1UL << futex_shift;
3489
3490         futex_detect_cmpxchg();
3491
3492         for (i = 0; i < futex_hashsize; i++) {
3493                 atomic_set(&futex_queues[i].waiters, 0);
3494                 plist_head_init(&futex_queues[i].chain);
3495                 spin_lock_init(&futex_queues[i].lock);
3496         }
3497
3498         return 0;
3499 }
3500 core_initcall(futex_init);